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Abstract

This research introduces the Conceptual Document Clustering Explanation Model

(CDCEM), a novel explanation model for explaining unsupervised textual cluster-

ing. CDCEM explains the discovered clusters and document assignments. Further-

more, it ensures faithfulness—meaning it accurately reflects the decision-making pro-

cess—using the core elements of black-box textual clustering, such as document em-

bedding and centroids from k-means. This faithfulness and comprehensiveness boost

user trust and understanding and help debug clustering. Using Wikipedia, CDCEM

first performs wikification, which extracts real-world concepts from the text. It then

evaluates these concept’s significance for cluster assignment to produce concept-based

explanations. CDCEM determines the importance of each concept within a cluster

by measuring the cosine similarity between the concept’s embedding (representing

its contextual meaning) with the cluster centres (representing the cluster’s theme),

both of which it derives from a black-box model (using ELMO for embeddings and

K-means for clustering). This concept’s importance for each cluster facilitates gener-

ating concept-based explanations at two levels: cluster-level explanations, which de-

scribe the concepts that best represent the clusters, and document-level explanations,

which clarify why the black-box model assigns a document to a particular cluster. We

quantitatively evaluate the faithfulness of CDCEM using AG News, DBpedia, and

Reuters-21578 datasets, comparing it with explainable classification methods (De-

cision Tree, Logistic Regression, and Naive Bayes) by treating clusters as classes

and computing the agreement between the black-box model’s predictions and expla-

nations. Additionally, a user study was conducted to compare CDCEM with the

best baseline in terms of comprehensiveness, accuracy, usefulness, user satisfaction,

and usability of the explanation visualization tool on the AG News dataset. CD-

CEM showed higher faithfulness than the baseline model in quantitative evaluations,

indicating accurate explanations of unsupervised clustering decisions. Qualitative

evaluations revealed that users preferred CDCEM’s cluster-level and document-level

explanations for accuracy, clarity, logic, and comprehensibility.
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Chapter 1

Introduction

Our research addresses the challenge of enhancing explainability in unsupervised doc-

ument clustering. Explainability in clustering means providing reasons that humans

can understand why a complex clustering model groups documents in a certain way.

These clustering models are so complex and large-scale that it’s hard to understand

how they assign documents to clusters. Therefore, there is an apparent necessity for

an explanation model that can translate these complex decisions into understandable

terms. The need for explainability is critical in unsupervised clustering, which, un-

like classification tasks, lacks predefined categories or ground truth. The absence of

ground truths often makes clustering subjective, as different algorithms can organize

datasets into various patterns and themes tailored to specific audiences or perspec-

tives.

Consequently, it becomes crucial to determine whether the patterns identified

by a black-box clustering model align with the user’s expectations. In this context,

explanations play a vital role, helping end-users understand the model’s decisions and

enabling developers and domain experts to identify and correct any incorrect cluster

formations or misassignments. Achieving a consensus on the generated clusters and

gaining insights into the underlying clustering patterns and themes makes the results

more practical and influential.

In the context of Explainable AI (XAI), “faithfulness” refers to the accuracy

with which an explanation reflects the accurate reasoning process of the AI model.

Faithfulness measures how well the explanation captures the complex AI system’s

actual workings and decision-making process [29]. A faithful explanation accurately

represents the model’s behaviour, ensuring that the insights provided directly re-

late to how the model processes and interprets data. Using a simpler explanation

model to generate faithful and user-friendly explanations for a complex black-box

model is a challenging task [18]. This complexity becomes even more pronounced

1
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in the domain of document clustering. Maintaining faithfulness is more challenging

in document clustering because of the complicated interaction between clustering al-

gorithms, such as k-means and document representations, like BERT (Bidirectional

Encoder Representations from Transformers) embeddings. Trivial explanation ap-

proaches are merely exploratory analyses, exemplified by methods like FREQ [11],

which attempt to characterize clusters based on the most frequent words. A closer

examination reveals that these approaches spotlight standard terms such as ‘news,’

‘report,’ or ‘analysis’ as indicative of the clusters but do not necessarily contribute

substantially to the decision-making process within the black-box Model (BBM).

Considering such terms as explanations would be equivalent to misleading interpreta-

tions. These approaches fail to capture the intricate logic underpinning these opaque

BBM operations. In addition to faithfulness, another challenge in explainability in-

volves choosing the granularity of explanations, which can be global or local. These

types of explanations aid in comprehending the decision-making process of black-box

models at varying levels of detail.

Researchers use these two kinds of explanations—global and local—to interpret

AI models and understand their decision-making processes at different levels of detail

[28]. We explain each as follows:

Global Explanations: These provide an overall understanding of the model’s

behaviour. They aim to explain the general decision-making process of the model

across all instances. Global explanations assist in understanding the model’s logic on

a macro scale, illustrating how different features generally affect predictions [7].

Local Explanations: In contrast, local explanations focus on individual predic-

tions. They aim to explain why a model made a specific decision for a single instance.

This explanation is beneficial for understanding the model’s behaviour in a specific

context or for a particular data point [51].

Many explanation approaches in document clustering primarily offer either local

or global explanations. For instance, methods like TREQ [11] focus on providing

global explanations by identifying representative words for each cluster. Conversely,

approaches like LIME [36] provide local explanations, shedding light on why the BBM

assigns a document to a specific cluster. We contend that global and local explana-

tions are indispensable components of a comprehensive understanding. The absence
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of global explanations can lead to confusion in cluster assignments, as exemplified by

the following scenario:

• Doc 1: Progress in medical technology revolutionizes healthcare. (Cluster 1)

• Doc 2: Groundbreaking cancer treatment offers hope for patients. (Cluster 2)

Without global explanations, it becomes difficult to understand why these doc-

uments belong to different clusters. This lack of clarity also makes it difficult to

see how well the system separates technology (cluster 1) from healthcare documents

(cluster 2).

Whereas, in a news clustering system devoid of local explanations, the following

global explanation is provided as follows:

• Cluster 1: “Science News”

• Cluster 2: “Sports News.”

Now, consider the cluster assignment for this document:

• Document: “Biomechanics and aerodynamics are crucial for sports perfor-

mance.”

The absence of local explanations makes it unclear why the document resides in

Cluster 2 (Sports News). In case of misclassification, users cannot identify which

parts of the document contribute too much or too little. This lack of clarity hampers

explainability and the ability to rectify misclassifications effectively. Explanation ap-

proaches capable of providing both local and global explanations encompass post-hoc

interpretable models like Naive Bayes (N.B.) and Logistic Regression (L.R.). These

models are called post hoc because they are applied after performing clustering. These

models are also called interpretable because their logic is simple enough for humans to

understand their predictions. Interpretability refers to the extent to which a human

can understand the cause of a decision made by such a model. These models can

generate global explanations in the form of representative words and local explana-

tions that clarify which words influence the document’s proximity to specific clusters.

However, these post hoc models exhibit two notable limitations. Firstly, they may not
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offer explanations in terms of meaningful concepts extracted from the text. Secondly,

being model-agnostic, they may disregard the inherent logic of the BBM and provide

explanations based solely on their understanding of the data. Model-agnostic methods

can be applied to any machine learning model, regardless of its specific structure or

learning algorithm. To address the limitations of faithfulness and comprehensiveness

in explainability, we introduce a novel approach to explaining document clustering

in our research. Our proposed model, CDCEM, generates feature-based local and

global explanations. Local explanations highlight the contribution of textual features

to justify the placement of documents in a cluster. In contrast, global explanations

identify the essential features of each cluster, highlighting the overall theme of each

cluster. CDCEM is specifically tailored to explain the clustering performed by a

particular BBM framework. In this framework, document embeddings are clustered

using a partition-based method inspired by state-of-the-art techniques [11]. To ensure

our explanations align with the clustering logic of the BBM, we utilize two fundamen-

tal elements: document embeddings generated by a pre-trained language model and

cluster centre embeddings derived from the BBM’s partition-based clustering algo-

rithm. These embeddings are crucial as they help identify significant features within

documents and facilitate feature contribution-based explanations. We gain insights

into the intricate clustering process by analyzing both the document’s feature repre-

sentation and the cluster centres, which serve as pseudo-ground truths. This method

allows us to move beyond merely examining the inputs and outputs of the BBM,

incorporating its core components to produce explanations that accurately reflect the

model’s decision-making process.

Furthermore, CDCEM employs Wikification, where document features or phrases

are linked to relevant Wikipedia concepts (each Wikipedia page represents a concept)

rather than using raw text snippets or isolated words. This strategy avoids including

punctuation and stop-words, unlike a few contemporary explanation models [43].

Instead, our explanations use meaningful and widely recognized real-world concepts.

Therefore, our explanations offer a clear understanding of the model’s workings in

terms of relevant and significant concepts without the clutter of less informative

elements, making them easier to interpret and more informative.

These design strategies enable explanations that faithfully reflect the ‘black-box’
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nature of the clustering model and are also more comprehensive and user-friendly.

However, it is essential to note that CDCEM has a significant limitation due to its

design choice. It is tailored to a particular clustering framework and, therefore, is not

model-agnostic, unlike methods like LIME [36] or SHAP [25].

There are two claims that we make.

• First, we assert that our developed post-hoc explanation model, which utilizes

both the intermediate and final outcomes of the clustering model, provides more

faithful explanations.

• Secondly, we contend that integrating local explanations at the document level

with global explanations at the cluster level improves the overall quality and

comprehensiveness of the explanations for users in unsupervised document clus-

tering. The improvement is significant for perceived accuracy, clarity, logic, and

comprehensibility of the clustering explanations.

This research introduces the following contributions:

1. A novel cluster explanation model: we designed our model, CDCEM, to provide

faithful and comprehensive explanations for clusters and individual document

assignments, all grounded in real-world concepts.

2. An extensive evaluation of CDCEM: we conducted a user study to evaluate

our method qualitatively against the best-performing baseline. In parallel, we

performed a quantitative evaluation with baselines to assess our approach’s

faithfulness and alignment (fidelity) with the BBM.

3. Tool to visualize clustering explanation: we constructed a user-friendly visual-

ization tool demonstrating feature-based explanations for unsupervised docu-

ment clustering.

The thesis is organized as follows: Chapter 2 provides a comprehensive litera-

ture review, covering document clustering frameworks, explainable clustering, the

need for comprehensive explanations, and the challenges and open problems in the

field. Chapter 3 details the methodology, including problem formulation, the steps

for generating explainable models, and visualization techniques. Chapter 4 presents



6

the experimental setup, including datasets, baselines, evaluation metrics, and both

quantitative and qualitative(user study) results. Chapter 5 discusses the results, fo-

cusing on quantitative analysis and insights from the user study. Finally, Chapter 6

concludes the thesis with a summary of findings and directions for future work.



Chapter 2

Literature review

This chapter explores the key concepts and methodologies in document clustering

and explainable artificial intelligence (XAI). We start by providing an overview of

the document clustering frameworks relevant to our objective of generating clear

explanations. Next, we highlight the crucial importance of explainability in clustering

models. We then examine significant gaps in the current literature, such as the

demand for more thorough explanations and the advantages of incorporating concept-

based explanations. Finally, we discuss baseline methods and evaluation criteria,

shedding light on the challenges and open issues our proposed method aims to tackle.

