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ABSTRACT 

 

This thesis develops real-time dual-energy markerless imaging technology to monitor 

lung tumor motion using a clinical room-mounted x-ray imaging system to enhance radiotherapy 

precision. The first chapter introduces the fundamentals of x-ray production, interactions, and 

imaging system, providing a comprehensive review of x-ray tubes, detectors, and the imaging 

process.  

 

The second chapter presents a detailed research manuscript focusing on the development 

of a novel dual-energy tumor localization technique for real-time applications. This work 

addresses the critical challenge of x-ray beam obstruction by rotating gantries in room-mounted 

stereoscopic imaging systems. It employs a Gaussian probability density function approach to 

estimate the 3D position of lung tumors using limited 2D information from single x-ray views, 

enhancing localization accuracy. The chapter thoroughly discusses the methodologies, 

experimental findings, and clinical implications, demonstrating that dual-energy imaging 

improves tumor monitoring success rates, particularly for smaller tumors and in situations where 

bone obstructions are present. It also explores the integration of other motion prediction 

algorithms such as the Kalman filter and the application of epipolar constraints to improve 3D 

localization accuracy. 

 

The final chapter summarizes the key results of the research, re-emphasizing the 

potential clinical benefits of the developing technique in reducing planning margins and 

minimizing the treatment of healthy tissues. It also outlines suggested avenues for future 

research, including immediate next steps based on the findings of the manuscript. Future work 

involves considering the clinical implementation of the techniques developed in this thesis. This 

thesis aims to contribute to the advancement of precision radiotherapy by providing a robust 

technique for real-time, markerless lung tumor monitoring. 
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1. Chapter 1: Introduction 

Imaging for radiotherapy is integral to the precise delivery of radiation to cancerous 

tumors, optimizing effectiveness while minimizing exposure to healthy tissues during treatment. 

This specialized discipline harnesses electromagnetic (EM) radiation to produce detailed images 

essential for guiding therapeutic procedures with precision and efficiency. EM radiation ranges 

from harmless radio waves to high energy small wavelength x-rays and gamma rays. Imaging 

makes use of photons in the diagnostic energy range from 20 keV to 150 keV (i.e., x-rays). X-

rays are classified as ionizing radiation, meaning that the photon’s energy may be sufficient to 

remove electrons from an atom. Most x-rays are produced when an electron with high kinetic 

energy interacts with a material and transfers its energy into the form of EM radiation. 

Radiotherapy relies on x-rays to penetrate tissues and generate images that help identify 

the location, dimensions, and morphology of tumors. These images are essential for treatment 

planning, enabling clinicians to tailor radiation doses to target tumors effectively while 

minimizing collateral damage to adjacent organs. 

The discovery of x-rays by Wilhelm Roentgen in 1895 marked a significant moment in 

the history of medical science, revolutionizing diagnostic capabilities by enabling non-invasive 

visualization of internal structures. This breakthrough laid the groundwork for subsequent 

advancements in medical imaging throughout the decades, including applications in therapeutic 

contexts such as radiotherapy. 

Throughout subsequent decades, x-ray imaging has evolved from rudimentary techniques 

to sophisticated systems tailored specifically to radiotherapy. Modern x-ray imaging platforms 

not only provide high-resolution anatomical images but also incorporate advanced features such 

as real-time imaging. These capabilities are pivotal for monitoring tumor response, dynamically 

adjusting treatment parameters, and ensuring precise delivery of radiation during therapy. 

This chapter discusses the various components of x-ray imaging systems designed for 

radiotherapy, detailing their interactions with biological tissues and the core principles that 

ensure accurate tumor localization and effective treatment delivery. Additionally, it explores 

imaging concepts, techniques in dual-energy (DE) imaging, and their role in enhancing 

radiotherapy applications. 
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1.1 X-ray Generation 

1.1.1 X-ray Tube 

The x-ray tube (Figure 1.1) is the core component of x-ray imaging systems, necessary 

for generating the x-rays needed in both medical diagnostics and image guided radiation therapy. 

An x-ray tube consists of a vacuum-sealed enclosure housing a cathode and anode, which are 

essential for the emission and acceleration of high-energy electrons. The cathode, typically made 

from tungsten due to its high heat tolerance and efficient electron emission, utilizes thermionic 

emission to release electrons in vacuum when a voltage is applied. These electrons are 

accelerated towards the anode by the high electrical potential difference across the tube. The 

anode, also composed of tungsten to withstand thermal stress and electron impact, features an 

angled target to dissipate heat and control the direction of the x-ray beam.1 

 

Figure 1.1: A basic x-ray tube demonstrating its components and the production of x-rays.1 

 

Critical parameters for operating the x-ray tube include tube current (mA), tube voltage 

(kVp), and exposure time (s). Tube current controls the electron flow from the cathode to the 

anode, thereby influencing the intensity of the x-ray beam. Tube voltage determines the energy 

level of the emitted x-rays, affecting their penetration depth and contrast resolution in clinical 

imaging. The voltage directly affects the maximum photon energy emitted by the x-ray tube, 



3  

while the average energy is usually about one third the maximum. Exposure time regulates the 

duration of x-ray emission. The product of tube current and exposure time, expressed as 

milliampere-seconds (mAs), is a commonly used method to describe the x-ray tube’s output. 

1.1.2 Bremsstrahlung Radiation 

The primary mechanism of x-ray production within the tube is bremsstrahlung radiation, 

which occurs when high-speed electrons decelerate upon approaching the tungsten atoms in the 

anode. This rapid deceleration results in the conversion of kinetic energy into electromagnetic 

radiation, predominantly in the form of x-rays. However, only about 1% of the electron’s kinetic 

energy is converted into usable x-ray photons, with the remaining 99% dissipated as heat. This 

high level of heat generation necessitates a rotating anode and the use of materials with high 

melting points, such as tungsten, to ensure the durability and performance of the x-ray tube. 

The production of bremsstrahlung x-rays per atom is proportional to Z2/m2, where Z is 

the atomic number of the material and m is the mass of the incident particle. The bremsstrahlung 

radiation within the x-ray tube manifests as a continuous spectrum of x-ray energies, directly 

influenced by the kinetic energy of incident electrons and the atomic number of the anode 

material. 

The efficiency of bremsstrahlung radiation highlights the importance of optimizing tube 

design and operational parameters to achieve diagnostic quality while minimizing heat 

accumulation. Unfiltered bremsstrahlung spectra exhibit an inverse relationship between photon 

energy and intensity, while filtered spectra have their low-energy photons attenuated, allowing 

for most photons to be within the diagnostic range (Figure 1.2). 
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Figure 1.2: Demonstrating the necessity of filters to attenuate low-energy photons outside the 

diagnostic energy range. 1 

 

1.1.3 X-ray Output 

X-ray tube parameters have varying effects on the photon output. Increasing the mAs of 

the tube results in a directly proportional, linear increase of photons produced. Increasing the 

tube potential results in a quadratic increase. Finally, increasing the cathode filament current has 

an exponentially larger effect on the output. Because of its severe effect on photon production, 

filament current is left out from imaging techniques, and only the former two along with 

exposure time are tuned as parameters. Figure 1.3 demonstrates these relations. 
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Figure 1.3: X-ray tube parameters and their effect on photon output. 1 

 

1.2 X-ray Interactions with Matter 

X-rays generated via bremsstrahlung within the tube interact with biological tissues 

primarily through absorption, scattering, or transmission mechanisms. Absorption occurs when 

x-ray photons transfer their energy to atomic electrons within tissues, causing ionization or 

excitation. This process depends on the energy of the incident photon and the atomic number (Z) 

of the material. Tissues with higher atomic numbers, such as bone (Z ≈ 12)1, exhibit greater 

absorption rates, making them more radiopaque compared to softer tissues (Z ≈ 7)1. 

Transmission occurs when x-ray photons pass through tissues without interaction, contributing 

to the formation of x-ray images. 

Photon interactions (Figure 1.4) include Rayleigh scattering, where x-ray photons 

interact coherently with bound electrons within tissues without energy transfer, more prevalent 

at lower energies but with minimal impact on diagnostic image contrast due to attenuation by the 

tube window and housing1. Compton scattering, predominant at diagnostic x-ray energies, 

occurs when an incident photon collides with a loosely bound (free) electron, redirecting the 

photon and ejecting the electron. This type of scattering is independent of tissue atomic number 

(Eq. 1.1) but is instead influenced by the electron density 𝜌 of the material, which correlates 
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with its physical density.  

𝜇𝐶
𝜌
∝

𝑍0

ℎ𝜈0.5→1
 

(1.1) 

In soft tissues (Z ≈ 7), Compton scattering becomes more prevalent than photoelectric 

absorption at energies above2 approximately 25 keV. In contrast, due to bone's higher atomic 

number (Z ≈ 12), Compton interactions only surpass photoelectric interactions at energies 

exceeding2 around 40 keV. 

 

Figure 1.4: Mass attenuation coefficients for soft tissue (Z ≈ 7) as a function of photon energy. 1 

 

Photoelectric absorption, prevalent at lower x-ray energies, occurs when photons transfer 

all their energy to inner-shell electrons, ejecting them from their orbitals. This process strongly 

depends on tissue atomic number and photon energy (Eq. 1.2). Pair production, requiring very 

high photon energies (>1.02 MeV), creates an electron-positron pair near a nucleus but is 

irrelevant for diagnostic imaging due to its high energies. 
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𝜇𝑃𝐸
𝜌
∝ (

𝑍

ℎ𝜈
)
3

 
(1.2) 

Energy-dependent attenuation of x-rays through biological tissues varies with photon 

energy and tissue composition, particularly near k-edge energies where sharp increases in 

attenuation occur corresponding to electron binding energies. Figure 1.5 shows the variation of 

linear attenuation coefficients across different tissue types with varying energies, as well as 

blood injected with an iodine (Z = 53) contrast agent. Also visible are absorption edges for the 

higher Z materials. 

 

Figure 1.5: Photoelectric linear attenuation coefficients for soft tissue, bone and iodine. 1 

 

A photon cannot undergo photoelectric interaction if its energy is less than the binding 

energy of the atomic shell it encounters, leading to a sharp decrease in the probability of 

photoelectric absorption just below this binding energy. The energy at which this decrease 

occurs is called an absorption edge and is designated by a letter for the atomic shell (e.g., K, L, 

M, …). The absorption edge energy increases with the atomic number (Z) of the element. For 

instance, soft tissue elements have absorption edges in the lower energy range, while iodine, 

used in contrast agents, and tungsten, used in x-ray tubes, have higher absorption edges.1 

In most instances, entirely pure elements in the patient’s body are not being dealt with. 

Instead, complex compositions of molecules and biological materials are involved. This 

necessitates the effective atomic number Zeff, which is described by the following equation3: 
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𝑍𝑒𝑓𝑓 = (∑𝑎𝑖𝑍𝑖
2.94)

1
2.94
, 

 

(1.3) 

where all elements of the mixture are summed together, and ai is the fractional contribution to 

the total number of electrons. Because of its high Z dependence, this equation is defined for the 

photoelectric effect. Table 1.1 shows a collection of commonly imaged materials in the body, 

and their densities and effective atomic numbers in comparison with air and water.  

Table 1.1: Densities and effective atomic numbers of common materials in x-ray imaging. 3 

 

 As will be covered in Section 1.4, photon interactions in materials of different densities 

and atomic numbers strongly influence the visibility of an object. For instance, as demonstrated 

in Fig. 1.6, a lung should be expected to appear as black in an x-ray because of the incredibly 

low density of air, while the ribs should appear as white since bone has relatively high density 

and atomic number. 
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Figure 1.6: A typical chest x-ray. Being mostly air, the lungs appear black from the detector 

receiving more signal, while the bones of the chest and spine, and soft tissue such as the heart 

appear white. 

 

1.3 X-ray Detection 

X-ray imaging systems also include detectors, which capture photons after they pass 

through the patient to create diagnostic images. Historically, imaging systems utilized screen-

film techniques. Contemporary approaches predominantly employ digital methods, with flat 

panel detectors (FPDs) being a common choice. FPDs typically feature arrays of thin-film 

transistor (TFT) dexels (detector elements), each capable of converting incident x-ray photons 

into electrical signals for digital processing1 

These detectors employ either direct or indirect conversion methods, each influencing 

spatial resolution and image quality differently. Indirect FPDs incorporate scintillators such as 

CsI or Gd2O2S, positioned in front of the TFT array. X-rays interacting with the scintillator 

produce light photons, which subsequently activate a photodiode to generate an electrical charge 

(Figure 1.7A).1 

Conversely, direct conversion FPDs use semiconductor materials like amorphous 

selenium (a-Se), within which x-rays directly produce electron-ion pairs. This method minimizes 

lateral spread, resulting in improved spatial resolution by concentrating signal collection within 

individual dexels (Figure 1.7B).1 
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Figure 1.7: Indirect and direct TFT-based x-ray detectors using a scintillator (A) or a 

semiconductor (B). 1 

Beyond FPDs, x-ray imaging systems encompass other detectors such as computed 

radiography (CR) systems and image intensifiers (IIs), each tailored to specific clinical needs. 

CR systems employ photostimulable phosphor plates to temporarily store x-rays and release 

them as visible light upon stimulation, suitable for high-throughput imaging scenarios.1 IIs 

amplify weak x-ray signals through electron multiplication before conversion to digital format, a 

necessary feature for real-time fluoroscopy and interventional procedures. The performance of 

these detectors, characterized by spatial resolution, contrast sensitivity, and dynamic range, 

plays a critical role in achieving precise diagnosis and image guided radiotherapy.1 

 

1.4 Image Quality in X-ray Imaging 

Achieving high-quality x-ray images is highly important for accurate diagnosis and 

image guided radiotherapy. This involves optimizing several key factors: noise management, 

contrast enhancement, and spatial resolution. 

1.4.1 Noise 

Noise in x-ray imaging poses a significant challenge by introducing random fluctuations 

in image intensity that can obscure critical diagnostic information. It arises from multiple 

sources, including electronic components, photon interactions within the detector, and 

environmental factors. Effective noise reduction techniques are necessary to enhance image 

quality.1 
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Quantum noise, directly linked to the output of the x-ray tube, stems from the finite 

number of photons interacting within the detector. The severity of quantum noise 𝜎 is 

proportional to the square root of the incident photon count per pixel 𝑁, following Poisson 

statistics: 

𝜎 = √𝑁 (1.4) 

The relative noise level quantifies the strength of the signal against noise interference: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑛𝑜𝑖𝑠𝑒 =
𝜎

𝑁
=
1

√𝑁
 

(1.5) 

The inverse of the relative noise level may also be expressed as the signal-to-noise ratio (SNR), 

quantifying the strength of the signal against noise interference: 

𝑆𝑁𝑅 =
𝑁

𝜎
= √𝑁 

(1.6) 

Increasing the number of incident photons through adjustments in mAs or kVp values can 

effectively reduce quantum noise. 

