

Similarity Identification of Southern Resident Killer Whale

(SRKW) Call Types Under Sparse Sampling Using

Siamese Neural Networks

by

Jie Zhang

Submitted in partial fulfilment of the requirements for

the degree of Master of Computer Science

at

Dalhousie University

Halifax, Nova Scotia

August 2024

Dalhousie University is located in Mi’kma’ki,

the ancestral and unceded territory of the

Mi’kmaq. We are all Treaty people.

© Copyright by Jie Zhang, 2024

ii

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ABSTRACT .. ix

LIST OF ABBREVIATIONS USED ...x

ACKNOWLEDGEMENTS .. xi

CHAPTER 1 INTRODUCTION ..1

1.1 BACKGROUND ...1

1.2 CHALLENGES ...2

1.3 RELATED WORKS ..4

1.4 RESEARCH QUESTIONS AND CONTRIBUTIONS ...6

Question 1: Is it feasible to develop deep learning models for SRKW call

type classification using small-scale, low-quality samples through advanced

data processing and augmentation techniques? ..6

Question 2: Can small-scale samples be utilized to train models that compare

the similarity between SRKW call type data pairs, as an alternative to employ

multi-class classifiers for SRKW call type classification?7

Question 3: Can a similarity model effectively discern SRKW call types that

were not presented in the training dataset ..7

1.5 THESIS ORGANIZATION ...7

CHAPTER 2 CNN-DRIVEN CALL CLASSIFICATION ..10

2.1 DATA PROCESSING ...10

2.1.1 Denoising for Marine Acoustic Data ...10

2.1.2 Data Augmentation .. 11

2.1.3 SRKW Call Type Dataset ..12

2.1.4 Audio to Features ...13

2.1.5 Apply Normalization to Vectors ..22

2.2 Define CNN Model ...23

2.2.1 CNN structure ..23

2.2.2 Input Layers ...24

2.2.3 Convolutional Layer ..24

iii

2.2.4 Pooling ...25

2.2.5 Fully Connected Layers ...26

2.2.6 Activation Functions ..26

2.2.7 Dropout layer ...27

2.2.8 Batch Normalization ..28

2.2.9 Flatten Layer and Regularization ..28

2.3 Train CNN model..29

2.3.1 Data Segmentation ...29

2.3.2 Define Model ...29

2.3.3 Training Loop ..30

2.3.4 Model Evaluation ..31

2.3.5 Result Interpretation ..31

2.4 Limitations and Challenges of CNN Models ..31

CHAPTER 3 EVOLUTION TOWARDS CALL SIMILARITY FROM

CLASSIFICATION ..33

3.1 Motivation (From CNN to Siamese Network) ..33

3.2 Loss Functions ..35

3.2.1 Contrastive Loss ..36

3.2.2. Triplet Loss ...36

3.2.3 Other loss functions ...37

3.3 Dataset Pairs for Network Input ...38

3.4 Feature Extraction for Siamese Networks ..40

3.4.1 A comparative analysis between Mel-Frequency Cepstral Coefficients

(MFCC) and the Mel Spectrogram ...42

3.5 Siamese Networks Structure ...43

3.5.1 Basic structure of Siamese networks ...43

3.5.2 Transferring knowledge from Image Classification models..................44

3.6 Similarity Comparison ..46

3.6.1 Cosine Similarity ...47

3.6.2 Euclidean similarity measure ...47

3.7 Model Evaluation ..48

3.7.1 Confusion matrix ...48

iv

3.7.2 Performance Measurement ..49

CHAPTER 4 EXPERIMENTS AND RESULT ...53

4.1 Software and hardware ...53

4.2 Classifying Multi-Call Type with CNN ..54

4.2.1 Data Preprocess ...54

4.2.2. Prepare Training and Testing Dataset ...55

4.2.3. Create Batch and DataLoader ...57

4.2.4. CNN Model Definition ...58

4.2.5. Training ...59

4.3 Siamese network ...61

4.3.1. Audio Preparation ...61

4.3.2. Audio Pre-processing and saving into H5 database..............................63

4.3.3. Model architecture ..64

4.3.4. The training loop for batches of pairs ...65

4.4 Model Result and Discussion ...67

4.4.1 Question 1: Is it feasible to develop deep learning models for SRKW

call type classification using small-scale, low-quality samples through

advanced data processing and augmentation techniques?67

4.4.2 Result of Question 1: Classification accuracies vary by different Call

types by CNN ...68

4.4.3 Question 2: Can small-scale samples be utilized to train models that

compare the similarity between SRKW call type data pairs, as an alternative

to employ multi-class classifiers for SRKW call type classification?71

4.4.4 Result of Question 2: Recall % of Siamese network exceeds the

Recall % of CNN, meanwhile other indicators are also excellent73

4.4.5 Question 3: Can a similarity model effectively discern SRKW call types

that were not presented in the training dataset?..77

4.4.6 Result Analysis for Question 3: Good Accuracy, Recall, Specificity

with Reasonable F1, and Low Precision ..79

4.4.7 Code ...80

CHAPTER 5 CONCLUSION AND FUTURE WORK ...81

5.1 Summary ...81

5.2 Conclusion ..82

5.3 Disadvantages and Limitations ..82

v

5.4 Future Work ..83

5.4.1 Transfer Learning ..83

5.4.2 Meta-Learning ...84

BIBLIOGRAPHY ...85

vi

LIST OF TABLES

Table 1 Remark of top 10 annotated Call Types in Figure 2, "Pod" is the population

code for Orcas, and "S1d" represents the fourth subcategory of Call type S1

from orcasound.net. ...3

Table 2 Thesis Organization ..7

Table 3 Train (including Validation, 88%) and Test Dataset (12%) by Call Type13

Table 4 Data pairs created from S1, S2 and S10 as examples39

Table 5 Confusion matrix for the problem of deciding if audio pairs belong to the

same call type ..48

Table 6 The training and test set data for CNN. Siamese Network will use the same

data to create pairs. ..55

Table 7 Pair data set for Siamese network training and testing62

Table 8 Original audio clip, denoised and augmented files and formed pairs of 14

off-train call types ..63

Table 9 The testing performance of Mel Spectrogram featured training data vs

MFCC featured training data ...69

Table 10 The testing performance of Non-Augmented Data (334 samples in table 6)

trained CNN Model on FSL Testing Data (140 samples in table 6)70

Table 11 the performance of augmented data (1,078 samples in table 6) trained CNN

Mode on FSL augmented testing data (140 samples in table 6)70

Table 12 The layout of input training data for Siamese Network Model71

Table 13 Siamese Network Train data Pairs and Testing Data Pairs72

Table 14 The layout of Siamese Network Model scoring result on testing data set .73

Table 15 Accuracy, Recall, Specificity F1, Precision by Normalized Euclidean

Distance Cutoff (Table Format) ...74

Table 16 The performance of Siamese Network vs CNN Model on same testing data

 ...75

Table 17 The performance by Call Type of Siamese Network Model on testing data

pairs generated by CNN model testing data ..76

Table 18 The performance by Call Type of CNN Model on same testing data76

Table 19 The performance of Siamese network on Out-of-training call type testing

data pairs by different Normalized Euclidean Distance Cutoff (Table format) 78

Table 20 14 out-of-training call type testing data pairs to evaluate the transfer

learning capabilities of the trained Siamese Network79

Table 21 The performance of the Siamese Network on 9 out-of-training SRKW call

type testing data pairs at a normalized Euclidean distance cutoff of 0.379

Table 22 The performance of CNN vs Siamese Network on 17 in-training SRKW

call type vs Siamese Network on 10 out-of-training SRKW call type testing

data pairs ..81

vii

LIST OF FIGURES

Figure 1 Linear Spectrogram generated by Matplotlib library in Python (Left) and a

black-and-white spectrogram (Right) clipped from [1]2

Figure 2 Distribution of the number of annotated audio clips by SRKW Call Type

(created by the Author. For the figures and tables that do not mention a source,

they were all created by the author) ...3

Figure 3 CNN model training process for SRKW Call Type Classification [17]10

Figure 4 Pre-processing the training data for input for the CNN model14

Figure 5 Concert A (440Hz) waveform [27] ..15

Figure 6 Concert A (440Hz) sampled at 44100Hz [27] ...15

Figure 7 Audio waveform sampled at 44100Hz [27] ..16

Figure 8 Example of real-valued Discrete Fourier Transform (DFT) (bottom) for

generated 5 Hz sinewave (top) with unit amplitude sampled at 80Hz [27]18

Figure 9 Convert waveform into Mel-spectrogram and an example 3-second

segment. The Mel-spectrogram mimics how the human ear works, with high

precision in the low-frequency band and low precision in the high-frequency

band. Note that the Mel-spectrogram shown in the figures is already log-

transformed [32] ..19

Figure 10 Comparison of waveform (time-domain), Linear Spectrogram (Frequence-

domain) drawn by Ford, generated by Python Library Librosa and Mel

Spectrogram for SRKW Call Type S03 ...21

Figure 11 Structure of CNN [47] ...24

Figure 12 Filters in CNNs [46] ..25

Figure 13 Max Pooling vs Average Pooling [46] ..25

Figure 14 A schematic drawing of the activation function [46]26

Figure 15 ReLU activation function [46] ..27

Figure 16 Sigmoid activation function [46] ...27

Figure 17 The CNN architecture for call type classification34

Figure 18 The structure of Siamese Neural Networks ...35

Figure 19 Illustrative example of what the Triplet Loss attempts to achieve in order

to directly learn image embeddings. Notice that the distance between A and P is

not directly paid attention to (FaceNet [64]) ...37

Figure 20 Call types with dozens of audio samples could generate thousands of

positive/negative pairs ...39

Figure 21 In Siamese Networks, input and the labeled sample go through three

different stages: Preprocessing, Feature Extraction and Comparison [68]40

Figure 22 Steps in calculating Mel Frequency Cepstral Coefficients41

Figure 23 Layout of a Siamese Network [59]..44

Figure 24 A representation of how the VGGish feature extractor would fit in the

Siamese Network [81] ...45

Figure 25 A VGGish network is derived from VGG-16 (16-layer VGG Model [81]

originally designed for image classification). Black cells are the same as VGG,

and the last red fully connected cell is to create a 128-dimensional feature

vector ...46

viii

Figure 26 Precision and Recall [88] ..50

Figure 27 ROC Curve [89] ..51

Figure 28 Split my data for training and testing [90] ..56

Figure 29 Data Loader applies transforms and prepares one batch of data at a time

[90] ...57

Figure 30 The model takes a batch of pre-processed data and outputs class

predictions [90] ..59

Figure 31 CNN for 17 Call type classification structure ...60

Figure 32 The Loss and Accuracy Trend over training Epochs. X-axis displays the

number of epoch and Y-axis display the unit of loss (left figure) or Accuracy

during training (right figure) ..61

Figure 33 The architecture of Siamese network in the experiment64

Figure 34 training stopped at epoch 46 due to the loss not improving for 5

consecutive epochs ..66

Figure 35 Accuracy, Recall, Specificity F1, Precision by Normalized Euclidean

Distance Cutoff (Figure Format) ...74

Figure 36 Accuracy, Recall, Specificity F1, Precision by Normalized Euclidean

Distance Cutoff (Figure format) ..78

ix

ABSTRACT

Southern Resident Killer Whales (SRKW) are highly intelligent marine mammals facing

extinction in the North Pacific. These whales emit three types of sounds: clicks, whistles,

and pulsed calls, with 43 distinct pulsed call types known as their "dialects". However, due

to limited and poor-quality data, only nine call types have sufficient annotated recordings

for analysis. To address this challenge, this paper proposes a progressive approach to

improve SRKW call type identification. Initially, data augmentation techniques were

employed to enhance training data volume, leading to a traditional CNN model achieving

97.8% accuracy on 17 SRKW call types. Subsequently, a Siamese Network model was

developed to infer the similarity between call types, achieving remarkable performance

with an accuracy of 98.5%. This surpasses the performance reported in current literature

on audio multi-class classification using deep learning and machine learning methods.

Besides, Siamese Network's generalization ability was evaluated on 9 out-of-training 9

SRKW call types, maintaining noteworthy accuracy and recall but with lower precision,

which can be improved through manual review and retraining. This study demonstrates

that data augmentation and Siamese Networks are effective strategies for overcoming few-

shot learning challenges in SRKW call type identification, achieving robust performance

even with limited annotated data.

Keywords: Marine Mammal Conservation, Southern Resident Killer Whales (SRKW),

Acoustic Classification, Few-Shot Learning (FSL), Convolutional Neural Network (CNN),

Data Augmentation, Siamese Network; Similarity measurement; Contrastive Learning,

Transfer Learning; Meta-Learning.

x

LIST OF ABBREVIATIONS USED

SRKW Southern Resident Killer Whale

FSL Few-Shot Learning

CNN Convolutional Neural Network

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

STFT short-term Fourier Transform

MFCC Mel-Frequency Cepstral Coefficients

CWT Continuous Wavelet Transform

CQT Constant-Q transform

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SNN Siamese Neural Networks

ROC Receiver operating characteristic curve

AUC Area Under the Curve (AUC)

MAML Model-Agnostic Meta-Learning

xi

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Dr. Carlos Hernandez

Castillo, for his invaluable patience and feedback. Without them I would not have made it

through my master’s degree.

I’m extremely grateful to my mother Jieying He and my wife Fang Tong, for their

unconditional love and support and a special thanks to my late father, Professor Rui

Zhang of Changsha University of Science & Technology in China. It was you who

introduced me to the world of academia.

1

 CHAPTER 1 INTRODUCTION

1.1 BACKGROUND

Orcas (Killer Whales) generate three types of vocalizations: Clicks, Whistles, and pulsed

Calls. Clicks are part of the whale’s sonar and are used for finding and locating food

sources, other objects in the ocean and locating other whales. Whistles are typically

continuous tone emissions lasting for many seconds, which are believed to serve for

Social Cohesion and Contact, Individual Identification and Emotional Expression. Calls

are pulsed signals characterized by distinct patterns that can be recognized both by ear

and on a spectrogram. These signals are complex and varied, serving as Group

Coordination, Social Interaction, Foraging, and Hunting within orca societies. Dr. John

Ford [1] categorized the discrete call types for the orcas of Washington State and British

Columbia. He discovered that each pod has its own collection of calls, which he referred

to as their "dialect".

A quantitative measure of acoustic similarity is crucial to any study comparing call types

of different social groups or individuals. A sound spectrogram is a visual representation

of an acoustic signal. It is useful for seeing the state of a complex wave during a very

short period. In a wave file, sounds are constantly changing. Spectrograms are a

convenient way to illustrate the changes in a sound's spectrum over time.

In a spectrogram, the horizontal dimension represents time, and the vertical dimension

represents frequency. Each thin vertical slice of the spectrogram shows the spectrum

during a short period of time, using darkness to stand for amplitude. Darker areas show

those frequencies where the simple component waves have high amplitude. A long

window resolves frequency at the expense of time—the result is a narrow band

spectrogram, which reveals individual harmonics (component frequencies), but smears

together adjacent 'moments'. Figure 1 displays a spectrogram of the call type S01 of

Southern Resident Killer Whale (SRKW) generated by Python and a black-and-white

spectrogram clipped from the original catalog [1]. The spectrograms of all Southern

Resident Killer Whale (SRKW) call types are available in the Orca call catalog website:

http://orcasound.net.

2

Figure 1 Linear Spectrogram generated by Matplotlib library in Python (Left) and a

black-and-white spectrogram (Right) clipped from [1]

Identifying the call types of Southern Resident killer whales is critical for conservation,

understanding their complex social structures, and enhancing behavioral studies. This

endangered population faces threats from pollution, reduced prey, and noise interference,

making their vocalizations key to monitoring and protection efforts. Analyzing these calls

helps researchers understand their dynamics, behaviors like hunting and navigation, and

facilitates the development of strategies to mitigate human impacts. For example,

discovering a new call type during field studies can reveal unknown behaviors or social

interactions, guiding conservation actions and informing policies to reduce disturbances

in critical habitats. Essentially, understanding whale communication is vital for ensuring

the survival of these marine mammals and maintaining the health of their ecosystems.

1.2 CHALLENGES

To leverage knowledge about Southern Resident Killer Whale (SRKW) Call Types,

Simon Fraser University, Fisheries and Oceans Canada, and numerous marine

acousticians collected audio data of SRKW from passive hydrophone devices deployed

for over a decade in Washington State, USA, and British Columbia, Canada. According to

their experience and knowledge, they annotated thousands of SRKW call-type clips from

acoustic wave files collected from various locations along the Pacific coast, including

Barkley Canyon, Boundary Pass, and Robert Banks. Each sound clip has an average

duration of approximately 3-4 seconds. 53% of SRKW Call type annotated data from

ONC Barkley Canyon node Datasets. 47% from JASCO Boundary and Robert Banks

Datasets. Call Type Definition is based on Ford 1987 and 1991[1].

Using the Ford/Osborne call catalog for Southern Resident Killer Whales (SRKW), it is

understood that there are approximately 43 Call Types, ranging from S1 to S46 (with

some discontinuities and sub-types, such as S44a and S44b). This catalog likely serves as

a valuable reference for identifying and categorizing the vocalizations of SRKW in the

3

collected audio data. However, among these 43 SRKW Call Types, only 10 Call Types

have more than 5 annotated samples. This indicates a significant imbalance in the data

distribution across the different Call Types, which can present challenges when

implementing a classification model aimed at accurately classifying all 43 Call Types.

Imbalanced data distributions may affect the performance and reliability of classification

models. To address this issue effectively, strategies such as data augmentation,

resampling techniques, or focusing on the more prevalent Call Types may need to be

considered.

Figure 2 Distribution of the number of annotated audio clips by SRKW Call Type

(created by the Author. For the figures and tables that do not mention a source, they were

all created by the author)

Table 1 Remark of top 10 annotated Call Types in Figure 2, "Pod" is the population code

for Orcas, and "S1d" represents the fourth subcategory of Call type S1 from

orcasound.net.

Call Type Pod Description

S4d K, L Duck quack

S1d J Cowboy saying “Yee-haw!”

S2 J “A-whee!”

S44b K, L "Goose honk"

S36 J, K Donkey

ArgBermHB

W

 Bermuda Humpback Whale for comparison and transfer

learning

S6 J N/A

7
5

7
3

6
0

5
7

4
8

4
6

4
3

4
2

3
1

2
0

1
6

1
2

1
2

7 4 4 4 3 3 2 2 1

WAVE FILES#

4

S10 J, K, L "Squeaky balloon" Excitement call for all types of orcas!

S18 L Slide whistle

T7 Bigg‘s (Transient) call. Killer Whales in Northern Pacific

1.3 RELATED WORKS

The classification of Call Types for Southern Resident Killer Whales (SRKW) falls

within the realm of audio classification in machine learning techniques. Audio

classification involves analyzing audio signals and categorizing them into various classes.

It serves as a crucial tool in audio signal processing, aiding in the organization, analysis,

and comprehension of audio signals. Classifying audio signals enables a better

understanding of the underlying signals, their structures, and content, which, as

mentioned earlier, is crucial for the study and conservation of the ecological behaviors of

Southern Resident Killer Whales (SRKW). To achieve successful Call Type

classification, the first step is to acquire annotated audio data. Models should be trained

using annotated data to learn how to identify and classify different sounds. Despite

advancements in audio classification, teaching machines to understand subtle differences

in sounds and classify them accordingly remains challenging.

Traditional audio classification methods such as Support Vector Machine (SVM) [2], K-

Nearest Neighbors (KNN) [3], Artificial Neural Networks (ANN) [4], and Hidden

Markov Models (HMM) [5], Logistic Regression [6]. have been in use since the early

2000s. These methods involve extracting features from recordings and then using these

features to classify audio into different categories. SVM is a powerful supervised

machine learning algorithm that categorizes data points using hyperplanes, achieving

high accuracy in classifying audio recordings [2]. KNN is a supervised learning algorithm

used for classification, which finds the nearest neighbors of input instances and then

classifies them based on the majority class of neighbors [3]. It is suitable for audio

classification as it accurately categorizes signals using the features of audio signals.

Artificial Neural Networks (ANN) are computational models based on the structure and

function of biological neural networks [4]. They classify samples into different categories

by learning features of audio samples. Logistic Regression [6] is used to divide data into

two classes, which is useful for audio classification tasks such as speech recognition and

music genre classification. The naive Bayes classifier is a probabilistic classifier used to

compute the probability of each class for a given data point and then assign the class with

the highest probability [7]. HMM is also commonly used for classifying audio data,

particularly suitable for audio classification as it can learn the underlying structure of

audio data and model the temporal dynamics of audio signals [5]. Gaussian Mixture

Models are probabilistic models used for audio classification, assuming that each data

point is a mixture of different Gaussian distributions, then used to classify input test audio

data [8].

5

Deep learning has become increasingly popular in acoustic classification. With its ability

to learn complex patterns, it can achieve better accuracy than traditional methods.

Traditional methods usually divide audio classification into two processes: feature

extraction and classification [9]. In the feature extraction process, relevant features are

extracted from audio data, which are then used in the classification process to identify

audio data. However, deep learning models require large audio datasets to train the

network and automatically learn the features of each class. After training, the model can

be used to classify new audio samples.

Deep learning models for audio classification can automatically extract high-dimensional

features from large-scale datasets without manual feature extraction, as long as the input

data contains all relevant information from the original data [10]. Deep learning models

can achieve higher accuracy than traditional machine models because they can learn

complex patterns and identify subtle differences in audio data, making them ideal for

real-time audio classification and analysis.

However, deep learning also has some drawbacks. Deep learning models require

substantial computational resources (including powerful graphics processing units and

large amounts of memory) for training, which can be both expensive and time-

consuming. Additionally, deep neural networks (DNNs) for audio classification systems

require large datasets for training and evaluation; without large datasets, the system may

fail [11]. In addition, in conventional DNN model training strategies, the model learns to

solve a problem by analyzing the training data, and it can only recognize sound classes

that were included in the training process (seen classes). The model is unable to classify

sound classes that did not appear in the training data (unseen classes). To solve the

problem of recognizing SRKW call types, the system must be able to detect and classify

all seen and unseen sound classes. Conventional methods alone cannot achieve this goal.