2.1 Document Clustering Frameworks

Clustering document data is a fundamental task in various applications, typically

involving feature extraction followed by the application of clustering techniques [24,

46, 27, 34]. A noteworthy state-of-the-art framework, as exemplified by [11], incorpo-

rates a pre-trained text encoder (like Embeddings from Language Models (ELMO))

for feature extraction and employs K-means to generate clusters. ELMO is a deep

learning model that generates contextualized word representations by employing a

bidirectional LSTM (Long Short-Term Memory) architecture trained to predict the

next word in a sequence [31]. K-means then uses these embeddings to identify clusters

within the data.

2.2 Explainable Clustering

While these clustering frameworks excel in grouping documents, they often fall short

regarding explainability. They are frequently referred to as “black-box” models, cho-

sen primarily for their superior performance over inherently transparent models [28]

7
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like Decision Tree (D.T.) [4], N.B. [20], or L.R. [17]. Nevertheless, there is a growing

demand for models combining performance and explainability, facilitating trust and

understanding of the logic behind document clustering.

2.3 The Need for Comprehensive Explanations

Addressing the need for comprehensive explainability, we argue that clustering mod-

els should explain both cluster formation and document assignments. Existing ap-

proaches tend to focus on representative keywords for each cluster but often neglect

individual document-to-cluster assignments [11, 49] or vice versa [36, 25] [21]. Some

noteworthy methods from the literature that can provide both include: L.R., which

assigns cluster numbers as pseudo-labels to words, elucidating their contributions to

the decision-making process. (e.g., [11, 33, 8, 44]); D.T., which yields if-else rules as

explanations. (e.g., [30, 1, 45]) and N.B., which provides explanations for features

through posterior probability calculations. (e.g., [32, 14, 15, 40])

2.4 Concept-Based Explanations

There is a pressing need for a new approach to concept-based explanations. Existing

attempts, both for classification and clustering, have fallen short in providing semanti-

cally meaningful insights. This gap in our understanding underscores the importance

of our research and the potential impact of a successful solution [43].

Researchers have hinted at a potential solution by leveraging knowledge graphs

(like Rožanec et al. [39], and Lecue et al. [22]), such as Wikidata, which hosts millions

of interconnected items representing real-world concepts [47]. By extensively draw-

ing from Wikipedia to populate its database, Wikidata helps us extract meaningful

concepts from the text, which can then be used to generate feature/concept-based

explanations, providing richer and more meaningful cluster explanations.

2.5 Baselines

In the existing literature for non-textual data, researchers generate explanations for

clustering using a two-step procedure post-clustering [2]. Firstly, we train a classifier

after clustering using cluster indexes as labels. Then, we explain this classification
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task using Explainable Artificial Intelligence (XAI) methods or employing an inher-

ently transparent model. One existing work we found that deals with textual data

instead of tabular following the mentioned explanation generation method is by Guan

et al. [11], where they trained an L.R. classifier to identify the representative concepts

for each cluster to explain them. We chose D.T., L.R., and N.B. as our baselines due

to their established use( [11, 33, 8, 44, 30, 1, 45, 32, 14, 15, 40] ), interpretability, and

ability to act as surrogate models providing both global and local explanations. Each

model brings distinct explanatory strengths to our study. Below is a brief description

of each method and the nature of the explanations they offer:

1. Decision Trees (D.T.)

• Nature of Explanation: D.T.s provide explanations through their transpar-

ent, hierarchical structure. Each node and branch in the tree represents a

decision rule based on the features of the document, leading to a clear path

from input to cluster assignment.

• Explanation Type: They are particularly effective in providing local expla-

nations, as one can trace each document’s clustering path. On the other hand,

the tree’s overall structure can be seen as a global explanation, showcasing the

general decision-making logic.

2. Logistic Regression (L.R.)

• Nature of Explanation: This method offers explanations in terms of the sig-

nificance and weight of each feature in determining the cluster assignments. The

coefficients in L.R. models indicate the direction and strength of the relationship

between features and the predicted outcome.

• Explanation Type: L.R. primarily provides global explanations, as it eluci-

dates the overall influence of features on the clustering process. However, the

impact of each feature on specific instances can also be interpreted, thus offering

a form of local explanation.
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3. Naive Bayes (N.B.)

• Nature of Explanation: N.B. explains decisions through a probabilistic ap-

proach. It calculates the probability of a document belonging to a particular

cluster based on the features it exhibits, assuming independence among these

features.

• Explanation Type: The model’s strength lies in offering local explanations

by detailing the probability distribution that led to a document’s clustering. In

terms of global explanation, it provides insights into the general probabilistic

trends influencing the clustering across the entire dataset.

Each of these methods brings a unique perspective to the table. D.T.s, with

their rule-based approach; L.R., with its feature-weight significance; and N.B., with

its probabilistic reasoning, together, form a comprehensive set of baselines. This

diversity ensures a thorough evaluation of our approach to generating explanations for

document clustering, highlighting the strengths and potential areas for improvement

in our XAI methodology.

2.6 Evaluation of Explanations

The evaluation of traditional clustering algorithms often relies on metrics such as the

Silhouette Coefficient [38], the Adjusted Rand Index (ARI) [48], Normalized Mutual

Information (NMI) [23], and Accuracy [23] to test clustering quality. However, assess-

ing the quality of explanations provided for clustering algorithms requires different

metrics. Various studies use different terminologies for several aspects of explanation

evaluation. Three criteria for evaluating explanations have been clearly articulated

and differentiated [19].

• Readability: The ease with which users can comprehend the explanation. Liter-

ature evaluates readability through quantitative metrics that check the number

of features used in the explanation, the length of the explanation [37], or through

interactive user studies.

• Plausibility: The degree to which an explanation convinces users, especially
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when dealing with BBMs. Plausibility is evaluated with user feedback or with-

out user through proxies for explanation quality, such as the quality of feature

importance or the performance of the explanation model [9].

• Faithfulness: How accurately an explanation characterizes the underlying BBM.

Faithfulness, however, cannot be judged by humans because the workings of

the BBM are unknown. If humans understood the rationale of the BBM, we

would not need an explanation [18]. Several methods to evaluate faithfulness

are summarized in a survey by Lyu et al. [26]. One method recommended to

evaluate faithfulness is predictive power evaluation [26]. This method evaluates

whether the surrogate explanation model’s predictions on new data align with

the BBM’s, thereby indicating how accurately it captures the BBM’s rationale

[26].

2.7 Challenges and Open Problems

Explaining a BBM, as required for clustering, involves the challenge that we expect

a simpler explanation model to encapsulate the intricate logic of the underlying com-

plex black-box system, which inherently leads to a lossy nature of the interpretation

process [19]. The clustering model explanation introduces its unique set of challenges,

as it requires explanations for clusters and assigning a document to the clusters. This

complexity is made even more challenging by the need to balance the performance

of advanced algorithms with the clarity and understandability of the explanations

provided. Current methods often focus on the logic behind cluster formation or the

specifics of document-to-cluster assignments, but rarely both, limiting their practical

utility. Moreover, there is a significant challenge in enhancing the semantic richness

of explanations to include more nuanced and contextually relevant concepts, pushing

us to explore further methods that can deliver technically accurate and meaningful

explanations to users.



Chapter 3

Methodology

We propose an innovative explainable model that builds upon black-box clustering

techniques, addressing the explainability challenges detailed in Section 2.7. This

post-hoc explanation model generates feature-based explanations to justify the place-

ment of documents in particular clusters and elucidates the theme of each cluster by

presenting the most significant Wikipedia concepts within the documents. Our expla-

nation model takes these clusters, generated by K-means, and identifies key concepts

prevalent within each group by examining their proximity to the cluster centroids in

the embedding space. We use these concepts to generate intuitive explanations for

the clustering outcomes, helping users understand the basis for document groupings.

Our approach uses intermediate clustering results to enhance explainability and

ensure that the explanations are faithful to the BBM’s decision-making process.

For enhanced accessibility and user engagement, we have developed a visually

intuitive web tool. This tool, designed with the user in mind, presents the explana-

tions generated by our clustering algorithms in a clear and understandable manner.

It assists users in grasping the intricate relationships and thematic structures within

clusters, making the process of understanding the clustering outcomes more straight-

forward and user-friendly.

3.1 Problem Formulation

12
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Figure 3.1: Defining the Problem for an Explanation Model in Unsupervised Doc-
ument Clustering. This figure presents the challenge of developing an explanation
model c for interpreting a black-box clustering model B. Model c is expected to
elucidate the clustering of a document dataset X, offering Global explanations E
for cluster-wide themes and Local explanations e for individual document placement.
These explanations, E = εg(c,Xcluster) and e = εl(c, x), are derived from the explana-
tion functions εg, εl, providing insights into the clusters and assignment of a document
to the clusters, respectively.

We formally define the problem of explaining black-box models using an explana-

tion model based on the survey paper [12]. While their formulation addresses generic

black-box predictors, our definition specifically applies to unsupervised document

clustering. We combine elements from the Model Explanation Problem, which focuses

on providing global explanations for the entire model, and the Outcome Explanation

Problem, which focuses on local explanations for specific predictions. Our combined

formulation allows us to incorporate cluster-level (global) explanations that describe

the clusters and document-level (local) explanations that clarify why the black-box

model assigns a document to a particular cluster. Our combined problem formulation

is as follows:

Given a dataset X and a black-box model B, we seek to develop an explanation

model c such that:

c = f(B,X)

Wherein the objectives are to determine the following:

• Cluster Explanation (E): A comprehensive insight into the cluster formulated

using the subset of X that pertains to the identified cluster, expressed as:

E = εg(c,Xcluster)
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Here, Xcluster ⊆ X represents the data points within X that belong to a specific

cluster.

• Assignment Explanation (e): A detailed rationale behind the assignment of an

individual instance x to a specific cluster, expressed as:

e = εl(c, x)

Where:

• B is a complicated model like ELMO [31], which is uninterpretable by humans.

• The explanation model c is designed to provide insights at different levels of

granularity:

– Cluster Explanation, also referred to as Global Explanations (E), are de-

rived through the process εg, providing an overview of the data points

within a specific cluster.

– Assignment Explanation, also referred to as Local Explanations (e), are

produced by the process εl, focusing on the individual assignment of data

points to clusters.

3.2 Overview

Before detailing the steps of our explainable model, we present an overview of the

explanation generation methodology for document clustering, as outlined in Fig. 3.2.

This overview highlights the inputs, outputs, and processes of each step, emphasizing

their contributions to the final explanation.
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Figure 3.2: Methodology Overview. This figure outlines the process of interpreting
document clusters, from the initial clustering by a black-box model to the articulation
of cluster themes via global explanations and individual document assignments via
local explanations. The process concludes with the visualization of these explanations.
Each square block corresponds to a step of our methodology.

• Step 1: Black-Box Clustering

In the initial step (Block 1 in Fig. 3.2), the process starts with the input of a

dataset of documents and the desired number of clusters (k). These documents

are embedded using ELMO embedding and clustered via the k-means algorithm.