Anatomical noise presents another challenge, arising from patient anatomy that overlaps 

with regions of diagnostic interest. An example of this, as will be seen later in this thesis, is how 

the lung tumors may be overlapped by rib structures, limiting diagnostic clarity. 

1.4.2 Contrast 

Contrast is a critical aspect of x-ray imaging, enabling the differentiation of various 

tissues or structures within an image based on their average grayscales. Techniques like dual-

energy imaging (discussed later) leverage these differences in tissue composition to enhance 

contrast and thereby improve diagnostic accuracy. 

Because the photoelectric effect dominates at lower diagnostic energies while Compton 

scattering becomes more prevalent at higher energies, mass attenuation coefficients of materials 

decrease rapidly at lower energies and more gradually at higher energies. This shift in 

dominance leads to reduced contrast between different tissues at higher energies. Demonstrating 

the effect of energy on contrast, Figure 1.8 shows a lung phantom with a tumor model in high 
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(140 kVp) and low (60 kVp) energy scenarios. The high energy image shows a smaller 

differentiation between rib bones and surrounding soft tissue compared to the low energy image 

due to the increased influence of Compton scattering. 

 

Figure 1.8: (Left) Low energy, 60 kVp, and (Right) high energy, 140 kVp, images of a spherical 

tumor model in an anthropomorphic lung phantom. 

Subject contrast reflects the difference in x-ray intensity passing through a lesion 

compared to adjacent tissues. It primarily depends on the differential attenuation characteristics 

of tissues within the patient, unaffected by detector properties. Lower x-ray energies tend to 

yield higher subject contrast due to smaller difference in attenuation coefficients between the 

object and the background (see Fig. 1.5), particularly in tissues with higher atomic numbers.1 

𝐶𝑠 =
�̅�𝐴 − �̅�𝐵
�̅�𝐵

 
(1.7) 

Here, �̅�𝐴 and �̅�𝐵 reflect photon fluence levels after having travelled through the patient, incident 

on the detector. This cannot be measured directly, as additional contrast will be lost due to the 

detector. Detector contrast will vary depending on the detector type (nonlinear response with 

screen-film radiography vs. linear response with digital x-ray detectors).1 

The contrast-to-noise ratio (CNR) is another key metric used to assess image quality, 

accounting for both contrast and the impact of noise. It is calculated as: 

𝐶𝑁𝑅 =
|�̅�𝑞 − �̅�𝑏𝑘𝑔|

𝜎𝑏𝑘𝑔
 

(1.8) 
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where �̅�𝑞 is the average signal in a region of interest (ROI) containing the lesion, �̅�𝑏𝑘𝑔 is the 

average signal in a background ROI, and 𝜎𝑏𝑘𝑔 is the standard deviation of the signal in the 

background ROI. CNR provides a relative measure of how well the signal (contrast) stands out 

against background noise, essential for optimizing imaging parameters to enhance tumor 

visibility.  

1.4.3 Spatial Resolution 

Spatial resolution refers to the ability of an imaging system to discern small structures or 

details within an image. It is influenced by factors such as detector pixel size, light blurring 

(light scatter), and focal spot blurring which depend on geometric magnification. High spatial 

resolution can be useful for accurately visualizing anatomical features and enabling the precise 

localization of tumor boundaries.1 

1.4.4 The Rose Model and Rose Criterion 

Albert Rose defined “signal” as a change in the number of quanta of an object, integrated 

over the area (A) of the object. This results in a modified version of the SNR formula1, shown by 

Eq. 1.9.  

𝑆𝑁𝑅 =
𝐴(�̅�𝑏 − �̅�0)

√𝐴�̅�𝑏
 

(1.9) 

Using this definition of SNR allows for the use of the Rose model, which quantifies the 

detectability of signals against background noise in imaging systems. Rose established that an 

SNR ≥ 5 typically ensures object detectability, but detection performance decreases as SNR 

approaches zero. This is known as the Rose Criterion. However, this criterion does not consider 

noise texture variations, which can significantly affect visibility1. Rose Criterion works under 

“Rose conditions”, i.e., uniform object in a uniform background with the assumption of 

uncorrelated Poisson noise. The x-ray incident on the detector is Poisson, but due to the loss of 

spatial resolution in the detector, the imaging signal is correlated and not Poisson. 

1.5 Dual-energy X-ray Imaging 

Dual-energy X-ray imaging (DE) techniques enhance diagnostic imaging by improving 

the quality of radiographs and reducing anatomical noise, thus improving tumor visualization3,4. 
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DE imaging involves acquiring low energy (LE) and high energy (HE) images and combining 

them to cancel out specific tissue types. Figure 1.9 shows spectra of low and high kVp x-ray 

tube outputs. 

 

Figure 1.9: Photon energy spectrum of low and high energy x-ray outputs. 5 

 

1.5.1 Weighted Logarithmic Subtraction 

Weighted logarithmic subtraction is a foundational DE imaging technique. It leverages 

images obtained at two distinct energy levels: LE and HE, and enhances tissue contrast and 

material differentiation using the logarithmic subtraction formula: 

log(𝐷𝐸) = log(𝐻𝐸) − 𝜔 ⋅ log (𝐿𝐸) (1.10) 

In this formula, ⍵ is a weighting factor that adjusts the contribution of the high-energy image to 

optimize contrast resolution and material differentiation. The technique uses Beer’s Law to 

describe x-ray attenuation through bone and soft tissue. The logarithm of the initial x-ray 

intensity for both LE and HE beams is taken, and then the LE and HE images are subtracted, 

introducing a weighting factor for tissue. For example, a soft-tissue-only DE image (with bone 

suppression) is created by selecting an appropriate weighting factor to cancel bone. Conversely, 

to create a bone-only DE image, the HE image is subtracted from the LE image, using a 

weighting factor to cancel soft tissue (Eq. 1.10). 

The selection of the weighting factor is crucial. Theoretically, it can be derived to cancel 
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bone by setting bone-related terms to zero in the logarithmic equation. Similarly, a weighting 

factor for canceling soft tissue can be calculated. However, the constant weighting factors used 

in this technique may lead to incomplete suppression of specific tissues of varying thicknesses 

across the image due to beam hardening effects, where LE and HE beams experience different 

attenuation in regions of non-uniform tissue thickness. As a consequence of this, later in this 

thesis, DE weighting factors are instead chosen manually via an algorithm that minimizes 

contrast between ROIs on the rib bone and background in proximity to the tumor. 

The following is a derivation of the weighted logarithmic subtraction equation. 

Assuming that a high energy (HE) and low energy (LE) beam both pass through soft tissue and 

bone of thickness T and B, respectively (Fig. 1.10), both beam intensities will be attenuated by 

the material, according to the Lambert-Beer law. Tissue and bone have mass attenuation 

coefficients of 𝜇𝑡 and 𝜇𝑏 respectively. 

 

Figure 1.10: High and low energy photon beams and their attenuated intensities.  

Taking the logarithm of both high and low energy intensities: 

log(𝐼𝐻) = −𝜇𝐻
𝑡 𝑇 − 𝜇𝐻

𝑏𝐵 (1.11) 

log(𝐼𝐿) = −𝜇𝐿
𝑡𝑇 − 𝜇𝐿

𝑏𝐵 (1.12) 

By applying the form of the weighted subtraction equation (Eq. 1.10), weighting factors for the 

respective tissue types can be determined. Here, Tim and Bim are dual energy weighted subtracted 
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images only showing soft tissue or bone respectively: 

𝑇𝑖𝑚 = log(𝐼𝐻) − 𝜔𝑡 log(𝐼𝐿) = [−𝜇𝐻
𝑡 +

𝜇𝐻
𝑏

𝜇𝐿
𝑏 𝜇𝐿

𝑡] 𝑇 
(1.13) 

𝐵𝑖𝑚 = −log(𝐼𝐻) + 𝜔𝑏 log(𝐼𝐿) = [𝜇𝐻
𝑏 −

𝜇𝐻
𝑡

𝜇𝐿
𝑡 𝜇𝐿

𝑏]𝐵 
(1.14) 

𝜔𝑡 =
𝜇𝐻
𝑏

𝜇𝐿
𝑏  

(1.15) 

𝜔𝑏 =
𝜇𝐻
𝑡

𝜇𝐿
𝑡  

(1.16) 

The values for 𝜔 and 𝜇 must be determined empirically, because these equations assume 

monoenergetic photons. As shown previously in Fig. 1.9, x-rays are produced as a spectrum of 

energies.  

1.5.2 Bone Suppression in Dual-energy Imaging 

Bone suppression techniques in dual-energy imaging capitalize on the higher attenuation 

of bone at higher X-ray energies compared to soft tissues. By emphasizing soft tissue details and 

minimizing bone in the resultant image, this technique enhances the clarity of structures like 

lung tumors. Figure 1.11 illustrates this process. 

 

Figure 1.11: Example of bone suppression in dual-energy imaging. 

By adjusting the value of 𝜔 in equation 1.10 from the previous section, a large range of 

dual energy images can be produced. Figure 1.12 shows the effects of 𝜔 on bone suppression. 

For the scenario of a tumor model in an anthropomorphic lung phantom, the ideal weighting 
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factor is 0.75 (center image). The left image has a lower value of 0.40, resulting in more 

contribution from the high energy component. The right image has a higher value of 1.00, 

causing the surrounding rib bones to start appearing as negative space (over-suppression of bone 

signal). 

 

Figure 1.12: Dual energy images with varying weighting factors. From left to right: 0.40, 0.75, 

1.00.   

 

1.5.3 Dual-Energy Imaging Techniques 

Various techniques for DE imaging are currently implemented clinically. Some of these 

techniques are described below in the context of dual energy computed tomography (CT). 

Unless where specifically pointed out, these techniques also apply to projection dual energy 

imaging. 

Single exposure DE imaging (Fig. 1.13) achieves simultaneous acquisition of low-energy 

(LE) and high-energy (HE) images during a single x-ray exposure4,6. This method uses two 

detector plates, with a copper filter between them to harden the beam by filtering out low-energy 

photons. The first detector produces the LE image, and the hardened beam that passes through 

the filter generates the HE image on the second detector. This approach effectively eliminates 

patient motion artifacts that can occur between separate LE and HE exposures. However, it tends 

to have a lower signal-to-noise ratio (SNR) due to the attenuation of photons by the first detector 

and copper filter, leading to reduced signal and increased noise in the HE image6. Moreover, 

large spectra separation cannot be achieved since both HE and LE images have the same kVp. 
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Figure 1.13: Single exposure DE technique. Two detector plates (green and red) are used. 

 

Double Exposure DE imaging involves sequentially acquiring LE and HE images using 

different kVp settings7, often with additional filters to enhance spectral separation. This 

technique improves SNR compared to single exposure methods but can introduce 

misregistration artifacts due to patient motion between exposures. Despite the short acquisition 

time between images, motion artifacts can still occur, especially in cases involving cardiac 

motion, potentially leading to inaccuracies in detecting smaller structures8,9. 

Single source DE imaging (Fig. 1.14) uses one x-ray source that rapidly alternates on the 

order of milliseconds between LE and HE settings, having applications in radiography as well as 

CT. This method ensures good temporal registration between LE and HE images but may 

experience reduced dose efficiency, as the tube parameters (mAs) for LE and HE beams cannot 

be modified separately10,11. 
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Figure 1.14: Single source DE imaging technique with a rapidly alternating kVp switch. 

Double source DE imaging (Fig. 1.15) employs two x-ray sources and two detector 

arrays positioned at a 90° offset, acquiring LE and HE images simultaneously. This technique, 

which is specific to CT, enhances imaging speed and accuracy, reduces motion artifacts, and 

allows for better mAs and beam filtration optimization. However, the projection data are 

acquired in a double-helix geometry, which can complicate DE image generation due to non-

coincident LE and HE projections12. Additionally, cross-scatter radiation between the detectors 

must be corrected for accurate imaging13. 

 

Figure 1.15: Dual source DE imaging whose HE and LE sources/detectors are orthogonal to one 

another. 
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1.5.4 Noise Reduction Algorithms 

While dual-energy (DE) imaging excels at reducing anatomical noise and enhancing 

lesion visualization, it has the drawback of amplifying quantum noise. Logarithmic subtraction 

can exacerbate noise due to noise propagation14, and to address this, various noise reduction 

algorithms have been developed. 

One such technique is the anti-correlated noise reduction (ACNR) algorithm14,15. This 

method uses a high-pass filter ℎ𝐻𝑃𝐹 on a bone-only DE image 𝐼𝐷𝐸
𝐵 , isolating quantum noise and 

residual edge artifacts (Equation 1.17). The filtered noise image is then added to the soft-tissue-

only DE image 𝐼𝐷𝐸
𝑆𝑇  with a noise suppression weighting factor ⍵n to give a noise-reduced DE 

image 𝐼𝐷𝐸,𝐴𝐶𝑁𝑅, effectively reducing noise by leveraging the anti-correlation15 of noise between 

soft-tissue-only and bone-only images. This approach significantly improves image quality by 

minimizing noise while preserving important anatomical details.  

log(𝐼𝐷𝐸,𝐴𝐶𝑁𝑅) = log(𝐼𝐷𝐸
𝑆𝑇) + 𝜔𝑛 log(𝐼𝐷𝐸

𝐵 ) ∗ ℎ𝐻𝑃𝐹 (1.17) 

Figure 1.16 shows the ACNR algorithm being applied to a lung tumor in a lung phantom. A 

complementary bone only image is created by adjusting ⍵ in the weighting logarithmic 

subtraction, applying a high-pass filter and weighting factor ⍵n to the complementary image, 

then adding the new image back to the original soft-tissue only image. This resulting noise-

reduced DE image may then be processed easier by analysis techniques such as template 

matching described in the next chapter.  