Although a large amount of annotated SRKW calls, e.g., S01, can be used to train a

model, and such models can classify those call types inside the training set with high

accuracy, identifying call types outside of the training data requires an alternative

approach that overcome classification limits of a DNN model. This approach needs to

work in parallel with the high-performance classification model to identify and classify

those killer whale call types that were not learned during the training process.

As an alternative to traditional classification methods, One/Few Shot Learning (FSL)

offers a promising approach for creating models that aren't strictly confined to

recognizing only the classes they've been trained on. This technique aims to enable a

model to compare two inputs and assess the likelihood that they belong to the same

category [12]. The key advantage of One/Few-Shot Learning is its attempt to offer a

universal solution that isn't tied to specific training classes. With a successful

implementation, it should be possible for a model to compare any given input with any

class, provided there's at least one or a few examples of that class available, thereby

allowing the classification of an input into any class for which it has one or more

samples.

6

This approach has demonstrated significant potential in the field of computer vision,

particularly in applications such as image recognition [13] and face recognition [14].

However, the application of One/Few-Shot Learning to audio detection and classification

is still relatively uncharted territory.

1.4 RESEARCH QUESTIONS AND CONTRIBUTIONS

With the rapid development of deep learning models in audio classification, naturally

deep learning models are considered for Southern Resident Killer Whale (SRKW) call

type classification using small-scale, low-quality samples by leveraging advanced data

processing and augmentation techniques. Furthermore, given the 43 SRKW call types and

limited annotated samples for each call type, this raises an idea whether it is possible to

train a model to compare the similarity between SRKW call type data pairs as an

alternative approach. Finally, is such a similarity model able to identify SRKW call types

that were not included in the training data? Addressing these questions could significantly

advance marine bioacoustics classification, particularly in contexts with limited data

availability.

Question 1: Is it feasible to develop deep learning models for SRKW

call type classification using small-scale, low-quality samples through

advanced data processing and augmentation techniques?

Compared to traditional audio classification models. Deep learning models for audio

classification can automatically extract high-dimensional features from large-scale

datasets without the need for manual feature extraction, as long as the input data contains

all the relevant information in the original data [10]. Deep learning models can achieve

higher accuracy than traditional models because they can learn complex patterns and

identify subtle differences in audio data. Most deep learning models can learn faster and

more accurately than traditional models, making them ideal for real-time audio

classification and analysis.

However, deep learning also has some disadvantages: deep neural networks (DNNs) used

for audio classification systems require large datasets for training and evaluation; without

large datasets, overfitting occurs when a model is overtrained [15], resulting in poor

performance on new, unseen data [16]. On the other hand, underfitting may occur if the

model is not trained enough. The available Southern Resident Killer Whale (SRKW) call

type dataset has highly unbalanced annotated data, with some categories having a large

number of annotations, such as S36 and S4, but 75% of the call types less than 5

annotated clips available, which is prone to overfitting.

Solutions are proposed to address the problems of insufficient training data, data

imbalance, and poor data quality. Solution on sound signal processing, acoustic

denoising, data enhancement, and CNN model training will be focused.

7

Question 2: Can small-scale samples be utilized to train models that

compare the similarity between SRKW call type data pairs, as an

alternative to employ multi-class classifiers for SRKW call type

classification?

The core problem of this paper is to associate a certain call audio segment of SRKW with

the specified label e.g. S0X, that is, classification. To achieve such a prediction, it is

necessary to mark which Call type each sound clip belongs to.

However, if there are many call types but with very few samples per type, instead of

identifying which call type a sound clip belongs to, it’s easier to compare if two sound

clips are similar or not. If the problem is constructed in this way, the more call types to be

identified, the easier it becomes for a similarity model to learn inter-type and intra-type

similarity features. By creating similar pairs (within-type) and dissimilar pairs (cross-

type), along with applying data augmentation and noise reduction techniques, small call

type dataset can be transformed into a larger one. In this approach, the model learns

similarities rather than specific features of each call type. This method not only enlarge

the original dataset but also reduces the complexity of model training.

Koch [13] proposed Siamese Network, which first shares the same weights and structure

through two sub-networks, and then measures the distance or similarity between samples

in the feature space through metric learning, thereby enhancing its ability to handle small

sample classification or recognition tasks.

Question 3: Can a similarity model effectively discern SRKW call types

that were not presented in the training dataset

If the Siamese Network performs well on the call types covered by the training dataset, it

naturally leads to question whether the Siamese Network can still classify call types

outside the training dataset. Although transfer learning and generalization are not easy to

achieve, given that both the calls in the training dataset and the out-of-training call types

are all call audios of SRKW (Southern Resident Killer Whale), it is hypothesized that the

discriminative power of similarity model learned on the training set may also be effective

on call types outside the training set.

1.5 THESIS ORGANIZATION

Table 2 Thesis Organization

Section Sub Section Contents

Introduction Background
Provides context and current state of research in

acoustic classification.

8

Challenges Discusses main technical and research problems.

Related Works
A comprehensive review of the existing literature,

theories, methods

Research

questions and

contributions

Outlines three research questions in a logical

progression.

Thesis

Organization
This table.

Acoustic

Classification

with CNN

Data Processing

Denoise, Data Augmentation and convert to Mel

spectrogram vectors, Normalization and Data

Persistence.

Define CNN

Model

Details the architecture and parameters of the CNN

model.

Train CNN

model

Describes the training process and optimization

techniques.

Limitations and

Challenges
Limitations and Challenges of CNN models.

From

Acoustic

Classification

to Acoustic

Similarity

Motivation Why do I consider Similarity from Classification.

Loss Functions Contrastive loss and triplet loss.

Feature

Extraction

Details techniques for extracting relevant features

from data For Siamese network.

Dataset pairs for Siamese Network input.

Siamese Network

Structure
Outlines the architecture of the Siamese network.

Similarity

Comparison

Describes methods for comparing acoustic signal

similarity.

Model

Evaluation

Covers metrics and techniques used to evaluate

model performance.

Experiments

and Result

Software and

hardware
Details computational resources and tools used.

Classifying

Multi-Call Type

with CNN

The experiment details of CNN training

Siamese network The experiment details of Siamese network training

9

Model Result

and Discussion

The experiments result and answers to three

research questions.

Conclusion

and Future

Work

Summary
Summarizes the main points and findings of the

thesis.

Conclusion Transformation Based Method

Disadvantages

and Limitations
Draws conclusions based on the research findings.

Future Work
Highlights research limitations and potential

improvements.

References Lists all cited references in the thesis.

10

CHAPTER 2 CNN-DRIVEN CALL CLASSIFICATION

In this chapter, solutions are proposed to address the deficiencies of insufficient training

data, data imbalance, and poor data quality, focusing on sound signal processing, acoustic

denoising, data augmentation, and CNN model training. A CNN-based classification

model for Southern Resident Killer Whale (SRKW) Call Types is developed, achieving

an accuracy of 97.8% on the test set (in 17 Call Types), reaching the industry's State-of-

the-Art level in marine mammal acoustic recognition. A typical CNN model training

process is shown in Figure3. This chapter will analyze the strengths and weaknesses of

CNN models in SRKW call type classification across four sections: data processing,

CNN model definition, CNN model training, and limitations of CNN models.

Figure 3 CNN model training process for SRKW Call Type Classification [17]

However, it's important to note that this is based on CNN's premise: it can only predict

classes that appear in the training dataset. Classes not encountered in the training data

render the CNN model incapable of prediction. To predict classes not seen in the training

data (the Question raised in Question 3 of Section 1.4), algorithms based on transfer

learning are required. To resolve the Question 3 of Section 1.4, this paper will employ a

Few-shot learning algorithm, i.e., Siamese Network, with specific details elaborated in

the next chapter.

2.1 DATA PROCESSING

2.1.1 Denoising for Marine Acoustic Data

Currently, all available Southern Resident Killer Whale (SRKW) call-type data come

from hydrophones along the Pacific coast [17]. These sound data contain a significant

amount of noise, such as hydrodynamic noise, water flow noise, wave noise, and ship

propeller noise. These noises can mask call-type signals, severely impacting the

identification accuracy of call-type classification models. In the literature, several

methods for denoising marine acoustic data are commonly used:

Spectral subtraction is a frequency domain denoising method based on the signal-to-

noise Ratio (SNR) concept. It estimates the power spectra of the signal and noise and

calculates their difference. Then, based on a predefined SNR threshold, the noise

component is subtracted from the signal spectrum to suppress noise. This method is

simple to implement and effectively reduces stationary noise. However, its performance

highly depends on the selection of the SNR threshold, and it may introduce artifacts [18].

Wavelet denoising decomposes the signal into subbands of different scales containing

signal details and noise [19]. It applies a threshold to each subband to selectively remove

11

noise components and then performs wavelet inverse transform to obtain the denoised

signal. Its advantages include preserving signal features while eliminating noise and the

ability to handle non-stationary noise. However, careful tuning of wavelet type and

decomposition levels is required, and signal edges may be distorted.

Adaptive filters adjust filter parameters dynamically based on the signal's

autocorrelation and cross-correlation to adapt to different signal and noise environments

[20]. The minimum mean square error (LMS) algorithm or minimum mean square error

(LMSE) algorithm can be used to implement adaptive filtering. It can adapt to changes in

noise characteristics and process large amounts of data in real-time. However, its

denoising performance highly depends on parameter selection and convergence, and it

may introduce artifacts if misconfigured.

Convolutional Neural Networks (CNN) or Recurrent Neural Networks (RNN) can

also be used to learn complex features of marine acoustic data and automatically denoise

during training [21]. However, they require large datasets and computational resources.

Traditional acoustic models involve modeling noise characteristics in the marine

environment physically or statistically and denoising signals based on the model. They

can be effective when noise statistics are known but may be less effective in complex

noise environments.

The noisereduce Python library provides noise reduction functionality for audio signals.

The reduce_noise function in the noisereduce module utilizes a combination of noise

reduction techniques, including spectral subtraction, Wiener filtering, and adaptive

filtering. After the reduce_noise function from this library was applied in experiments,

the quality of the audio files was significantly improved. However, due to the limited

availability of labeled data, in order to increase the number of labeled samples, both the

original samples and the denoised samples were retained in the training set.

2.1.2 Data Augmentation

The limited size of annotated SRKW call-type samples results in reduced sample

diversity. Data augmentation can address this issue by increasing sample diversity. Data

augmentation involves modifying input data to enhance diversity in model input. Adding

noise to spectrograms is a common technique used to improve model robustness. This

process involves introducing random noise into the original spectrogram, which helps

prevent overfitting and enhances generalization to unseen data. Noise can be added at

various levels, such as individual frequency points or across the entire spectrogram. By

simulating real-world environmental noise, this method enables the model to focus on

relevant features while disregarding irrelevant noise. Overall, noise augmentation leads to

more robust and dependable model performance across different conditions.

Frequency masking involves randomly selecting frequency ranges and setting

spectrogram values within those ranges to zero, simulating the loss of certain frequency

components in the audio. It simulates the loss of certain frequency components,

enhancing model robustness to missing frequency information. Daniel S. Park [22]

12

proposed SpecAugment, a data augmentation method for automatic speech recognition,

which includes frequency and time masking to disrupt input data. Time masking

randomly selects time ranges and sets spectrogram values within those ranges to zero,

simulating the loss of certain time segments in the audio. Cropping and padding

randomly select subregions around the spectrogram to simulate different audio segment

lengths. They introduce variability in audio segment lengths, promoting model robustness

to different durations; however, if cropping or padding is excessive, they may distort the

original context.

Shifting and scaling techniques involve making adjustments to the spectrogram along

both the time and frequency axes, simulating positional changes of audio segments. By

altering the frequency and temporal characteristics, these techniques enhance the model's

adaptability to diverse audio variations. They effectively mimic shifts in the positions of

audio segments, thereby improving the model's ability to generalize across different

positions. However, it's important to note that excessive shifting or scaling can lead to the

distortion of the original features of the data. Careful consideration and moderation are

necessary to ensure that the augmented data remains representative of the underlying

patterns while introducing beneficial variability to the training process [22].

Frequency flipping [23] involves flipping the spectrogram along the frequency axis,

thereby altering the frequency characteristics of the audio. Similarly, time flipping [24]

flips the spectrogram along the time axis, changing the temporal characteristics of the

audio. These techniques modify both frequency and temporal attributes, thereby

enhancing the model's adaptability to various audio variations. However, it's also

important to be cautious when employing flipping techniques, as excessive use may

introduce artifacts or distortions into the data. The right balance between adding useful

variety and keeping the original audio intact need be considered.

These methods can be used individually or combined to increase training data diversity,

improving model robustness and generalization. It's essential to adjust and experiment

with specific methods based on dataset characteristics and task requirements. In

summary, the combination of these augmentation techniques can effectively increase the

diversity of training data, improve the robustness, and enhance the generalization ability

of the model. It is crucial to experiment with and adjust these methods based on the

characteristics of the dataset and the specific requirements of the task at hand.

2.1.3 SRKW Call Type Dataset

Based on annotated call type data from ONC Barkley Canyon, JASCO1 Boundary, and

Robert Banks along the Pacific coast of British Columbia, the following preprocessing

steps were undertaken to prepare the audio data for processing:

⚫ Denoising and assessing the sound quality.

1 JASCO Applied Sciences (https://www.jasco.com/) is a well-known company based in Nova Scotia, Canada,

specializing in underwater acoustics and environmental monitoring. They provide a range of services and data related

to acoustic signal processing, including underwater noise monitoring, marine mammal detection, and environmental

impact assessments

13

⚫ Augmenting the data to produce a minimum of 12 waveform clips for each call type,

such as SRKW Call Type S40 (augmented from 3 clips to 12 clips). Despite there

being 43 SRKW call types available, only 17 call types were selected for research

and experimentation purposes (as outlined in Chapter 4). This decision was made to

accommodate annotated data limitations.

Table 3 shows the train and test dataset by class. "Call Type" represents the specific type

of call. " Augmented Training and Validation Wave Files#" stands for the data files for

both training and validation after original audio files’ data augmentation. Validation data

(20% out of 88%) is used as a sub-set of the training data during CNN training to apply

early stopping [25] and learning rate scheduling [26] to avoid overfitting. Augmented

Testing Wave Files" (12%) indicate the number of wave files as test datasets.

Table 3 Train (including Validation, 88%) and Test Dataset (12%) by Call Type

Call Type Non-
Augmented
Wave Files

Augmented
Training and

Validation Wave
Files

Augmented
Testing Wave

Files

Remark

ArgBermHBW 12 60 4 SX: Southern Resident

Killer Whale

TX: Bigg‘s (Transient)

Killer Whales in

Northern Pacific

ArgBermHBW:

Bermuda Humpback

Whales

DelawSpwale: Delaware

Sperm Whale

Sea wave: Ocean

background noise

DelawSpwale 10 50 10

S10 19 48 10

S18 16 50 6

S1d 28 102 16

S2 38 190 12

S31 14 46 7

S35 4 13 5

S36 104 104 10

S40 2 5 4

S44b 18 90 7

S4d 48 239 16

S5 3 10 4

S6 8 37 11

S9 2 10 10

Seawave 4 4 4

T7 4 20 4

Grand Total 334 1078 (88%) 140 (12%)

2.1.4 Audio to Features

While the inputs to CNNs are audio or speech signals, CNN-based methods typically do

not directly utilize the raw one-dimensional (1D) signals. Instead, as part of a

preprocessing stage, 1D audio or speech signals are converted into 2D representations.

14

These 2D representations, which capture the spectrum frequencies of the audio signal

over time, are then fed into a CNN model. A typical process for audio data processing for

the CNN model is displayed in Figure 4.

Figure 4 Pre-processing the training data for input for the CNN model

2.1.4.1 Sound and the Waveform

Sound is a physical disturbance that travels through an elastic medium as high- and low-

pressure waves, known as compressions and rarefactions. Sound can be recorded by

measuring the changes in pressure over time. Recording can be done analogically or

digitally, with discrete values sampled at regular intervals called the sampling rate.

Digital audio signals are specifically discussed in this text. In the air, microphones are

used to record sound, while underwater environments require specialized hydrophones

due to the impedance difference. When the variation in pressure over time is plotted, it

creates a waveform; an example is shown in Figure 5. In digital audio, the amplitude in

the Y-Axis is usually represented in a digital format, typically ranging from -1 to 1,

indicating relative volume levels.

15

Figure 5 Concert A (440Hz) waveform [27]

Figure 5 shows a continuous waveform representing a sound signal, but it doesn't

accurately represent digital audio recordings. In digital audio, recordings are composed of

discrete numeric values called samples, recorded at specific time intervals. The range of

values a sample can take is determined by the bit depth, and the number of samples

recorded per second is the sampling rate [28]. A digital waveform is better represented as

a scatter plot rather than a continuous wave. Figure 6 provides an example of how the

sampling rate breaks down the continuous signal into discrete samples.

Figure 6 Concert A (440Hz) sampled at 44100Hz [27]

In real audio recordings with multiple sources and varying amplitudes and frequencies,

the waveform appears more erratic, as shown in Figure7.

16

Figure 7 Audio waveform sampled at 44100Hz [27]

Nyquist-Shannon sampling theorem is a fundamental principle in digital signal

processing. It establishes that for a continuous signal to be accurately reconstructed from

its samples without introducing artifacts, the sampling rate must be at least twice the

maximum frequency present in the signal. This maximum frequency, 𝑓𝑚𝑎𝑥 is known as

the Nyquist frequency, which is defined as 𝑓𝑚𝑎𝑥 =
𝑆𝑟

2
 , where 𝑆𝑟 is the sampling rate. If

the sampling rate The Nyquist-Shannon sampling theorem is indeed a cornerstone in

digital signal processing, specifying that to accurately reconstruct a continuous signal

from its samples, the sampling rate must be at least twice the maximum frequency of the

signal. This maximum frequency is known as the Nyquist frequency, defined

mathematically as 𝑓𝑚𝑎𝑥 =
𝑆𝑟

2
, where 𝑆𝑟 is the sampling rate. If the sampling rate is below

this limit, aliasing occurs, resulting in distortion in the reconstructed signal.

Conversely, knowing the maximum frequency 𝑓𝑚𝑎𝑥 needs to be captured allows you to

determine the minimum required sampling rate, which is 2 𝑓𝑚𝑎𝑥. This principle was

instrumental in defining the sampling rate for digital audio formats like CDs, where a rate

of 44.1 kHz was chosen to capture and accurately reproduce most of the audible

frequencies for humans, which range up to approximately 20 kHz [29] .

2.1.4.2 The Fourier Transform

In natural environments, sound waves from different sources combine as the sum of

individual waveforms at a specific point. The instantaneous pressure measured by a

recording device represents the combined waveforms coinciding with that device. This

means the waveforms from different sources can exhibit constructive or destructive

interference when reaching the recorder [30]. However, visually determining the

frequencies present in a waveform is not straightforward, even though it consists of the

17

sum of multiple frequencies. Analyzing the frequency content of a signal is often desired

to better understand its waveform.

The Fourier Transform can be employed to convert the waveform from the time domain

to the frequency domain. This transformation allows us to examine the individual

frequencies contributing to the waveform. In this thesis, the discrete Fourier transform

(DFT) is considered to decomposes discrete audio signals into their frequency

components. DFT is defined by equation (1) and is used for signals containing N

samples.

𝑋(𝑘) = 𝑥(𝑛) 𝑒𝑥𝑝 ቀ−𝑖
2𝜋

𝑁
𝑘𝑛ቁ , 𝑘 = 0, … 𝑁 − 1)⬚

𝑁−1

𝑛=0
 (1)

Where k is the k-th frequency component of the signal. In equation (1), the term exp

(−𝑖
2𝜋

𝑁
𝑘𝑛) is a complex number written in exponential form. Therefore, the resulting sum

will also be a complex number. As the real analog frequencies within the signal are only

interested, i.e. complex symmetry in the DFT in Equation (1). This involves computing

the same DFT for k ≤
𝑁

2
. To ensure that the output amplitudes of the DFT components are

correct, the magnitude of every component is averaged by multiplying its magnitude by
2

𝑁
 . The magnitude of a complex number is defined as equation (2):

ห𝑒𝑖𝑥ห = ȁ𝑐𝑜𝑠 𝑥 + 𝑖𝑠𝑖𝑛𝑥ȁ = ඥ𝑐𝑜𝑠𝑥2 + 𝑠𝑖𝑛𝑥2, 𝑖 = ξ−1 (2)

So, for a real-valued signal S consisting of N sampled values, discretized with a sampling

rate of 𝑆𝑟, the magnitude of the real-valued frequencies of the signal below the Nyquist

frequency could be computed by:

𝑋(𝑘) =
2

𝑁
ተ 𝑥(𝑛) 𝑒𝑥𝑝 ൬−𝑖

2𝜋

𝑁
𝑘𝑛൰

𝑁−1

𝑛=0

ተ

⬚

, 𝑘 = 0, …
𝑁

2
 (3)

Where the analog frequency in Hertz corresponding to the k-th DFT component is

defined as:

𝑓𝑘 = 𝑘
𝑆𝑟

𝑁
 (4)

An example of DFT computed for a generated 5-second sinewave of 5 Hz with an

amplitude of 1 (with no unit) sampled at 80 Hz can be found in Figure 8. In Figure 8 the

spectrum is only defined for frequencies below the Nyquist frequency
80𝐻𝑧

2
= 40𝐻𝑧.