The output of this step consists of the labels for the clustered documents along

with their respective k cluster centres, which embody the core traits of each

cluster. We also store document embeddings to utilize them in later steps. This

foundational step organizes the documents into coherent groups based on their

content similarities, setting the stage for generating insightful explanations. In

later steps, we utilize the cluster centres and contextual embedding generated

for the words of each document.

• Step 2: Generate Explainable Model

The second step (Block 2 in Fig. 3.2) involves generating an explainable model

by extracting concepts from the dataset and quantifying concept-cluster rela-

tionships.
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– Step 2a: Extracting Concepts from Clustered Documents

Following the clustering, this sub-step takes the dataset as input. The

output for this stage includes concepts extracted from the dataset and

linked to corresponding Wikipedia pages. We use a tool, Wikifier [3], to

annotate the documents with real-world entities. This sub-step enhances

cluster explainability by using these real-world concepts, ensuring that the

explanations are grounded in recognizable and meaningful ideas.

– Step 2b: Quantify Concept-Cluster Relationships

In this sub-step, the inputs are the concepts annotated in documents (from

the previous sub-step) and the previously identified cluster centres and

document embeddings (from Step 1). The output is a concept-cluster

similarity matrix that contains cosine similarity scores, quantifying the

relationship between each concept’s embedding and the cluster centres.

This quantification is critical as it measures how closely concepts align

with the thematic essence of each cluster, thus providing a concrete basis

for evaluating the contribution of concepts to clusters. Additionally, the

similarity score allows us to identify concepts with strong relationships or

associations with each cluster. Such quantification is essential for building

explanations that accurately reflect the clustering logic.

• Step 3: Use Explainable Model as Surrogate

This step (Block 3 in Fig. 3.2) focuses on explaining individual document as-

signments to clusters. The input includes a document and the concept-cluster

similarity matrix (developed in the previous step). By mapping the concepts

identified within a document to the concept vocabulary and extracting im-

portance scores from the similarity matrix for each cluster, we find concept

contributions and compute aggregate scores to determine the document’s clus-

ter assignment. Acting as a surrogate, the explanation model provides both

predictions and explanations for these predictions. Consequently, this step’s

output comprehensively explains the document’s cluster assignment, detailing

the model’s reasoning behind each categorization.

• Step 4: Visualize Concept-Based Explanations for Predictions
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The final step (Block 4 in Fig. 3.2) involves visualizing the explanations for

document clustering. The input encompasses the role of each document’s con-

cepts in determining their cluster assignments (from the previous step) and the

most significant concepts for each cluster (from Step 2a). The outputs are visual

representations of local explanations for cluster assignments and global expla-

nations for each cluster. These visualizations display the scaled contributions of

concepts to clusters, illustrating each concept’s relative importance and influ-

ence. Additionally, global explanations offer a broader overview of each cluster’s

prevalent themes or concepts. This step enhances the transparency and inter-

pretability of the clustering process, allowing for a more intuitive understanding

of both individual document assignments and overall cluster characteristics.

3.3 Step 1: Utilize Black-Box Clustering

This Section describes the architecture of black-box clustering models (in Fig. 3.3)

for which our model generates explanations. We identify and extract core elements

from the clustering architecture used in later steps to generate faithful explanations.

The clustering approach we explain uses ELMO embedding combined with the

K-means algorithm. Here is a brief description of the process:

• Input text is processed using the pre-trained language model ELMO to generate

embeddings that capture the essence of the text.

• Due to variations in text length, the size of the generated representations from

the pre-trained language model differs. The document’s feature representations

are combined to form fixed-size representations by Guan et al. [11].

• A feature normalization module is applied in the third step, utilizing methods

like layer normalization. This step ensures the feature’s numerical stability and

adherence to specific qualities, such as a normal distribution.

• In the final step, the normalized features are fed into a chosen clustering algo-

rithm, K-means.
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Figure 3.3: Workflow of the black-box clustering model proposed by Guan et al. [11].
This diagram showcases the specific process used for text data clustering, starting
with transforming document data into variable-length embeddings via the ELMO
pre-trained language model. These embeddings are then standardized through mean
pooling and normalization to ensure consistent size and scale, making them suitable
for clustering. The K-means algorithm then clusters these normalized and fixed-
length embeddings, creating document clusters around centroids within the embed-
ding space. Our explanation methodology utilizes these centroids and embeddings to
elucidate the clustering rationale, as shown in Fig. 3.2.
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• The outcome of this process is a set of k clustered documents formed around

cluster centres within the embedding space.

The black-box model (BBM) organizes the documents into clusters based on their

content, with cluster centres acting as focal points representing the commonalities

within each cluster in the embedding space. As we advance to the subsequent steps

of our methodology, we will continue to leverage the method of generating contex-

tual embeddings with ELMO and the distance metric employed by K-means. This

strategic alignment ensures that our explanation model functions in harmony with

the BBM, preserving the integrity of our explanations. Without such coherence, we

compromise the reliability of our explanations, particularly if the underlying meth-

ods of the BBM and the explanation model diverge significantly. This alignment is

crucial for maintaining the efficacy and trustworthiness of the explanations we aim

to provide.

In the explanation model we develop in the following steps, we will utilize un-

compressed variable-length embeddings to identify the semantic contribution of each

token, unlike BBM, which uses compressed fixed-size representations for clustering.

This approach allows us to pinpoint the specific elements within the text that con-

tribute to the clustering results, providing a detailed and transparent understanding

of how the BBM operates.
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Algorithm 1 Pseudocode for Black-box Document Clustering

1: Input: Dataset D = {d1, d2, . . . , dn}, Number of clusters K

2: Initialize vocabulary set V = ∅
3: Initialize set of full document embeddings F = ∅
4: Initialize set of preprocessed embeddings P = ∅
5: for each document di ∈ D do

6: Compute document embedding fi = ELMO(di)

7: F ← F ∪ {fi} . Add fi to the set of full document embeddings

8: Compute fixed-size embedding ei = MeanPooling(fi)

9: Normalize embedding ni = L2 Normalization(ei)

10: P ← P ∪ {ni} . Add ni to the set of preprocessed embeddings

11: Update vocabulary V with tokens in di . V ← V ∪ tokens(di)

12: end for

13: Apply k-means clustering: {L,C} ← KMeans(P,K) . L is the set of labels, C is

the set of cluster centers

14: Output: Labels L, Cluster centers C, Full document embeddings F

3.4 Step 2: Generate Explainable Model

Building on the black-box clustering model output, we receive a dataset where each

document is assigned to specific clusters through indices or labels defined by the BBM.

In this step, we model the logic of these clusters, aiming to enhance the transparency

of the clustering process.

This step models the relationships between documents and their assigned clusters.

At this point, our explanation model starts by extracting relevant concepts from

the documents. It then examines the importance of these concepts across different

clusters, providing a clear view of the themes that influenced the clustering decisions.

This systematic process of extracting and assessing concept importance forms the base

for creating detailed and easy-to-understand explanations of the clustering results.

This approach ensures that our explanations are both informative and solidly based

on the real-world entities found in the documents, effectively connecting abstract

cluster labels to specific, observable themes.

The two steps of generating an explanation model are presented below: First,
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concepts are extracted from the documents. Then, the importance of these concepts

across different clusters is assessed, providing a clear view of the themes that influ-

enced the clustering decisions.

3.4.1 Step 2a: Extracting concepts from clustered documents

Figure 3.4: Concept Extraction for Explainability. This diagram illustrates the initial
stage of our methodology, where the Wikifier tool annotates a document dataset
X with Wikipedia-linked concepts. The token index records the mapping between
concepts and their associated phrases, which is essential for tracking and referencing
throughout the explanation model. The annotation allows our explanation model to
generate meaningful insights.

(a) Input: Sample text from the AG-
NEWS dataset

(b) Output: Extracted concepts and
their support.

Figure 3.5: Illustration of the Concept Extraction from the clustered document 3.4.1.
The first image (Fig. 3.5a) shows the input document for concept extraction via the
Wikifier tool. The second image (Fig. 3.5b) shows the output containing extracted
concepts, their corresponding tokens, and token indices within the document. These
serve as the groundwork for our model’s explanation generation.

We intend to generate an explanation model based on the importance of features.

Features within a document could be phrases or words present within it. Instead
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of using such phrases or words directly, we chose to find meaningful concepts corre-

sponding to excerpts within the text. By meaningful, we mean that the concept is

semantically meaningful on its own, as defined by Ghorbani et al. [10]. We anno-

tate the documents with Wikipedia concepts. We generate explanations grounded in

annotated real-world tangible concepts free from punctuation or stopwords.

To extract concepts from previously clustered documents, we extract real-world

entities from each cluster’s documents with a tool called Wikifier [3]. Wikifier iden-

tifies relevant Wikipedia concepts linked to specific phrases in a document. It de-

termines the correct concept for each phrase by constructing a bipartite graph. The

phrases are connected to potential concepts with weight based on their frequent as-

sociation in Wikipedia. Furthermore, concepts are linked among themselves with the

weight of their similarity. The page rank algorithm runs on this graph, iteratively

distributing PageRank scores among concepts based on their association with phrases

and their relatedness to other concepts. Finally, the concepts with the highest page

rank value are chosen for each document phrase. It further employs several heuristics

to filter the final concepts annotated to phrases within the document to reduce noise

and ambiguity. This phrase-concept graph method finds appropriate concepts of all

the document phrases in their context, ensuring that the concepts selected are coher-

ent with the document’s overall topic. Therefore, the phrase “Tesla” will be linked

to a car manufacturing company if other concepts are about cars instead of linking

to Nicola Tesla.

To illustrate our concept extraction process clearly, we present an example in Fig.

3.5. This figure depicts a document from a cluster, as shown in Fig. 3.5a. The

annotation of concepts within this document using the ‘Wikifier’ tool is detailed in

3.5b. This tool tags specific phrases in the text with corresponding Wikipedia con-

cepts and indicates the position of each phrase. For instance, the phrase at the ninth

token, “LTO”, is linked to the Wikipedia concept “Linear Tape-Open.” This example

demonstrates the tool’s ability to extract pertinent concepts from the document.

This extraction step is applied to all documents in the dataset. The details of

the extracted concepts are stored and later used to determine their role in assigning

documents to their respective clusters.
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Algorithm 2 Pseudocode for Annotating Documents Depicted in Fig. 3.4

1: Input: Dataset D = {d1, d2, . . . , dn}
2: Initialize set of document concepts Cd = ∅
3: Initialize vocabulary set V = ∅
4: for each document di ∈ D do

5: Compute document concepts Ci = Wikifier(di) . Wikifier returns a set of

tuples (concept, index)

6: Cd ← Cd ∪ {(di, Ci)} . Add (di, Ci) to the set of document concepts

7: for each (concept, index) ∈ Ci do

8: V ← V ∪ {concept} . Add concept to the vocabulary set

9: end for

10: end for

11: Output: Set of document concepts Cd, Vocabulary V

3.4.2 Step 2b: Quantify Concept-Cluster Relationships

In this phase of constructing the explanation model, we model how various concepts

within the documents influence their placement within specific clusters. Concepts

more similar to a cluster’s characteristics will more likely draw documents toward

that cluster than others. We prepare to explain document clustering decisions in sub-

sequent phases by quantifying and documenting these concept-cluster similarities. We

first obtain their respective embeddings to measure the similarity between a cluster

and a concept. For the cluster’s embedding, we use the centroid embedding produced

by the k-means algorithm, as the centroid represents the core semantic essence of the

cluster. We derive the embedding for a concept from the mean embedding of the

phrase linked to the concept generated by the ELMO model before clustering. If a

concept occurs in multiple documents within a cluster, we have multiple embeddings

of the same concept. We average them to get a single embedding for a concept within

a cluster. Once both embeddings are obtained, we calculate the similarity between

each concept and the clusters using cosine similarity, which quantifies the alignment

between two vectors by measuring the cosine of the angle between them. Specifically,

we used the implementation from scikit-learn, to perform cosine similarity. The sim-

ilarity values ranges between 0 and 1 with 1 being high similarity and 0 indicating no
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alignment.