 

Figure 1.16: ACNR algorithm is applied to the weighted logarithmic subtracted image (left) by 

creating a complementary bone-only image (middle) to create a noise-reduced DE image (right). 
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1.6 Radiotherapy 

Radiotherapy is crucial in treating cancer, especially lung cancer, which presents 

significant global health challenges due to its high incidence and mortality rates. Advancements 

in imaging technologies have greatly enhanced the precision of radiotherapy, enabling more 

accurate targeting of tumors while minimizing damage to surrounding healthy tissues. This 

section explores the fundamental aspects of radiotherapy, focusing on its integration with 

advanced imaging techniques. Using MV photons from a linear accelerator (linac), radiation 

therapy (RT) effectively targets malignancies by delivering a uniform dose to the tumor volume 

while sparing nearby healthy tissues. Stereotactic body radiation therapy (SBRT), for instance, 

delivers a concentrated radiation dose over a few treatments, such as 12 Gy in 4 fractions 

totaling 48 Gy, showing promise in treating metastatic lung tumors16. The success of SBRT 

hinges on precise delivery facilitated by image-guided radiation therapy (IGRT), which uses in-

room imaging techniques such as cone-beam CT (CBCT) to align patients accurately. While 

CBCT provides detailed volumetric images, projection room mounted x-ray imaging systems 

may also have certain advantages for image guidance. Alignment is achieved by volumetrically 

matching the acquired CBCT images to the planning CT or matching the acquired projection 

images to digitally reconstructed radiographs (DRRs) created from the planning CT. 

1.6.1 CT Simulation and DRRs 

During CT simulation, patients are positioned on a CT scanner in the same manner they 

will be positioned during treatment. The resulting images enable clinicians to delineate the 

tumor boundaries, known as the Gross Tumor Volume (GTV), and identify critical structures 

that must be avoided or given lower doses of radiation. DRRs, as exemplified by Figure 1.17, 

are synthesized from CT simulation data to simulate the treatment setup and aid in patient 

positioning. DRRs provide a visual representation of how the x-ray images would appear during 

the actual treatment sessions, helping to verify patient positioning and ensuring the alignment of 

treatment fields.17  
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Figure 1.17: A digital reconstructed radiograph (DRR) of a patient’s torso. 

 

1.6.2 Treatment Planning and Workflow 

Radiotherapy planning involves defining several critical volumes to ensure accurate dose 

delivery. The Gross Tumor Volume (GTV) is the visible extent of the malignant tumor based on 

imaging studies. The Clinical Target Volume (CTV) includes the GTV, and any areas suspected 

of containing microscopic disease, accounting for potential subclinical spread. The Planning 

Target Volume (PTV) is the CTV plus an additional margin to account for variations in 

treatment delivery, patient movement, and setup errors. This margin ensures that the prescribed 

dose is delivered to the entire CTV despite these uncertainties. The Internal Target Volume 

(ITV), specifically for tumors subject to movement (e.g., lung tumors), encompasses the CTV 

and accounts for internal physiological movements, particularly respiratory motion, captured 

through techniques like 4DCT.  

The radiotherapy process typically follows a structured workflow. CT Simulation (CT 

Sim) involves initial imaging to create a volumetric image of the patient's anatomy in the 

treatment position (Fig. 1.18). Treatment Planning utilizes specialized software like Eclipse, 

where clinicians design a radiation treatment plan that defines the optimal radiation dose 
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distribution. This involves configuring treatment fields to ensure maximum tumor coverage and 

minimal exposure to healthy tissue. Pre-treatment verification uses cone beam CT (CBCT) or 

other imaging modalities immediately before each treatment session to verify patient positioning 

and ensure alignment with the treatment plan (Fig. 1.19). 

 

Figure 1.18: An axial view of planning CT for a lung patient. Outlined are the GTV and PTV of 

the tumor. 

 

 

Figure 1.19: A CBCT of the same lung patient as Figure 1.18 immediately prior to treatment. 

The image is lower quality due to increased scatter caused by the larger irradiation volume of the 

cone beam. 
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1.6.3 Techniques to Manage Tumor Motion 

Lung tumors pose a unique challenge due to their movement with respiration18–20. 

Techniques to manage this include 4DCT Imaging21, which captures the tumor motion over the 

respiratory cycle, providing a comprehensive view of its movement. This data informs the 

creation of the ITV. Gating22 synchronizes radiation delivery with specific phases of the 

breathing cycle to target the tumor when it is in a consistent position. Breath-hold techniques23 

require patients to hold their breath during treatment to stabilize the tumor's position, reducing 

motion-related uncertainties. Real-time Tumor Tracking (RTTT) involves advanced systems that 

continuously monitor and adjust for tumor movement during treatment, ensuring precise dose 

delivery. The benefits of RTTT include shorter treatment time, and less patient discomfort. 

Additionally, the usage of markerless tumor tracking24–29 allows for the omission of internal 

fiducials and external motion surrogates30,31, leading to more accurate tumor localizations and 

the prevention of pneumonitis or pneumothorax in the patient32,33. Figure 1.20 shows a 

visualization of three motion management methods. 

 

Figure 1.20: Various methods of tumor motion management.34 

 

1.6.4 Applications of Dual-Energy Imaging in Radiotherapy 

Dual-energy (DE) imaging offers multiple approaches to enhance radiotherapy through 

improving treatment precision and optimizing dose delivery. This section explores current 

applications of DE imaging techniques, as detailed across comprehensive studies35,36. 
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DE imaging, particularly in Dual-Energy CT (DECT) and Dual-Energy Cone Beam CT 

(DE-CBCT), stands at the forefront of medical imaging advancements. By acquiring images at 

multiple energy levels, DE imaging enhances soft tissue contrast and mitigates artifacts such as 

beam hardening and metal implants37–39. These capabilities are critical for precise tumor 

delineation and localization, essential in complex radiotherapy procedures like Stereotactic Body 

Radiation Therapy (SBRT) and stereotactic radiosurgery (SRS)37. 

 

In CBCT, DE imaging significantly improves image quality by reducing artifacts 

common in conventional CBCT, particularly beneficial in cases involving metallic implants or 

bony structures40–44. Enhanced tumor visualization and delineation are important for precise 

treatment delivery, particularly in SBRT. DECT enhances lesion conspicuity and tumor 

boundary delineation, thereby refining treatment planning and delivery accuracy37. 

 

Accurate dose calculation is paramount in external beam radiation therapy to optimize 

treatment outcomes and minimize risks to healthy tissues. DE-CBCT facilitates precise 

estimation of tissue densities and electron densities through DE decomposition techniques, 

overcoming uncertainties in single-energy CBCT's Hounsfield Unit (HU) to density 

conversions39,45–49. These improvements support adaptive radiation therapy where treatment 

plans can be adjusted based on daily anatomical variations, enhancing dose delivery accuracy 

and patient outcomes36. 

 

Markerless tumor tracking is another significant advancement enabled by DE imaging, 

addressing limitations of fiducial markers by allowing real-time monitoring of tumor motion50. 

This not only improves treatment accuracy but also enhances patient comfort by eliminating 

invasive procedures to implant the fiducials. DE-CBCT techniques enable continuous tracking 

of tumor position and shape changes, crucial for adapting treatment strategies and ensuring 

optimal target coverage. Studies on DE-fluoroscopy techniques have already been 

investigated51–53, and findings could be extended to other imaging modalities. This is incredibly 

relevant to the overall topic of this thesis, as it pertains to markerless tumor tracking of a moving 

lung tumor. 

1.6.5 Stereoscopic Imaging 
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Stereoscopic imaging is an imaging technique that employs two x-ray sources to generate 

three-dimensional images, offering detailed information about the tumor's position and 

movement. The enhanced spatial accuracy provided by stereoscopic imaging significantly 

improves the precision of radiation dose delivery compared to CBCT, thereby optimizing 

treatment efficacy and minimizing damage to surrounding healthy tissues. 

Several advanced stereoscopic imaging systems are employed in clinical practice, each 

with unique features and benefits tailored to specific radiotherapy needs. The CyberKnife 

system (Accuray)54,55 utilizes a robotic arm to deliver high-dose radiation with sub-millimeter 

accuracy from multiple angles around the patient. It integrates stereoscopic imaging to track the 

tumor in real-time, adapting the treatment plan to account for patient movement, particularly 

respiratory motion. The system's precision makes it highly effective for treating tumors that 

move with respiration, such as those in the lungs, liver, and prostate. 

The SyncTraX system (Shimadzu)56 addresses geometric and dosimetric uncertainties 

caused by tumor motion during respiration by using two x-ray tubes and two color image 

intensifiers to acquire fluoroscopic images from two directions. The system automatically 

extracts the position of fiducial markers near the tumor, calculating their three-dimensional 

coordinates. SyncTraX gates the treatment beam based on the absolute 3D position of these 

markers, ensuring the megavoltage beam activates only when the tumor is within the predefined 

gating window. This reduces the need for large internal margins, minimizing radiation exposure 

to healthy tissues and reducing complication risks. The system's wide dynamic range enhances 

image clarity, particularly in the heart and spine regions, making it an effective tool for precise 

respiratory-gated radiotherapy. 

ExacTrac (Brainlab) (Fig. 1.21) is a room-mounted (i.e., fixed geometry) stereoscopic 

imaging system that employs a dual x-ray setup, capturing images from two oblique views that 

are processed to triangulate the tumor's position accurately. The ExacTrac system also 

incorporates infrared tracking, which enhances its accuracy by monitoring external markers on 

the patient's body, correlating these movements with internal tumor motion. ExacTrac's 

combination of x-ray and infrared tracking systems provides a comprehensive solution for tumor 

localization and motion management. A notable benefit that stereoscopic systems have over 

CBCT is how projection x-ray images offer faster acquisition and lower doses (e.g., ExacTrac 

doses of about 0.52 mGy versus typical CBCT doses around 20 mGy57,58). 
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Figure 1.21: The ExacTrac room-mounted stereoscopic imaging system. 

 

The ExacTrac system faces certain challenges, particularly related to maintaining clear 

imaging during treatment. One significant issue is the potential obstruction of x-ray beams by 

the rotating gantry of the linear accelerator59–61. This obstruction can occur when the gantry 

moves into positions that block the line of sight between the x-ray tubes and the detectors, 

compromising image acquisition. To address this, careful planning of gantry angles and x-ray 

acquisition timing is essential. Additionally, integrating ExacTrac with other imaging 

modalities, such as cone-beam computed tomography (CBCT), can offer complementary 

information, ensuring continuous and accurate tumor tracking throughout the treatment session. 

Another issue with ExacTrac pertains to how the correlation between infrared-tracked 

external marker movements and internal tumor position has been shown to be unreliable in some 

studies32,33. Ongoing research and technological advancements aim to improve the robustness of 

these correlations, ensuring consistent and precise treatment delivery. This includes 

developments in markerless tracking techniques24–29, which seek to eliminate the need for 

external markers and further enhance the accuracy and convenience of the system. 
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1.7 Thesis Outline 

The foundational principles of x-ray imaging systems and their role in modern 

radiotherapy have been explored in this introductory chapter. The essential components of x-ray 

tubes, detectors, and the imaging process have been discussed, highlighting their application in 

guiding precise cancer treatments. The integration of x-ray imaging with advanced radiotherapy 

techniques has been emphasized, demonstrating the significance of real-time imaging for 

accurate tumor localization and treatment delivery. 

The second chapter will present a comprehensive research manuscript focusing on the 

development of a novel markerless real-time dual-energy tumor localization technique. This 

chapter addresses the practical challenges encountered in clinical settings, particularly real-time 

tumor monitoring and the obstruction caused by rotating gantries in stereoscopic imaging 

systems. Detailed methodologies, experimental findings, and their clinical implications will be 

thoroughly discussed, aiming to enhance tumor monitoring during radiotherapy. Included 

alongside the manuscript are explorations of other 3D localization methods, including epipolar 

constraints and the Kalman filter. 

Finally, the third chapter will summarize the results of the work described throughout 

this thesis. It will also outline avenues for further research, including the immediate next steps to 

take based on the results of the manuscript. 
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2. Chapter 2: Real-time dual energy markerless monitoring of lung tumors using a clinical 

room-mounted stereoscopic and monoscopic x-ray imaging system 

 

The content of this chapter is partially based on a manuscript submitted to Medical Physics: 

“Real-time dual energy markerless monitoring of lung tumors using a clinical room-mounted 

stereoscopic and monoscopic x-ray imaging system”, Zakary McLure, Chris Peacock, Mike 

Sattarivand. Kalman and epipolar implementations were not part of the manuscript submission. 

 

2.1: Abstract 

Background: The motion of lung tumors during breathing poses challenges in stereotactic body 

radiotherapy (SBRT), warranting improved monitoring techniques.  Breathing complicates 

SBRT by creating positional uncertainty in the lungs, traditionally managed with PTV margins, 

respiratory gating, or breath hold, each with significant drawbacks. While external and 

implanted markers for tracking have limitations, dual energy (DE) imaging offers a non-

invasive, markerless solution that enhances soft tissue contrast and improves real-time tumor 

localization accuracy and precision. 

 

Purpose: This study aims to develop a markerless real-time dual energy tumor localization 

technique on a clinical room-mounted x-ray image guidance system to allow precise 3D 

stereoscopic and monoscopic lung tumor motion monitoring during radiotherapy. 

 

Methods: A motorized programmable breathing phantom combined with an anthropomorphic 

phantom was developed to simulate a lung tumor's respiratory motion, with various tumor 

models (6.4 - 25.4 mm). Real-time images were acquired with a clinical ExacTrac stereoscopic 

imaging system at a rate of 1.67 Hz with high and low energies (140 & 60 kVp). Weighted 

logarithmic subtraction and an anti-correlated noise reduction algorithm were used to generate 

dual energy images. Conventional single energy images (120 kVp) were acquired for 

comparison. Digital reconstructed radiographs from x-ray imaging views were created to serve 

as templates for a template-matching algorithm developed to localize tumor locations on x-ray 

views. For the stereoscopic case where both imaging views were available, 3D triangulation was 

performed to localize the tumor. In the monoscopic case, when only one x-ray view was 
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available, the 3D tumor position was estimated using a single 2D localization, combined with a 

3D probability density function (PDF) describing tumor motion.     