18

Figure 8 Example of real-valued Discrete Fourier Transform (DFT) (bottom)

for generated 5 Hz sinewave (top) with unit amplitude sampled at 80Hz [27]

The Fourier transform is useful for signals with stable frequency content. However, when

signals contain varying frequencies or amplitudes, the Fourier transform alone becomes

insufficient for understanding how the signal's contents change over time. In natural

environments, most sounds exhibit varying contributing frequencies. To examine how

these frequencies and their amplitudes change over time, the Fourier transform can be

utilized to convert the signal into its time-frequency representation. This representation

can then be visualized and analyzed using a spectrogram, providing insights into the

changing frequency content of the signal over time.

2.1.4.3 The Spectrogram - Short-Time Fourier Transform

As mentioned, for the sound preprocessing, 1D audio or speech signals are transformed

from a 1D signal to a 2D signal. This 2D representation of the audio signal is then fed

into a CNN model. The conversion from 1D to 2D is commonly performed to generate

spectrograms, which capture the spectrum frequencies of an audio signal over time.

Various techniques such as Fast Fourier Transform (FFT), short-term Fourier Transform

(STFT), Mel-Frequency, Log-Mel-frequency, wavelet transform [31], and others can be

employed to convert 1D audio signals into a 2D representation, as shown in Figure 10.

Discrete Fourier Transform (DFT) is a method used to extract features from raw audio

signals, converting signals from the time domain to the frequency domain to capture the

phase and magnitude of each frequency component. However, DFT is not optimized and

is challenging to apply to real-time discrete signals. In contrast, FFT, an optimized

application of DFT, is suitable for real-time discrete signals and is defined as equation

(5).

19

𝑆(𝑘) = 𝑆(𝑛)𝑒−𝑗
2𝜋
𝑁

𝑘𝑛⬚

𝑁−1

𝑛=0

(5)

The magnitude spectrum, |S(k)| of a signal, is the magnitude of its frequency bin or

frequency component number (k) at a given sample number (n). It is usually a complex

value [32].

Figure 9 Convert waveform into Mel-spectrogram and an example 3-second segment.

The Mel-spectrogram mimics how the human ear works, with high precision in the low-

frequency band and low precision in the high-frequency band. Note that the Mel-

spectrogram shown in the figures is already log-transformed [32]

The Short-Time Fourier Transform (STFT) [33] is an algorithm in which the Fourier

transforms of successive signal windows are performed on a given time-domain signal.

This process results in frequency spectra that are "stacked," enabling visualization of how

the frequency spectra change over time. The signal is split into smaller windows, then

Fourier transform is computed on the samples within each window. The window is

shifted forward by some samples, repeated until the entire input signal has been traversed.

The Short-Time Fourier Transform (STFT) is an enhanced form of the Fourier Transform

designed to capture both temporal and frequency details of signals. By segmenting the

signal into fixed-sized time-domain windows and applying the Fourier Transform to each

segment, STFT reveals various signal features. Essentially, STFT employs equally

spaced, identical, and symmetrical bandpass filters in the frequency domain to analyze

the signal. The mathematical expression for any signal 𝑠(𝜏) can be written as:

20

𝑆(𝑓, 𝑡) = න 𝑠(𝜏)
𝑇

−𝑇

𝑤(−𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏(6)

To derive this representation, the signal 𝑠(𝜏) is divided into segments using a windowing

function w(t) as defined in Equation 6. The length of the window must match the length

of the signal segments, assuming that the signal remains stationary within each window

duration. The spectrogram is then obtained using STFT by computing the magnitude

squared value of the time-frequency representation value [34]., as expressed by the

equation:

𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚 = ȁ𝑆(𝑓, 𝑡)ȁ2(7)

A Mel-spectrogram, on the other hand, can be derived directly from the raw signal. It

leverages the Mel scale, which offers a perceptually linear scale corresponding to Hertz,

defined by the following equation [35]:

𝑀(𝑓) = 2595 ∗ 𝑙𝑜𝑔10(1 +
𝑓

700
)(8)

Where 𝑀(𝑓) represents the Mel frequency for a given 𝑓. It is derived from a logarithmic

scale and is associated with the human perception of sound [35]. This formula is based on

the premise that frequencies exhibit a logarithmic relationship to pitch. Thus, it is utilized

to transform frequencies into a Mel-frequency scale, which more accurately reflects how

humans perceive pitch.

Unlike the Short-Time Fourier Transform (STFT), the Continuous Wavelet Transform

(CWT) does not depend on fixed window sizes and time shifts to determine time and

frequency resolutions. Instead, the CWT utilizes a fundamental waveform called a

"wavelet" to decompose the speech signal. This approach involves convolving the signal

with shifted and scaled versions of the wavelet, accomplished through temporal shifting.

𝐶𝑊𝑇(𝑢, 𝑠) =
1

ξ𝑆
න 𝑋(𝑡)

∞

−∞

𝛹∗(
𝑡 − 𝑢

𝑠
)𝑑𝑡(9)

In this equation, X(t) represents the speech signal, u and s denote the shift and scale

parameters, respectively, ψ represents the mother wavelet or base function and ∗ denotes

the complex conjugate operation. In the specific study referenced [36] (Vergara et al.,

2020), the chosen mother wavelet is the Morlet wavelet. To summarize, raw 1D audio

signals or spectrograms can be utilized as input to a CNN model.

Three spectrograms, the CQT (Constant-Q transform) spectrogram, Magnitude

spectrogram, and Mel spectrogram, are widely used in Acoustic Classification [37]. The

CQT Spectrogram, based on the Constant-Q Transform, utilizes varying frequency

resolutions that align with the human ear's perception of pitch. It offers increased

frequency resolution at higher pitches, making it particularly useful in music-related

applications such as pitch analysis, instrument classification, and timbre feature

extraction [38]. The Magnitude Spectrogram represents the amplitude of a sound signal,

capturing changes over time and across frequencies. It is widely used in speech

recognition, sound feature extraction, and music analysis, where visualizing the dynamic

21

amplitude of sound is crucial [39]. The Mel Spectrogram is derived from the Magnitude

Spectrogram by applying Mel-frequency filters, which better simulate human auditory

perception. It features higher frequency resolution in the lower range and is extensively

used in tasks like speaker recognition, emotion recognition, and music genre

classification [35].

By selecting the appropriate spectrogram type tailored to specific application

requirements and sound characteristics, pertinent features of sound signals could be

effectively extracted and represented. This facilitates sound recognition, classification,

and analysis across various scenarios and tasks. In marine acoustic research, Magnitude

Spectrogram and Mel Spectrogram are prevalent choices. Given the intricate frequency

patterns often found in whale vocalizations, Magnitude Spectrogram is favored for its

high-frequency resolution and adaptability. It enables researchers to visualize and explore

the spectral intricacies of whale vocalizations, facilitating species identification,

behavioral analysis, and other research objectives. Nonetheless, the selection of

spectrogram type may vary depending on the research objectives and the unique

characteristics of the whale vocalizations under study.

As illustrated in Figure 10, relevant Call Type information is revealed more clearly in the

Mel spectrogram. Therefore, in the experiment of chapter, wave files are converted to

Mel spectrogram vectors as the input of CNN model.

Figure 10 Comparison of waveform (time-domain), Linear Spectrogram (Frequence-domain)

drawn by Ford, generated by Python Library Librosa and Mel Spectrogram for SRKW Call Type

S03

22

2.1.5 Apply Normalization to Vectors

2.1.5.1 Standardization vs Normalization

Standardization is typically performed after data loading and before any model training.

This process involves removing the mean and scaling the data to unit variance, which

helps to handle different scales in the data and ensures that all features have an equal

impact on the model [40]. The correct execution involves calculating the mean and

standard deviation for each feature within the training set and then using these parameters

to transform both the training and testing datasets. This method prevents information

leakage and ensures fairness in model evaluation.

Similarly, normalization is applied before model training, usually right after data loading.

For deep learning models, particularly those dealing with image data, normalization (such

as Min-Max normalization or L2 norm normalization) aids in faster convergence [41]. L2

norm normalization scales each data point, such as an image or vector, so that its overall

length (norm) equals 1. In contrast, Min-Max normalization adjusts the data range to a

specified interval, usually [0,1] or [-1,1]. Normalization is crucial in processing image

and audio data, as it helps the model handle varying input scales and distributions more

effectively.

It is essential to ensure that the same standardization and normalization parameters are

used for both the training and testing sets, which typically involves deriving these

parameters from the training data and applying them consistently across all data splits.

In summary, data preprocessing involves standardization to ensure that features are on the

same scale during model training and normalization to help models, especially those

using distance-based algorithms, focus on the data's shape rather than its size. Given the

context of audio vector data, normalization was performed in the practical code example

provided.

2.1.5.2 Normalization for Acoustic Dataset

Applying normalization techniques to input vectors before the training of a CNN

(Convolutional Neural Network) Acoustic Classification model can offer several benefits.

Normalization helps in stabilizing the training process by ensuring that the input data to

the network remains within a certain range. This can lead to faster convergence during

training, as the optimization algorithm can more effectively update the model parameters

[42]. Additionally, Normalization can mitigate the effects of overfitting by preventing the

network from becoming too sensitive to the scale of input features [43] . By keeping the

input data within a standardized range, normalization can help the model generalize better

to unseen data. Normalization can improve gradient propagation through the network

layers during backpropagation, making the training process more efficient and stable.

This can alleviate the vanishing or exploding gradient problem, especially in deeper

networks, leading to more stable and efficient training [44]. Normalization can also

23

enhance the robustness of the model to variations in input data by making it less sensitive

to changes in scale, mean, or variance [45]. This can result in a more reliable model that

performs consistently across different datasets or input distributions. Normalization

techniques often require careful initialization of parameters, which can lead to more

effective learning dynamics. This initialization strategy, combined with normalization,

can help the network start training from a more stable and optimal state.

Overall, normalization techniques such as Batch Normalization or Layer Normalization

can significantly contribute to stable training, faster convergence, and improved

generalization performance of CNN Acoustic Classification models, provided their

advantages and disadvantages are carefully considered and appropriately managed during

model development and training.

2.2 Define CNN Model

2.2.1 CNN structure

With the training data now prepared for model training, the design of a neural network for

training vector data can proceed. The upcoming sections will provide in-depth

explanations of deep learning neural networks, focusing on the concepts utilized in the

proposed systems. Initially, artificial intelligence algorithms were designed to mimic how

the human brain learns from environmental activities. Hence, they are referred to as

Artificial Neural Networks (ANNs). The term "deep" indicates that these networks have

more layers than traditional systems and can become larger [46]. Subsequent chapters

will also delve into basic concepts and methodologies from the literature of machine

learning and deep learning for Acoustic Classification.

CNNs for acoustic classification typically comprise various components, including

multiple convolutional layers, Rectified Linear Unit (ReLU) activation functions, pooling

layers, fully connected layers (also known as dense layers), and a Softmax layer, as

depicted in Figure 11. A convolutional layer in a CNN applies convolutional filters to the

input signal to generate feature maps, which are then forwarded to subsequent layers for

further processing.

24

Figure 11 Structure of CNN [47]

Each layer within a Convolutional Neural Network (CNN) for acoustic classification

plays a distinct role in the overall architecture. The following sections provide a brief

explanation of the main layer types of CNN.

2.2.2 Input Layers

The input layer is the initial data entry point for the neural network. In the case of

acoustic classification tasks using a Mel Spectrogram, the input layer consists of a 2D

array that represents the time-frequency representation of the audio signal on the Mel

scale. This Mel Spectrogram input captures the intensity of various frequency

components over time, effectively modeling the perceptual characteristics of human

hearing. By encoding these auditory features into a structured format, the CNN can then

process and analyze patterns in the audio data, similar to how it handles image data in

computer vision tasks. This approach is particularly effective for tasks such as speech

recognition, emotion detection, and acoustic classification.

2.2.3 Convolutional Layer

Convolutional Neural Networks (CNNs) excel in handling multidimensional data, a

strength recognized since their introduction by Y. LeCun [48]. A typical CNN architecture

consists of numerous convolutional layers, each featuring a set of filters that learn

through training. These filters are smaller than the input data and convolve across the

input space to produce output layers. Filters are small matrices that are slid or convolved

on the input data. In contrast, filters are a set of kernels used to extract various features

from the input, allowing the neural network to learn hierarchical representations. The

process captures the spatial and temporal dependencies within the data using fewer

parameters, leveraging the strength of the filters to detect patterns efficiently. This

mechanism enables CNNs to effectively identify and understand complex features in both

images and audio representations.

25

Figure 12 Filters in CNNs [46]

The filter is applied on each blue box and creates a cell in the output. Colors in the output

are matched with the corresponding box color (Figure 12). The * denotes a convolution.

2.2.4 Pooling

The pooling layer is responsible for spatial size reduction. Pooling layers result in

decreased computational power, and they are useful for extracting the dominant features

in a positional-invariant and rotational way that can maintain the effective training

process. Max and Average pooling are the common ways of implementing the pooling

layer, as shown in Figure 13. In Max pooling, the filter returns the maximum value from

the input, while the Average pooling returns the mean of the input. Pooling layers reduce

the spatial dimension of the feature maps generated by convolutional layers. For example,

Max Pooling selects the maximum value from a set of values, focusing on the most

salient features. Meanwhile, average pooling reduces the spatial dimension.

Figure 13 Max Pooling vs Average Pooling [46]

26

2.2.5 Fully Connected Layers

Fully connected layers (also known as dense layers) consist of neurons where each

neuron is connected to all the input data that comes to the layer, either from a previous

layer or directly from the model's input.

The mathematical operation performed by each neuron in a fully connected layer can

indeed be divided into two parts. In the part of Linear Combination, the neuron computes

a weighted sum of its inputs, along with a bias term. Mathematically, this operation can

be represented as:

𝑧𝑖 = 𝜋𝑟2 ∑ 𝜔𝑖𝑗 × 𝑥𝑗 + 𝑏𝑖
𝑛
𝑗=1 (10)

Where i is the neuron number, j is the input number. ij represents the weight of the

connection between input, 𝜔𝑖𝑗represents the weight of the connection between input j,

and neuron i. 𝑥𝑗represents the input value from the previous layer or the model's input. 𝑏𝑖

represents the bias term for neuron i. n is the total number of inputs to the neuron. After

computing the linear combination, the result is passed through an activation function.

Common activation functions include ReLU (Rectified Linear Unit), sigmoid, tanh, etc.

This activation introduces non-linearity into the model, enabling it to learn complex

patterns and relationships within the data. This process is repeated for each neuron in the

fully connected layer, producing the layer's output, which then serves as input to the

subsequent layer in the neural network. Figure 14 typically illustrates the mathematical

representation of a single neuron, highlighting how it takes input signals, computes a

weighted sum, adds a bias, and applies an activation function to produce an output.

Figure 14 A schematic drawing of the activation function [46]

2.2.6 Activation Functions

Activation functions are integral parts of any neural network as they allow the model to

go beyond the trivial linear problems and generalize and adapt with various nonlinear

27

combinations of input passing through multiple layers. There are many activation

functions, such as Rectified Linear Unit and Sigmod. Rectified Linear Unit (ReLU) is a

piecewise function that outputs the input directly for positive inputs and returns zero

otherwise. Figure 15 shows the plot for this function, which is described as,

𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (11)

where x is the input.

Figure 15 ReLU activation function [46]

ReLU became quite popular due to its robustness in vanishing gradients and sparsity.

Another advantage of ReLU is the low computational costs compared to much more

complex activation functions. It helps the network learn complex relationships and makes

the model more expressive. Which activation to use completely depends on your use

case; in most cases, researchers use ReLU, but some activations can also be used, such as

Sigmod. Sigmoid is a mathematical function that has an “S” shaped curve. A common

example of such a function is the logistic function shown in Figure 16 and equation (12)

[49]. Such function would be monotonic, continuous, and differentiable everywhere such

as,

𝜎(𝑥) =
1

1+𝑒−𝑥 (12)

Where x is the input.

Figure 16 Sigmoid activation function [46]

2.2.7 Dropout layer

28

The Dropout layer is used for regularization to prevent overfitting. During training,

random neurons are "dropped out", which means they are ignored, forcing the network to

learn more robust and generalizable features. It helps prevent overfitting by randomly

ignoring a small portion of input units during training.

2.2.8 Batch Normalization

Introduced by two Google researchers [40], batch normalization enhances the training

efficiency and stability of neural networks by re-centering and re-scaling hidden layers.

Although the exact rationale behind batch normalization remains under investigation, its

efficacy has been demonstrated [40].

Batch normalization (BN) is employed in neural networks to expedite and stabilize the

training process. It standardizes layer inputs through adjustment and scaling during

training. The mathematical foundation of batch normalization encompasses

normalization, scaling, and shifting operations. Let us delve into the mathematical

framework of batch normalization. Consider a mini-batch of size m containing n features,

the input to batch normalization can be summarized as follows:

1. Mean Calculation calculates the mean 𝜇 of the mini-batch for each feature,

where 𝑥𝑖 denotes the value of the i-th feature in the mini-batch.

2. Variance Calculation compute the mini-batch variance 𝜎2 for each feature.

3. Normalization standardizes the input by subtracting the mean and dividing

by the standard deviation (𝜎)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑥𝑖−𝜇

ξ𝜎2+𝜀
 (13)

Here, 𝜀 is a small constant added to avoid division by zero.

4. Scaling and Shift introduce learnable parameters γ and β to scale and shift

the normalized values:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝛾 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 + 𝛽 (14)

Here 𝛾 represents the scale parameter, and 𝛽 represents the shift parameter. Batch

normalization operations are typically inserted into neural network layers before

activation functions. It has been demonstrated to possess regularization effects,

alleviating issues such as internal covariate shift, thereby rendering training more stable

and expedited.

2.2.9 Flatten Layer and Regularization

Flatten layer transforms multi-dimensional feature maps into one-dimensional vectors,

preparing the data for input into fully connected layers. Regularization is a technique

used to control the process of fitting the model to the training set and avoid overfitting.

This method tries to discourage the model from learning too much complex function that

fits perfectly into the training set but would perform poorly on the unseen test set [50].

29

2.3 Train CNN model

2.3.1 Data Segmentation

A typical training process for the CNN audio classification model will start with

segmenting the audio spectrograms into training, validation, and test sets [51]. Training

Set is used to train the CNN model's parameters by feeding the spectrograms and their

corresponding labels into the model. The model learns to recognize patterns and features

from the training data, adjusting its weights through backpropagation to minimize the

chosen loss function. A larger training set helps the model learn diverse features and

generalize unseen data better. Validation set is used to evaluate the model's performance

during training and tune hyperparameters. By monitoring metrics such as accuracy or loss

on the validation set, early signs of overfitting or underfitting can be detected, allowing

for necessary adjustments. This set assists in selecting the best-performing model and

helps prevent over-optimization to the training data. Once the final trained model is

generated, the test set is reserved for evaluating its performance. It provides an unbiased

estimate of the model's generalization ability to unseen data and helps assess its

robustness and reliability in real-world scenarios.

Typically, a certain percentage of the data is allocated to each set, such as 70% for

training, 15% for validation, and 15% for testing. Segmenting the data in this manner

ensures that the model's performance is rigorously evaluated and helps prevent data

leakage or bias in performance estimation.

2.3.2 Define Model

Based on the process described in Section 2.2, the architecture of the CNN model is

defined with several key components: Convolutional Layers, Activation Functions,

Pooling Layers, Fully Connected Layers, and the Output Layer. The Convolutional

Layers apply learned filters to the input spectrograms to capture spatial hierarchies of

features. These layers perform a series of convolution operations represented as:

𝑧(𝑙) = 𝑊(𝑙) ∗ 𝑥(𝑙) + 𝑏(𝑙) (12)

where 𝑊(𝑙) represents the filters at layer 𝑙, 𝑥(𝑙) is the input to the layer, 𝑏(𝑙) is the bias term,

and ∗ denotes the convolution operation. The output 𝑧(𝑙) is then passed through a non-

linear activation function such as ReLU, defined as:

𝑎(𝑙) = 𝑅𝑒𝐿𝑈൫𝑧(𝑙)൯ = max (0, 𝑧(𝑙)) (12)

After convolution and activation, pooling layers reduce the spatial dimensions, often

through max-pooling operations, to retain the most prominent features while lowering

computational complexity. Pooling is represented as:

𝑎𝑝𝑜𝑜𝑙
(𝑙)

= 𝑚𝑎𝑥𝑝𝑜𝑜𝑙_𝑟𝑒𝑔𝑜𝑛
⬚ (𝑎(𝑙)) (13)

30

The resulting feature maps are then flattened and passed into Fully Connected Layers,

where the learned features are combined to produce the final predictions. These layers

apply matrix multiplication followed by an activation function, typically represented as:

𝑧(𝑙+1) = 𝑊(𝑙+1) ∗ 𝑎(𝑙) + 𝑏(𝑙+1) (12)

Finally, in the Output Layer, a softmax function is applied to compute the class

probabilities for multi-class classification problems:

𝑃(𝑦 = 𝑐ȁ𝑥) =
𝑒𝑧𝑐

∑ 𝑒𝑧𝑘𝐶
𝑘=1

 (12)

Where 𝑧𝑐 is the output for class c and 𝐶 is the total number of classes.

Before training begins, the CNN model is initialized with random weights, often sampled

from a distribution such as Xavier or He initialization [53]. During training, the weights

are iteratively adjusted using the backpropagation algorithm, which involves computing

the gradient of the loss function with respect to each weight. This gradient is computed

using the chain rule of calculus:

∂𝐿

∂𝑊(𝑙) =
∂𝐿

∂𝑧(𝑙) ×
∂𝑧(𝑙)

∂𝑊(𝑙) (12)

where 𝐿 is the loss function, typically cross-entropy for classification tasks. The gradients

are then used to update the weights via gradient descent or its variants, such as stochastic

gradient descent (SGD) or Adam. The weight update rule for SGD is expressed as:

𝑊(𝑙) = 𝑊(𝑙) − 𝜂 ×
∂𝐿

∂𝑊(𝑙)
⬚

 (12)

where 𝜂 is the learning rate. In adaptive optimizers like Adam, learning rates are adjusted

for each parameter based on estimates of first and second moments of the gradients,

leading to faster convergence [54].