We organize the results of these similarity calculations into a table where each

entry shows the degree of similarity between a concept and the centre of the clusters.

This process is visually depicted in Fig. 3.6. Building on the extracted concepts from

step 3.4.1, we produce a concept-cluster similarity matrix using embeddings generated

for documents and cluster centres during clustering 3.3.

To understand this step better, consider the example in Fig. 3.7. This step

takes the concepts extracted in the previous step as input (shown in Fig. 3.7a). It

computes the similarity between the concepts and the clusters. The output of this

step is depicted as a heatmap in Fig. 3.7b, which visualizes the similarity between

the concepts and each cluster. The step is applied across the dataset to model and

gauge concept importance with respect to each cluster.

Crucially, our method uses the same ELMO embedding for these concepts as

was used by the BBM during the clustering step. Moreover, like BBM, we use the

distance metric to measure the similarity between a concept and a cluster centre. This

alignment ensures that the explanation process remains consistent with the workings

of our black-box deep learning approach. In other words, we ensure our explanations

are grounded in the same logic as the BBM, maintaining that essential connection.

In the next step, we will use this concept-cluster similarity matrix to explain the

clusters and the cluster assignment.
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Figure 3.6: Determining Concept-Cluster Importance. This step involves measuring
the semantic similarity between document concepts and cluster centroids using co-
sine similarity. The resulting concept-cluster similarity matrix highlights the relative
importance of each concept in the clustering process.

Algorithm 3 Pseudocode for Extracting Concept Importance Depicted in Fig. 3.6

1: Input: Number of clusters K, Set of cluster centers C = {c1, c2, . . . , cK}, Docu-

ment concepts list Cd, Full document embeddings F , Vocabulary V

2: Initialize similarity matrix S = empty list . A list where each entry corresponds

to a concept and contains a list of similarity values for K clusters

3: for each concept v ∈ V do

4: Initialize concept-cluster similarities list Ccs = empty list of size K . Holds

similarity values between the concept and each cluster centroid

5: for each cluster i ∈ {1, 2, . . . , K} do

6: Extract concept embedding ev
i = Extract Embedding(v, Cd, F, i)

7: Compute semantic similarity sv
i = cosine similarity(ev

i, ci)

8: Ccs[i]← sv
i . Store the similarity value for cluster i

9: end for

10: S ← S ∪ {Ccs} . Add the list of concept-cluster similarities to the similarity

matrix

11: end for

12: Output: Similarity matrix S
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(a) Input: Showcasing the concepts extracted from a
document with their positions, serving as input for as-
sessing concept-cluster importance.

(b) Output: Visualizing the importance of extracted concepts to each
cluster for a sample document, as determined in the concept-cluster
importance phase.

Figure 3.7: Illustration of the input and output of the Concept-Cluster Importance
phase. Fig. 3.7a displays the concepts extracted from a document and their positions,
which serve as input for evaluating concept-cluster importance. Fig. 3.7b visualizes
this importance in a heatmap, offering a comparative view of concept significance
across clusters, a technique applied dataset-wide to gauge concept importance relative
to clusters.

3.5 Step 3: Explain Document Assignments with Concepts

From the previous step, we now have a model encapsulating the relationship between

document concepts and the clusters in the form of a concept-cluster similarity matrix.

This explanation model is used to elucidate the assignment of documents to their

respective clusters.

Given a document, we extract its concepts using Wikifier, as described in Section
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Figure 3.8: Generation of explanations using surrogate explanation model. Starting
with concept identification within a document (as introduced in Fig. 3.4), the model
concept-cluster similarity matrix (computed in Fig. 3.6) is used to retrieve contribu-
tion scores. Our model aggregates these scores to assign the document to a cluster,
culminating in a visualization that explains the clustering decision through concept
contributions, as highlighted in 3.7b.

3.4.1. We then determine the importance score for each document concept across the

clusters from the concept-cluster similarity matrix. These importance scores illustrate

how the concepts contribute to the document’s inclination toward each cluster.

By aggregating the similarity scores of the concepts, we compute a cluster as-

signment score for each document. The cluster with the highest assignment score

is deemed the document’s assigned cluster. Thus, our explanation model provides

insights and acts as a surrogate model, making cluster assignment predictions based

on the scores. We use this functionality to verify the alignment of our explanation

model with the black-box model (BBM).

Consider an example document shown in Fig. 3.9 to demonstrate this step. From

the document text, we extract pertinent concepts, such as “Linear Tape-Open.” Fo-

cusing on these identified concepts, we gather the importance scores for each cluster

from the similarity score table. This results in explanations in the form of similar-

ity scores, indicating the document’s affinity for Cluster 2. By aggregating these

scores, we compute the assignment score for each cluster and conclude that the doc-

ument belongs to Cluster 2. Thus, our model generates explanations and uses these

explanations to predict this document’s cluster assignment, serving effectively as a

surrogate.

In the next step, we improve the visualization of the explanation to make it

more readable and helpful for the user by extracting and presenting global and local

explanations from our explanation model.
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Figure 3.9: Surrogate Explanation Model Application. This figure demonstrates
how the proposed explanation model predicts document clustering. It begins by
identifying key concepts within a document (as explained in the concept extraction
phase 3.4). Next, it assesses the contribution of these concepts to predefined clusters
by calculating similarity scores(as shown in 3.6), followed by synthesizing the scores
to gauge the document’s propensity towards each cluster. The resulting visualization
highlights the concept’s alignment, particularly with Cluster 2—indicated by the
intensity of colour, with darker hues signifying greater similarity. While this serves
as an explanation, our model as a surrogate model can also categorize the document
into the cluster with the highest cumulative score, exemplified here by its assignment
to Cluster 2.
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Algorithm 4 Pseudocode for Explainable Prediction Demonstrated in Fig 3.8

1: Input: Document d, Document concepts list Cd, Similarity matrix S, Vocabulary

V , Number of clusters K

2: Extract document concepts Ci = Wikifier(d)

3: Initialize assignment score vector A = {0, 0, . . . , 0} of length K

4: Initialize contribution matrix M = zeros(|Ci| ×K) . Matrix with |Ci| rows and

K columns

5: for each concept cj ∈ Ci with index j do

6: Find the index of cj in V : vj = index(cj, V )

7: Retrieve concept similarities: Sj = S[vj]

8: for each cluster i ∈ {1, 2, . . . , K} do

9: Update assignment score: A[i] = A[i] + Sj[i]

10: Update contribution matrix: M [j][i] = Sj[i]

11: end for

12: end for

13: Output: argmax(A), Contribution matrix M

3.6 Step 4: Visualization

Visualization is a key tool in understanding the clustering model’s behavior, providing

detailed explanations. It showcases the reasons behind document-cluster assignments,

highlighting cluster patterns and the topics covered in the text. This Section out-

lines methods for both local and global explanations, utilizing various visualization

techniques to comprehensively explain the model’s internal mechanisms.

3.6.1 Local Explanation
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Figure 3.10: Stacked bar chart shows the contribution of document concept in clus-
ter assignment. Each bar, segmented by concept, illustrates its relative contribution.
Segments above the baseline denote stronger concept associations with the cluster;
those below signal weaker ones. This visualization assists in understanding the clus-
tering model’s document assignments from concept embeddings (The visualization is
for text documents: Mike Fincke, whose daughter became the first child born to an
astronaut in orbit June 18, is preparing to return to Earth and his family in Texas .)
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Local explanation in the context of clustering explains why a document is assigned

to a specific cluster. We visualize local explanation using a bar chart depicting the

contribution of a concept in placing the document in a cluster as shown in Fig. 3.10.

A vertical bar in the chart across the x-axis corresponds to a cluster. Each bar is made

up of segments that represent the individual contributions of document concepts. The

total height of the stacked bar represents the document’s belongingness to a cluster.

Pre-processing Steps for Highlighting concept Contributions:

We get concept contribution scores from the concept-cluster similarity matrix. We

measure these scores by applying cosine similarity between the cluster centre and the

concept in the embedding space and considering cosine similarities range from 0 to

1, the preprocessing steps aim to amplify the differences across clusters for better

comprehension of the visualization.

1. Calculate concept mean contribution across Clusters: For each concept,

we calculate the mean contribution score across all clusters. This step estab-

lishes a baseline for determining whether a concept’s score within a cluster is

above or below the overall mean.

The mean (contribution) score for a concept across all clusters is given by:

meanScorec =
1

N

N∑
i=1

scorec,i (3.1)

• N is the number of clusters.

• scorec,i is the cosine similarity score for concept c in cluster i.

2. Compute Scaled Relative Differences: For each concept within each clus-

ter, we calculate the relative difference from its mean across all clusters. This

relative difference is then scaled to highlight the variance.

The applied formula is:

scaledDifferencec,i = (scorec,i −meanScorec)× 10 (3.2)

Here, 10 is a scaling factor selected to enhance the visibility of the differences

in the chart.
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Interpretation of the Chart

In the local explanation, each bar’s overall height represents the sum of scaled relative

differences for a document’s concepts within a specific cluster (in Fig. 3.10). Positive

values indicate where a concept’s contribution to a cluster is above the mean, sug-

gesting a stronger association with that cluster. Conversely, negative values indicate

a below-mean contribution.

By comparing the size and direction of each segment within the bars, stakehold-

ers can discern the magnitude of a concept’s influence and its comparative signifi-

cance. This visualization method enables a nuanced understanding of the clustering

algorithm’s behaviour, which is crucial for interpreting complex models in machine

learning and data science.

The visualization facilitates a detailed examination of the document’s relationship

to each cluster, offering insights into the clustering process and the reasons behind

the document’s assignment to a specific cluster.

However, this local explanation has limited value since it does not show the theme

of each cluster. If it were a classification task, this explanation would suffice. There-

fore, we shed light on the clusters using representative concepts, highlighting the

overarching theme of a cluster.

3.6.2 Global Explanations

Global explanations in document clustering reveal each cluster’s characteristics, themes,

or most influential concepts. For our proposed model and baselines, global explana-

tions consist of a sorted list of the most influential real-world concepts extracted from

the documents within each cluster. This list provides users with insights into what

each cluster represents.