 

Results: Stereoscopic dual energy techniques demonstrated accurate localizations. The 

monoscopic view obstructed by the spinal cord showed lower success rates than the view 

obstructed only by the rib bone. In the stereoscopic cases, dual energy consistently outperformed 

single energy methods, successfully localizing a minimum of 92% of positions for all tumor 

sizes, compared to 50% for single energy. Both dual and single energy PDF estimates for the 

monoscopic region obscured by the ribs showed a 100% success rate for all tumor sizes, except 

the smallest tumor for single energy, having only 57% localization success. The other 

monoscopic region, obscured by the spine, showed 100% localization success for only the 

largest tumor size, but consistently showed improvements of up to 20% for the dual energy over 

single energy technique (93% vs 73% for the 12.7 mm tumor).   

 

Conclusions: A real-time markerless tumor monitoring technique was developed utilizing a 

clinical room-mounted stereoscopic / monoscopic image guidance system. Dual energy 

increases the accuracy of successful tumor localization as compared to the conventional single 

energy approach, especially for smaller tumors. The use of PDFs may be a viable approach to 

monoscopic estimates when only one view is available. 

2.2: Introduction 

Lung tumors exhibit motions of up to 3 cm during a regular breathing cycle18–20. This is 

especially undesirable for cancer patients undergoing stereotactic body radiotherapy (SBRT), 

where large doses are delivered in a small number of fractions62. Breathing motion creates 

positional uncertainty, which is traditionally managed by increasing planning target volume 

(PTV) margins21, respiratory gating22, or breath hold23. The former increases unwanted dose 

delivery to nearby healthy organs at risk (OARs) as it requires large margins to define an 

internal target volume (ITV)63. The latter two increase treatment time, require patient 

compliance, and can cause strain and discomfort to patients, especially those with respiratory 

conditions22,23,64. Preferred approaches would involve direct real-time monitoring of tumor 

motion. 

Monitoring tumor motion can be performed through tracking body surface markers as a 
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surrogate to internal target motion30. However, the correlation between external markers and 

lung tumor motion has been shown to be unreliable due to intra-fractional drift31. A more direct 

technique uses implanted radio-opaque markers on the target volume65. Implanting these 

markers is invasive and can cause pneumonitis or pneumothorax32,33. Additionally, studies have 

shown that the fiducial markers may drift more than 2.5 mm between fractions, affecting 

localization accuracy32,33. Consequently, there is a growing demand for real-time non-invasive, 

markerless lung tumor monitoring. 

Markerless tumor monitoring techniques have been explored24–27, notably those using 

template matching algorithms during treatment28,29. However, bony anatomy in the imaging field 

can hinder such localization tactics, which themselves rely on the high contrast between the 

tumor and surrounding tissue. The problem of tumor obstruction by bone can be addressed using 

dual energy (DE) imaging instead of conventional single energy (SE) techniques to suppress 

bone contrast and enhance soft-tissue-only images, thereby improving localization accuracy and 

precision52,54,68–70. 

Room-mounted stereoscopic imaging systems such as ExacTrac (Brainlab AG, 

Germany) can be utilized to provide real-time, sub-millimeter accurate views of the treatment 

volume to monitor prostate motion using implanted fiducials66, but they currently provide no 

reliable method for intra-fraction lung tumor monitoring. Additionally, in a typical lung SBRT 

treatment, one of the two x-ray imagers of the stereoscopic imaging system will be blocked by 

the rotating linac gantry during volumetric arc therapy (VMAT) treatment, hindering exact 3D 

location from a single 2D perspective. Recent developments in monoscopic (single view) 

localization of fiducial markers in prostate tumors for gantry mounted kV imaging systems offer 

a solution by correlating between motions in the anterior-posterior and inferior-superior 

directions to generate an informed estimate of the third dimension59–61. This approach may also 

be extended to the context of lung tumors. 

To our knowledge, there has not yet been a study that combines bone-suppression from 

dual energy imaging with stereoscopic and monoscopic 3D localization for continuous lung 

tumor monitoring during treatment. The objective of this study is to develop a real-time 

markerless tumor monitoring technique for stereoscopic imaging systems to monitor lung tumor 

motion during treatment, while also addressing the issue of intermittent monoscopic scenarios 

created by the rotating gantry.  
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2.3: Materials and Methods 

2.3.1: Data Acquisition 

2.3.1A: Phantom Design and Experiment Setup 

To emulate lung patient anatomy, an anthropomorphic breathing phantom (TBP, Mirion 

Technologies NJ, USA) was used. Soft tissue thickness was increased by positioning a 5 cm 

thick plate of Lexan polycarbonate resin beneath the phantom. The built-in expanding lung 

insert was removed, and an attached tumor model was inserted into the phantom's chest cavity 

(Figure 2.1a). Tumors were modeled using four spherical acrylic targets (Plastic World, ON, 

Canada) with diameters of 6.4 mm, 12.7 mm, 19.1 mm, and 25.4 mm. Realistic lung tumor 

motion was achieved by repurposing a motor from a Quasar respiratory motion phantom (Modus 

medical devices, London, ON, Canada) and feeding to it a realistic typical lung motion (see 

section 2.3.1B). The Quasar phantom was mounted on a platform supporting the Lexan plate and 

breathing phantom at a fixed position on the treatment couch. Computed tomography (CT) 

images of each tumor (while at rest within the phantom) were acquired with a clinical CT 

simulator using institution’s lung SBRT imaging protocol (2.50 mm slice thickness).  

 

 

Figure 2.1: a) The experimental phantom setup used for the real-time motion experiment. b) A 

schematic depicting the electronics used for the real-time motion experiment. The shaded pink 

regions represent the stereoscopic x-ray beams. A section of the applied realistic breathing 

motion pattern is plotted at the top-right corner. 
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2.3.1B: Real-time Imaging Data Acquisition 

For each tumor size, the attached spherical tumor model was aligned with the treatment 

room isocenter using the room lasers. Employing the Quasar motor motion program, the tumor 

followed a predefined trajectory based on input data containing typical lung breathing motion 

patterns. This data was sourced from the markerless lung target tracking AAPM Grand 

Challenge (MATCH)67 and used as a ground truth. Due to current hardware constraints of the 

existing ExacTrac system, rapid switching of tube voltages between successive image captures 

was not performed. Instead, two sets of real-time images were acquired for high and low energy 

sequences during two separate (but identical) breathing cycles and were subsequently used to 

generate dual energy images. To synchronize tumor motion with image acquisition, a 

photodiode (TCS34725, Adafruit Industries, New York USA) coupled with 5 mm thick 

scintillating material (EJ-208, Eljen Technology, Texas USA) was positioned on the floor to 

detect x-ray beam pulse (Figure 2.1b). A MATLAB script (MathWorks, Natick, MA) initiated 

tumor motion from a fixed start position upon detecting the first x-ray pulse. An accelerometer 

(SEN-12786, SparkFun Electronics, Colorado USA) attached to the tumor motion arm, outside 

of the field of view, measured the delay between x-ray pulse and tumor motion initiation. Both 

the accelerometer and photodiode communicated with an Arduino microcontroller (SparkFun, 

CO, USA) via I2C connector cables. The microcontroller combined the readings and transmitted 

them as a single byte of data via a USB cable to a laptop, where they were saved to a text file. 

The detected motion delay was determined to be 110±7 ms, therefore the motor response time 

was considered negligible. 

 

For each of the four tumor sizes, real-time stereoscopic DE and SE imaging series were 

acquired at an imaging frequency of 1.67 Hz using a clinical ExacTrac (Brainlab) imaging 

system (Ver 6.2). Each series took 60 seconds to acquire and consisted of 100 imaging frames. 

The imaging parameters for the DE images were (140 kVp, 8 mAs) for high energy and (60 

kVp, 25 mAs) for low energy acquisitions. These acquisition techniques were optimal dual 

energy parameters based on a previous study for lung patients to maximize tumor contrast in DE 

images, while ensuring that the total dose from dual energy does not exceed that of single 

energy57. The real-time SE images were acquired using (120 kVp, 16 mAs) imaging parameters. 

This acquisition technique was chosen based on vendor recommendations for lung patient 

imaging68.  
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2.3.2: Data Analysis 

2.3.2.1: Dual Energy Image Generation 

For each frame in the real-time image series, a soft-tissue-only dual energy image 𝐼𝐷𝐸
𝑆𝑇  

was calculated using a weighted log subtraction of the corresponding low energy image 𝐼𝐿𝐸 from 

the high energy image 𝐼𝐻𝐸 (equation 2.1). Similarly, bone-only DE images 𝐼𝐷𝐸
𝐵  were generated 

for use in an anti-correlated noise reduction algorithm (ACNR)15 (equation 2.2) which was 

applied to reduce noise in the soft-tissue dual energy images. 

 

 log(𝐼𝐷𝐸
𝑆𝑇) = log(𝐼𝐻𝐸) − 𝜔 log(𝐼𝐿𝐸) 

log(𝐼𝐷𝐸
𝐵 ) = − log(𝐼𝐻𝐸) + 𝜔𝑏 log(𝐼𝐿𝐸) 

(2.1) 

 

 log(𝐼𝐷𝐸,𝐴𝐶𝑁𝑅) = log(𝐼𝐷𝐸
𝑆𝑇) + 𝜔𝑛 log(𝐼𝐷𝐸

𝐵 ) ∗ ℎ𝐻𝑃𝐹 (2.2) 

 

Here, ℎ𝐻𝑃𝐹 is a Gaussian high pass filter with a lower cutoff frequency of14 0.2 pixel‒1. The 

noise suppression weighting factor 𝜔𝑛 was set to 0.9 for the calculation of all DE images14. The 

soft tissue DE weighting factor 𝜔 was chosen for each imaging frame and for both stereoscopic 

views by varying 𝜔 until bone suppression was maximized around the tumor. For tube A, this 

was done quantitatively by selecting an ROI that encompassed both a rib and its surrounding 

soft tissue, then varying 𝜔 until the CNR within the ROI was minimized. Similarly, the bone-

only DE weighting factor 𝜔𝑏 was chosen by varying 𝜔𝑏 to achieve the highest soft tissue 

suppression around the tumor while maximizing bone contrast for each frame. An ROI was 

chosen to encompass the tumor and an adjacent rib, then 𝜔𝑏 was varied until the bone only 

image had a minimized CNR within the ROI. No ROIs were used for the tube B point of view, 

and a qualitative evaluation of the 𝜔 values was performed instead. The 𝜔 range was [0.7-0.8] 

and [1.08-1.12] for the two stereoscopic images from tubes A and B respectively. Larger 

weighting factors were required for image from tube B than tube A due to presence of thicker 

bone (spine) in view B compared to rib in view A. Similarly, the range for the bone-only 

weighting factor 𝜔𝑏 was [1.35-1.40] and [1.65-1.70] for tubes A and B respectively. 
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2.3.2.2: Template Matching 

Figure 2.2 describes the template matching procedure. The CT images of the tumors and 

phantom were exported to a commercial contouring and treatment planning system (Eclipse, 

Varian Medical Systems, Inc., Palo Alto, USA). Here, the gross tumor volume (GTV) was 

manually contoured for each of the four tumor sizes. Both the CT images and resulting contours 

were then exported in DICOM format from Eclipse to an in-house MATLAB code, where 

tumor-only CT images were generated by masking out the non-tumor volume. Using a custom 

MATLAB script, tumor templates for each tumor size were created by generating digitally 

reconstructed radiographs (DRRs) from each tumor-only CT image, simulating the beam's eye 

views of the ExacTrac stereoscopic imaging system69,70. The tumor templates were then cropped 

from the DRRs, with the cropping region centered on the tumor's center of mass.  

 

Figure 2.2: Description of the template matching procedure. (a) Template generation: Crop 

region around the tumor from CT and calculate DRR of the tumor for each stereoscopic imaging 

view. (b) Normalized cross-correlation template matching using the DRR templates and the 

acquired SE or DE images. Return the global maxima of both correlation images as the optimal 

match positions. 



36  

As per Mostafavi et al.28, normalized cross correlation was used as a metric for template 

matching localization for each stereoscopic view. This algorithm was implemented using the 

MATLAB function normxcorr2, which calculates the normalized cross-correlation between a 

template image 𝑡 and a search image 𝐼 using equation 2.3: 

 

 𝐼𝑁𝐶𝐶(𝑢, 𝑣) = ∑
(𝐼(𝑥,𝑦)−𝐼�̅�,𝑣)(𝑡(𝑥,𝑦)−�̅�)

𝑁𝜎𝐼𝜎𝑡
𝑥,𝑦 , 

(2.3) 

 

where 𝑡̅ represents the average pixel value of the template, while 𝐼�̅�,𝑣 indicates the average pixel 

value within the template-sized region of the image 𝐼, centered at pixel position (𝑢, 𝑣). 𝑁 

denotes the total number of pixels in the template 𝑡. 𝜎𝑡 and 𝜎𝐼 represent the pixel standard 

deviation for the template and the sub-image centered at position (𝑥, 𝑦) respectively. To maintain 

the original image size within the cross-correlation image 𝐼𝑁𝐶𝐶, 𝐼 was padded with 𝑁𝑥/2 

columns and 𝑁𝑦/2 rows of zeros. The global maximum position of 𝐼𝑁𝐶𝐶 for each stereoscopic 

projection image was selected to determine the tumor's location within each imaging view. 

2.3.2.3: Three-Dimensional Tumor Localization 

A typical lung SBRT treatment using volumetric arc therapy (VMAT) requires ipsilateral 

treatment arcs. This is illustrated in Figure 2.3 for a right lung case where gantry angle may 

range from -180° to 10°. The gantry motion during the treatment arc will cause real-time 

ExacTrac imaging to go through periods of stereoscopic (where both views are available) or 

monoscopic (only one view available) imaging. Figure 2.4 describes the workflow for image 

acquisition and 3D tumor localization depending on whether the gantry blocks one of the 

stereoscopic imaging views. In all scenarios, the template matching algorithm (described in 

section 2.3.2.2) was used to locate the tumor in each 2D x-ray image view. Stereoscopic 

triangulation, described in section 2.3.2.3.1, was used in the cases where both imaging views 

were available. Monoscopic localization with a probability density function (PDF) approach, 

described in section 2.3.2.3.3, was used when only one imaging view was available.  

 

 



37  

 

Figure 2.3: Monoscopic (green/orange) and stereoscopic (purple) regions defined by the gantry 

angle during the treatment arc (red) of a lung SBRT patient. In the green regions, the gantry 

obstructs view A and in the orange regions, view B is blocked, thus monoscopic imaging is 

possible with either view in these regions.  
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Figure 2.4: Flowchart describing image acquisition for 3D localization estimates. The 

stereoscopic and monoscopic approaches are described in section 2.3.2.3.1 and 2.3.2.3.3 

respectively. 