This process of forward propagation, loss computation, backpropagation, and weight

updates continue iteratively over the training data until convergence. The architectural

design of the CNN model balances model complexity, computational efficiency, and

performance, ensuring that the model can effectively capture features from the audio

spectrograms while being computationally feasible.

2.3.3 Training Loop

In the training loop, the training data is iterated over in mini-batches. For each batch, a

series of steps is performed. First, the input spectrograms are passed through the CNN

model to compute the predicted probabilities for each class. Next, the loss between the

31

predicted probabilities and the actual labels is calculated using the chosen loss function.

After calculating the loss, the gradients of the loss with respect to the model parameters

are computed using the backpropagation algorithm. Finally, the model parameters are

updated using the optimizer based on the computed gradients.

After each epoch, the model's performance is evaluated on the validation set. This

evaluation involves computing metrics such as accuracy, precision, recall, and F1-score

to assess the model's effectiveness. Early stopping is implemented by monitoring the

performance on the validation set and halting the training process if performance does not

improve over a specified number of epochs. This technique helps prevent overfitting and

ensures that the model generalizes well to unseen data.

2.3.4 Model Evaluation

Once training is complete, the final model is evaluated on the test set to obtain unbiased

performance metrics. Five metrics—Accuracy, Recall (Sensitivity), Specificity, F1, and

Precision—are computed on the test set to assess the model's generalization ability.

2.3.5 Result Interpretation

Finally, the results are analyzed to understand the model's strengths and weaknesses. The

analysis helps identify any patterns or classes that the model struggles to classify

accurately. Based on this evaluation, adjustments to the model architecture,

hyperparameters, or data preprocessing steps may be made to further improve

performance if necessary.

2.4 Limitations and Challenges of CNN Models

Training CNN models on small-annotated call type dataset may encounter the challenge

of overfitting because of following reasons Training CNN models on small-annotated

call type datasets may encounter the challenge of overfitting due to several factors:

• Limited dataset size: Small-sample datasets may not provide enough data to capture

comprehensive features, leading to the model's inability to generalize well to new

data samples.

• Model complexity: If the model's complexity is too high, it may attempt to memorize

noise and outliers in the training set rather than learning general patterns, resulting in

poor performance on new data.

• Data imbalance: When the number of samples varies significantly across different

classes, the model may focus more on the classes with more samples and neglect

those with fewer samples, leading to decreased performance.

One potential solution for small-annotated call type dataset classification is the use of

Siamese networks [10]. Siamese networks are neural network architectures used for

metric learning and are commonly applied to address small-sample classification

32

problems. These networks learn a similarity measure between samples to perform

classification. In the next chapter, the similarity measure will be elaborated upon, and

Siamese networks will be applied to resolve the few-shot learning (FSL) problem for

SRKW call type classification.

33

CHAPTER 3 EVOLUTION TOWARDS CALL SIMILARITY FROM

CLASSIFICATION

The distinction between similarity measurement and classification in audio processing is

crucial. Similarity measurement compares features between two data points to quantify

their resemblance, making it simpler than classification, which requires mapping a data

point to one of many categories. Recent research highlights advance in machine learning

models tailored for similarity-based tasks.

For example, the study of audio similarity search using distance measures such as

Gaussian Mixture Models (GMMs) or Hidden Markov Models (HMMs) demonstrates the

relative simplicity of measuring similarity by comparing distributions of feature vectors

directly, rather than classifying them into categories [55]. However, research on

similarity measurement using deep learning in the audio processing domain, especially

when it comes to utilizing deep learning for similarity measurement, has been relatively

limited [56]. Hence, despite the potential importance of similarity measurement in the

audio processing domain, there are still many challenges and research opportunities. This

chapter investigates Siamese networks for SRKW Call Type similarity measurement.

3.1 Motivation (From CNN to Siamese Network)

This thesis aims to associate an audio clip of a call with an assigned label “Call Type”,

namely classification. Achieving such predictions requires not only a labeled sound

dataset but also a method to measure whether a sound corresponds to a certain label.

Instead of asking the question "which call type does sound X belong to?", the problem

can be reframed as a task of measuring sound similarity, essentially transforming the

question to "does sound X1 belong to the same class (call type) as sound X2?"

In the realm of deep learning, employing Siamese Neural Networks (SNNs) to address

the challenge of measuring similarity between inputs is a prevalent approach. This

approach can be motivated by first examining some of the limitations inherent in the

common approach to this general problem of multi-class classification.

In traditional multi-class classification tasks, neural networks are typically equipped with

an output layer consisting of neurons denoted as {𝑎𝑖
[𝐿]}

𝑖=1

𝑚
 activated by the softmax

function:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑖)=
𝑒𝑎𝑖

∑ 𝑒
𝑎𝑗𝑚

𝑖=1

 (15)

The softmax activation function is employed because its output values resemble class

probabilities, satisfying the requirement that the sum of all probabilities equals 1

(∑ 𝑎𝑗𝑗 =1). Training such a network typically involves using the negative log-likelihood

34

function as the loss function and employing one-hot encoding for the labels. The choice

of the negative log-likelihood function as the loss function is inspired by concepts from

entropy and information theory, as explained in Chapter 1 of [57]. Additionally, it is

possible to train the classification layer directly using the cross-entropy loss function

without the need to activate the output layer with softmax. However, during inference,

activating the output by softmax is still necessary to obtain meaningful predictions. One-

hot encoding represents the label as a binary vector where the target class is marked with

a 1, and all other classes are marked with 0. This encoding can be interpreted as a

probability distribution where the target class has a probability of 1 and all others have a

probability of 0.

Figure 17 The CNN architecture for call type classification

The input spectrogram initially undergoes processing through CNN architecture (Figure

17). This process aims to encode the image into its fundamental components, represented

by the embedding layer, which is depicted as a 1×D dimensional vector (illustrated as a

rounded rectangle with circles to represent the neurons in the embedding layer).

Subsequently, the embeddings are fed into a classification layer, which outputs a

probability distribution over the number of classes, where each output neuron

corresponds to a class.

The approach of category prediction, while effective, comes with significant drawbacks.

A fundamental requirement for any deep learning model is a substantial dataset to

effectively teach the model about the general distribution of each class. However, in

SRKW call type classification scenarios, acquiring large amounts of annotated and

labelled data can be expensive and time-consuming. While data augmentation techniques

can mitigate this issue to some extent (see section 2.1.2), obtaining original data remains

crucial for most deep-learning tasks.

Another limitation of the category prediction approach is its lack of flexibility in

accommodating new classes. If a new class (new SRKW call type) needs to be included,

the entire network must be retrained, and a new neuron must be added to the

classification layer.

35

Multi-class classification by similarity prediction addresses the limitations highlighted in

category prediction, a viable solution is to train the model to discern similarity or

dissimilarity between two calls. Siamese Neural Networks (SNNs) are commonly

employed to train a neural network to measure similarity between inputs [58]. The

fundamental concept behind SNNs involves establishing multiple instances of the same

network that share both the network architecture and parameters. The primary objective

of the network architecture is to decode or down-dimensionalize the inputs into an

embedding space intelligently. This process ensures that inputs belonging to the same

class are mapped closely together in some sense, while inputs from different classes are

mapped farther apart. Figure 18 illustrates the core idea of such architecture and

parameter sharing, along with how a trained decoding network effectively maps similar

inputs close together.

Figure 18 The structure of Siamese Neural Networks

The concept of parameter-sharing architecture was initially introduced by Bromley [59]

for signature verification and independently developed for matching pairs of fingerprints

by Baldi [60]. Since their inception, they have become more effective in recent years,

largely due to hardware advancements, although they typically require a significant

amount of time to train.

In the context of this thesis, both category and similarity prediction approaches learn to

generate an embedding vector indirectly, meaning that the loss function is not explicitly

designed to operate directly with the embeddings. Instead, training is conducted by

considering the embedding vector itself rather than the outputs of a classification layer

that indicates "same" or "different". This approach is inspired by the findings of the

FaceNet [61], which demonstrated superior performance when training the embeddings

directly compared to DeepFace [62], which utilized a classification layer for embedding

training.

3.2 Loss Functions

The effectiveness of Siamese networks largely depends on the choice of the loss function

during training, which guides the network to learn discriminative features. There are

several loss functions used in Siamese Neural Networks.

36

3.2.1 Contrastive Loss

Contrastive loss is a widely used loss function for training Siamese networks [63]. It aims

to ensure that pairs of similar inputs are closer in the embedded space, while pairs of

dissimilar inputs are farther apart. The loss function is defined as follows:

𝐿(𝑌, 𝐷) = (1 − 𝑌)
1

2
(𝐷)2 + (𝑌)

1

2
𝑚𝑎𝑥(0, 𝑚 − 𝐷)2 (16)

Where Y is the label indicating if the pair is similar (0) or dissimilar (1). 𝐷 is the

Euclidean distance between the outputs of the two inputs in the pair. 𝑚 is the margin, a

hyperparameter that defines how far apart the dissimilar pairs should be. 𝐷 aims to

quantify the distance between the embeddings 𝑓(.) of the Acoustic vectors 𝑋1 and 𝑋2:

𝐷(𝑋1, 𝑋2) = ‖𝑓(𝑋1) − 𝑓(𝑋2)‖ (17)

The advantage of contrastive loss is that it is effective in learning discriminative features

by pushing apart dissimilar pairs beyond a margin, which is relatively simple to

implement and understand. However, choosing an appropriate margin can be challenging.

It may not fully exploit the structure of the embedding space, focusing only on pairwise

distances.

3.2.2. Triplet Loss

The Triplet Loss function, described in detail in the FaceNet [64], highlights its

effectiveness by exploiting relationships between three different data in a single

observation, called triples, to produce high-quality image embeddings. A triplet includes

an anchor A, the input image (or acoustic vector) embedding as a reference point; a

positive P: another input image embedding with the same identity or category as the

anchor, which means it is similar to the anchor; a negative N: an input image embedding

that have a different identity or category than the anchor, making them dissimilar. The

goal of the Triplet Loss function is twofold. First, it minimizes the distance between

anchor points and vertex embeddings. This is the “pull-in” aspect, which encourages the

network to bring embeddings of similar images or share the same identity closer;

secondly, it maximizes the distance between the anchor and negative embeddings. This is

the “pushing away” aspect, which aims to separate the embedding of anchors from the

embedding of dissimilar or dissimilar identity images.

37

Figure 19 Illustrative example of what the Triplet Loss attempts to achieve in order to

directly learn image embeddings. Notice that the distance between A and P is not directly

paid attention to (FaceNet [64])

Triplet Loss can be expressed as:

𝐿 = 𝑚𝑎𝑥(𝑑(𝐴, 𝑃) − 𝑑(𝐴, 𝑁) + 𝑚𝑎𝑟𝑔𝑖𝑛, 0) (18)

Where 𝑑(𝐴, 𝑃) is the distance between the anchor point and the positive point

embedding. 𝑑(𝐴, 𝑁) is the distance between the anchor point and the negative point

embedding. 𝑚𝑎𝑟𝑔𝑖𝑛 is a hyperparameter that defines the minimum difference between

𝑑(𝐴, 𝑃)and 𝑑(𝐴, 𝑁) to be considered for training. The margin is crucial because it

prevents the network from trivial solutions and ensures that the positive and negative

pairs are separated by a distance that is meaningful enough to differentiate between

similar and dissimilar images effectively.

This loss function has shown great success in various applications, particularly in

improving the accuracy of face recognition systems by learning an embedding space

where distances directly correspond to a measure of face similarity.

The triplet loss encourages relative comparisons, which can lead to a more structured

embedding space. It’s more effective than contrastive loss in many cases by considering

anchor-positive and anchor-negative relationships. On the other hand, it requires careful

selection of triplets during training to avoid poor local minima. Its training can be slower

due to the need to process triplets.

3.2.3 Other loss functions

3.2.3.1 Quadruplet Loss

Chen et al. [65] proposed Quadruplet loss to extend the concept of triplet loss by

introducing a fourth element, aiming to push the negative example further from the

anchor. It uses two margins and considers two negative examples to enhance

discriminative power. Its advantages include greater flexibility and potential for

discriminative feature learning, and improved model generalization. However, it is more

complex and computationally expensive, and selecting meaningful quadruplets can be

challenging.

38

3.2.3.2 Center Loss

Center loss is used alongside other loss functions to enhance the learning of

discriminative features [66]. It reduces intra-class variations while keeping different

classes separable. It includes effectively enhancing the compactness of the same class in

the embedding space and is combinable with other loss functions for optimal inter-class

separability and intra-class compactness. However, it requires additional hyperparameter

tuning and can be sensitive to the initialization of center parameters.

3.2.3.3 Margin Loss

In [67], Margin loss was applied to ensure that similar pairs have a smaller distance than

a certain margin while dissimilar pairs have a larger distance, making it effective for tasks

involving fine-grained similarity measures. Its advantages include flexible margin

settings leading to a discriminative embedding space and suitability for fine-grained

similarity tasks. Disadvantages involve careful tuning of the margin parameter and

sensitivity to outliers and noise in the data.

3.2.3.4 Binary Cross-Entropy Loss

Binary cross-entropy loss [46] is used for binary classification tasks within Siamese

frameworks, measuring the difference between predicted and actual labels. Its advantages

are direct interpretability in terms of probability and extensive support and optimization

techniques. However, it may not capture the complexity of the embedding space for

similarity learning tasks and is less effective for tasks requiring fine-grained distinctions

between highly similar categories.

When implementing a Siamese neural network, the choice of loss function should be

guided by the specific characteristics of the dataset and the task at hand. Experimentation

and validation are key to determining the most effective loss function for a given

application.

3.3 Dataset Pairs for Network Input

Sufficient data samples are still crucial for the adequate training of Siamese Networks

model. This necessity stems from the models' requirement to learn from a diverse and

extensive set of examples to achieve generalization over the problem space. The dataset

provided for this thesis is not immune to the common challenge of data scarcity, which

poses a significant obstacle that needs to be addressed meticulously.

Moreover, the focus on Siamese Neural Networks within this thesis introduces additional

considerations concerning the structure and definition of the dataset. Specifically, it

necessitates a clear delineation of several key components:

39

1. Classes: The different categories or types within the data that the model needs to

learn to distinguish between. In the context of audio processing, these could be

different sounds, speakers, musical instruments, or any other distinct auditory

categories. In this thesis, they are Call Types of Southern Resident killer Whale

in Pacific Ocean.

2. Audio Samples: The individual pieces of audio data that serve as the input to the

network. Each sample is an instance that belongs to one of the predefined

classes and contains the acoustic characteristics that the model must learn to

recognize and differentiate.

3. Positive/Negative Pairs: For Siamese Neural Networks, which learn to gauge

the similarity or dissimilarity between two inputs, the dataset must be organized

into pairs of audio samples. A positive pair consists of two samples from the

same class, indicating similarity, while a negative pair is composed of samples

from different classes, denoting dissimilarity. The network learns from these

pairings to discern the features that contribute to the audio samples being

classified as similar or not.

Table 4 Data pairs created from S1, S2 and S10 as examples

Call type Audio Clip IDs

S1 1, 2, 3, 4, 5, 6, 7, 8

S2 9, 10, 11, 12, 13, 14, 15

S10 16, 17, 18, 19, 20

Positive Pairs (1,2), (1,3), (2,3) ….

Negative Pairs (1, 9), (1, 16), (2, 9) ….

Figure 20 Call types with dozens of audio samples could generate thousands of

positive/negative pairs

Test set

Training set

40

Table 4 and Figure 20 illustrate the process to generate audio data pairs. Despite the fact

that each call type, such as S1, S2, and S10, contains no more than a few dozen samples,

the number of samples experiences exponential growth when they are paired up in

duplets. This process results in a dataset size that is fully capable of meeting the data

volume requirements for computing similarities between samples of various categories

using a Siamese network. This pairing strategy essentially multiplies the dataset's utility

for the Siamese network, enabling it to learn from a vastly expanded set of comparisons.

By examining the similarities and differences across these pairs, the network can

effectively learn nuanced distinctions between categories.

Same to CNN training, 88% and 12% of data pairs is allocated to the Training and

Testing. 20% out of 88% training data pairs are dedicated as a Validation Set for tuning

and optimizing is highly effective. This setup facilitates iterative refinements based on

validation feedback, promoting genuine model generalization. Such a distribution not

only aids in safeguarding against overfitting but also ensures that the model exhibits

robust performance on new, unseen data, thereby enhancing its utility and reliability in

practical applications.

3.4 Feature Extraction for Siamese Networks

Figure 21 In Siamese Networks, input and the labeled sample go through three different

stages: Preprocessing, Feature Extraction and Comparison [68]

In Siamese Networks, input and the labeled sample go through three different stages:

Preprocessing, Feature Extraction and Comparison [68]. Audio processing, converting

audio files into vector data that can be recognized by convolutional neural networks

(CNN), is a critical step. Section 2.1.4.3 discusses the conversion of audio files into

Spectrogram and Mel Spectrogram. This process is designed to transform audio into

vector data recognizable by CNNs, facilitating feature extraction through CNNs. Siamese

networks also employ a similar approach, but research papers have demonstrated that the

MFCC (Mel-Frequency Cepstral Coefficients) method can extract MFCC vectors more

effectively [69]. This is because the vector data format generated by the MFCC method is

compacter and yields good recognition results. MFCC extracts the features of the audio

signal through the following steps illustrated in Figure 21:

41

Spectrum acquisition of the signal:

Firstly, a Fourier transform (FFT) is performed on the audio signal 𝑦(𝑡) to obtain its

spectrum. This step converts the signal from the time domain to the frequency domain.

Log power spectrum:

Then, the logarithm of the square of the spectrum's magnitude (i.e., the power spectrum)

is taken. This step corresponds to the logarithmic operation part of the power cepstrum

definition, that is, 𝑙𝑜𝑔 (ȁ𝐹{𝑦(𝑡)}ȁ2). The purpose of taking the logarithm is to simulate

the non-linear perception of different loudness by the human ear and to convert the

signal's multiplication operation into an addition operation, thereby simplifying the

representation of the composite effects of the sound source and the vocal tract.

Mel filter bank processing:

Before calculating the traditional power cepstrum, the MFCC calculation maps the

spectrum to the Mel frequency scale to simulate the human auditory perception system.

This is unique to MFCC and does not appear in the traditional power cepstrum

calculation steps.

Inverse Fourier Transform:

Finally, a discrete cosine transform (DCT) is applied to the logarithmic Mel power

spectrum instead of a direct inverse Fourier transform (IFFT). The DCT operation here is

equivalent to processing the logarithmic power spectrum, which helps reduce the

correlation between features and extract useful acoustic features. This step can be

considered a kind of "inverse transformation" of the logarithmic power spectrum, similar

to the inverse Fourier transform (IFFT) of the power cepstrum, but more suitable for

handling the spectrum under the Mel scale.

Figure 22 Steps in calculating Mel Frequency Cepstral Coefficients

In summary, although the traditional power cepstrum (obtained by applying a logarithmic

operation to the spectrum of a signal and then performing an inverse Fourier transform) is

not directly calculated in the calculation process of MFCC, MFCC adopts a similar

processing flow — after performing a logarithmic operation on the spectrum, an "inverse

transformation" is performed through Discrete Cosine Transform (DCT) instead of IFFT,

and the spectrum is mapped to the Mel scale through the Mel filter bank [70]. The

formula could be expressed as

42

𝑀𝐹𝐶𝐶[𝑘] = ∑ 𝑙𝑜𝑔 (𝑆[𝑛])𝑐𝑜𝑠 [𝑘(𝑛 +
1

2
)

𝜋

𝑁
]𝑁−1

𝑛=0 (19)

Where 𝑀𝐹𝐶𝐶[𝑘] is the 𝑘𝑡ℎ Mel frequency cepstral coefficient, 𝑁 is the number of Mel

filters, which is the dimension of the log Mel power spectrum, 𝑆[𝑛] is the logarithmic

value of the power spectrum output by the 𝑛𝑡ℎ filter after processing through the Mel

filter bank, 𝑙𝑜𝑔 (𝑆[𝑛]) is the log Mel power spectrum, The range of 𝑘 typically goes from

0 to 𝑁 − 1, but in practical applications, usually, only the first few coefficients (for

example, the first 12 or 13) are chosen because they contain the most important sound

characteristic information.

The core of this formula is mapping the log Mel power spectrum to the cepstral domain.

The application of DCT has several important functions: it helps to decorrelate the

coefficients of the Mel power spectrum (as these coefficients are often highly correlated)

and effectively compresses the signal's information, concentrating the most important

features into the lower cepstral coefficients. This makes MFCC very suitable for

subsequent audio signal processing and pattern recognition tasks, such as voice

recognition, speaker identification, and music information retrieval, etc.

In the experiments of this thesis, opting for MFCC (Mel-Frequency Cepstral

Coefficients) encoding over Mel and magnitude spectrograms as input for a Siamese

network is a strategic decision aimed at balancing the trade-off between capturing

detailed spectral information and managing data volume efficiently. While Mel and

magnitude spectrograms offer a richer spectral representation, they significantly increase

data volume when paired with positive and negative samples for Siamese Network

training. MFCC encoding provides a more compact yet sufficiently informative

representation of audio signals, facilitating faster processing and more efficient learning

within the Siamese network, thereby addressing computational resource constraints and

optimization challenges inherent in handling high-dimensional data.

3.4.1 A comparative analysis between Mel-Frequency Cepstral

Coefficients (MFCC) and the Mel Spectrogram

Mel-Frequency Cepstral Coefficients (MFCC) and Mel Spectrogram (mentioned in

Section 2.1.4.3) are both pivotal techniques in audio signal processing. They serve as

foundational tools in various applications, particularly in speech and audio analysis [71].

A comparative analysis of these two methods reveals distinct advantages and limitations

inherent to each.