CDCEM : Global explanations

We employ a centroid-based method commonly used in multi-document summariza-

tion. Initially, we extract the contextual embeddings of all concepts within the doc-

uments of a cluster. Subsequently, we compare these embeddings with the cluster’s

centre in the embedding space, determined by the k-means algorithm. Utilizing cosine
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Figure 3.11: The figure illustrates the representative concepts for each cluster, pro-
viding a global explanation of the themes and concepts covered by each cluster. This
explanation, generated by the proposed approach for the AG News dataset, cate-
gorizes the clusters as Finance, Technology, Sports, and World Affairs from left to
right.

similarity, we identify the concepts closest to the centre, noting their similarity. The

underlying idea is that the concepts nearest to the centre significantly influence the

positioning of the cluster in the embedding space. The figure illustrates the global

explanations generated by our method for the AG news dataset.

Baseline Methods - Global explanations

The baseline methods do not consider the intermediate results of the BBM, nor do

they account for the cluster’s centroid. Instead, they rely solely on the input doc-

uments and cluster assignments to determine concept importance using coefficients

and conditional probabilities. We will examine each baseline method for generating

global explanations:

• Decision Tree: We employ Permutation Feature Importance from sklearn for

D.T.s to determine the importance of global representative features. This

method randomly shuffles each feature’s values across the dataset to see how the

model’s accuracy changes. The more the accuracy decreases with the shuffling

of a feature, the more important that feature is considered. This technique,

initially introduced in the context of Random Forests by Breiman (2001), helps
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identify the features most critical for the clustering decisions made by the D.T.

model.

• Logistic Regression: For L.R., we extract global explanations by analyzing the

coefficients associated with each concept, representing the influence of these

concepts on the classification decisions for each class. This process involves

using an L.R. model alongside a count vectorizer. The steps include extracting

the vocabulary from the vectorizer and the corresponding coefficients from the

L.R. We then preprocess the vocabulary to ensure clarity and consistency in

naming and sorting the vocabulary and coefficients. This sorted list allows us

to see which concepts (features) have the highest coefficients and are, therefore,

the most influential for each class. These concepts are then written to a file,

forming a clear, class-by-class breakdown of influential concepts, which serves as

the basis for our global explanations. This method provides a direct view into

how each concept contributes to defining each class, offering valuable insights

into the model’s reasoning process.

• Naive Bayes: We extract global explanations for the N.B. model by utilizing the

inbuilt log probabilities of features for each class. This approach involves exam-

ining the log probabilities that the N.B. algorithm assigns to each feature given

a class, which indicates the influence or weight of each feature in the decision-

making process for that class. Features or concepts with higher log probabilities

are considered more representative and influential for their respective classes.

This method effectively highlights the most significant concepts that define each

cluster, providing clear insights into what characterizes different groupings in

the data.
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Experimentation

This Section evaluates the explanations generated for unsupervised clustering as de-

picted in Fig. 4.1. The primary objective is to identify the best post hoc explanation

model that effectively and accurately communicates the reasoning of a BBM to users.

Initially, we describe the dataset utilized in the experiments and provide a brief

overview of the baseline models, which we have explained in detail in the related

work section.

We divide the evaluation into two main components: quantitative and qualita-

tive. The quantitative component assesses the accuracy of the explanation model

in aligning with the BBM. The qualitative component, on the other hand, evaluates

the user satisfaction with the explanations. Together, these components address our

truthtions and test the efficacy of our explanation model.

The outcomes of this experimentation will support or challenge our initial hy-

pothesis, contributing insights to the development of explainable AI for document

clustering. Each part of the quantitative and qualitative evaluation includes discus-

sions on experimental design, hyper-parameters, evaluation metrics, observed results,

and their implications for the research questions.

4.1 Datasets

In this study, we replicate the experimental setup of the clustering model introduced

by Guan et al. [11], utilizing datasets they used to validate our findings. The following

text provides an overview of these datasets:

We tested our approach using AG news1, DBpedia2, Reuters-215783 datasets. The

AG news and DBpedia datasets were initially curated by Zhang et al. (2015) [50].

Due to the extensive size of these datasets, conducting experiments on them in their

1https://huggingface.co/datasets/fancyzhx/ag_news
2https://huggingface.co/datasets/fancyzhx/dbpedia_14
3http://www.daviddlewis.com/resources/testcollections/reuters21578
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entirety would be inefficient. Hence, we used condensed versions, randomly selecting

1,000 examples from each category in every dataset, in line with Guan et al. [11]. In

their initial tests, the performance on these abridged datasets was comparable to the

full versions. We derived the R2 and R5 datasets from the Reuters-21578 collection.

Although these are labelled datasets, we withheld their labels from the clustering and

explanation model. Let us explore deeper into each dataset:

AG news is a dataset meant for news categorization. It comprises top news cat-

egories from a vast collection of web news articles from over 2,000 news portals,

compiled by Zhang et al. [50]. Each entry in AG news comprises the original head-

line and article body. It encompasses four sectors: World, Sports, Business, and

Science/Technology.

DBpedia is an ontology-based classification dataset developed by selecting specific

classes from DBpedia’s knowledge framework by Zhang et al. [50]. Each text piece

represents an entity’s descriptor, with its tag being the ontological class. The dataset

includes 14 distinct, non-overlapping categories: Company, Educational Institution,

and Athlete.

The Reuters-21578 dataset, initially curated by the Carnegie Group and Reuters,

comprises 21,578 documents spread across 135 categories. Notably, this dataset is

imbalanced; while some categories have thousands of documents, others barely have

a few. Following the experimental setup of Guan et al. [11], we created two new

datasets, R2 and R5, encompassing the two and five most populous categories, re-

spectively. R2 contains the ‘earn’ and ‘acq’ categories, while R5 includes ‘earn’, ‘acq,’

‘crude’, ‘trade’, and ‘money-fx.’

4.2 Baselines

In the related work Section 2.5, we carefully selected and briefly introduced the base-

lines. Now, in this Section, we explore into the comprehensive training process of our

baselines (D.T., L.R., and N.B.).

Firstly, we employed wikification as explained in the methodology, Section 3.4.1.

This process extracts Wikipedia concepts from the documents. These concepts serve

as the foundation for constructing a bag of words model using a count vectorizer in the

baseline models. By providing the baselines with a bag of concepts derived from the
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document, similar to our proposed method, instead of the entire document, we make

the comparison even between the baseline and the proposed method. Furthermore,

it ensures that the explanations generated by each model are made up of meaningful

concepts. Our preliminary experiments showed that when an entire document is

provided to the baselines, without wikification, they tend to learn noise within the

data, resulting in less faithful explanations.

Similarly to the proposed method, the baselines utilize the predictions from the

black-box model as pseudo-class labels (e.g., cluster 0, cluster 1). With these Wikipedia

concepts as input and pseudo-class labels, the baselines learn to map the relationship

between documents and clusters.

Despite rigorous hyperparameter tuning via grid search, we found that the per-

formance with optimized parameters closely resembled that achieved with default

settings. Consequently, we used default settings across various datasets to prevent

overfitting and maintain consistency. This approach ensures uniform conditions for

evaluating the models under different data scenarios, making it easier to compare

performance outcomes.

After training, the baselines evaluate the importance of the document concepts for

each cluster via their conditional probabilities (Naive Bayes) or coefficients (Logistic

Regression). We utilize these learned weights to create visualizations that illustrate

the contribution of features/concepts, as depicted in Fig. 3.10. We derive the expla-

nation model’s predictions for each document by applying a softmax function to each

cluster’s linear aggregation of feature weights.



38

Figure 4.1: Experimental setup for evaluating the explanation for black-box clustering
generated by the proposed approach and baseline methods.

4.3 Evaluation

Adopting a comprehensive approach to evaluation is crucial in assessing Explain-

able Artificial Intelligence (XAI) systems. Such an evaluation must assess essen-

tial properties for an explanation model to demystify the black-box for users effec-

tively. Firstly, the model must accurately and truthfully explain the workings of

the complex, often opaque A.I. system (emphasizing faithfulness). Secondly, the ex-

planation should be presented in a way that is easy to understand and convincing

for users, addressing their needs for clarity and belief. To assess three fundamental

properties—faithfulness, plausibility, and readability—we evaluate each using specific

metrics analyzed in quantitative and qualitative sections. The quantitative section

measures these properties with statistical and computational metrics (like predictive

power evaluation and Fidelity), while the qualitative section evaluates user percep-

tion through studies and questionnaires. This approach ensures a comprehensive

assessment of each property from technical and user-centric perspectives. Each of

these aspects plays a unique role in determining how effective an explanation is. To-

gether, they ensure that the assessment of XAI explanations is technically accurate,

comprehensible, and useful to the user. This all-encompassing evaluation approach

is essential to ensure that A.I. system explanations are technically sound and meet

user’s diverse needs and expectations.
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4.4 Quantitative Metrics and Evaluation

This Section discusses the quantitative metrics and methodologies used to evaluate

the effectiveness of explanation models in capturing and reproducing the behaviour

of black-box models (BBMs). We focus on two key metrics, Fidelity and Predictive

Power, which collectively assess the internal consistency and generalizability of the

explanation models.

4.4.1 Fidelity

Fidelity measures how accurately an explanation model can replicate the behaviour of

a black-box predictor, as defined by Guidotti [13]. A low fidelity score could indicate

that the explanation model is too simplistic and fails to capture the essential logic

of the BBM. In contrast, a high fidelity score suggests that the explanation model

effectively mirrors the complex model. High fidelity scores on training data alone do

not confirm that the model is faithful, as it might just be memorizing the data. At

best, it adds to the plausibility of the explanations to the user.

Experimental Setup for Fidelity Evaluation

The setup for assessing Fidelity involves performing document clustering on the

dataset, and then the explanation models learn to assign a document to the cluster

predicted by the BBM. Evaluating Fidelity involves making the explanation models

predict the cluster label for each document. This prediction of the explanation model

is compared with the cluster assignment of the black-box model in terms of accuracy

and F1. High-fidelity performance means that the explanation accurately aligns with

the prediction made by the BBM.

4.4.2 Predictive Power Evaluation Metric

After establishing Fidelity, we extend our evaluation to the predictive power of the

explanation models, which tests the ability of the explanation model to predict the

decision of the BBM on unseen samples. The more accurate the explanation model

is, the higher the faithfulness. Intuition is that if the explanation model has encap-

sulated the decision-making logic of the BBM, it will be able to accurately predict



40

the behaviour of the BBM [26]. The underlying assumption of this metric is that if

an explanation leads to different decisions than those made by the model it explains,

it is unfaithful [18]. This metric serves as a test for generalization and confirms the

model’s utility in practical scenarios.

Experimental Setup for Predictive Power Evaluation

The setup for predictive power evaluation involves using unsupervised clustering with

our BBM over 90% of the data. We then provide the predictions of the BBM, along

with intermediate results like cluster centres, to the explanation models. These mod-

els learn the association between documents and cluster predictions. We use the

remaining 10% of the data to observe how the BBM and explanation models assign

clusters to unseen documents. We report the agreement between them in terms of F1

score and accuracy.

Note on Metric Selection

In this study, we apply F1 and accuracy metrics, typically used in classification, to

evaluate clustering explanations for both Fidelity and predictive power evaluation.