 

Three-dimensional localization positions were compared to the ground truth to calculate 

accuracy and precision. For each frame, a 3D localization was considered successful if the tumor 

was found within 5 mm of the ground truth51. The localization accuracy and precision along the 

anterior-posterior, left-right, and superior-inferior directions were calculated using the mean and 

the standard deviation of the difference between the successfully localized tumor position and 

the ground truth respectively.  

2.3.2.3.1: Stereoscopic localization using 3D triangulation 

Adopting a stereoscopic triangulation methodology akin to Wei et al.71, the 3D 

localization of the tumor was determined by identifying the shortest line segment connecting 

two back-traced rays, which originate from a pair of 2D tumor localizations (determined using 

template matching as per section 2.3.2.2). Referring to Figure 2.5a with known orientation (polar 

angle θ and azimuthal angle Φ) and inter-pixel spacing for each imaging panel 𝑖, the relationship 
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between the 2D position of a pixel on the panel (𝑥𝑖𝑚, 𝑦𝑖𝑚) and the corresponding point on room 

3D coordinates �⃗�𝑖 is expressed by the following equation: 

 

 

�⃗�𝑖 = 𝑅 ⋅ [
𝑥𝑖𝑚
𝑖

𝑦𝑖𝑚
𝑖

0

] ⋅
𝑆𝐷𝐷

𝑆𝐴𝐷
 

(2.4) 

 

where SDD (source to detector distance) and SAD (source to axis/isocenter distance) are used as 

a scaling factor, and 𝑅 = 𝑅𝑥 ⋅ 𝑅𝑦 is a matrix used to rotate the detector coordinate system to the 

room coordinate system. The rotation matrices 𝑅𝑥 and 𝑅𝑦 are defined in equation 2.5. 

 

 

𝑅𝑥 = [
1 0 0
0 cos(90° − 𝜃) − sin(90° − 𝜃)

0 sin(90° − 𝜃) cos(90° − 𝜃)
] , 𝑅𝑦 = [

cos(Φ) 0 sin(Φ)
0 1 0

− sin(Φ) 0 cos(Φ)
] 

(2.5) 

 

For ExacTrac imaging panels A and B,  𝜃𝐴 = 𝜃𝐵 =  48° , Φ𝐴  =  −45°, and Φ𝐵 = 45°. 

Likewise, the SDD and SAD are 343.5 cm and 218.5 cm respectively70. Given a pair of 2D 

image coordinates [𝑥𝑖𝑚
𝐴 , 𝑦𝑖𝑚

𝐴 ] and [𝑥𝑖𝑚
𝐵 , 𝑦𝑖𝑚

𝐵 ] obtained from template matching applied to each of 

the x-ray images, points �⃗�𝐴 and �⃗�𝐵 can be derived. The triangulation process proceeds by using 

the pair of vectors between the x-ray sources and their respective panel detectors to determine 

the most probable 3D position where the pair of back-traced rays would intersect (Figure 2.5b). 

�⃗⃗�𝐴 and �⃗⃗�𝐵 represent the points on the source-detector ray, defining the shortest crossline distance 

between the two rays. These points are determined by scaling the unit vector for each source-

detector pair �̂�𝐴 and �̂�𝐵 by scalars 𝐿𝐴 and 𝐿𝐵, originating from the pixel positions �⃗�𝐴 and �⃗�𝐵 

respectively: 

 

 �⃗⃗�𝐴 = 𝐿𝐴�̂�𝐴 + �⃗�𝐴 

�⃗⃗�𝐵 = 𝐿𝐵�̂�𝐵 + �⃗�𝐵 

(2.6) 

 

where �̂�𝐴 =
𝐼𝐴−�⃗�𝐴

|𝐼𝐴−�⃗�𝐴|
 , �̂�𝐵 =

𝐼𝐵−�⃗�𝐵

|𝐼𝐵−�⃗�𝐵|
, and 𝐼𝐴 and 𝐼𝐵 are source points on Tube A and B respectively. 

The proposed method suggests the most probable 3D ray coincidence point to be the midpoint 

along the shortest line segment between the two rays. This midpoint is determined by locating 
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the halfway point along a line connecting the two rays and perpendicular to both. The shortest 

line segment 𝑑, connecting points �⃗⃗�𝐴 and �⃗⃗�𝐵, is computed by projecting the vector connecting 

points �⃗�𝐴 and �⃗�𝐵 onto a unit vector that is perpendicular to both �̂�𝐴 and �̂�𝐵: 

 

 
𝑑 = ((�⃗�𝐴 − �⃗�𝐵) ⋅

�̂�𝐴 × �̂�𝐵
|�̂�𝐴 × �̂�𝐵|

)
�̂�𝐴 × �̂�𝐵
|�̂�𝐴 × �̂�𝐵|

 
(2.7) 

 

 

Figure 2.5: a) ExacTrac detector geometry polar angle θ and inclination Φ, with respect to treatment 

room coordinates, using the ray-traced line between view A and Tube A. b) Illustration of how 

triangulation is performed by determining the shortest crossing line between a pair of vectors 

traced back from image coordinates to x-ray tubes.  

 

The scaling coefficients  𝐿𝐴 and 𝐿𝐵 for each of the back-trace unit vectors are derived using 

equations 2.6 and 2.7 as follows, with the knowledge that �⃗⃗�𝐴 = �⃗⃗�𝐵 + 𝑑: 

 

𝐿𝐴�̂�𝐴 + �⃗�𝐴 = 𝐿𝐵�̂�𝐵 + �⃗�𝐵 + 𝑑 

𝐿𝐴�̂�𝐴 − 𝐿𝐵�̂�𝐵 = �⃗�𝐵 − �⃗�𝐴 + 𝑑 

𝐿𝐴(�̂�𝐴 × �̂�𝐵) − 𝐿𝐵(�̂�𝐵 × �̂�𝐵) = (�⃗�𝐵 − �⃗�𝐴 + 𝑑) × �̂�𝐵 

𝐿𝐴 =
|(�⃗�𝐵 − �⃗�𝐴 + 𝑑) × �̂�𝐵|

|�̂�𝐴 × �̂�𝐵|
 

 

 

A similar approach is used to isolate 𝐿𝐵. The scaling coefficients are therefore: 
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𝐿𝐴 =

|�⃗⃗⃗� × �̂�𝐵|

|�̂�𝐴 × �̂�𝐵|
 

𝐿𝐵 =
|�⃗⃗⃗� × �̂�𝐴|

|�̂�𝐵 × �̂�𝐴|
 

 

(2.8) 

where �⃗⃗⃗� = �⃗�𝐵 − �⃗�𝐴 + 𝑑. The center point between A and B is calculated as the average of the 

two points �⃗� =
 �⃗⃗�𝐴+ �⃗⃗�𝐵

2
.  

2.3.2.3.2: Epipolar Geometry 

 During the stereoscopic case, when both views are available, it may prove beneficial to 

assign different weightings that describe how much one view influences the triangulation 

algorithm versus the other. Factors such as presence of significant anatomical noise (more bone 

overlap) could contribute to the determining of such weighting factors. Epipolar geometric 

constraints may be a potential solution to such concerns.  

 

In stereoscopic imaging, where system geometry is known, the position of an object in 

one imaging view corresponds to a unique epipolar line of possible object locations in the 

complementary view (see Fig. 2.6). The epipolar line constraint has been used to improve 3D 

triangulation in computed tomography72 and to track patient motion using multi-view imaging 

systems73. It has also been applied to aid lung tumor tracking and pre-treatment image alignment 

in clinical systems like the Xsight74 and Vero75. The benefit of using an epipolar constraint for 

tracking tumors of various sizes has not yet been examined, but it is expected to reduce incorrect 

localizations due to limiting regions within which template matched pixel coordinates may exist. 

By assigning a higher weight to a stereoscopic view with lower anatomical noise, the epipolar 

constraint should in theory filter out problematic points on complementary views with more 

bone obstructions (e.g., rib vs. spine). 
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Figure 2.6: Demonstrating the epipolar constraint for two stereoscopic views. An object viewed 

at x in the left view must have a corresponding position x’ on the right view.76   

 

An algorithm77 outlined in Figure 2.7 incorporating an epipolar constraint was developed 

as an extension to the template matching and stereoscopic triangulation algorithms highlighted 

earlier in sections 2.3.2.2 and 2.3.2.3. This algorithm was applied to both SE and DE x-ray 

images. First, a pair of stereoscopic images corresponding to each x-ray tube (IA and IB) are 

processed with a local median filter to reduce pixel noise. This reduction of noise assists 

template matching by removing outlier pixels and improving CNR. Next, a normalized cross-

correlation is computed for each filtered image (IA,med and IB,med) with their corresponding 

templates, producing correlation score images CA and CB. Local maxima lower than Cthresh = 

0.7∗max(CA,CB) 77 in these correlation images are identified and filtered by a threshold to 

generate lists of candidate points pA and pB. 
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Figure 2.7: Epipolar constraint algorithm flowchart. The lines crossing the images indicate the 

required series of positions according to localizations from the opposite image. These are known 

as epilines.77  

 

Each pair of points from these lists is back traced to the respective x-ray source, and the 

shortest crossing line distances are computed, forming a matrix of crossing line distances. Pairs 

with distances below a crossing line distance threshold (δ = 2 mm)77 are considered as potential 

3D tumor locations. The sum of correlation scores for these pairs is calculated, and the pair with 

the highest combined score is selected as the best 2D template match positions. The optimal 3D 

tumor position is then determined by triangulating these points as described in section 2.3.2.3.1. 

If no pairs pass the crossing line distance threshold, the correlation threshold is reduced by 10%, 

and the process is repeated. 
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2.3.2.3.3: Monoscopic Localization 

The use of a Gaussian probability density function (PDF) to estimate a 3D position in 

monoscopic imaging using on-board imagers is described by Poulsen et al.59 and was replicated 

by Stevens et al. for the ExacTrac system in the context of prostate tumors66. The method 

depicted in Figure 2.8 requires a priori information in the form of motion covariances Q. These 

covariances can either be derived from the patient-specific real-time tumor localization before 

treatment, or from established patient population averages. The latter is expected to be less 

accurate as it represents the population average. Therefore, in this study, patient-specific 

covariances were calculated using the tumor motion estimated by stereoscopic localization from 

all 100 frames as per section 2.3.2.3.1.  

 

 

 

Figure 2.8: Monoscopic localization uses a Gaussian PDF derived from motion covariances to 

determine the maximum likelihood position (orange ellipsoid) along the ray-traced line between 

the x-ray source 𝐼𝐴⃗⃗⃗ ⃗ and the 2D imager point 𝑝𝐴⃗⃗⃗⃗⃗ obtained from template matching. Lung motion 

is most prevalent in the SI (z) direction. 
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𝑄 = [

𝑣𝑎𝑟𝑥 𝑐𝑜𝑣𝑥𝑦 𝑐𝑜𝑣𝑥𝑧
𝑐𝑜𝑣𝑥𝑦 𝑣𝑎𝑟𝑦 𝑐𝑜𝑣𝑦𝑧
𝑐𝑜𝑣𝑥𝑧 𝑐𝑜𝑣𝑦𝑧 𝑣𝑎𝑟𝑧

] = [
0.0695 0.0281 0.1929
0.0281 0.0273 0.1734
0.1929 0.1734 19.3994

]𝑚𝑚2 
(2.9) 

 

By using this covariance matrix, the PDF for the tumor positions 𝑃(𝑥, 𝑦, 𝑧) can be determined in 

a coordinate system rotated to align with the imaging plane, but with the same origin as the 

patient coordinate78. The inverse of the rotation matrix from section 2.3.2.3.1,  𝑅 = 𝑅𝑥 ⋅ 𝑅𝑦, is 

applied to the rotated 3D position vector  𝑟𝑟𝑜𝑡 = [𝑥𝑟𝑜𝑡, 𝑦𝑟𝑜𝑡, 𝑧𝑟𝑜𝑡] to determine the 3D room 

position �⃗�𝑖, 

 

 �⃗�𝑖 = 𝑅
−1 ⋅ 𝑟𝑟𝑜𝑡 (2.10) 

 

 

where i=A for tube A and i=B for tube B. The Gaussian PDF in the rotated coordinate system 

aligned with the imaging plane is described by: 

 

 
𝑃𝑟𝑜𝑡(𝑥𝑟𝑜𝑡, 𝑦𝑟𝑜𝑡, 𝑧𝑟𝑜𝑡) = √

𝑑𝑒𝑡(𝑄−1)

8𝜋3
𝑒−𝑟𝑟𝑜𝑡

𝑇 𝑅𝑄−1𝑅−1𝑟𝑟𝑜𝑡/2. 
(2.11) 

 

Representing the elements of the rotated covariance matrix as 

 

 

𝑅−1𝑄−1𝑅 = [

𝐴𝑟𝑜𝑡 𝐷𝑟𝑜𝑡/2 𝐸𝑟𝑜𝑡/2
𝐷𝑟𝑜𝑡/2 𝐵𝑟𝑜𝑡 𝐹𝑟𝑜𝑡/2
𝐸𝑟𝑜𝑡/2 𝐹𝑟𝑜𝑡/2 𝐶𝑟𝑜𝑡

], 
(2.12) 

 

the expected value of the position along the axis normal to the imaging plane 〈𝑧𝑟𝑜𝑡〉 is
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〈𝑧𝑟𝑜𝑡〉 = 𝑆𝐴𝐷 [𝐴𝑟𝑜𝑡 (

𝑥𝑖𝑚

𝑆𝐷𝐷
)
2

+ 𝐵𝑟𝑜𝑡 (
𝑦𝑖𝑚

𝑆𝐷𝐷
)
2

+ 𝐷𝑟𝑜𝑡
𝑥𝑖𝑚𝑦𝑖𝑚

𝑆𝐷𝐷2
− 𝐸𝑟𝑜𝑡

𝑥𝑖𝑚

2⋅𝑆𝐷𝐷
−

𝐹𝑟𝑜𝑡
𝑦𝑖𝑚

2⋅𝑆𝐷𝐷
] 𝜎2, 

(2.13) 

 

where SDD represents the source-to-detector distance and SAD is the source-to-isocenter 

distance, both of which are described in section 2.3.2.3.1. Sigma represents the standard 

deviation, found using: 
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𝜎 = [𝐴𝑟𝑜𝑡 (

𝑥𝑖𝑚

𝑆𝐷𝐷
)
2

+ 𝐵𝑟𝑜𝑡 (
𝑦𝑖𝑚

𝑆𝐷𝐷
)
2

+ 𝐶𝑟𝑜𝑡 + 𝐷𝑟𝑜𝑡
𝑥𝑖𝑚𝑦𝑖𝑚

𝑆𝐷𝐷2
− 𝐸𝑟𝑜𝑡

𝑥𝑖𝑚

𝑆𝐷𝐷
−

𝐹𝑟𝑜𝑡
𝑦𝑖𝑚

𝑆𝐷𝐷
]
−
1

2
. 