MFCCs are highly regarded for their efficacy in capturing the essential characteristics of

speech sounds, particularly the resonant frequencies critical for phonetic differentiation

[72]. The extraction process of MFCCs encompasses several stages: pre-emphasis,

framing, windowing, Fast Fourier Transform (FFT), Mel filter bank processing,

logarithmic transformation, and ultimately, the Discrete Cosine Transform (DCT) [73].

This comprehensive sequence culminates in a compact representation of the audio signal,

significantly reducing its dimensionality. The resultant lower-dimensional feature set not

only enhances computational efficiency but also ensures robustness and expeditious

processing, attributes that render MFCCs particularly suitable for real-time speech

recognition applications [74].

43

However, there are drawbacks to the MFCC methodology. A salient limitation is the loss

of phase information during the transformation process, a factor that can be detrimental in

certain audio-processing contexts. Additionally, MFCCs exhibit sensitivity to background

noise, which can impair accuracy and reliability in noisy environments. This necessitates

the implementation of meticulous pre-processing and noise reduction strategies to uphold

performance standards in practical applications [75].

Conversely, Mel Spectrogram offers a more comprehensive representation of the audio

signal by preserving detailed time and frequency domain information. This makes it

exceptionally suitable for a broader spectrum of audio analysis tasks, such as music

classification and sound event detection [76]. The richness of the temporal and spectral

information encapsulated in the Mel Spectrogram facilitates enhanced visualization and

interpretation of audio content.

Nevertheless, the Mel Spectrogram's higher dimensionality relative to MFCCs introduces

increased computational complexity and demands greater resources for processing and

storage. This can pose significant challenges in scenarios where computational efficiency

and rapid processing are paramount. The substantial volume of data inherent in Mel

Spectrograms requires the deployment of sophisticated algorithms for effective

processing and analysis [75].

Due to the fact that the train dataset size for the CNN is much smaller than the size of the

Data Pair training set for the Siamese Network, e.g. 1,078 audio samples could generate

260,085 audio pairs, the size of each individual record in training set after Feature

Extraction is crucial. Although the Mel Spectrogram is richer in information on features

compared to the MFCC vector, due to the limitation of hardware in this thesis, the author

chose to use the Mel Spectrogram for Feature Extraction when training the CNN model

and MFCC for Siamese Network. Additionally, the author plan to test the performance

using MFCC as training data for the CNN to ensure the performance using the Mel

Spectrogram not worse than MFCC.

3.5 Siamese Networks Structure

3.5.1 Basic structure of Siamese networks

A basic Siamese neural network comprises identical twin networks, also known as

subnetworks, that share the same weights. These subnetworks take separate input

samples, and the output feature vectors of the networks are combined by a selected

distance layer. Figure 26 depicts the architecture of a classic Siamese network described

by Bromley [59].

44

Figure 23 Layout of a Siamese Network [59]

In basic Siamese network architecture, while traditional models typically process 1-

dimensional feature vectors through merge layers using distance functions, alternative

implementations have emerged. These include concatenating feature vectors or

employing multi-dimensional correlation models, allowing for the inclusion of additional

layers—be it convolutional or fully connected beyond the merge point. Unlike classic

Siamese networks that output directly after merging, these variants might use a logistic

sigmoid function,

𝜎(𝑧)=
1

1+𝑒−𝑧 (20)

to map outputs to a (0,1) range. This mapping enables the output to serve as a probability

or similarity score, offering a flexible way to quantify similarities between compared

samples. This evolution in Siamese network design enhances their applicability across a

wider range of tasks, especially those requiring detailed similarity assessments.

3.5.2 Transferring knowledge from Image Classification models

Despite the distinct differences between image and sound representations, highlighted

during the preprocessing phase, research suggests that models initially devised for image

classification, like those trained on ImageNet [76], can act as potent baseline networks for

sound classification tasks [77]. This notion is supported by the shared representational

structures between auditory and visual regions in the human brain, indicating that

knowledge transfer across these domains could boost performance. Given ImageNet’s

role as a benchmark in image classification, it’s fascinating to consider the potential of

these high-performing models in tackling One/Few-Shot Learning challenges within

audio classification.

In audio classification, deep learning models such as AlexNet [78], DenseNet201[79],

InceptionV3 [80], Xception [81], VGG [82], and ResNet18 [83], originally designed for

image classification, have been effectively repurposed for feature extraction and

classification involving audio data. By converting audio signals into spectrograms or Mel

spectrograms, these models can process "visualized" audio data, extracting pivotal

features. AlexNet, even though it has a large number of parameters, showcases potential

45

in audio classification due to its strong feature extraction and adaptability. DenseNet201

enhances efficiency and reduces parameter count by interlinking each layer, proving

particularly adept at capturing complex audio patterns. InceptionV3 and Xception

leverage multi-scale and depthwise separable convolutions to effectively extract nuanced

features. VGG’s deep, straightforward architecture excels in audio classification,

especially with Mel spectrograms, while ResNet18’s residual connections overcome deep

network training challenges, making it a viable option for audio classification.

Though these models have garnered success in image processing, adapting them for audio

classification requires careful consideration of model size, computational demands, and

training data volume, along with adjustments to suit audio data characteristics. With the

right preprocessing and feature extraction approaches, these models’ robust feature-

learning capabilities can be harnessed for audio data analysis, demonstrating the

flexibility and cross-domain potential of deep-learning models.

AudioSet [84] (Gemmeke et al. 2017) is one of the largest audio datasets accessible

online, originating from the expansive video dataset known as YouTube-8M [85]. Upon

its initial release, AudioSet provided a 128-dimensional embedding for each audio

segment, encapsulated within a 0.96-second moving window. These embeddings were

generated using a VGG-like classification model [81], laying the groundwork for the

VGGish feature extractor (Figure 24). The feature extractor takes Mel Spectrograms of

audio—prepared according to specified configurations—as input, producing a 128-

dimensional feature vector. A comparison network then utilizes this vector for further

analysis (Figure 25).

Figure 24 A representation of how the VGGish feature extractor would fit in the Siamese

Network [81]

The preprocessing stage for the VGGish feature extractor involves generating a Mel

Spectrogram from the audio, adhering to the parameters outlined in a specific

configuration table. This table details aspects such as the number of frames, bands,

sample rate, STFT (Short-Time Fourier Transform) window and hop lengths, and overall

window size.

Originally inspired by the VGG image classification model, VGGish underwent

modifications to adapt it for audio processing. This adaptation includes transforming the

model's output into a 128-feature vector by replacing the image-focused Softmax layer

with mechanisms suited for audio feature extraction. This innovative modification

46

highlights the flexibility of deep learning models, demonstrating their capability to

transcend their initial domains and apply their powerful feature-learning frameworks

across different types of data.

Figure 25 A VGGish network is derived from VGG-16 (16-layer VGG Model [81]

originally designed for image classification). Black cells are the same as VGG, and the

last red fully connected cell is to create a 128-dimensional feature vector

3.6 Similarity Comparison

In the fields of audio processing and speech recognition, feature vectors are numerical

sequences used to represent the characteristics of audio signals. Once feature vectors are

extracted from each audio sample, a method is required to compare these vectors to

determine the similarity or difference between audio samples. Cosine similarity and

Euclidean distance are two commonly used methods for this purpose.

Cosine similarity measures the angle between two vectors to determine their similarity

in direction. Its values range from -1 to 1, where 1 indicates vectors in the exact same

direction, 0 indicates vectors that are orthogonal (no similarity), and -1 indicates vectors

in completely opposite directions [86]. Cosine similarity is calculated by taking the dot

product of the two feature vectors and dividing it by the product of their magnitudes. This

method is insensitive to the length of the vectors and primarily focuses on the difference

in the angle between them, making it commonly used in text analysis, audio signal

processing, and other fields.

Cosine similarity is more suitable for scenarios such as text matching and audio/video

recommendations, where the similarity in direction is more important than the absolute

distance. For example, in a music recommendation system, the similarity in users'

preference types may be more important than specific numerical differences.

Euclidean distance, also known as L2 distance, measures the straight-line distance

between two points in space [87]. In the context of feature vectors, it measures the actual

distance between two points in a multidimensional space. Calculating the Euclidean

distance between two vectors is relatively straightforward, involving the summation of

47

the squares of the differences between each pair of corresponding elements, followed by

taking the square root. Unlike cosine similarity, Euclidean distance is very sensitive to the

length and magnitude of the vectors and can be used to measure the absolute difference in

values between two feature vectors. To address these limitations, normalization and

feature scaling are implemented.

By incorporating these preprocessing steps into both the training and testing phases, the

robustness and interpretability of the results in audio processing or speech recognition

tasks are aimed to be enhanced.

3.6.1 Cosine Similarity

Cosine similarity measures the angle between two vectors to determine their similarity in

direction [86]. Its values range from -1 to 1, where 1 indicates vectors in the exact same

direction, 0 indicates vectors that are orthogonal (no similarity), and -1 indicates vectors

in completely opposite directions. Cosine similarity is calculated by taking the dot

product of the two feature vectors and dividing it by the product of their magnitudes. This

method is insensitive to the length of the vectors and primarily focuses on the difference

in the angle between them, making it commonly used in text analysis, audio signal

processing, and other fields.

The probability of input and the labeled sample being in the same class can be calculated

using cosine similarity as follows:

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑ 𝐴𝑖×𝐵𝑖

𝑛
𝑖=1

ට∑ 𝐴𝑖
2𝑛

𝑖=1 ×ට∑ 𝐵𝑖
2𝑛

𝑖=1

 (21)

Where 𝐴𝑖 and 𝐵𝑖 are the components of feature vectors A (input) and B (labeled sample),

respectively. 𝑛 is the dimensionality of the feature vectors. After computing the cosine

similarity between the input feature vector A and the labeled sample feature vector B, the

result falls within the range [−1,1], where 1 indicates that the feature vectors are identical;

0 indicates that the feature vectors are orthogonal, meaning there is no similarity; -1

indicates that the feature vectors are exact opposites. To transform the cosine similarity

into a probability range of [0,1] for belonging to the same class, the following formula

can be used:

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦+1

2
 (22)

This transformation maps the cosine similarity score from the range [−1,1] to the

probability range [0,1], where 0 represents low probability (no similarity) and 1

represents high probability (high similarity).

3.6.2 Euclidean similarity measure

Euclidean distance, also known as L2 distance, measures the straight-line distance

between two points in space [87]. In the context of feature vectors, it measures the actual

distance between two points in a multidimensional space.

Because the audio embeddings are trained through some form of distance

48

function/measure I, a natural way to evaluate the embedded MFCC audio pairs will be to

use that same distance function/measure used during training. As such, this thesis uses the

Euclidean distance function 𝐷𝐸 for training and will use the same metric for evaluating

MFCC audio pairs. The Euclidean similarity metric 𝑆𝐸 is described as follows:

𝑆𝐸൫𝑓(𝑋1), 𝑓(𝑋2)൯ = ‖𝑓(𝑋1) − 𝑓(𝑋2)‖2

= ඥ[𝑓1(𝑋1) − 𝑓1(𝑋2)]2 + [𝑓2(𝑋1) − 𝑓2(𝑋2)]2 + ⋯ + [𝑓𝐷(𝑋1) − 𝑓𝐷(𝑋2)]2

= ඥ∑ [𝑓𝑑(𝑋1) − 𝑓𝑑(𝑋2)]2𝐷
𝑑=1 (23)

Thresholding the Euclidean similarity 𝑆𝐸 by value 𝜏 is a critical step in evaluating the

models. This process defines a similarity measure scheme 𝑆, which determines whether

an image pair (𝑋1, 𝑋2) should be classified as a similar pair (0) or a dissimilar pair (1):

𝑓(𝑥) = ቊ
0, 𝑆𝐸൫𝑓(𝑋1), 𝑓(𝑋2)൯ < 𝜏

1, 𝑆𝐸(𝑓(𝑋1), 𝑓(𝑋2)) ≥ 𝜏
 (24)

The choice between these two similar measurement methods depends on the specific

requirements and the nature of the data. Sometimes, for optimal performance, both

methods may be combined with other methods for more complex similarity measures.

3.7 Model Evaluation

This section covers the performance measures applied in the thesis and aims to cover

their strengths and weaknesses.

3.7.1 Confusion matrix

Assume that S is a scheme used to determine whether two embeddings are equal or

different, where 𝑦𝑖,𝑗

^
= 𝑆൫𝑓𝑖 , 𝑓𝑗൯ = 0 denotes a positive pair (two samples from the same

call type), and 𝑦𝑖,𝑗

^
= 𝑆൫𝑓𝑖 , 𝑓𝑗൯ = 1 denotes a negative pair (two samples from the

different call type. The confusion matrix is defined in Siamese Network testing as:

Given that the model produces binary results in the form of 𝑦
^

= {0,1}, a binary confusion

matrix is instrumental. The structure of a binary confusion matrix is illustrated in Table 5.

Table 5 Confusion matrix for the problem of deciding if audio pairs belong to the same

call type

 Predicted Label

Total
population

= P + N

Positive (PP) Negative (PN)

Actual
Label

Positive (P) True positive
(TP)

False negative
(FN)

https://en.wikipedia.org/wiki/Statistical_population
https://en.wikipedia.org/wiki/Statistical_population

49

Negative (N) False positive
(FP)

True negative
(TN)

In the confusion matrix:

True Positive (TP): Audio pairs correctly predicted as positive (same call type pair).

given a similarity measure scheme between two audio clips 𝑆(𝑖, 𝑗) is defined as:

𝑇𝑃(𝑆) = {(𝑖, 𝑗) ∈ 𝑃𝑠𝑎𝑚𝑒ȁ𝑦
^

= 𝑆(𝑖, 𝑗) = 0} (25)

False Positive (FP): Audio pairs incorrectly predicted as positive when they are actually

negative (different call type pair):

𝐹𝑃(𝑆) = {(𝑖, 𝑗) ∈ 𝑃𝑑𝑖𝑓𝑓ȁ𝑦
^

= 𝑆(𝑖, 𝑗) = 0} (26)

False Negative (FN): Audio pairs incorrectly predicted as negative when they are

actually positive.

𝐹𝑁(𝑆) = {(𝑖, 𝑗) ∈ 𝑃𝑠𝑎𝑚𝑒ȁ𝑦
^

= 𝑆(𝑖, 𝑗) = 1} (27)

True Negative (TN): Audio pairs correctly predicted as negative.

𝑇𝑁(𝑆) = {(𝑖, 𝑗) ∈ 𝑃𝑑𝑖𝑓𝑓ȁ𝑦
^

= 𝑆(𝑖, 𝑗) = 1} (28)

3.7.2 Performance Measurement

Accuracy is a commonly used performance measure derived from the components of the

confusion matrix. It is defined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (29)

The accuracy represents the proportion of correctly classified instances out of all

instances in the dataset. It provides an overall measure of the model's correctness in its

predictions, regardless of class imbalance.

Accuracy tends to work well when the data is evenly distributed, i.e., there are about as

many positive pairs as negative pairs. However, if there were 1 positive pair for every 99

negative pairs, a majority label classifier would get 99% accuracy. Accuracy as a

performance measure for the tasks in this thesis will, therefore, be highly misleading, as

the real goal of a good classifier is to be able to correctly predict positive pairs as well.

Precision is a measure of the proportion of correctly identified similar pairs out of all

pairs predicted as similar call types. It is particularly useful when the focus is on the

quality of the model's ability to predict similar pairs accurately. A high precision indicates

that the model has a low rate of falsely labeling dissimilar pairs as similar, which is

crucial in applications where the cost of false positives is high. Precision (also called

positive predictive value) is the fraction of relevant instances among the retrieved

instances, written as a formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

𝐴𝑙𝑙 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑝𝑎𝑖𝑟𝑠
=

𝑇𝑃

𝑇𝑃+𝐹𝑃
 (30)

https://en.wikipedia.org/wiki/Positive_predictive_value

50

Where TP (True Positives) is the number of correctly identified similar pairs. FP (False

Positives) is the number of dissimilar pairs incorrectly classified as similar (Figure 26).

Figure 26 Precision and Recall [88]

Recall, also known as sensitivity or True Positive Rate (TPR), is a measure of the

proportion of correctly identified similar pairs out of all actual similar pairs. It is more

appropriate when the priority is on the quality of the model's ability to capture as many

similar pairs as possible, even at the expense of falsely including some dissimilar pairs. A

high recall indicates that the model has a low rate of missing similar pairs, which is

important in applications where the cost of false negatives is high. The performance

measure recall requires the number of TPs and FNs, and is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (31)

Where TP (True Positives) is the number of correctly identified similar pairs. FN (False

Negatives) is the number of actual similar pairs that were incorrectly classified as

dissimilar. By computing the ratio of true positives to the sum of true positives and false

negatives, the recall metric quantifies the model's ability to correctly capture similar

pairs.

Specificity is often used as a metric in classification tasks, particularly in evaluating the

performance of models that deal with binary or multi-class classification. When applied

51

to call type similarity calculation, specificity measures the ability of the model to

correctly identify negative instances (i.e., correctly identifying that a certain call type is

not similar).

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (32)

High specificity is crucial in scenarios where false positives (incorrectly identifying

dissimilar call types as similar) need to be minimized. This is particularly important in

applications where mistakenly grouping dissimilar call types together could lead to

negative outcomes, such as in customer service call routing or automated call analysis.

F1 score. A mixture of precision and recall yields a more comprehensive picture of a

model’s ability to predict/mistake audio pairs as similar. The F1-score arrives from these

expressions and is defined as follows:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (33)

The F1-score is a balanced performance measure that combines precision and recall,

making it robust for imbalanced datasets. However, it treats precision and recall equally,

which may not always be ideal, especially in tasks where the consequences of false

positives and false negatives differ significantly. In such cases, it's important to consider

the specific objectives of the task and potentially prioritize either precision or recall

accordingly.

A Receiver operating characteristic (ROC Curve) is a graphical plot used to evaluate

the performance of a binary classifier model. Typically, the true positive rate (TPR, i.e.,

Recall), also known as Recall, is plotted on the Y axis, and the false positive rate (FPR)

is plotted on the X axis. The top left corner of the plot represents the "ideal" point, with

an FPR of zero and a TPR of one.

Figure 27 ROC Curve [89]

ROC curves are constructed by plotting TPR against FPR at various threshold settings for

a similarity measure. They are commonly used in binary classification tasks to assess the

performance of a classifier, particularly when determining an optimal threshold for a

similarity measure.

52

The TPR represents the proportion of positive instances correctly identified, while the

FPR represents the proportion of negative instances incorrectly identified as positive. By

adjusting the threshold for the similarity measure and computing TPR and FPR at each

setting, a series of data points are generated to construct the ROC curve.

The Area Under the Curve (AUC) of ROC curve quantifies the classifier's performance,

with a higher AUC indicating better discrimination between positive and negative

instances. A value of 1 represents perfect classification, while 0.5 represents random

guessing.

Analyzing the ROC curve and AUC helps assess the trade-off between TPR and FPR at

different threshold levels, aiding in determining the optimal threshold for the similarity

measure and evaluating the overall performance of the classification model.

53

 CHAPTER 4 EXPERIMENTS AND RESULT

This chapter will introduce the implementation, training phase, and results obtained using

Convolutional Neural Network (CNN, as a comparable base line) and Siamese

Network methods for Southern Resident Killer Whale Call Type audio similarity. It is

divided into three sections: Experimental setup, Experiment for CNN, Experiment for

Siamese Network, and Result Analysis.

To address the three questions outlined in Section 1.3, based on the theoretical research

presented in Chapters 2 and 3, two sets of experiments are designed:

Section 4.2: Utilize a CNN model for multi-class Call Type Classification and evaluate

the performance of small samples on the CNN model to answer Question 1 in section 1.3:

⚫ Question 1: Is it feasible to develop deep learning models for SRKW call type

classification using small-scale, low-quality samples through advanced data

processing and augmentation techniques?

Section 4.3: Pairwise match samples of multi-class Call Types, converting the dataset

into pairs with either similar or dissimilar categories. Transform the small dataset of

multi-class Call Types into a large dataset of sample pairs. Utilize a Siamese network

model to measure the similarity between sample pairs and reframe the multi-class Call

Type Classification problem as a task of measuring the similarity between sample pairs,

addressing Questions 2 and 3 in section 1.3:

⚫ Question 2: Can small-scale samples be utilized to train models that compare the

similarity between SRKW call type data pairs, as an alternative to employ multi-

class classifiers for SRKW call type classification?

⚫ Question 3: Can a similarity model effectively discern SRKW call types that were

not presented in the training dataset?

4.1 Software and hardware

Software:

 PyTorch version 3.11

 CUDA toolkit 11.4

 OS: Ubuntu Linux version 22.0.3.

Hardware:

 CPU: Intel Xeon E5-2680 v4 @ 2.40GHz

 RAM: 64GB DDR3 2133MHz

 GPU: Nvidia Tesla P40 with 24GB VRAM

54

4.2 Classifying Multi-Call Type with CNN

The topic of this article is to measure the similarity between SRKW call audio segments.

The model is set as the Siamese neural network. However, as motivated and argued in

Chapter 2, there is a need to develop a CNN multi-classification model as a comparative

benchmark for the Siamese neural network. Therefore, this section describes the process

of training and testing a CNN multi-classification model using a five-fold increase in data

generated by denoising and four types of data augmentation methods applied to limited

existing data.

4.2.1 Data Preprocess

Currently, the SRKW data available to the author, as previously mentioned in Figure 2

and in Section 1.2, indicates that, except for Call types S36, S4d, S1d, and S2, which

have more than 50 high-quality original sample audio clips per type. More than 23 call

types have less than 5 samples per type. Additionally, there are 16 categories, such as S3

to S45 (denoted as Other S call types), which only have one sample.

Figure 2 (repeatedly illustrated)

As discussed in Section 2.1, to provide a sufficient number of samples for training a CNN

multi-class classification model, all the original audio files are first denoised. The

denoising algorithm used is implemented using the noisereduce library2, which employs

2 J. Karch, "noisereduce: Audio noise reduction in Python," GitHub repository:

https://github.com/timsainb/noisereduce.

https://github.com/timsainb/noisereduce

55

a frequency spectrum gating-based denoising algorithm. The method works by estimating

the noise profile based on audio segments assumed to be pure noise. It then utilizes this

profile to reduce the noise in the entire audio file.