Fidelity, assessed on the training dataset, measures the explanation model’s internal

consistency. This verification ensures that under known, controlled conditions, the

explanation model can accurately replicate the prediction of the BBM. On the other

hand, the predictive power evaluation metric, applied to unseen validation or test

data, assesses the generalizability of the explanation model. It determines how effec-

tively the explanation model captures and applies the BBM’s underlying logic to new,

varied scenarios. Together, these metrics offer a robust assessment of an explanation

model’s accuracy in mimicking the original model under familiar conditions and its

ability to extend this mimicry accurately to novel situations.

4.5 Quantitative Results

We have detailed our approach for evaluating the Fidelity and predictive power of the

explanation models in previous sections (4.4.1,4.4.2). These evaluations are conducted

on previously observed and unseen data to ascertain scores for Fidelity and predictive
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power evaluation metrics, respectively. The results of these metrics are depicted in

Table 4.1 and Table 4.2, and further statistical analysis is provided in the discussion

section. These observed values tell us how faithful the explanation methods are with

respect to the BBM, using predictive power evaluation and Fidelity, respectively.

Table 4.1: The Table presents a fidelity evaluation using accuracy and F1 metrics,
where higher values indicate greater alignment of the explanation model with the
black-box prediction over clustered data.

Model AG News DBpedia R2 R5

Acc F1 Acc F1 Acc F1 Acc F1

CDCEM 96.29±0.21 0.96±0.0 94.93±0.19 0.95±0.0 92.38±3.95 0.92±0.04 82.54±0.39 0.81±0.02

N.B. 91.14±0.18 0.91±0.0 86.34±0.71 0.86±0.01 87.04±0.17 0.87±0.0 85.78±0.53 0.83±0.01

D.T. 92.34±0.52 0.92±0.01 91.56±0.43 0.92±0.01 95.15±0.25 0.95±0.0 91.04±0.26 0.9±0.0

L.R. 93.78±0.45 0.94±0.0 91.37±0.18 0.92±0.0 94.37±0.13 0.94±0.0 88.26±0.47 0.86±0.0

The fidelity evaluation results demonstrate that different explanation models per-

form best in specific datasets as summarized from Table 4.1. Notable observations

from fidelity results are listed below:

• AG News and DBpedia: The proposed explanation model achieves the high-

est scores in both accuracy and F1, recording a value of 0.96. This superior

performance indicates an excellent alignment with the black-box predictions,

particularly suitable for news-related and structured data contexts.

• R2 and R5: The D.T. model excels, with both accuracy and F1 scores reaching

0.95. Its effectiveness is apparent in datasets involving complex or hierarchical

data structures, highlighting its suitability for such contexts.

• General Performance: L.R. models display consistent Fidelity but do not

achieve the high performance of the proposed or D.T. models. Their scores

range from 0.85 to 0.94 across all datasets with low variance. N.B. however

displays low performance.

We observe significantly higher predictive power of CDCEM compared to the

baselines as depicted in Table 4.2. These results demonstrate the robustness and

effectiveness of the proposed model, consistently and significantly (p < 0.05) out-

performing baseline methods across all examined datasets, thus reinforcing its utility
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Table 4.2: Table illustrating enhanced predictive power of proposed explanation
model compared to baselines over unseen samples.

Model AG News DBpedia R2 R5

Acc F1 Acc F1 Acc F1 Acc F1

CDCEM 92.31±0.24 0.92±0.00 77.09±0.62 0.71±0.03 91.41±4.39 0.91±0.04 76.21±2.19 0.74±0.01

N.B. 67.69±1.14 0.68±0.01 64.32±1.33 0.62±0.03 78.16±1.49 0.78±0.01 70.53±2.38 0.66±0.01

D.T. 56.44±5.18 0.56±0.04 51.41±1.66 0.52±0.03 76.91±3.31 0.77±0.03 58.93±1.67 0.54±0.01

L.R. 68.75±1.37 0.68±0.02 63.09±0.67 0.64±0.01 82.14±3.69 0.82±0.04 66.08±2.79 0.63±0.01

in providing faithful explanations. Furthermore, L.R. stands out as the most faithful

baseline with consistent Fidelity among the options available. Therefore, we consider

the proposed method and L.R. for our subsequent qualitative evaluation.

4.6 Qualitative Metrics and Evaluation through User Study

Unlike the quantitative section that explores how the explanation models interact

with the BBM, this part evaluates how the user engages with the explanation model.

We conducted a qualitative evaluation through a user study called “Visual System

Evaluation for Explanation of Document Clustering”. In this study, we present par-

ticipants with explanations generated by the proposed method and a high-performing

baseline, L.R., and collect their feedback via integrated questionnaires and tasks. The

aim of this study is twofold: first, to compare the explanations from the baseline and

proposed method to determine which one better satisfies users and effectively articu-

lates the explanation; second, to evaluate the usefulness of the generated visualization

tool.

We assess readability and plausibility by using questionnaires that explore several

essential aspects of an explanation: understandability, satisfaction, detail sufficiency,

completeness, usefulness, accuracy, and trustworthiness. The study includes specific

questions and tasks to evaluate how well local and global explanations convey the

rationale behind clustering and its decision-making processes.

The following section outlines the user study setup, including the design, tasks,

and questionnaire. We detail the online setting, participant criteria, tools used, and

feedback questionnaires, providing an overview of the study’s methodology and eval-

uation process.



43

4.6.1 Study Setting

We conducted the study online using a visualization tool hosted on a server with

participants accessing it via a link we provided.

Participants Eighteen participants participated in this study, ensuring a balance

between the feasibility and stability of the metrics. We divided the participants into

two subsets: one experienced only the baseline explanations, and the other expe-

rienced only the proposed method’s explanations, though we did not inform them

of this distinction. We required participants to have access to a laptop, fluency in

English, and knowledge of document clustering. Most participants were computer sci-

ence graduate students selected for their familiarity with web interfaces and probable

understanding of document clustering.

Tool Used We originally adapted the source code for the interactive document

clustering tool by Sherkat et al. [41]. They developed the tool with Python CGI

script and JavaScript hosted on our server, as illustrated in Fig. 4.2. Similar tools

have been used for clustering interactively [35, 6, 42]. Since the developers of such

tools did not design the tool for explanations, it did not include local explanations or

global explanations aligned with its local counterpart.

4.6.2 Tasks and Procedure

Initially, we assigned participants the role of editors at an online news portal, pre-

senting them with a simulated scenario depicted in Fig. 4.3. We then provided them

with 20 randomly selected documents from the AG News dataset, one at a time, and

required them to provide feedback on a) the logic of assigning documents to a cluster

and b) their satisfaction with the depth and detail of the explanation. The setup en-

couraged participants to actively engage with and analyze the explanations, making

the study more interactive.

At first, the tool only offered local explanations to mimic the typical document

clustering scenario, where users know each document’s cluster assignment but not the

themes of each cluster. We designed this to explore global explanation’s importance
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Figure 4.2: The user study tool features various views, with each view’s name in its
header, to help users understand AI-driven clustering. The interface begins with the
Cluster Tree View, organizing documents into clusters. Below it is the Document
View, displaying one document at a time with highlighted text indicating annotated
phrases. These highlighted phrases are used to construct the Local Explanation View
in the middle. For each highlighted phrase in the Document View, you will find the
corresponding concept in the legend at the bottom of the Local Explanation View,
colour-coded to match. The Local Explanation View features a stacked bar graph
representing the impact of each concept on the document’s cluster assignment. On the
right, views provide a global explanation for the selected cluster (cluster 3), marked
by pink headers. First, the Cluster View offers an overview of the main ideas or topics
within a cluster. Below, the Term Cloud View visualizes keywords associated with the
selected cluster, with darker shades indicating higher importance. Further down, the
Cluster Key Terms View and Term-Cluster View depict the importance of concepts
within a cluster and across the clusters, respectively. Finally, The bottom-left view
requests feedback on the current document explanation and moves to the next one.
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Figure 4.3: The simulation puts the participants in the shoes of a role that cares
about why the explanations must be right. The positions that need to understand
and evaluate the explanations generated for the AI system to build trust and reliability
in the system.

and test the hypothesis that both local and global explanations are crucial for compre-

hensive document clustering explanations. After the first two questions, we showed

participants global and local explanations and asked them to name each cluster. This

step aimed to determine if global explanations effectively conveyed the cluster themes

to the users. After the participants had named the clusters and provided feedback on

each explanation for 20 documents, we presented them with the three questionnaires

at the end of the user study. Therefore, we receive feedback from the users in three

ways:

• Embedded user study questionnaire: In our study, participants were asked

to respond to two questions for each explanation they reviewed. This design,

which embeds questions within the study, allows us to capture real-time feed-

back from users immediately after they analyze an explanation, making the

study more interactive and engaging. Participants rated their responses on a

Likert scale from 1 to 5, with 1 indicating strong disagreement and 5 indicating

strong agreement. The two questions posed to the participants are as follows:

– Question 1: “Does the local explanation logically support the document’s

assignment to <cluster Label>?”



46

– Question 2: “Are you satisfied with the depth and detail of the explana-

tion?”

• Post user study questionnaires: After interacting with our tool roughly

for an hour, having analyzed 20 explanations of either baseline of the proposed

explanation model depending on the subset, they are presented with three Likert

scale questionnaires as stated below:

– Questionnaire for Evaluating the Effectiveness of the Proposed Explain-

ability: This questionnaire determines how well the visualization method

provides explainability to users. Specifically, we asked whether each com-

ponent of the local and global explanations was useful and accurate from

the user’s viewpoint. Such questions helped us demonstrate the need for

detailed clustering explanations using both local and global insights. Ad-

ditionally, we assessed the effectiveness of the overall software.

– User Satisfaction Questionnaire: This questionnaire was proposed to assess

several crucial aspects of explanations, including understandability, satis-

faction, detail sufficiency, completeness, usefulness, accuracy, and trust-

worthiness (Hoffman et al., [16]). We used it to measure the readability

(ease of understanding the explanations) and plausibility (how convincing

the explanations are).

– Software Usability Questionnaire: This questionnaire evaluates the usabil-

ity of visualization systems, particularly how users interact with our ex-

plainable clustering system. It has been widely used in many user studies

to assess the usability of tools and systems since it was proposed by John

Brooke [5]. We employed this questionnaire to evaluate the software used

in our user study for visualizing explanations in unsupervised clustering.

• Feedback Comments: Participants provided comments for their ratings through

an embedded user study questionnaire and offered additional remarks at the end

of the post-study questionnaires.
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4.7 Qualitative Results

In this Section, we discuss the qualitative responses gathered from the participants of

our user study. This detailed analysis provides insights into the subjective experiences

and perceptions of users interacting with our system.

4.7.1 Embedded user study questionnaire

The results discussed in this section are derived from questionnaires embedded within

the user study. These questions were presented to users for each document and its

explanation.

Table 4.3: We presented users with 20 documents and their explanations for cluster

assignment explanation. We asked users to rate logic and depth of explanation for

each question on a Likert scale (1-5). 5 being strong agreement. The table presents

the distribution of the user’s mean responses across all the questions. t and p show

the trend and significance of improvement.(*p<0.1)

Question Baseline CDCEM t p

1 Does the local explanation logically

support the document’s assignment to

a cluster?