(2.14) 

 

Adjusting the image coordinates [𝑥𝑖𝑚, 𝑦𝑖𝑚] based on this expectation value allows for the 

determination of the (rotated) 3D position of the lung tumor 𝑟𝑟𝑜𝑡 = [𝑥𝑟𝑜𝑡, 𝑦𝑟𝑜𝑡 , 𝑧𝑟𝑜𝑡]  

 

 
𝑥𝑟𝑜𝑡 = 𝑥𝑖𝑚

𝑆𝐴𝐷 − 𝑧𝑟𝑜𝑡
𝑆𝐷𝐷

 
(2.15) 

 

 
𝑦𝑟𝑜𝑡 = 𝑦𝑖𝑚

𝑆𝐴𝐷 − 𝑧𝑟𝑜𝑡
𝑆𝐷𝐷

 
(2.16) 

 

 

Finally, we use the inverse rotation matrix, shown with equation 2.10, to calculate the 3D 

monoscopic coordinates.  

2.3.2.3.4: Kalman Filter 

 As will be discussed later in section 2.5, a study by Montanaro et al. examined four types 

of 2D-3D inference methods when converting a measurement from an on-board kV imaging 

system to a predicted 3D position, to evaluate real-time target tracking accuracies79. They 

concluded that longer temporal windows (120 – 140 s) would benefit most from PDF-based 

methods, such as the Gaussian PDF approach used throughout the manuscript in Chapter 2. 

Short windows on the order of one minute or less would benefit most from the Kalman filter, 

which combines measurements with a model based on prior knowledge to estimate how a 

system evolves over time80 (Fig. 2.9). This section will expand on the Kalman filter and 

investigate how it may be potentially implemented to improve localization estimates with DE 

imaging in a stereoscopic setting. 
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Figure 2.9: Simple visualization of the main components of the Kalman filter. A state estimate 

is updated via measurement and dynamic model to predict a new state estimate.81 

 

The Kalman filter is a recursive algorithm designed to estimate the state of a linear 

dynamic system from a series of noisy measurements80. It operates optimally under the 

assumptions that the system dynamics and the measurement process are both linear. In other 

words, the state transition and measurement equations are linear functions of the state and 

control variables. Additionally, the Kalman filter assumes that both the process noise and 

measurement noise are Gaussian, that is, characterized by a normal distribution with a specific 

mean and variance.  

2.3.2.3.4A: System Model 

 Consider a discrete-time linear dynamic system characterized by the state transition and 

measurement equations. The state transition equation is given by80: 

 

 𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 + 𝑤𝑘−1 (2.17) 

 

Here, 𝑥𝑘 represents the state vector at time step 𝑘. The state vector 𝑥𝑘 contains all the 

information needed to describe the system at time 𝑘. For example, in a system that tracks the 

motion of an object, the state vector might include position, velocity, and acceleration. The 

matrix 𝐹𝑘−1 is the state transition matrix, which relates the state at 𝑘 − 1 to the state at 𝑘. It 

models how the state evolves over time in the absence of noise and control inputs. For instance, 

in a simple motion model, 𝐹𝑘−1 could describe how the position and velocity change from one 

time step to the next. 
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The vector 𝑢𝑘−1 is the control input vector, which represents any external inputs to the 

system that affect its state. For example, in a vehicle navigation system, 𝑢𝑘−1 might represent 

steering commands or throttle inputs. The control input vector introduces the influence of 

external control actions on the state of the system. The matrix 𝐵𝑘−1 is the control input matrix, 

which models how the control inputs affect the state. This matrix maps the control inputs 𝑢𝑘−1 

to the state vector 𝑥𝑘. Essentially, 𝐵𝑘−1 translates the control actions into changes in the state 

vector.  

 

The term 𝑤𝑘−1 represents the process noise, which accounts for any random 

perturbations affecting the system. This noise is assumed to be Gaussian with zero mean and 

covariance 𝑄𝑘−1. Process noise can represent various uncertainties, such as modeling errors or 

external disturbances. It reflects the uncertainty in the system dynamics. 

 

The measurement equation is defined as80: 

 

 𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (2.18) 

 

In this equation, 𝑧𝑘 represents the measurement vector at time step 𝑘, containing the 

observations made about the system. For instance, in a system that tracks an object’s 

displacement, 𝑧𝑘 might include measurements of distance and velocity. The matrix 𝐻𝑘 is the 

transformation matrix, which relates the state 𝑥𝑘 to the measurement 𝑧𝑘. It models how the true 

state of the system is observed through the measurement process. Specifically, 𝐻𝑘 maps the 

elements of the state vector to the observed measurements, effectively translating the state space 

into the measurement space. 

 

 The term 𝑣𝑘 represents the measurement noise, which accounts for any random 

perturbations affecting the measurements. This noise is also assumed to be Gaussian with zero 

mean and covariance 𝑅𝑘. Measurement noise can represent sensor inaccuracies or environmental 

factors affecting the measurements. It reflects the uncertainty in the observations80. 
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2.3.2.3.4B: Prediction Step 

 The prediction step involves estimating the state vector and the error covariance matrix 

at the next time step, based on the current state estimate and error covariance matrix. From the 

state transition equation, the predicted state estimate �̂�𝑘|𝑘−1 is derived by taking the expectation, 

assuming that the process noise 𝑤𝑘−1 has zero mean. Therefore, the predicted state estimate is80: 

 

 �̂�𝑘|𝑘−1 = 𝐹𝑘−1�̂�𝑘−1|𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 (2.19) 

 

Equation 2.19 shows how the predicted state is obtained by propagating the previous state 

through the state transition model and adding the effect of the control input. It is important to 

note that since the model being used only involves the position and velocity of a lung tumor, 

there is no control input present, so B and u are effectively zero for our implementation. 

 

 The predicted error covariance 𝑃𝑘|𝑘−1 quantifies the uncertainty in the predicted state 

estimate. It is calculated by propagating the current error covariance through the state transition, 

while accounting for the process noise covariance80: 

 

 𝑃𝑘|𝑘−1 = 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇 + 𝑄𝑘−1 (2.20) 

 

This equation comes from the propagation of uncertainties through the linear model, where 

𝑃𝑘−1|𝑘−1 is the error covariance at the previous time step, and 𝑄𝑘−1 accounts for the added 

uncertainty due to process noise80. 

2.3.2.3.4C: Update Step 

 In the update step, the Kalman filter incorporates the new measurement to refine the 

predicted state estimate and error covariance matrix. The measurement residual (or innovation) 

𝑦𝑘 is the difference between the actual measurement 𝑧𝑘 and the predicted measurement 

𝐻𝑘�̂�𝑘|𝑘−180: 

 

 𝑦𝑘 = 𝑧𝑘 − 𝐻𝑘�̂�𝑘|𝑘−1 (2.21) 
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This equation represents the discrepancy between what is expected to be observed (predicted 

measurement) and what is actually observed (actual measurement). 

 

 The residual covariance 𝑆𝑘 represents the uncertainty associated with the measurement 

residual. It is computed by considering the predicted error covariance propagated through the 

transformation matrix and adding the measurement noise covariance80: 

 

 𝑆𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 (2.22) 

 

 The Kalman gain 𝐾𝑘 determines how much trust should be placed in the new 

measurement versus the predicted state estimate. It is derived by minimizing the posterior error 

covariance matrix (post measurement update), ensuring the optimal trade-off between the 

predicted state estimate and the new measurement80: 

 

 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇𝑆𝑘
−1 (2.23) 

 

Using the Kalman gain, the state estimate �̂�𝑘|𝑘 is updated by adjusting the predicted state 

estimate with the measurement residual80: 

 

 �̂�𝑘|𝑘  = �̂�𝑘|𝑘−1 +𝐾𝑘𝑦𝑘 (2.24) 

 

Finally, the updated error covariance matrix 𝑃𝑘|𝑘 reflects the reduced uncertainty in the 

state estimate after incorporating the measurement. It is calculated as80: 

 

 𝑃𝑘|𝑘  = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 (2.25) 

 

By recursively applying these prediction and update steps, the Kalman filter provides an 

efficient and optimal estimate of the system’s state over time, effectively combining prior 

knowledge and new measurements to track the true state of the system in the presence of noise80. 

Figure 2.10 shows how these equations interact to iteratively build a series of state estimates. 
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Figure 2.10: Kalman filter flowchart describing how equations are used to build a series of 

estimates based on dynamic model and sequential measurements. 

 

2.3.2.3.4D: Implementation of Kalman Filter 

 The Kalman filter may be implemented as an alternative to the Gaussian PDF technique 

employed throughout Chapter 2. The vectors and matrices described in the previous sections 

must be redefined in the context of the ExacTrac imaging system and the 3D position of the 

moving lung tumor. First, the state vector 𝑥𝑘 may be defined to be the 3D position and velocity 

of the lung tumor at a particular state k: 

 

 

𝑥𝑘 =

(

  
 

𝑥
𝑦
𝑧
�̇�
�̇�
�̇�)

  
 

 

(2.26) 

 

Next, the state transition matrix 𝐹, which describes how the state vector 𝑥𝑘 changes from 

one iteration to the next, is defined using simple motion equations: 
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𝐹 =

(

  
 

1 0
0 1

0 𝑑𝑡
0 0

0 0
𝑑𝑡 0

0 0
0 0

1 0
0 1

0 𝑑𝑡
0 0

0 0
0 0

0 0
0 0

1 0
0 1 )

  
 

 

(2.27) 

 

The measurement 𝑧𝑘 was chosen to be the 2D imager measurement:  

  

 𝑧𝑘 = (𝑥𝑖𝑚 𝑦𝑖𝑚 �̇�𝑖𝑚 �̇�𝑖𝑚) (2.28) 

 

 

The process noise covariance Q, representing the uncertainty in the model or the system, 

was chosen to be the patient-specific motion covariance associated with the ground truth used 

throughout the manuscript67. In other words, Q remains consistent between Gaussian PDF and 

Kalman filter approaches, but the Kalman filter makes use of velocity covariances as well. The 

velocity at one point in time is taken as the difference between the current and previous position, 

divided by the time differential (i.e., 0.6 seconds). The first three rows and columns, the 

position-only covariance matrix, is also used in equation 2.9. Q is therefore the 6x6 matrix: 

 

 

𝑄 = (
𝑣𝑎𝑟(𝑥) ⋯ 𝑐𝑜𝑣(𝑥, �̇�)
⋮ ⋱ ⋮

𝑐𝑜𝑣(�̇�, 𝑥) ⋯ 𝑣𝑎𝑟(�̇�)
)

=

(

  
 

0.0695
0.0281
0.1929
0.0684
0.0263
0.8281

0.0281
0.0273
0.1734
0.0208
0.0286
0.3721

0.1929
0.1734
19.3994
−0.8713
−0.2961
5.2248

0.0684
0.0208
−0.8713
0.2285
0.0786
−0.0335

0.0263
0.0286
−0.2961
0.0786
0.0949
0.1455

0.8281
0.3721
5.2248
−0.0335
0.1455
19.8045)

  
 

 

(2.29) 

 

Distances and speeds are given in mm and mm/sec. While Q does remain constant, it will 

continuously update the predicted state error covariance 𝑃𝑘|𝑘−1 (which is initialized to zero) on 

each iteration, as per equation 2.20.  

  

The measurement noise covariance matrix R, representing the uncertainty in 

measurements, was built using the covariance matrix of the standard deviations of pixel 

positions and velocities for each imaging tube. Standard deviations were calculated from 
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differences between template matching estimates and the ground truth for stereoscopic 

measurements of the entire breathing cycle, effectively giving a value representing uncertainty 

in template matching. This resulted in a 4x4 matrix for each tube of the form: 

 

 

𝑅 = (

𝑣𝑎𝑟(𝜎𝑥𝑖𝑚) ⋯ 𝑐𝑜𝑣(𝜎𝑥𝑖𝑚, 𝜎�̇�𝑖𝑚)

⋮ ⋱ ⋮

𝑐𝑜𝑣(𝜎�̇�𝑖𝑚 , 𝜎𝑥𝑖𝑚) ⋯ 𝑣𝑎𝑟(𝜎�̇�𝑖𝑚)
) 

(2.30) 

 

The matrix R is constant for all iterations, as measurement uncertainty is not expected to change 

for the duration of the tracking, since it is mostly associated with template matching accuracy. 

For dual energy, the values for the R matrix for both tubes are: 

 

 

𝑅𝐴 = (

0.4720 0.4081
0.4081 0.3528

0.7564 0.6685
0.6540 0.5780

0.7564 0.6540
0.6685 0.5780

1.2122 1.0713
1.0713 0.9467

) 

(2.31) 

 

 

𝑅𝐵 = (

0.3576 0.2518
0.2518 0.1772

0.5490 0.4222
0.3865 0.2972

0.5490 0.3865
0.4222 0.2972

0.8427 0.6481
0.6481 0.4984

) 

(2.32) 

 

Once again, distances and speeds are given in mm and mm/sec. Like Q, R remains constant for 

our implementation, but will update the residual covariance 𝑆𝑘 on each iteration, as per equation 

2.22. 

 

The last parameter that needed to be defined for the Kalman filter is the transformation 

matrix H. This matrix transforms a 3D state (x, y, z, �̇�, �̇�, �̇�) prediction into a 2D measurement 

domain for each tube t knowing the ExacTrac geometry. For this implementation, H must 

translate 3D phantom coordinates into 2D x-ray imager screen coordinates, making use of room 

geometry, rotations, and coordinate system transformations between lab and phantom: 

 

 
𝐻𝑡 =

𝑆𝐷𝐷3

𝑆𝐴𝐷2
(
1 0 0
0 0 −1

)
𝑅𝑥
𝑇𝑅𝑦

𝑇

𝑛 ⋅ 𝑣𝑙𝑎𝑏 − 𝑆𝐴𝐷
+
𝑐(𝑡)𝑇

𝑣𝑝ℎ
 

(2.33) 
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Several of these values are tube dependent. SDD (source-detector distance) and SAD (source-

axis/isocenter distance) describe the room geometry, being 343.5 cm and 218.5 cm 

respectively70. Rx and Ry are rotation matrices that rotate from the room coordinates to each 

imaging plane t and are shown in equation 2.5. 