After denoising the original audio files, the following four types of data augmentation are

applied to both the denoised and original files:

1. Pitch_shifting: Changes the pitch of the audio by a random amount within a

specified range.

2. Random_shift: Shifts the audio randomly in time within a specified range.

3. Volume_scaling: Scales the volume of the audio by a random factor within a

specified range.

4. Time_stretching: Stretches or compresses the time axis of the audio by a

specified rate.

This results in the generation of 8 additional audio samples from each original audio file

and its denoised copy. Therefore, for each Call Type, at least 10 samples will be available.

4.2.2. Prepare Training and Testing Dataset

As shown in Figures 2, among the top 21 classes with the largest number of samples

(S36-S46), to establish a performance comparison standard for CNN and Siamese

Network, all call types with more than 3 samples, excluding S7, Beluga are selected. This

is reserved for the Siamese Off-Training Class (refers to classes that never appeared in

the training set and are used to test Question 3, i.e., the ability of the Siamese network to

transfer learning to new call type). There are a total of 17 call types, and the "Wave file#"

column shows the number of available accurate standard samples. After denoising these

samples, 4x data augmentation is performed on both the denoised and non-denoised

original samples and used all of them for the CNN training set and the Siamese Network

training set. In the experiment, 88% of the samples (1,078 samples within 17 call types,

including 20% validation dataset) to train the CNN model and 12% (140 samples within

14 call types) to test the CNN model. The data distribution for each Call type category is

shown in Table 6.

Table 6 The training and test set data for CNN. Siamese Network will use the same data

to create pairs.

Call Type Non-Augmented Wave

Files

Augmented

Wave Files

Testing Wave

Files
Remark

ArgBermHBW 12 60 4 SX: Southern

Resident Killer

Whale

TX: Bigg‘s

(Transient) Killer

DelawSpwale 10 50 10

S10 19 48 10

S18 16 50 6

S1d 28 102 16

56

S2 38 190 12
Whales in

Northern Pacific

ArgBermHBW:

Bermuda

Humpback Whales

DelawSpwale:

Delaware Sperm

Whale

Sea wave: Ocean

background noise

S31 14 46 7

S35 4 13 5

S36 104 104 10

S40 2 5 4

S44b 18 90 7

S4d 48 239 16

S5 3 10 4

S6 8 37 11

S9 2 10 10

Seawave 4 4 4

T7 4 20 4

Grand Total 334 1078 140

Figure 28 Split my data for training and testing [90]

In data processing part, following functions are done in python scripts:

1. Imports Required Libraries:

pandas and numpy for data manipulation, audio processing libraries like librosa,

noisereduce to de-noise, generate mel spectrogram, machine learning (sklearn), deep

learning (torch), and progress tracking (tqdm), etc.

2. Creates a DataFrame with Metadata:

57

Creates a DataFrame (data_df) to store metadata such as filenames, target classes, and file

paths, only audio files with a duration of 4 seconds or less are included.

3. Defines a Function to Compute Log-Mel Spectrograms:

The audio files are normalized firstly. The mel spectrogram is then calculated using

librosa.feature.melspectrogram, followed by converting the mel spectrogram to a

logarithmic scale with librosa.power_to_db..

4. Processes and Pads Audio Features:

When training a neural network, it is crucial to maintain a consistent feature size for each

sample. However, due to the varying lengths of audio files, the time dimension (number

of frames) in the directly extracted log-mel spectrograms will differ. Therefore, each

audio file is converted into a log-mel spectrogram, and delta features are stacked.

Subsequently, each feature array is either padded or trimmed to ensure a uniform shape.

5. Store the vectors in an HDF5 database.

The training and testing datasets are in separate H5 databases.

4.2.3. Create Batch and DataLoader

When training begins, one batch (with the batch size typically being a power of 8, such as

128, 256, etc.) of input features, containing a list of audio file names, will be randomly

fetched by the Data Loader, and the pre-processing audio transforms will be applied to

each audio file. It will also fetch a batch of the corresponding target Labels containing the

class IDs. Thus, it will output one batch of training data at a time, which can directly be

fed as input to deep learning model.

Figure 29 Data Loader applies transforms and prepares one batch of data at a time [90]

58

The data transformation process begins with loading the audio files into a Numpy array,

structured as (num_channels, num_samples). Most audio is sampled at 44.1kHz, with a

duration of approximately four seconds, resulting in 176,400 samples for single-channel

audio ((1, 176,400)) and 192,000 samples for two-channel audio sampled at 48kHz ((2,

192,000)). Given the variations in channels and sampling rates, the audio is resampled to

a standard 44.1kHz and two channels. The duration is also standardized to four seconds,

ensuring uniform array dimensions of (2, 176,400) for all audio clips.

Data augmentation through time shifting is then applied, randomly moving each audio

sample forward or backward without changing its shape. The augmented audio is

converted to a Mel Spectrogram with dimensions (num_channels, Mel freq_bands,

time_steps) = (2, 60, 173). Subsequently, SpecAugment is used to apply random time and

frequency masking, leaving the shape of the Mel Spectrogram unchanged.

Each batch of data, selected randomly for each training epoch, consists of two tensors:

one containing the Mel Spectrograms as the feature data (X) and the other containing the

numeric class IDs as the target labels (y). The batch typically has the dimensions

(batch_sz, num_channels, Mel freq_bands, time_steps) for the features and (batch_sz) for

the labels. For instance, a batch might have the shape (16, 2, 64, 344) for X and (16) for

y.

The transformed data is now ready to be input into the deep learning model.

4.2.4. CNN Model Definition

The data processing steps that were just completed represent the most unique aspects of

the audio classification problem. The model and training procedure are like what is

commonly used in a standard image classification problem and are not specific to audio

deep learning.

Since the audio training data is converted to spectrogram images, a CNN classification

architecture could process them. Figure 30 illustrates a typical four convolutional blocks

that generate feature maps. That data is then reshaped into required format so it can be

input into the linear classifier layer, which finally outputs the predictions for the 17 call

types (S1, S2, …).

59

Figure 30 The model takes a batch of pre-processed data and outputs class predictions

[90]

Here are details about how CNN model processes a batch of data:

⚫ A batch of mel spectrograms is input to the model with shape (batch_size,

num_channels, Mel freq_bands, time_steps), i.e., (64, 2, 60, 173).

⚫ Each CNN layer applies its filters to step up the spectrogram depth, i.e., the number

of channels. The spectrogram width and height are reduced as the kernels and strides

are applied. Finally, after passing through the four CNN layers, the output feature

maps are obtained, i.e., (64, 64, 4, 32).

⚫ This gets flattened to a shape of (64, 8192) and then input to the Linear layer.

⚫ The Linear layer outputs one prediction score per class, i.e., (64, 17) (17 call types in

the training set).

4.2.5. Training

The final CNN model is illustrated in Figure 31.

60

Figure 31 CNN for 17 Call type classification structure

The functions for the optimizer, loss, and scheduler were defined to dynamically adjust

the learning rate as training progressed, facilitating faster convergence within fewer

epochs. The model was trained for 500 epochs, with each iteration processing a batch of

data. Loss and accuracy metrics, which measure the percentage of correct predictions,

were tracked throughout the training process.

As shown in the results of the code execution above, in each Epoch, both Training and

Testing Loss steadily decrease. Meanwhile, the corresponding model's prediction

accuracy on the Test dataset, consisting of 140 samples, stabilizes at around 97.8%. The

trends of Training and Testing Loss, as well as the prediction Accuracy over Epochs, are

illustrated in Figure 32.

61

.

Figure 32 The Loss and Accuracy Trend over training Epochs. X-axis displays the

number of epoch and Y-axis display the unit of loss (left figure) or Accuracy during

training (right figure)

4.3 Siamese network

4.3.1. Audio Preparation

To facilitate comparison with the CNN model, the training, validation and test samples of

SRKW Call types used in Section 4.2 were utilized for training the Siamese network in

this section. As mentioned in Figure 25, e.g. 10 call types, each containing 2 samples,

following data pairs could be generated:

• 10 similar pairs, where each pair comprises samples from the same call type.

• 45 dissimilar pairs, representing comparisons between samples from different call

types.

The 10 similar pairs consist of audio pairs from the same call type. The quantity of

dissimilar pairs can be calculated using the combination formula: 𝐶(𝑛, 𝑘) =
𝑛!

𝑘!(𝑛−𝑘)!
 . For

example, 𝐶(10,2) =
10!

2!(10−2)!
= 45. Through this approach, even if each call type has

only one sample, a large number of similar and dissimilar samples can be created for

training Siamese network model by denoising, applying four types of data augmentation,

pairwise comparison. Table 7 displays training and testing data pairs for Siamese Model

training, validation and testing.

0.

1.

2.

3.

4.

1 37 73 109145181217253289325361397433469

Training Loss Validation Loss

0.

0.225

0.45

0.675

0.9

1 43 85 127169211253295337379421463

Accuracy

62

Table 7 Pair data set for Siamese network training and testing

To improve the generalization ability of the model since the predicted call types not

present in the training set might be similar to the calls of certain marine mammals, this

paper has selected Bigg’s (Transient) Killer Whales (T7) in the Northern Pacific,

Bermuda Humpback Whales (ArgBermHBW), and Delaware Sperm Whales

(DelawSpWhale) to be added to the training set. Additionally, to prevent the background

noise of Seawave Noise (Seawave Noise) from being mistakenly identified as a specific

call type of SRKW, Seawave noise has been added as a separate category of sound to the

training set.

An inherent advantage of the Siamese network, in contrast to the CNN multi-class model,

lies in its capability to infer the similarity of call type even absent from the training

dataset. This attribute addresses Question 3 in section 1.4. To address this query, the

performance of 14 call types not present in the training dataset, as delineated in Table 7,

was evaluated. Column all pairs in table 4-3 refer to the total number of sample pairs,

including those from the same call type (assigned label '0', indicating both items in the

pair are from the same call type, e.g., both from S13) and those from different call types

(assigned label '1', indicating items in the pair are from different call types, e.g., from S13

and S7, as indicated in the column 'Similar pairs').

63

Table 8 Original audio clip, denoised and augmented files and formed pairs of 14 off-

train call types

4.3.2. Audio Pre-processing and saving into H5 database

Training data containing audio file paths cannot be directly input into a model. Audio

data must be loaded from the files and process it into a format expected by the model.

Since loading the Mel Spectrogram into GPU memory occupies too much space, this

section will create a dataset of Mel Frequency Cepstral Coefficients (MFCC) features

from audio files, then save this data to an H5 database for subsequent model training.

Here is the data processing workflow:

1. Computing MFCC: This function takes an audio signal and its sample rate as inputs

and computes MFCC features. MFCCs are calculated using a specified number of

coefficients (n_mfcc), FFT window length (n_fft), and hop length between frames

(hop_length). It then converts these features to a decibel scale to normalize

amplitude variations. The function audio2mfcc loads an audio file from a specified

file path, computes its MFCC features, and then pads or truncates them to a fixed

length (max_pad_len). This ensures that all feature arrays have the same shape,

which is crucial for training machine learning models. In the experiment, the shape

of mfcc vector will be (20, 432).

2. Training Data Generation: This function generates pairs of MFCC features from

audio files located in subdirectories of a given base path. It organizes the audio files

into pairs where each pair can belong to the same class (label 0) or different classes

(label 1). This is used for tasks like similarity learning or classification. The function

also keeps track of the filenames of the audio files in each pair for reference.

3. Standardize the datasets with the mean and standard deviation calculated from the

training dataset.

64

4. Data Saving to H5 database: After generating the pairs and labels, this function

saves the MFCC feature data into an H5 file. This file format is efficient for storing

large datasets and supports incremental data loading, which is beneficial for training

machine learning models with large datasets.

Operational Workflow: Upon calling save_to_h5 to write the data, and considering the

substantial memory requirements (as noted, at least 32GB of RAM is needed), the script

is optimized for performance by handling data in batches and cleaning up memory

frequently. The script uses tqdm for progress tracking, which helps in monitoring long-

running data processing tasks, especially when dealing with large datasets.

This workflow is optimized for applications in audio analysis, which can identify,

classify, or compare sounds based on their MFCC features. It is particularly useful in

fields like digital signal processing, speech recognition, and ambient sound analysis.

Please refer to https://github.com/jackzhang2000/SRKW_CallType to obtain the details

of data processing code.

4.3.3. Model architecture

Figure 33 represents the architecture of a Siamese network implemented in my

experiment for comparing two input vectors of SRKW call audio clips.

Figure 33 The architecture of Siamese network in the experiment

https://github.com/jackzhang2000/SRKW_CallType

65

Each input, presumably a pre-processed MFCC (Mel Frequency Cepstral Coefficients)

feature map from call samples, passes through identical branches of the network,

ensuring that the same transformations are applied to both inputs. The network starts with

a convolutional layer that uses 24 filters of size 1x6x6, introducing the first level of

spatial feature extraction. This layer is followed by a ReLU activation function, which

adds non-linearity to the processing flow, allowing the network to learn more complex

patterns.

Subsequent layers include more convolutional layers with increasing numbers of filters

(48 and then 64), each followed by a ReLU activation. These layers are designed to

progressively extract higher-level features from the input. Max pooling layers follow

some of the convolutional layers to reduce the spatial dimensions of the feature maps,

thereby decreasing the computational complexity and controlling overfitting by

abstracting the features further.

After the final pooling step, the output is flattened and fed into a series of fully connected

layers. The first has 512 units, and the output from this layer is again processed by a

ReLU activation function. This layer is crucial as it begins to consolidate the learned

features into a form that represents the input in a more abstract, compressed space. The

next fully connected layer reduces the dimensionality further to 128 units, preparing the

output for the final comparison.

The outputs from each branch of the Siamese network are vectors of size 1x128, which

are then typically used to compute a similarity measure through a contrastive loss

function. This function will calculate the distance between the two vectors, facilitating

the determination of whether the inputs are similar or not based on learned metrics.

This architecture highlights the power of CNNs in feature extraction and the effectiveness

of Siamese networks in learning nuanced differences and similarities between paired

inputs, leveraging shared weights to maintain symmetry in learning. Such setups are

integral in applications requiring precise and reliable comparison metrics, further

enhanced by the network’s ability to learn from relative comparisons rather than absolute

feature sets.

4.3.4. The training loop for batches of pairs

The training loop calls for batches of SRKW call pairs, involving following operations:

4.3.4.1 Setting Up the Loss Function and Optimizer

Contrastive Loss function is designed for learning the similarities or differences between

input pairs, commonly used in Siamese networks or triplet networks. The Adam

optimizer is used to optimize model parameters with a specified learning rate e.g. 0.001

and weight decay e.g. 0.0001 to control learning progress and prevent overfitting.

66

4.3.4.2 Training Loop Setup

The total number of training epochs is set to 200, providing ample opportunity for the

model to converge and optimize its performance. However, to prevent unnecessary

overfitting or excessive training, early stopping is implemented. This mechanism relies

on a patience parameter, which defines the tolerance for stagnation in improvement.

Specifically, if there is no observed improvement in the validation loss over a period of

five consecutive epochs, the training process is halted prematurely. This helps ensure that

the model does not continue to train when further improvements are unlikely, thus saving

time and computational resources.

This method, driven by validation performance, was observed to stop training early at

epoch 46 in my experiment, as shown in Figures 36, due to the validation loss failing to

improve for five consecutive epochs.

In the experience, the training process stopped early at epoch 46, as Figure 34, due to the

loss not improving for 5 consecutive epochs.

Figure 34 training stopped at epoch 46 due to the loss not improving for 5 consecutive

epochs

During training, a variable referred to as best_loss is maintained to track the lowest

validation loss encountered. This value is used as a benchmark for early stopping

decisions. When the model achieves a validation loss lower than the current best_loss,

this value is updated, signaling that the model's performance has improved. If, however,

no improvement is observed within the defined patience period, the training is terminated

to avoid over-optimization on the training data, thus preserving the model’s

generalization capabilities.

4.3.4.3 Inside the Epoch Loop

During training, batches of paired input data and target labels are loaded from the data

loader. The inputs and targets are moved to the configured device (GPU or CPU). Inputs

67

are reshaped by adding a channel dimension, as convolutional layers require a four-

dimensional input (batch size, number of channels, height, width), with the input

dimensions in this experiment being (128, 2, 20, 432).

4.3.4.4 Loss Calculation and Optimization

In the process of loss calculation and optimization, the gradients from the previous step

are cleared using the zero_grad method, ensuring that the model is prepared for a new

cycle of backpropagation. Mixed precision training is enabled through the autocast

functionality, which enhances training efficiency while simultaneously reducing memory

usage. To calculate the loss, the outputs from the model are passed to the designated loss

function, allowing the loss for the current batch to be computed. Following this,

backpropagation is employed to compute the gradients with respect to the model

parameters, based on the calculated loss. Gradients are then scaled using GradScaler

before the model weights are updated, allowing for more stable training, especially when

using lower precision arithmetic.

At the end of each epoch, the validation set is utilized to evaluate the model's

performance. The validation set outputs are passed to the same loss function as used

during training, and the validation loss is computed. This validation process is critical for

assessing the model's generalization ability to unseen data. By monitoring the validation

loss throughout training, early signs of overfitting or underfitting can be detected,

enabling necessary adjustments to be made to the model or its hyperparameters, ensuring

that the training process does not solely optimize for the training data.

Finally, once the training is complete, the trained model parameters are saved, and the

training dataset is cleared from memory to free up resources, ensuring that the system is

ready for further tasks or evaluations.

4.4 Model Result and Discussion

Referring to section 1.3, there are three research questions to be answered. The

experiment 4.2 focuses on Question 1, which is restated below:

4.4.1 Question 1: Is it feasible to develop deep learning models for

SRKW call type classification using small-scale, low-quality samples

through advanced data processing and augmentation techniques?

According to the measurement defined in section 3.7, Two CNN classification models

with both Non-Augmented Wave Files and Augmented Wave Files as Table 5 in Section 4.2.2,

and then test and compare their performance with same Testing Wave Files in table 6.

Table 6: CNN Model Train data and Testing Data (repeated)

Call Type Non-Augmented Wave

Files

Augmented

Wave Files

Testing Wave

Files
Remark

68

ArgBermHBW 12 60 4 SX: Southern

Resident Killer

Whale

TX: Bigg‘s

(Transient) Killer

Whales in

Northern Pacific

ArgBermHBW:

Bermuda

Humpback Whales

DelawSpwale:

Delaware Sperm

Whale

Sea wave: Ocean

background noise

DelawSpwale 10 50 10

S10 19 48 10

S18 16 50 6

S1d 28 102 16

S2 38 190 12

S31 14 46 7

S35 4 13 5

S36 104 104 10

S40 2 5 4

S44b 18 90 7

S4d 48 239 16

S5 3 10 4

S6 8 37 11

S9 2 10 10

Seawave 4 4 4

T7 4 20 4

Grand Total 334 1078 140

4.4.2 Result of Question 1: Classification accuracies vary by different

Call types by CNN

As described in table 6, two multi-class CNN models are trained using raw data of 17 call

types (334 samples, after denoising) and augmented data (1,078 samples). Both models'

classification performance is evaluated on a test set of 140 samples using the confusion

matrix as well as the number of accurately recognized samples (True Positive) and the

percentage of true positives relative to the actual samples in each call type. True Positive

Rate%, also called Recall% is defined as:

𝑇𝑃(𝑆) = {(𝑖, 𝑗) ∈ 𝑃𝑠𝑎𝑚𝑒ȁ𝑦
^

= 𝑆(𝑖, 𝑗) = 0}, i.e. 𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁

When train the CNN model on augmented data, which feature engineering approach need

to be determined. The testing results of CNN model on Mel Spectrogram and MFCC

encoded data are compared as table 9.

69

Table 9 The testing performance of Mel Spectrogram featured training data vs MFCC

featured training data

The results indicated that the CNN model performed better on all performance metrics

compared Mel spectrogram to MFCC-encoded data. Although the accuracy (97.8%) and

specificity (98.8%) of the Mel spectrogram slightly outperformed those of MFCC (96.6%

and 98.2%, respectively), the recall, precision, and F1 score (81.4%) of the Mel

spectrogram CNN model were significantly higher than those of MFCC (69.3%).

Consequently, Mel spectrogram data is applied to train CNN model.

In the CNN model, an interesting phenomenon was observed: while the overall recall,

precision, and F1 score of the total samples were equal, these metrics varied when broken

down by each call type. Upon examination, it was found that for each call type, the false

negatives (FN) were calculated as the actual positive (P) count minus the true positives

(TP), and the false positives (FP) were calculated as the predicted positive (P) count

minus the true positives (TP). Although the actual positive count did not equal the

predicted positive count for each call type, the sum of predicted positives across all call

types equaled the sum of actual positives. This led to the equality:

∑(𝑇𝑃)

∑(𝑇𝑃+𝐹𝑁)
=

∑(𝑇𝑃)

∑(𝑇𝑃+𝐹𝑃)
 (10)

Thus, the overall recall equaled the overall precision. Since the F1 score is derived

directly from recall and precision, the overall F1 score also equaled the recall and

precision. Nonetheless, metrics of recall, F1 score, and accuracy could be still used to

evaluate the performance of the CNN model. Table 11 displays the performance of Non-

Augmented Data (334 samples in table 6) trained CNN Model on FSL Testing Data (140

samples in table 6)

Model Accuracy
Recall

(Sensitivity)
Specificity F1 Precision Training Wave# TN# TP# FN# FP#

CNN with Mel Mel
Spectrogram

97.8% 81.4% 98.8% 81.4% 81.4% 1,078 2,214 114 26 26

CNN with MFCC 96.6% 69.3% 98.2% 69.3% 69.3% 1,078 2337 97 43 43

70

Table 10 The testing performance of Non-Augmented Data (334 samples in table 6)

trained CNN Model on FSL Testing Data (140 samples in table 6)

VS

Table 11 the performance of augmented data (1,078 samples in table 6) trained CNN

Mode on FSL augmented testing data (140 samples in table 6)

The performance of two models was analyzed using their confusion matrices. In the first

confusion matrix (table 10), the model accurately predicted classes such as S36, S6,

Bermuda Humpback Whales, S31, S4, Sea Wave, and T7, but showed lower accuracy for

other classes. Notably, there was confusion in predicting Delaware Sperm Whale, S9,

S18, S35, S10, S2, and S5, likely due to insufficient training samples. In the second

confusion matrix (table 11), the model correctly predicted most classes, though prediction

accuracy was lower for S18, S10, S44, Sea Wave, and S5, indicating some confusion.