4.02 ± 0.35 4.33 ± 0.22 2.16 0.06*

2 Are you satisfied with the depth and

detail of the explanation?

4.05 ± 0.58 4.31 ± 0.3 1.08 0.31

The p-value for (Question 1 4.3) is 0.06, slightly above the 0.05 threshold. This

results suggest that the proposed method may offer users a more logical and sup-

portive explanation. However, the lack of strong statistical significance prevents us

from definitively asserting the superiority of the proposed method based on this data

alone.

Regarding satisfaction with the depth and detail of the explanation (Question 2

4.3) the data is inconclusive, indicating no significant difference between the baseline

and proposed methods.
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4.7.2 Post user study questionnaires

This Section is structured to systematically present findings from three different ques-

tionnaires. Each part begins with a description of the questionnaire’s purpose, fol-

lowed by the presentation of statistical analyses. The results are detailed in tables

summarizing survey responses and accompanied by figures that visually illustrate

the data. This consistent pattern ensures a clear and organized presentation of the

post-study evaluation.

Figure 4.4: The bar chart shows the post-user study questions where the proposed
method significantly outperformed the baseline method (L.R.). The proposed method
received better responses for logical and global explanations, overall comprehensive-
ness, and satisfaction.

Questionnaire for Evaluating the Effectiveness of the Proposed

Explainability.

After conducting a statistical hypothesis test on the responses from the effectiveness

questionnaire, we observed significant improvements for the proposed explanation

method (CDCEM) over the baseline method (L.R.) in several key areas. Notably,
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there was a significant improvement (p < 0.05) in the perceived accuracy of represen-

tative concepts describing the content of clusters (Q1, Fig 4.4). These representative

concepts form the main component of the global explanations. Additionally, users

found the logic and clarity in feature-based local explanations for cluster assignment

significantly better (Q12, Fig 4.4). The annotated document concepts used to gen-

erate these local explanations were deemed relevant and significant for explaining

clustering (Q13, Fig 4.4). Overall, users found that the explanations, composed of

both local and global parts, were collectively effective and comprehensive for explain-

ing the decisions involved in document clustering (Q13, Fig 4.4).

Moreover, in the questions like Q2, Q3, Q6 and Q8, enquire if the views were

helpful. For such questions, both subsets of users agree, with the mean of the pro-

posed method being higher; this means that the view was useful for both, but it

was slightly more useful because the proposed method was accurate. These questions

are not essentially comparative, and having high scores in both means the nature of

explanations is deemed helpful and useful to the users.

Table 4.4: Summary of responses to the custom effectiveness questionnaire. We

divided user study participants into two subsets: one presented with the baseline

explanation and the other with the proposed explanation. The baseline and proposed

columns show Likert scale responses. t and p values indicate trends and significance

(** p<0.05).

Question Baseline CDCEM t p

1 Cluster View: Did the key concepts

presented as representative of each

cluster accurately convey the underly-

ing content of the documents within

that cluster?

4.0 ± 0.0 4.45 ± 0.52 2.87 0.02**

2 Local Explanation: Did you find it use-

ful to see the contribution of individual

concepts within the documents when

assessing their assignment to particular

clusters?

4.29 ± 0.76 4.55 ± 0.52 0.79 0.45
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Question Baseline CDCEM t p

3 Local Explanation: The depiction of

how much each concept of documents

contributes to cluster assignment was

helpful.

4.57 ± 0.53 4.36 ± 0.67 -0.74 0.47

4 Local Explanation: Do you believe

that the importance attributed to the

document’s concepts in the cluster as-

signment accurately reflects their rele-

vance?

4.0 ± 0.58 4.09 ± 0.3 0.38 0.71

5 Local Explanation: Does the local ex-

planation offer a clear and logical basis

for the document’s placement in a clus-

ter?

3.71 ± 0.49 4.36 ± 0.5 2.72 0.02**

6 Was the feature that allows you to se-

lect a concept and assess its significance

across different clusters in the Term-

Cluster View beneficial for your under-

standing?

4.0 ± 0.58 4.27 ± 0.79 0.83 0.42

7 Do you find the displayed probabilities

accurately represent the association be-

tween the concepts and their respective

clusters in the Term-Cluster View?

4.14 ± 0.69 4.18 ± 0.75 0.12 0.91

8 Cluster Keyterm View: Was the sig-

nificance indicator for concepts in the

Cluster Keyterms View helpful for un-

derstanding each cluster?

4.29 ± 0.95 4.18 ± 0.75 -0.26 0.80

9 Cluster Keyterm View: Do the bars in

the Cluster Keyterms View accurately

represent concept relevance within the

clusters?

4.0 ± 0.58 4.36 ± 0.67 1.21 0.25
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Question Baseline CDCEM t p

10 Global Explanation - Right Side Pan-

els: Do the right-side panels (Cluster

view, Term Cloud, Cluster Keyterms

View, Term Cluster view) provide vital

information and context to understand

document clustering?

4.43 ± 0.53 4.45 ± 0.69 0.07 0.95

11 Global Explanation - Right Side Pan-

els: Do the right-side panels (Cluster

view, Term Cloud, Cluster Keyterms

View, Term Cluster view) offer accu-

rate explanations for each cluster?

4.0 ± 0.58 4.45 ± 0.52 1.67 0.12

12 Document View: Are the emphasized

terms in the explanation relevant and

significant in clustering documents?

3.57 ± 0.79 4.36 ± 0.5 2.36 0.04**

13 All panels/views collectively and effec-

tively provide a comprehensive expla-

nation for document clustering, vali-

dating the allocation of documents to

their respective clusters.

4.14 ± 0.38 4.64 ± 0.5 2.40 0.03**

14 The explanation for document cluster-

ing provides enough detail for you to

construct a mental model of how the

clustering algorithm works.

4.29 ± 0.49 4.64 ± 0.5 1.47 0.17

User Satisfaction Questionnaire

From the satisfaction questionnaire, the evidence is inconclusive regarding whether

the baseline or the proposed explanation method is superior. With a p-value of

0.06, the proposed method appears to potentially offer a more satisfying explanation

for users on how clustering works. The lack of statistical significance means we
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cannot definitively assert that the proposed method is better based on this data alone.

However, the higher means suggest potential areas where the proposed method could

enhance user understanding and satisfaction. These areas include comprehension

of the clustering algorithm, satisfaction with the explanation, perceived detail and

completeness of the explanation, and its usefulness to user’s goals. Future studies

with larger sample sizes or more sensitive measures might confirm these trends as

significant improvements.

Table 4.5: Summary of responses to the User satisfaction questionnaire [16]. We

divided user study participants into two subsets: one presented with the baseline

explanation and the other with the proposed explanation. The baseline and proposed

columns show Likert scale responses. t and p values indicate trends and significance

(* p<0.1).

Question Baseline CDCEM t p

1 From the explanation, I understand

how the clustering algorithm works.

4.14 ± 0.69 4.36 ± 0.67 0.67 0.52

2 This explanation of how the clustering

algorithm works is satisfying.

4.0 ± 0.58 4.55 ± 0.52 2.04 0.06*

3 This explanation of how the clustering

algorithm works has sufficient detail.

4.0 ± 0.82 4.55 ± 0.52 1.58 0.15

4 This explanation of how the clustering

algorithm works seems complete.

3.86 ± 0.69 4.09 ± 0.54 0.75 0.47

5 This explanation of how the clustering

algorithm works tells me how to use it.

4.14 ± 1.07 4.27 ± 0.65 0.29 0.78

6 This explanation of how the clustering

algorithm works is useful to my goals.

4.29 ± 0.76 4.45 ± 0.69 0.45 0.66

7 This explanation of the clustering algo-

rithm shows me how accurate the clus-

tering algorithm is.

4.14 ± 1.07 4.18 ± 0.6 0.09 0.93

8 This explanation lets me judge when I

should trust and not trust the cluster-

ing algorithm.

4.43 ± 0.53 4.27 ± 0.9 -0.47 0.64
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Software Usability Questionnaire

Unlike the previous two questionnaires, this one focuses on the responses of the en-

tire user set (from both the proposed and baseline groups) to evaluate the tool we

developed to visualize feature-based explanations. We computed the SUS (System

Usability Scale) score for this questionnaire as described by its author [5]. The Sys-

tem Usability Scale (SUS) score is computed based on the responses to a ten-item

Likert scale questionnaire. We assign a score to each statement on a scale from one to

five, where one represents strong disagreement, and five indicates strong agreement

by the user. We substract the scores for odd-numbered questions by 1, while subtract

those for even-numbered questions from 5. The adjusted scores are then summed and

multiplied by value 2.5 to obtain the final SUS score, which ranges from 0 to 100.

we get an average score of 74.31 with a standard deviation of 11.50, as shown in

Fig. 4.5. This places the score in the 70-79 percentile range according to the grading

scale interpretation of the SUS score by Soura and Lewis. The individual scores for

the baseline and proposed methods were 73.21 (SD = 5.72) and 75.0 (SD = 14.27),

respectively. Statistical analysis revealed no significant difference between the two

groups.

In addition to the overall user score, we analyzed the rating distribution for each

question across all users to identify potential areas for improvement, as illustrated in

table 4.6. The analysis highlighted the following strengths and weaknesses:

Strengths: The system scored high on questions about frequency of use, ease of

use, integration of functions, and user confidence. These results indicate that users

generally find the system easy to use and well-integrated.

Weaknesses: We observe scores in questions concerning unnecessary complexity,

the need for technical support, inconsistency, cumbersomeness, and learning require-

ments. These areas require further improvement to enhance the overall usability of

the system.
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Table 4.6: Summary of responses to the Software Usability Scale (SUS) Questionnaire

[5]. The Table presents the mean responses by the users per question. Analyzing

these values allows us to understand the strengths and weaknesses of our explanation

visualization tool.

Question Mean Score STD Score

1 I think that I would like to use this system

frequently.

4.00 0.77

2 I found the system unnecessarily complex. 2.11 0.83

3 I thought the system was easy to use. 4.00 0.49

4 I think that I would need the support of a

technical person to be able to use this system.

1.89 0.90

5 I found the various functions in this system

were well integrated.

4.39 0.61

6 I thought there was too much inconsistency

in this system.

2.00 0.91

7 I would imagine that most people would

learn to use this system very quickly.

3.83 0.71

8 I found the system very cumbersome to use. 2.22 0.88

9 I felt very confident using the system. 4.00 0.59

10 I needed to learn a lot of things before I could

get going with this system.

2.28 1.02
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Figure 4.5: The histogram shows the Likert score received for the Software Usability
Questionnaire. A Likert score above 68 is considered acceptable for software.

4.7.3 Feedback Comments:

This Section presents a detailed analysis of user feedback regarding their experiences

and perceptions of our system. By examining their comments, we aim to identify

specific areas for improvement and validate the effectiveness of our proposed method-

ologies. The summarized feedback highlights key concerns and positive observations

across various aspects of our system, which are categorized as follows:

• Interface: The low score for the software usability questionnaire stems from

concerns about the user interface (U.I.). Despite recognizing that user interface

improvements may not be the primary objective of the research, several users

have expressed a desire for a better U.I. One user suggested that the software

should provide a more detailed explanation wherever the document partially

belongs to multiple clusters. In summary, users have consistently noted that

the U.I. could be improved to enhance their overall experience.