 

𝑛 is the vector normal to the imager plane: 

 

 𝑛 = [− cos(𝜃) cos(𝜙) − sin(𝜃) cos(𝜙) −sin(𝜙)] (2.34) 

 

For ExacTrac imaging panels A and B,  𝜃𝐴 = 𝜃𝐵 =  48° , 𝜙𝐴  =  −45°, and 𝜙𝐵 = 45°. 

 

 𝑣𝑝ℎ is the input 3D phantom coordinate that is to be converted to a 2D position on either 

imager plane t: 

 

 𝑣𝑝ℎ = [𝑥𝑝ℎ 𝑦𝑝ℎ 𝑧𝑝ℎ] (2.35) 

  

𝑣𝑙𝑎𝑏 is the same 3D point, converted to lab coordinates: 

 

 𝑣𝑙𝑎𝑏 = [−𝑧𝑝ℎ 𝑥𝑝ℎ −𝑦𝑝ℎ] (2.36) 

 

 Finally, c(t) is the transformation matrix that converts the central axes to the ExacTrac 

viewer origin on the corner of the image.  position of the ExacTrac system. These are the 2D 

points on either imager that correspond to a projection from the 3D isocenter position: 

 

 
𝑐 = (

[243,256]

[235,260]
) 

(2.37) 

 

These values are converted from pixels to distance measurements by multiplying them by the 

pixel size of 0.397 mm/px. 

 

 The resulting transformation matrix Ht has dimensions of 4x3 but is padded with zeros 

on the off diagonals into a matrix of size 4x6, such that it may be used for velocity 

transformations as well. As an example, the following is the first iteration of H for tube A with 
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dual energy: 

 

 

𝐻𝐴 = (

42.2518 2.8875 −1.8384 0 0 0
49.1965 0 −2.7475 0 0 0
0 0 0 42.2518 2.8875 −1.8384
0 0 0 49.1965 0 −2.7475

) 

(2.38) 

 

2.4: Results 

2.4.1: PDF Results 

Figure 2.11 shows examples of DE and conventional SE images for the 19.1 mm tumor 

from both stereoscopic views for one frame. From the perspective of Tube A, the moving tumor 

is often behind a rib. Likewise, for Tube B, the tumor is obscured for its entire trajectory by 

spinal vertebrae. The dual energy imaging, as shown in the bottom two images, allows for 

suppression of bone contrast in the region surrounding the tumor. As described in section 

2.3.2.3.1, the stereoscopic imaging system results in images created by beams passing through 

the phantom at oblique incident angles (polar angle 48°, and azimuthal angles ± 45°).    
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Figure 2.11: Dual energy and single energy images of a 19.1 mm tumor, as seen from both 

stereoscopic views. Tube A is the view where the tumor is blocked by the rib, and Tube B is the 

view where the tumor is blocked by the spinal cord. A/P and S/I represent the anterior-posterior 

and superior-inferior directions on the images. 

 

Figure 2.12 demonstrates results of the 3D tumor localization for both single and dual 

energy imaging techniques for the 12.7 mm tumor. Similar results were obtained for other tumor 

sizes. The 3D localizations are plotted separately in left-right lateral (LR), anterior-posterior 

(AP), and superior-inferior (SI) directions.  

 

Figure 2.13a illustrates the localization success rates in the SI direction with respect to 

tumor size for both dual energy and single energy techniques. The corresponding tumor 

localization accuracy and precision are demonstrated in Figure 2.13b.  

 

For the largest tumor size (25.4 mm), the localization success rate was 100% for the 
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stereoscopic regions when both imaging views were available for both SE and DE techniques 

(Fig. 2.7a). The SE success rate decreased to as low as 50% for the smallest tumor size (6.4 

mm), while the DE success rate did not fall below 92% across all tumor sizes, indicating 

superior results than the SE technique.  

 

In the monoscopic regions of Tube A, where the tumor was blocked by the ribs, the PDF 

estimate showed promising results, having 100% localization success rate across almost all 

tumor sizes for both DE and SE techniques. The only exception was the SE technique for the 

smallest tumor of 6.4 mm, having a localization success rate of only 57%. In the monoscopic 

regions of Tube B, where the tumor was blocked by the spinal vertebrae, the DE technique 

showed a superior performance compared to the SE technique for all tumor sizes. The success 

rate decreased for both DE and SE for smaller tumors, with significant improvement being 

shown for the second smallest tumor size (12.7 mm), having a DE success rate of 93%, 

compared to 73% for the SE technique. Monoscopic localization in region B showed a 0% 

success rate for the smallest tumor (6.4 mm) for SE, while DE had only a modest improvement 

up to 7%. In terms of the accuracy of the localization (Figure 2.7b), the stereoscopic localization 

error mostly remained around 1 mm, having a range of [0.33-2.21], while the monoscopic PDF 

localizations for either tube views were larger at around 1-2 mm for both SE and DE techniques. 

Because of the 0% localization success in Tube B for SE for the smallest tumor size (6.4 mm), 

no error bar was calculated. 
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Figure 2.12: Estimated 3D tumor localizations using single and dual energy techniques for the 

12.7 mm tumor. Asterisks indicate successful localizations (error < 5 mm), while empty circles 

indicate those that were unsuccessful. The color bars at the bottom of each graph label 

stereoscopic regions (purple), and monoscopic regions seen by Tubes A or B (green or orange 

respectively) as per Figure 2.3. 

 

 

Figure 2.13: (a) Success rate and (b) error (accuracy ± precision) of stereoscopic localization, 

and monoscopic PDF estimates for each imaging view, with respect to tumor size, in the SI 

direction. Error bars are one standard deviation. 

 

2.4.2: Epipolar Results 

 Using the algorithm in section 2.3.2.3.2, preliminary tumor localization results were 



59  

obtained for the anthropomorphic lung phantom using the real images discussed throughout this 

chapter. Figure 2.14 shows the epipolar constraint applied for the DE images on a half inch 

tumor. 

 

 

Figure 2.14: Epipolar points shown in green in the right image forming an epiline 

corresponding to the template matched red marker on the left image. The right image red marker 

corresponds to the point on the epiline with the maximum combined correlation score. It should 

be noted that the blue marker is irrelevant for this experiment. 

 

 Figure 2.15 shows the preliminary results of the epipolar algorithm, compared to those 

without the use of the epipolar constraint. 
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Figure 2.15: Success rate and error (accuracy ± precision) of stereoscopic localization, with and 

without the use of the epipolar constraint (EC), with respect to tumor size, in the SI direction. 

Error bars are one standard deviation. 

 

2.4.3: Preliminary Kalman Results 

The Kalman implementation yielded results demonstrated in Figure 2.16, which displays 

2D imager pixel values (x and y) with respect to time. Similar to the Gaussian PDF 

implementation, the results graph is divided into regions corresponding to whether it is a 

stereoscopic or a monoscopic (tube A or tube B) situation. The graphs show the ground truth 

values (as projected from the ground truth 3D position on to each of the 2D imagers), as well as 

the 2D positions predicted from template matching with dual energy, along with the 2D 

positions predicted by the Kalman filter approach. 
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Figure 2.16: 2D imager (a) x and (b) y pixel coordinates as determined by ground truth 

projection, Kalman filter estimations, and template matching with dual energy. 

 

2.5: Discussion 

This study develops a real-time markerless lung tumor monitoring technique with dual 

energy imaging capability using a clinical room-mounted kV x-ray imaging system. We 

addressed a significant issue associated with real-time imaging during treatment using the 

imaging system, i.e., the blocking of an x-ray beam by the rotating linac gantry. This problem 

was addressed by applying a Gaussian probability density function approach to calculate a 3D 

position estimate using only limited 2D information from single x-ray view based on patient-

specific motion covariances of the lung tumor.  

 

As per Figure 2.13, dual energy consistently demonstrated improved success rates 

throughout all tumor sizes for both stereoscopic and monoscopic imaging techniques. 

Stereoscopic localization of the tumor over its trajectory using dual-energy technique yielded 

near-perfect success rates for all tumor sizes. Single energy success rates, however, 

demonstrated a decreasing trend with decreasing tumor size. As expected, this illustrates that 

suppressing bone contrast in situations where the lung tumors are obstructed by bone has a 

favorable effect on the tumor localization estimates for markerless tracking. This finding is 

consistent with previous dual energy studies using non-stereoscopic systems50,51,53,82. The 

accuracy and precision of the stereoscopic localization reveals no noticeable trend for the three 

larger tumor sizes, having errors on the order of ~1 mm, while the largest uncertainties were 
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observed for the 6.4 mm tumor. The significant overlap of the error bars indicates there is little 

to no difference in localization errors between dual and single energy approaches for 

stereoscopic imaging. This suggests that dual energy imaging reduces the number of image 

frames with large errors in tumor localization (Figures 2.12, 2.13), but has little effect in 

reducing the smaller localization errors brought on by imperfect bone tissue cancellation or 

errors in template matching. 

 

Monoscopic localizations were categorized based on tumor obstruction by the rib bone 

(Tube A) or the spine (Tube B). Tube A achieved 100% success rates for both dual and single 

energy imaging for the three largest tumors. For the smallest tumor (6.4 mm), dual energy 

maintained 100% success, while single energy localization dropped to 57%. Although 

localization errors were larger than stereoscopic results, no significant differences were observed 

between dual and single energy techniques for Tube A. In contrast, Tube B showed that dual 

energy provided superior localization over single energy, particularly for smaller tumors, due to 

greater interference from thicker bone. The localization errors generally increased with 

decreasing tumor size, which matches the expectation of difficulties of successful localization of 

smaller tumors.  These findings highlight the potential of dual energy imaging to enhance tumor 

visibility and accuracy, especially in challenging anatomical contexts. 

 

The localization of the smallest tumor (6.4 mm) was the least successful and generally 

with the highest errors. This is likely due to this tumor approaching a size comparable to 

neighboring (and overlapping) anatomical features such as the vertebrae along the phantom's 

spine. When the tumor overlaps with such features in Tube B, the signal from the cross-

correlation algorithm is not as strong, leading to a higher likelihood of incorrect localization. 

Considering that the GTV size in lung patients are typically larger than 1 cm due to accuracy 

limitation with small field dosimetry83, the lack of detectability for the 6.4 mm tumor size may 

not in most cases pose a significant clinical problem. 

 

Interestingly, the use of the epipolar constraint seemed to have little if any effect on the 

DE measurements for the three largest tumor sizes (differences of 1%), while having a 

detrimental effect on the smallest size, reducing the localization success from 96% to 39%. 

There are some improvements in the SE case, most notably for the 12.7 mm tumor, having a 
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successful localization rate increase of about 10%. However, there is still a major decrease for 

the smallest tumor size. This is counterintuitive to what was expected, since ideally the epipolar 

restriction should have increased success rates across the board or would maintain similar results 

as seen for some of the larger tumor sizes. A potential explanation for this could be that since 

epilines cross over regions of high pixel intensity, there are more cases that misidentify such 

regions as tumors, especially considering how the number of epilines seems to increase with 

decreasing tumor size. Further investigation into the implementation and analysis of the epipolar 

constraint for tumor localization is necessary. Potential solutions could include adjusting 

epipolar constraint parameters such as median filter size, and the thresholds Cthresh and δ. 

 

Due to the fixed geometry of the room-mounted stereoscopic imaging system, tumor 

obstructions would be present throughout the entire treatment. This differs from tumor tracking 

procedures using on-board imaging introduced in previous studies27,53 where the imaging system 

revolves around the target volume and different bone obstructions occur at different parts of the 

patient's breathing pattern. Haytmiradov's study demonstrates that the poorest tracking accuracy 

occurs when the tumor is obstructed by the spine53. In this study, 100% of the phases for the 

Tube B view dealt with spinal occlusion, while for Haytmiradov et al., it occurred one third of 

the time. Similar to this study, Haytmiradov et al. also demonstrated that the use of DE imaging 

improves the localization success rate when dealing with spinal overlap as compared to SE 

imaging. 

 

Real-time imaging adds dose to the PTV and surrounding OARs which cannot be 

ignored. Abeywardhana et al. quantified the patient-specific imaging dose for ExacTrac 

monoscopic / stereoscopic real-time kV image guidance received by lung and prostate patients84. 

With a validated Monte Carlo model using DOSEXYZnrc85, they found that bone and skin 

received the highest imaging dose, with larger patients having received more dose in these 

regions than smaller ones. For lung patients, the dose delivered to 2% of organ volume (D2) of 

the bone and skin maximized at 4.30% and 1.98% of the prescription dose respectively. 

Additional imaging dose to the PTV itself was reported to be 2.42% of the prescription. These 

values are below the AAPM-TG-180 recommended imaging dose threshold of 5%, beyond 

which imaging dose must be accounted for during the treatment planning process86. In a follow 

up study quantifying how imaging doses could affect OAR constraints in treatment planning, 
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Abeywardhana investigated the effect of additional dose from monoscopic / stereoscopic real-

time tumor monitoring in 30 lung SBRT patients with a total of 565 PTV and OAR constraints87. 

However, there was only one instance out of those 565 constraints (0.2% of cases) that led to an 

OAR dose constraint failure when adding imaging dose to treatment dose, in which the imaging 

dose was 1.9% of the prescription. In all cases, the real-time imaging dose did not exceed the 

recommended TG-180 threshold, suggesting that additional real-time imaging dose may not be 

clinically significant. Moreover, a reduction of PTV margins via real-time imaging (e.g., by 

minimizing ITV margins to only residual motion) could significantly reduce nearby OAR 

treatment doses, a fact which was not accounted for in the above imaging dose studies.  