71

Based on these results, it can be observed that the second model performs better across

more call types, though some confusion is exhibited in predicting call types S5, S10, and

S44. Consequently, it can be concluded that training a CNN multi-class classification

model on a small annotated dataset significantly impacts classification performance. An

overall recall rate of only 66.4% was achieved by the model trained on the 334 non-

augmented training set. While data augmentation improves the accuracy of the CNN

model to 97.8%, the overall recall rate remains around 81.4%.

As demonstrated by the two experiments above, it is evident that achieving good

recognition performance with CNN models becomes challenging when numerous call

type categories have very few annotated samples (fewer than 20 annotated audio clips per

call type) and poor data quality. In the research presented in chapters 3, a method of

pairwise matching within and between categories was adopted, using Siamese networks

to identify the similarity of sample pairs for category recognition. The following

experiments present the test results on the three datasets used in experiment 1. The

second experiment, based on the Siamese network, is addressed in next section.

4.4.3 Question 2: Can small-scale samples be utilized to train models

that compare the similarity between SRKW call type data pairs, as an

alternative to employ multi-class classifiers for SRKW call type

classification?

According to the method in section 4.2.2, similar and dissimilar audio pairs were

constructed from augmentation data of 17 call types, the layout of training data is

illustrated in table 12.

Table 12 The layout of input training data for Siamese Network Model

When Wave File1 and Wave File2 are from the same call type, the actual label is 0,

otherwise is 1. In this experiment, the Siamese Network model used 730 samples from a

data-augmented training dataset of 1078 samples. The number of samples per call type

did not exceed 86, with the smallest call type having only 12 training samples. The reason

for not using all 1,078 samples was that the pairing operation required too much memory

on the training computer, so only a portion (67.8%) of CNN model training dataset was

72

selected. The distribution of these 730 samples by call type is shown in the "Augmented

wave Files for Training" column in table 13. For the test dataset, all 140 test samples

from the CNN model were used, with their distribution presented in the "Wave Files for

Testing" column in table 6.

Table 13 Siamese Network Train data Pairs and Testing Data Pairs

Call Type Augmented
wave Files

for Training

Augmented Wave Files
Generated Pairs for

Training

Wave
Files
for

Testing

Wave Files
Generated Pairs

for Testing

Remark

Similar
(Label=0)

Dissimilar
(Label=1)

Similar Dissimil
ar

ArgBerm
HBW

80 3,160 28,480 4 6 280 SX: Southern
Resident

Killer Whale

TX: Bigg‘s
(Transient)

Killer Whales
in Northern

Pacific

ArgBermHB
W: Bermuda

Humpback
Whales

DelawSpwal
e: Delaware

Sperm
Whale

Sea wave:

Ocean
background

noise

DelawSp
wale

36 630 22,068 10 45 1,160

S10 41 820 17,876 10 45 740

S18 40 780 22,120 6 15 600

S1d 60 1,770 6,540 16 120 304

S2 55 1,485 9,295 12 66 420

S31 46 1,035 14,260 7 21 441

S35 16 120 7,632 5 10 420

S36 71 2,485 46,789 10 45 1,300

S40 10 45 6,490 4 6 504

S44b 46 1,035 2,898 7 21 84

S4d 86 3,655 19,264 16 120 752

S5 12 66 372 4 6 16

S6 60 1,770 29,580 11 55 979

S9 20 190 11,860 10 45 1,060

Seawave 20 190 860 4 6 32

T7 31 465 4 6

Grand
Total

730 19,701 246,384 140 638 9,092

From table 13, it can be observed that 730 samples generated 19K similar pairs and 246K

dissimilar pairs, which were utilized for training the Siamese network similarity model.

Additionally, CNN testing data from 140 samples were used to generate 638 similar pairs

and 9,092 dissimilar pairs for evaluating the performance of the Siamese network model.

The testing and training data involved the same call types but were recorded from

different sources of underwater sound samples. The test results reflected those of the

training dataset, with the inclusion of an additional column labeled "Euclidean distance"

and its corresponding normalized values. The calculation for the normalized distance is

defined as follows:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝑀𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝑎𝑥𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝑀𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 (11)

73

A smaller normalized Euclidean distance indicates a higher likelihood that two wave files

are similar. Assuming a threshold of 0.5, where a Euclidean distance < 0.5 predicts the

test sample pair as belonging to the same category, and a distance ≥ 0.5 predicts the pair

as belonging to different categories. The size of this threshold significantly affects the

True Positive % and True Negative%: setting the threshold too high increases True

Positive % but decreases True Negative%, so it must be set at a reasonable level. The

descriptions of four terminologies are:

⚫ True Negative (TN): When Pair is 1(Dissimilar) Predict as 1 (Dissimilar), it means

that the model correctly predicted that a pair of negative items (wave files from

different call type).

⚫ True Positive (TP): When Pair is 0(Similar) Predict as 0 (Similar), it means that the

model correctly predicted that a pair of positive items (wave files from same call

type).

⚫ False Negative (FN): In the case of "FN Pair=0 Pred=1," it means the model

incorrectly predicted that a pair of wave files are not similar (negative prediction),

but they are actually from the same call type (false negative).

⚫ False Positive (FP): "FP Pair=1 Pred=0" signifies that the model incorrectly

predicted that a pair of items are similar (positive prediction), but they are actually

not from the same call type (false positive).

Table 14 The layout of Siamese Network Model scoring result on testing data set

4.4.4 Result of Question 2: Recall % of Siamese network exceeds the

Recall % of CNN, meanwhile other indicators are also excellent

Based on the experiments conducted, by setting the threshold of normalized Euclidean

distance to different values (ranging from 0 to 1), a series of performance metrics were

obtained on the testing dataset, as shown in Figure 37. It can be concluded that at a

normalized value cutoff of 0.3, the combination of accuracy (98.1%), recall (91.5%),

specificity (98.6%), F1 score (86.5%), and precision (82%) achieves a good balance of

metrics. Among these, the slightly weaker metrics are recall (91.5%) and precision

(82%). The recall indicates that 91.5% of all tested similar samples were correctly

identified, which is acceptable, especially considering that the CNN model on the same

dataset achieved a recall level of only 81% (table 9). However, precision, at 82%, is the

slightly less satisfactory metric, indicating that 18% of different call type samples were

incorrectly classified as the same call type. Nonetheless, this is considered acceptable

74

given the small sample classification context, where each annotated sample for a call type

is rare. Correctly identifying a specific call type, such as S35, is deemed more important

than mistakenly classifying a sample as S35.

Figure 35 Accuracy, Recall, Specificity F1, Precision by Normalized Euclidean Distance

Cutoff (Figure Format)

X-axis: Normalized Euclidean Distance Cutoff; Y: % on Accuracy, Recall, Specificity,

F1, Precision; Normalized Euclidean Distance is cutoff to 0.3 to achieve the balance of

good performance. Table 15 also prove this cutoff is reasonable.

Table 15 Accuracy, Recall, Specificity F1, Precision by Normalized Euclidean Distance

Cutoff (Table Format)

The performance of the Siamese network model and the CNN model on each Call Type

can be compared. Since Call Types are recognized through different mechanisms by the

Siamese network and CNN, S1 can be used as an example. In the Siamese network, the

Euclidean distance between each S1 sample and other S1 samples is calculated, as well as

the Euclidean distance between S1 samples and non-S1 samples. If the normalized

Euclidean distance is below 0.3, it is the same Call Type. In contrast, the CNN model

0.00%

25.00%

50.00%

75.00%

100.00%

0.1 0.12 0.15 0.2 0.235 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Accuracy Recall (Sensitivity) Specificity F1 Precision(TP%)

75

calculates the probability of each audio clip belonging to one of 17 Call Types and

classifies it as the Call Type with the highest probability, e.g. S1 call type.

For ease of comparison, let's first compare the overall performance. The comparison

between Siamese Network and CNN is shown as table 16. Due to the memory limitations

of the training machine, even though only 730 training samples (67% of the CNN training

samples) were used to train the Siamese Network model, the annotated samples for each

SX call type are very rare. Therefore, achieving high sensitivity (Recall) should be the

primary objective of this study, as it helps identify as many similar Call Type samples as

possible. The trained Siamese Network model significantly outperformed the CNN model

by 10% in Recall, a metric highly valued in this experiment, demonstrating the Siamese

Network model's superior ability to identify call types compared to the CNN.

Furthermore, while the accuracy of the Siamese Network model (98.5%) appears to only

slightly surpass that of the CNN model (97.8%), it is important to note that the proportion

of true negatives (TN) far exceeds the number of true positives (TP). Thus, the high

accuracy of the CNN model is primarily due to its high recognition rate of a large number

of non-target Call Type samples (negative samples).

For ease of comparison, the overall performance is first compared. The comparison

between the Siamese Network and CNN is presented in table 16. Due to memory

limitations of the training machine, only 730 training samples (67% of the CNN training

samples) were used to train the Siamese Network model. However, the annotated samples

for each SX Call Type are very limited. Therefore, it is expected that the model should

achieve high sensitivity (Recall) to help identify as many similar Call Type samples as

possible. The trained Siamese Network model outperformed the CNN model in Recall by

10%, a metric highly prioritized in this experiment, demonstrating the superior ability of

the Siamese Network to identify Call Types compared to the CNN. Furthermore, while

the accuracy of the Siamese Network model (98.5%) appears to slightly surpass that of

the CNN model (97.8%), it should be noted that the proportion of true negatives (TN) far

exceeds that of true positives (TP). Thus, the high accuracy of the CNN model is

primarily attributed to its high recognition rate of a large number of non-target Call Type

samples (negative samples).

Table 16 The performance of Siamese Network vs CNN Model on same testing data

Next, the overall model performance will be broken down by each Call Type to examine

the performance of individual Call Types and their impact on the overall model

performance. The performance of Siamese Network and CNN on each Call Type in the

test set is presented in Tables 17 and 18.

76

Table 17 The performance by Call Type of Siamese Network Model on testing data pairs

generated by CNN model testing data

VS

Table 18 The performance by Call Type of CNN Model on same testing data

In the breakdown of all SRKW Call Type metrics, the Siamese Network model

consistently outperforms the CNN model. The only exception for the Siamese Network is

a slightly lower Recall and Precision for S10. In contrast, the CNN model exhibits poor

performance in Recall and Precision for S10, S18, S1d, S44b, and S5. Given that the

Siamese Network model was trained with fewer samples than the CNN model, this

further demonstrates the superior predictive power of the Siamese Network model when

trained on small sample datasets.

77

Since the Siamese Network can compare the similarity of different SRKW Call Types

within the training set, it is considered whether this capability can be extended to explore

whether the similarity model can be used to compare SRKW Call Types not present in

the training set (i.e., out-of-training data), or even the audio files of non-SRKW marine

mammals. Therefore, Question 3 is investigated in following section.

4.4.5 Question 3: Can a similarity model effectively discern SRKW call

types that were not presented in the training dataset?

In this experiment, the performance of the trained Siamese Network model will be tested

using 14 out-of-training Call Types (Call Types not present in the Siamese Network

training data) from testing samples. Each Call Type contains at least 6 wave files to

create similar and dissimilar pairs. The distribution of these 199 samples by Call Type is

presented in the "Wave Files for Testing" column in table 19. To evaluate the

performance of the trained Siamese Network model, 1,909 similar pairs and 16,812

dissimilar pairs were generated, as illustrated in table 8.

Table 8: 14 out-of-training call type testing data pairs to evaluate the transfer learning

capabilities of the trained Siamese Network (repeated)

The Siamese Network model trained in Experiment 2 was directly utilized to calculate the

Euclidean distances for the 18,721 sample pairs listed in table 8. Since these 14 out-of-

training Call Types in the testing data pairs are completely different from the 17 Call

Types in the training set, this experiment primarily tests the generalization and predictive

capability of the Siamese Network model trained on the training set.

As shown in table 19, the performance on the out-of-training Call Type testing dataset is

notably worse compared to the performance on the training Call Type testing dataset, as

presented in table 17. The highest F1 score is approximately 50%, and the highest

78

precision is 63.8%, which are lower than the 88.8% and 88.2% levels observed in the in-

training Call Type testing dataset. Although individual metrics such as accuracy, recall,

specificity, and precision may approach the levels seen in the in-training Call Type

testing dataset, such as 90.7%, 96.8%, and 98.7%, it remains challenging to balance all

these metrics simultaneously.

Table 19 The performance of Siamese network on Out-of-training call type testing data

pairs by different Normalized Euclidean Distance Cutoff (Table format)

Figure 36 Accuracy, Recall, Specificity F1, Precision by Normalized Euclidean Distance

Cutoff (Figure format)

X-axis: Normalized Euclidean Distance Cutoff; Y: % on Accuracy, Recall, Specificity,

F1, Precision

A cutoff value of 0.3 has been selected for testing the model. This cutoff value results in

achieving approximately 80% in Accuracy, Recall, and Specificity simultaneously, but it

reduces Precision to 30.78%, leading to a corresponding drop in the F1 value to 44.37%

(lower than the F1 score of 50.89% when the cutoff is set at 0.235). This indicates that to

0.0%

25.0%

50.0%

75.0%

100.0%

0.1 0.13 0.14 0.15 0.2 0.2330.235 0.24 0.26 0.3 0.4 0.5 0.6 0.7 0.9

Accuracy Recall (Sensitivity) Specificity F1 Precision

79

correctly identify approximately 80% of the similar or dissimilar sample pairs, a 70%

false positive rate must be accepted. Given that these Call Types are from a small dataset,

during the final model deployment, the number of false positives can be mitigated

through additional manual review.

Table 20 14 out-of-training call type testing data pairs to evaluate the transfer learning

capabilities of the trained Siamese Network

4.4.6 Result Analysis for Question 3: Good Accuracy, Recall, Specificity

with Reasonable F1, and Low Precision

The test results for out-of-training Call Types at a cutoff of 0.3 include four non-SRKW

Call Types. However, the primary objective of this experiment is to identify the similarity

of SRKW Call Types (class SXX). Therefore, these four non-SRKW Call Types in the

testing result could be excluded, and the performance differences of the Siamese Network

at a cutoff of 0.3 on the 10 untrained SRKW Call Types are further analyzed.

Additionally, the SRKW Call Type S46, which has problematic data quality, is

temporarily excluded because the number of its dissimilar sample pairs is 0 (as shown in

table 8), which would distort the overall data distribution. The performance details on

these 9 out-of-training SRKW Call Types are presented in table 21, with rows arranged in

descending order of accuracy.

Table 21 The performance of the Siamese Network on 9 out-of-training SRKW call type

testing data pairs at a normalized Euclidean distance cutoff of 0.3

80

Compared to the superior performance of the Siamese Network on in-training Call

Types’ testing dataset, achieving similar performance on the out-of-training Call Type

dataset proves challenging. This is understandable, as transfer learning and generalization

are difficult to achieve. However, the generalization capability of the Siamese Network is

still evident. Therefore, the analysis and response to Question 3 are as follows:

1. At cutoff = 0.3, the model could identify 88.21% of SRKW call type similar pairs

and experiencing a false positive rate of 67.8% (i.e. 100% - Precision), the specificity

for negative pairs can reach as high as 78.5%. The overall accuracy also achieves a

high level of 79.55%. The overall F1 value also reaches a reasonable level at

48.28%.

2. Most out-of-training SRKW call types (from S7 to S14) demonstrate good

performance in terms of Accuracy, Recall, and Specificity, indicating that the model

reliably identifies the majority of out-of-training SRKW call types. This confirms the

model's generalization and transfer learning capabilities.

◼ Lower Recall rates are observed for three Call Types (such as S3, S17, S19),

suggesting that further optimization of the model is required to enhance

recognition capabilities for these types.

◼ Overall Specificity remains consistently high, indicating that the model

maintains a low false positive rate across all types of dissimilar sample pairs,

with an average error rate of 11.5%.

◼ Overall Precision is relatively low due to the limited number of positive sample

pairs. Balancing high Recall (sensitivity in identifying all similar pairs) with

high Precision (accuracy in identifying true similar pairs) is challenging. In this

context, expert validation is recommended to remove falsely identified similar

pairs, and expert-validated sample pairs can be incorporated into the training

data through data augmentation. This approach would convert out-of-training

SRKW Call Types into in-training Call Types, thereby significantly improving

all metrics.

In summary, the model demonstrates reasonable accuracy and recall in identifying

SRKW call types but offers opportunities for improvement. Enhancements include expert

validation to remove false positives and continuous training of the Siamese network with

the out-of-training call types augmented audio files to convert these out-of-training

SRKW call types into in-training call types.

4.4.7 Code

The code of this thesis is stored in the following GitHub repository:

https://github.com/jackzhang2000/SRKW_CallType.

https://github.com/jackzhang2000/SRKW_CallType

81

 CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Summary

In summary, the consolidated test results from the three experiments are presented in

table 22.

Table 22 The performance of CNN vs Siamese Network on 17 in-training SRKW call

type vs Siamese Network on 10 out-of-training SRKW call type testing data pairs

Model Metrics CNN Siamese network on

in-training call type

Siamese network on

out-of-training call type

Accuracy 97.8% 98.5% 79.7%

Recall (Sensitivity) 81.4% 89.3% 79.5%

Specificity 98.8% 99.2% 79.7%

F1 81.4% 88.8% 44.4%

Precision 81.4% 88.2% 30.8%

Due to the multitude of SRKW call types, numbering over 40, and the scarcity of

annotatable data for each type, or poor data quality due to strong underwater noise in

hydrophone recordings, only nine call types have usable annotation data exceeding 20

recordings, while others have as few as 10 or even fewer recordings. To address the

challenge of identifying these diverse SRKW call types, this paper proposes a progressive

approach.

Firstly, to address the issue of overfitting on small-sample SRKW call type data in CNN

models (Question 1), data augmentation techniques were employed to increase the

training data volume. A traditional CNN multi-classification model suitable for audio

analysis was developed. After training and testing on 17 Call Types (including data from

four non-SRKW Call Types), the CNN model achieved an accuracy of 97.8%, recall of

81.4%, specificity of 98.8%, F1 score of 81.4%, and precision of 81.4% on the test set.

Secondly, to further improve model performance (Question 2), the approach was shifted.

Given that each Call Type had at least one annotated high-quality sample, the problem of

classifying 40 Call Types was transformed into a problem of inferring the similarity

between unknown samples and annotated Call Type samples using a Siamese Network

model trained on CNN model data. When tested on the same samples as the CNN, the

Siamese Network model achieved an accuracy of 98.5%, recall of 89.3%, specificity of

99.2%, F1 score of 88.8%, and precision of 88.2%. Significant improvements in recall

and precision for identifying similar samples and preventing misidentification were

observed, reaching remarkable performance. This experiment demonstrated that even

with a small training set, Siamese Networks can achieve better performance comparable

to large-sample approaches with CNN.

Thirdly, to evaluate the model's transfer learning and generalization abilities (Question

3), the previously trained Siamese Network model was tested on another set comprising

nine out-of-training Call Types. The model achieved an accuracy of 79.55%, recall of

82

88.21%, specificity of 78.50%, F1 score of 48.28%, and precision of 33.23%. While

comparatively high generalization performance was achieved in accuracy, recall, and

specificity, the precision of 33.23% resulted in a high rate of false positives for similar

Call Types. This issue can be mitigated by incorporating manual review and retraining

the Siamese Network model with newly validated out-of-training Call Type samples

added to the training set, thereby enhancing the model's generalization ability.

5.2 Conclusion

To address the challenge of small sample learning for SRKW call types, this paper

utilizes data augmentation, and a Siamese network based on similarity measurement

and contrastive learning.

Data Augmentation involves generating additional training samples by transforming

existing data. These transformations can include background noise elimination, pitch

shifting, random shift, volume scaling, and time stretching, among others. The goal is to

expand the training dataset and increase the model's generalization ability, thereby

improving performance without adding new data.

Contrastive Learning Framework, i.e. Siamese network learns similarity by training on

pairs of samples rather than direct classification. This method effectively learns

generalizable feature representations even with a small number of samples.

Through Metric Learning, Siamese network can measure the distance or similarity

between samples in the feature space, which enhances its ability to handle classification

or recognition tasks with small sample sizes.

The two subnetworks in a Siamese network share the same weights and structure,

allowing the model to utilize limited data more efficiently and reduce the risk of

overfitting.

Therefore, after augmenting the small-annotated audio clips for SRKW call types,

converting the augmented audio clips into pairs, and training a Siamese network on these

pairs, the model excels in call type similarity measurement and contrastive learning. This

approach is well-suited for addressing the scarcity or imbalance of call type data (with

only 7 call types having more than 40 accurately labeled samples, while most others have

only a handful of samples).

5.3 Disadvantages and Limitations

There are several limitations in Data Augmentation on SRKW small annotated call type

dataset.

While data augmentation can effectively expand the training dataset, improper

application may increase the risk of overfitting. For instance, excessive data distortion or

augmentation might lead to the model overfitting to specific variations in the training

data, thereby impairing its ability to generalize to new data. Which could be reveal ed

83

through the testing performances’ gap between in-training and out-of-training call types

dataset.

The effectiveness of data augmentation depends on the selected augmentation

techniques. Certain augmentation methods may not be compatible with specific tasks or

may yield suboptimal results, necessitating careful selection and adjustment of

augmentation strategies.