• Wikifer: We use Wikifer annotator to generate explanations using meaning-

ful document concepts instead of document words to prevent the inclusion of

stop words and focus on meaningful concepts, enhancing the relevance and

significance of the highlighted concepts. Users responded positively to the ef-

fectiveness questionnaire on the annotated concepts (Q12). However, feedback

indicated that the annotation could be improved. Users felt that it sometimes
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failed to capture all critical keywords from the documents, resulting in incom-

plete explanations due to missed relevant terms. As one user noted, “It some-

times lacks in some areas where it fails to pick up some important keywords

from documents.” This feedback suggests enhancing the concept extraction

process to ensure more comprehensive explanations.

• Global and local explanation: Initially, users were given only local explanations;

they guessed the clusters until global explanations were provided. Some com-

ments were, “The document seems to be related to geopolitics.” and “The doc-

ument is regarding terrorism and the U.K.” After revealing it to them, they ap-

preciated the explanations even more: “It got so much easier when you showed

the topics of the cluster.” These comments suggest that global explanations are

essential to comprehending local explanations and, in turn, understanding the

clustering. It was also observed from the effectiveness questionnaire responses

(Q1)

• Comparison of baseline and proposed explanation method:

1. User Satisfaction and Trust: It is strange because users do not trust the

baseline, as they disagree even when the baseline explanation is similar

to the proposed method explanation. The user found the information

sufficient and accurate in the proposed method. Furthermore, if users

are unsatisfied with the explanation, they may ask for more details. If

they agree, they will find the information enough. For example, both

baseline and proposed have the same features. The difference is feature

contribution in the explanations. Despite the same features, the baseline

feels incomplete, whereas the proposed do.

2. Handling Nuances and Subjective Perspectives: The proposed method

handled nuanced content and subjective perspectives better. When a doc-

ument partially belonged to one category but more to another, users ap-

preciated the proposed method’s nuanced explanation. As a result, users

were more satisfied with the explanation of the proposed method. One user

stated: “I was hesitating between C0(cluster 0) and C1(cluster 1) because

of the words satellite and service. I liked that model also caught that”.
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3. Contextual Inaccuracy: The baseline method, relying on non-contextual

embeddings, often fails to capture the correct context of terms. This failure

was evident when the explanation only highlighted terms corresponding to

one cluster but did not pick up concepts for another cluster, leading to

poorer performance than the proposed method.

4. Engagement and Detailed Feedback: Participants using the proposed method

were more engaged and provided more detailed feedback. We observed

that the users presented with the proposed method seemed more involved

as they provided more comments than those from the baseline subset.
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Results and Discussion

In this Section, we present and discuss the results of our experiments, evaluating the

performance of various explanation models in terms of fidelity and predictive power.

Additionally, we provide insights from a user study to assess the practical effectiveness

and user satisfaction with our proposed explanation models.

5.1 Quantitative Analysis

In fidelity evaluations comparing explanation models to black-box predictions, mea-

sured by accuracy and F1 scores, distinct performance patterns emerged across dif-

ferent methods and datasets. The Proposed CDCEM method excelled particularly

in A.G. News and R5, achieving top metrics (0.96 accuracy, 0.95 F1 in both). Con-

versely, the D.T. method outperformed others in DBpedia and R2, with leading scores

(0.95 accuracy, 0.90 F1).

The performance of N.B. was less robust, peaking at 0.91 for both accuracy and

F1 on A.G. News. At the same time, Logistic Regression displayed steady results

across all datasets, notably scoring 0.94 in both metrics for DBpedia, with minimal

variance (±0.01).

The superior performance of the proposed model aligns with our initial claim that

utilizing both intermediate and final outcomes enhances the faithfulness of explana-

tions. We developed the proposed explanation method to closely align with a specific

architecture that uses centroid-based clustering, making the explanation more faith-

ful. Furthermore, the document representations used within the system must also be

accessible. Due to this, in pursuit of faithfulness, we sacrifice the proposed method’s

ability to apply to a wide range of clustering methods.

In the analysis of predictive power, where the performance of BBMs was evaluated

against an explanation model over unseen data using accuracy and F1 scores, the

CDCEM model demonstrated statistically superior faithfulness across all datasets
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with a p-value below 0.01%. Improvements in accuracy ranged from 8% to 34%

and in F1 scores from 11% to 35% over the next best results achieved by Logistic

Regression, which was the most robust baseline.

Specifically, in the A.G. News dataset, the CDCEM achieved a 35% and 34% im-

provement in both accuracy and F1 scores compared to the scores obtained by Logistic

Regression. In the DBpedia dataset, CDCEM outperformed Logistic Regression by

11% in accuracy and 22% in F1. For the R2 dataset, we noted improvements of 11%

in both metrics over Logistic Regression. In the R5 dataset, while the enhancements

were modest, the CDCEM still showed notable increases of 11% in accuracy and 8%

in F1 score over N.B.

These findings support our research question regarding the development of expla-

nation models that reflect the accurate reasoning process of the BBM. This empirical

evidence suggests that baseline explanation models perform well on fidelity over seen

data but have poor predictive power over unseen data. This discrepancy indicates that

these models may be overfitting the data, capturing patterns that appear convincing

but do not generalize well to unseen data. Rather than accurately interpreting and

explaining the BBM’s reasoning, they create their own rationale for categorizing doc-

uments. Our proposed models address this issue by not solely focusing on mimicking

the BBM’s predictions but also aligning the explanation process with the BBM by

using BBM’s intermediate results. This approach leads to our superior performance

in meeting faithfulness criteria.

5.2 User Study

In the user study, we received subjective feedback on the effectiveness of global and

local explanations, user satisfaction, and software usability from the questionnaires

administered.

The explanations generated were praised for providing clear and logical local in-

sights and accurate global explanations with representative cluster concepts based

on relevant and significant terms. These components collectively offered effective

and comprehensive explanations. The distribution of responses is shown in Fig. 4.4

However, specific elements of the global explanations, namely the term cluster view

and cluster key term view, were neither helpful nor accurate, adding unnecessary
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complexity to the system.

User satisfaction with the proposed explanations was generally higher. This sat-

isfaction was gauged in terms of accuracy, trust, usefulness, completeness, level of

detail and satisfaction. The response to the satisfaction question showed the most

improvement, with a p-value of 0.06, which is slightly above the conventional 0.05

threshold. Despite this, there was no statistical improvement in other areas, indicat-

ing that these aspects require further attention. Particularly, the completeness of the

explanations can be improved by working on recall of the relevant feature or concept

extraction. Furthermore, this explanation method might not be suitable for recent

research papers that usually contain novel concepts yet to be introduced as Wikipedia

concepts.

Regarding software usability, feedback indicated that the system was consistent

and well-integrated. Users could confidently use it frequently, and most found it easy

without technical assistance. However, many users felt that the system needed to be

quicker to learn, requiring them to understand many aspects before effective use.

Summarizing the findings from the quantitative analysis and user study reveals the

effectiveness of the Proposed method, CDCEM. Quantitatively, it achieves superior

accuracy and F1 scores, demonstrating its robustness. Qualitatively, users praised

the explanations for their clear and logical insights and found the system consistent

and well-integrated. This alignment of solid performance metrics with positive user

feedback reinforces the method’s overall validity and practical applicability, showing

that it delivers reliable and user-approved explanations. Although we cannot broadly

generalize these insights due to the small number of participants, these results give

preliminary insights encouraging enough to perform a more extensive user study.

We further need to address the system’s learnability and enhance completeness by

improving the feature extraction process and user experience and satisfaction.
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Conclusion and Future Work

The primary outcome of our research is the development of the Conceptual Document

Clustering Explanation Model (CDCEM). We learn the explanation model using doc-

uments as inputs and treat the final cluster predictions of the black-box model as the

ground truth. This model also utilizes the black-box model’s intermediate results,

such as embeddings and k-means, to align the explanation generation process with

that of the black-box model. This alignment aims to ensure that the explanations

accurately reflect the clustering process of the black box, i.e., be faithful. The faith-

fulness is checked by the intuition that if the explanation model has learned the black

box model’s decision mechanism, the explanation-based prediction will match the

prediction of the black box model on unseen data. Therefore, we compare the cluster

assignment of the black box model on unseen data with the prediction made based on

the explanation model using metrics like F1 and accuracy. We found that CDCEM

maintains faithfulness to the underlying black-box model by aligning the explanation

generation closely with the prediction process of the black box. This faithfulness is

evidenced by significant improvements in accuracy, ranging from 8% to 34%, and F1

scores, from 11% to 35%, over four baseline models across four datasets. Further-

more, a user study with eighteen computer science students comparing CDCEM and

logistic regression (the next best baseline) reveals that proposed explanations gen-

erate significantly clearer and more logical local explanations with accurate global

explanations. Therefore, this new faithful method generates reliable, comprehensive,

and user-approved explanations for document clustering. We designed CDCEM to

align closely with specific A.I. architectures, enhancing its faithfulness compared to

model-agnostic baselines, though its applicability is limited to specific architectures.

While we showed improvements in faithfulness, perceived accuracy, clarity, logic,

and comprehensibility, further research can enhance its performance in several areas.

Rapid advancements in large language models (LLMs) suggest that using even more
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recent LLMs could offer superior clustering performance than the one we explained.

We aim to adapt and apply our explanation model to work effectively with these more

contemporary clustering approaches.

To improve the completeness of our explanations, we need to incorporate more con-

cepts or features in explaining the decisions of the black box model. Users indicated

that additional document features should be used to explain cluster assignments,

suggesting a need for higher recall in feature extraction. While maintaining current

precision, we should aim for annotations with higher recall. Using a domain-specific

knowledge graph-backed annotator instead of general-purpose tools like Wikifier can

provide more accurate and contextually relevant annotations, enhancing both recall

and precision and thereby leading to more complete and reliable explanations.

Another promising direction involves refining the selection of concepts used in

our model. Currently, our model considers all identified concepts within the text.

Future iterations could benefit from a mechanism that prioritizes concepts based on

their significance, effectively capturing the essence of the document more succinctly

and meaningfully. We encountered documents with concepts about one category (like

sports), but the underlying essence was about another category (like finance) without

prominent features representing the latter. Addressing this issue could enhance the

alignment of features with the true content of the documents, leading to more accurate

explanations.

Finally, refining the user interface can improve the readability and user satis-

faction of the explanations. Several users pointed out the need for more detailed

explanations, while others requested that the complexity and overwhelming effect

of the current layout be reduced. A potential solution could be a more dynamic

and responsive design that adjusts to user preferences. This design could include

customizable views that allow toggling between detailed and simplified explanations.

Along with enhancing readability, these improvements would also improve the overall

usability of the software.

Therefore, in future work, we intend to work on the comprehensiveness, readabil-

ity, and user satisfaction of the explanations and applications of more contemporary

black box models and evaluate them with other metrics and extensive user studies

with more participants. Such work would extend our model’s capabilities and improve
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the explainability of document clustering models.
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