 

Montanaro et al. examined a variety of 2D-3D inference methods in combination with 

on-board single energy 2D kV imaging systems with the goal of evaluating real-time target 

tracking accuracies79. Similar to this study, they investigated the Gaussian PDF method, which 

models the probability density of the target88. Additionally, they examined arbitrary-shape PDFs 

(A-PDF), which represent the 3D target's probability density as a superposition of exponential 

functions based on previously observed positions89. Furthermore, they explored interdimensional 

correlation (IDC), which leverages linear dependencies between LR, AP, and SI motions, 

exploiting the unambiguity of the SI component measured by the kV imager90. Finally, they 

studied the Kalman filter, which combines measurements with a model based on prior 

knowledge to estimate system evolution over time80,91. Montanaro et al. found that for lung 

patients, Gaussian PDF was the most accurate method, followed by the Kalman filter, IDC, and 

A-PDF. Longer temporal windows (120 - 140 s) were recommended for PDF-based methods, 

while shorter ones (60 s) were advantageous for the Kalman filter to capture the most recent 

motion patterns. Future work building on this study may potentially examine the use of these 

other techniques to investigate the potential improvements of the localization estimates with the 

addition of dual energy technique. 

 

Similar to PDF, Kalman filter was only applied in the defined regions where either x-ray 

tube A or B has the sole point of view of the tumor due to the rotating gantry. In the most ideal 

case, the Kalman prediction would quickly converge to match the ground truth within a few 

iterations. This pattern is seen to some extent for the x and y coordinates in both tubes. However, 

since the predictions are being updated for more than 30 seconds, they should ideally be much 
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closer to the ground truth. This indicates an issue with implementation of the Kalman filter. It is 

a strong possibility that the ExacTrac’s imaging frequency (1.67 Hz) is not sufficient for the 

Kalman filter to be a suitable estimator, as lung tumor position can vary widely within a short 

window of time. Higher imaging frequencies on the order of 10 Hz may be necessary to achieve 

more promising results92. Future efforts to implement a Kalman filter model for the ExacTrac 

system should involve modifying various matrices and vectors. This may include incorporating 

acceleration into the motion model and re-evaluating the transformation matrix H used for 

converting between 3D and 2D coordinates. One key issue with the current implementation is 

the presence of a squared magnification factor (SDD/SAD) in the matrix H. This factor is 

problematic because it scales a distance, which should not be squared as it represents a 

geometrical aspect rather than an area. Despite this, the existing approach has yielded better 

results compared to other attempts (this is the only implementation that reasonably predicts 2D 

coordinates as shown in Figure 2.16). Nonetheless, future work will need to thoroughly re-

examine and adjust the H matrix. 

 

The methodology and results of DE imaging in this study may also be applied to other 

stereoscopic image guidance systems such as CyberKnife54,55, Vero system93, and SyncTracX56, 

where frequent blocking of one view is less of a concern. Combining the stereoscopic and 

monoscopic techniques described throughout this paper, the clinical room-mounted image 

guided system could be capable of real-time lung tumor monitoring with the improved success 

rate brought on by dual energy imaging technique. This capability needs to be evaluated on lung 

cancer patients in clinical settings to facilitate clinical adaptation.  

2.6: Conclusion 

A real-time markerless imaging system was developed, combining stereoscopic and 

monoscopic tumor tracking techniques for lung tumor patients. Integration of dual energy 

significantly improves tumor localization success rates compared to the conventional single 

energy approach, particularly for smaller tumors. Probability Density Functions (PDFs) provide 

a promising approach to monoscopic estimates when the room-mounted stereoscopic imaging 

system is partially blocked by the rotating gantry. This study indicates the potential for accurate 

real-time markerless tumor tracking, which could improve precision radiotherapy by removing 

the need for a large ITV margin and thus minimizing treatment of healthy tissues. 
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3. Chapter 3: Conclusion 

The work shown so far in this thesis introduced a real-time, markerless lung tumor 

monitoring technique utilizing DE imaging developed for a room-mounted clinical kV x-ray 

imaging system. A notable challenge in this approach was overcoming the issue of x-ray beam 

obstruction by the rotating linac gantry during treatment. To address this, a Gaussian PDF 

method to estimate 3D tumor positions from limited 2D x-ray views was used, accounting for 

patient-specific tumor motion covariances. This approach effectively mitigated the imager 

blockage issue, enhancing real-time tracking capabilities. 

 

The findings demonstrate that DE imaging considerably improves localization success 

rates for lung tumors, especially smaller ones, compared to SE techniques. DE imaging 

demonstrated near-perfect localization accuracy for various tumor sizes using stereoscopic 

techniques, while SE methods displayed a decline in success rates as tumor size decreased. This 

enhancement in accuracy is attributed to the DE technique's ability to suppress bone contrast, 

which is particularly beneficial when tumors are obstructed by bone structures. Despite this 

improvement, stereoscopic localization errors remained consistent across larger tumor sizes, 

with notable inaccuracies for the smallest tumor (6.4 mm). This suggests that while DE imaging 

helps reduce large localization errors, it has a limited impact on smaller errors due to residual 

bone tissue interference or template matching issues. 

 

In addition to stereoscopic imaging, monoscopic localization was analyzed based on 

whether tumors were obstructed by rib bones or the spine (this differed based on the angle of the 

ExacTrac beam). DE imaging provided superior results for smaller tumors when obstructions 

were from thicker bone structures, such as the spine. This underscores the potential of DE 

imaging to enhance tumor visibility and accuracy in challenging anatomical contexts. Notably, 

for the smallest tumors, DE consistently outperformed SE imaging, particularly in scenarios with 

significant bone interference. Although real-time imaging introduces additional radiation dose to 

the PTV and surrounding organs, this dose remains below recommended safety thresholds. 

Moreover, the improved precision in tumor localization can lead to smaller PTV margins, which 

in turn reduces the radiation exposure to healthy tissues at a much bigger scale than the imaging 

dose.  
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It was concluded that DE imaging technique, combined with stereoscopic and 

monoscopic monitoring, holds significant promise for improving real-time tumor tracking, 

potentially facilitating more precise radiotherapy by minimizing the need for large ITV margins 

and thus reducing exposure to healthy tissues. The remaining sections of this thesis will cover 

future potential research avenues that could be pursued as a logical continuation to the results 

presented in the previous two chapters.  

3.1: Effect of Tumor Size, Shape, and Density on Detectability and Localization 

Throughout the work done for this thesis, spherical tumors of uniform density were used 

to model lung tumors. Realistically, this will rarely be the case, as tumors will present 

themselves in many unique shapes, sizes, and densities (see Fig. 3.1).  

 

 

Figure 3.1: Two different lung patients showing tumors of differing sizes, shapes, and densities. 

Notably, the patient on the left has lower tumor density than the one on the right. Both images 

are shown using the same “lung” window/level display setting. 

 

Non-spherical tumors introduce complexity in imaging and detection due to their 

irregular shapes. Traditional spherical models fail to capture the nuances of these shapes, leading 

to potential inaccuracies in tumor size estimation and localization. Realistic tumor sizes vary 

widely, but it is essential to account for these variations when designing and interpreting 

imaging studies. More realistic scenarios can be modeled and created utilizing 3D printing 

technology to create practical tumor models. Additionally, the dynamic nature of tumors during 

the breathing cycle, which can be captured using 4DCT, also may lead to tumor shape changes 

and affect imaging results. Tumor density also plays a critical role, as denser tumors can be more 
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easily distinguished from surrounding tissues, whereas less dense tumors might be more 

challenging to detect. Template matching algorithms consider all the above effects that lead to 

changing the state of the tumor, and certain templates may be assigned depending on the 

situation. For example, to capture changes in the tumor shape during breathing cycle, three 

tumor shapes from three phases of 4DCT breathing cycles (0%, 50%, and 90%) can be 

calculated from the corresponding three DRRs, which can then be used during the template 

matching for tumor localization.  

3.2: Challenge of small object detectability using x-ray imaging 

Localization errors pose significant challenges in tumor imaging, particularly for smaller 

tumors. The Rose model, introduced in section 1.4.4, describes the relationship between object 

size, contrast, and noise, indicating that smaller tumors are harder to detect due to lower signal-

to-noise ratios. This model, which is primarily applicable to SE imaging, assumes detectability 

arises solely from quantum noise. It assumes a uniform tumor in a uniform background and an 

ideal detector ignoring electronic noise and adjacent pixel correlation due to loss of spatial 

resolution in the detector. Anatomical noise, which DE imaging aims to mitigate, significantly 

impacts detectability. Inhomogeneities in lung tissue densities add to this challenge, as real 

patients present more complex textures compared to uniform phantoms used in simulations, with 

factors such as bone overlap, motion artifacts, and minor anatomical features further 

complicating detection. While there is no direct implementation of the Rose Model for multiple 

energies, object detectability fundamentals could be investigated for DE images simulated from 

two SE images using cascaded modeling14. DE imaging offers significant advantages in 

reducing anatomical noise and improving detectability, but further considerations are necessary 

for the diverse and dynamic nature of tumors in clinical settings. 

3.3: Clinical implementation of this thesis 

 This thesis presents feasibility and preliminary results on the markerless monitoring of 

lung tumors using DE imaging with a room-mounted imaging system, while considering the 

existence of monoscopic scenarios due to gantry rotation. The next logical step would be to 

investigate how the system may be implemented in the clinic. This section explores the 

integration of various technological advancements, including multileaf collimator (MLC) 

tracking, fast kVp switching, and adaptive weighting factor updating, to implement tumor 
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tracking. 

 

The adoption of MLC tracking in radiotherapy is a significant development for real-time 

tumor monitoring. As outlined in TG-26494, the implementation of MLC tracking involves 

addressing various uncertainties and ensuring that the technology meets stringent clinical 

requirements. The integration of MLC tracking aims to reduce the CTV to PTV margins, 

potentially enhancing treatment precision. However, overly tight margins may lead to adverse 

outcomes if not supported by accurate target definition and motion tracking95. 

 

A comprehensive MLC tracking system (Fig. 3.2) must account for uncertainties such as 

the accuracy of motion surrogates, target deformation, and tracking errors. These uncertainties 

necessitate rigorous validation and quality assurance protocols to ensure the system's safety and 

efficacy. The system's design should include real-time localization and adaptation capabilities, 

with automated checks for connectivity, motion range, and dose delivery. Adherence to TG-264 

guidelines is essential for successful clinical integration, as it provides a framework for safe 

implementation and continuous monitoring94. Compliance with these guidelines is required for 

regulatory approval and successful clinical integration. 

 

 

Figure 3.2: An example multileaf collimator (MLC) tracking workflow. The work of this thesis 

would be implemented into the blue-colored module “Position Monitoring System” to calculate 

the real-time target position.94 

 



70  

Fast kVp switching is a technique involves alternating between high and low energy x-

ray beams at a rapid frame rate, capturing images that are then combined to create DE images. 

Although due to hardware limitation, the experimental setup performed during this thesis could 

not utilize fast kVp switching and required separate experiments for each kVp setting, future 

implementations in clinical settings would benefit significantly from this capability. Fast kVp 

switching minimizes motion artifacts and enhances temporal resolution by capturing dual-energy 

images almost simultaneously. This advancement is particularly valuable for tracking dynamic 

structures like the lungs, which move with respiration. Implementing this technology in clinical 

practice would require utilization of hardware and software configurations to achieve high frame 

rates and accurate image fusion53. 

 

Adaptive and automated weighting factor updating is another critical aspect of 

generating DE imaging in real-time for clinical use. Studies96,97 have highlighted the importance 

of automated algorithms in selecting optimal weighting factors to enhance image quality and 

reduce artifacts. These algorithms adaptively adjust weighting factors based on imaging 

conditions and target characteristics, streamlining the workflow and minimizing manual 

intervention. Automated weighting factor selection allows real-time DE image calculation and 

improves contrast and reduces noise, making it feasible for routine clinical practice. This 

technology ensures that the imaging system continuously adapts to varying patient conditions 

and imaging parameters, enhancing the accuracy of tumor tracking and localization. 

 

To transition from experimental setups to clinical practice, designing and conducting 

initial clinical trials is essential. These trials should focus on evaluating the feasibility, safety, 

and efficacy of the markerless tumor tracking system in a controlled environment. Key 

endpoints for these trials include feasibility of real-time DE imaging, the accuracy of tumor 

localization, and the system's ability to adapt to respiratory motion. Involving a diverse patient 

population with varying tumor sizes and shapes will provide comprehensive data on the system's 

performance. Clinical trials will also help identify any potential challenges and refine the system 

before broader clinical adoption.  

 

The ground truth positions used for this thesis67 was also used to construct the motion 

covariance-based PDF. In a realistic scenario, the true position of the lung tumor would not be 
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explicitly known. The PDF would therefore need to be constructed based on 4DCT data or using 

pre-treatment readings of surface marker. 

 

The integration of DE imaging into the clinic holds the potential to have a significant 

impact on lung tumor tracking. The transition from experimental setups to clinical practice will 

require careful planning, robust validation, and ongoing evaluation to ensure the technology's 

effectiveness and safety. 

3.4: Final Remarks 

This thesis presented a dual-energy markerless imaging technique aimed at monitoring 

lung tumor motion using a clinical room-mounted x-ray imaging system in real-time. The 

introductory chapter laid the groundwork by discussing the fundamental principles of x-ray 

production and interactions, along with a comprehensive overview of imaging systems, 

including x-ray tubes and detectors. Additionally, the integration of dual-energy imaging in 

radiotherapy was examined, highlighting its potential to improve tumor localization and 

treatment delivery. 

 

The core of this thesis presented the novel imaging technique in the form of a submitted 

research manuscript. This research addressed the significant challenge posed by x-ray beam 

obstruction due to rotating gantries in room-mounted stereoscopic imaging systems. A Gaussian 

probability density function (PDF) approach was employed to estimate the 3D position of lung 

tumors using limited 2D information from single x-ray views, aiming to enhance localization 

accuracy. The findings indicated that DE imaging improves tumor monitoring success rates 

compared to conventional SE imaging. Additionally, the integration and preliminary results of 

Kalman filtering techniques and epipolar constraints were included alongside the contents of the 

manuscript. 

 

The third chapter extended the discussion to the clinical application of the developed 

system, incorporating various technological advancements and practical considerations. It 

discussed the implementation of MLC tracking, the application of fast kVp switching for 

practical real-time imaging, and the optimization of adaptive and automated weighting factors. 

Additionally, it explored aspects such as the effect of tumor size, shape, and density on 
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detectability and tracking performance. 

 

In summary, the thesis thoroughly addressed the integration of real-time tumor tracking 

and dual energy imaging for lung radiotherapy. The research provides a robust foundation for 

future developments and implementations in the field, aiming to improve patient outcomes in 

radiotherapy. 
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