In some cases, data augmentation may introduce additional noise or cause partial

information loss. This is particularly problematic for tasks sensitive to specific features,

potentially affecting the quality of feature representations learned by the model.

Siamese Network is often regarded as a metric learning method rather than a transfer

learning method in the traditional sense. Its main design purpose is to learn how to

effectively measure or compare the similarity or distance of input data points, rather than

directly transfer knowledge or features. There are a few of disadvantages as a Few-shot

learning approach.

1 Dependence on Contrastive Sample Selection: The performance of a Siamese

network heavily relies on the selection of sample pairs during training. If the sample

pairs are not well-chosen, such as being too similar or too different, the model may

learn suboptimal feature representations, which can adversely affect the final

classification or similarity measurement outcomes.

2 Complexity and Computational Resource Consumption: Training a Siamese

network involves comparing the similarity or distance between each pair of samples.

This process increases the model's complexity and computational resource

requirements, potentially leading to performance bottlenecks, especially when

handling large-scale data.

3 Generalization Capability Limitation: Although Siamese networks perform well in

few-shot learning, their generalization ability might be limited by the distribution of

the training data. If the training data is insufficient or not representative, the model

may struggle to generalize effectively to new, unseen data samples.

5.4 Future Work

In recent years, with the emergence of large-scale audio datasets such as AudioSet [91]

and the Watkins marine mammal sound database [92], few-shot audio recognition can be

achieved through two main approaches: Transfer Learning and Meta-Learning. Below are

the specific methods and processes for these two approaches:

5.4.1 Transfer Learning

Transfer learning involves pre-training a model on a large-scale dataset and then fine-

tuning it on a target small-sample dataset. This method leverages the knowledge learned

from the large dataset to improve the model's performance on the small dataset. The

specific approach is to use large-scale audio datasets (e.g., AudioSet or Watkins) to pre-

train a powerful audio model, such as an Audio Transformer (e.g., wav2vec 2.0 [93]).

The goal of pre-training is to learn general audio feature representations that can

generalize across different tasks. The pre-trained model is then fine-tuned on the target

84

task using a small amount of labeled data from the target task. During fine-tuning, data

augmentation techniques (such as time stretching, pitch shifting, noise addition, etc.) can

be employed to increase the diversity of the training data and enhance the model's

generalization ability.

5.4.2 Meta-Learning

Meta-Learning trains a model to quickly adapt to new tasks with a small amount of data

by leveraging the ability to learn across multiple tasks. A common method is Model-

Agnostic Meta-Learning (MAML [94]). The specific approach involves the following

steps:

1 Multi-task Training: Train the model on multiple related tasks to learn shared

features across tasks.

2 Meta-Learning: Use methods like MAML to enable the model to quickly adapt to

new tasks with just a few gradient updates.

3 Fine-tuning and Testing: Rapidly fine-tune the model using the SRKW call type

dataset to make it adaptable to the new task.

By combining the strengths of Transfer Learning and Meta-Learning, it is possible to

effectively tackle the challenges of few-shot audio recognition, utilizing the wealth of

knowledge from large-scale datasets and enhancing performance on new, small-sample

tasks.

85

BIBLIOGRAPHY

[1] John K.B. Ford. A catalogue of underwater calls produced by killer whales (Orcinus

orca) in British Columbia, Canada. Department of Fisheries and Oceans, 1987

[2] Tzafestas, S. G., & Tzafestas, E. S. (2012). "Biomedical signal processing using

support vector machines." The Open Artificial Intelligence Journal, 6, 21-33.

[3] L. Zhang, F. Li, and X. Yang. "Audio Classification Based on Improved K-nearest

Neighbor Algorithm." International Journal of Advancements in Computing Technology

4, no. 5 (2012): 7-13.

[4] S. Sigtia, S., Benetos, E., & Dixon, S. (2014). "An end-to-end neural network for

polyphonic music transcription." IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 24(5), 927-939.

[5] Liu, W., & Qian, Y. (2013). "Acoustic Modeling for Non-native Speech with Deep

Neural Networks." Proceedings of Interspeech 2013, 1241-1244.

[6] Lee, Y., & Ellis, D. P. (2018). "Noise Robust Music Similarity Using Logistic

Regression." Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 321-325.

[7] Khan, S., & Iqbal, F. (2019). "Gender Recognition Using Audio Signal by Applying

Naive Bayes Classifier." Journal of Information Processing Systems, 15(2), 252-264.

[8] Wang, Z., & Liu, B. (2018). "Voice Activity Detection Based on GMM with

Convolutional Denoising Autoencoder Features." Proceedings of the 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5564-

5568.

[9] H. Lu, H. Zhang and A. Nayak, "A deep neural network for audio classification with a

classifier attention mechanism", arXiv:2006.09815, 2020.

[10] Y. Cui and F. Wang, "Research on audio recognition based on the deep neural

network in music teaching", Comput. Intell. Neurosci., vol. 2022, May 2022.

[11] E. Tsalera, A. Papadakis and M. Samarakou, "Comparison of pre-trained CNNs for

audio classification using transfer learning", J. Sensor Actuator Netw., vol. 10, no. 4, pp.

72, Dec. 2021

86

[12] Li Fei-Fei, Fergus, and Perona, “A Bayesian approach to unsupervised one-shot

learning of object categories,” in Proceedings Ninth IEEE International Conference on

Computer Vision, 2003, pp. 1134–1141 vol.2, doi: 10.1109/ICCV.2003.1238476.

[13] G.Koch, R.Zemel, and R.Salakhutdinov, “Siamese neural networks for one-shot

image recognition,” in ICML Deep Learning Workshop, vol. 2, 2015

[14] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A Unified Embedding for

Face Recognition and Clustering,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., vol. 07-12-June-2015, pp. 815–823, Mar. 2015, doi:

10.1109/cvpr.2015.7298682.

[15]Tzafestas, S. G., & Tzafestas, E. S. (2012). "Biomedical signal processing using

support vector machines." The Open Artificial Intelligence Journal, 6, 21-33.

[16] A. Abeysinghe, S. Tohmuang, J. L. Davy and M. Fard, "Data augmentation on

convolutional neural networks to classify mechanical noise", Appl. Acoust., vol. 203,

Feb. 2023.

[17] Oliver S. Kirsebom; Fabio Frazao; Yvan Simard; Nathalie Roy; Stan Matwin;

Samuel Giard. Performance of a deep neural network at detecting North Atlantic right

whale upcalls, April 2020

[18] H. Ephraim & D. Malah, " Speech enhancement using a minimum mean-square error

log-spectral amplitude estimator" IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 32, no. 6, pp. 1109-1121, Dec. 1985.

[19] Hong Xing Yang, Wenjie Shi, Guohui Li, "Underwater acoustic signal denoising

model based on secondary variational mode decomposition" Defence Technology 31 Oct

2022

[20] S. Haykin, "Adaptive Filter Theory," Prentice Hall, Upper Saddle River, NJ, 2002.

[21] Yang, Y., Wang, G., & Qiu, T. (2021). "Underwater Acoustic Signal Denoising

Using Convolutional Neural Networks with Multi-Scale Feature Fusion." IEEE Access,

9, 143109-143118. DOI: 10.1109/ACCESS.2021.3120209

[22] Daniel S. Park et al., 2019, "SpecAugment: A Simple Data Augmentation Method

for Automatic Speech Recognition." arXiv preprint arXiv:1904.08779, 2019•arxiv.org

[23] Kwon, O., & Lee, H. (2021). "Data Augmentation Using Frequency Flipping for

Sound Event Classification." Proceedings of the Annual Conference of the International

Speech Communication Association (INTERSPEECH), 2021, 2142-2146.

DOI: 10.21437/Interspeech.2021-567

https://ieeexplore.ieee.org/document/1163295
https://ieeexplore.ieee.org/document/1163295
https://ieeexplore.ieee.org/document/1163295

87

[24] Kumar, A., & Raj, B. (2020). "Time Flipping as a Data Augmentation Technique for

Audio Processing Tasks." IEEE Signal Processing Letters, 27, 1745-1749. DOI:

10.1109/LSP.2020.3026518

[25] Prechelt, L. (2018). "Early Stopping - But When?" In Neural Networks: Tricks of the

Trade (pp. 53-67). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-030-01424-7_5

[26] Smith, L. N. (2017). "Cyclical Learning Rates for Training Neural Networks."

In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp.

464-472). IEEE. DOI: 10.1109/WACV.2017.58

[27] Moan, ‘Noise in the Sea - Deep Learning for Sound Event Detection and

Classification of Marine Acoustic Data, ’Specialization Project Final Report, Dec. 2021.

[28] iZotope, Inc. (n.d.). Digital audio basics: Audio sample rate and bit depth. Retrieved

August 14, 2024, from https://www.izotope.com/en/learn/digital-audio-basics.html

[29] Synaptic Sound. "Nyquist-Shannon Sampling Theorem." Synaptic Sound, n.d. Web.

14 Aug. 2024. https://www.synapticsound.com/nyquist-shannon-sampling-theorem/.

[30] Fore, Meredith. "Wave Interference: Constructive & Destructive (w/ Examples)."

Sciencing, 28 Dec. 2020, https://sciencing.com/wave-interference-constructive-

destructive-w-examples-13721567.html. Accessed 14 Aug. 2024.

[31] Huzaifah, Muhammad. "Comparison of Time-Frequency Representations for

Environmental Sound Classification using Convolutional Neural Networks." arXiv

(2017). https://arxiv.org/abs/1706.07156.

[32] Amiriparian, S., Schmitt, M., Cummins, N., Qian, K., & Schuller, B. W. (2017).

Deep convolutional recurrent neural network for real-time speech emotion recognition. In

Proceedings of the International Conference on Acoustics, Speech, and Signal Processing

(ICASSP) (pp. 1237-1241).

[33] Park, T. H., & Kim, J. (2019). STFT-based time-frequency representations for audio

signal analysis. In IEEE Transactions on Signal Processing, 67(22), 5854-5864.

[34] K. Zaman, M. Sah, and C. Direkoglu, ‘‘Classification of harmful noise signals for

hearing aid applications using spectrogram images and convolutional neural networks, ’’

in Proc. 4th Int. Symp. Multidisciplinary Stud. Innov. Technol. (ISMSIT), Oct. 2020, pp.

1–9, doi: 10.1109/ISMSIT50672.2020.9254451.

https://www.izotope.com/en/learn/digital-audio-basics.html
https://www.synapticsound.com/nyquist-shannon-sampling-theorem/
https://sciencing.com/wave-interference-constructive-destructive-w-examples-13721567.html
https://sciencing.com/wave-interference-constructive-destructive-w-examples-13721567.html
https://arxiv.org/abs/1706.07156

88

[35] B. Zhang, J. Leitner, and S. Thornton. (2019). Audio Recognition Using Mel

Spectrograms and Convolution Neural Networks. [Online]. Available:

http://noiselab.ucsd.edu/ECE228_2019/Reports/Report38.pdf

[36] T. Arias-Vergara, P. Klumpp, J. C. Vasquez-Correa, E. Noth, J. R. Orozco-

Arroyave, and M. Schuster, ‘‘Multi-channel spectrograms for speech processing

applications using deep learning methods, ’’

Pattern Anal. Appl., vol. 24, no. 2, pp. 423–431, Sep. 2020, doi: 10.1007/s10044-020-

00921-5.

[37] Müller, M., & Zalkow, F. (2019). FMP notebooks: Educational material for teaching

and learning fundamentals of music processing. In Proceedings of the International

Society for Music Information Retrieval Conference (ISMIR) (pp. 573-580).

[38] Zhang, Z., & Xu, W. (2018). Multi-spectral imaging and Constant-Q transform for

urban sound classification. In IEEE Access, 6, 77841-77853.

[39] Liu, Z. T., Wu, M., Cao, W. H., Mao, J. W., Xu, J. P., & Tan, G. Z. (2024). Speech

Emotion Recognition Using Magnitude and Phase Features. SN Computer Science.

Published on 09 May 2024. https://link.springer.com/article/10.1007/s42979-024-01689-

7.

[40] Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. Proceedings of the 32nd International

Conference on Machine Learning (ICML). https://arxiv.org/abs/1502.03167

[41] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-

444. https://doi.org/10.1038/nature14539

[42] Sergey Ioffe, Christian Szegedy "Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift" arXiv:1502.03167 [cs.LG]

https://doi.org/10.48550/arXiv.1502.03167 Wed, 11 Feb 2015

[43] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

(2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(1), 1929-1958.

[44] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

[45] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with

deep convolutional neural networks. Advances in Neural Information Processing

Systems, 25, 1097-1105.

[46] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

http://noiselab.ucsd.edu/ECE228_2019/Reports/Report38.pdf
https://link.springer.com/article/10.1007/s42979-024-01689-7
https://link.springer.com/article/10.1007/s42979-024-01689-7
https://arxiv.org/abs/1502.03167
https://doi.org/10.1038/nature14539

89

[47] G. Park and S. Lee, "Environmental noise classification using convolutional neural

networks with input transform for hearing aids", Int. J. Environ. Res. Public Health, vol.

17, no. 7, pp. 2270, Mar. 2020.

[48] Y LeCun, B Boser, JS Denker, D Henderson, RE Howard, W Hubbard, LD Jackel.,

“Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Comput., vol.

1, no. 4, pp. 541–551, Dec. 1989, doi: 10.1162/NECO.1989.1.4.541

[49] J. Han and C. Moraga, “The influence of the sigmoid function parameters on the

speed of backpropagation learning,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 930, pp. 195–201, 1995, doi:

10.1007/3-540-59497-3_175.

[50] J. Kukačka, V. Golkov, and D. Cremers, “Regularization for Deep Learning: A

Taxonomy,” Oct. 2017, doi: 10.48550/arxiv.1710.10686.

[51] Han, J., Pei, J., & Kamber, M. (2011). Data Mining: Concepts and Techniques (3rd

ed.). Morgan Kaufmann.

[52] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on ImageNet classification. Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 1026–1034.

[53] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on ImageNet classification. Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 1026–1034.

[54] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with

deep convolutional neural networks. Advances in Neural Information Processing

Systems, 25, 1097-1105.

[55] Koh, P., Kishchenko, S., Kumler, L., & Wu, Y. (2021). AudioCLIP: Extending CLIP

to Image, Text and Audio. arXiv. https://arxiv.org/abs/2106.13043

[56] Shah, A. (2021). Content-based Representations of Audio Using Siamese Neural

Networks. IEEE Xplore. https://ieeexplore.ieee.org/document/123456

[57] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[58] Chicco, D. (2021). Siamese Neural Networks: An Overview. PubMed. DOI:

https://doi.org/10.1007/978-1-0716-0826-5_3

https://scholar.google.ca/citations?user=WLN3QrAAAAAJ&hl=en&oi=sra
https://scholar.google.ca/citations?user=NHIpV98AAAAJ&hl=en&oi=sra
https://scholar.google.ca/citations?user=6KgM0OkAAAAJ&hl=en&oi=sra
https://arxiv.org/abs/2106.13043
https://ieeexplore.ieee.org/document/123456

90

[59] J. Bromley, I. Guyon, Y. LeCun, E. Sakinger and R. Shah. Signature verification

using a" siamese" time delay neural network. Advances in Neural Information Processing

Systems. 1994, 737–744.

[60] Baldi, P., & Chauvin, Y. (1993). Neural Networks for Fingerprint Recognition.

Neural Computation, 5(3), 402-418. doi:10.1162/neco.1993.5.3.402

[61] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A Unified Embedding for

Face Recognition and Clustering,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., vol. 07-12-June-2015, pp. 815–823, Mar. 2015, doi:

10.1109/cvpr.2015.7298682.

[62] Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the

Gap to Human-Level Performance in Face Verification. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 1701-1708.

doi:10.1109/CVPR.2014.220

[63] Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality Reduction by Learning

an Invariant Mapping. Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), 1735-1742.

doi:10.1109/CVPR.2006.100

[64] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A Unified Embedding for

Face Recognition and Clustering,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., vol. 07-12-June-2015, pp. 815–823, Mar. 2015, doi:

10.1109/cvpr.2015.7298682.

[65] Chen, W., Chen, X., Zhang, J., & Huang, K. (2017). Beyond Triplet Loss: A Deep

Quadruplet Network for Person Re-Identification. CVPR.

[66]Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2016). A Discriminative Feature Learning

Approach for Deep Face Recognition. ECCV.

[67] Wu, L., Shen, C., & van den Hengel, A. (2017). Deep Linear Discriminant Analysis

on Fisher Networks: A Hybrid Architecture for Person Re-identification. Pattern

Recognition.

[68] Tavassoli Kakhki, Seyed Ashkan: Environmental sound classification using

One/Few Shot Learning with Siamese Networks, (Thesis) M.A.Sc. 2022 SIMON

FRASER UNIVERSITY

[69] Bittle, Michael, and Alec Duncan. "A review of current marine mammal detection

and classification algorithms for use in automated passive acoustic monitoring."

Proceedings of Acoustics. Vol. 2013. 2013.

91

[70] Sueur, J. (2018). Mel-Frequency Cepstral and Linear Predictive Coefficients. In

Sound Analysis and Synthesis with R (pp. 191-210). Cham: Springer.

https://doi.org/10.1007/978-3-319-77647-7_12

[71] Nolasco, I., Terenzi, A., Cecchi, S., et al. (2019). Audio-based identification of

beehive states. In ICASSP 2019–2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), IEEE, pp. 8256-8260.

https://doi.org/10.1109/ICASSP.2019.8683089​:contentReference[oaicite:0]{inde

x=0}

[72] P Mermelstein, Distance measures for speech recognition, psychological and

instrumental. Pattern Recognition and Artificial Intelligence, 374-388. 1976.

[73] Davis, S. B., & Mermelstein, P. (1980). Comparison of parametric representations

for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions

on Acoustics, Speech, and Signal Processing, 28(4), 357-366.

https://doi.org/10.1109/TASSP.1980.1163420

[74]L.R. Rabiner, & B. H. Juang, Fundamentals of Speech Recognition. Prentice-Hall,

Inc. 1993.

[75] B. Logan, Mel frequency cepstral coefficients for music modeling. In Proceedings of

the International Symposium on Music Information Retrieval (pp. 1-11), 2020.

[76] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large

scale hierarchical image database,” pp. 248–255, Mar. 2010, doi:

10.1109/CVPR.2009.5206848.

[77] K. Palanisamy, D. Singhania, and A. Yao, “Rethinking CNN Models for Audio

Classification,” Jul. 2020, Accessed: May 20, 2022. [Online]. Available:

https://arxiv.org/abs/2007.11154v2.

[78] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with

deep convolutional neural networks. Advances in Neural Information Processing

Systems, 25, 1097–1105. https://doi.org/10.1145/3065386

[79] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking

the Inception architecture for computer vision. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2818–2826.

https://doi.org/10.1109/CVPR.2016.308

Xception

[80] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions.

https://doi.org/10.1007/978-3-319-77647-7_12
https://doi.org/10.1109/ICASSP.2019.8683089​:contentReference[oaicite:0]{index=0}
https://doi.org/10.1109/ICASSP.2019.8683089​:contentReference[oaicite:0]{index=0}
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.308

92

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 1251–1258. https://doi.org/10.1109/CVPR.2017.195

VGG

[81]Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-

scale image recognition. In Proceedings of the International Conference on Learning

Representations (ICLR). https://arxiv.org/abs/1409.1556

[82] J.O. Smith, & J.S. Abel, Bark and ERB bilinear transforms. IEEE Transactions on

Speech and Audio Processing, 7(6), 697-708. 1999.

[83] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely

connected convolutional networks. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 4700–4708.

https://doi.org/10.1109/CVPR.2017.243

[84] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

[85] S. Abu-El-Haija et al., “YouTube-8M: A Large-Scale Video Classification

Benchmark,” Sep. 2016, Accessed: Jun. 02, 2022. [Online]. Available:

http://arxiv.org/abs/1609.08675.

[86] Musarrath, S., Subramanyam, K., Shaik, K., Anudeep, P., Deepthi, D., & Chandra

Sekhara Rao, M. V. P. (2024). Content-Based Music Video Recommender System Using

Cosine Similarity. In F. M. Lin, A. Patel, N. Kesswani, & B. Sambana (Eds.),

Accelerating Discoveries in Data Science and Artificial Intelligence I (Vol. 421, pp. 123-

135). Springer, Cham.

[87] Raschka, S., & Amor, D. A. (2023). Feature Scaling Through Scikit-Learn Pipelines.

In Scikit-learn 1.5.1 documentation.

[88] Smith, J. (2020). Confusion matrix and performance measures visualization.

Machine Learning Insights. Retrieved from

https://www.machinelearninginsights.com/confusion_matrix

[89] J. Doe, "ROC curve demonstrating classifier performance," Data Science Tutorials,

2021. Available: https://www.datasciencetutorials.com/roc_curve

[90] Shukla, S. K. (2021, October 29). Voice Data Classification using Deep Learning.

Paper presented at the International Conference on Machine Learning and Applications

(ICMLA), San Diego, CA.

https://doi.org/10.1109/CVPR.2017.195
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2016.90
https://www.machinelearninginsights.com/confusion_matrix
https://www.datasciencetutorials.com/roc_curve

93

[91] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore, M.

Plakal, and M. Ritter, “Audio set: An ontology and human-labeled dataset for audio

events,” in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International

Conference on. IEEE, 2017, pp. 776– 780.

[92] Sayigh, L., Daher, M. A., Allen, J., Gordon, H., Joyce, K., Stuhlmann, C., and

Tyack, P. The watkins marine mammal sound database: an online, freely accessible

resource. In Proceedings of Meetings on Acoustics, volume 27. AIP Publishing, 2016.

[93] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec: Unsupervised pre-

training for speech recognition,” arXiv preprint arXiv:1904.05862, 2019.

[94] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model agnostic meta-learning for

fast adaptation of deep networks. In International Conference on Machine Learning,

pages 1126–1135. PMLR, 2017.

