
HEURISTIC METHODS FOR WEATHER ROUTING

by

Pengcheng (Louis) Bu

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia

August 2024

© Copyright by Pengcheng (Louis) Bu, 2024



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Weather Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Meteorological Data and Processing . . . . . . . . . . . . . . . . . . . 14
2.2.1 Weather data . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 WeatherRouting Bench 1.0 . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Zermelo’s Navigation Problem and Hybrid Search . . . . . . . . . . . 25
3.1.1 Zermelo’s Navigation Problem on the plane . . . . . . . . . . 25
3.1.2 Zermelo’s Navigation Problem on the Sphere . . . . . . . . . 26
3.1.3 Hybrid Search method . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Graph Optimization: A Super Star Search . . . . . . . . . . . . . . . 32
3.2.1 Grid Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Neighbours Exploration . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Hyper-parameter Search . . . . . . . . . . . . . . . . . . . . . 37

3.3 Bézier Evaluation on Evolutionary Strategy (BEES) . . . . . . . . . . 40
3.3.1 Parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ii



3.4 Smoothing Method - Ferraro-Martín de Diego-Sato (FMS) Algorithm 43

Chapter 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 A∗-FMS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Vessel Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 ODP Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Seasonal Study . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.4 Weather Variables . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

.1 Published and Submitted Papers . . . . . . . . . . . . . . . . . . . . 76

.2 Derivation of Zermelo’s equations . . . . . . . . . . . . . . . . . . . . 77
.2.1 Zermelo’s Navigation Problem on the plane . . . . . . . . . . 77
.2.2 Zermelo’s Navigation Problem on the sphere . . . . . . . . . . 79

.3 Euler-Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . 80
.3.1 Continuous Euler-Lagrange equations . . . . . . . . . . . . . . 80
.3.2 Discrete Euler-Lagrange equations . . . . . . . . . . . . . . . 81

iii



List of Tables

1.1 Cross Comparison of Regions Studied in Recent Studies . . . . 5

2.1 List of Origin-Destination Pairs chosen, grouped by regions con-
nected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Parameters of every instance of WeatherRouting Bench 1.0. . 24

3.1 Hexagon Sizes and Resolution of H3 . . . . . . . . . . . . . . . 34

3.2 Graph characteristics dependence on the N -order neighbours. . 35

3.3 Pearson Correlation Coefficients between A⋆ Hyperparameters
and gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Gain and computation time of A⋆ . . . . . . . . . . . . . . . . 39

4.1 Charleston-Azores Mean Results . . . . . . . . . . . . . . . . . 51

4.2 Somalia-Myanmar Mean Results . . . . . . . . . . . . . . . . . 51

4.3 Panama-Houston Mean Results . . . . . . . . . . . . . . . . . . 52

4.4 Gains Achieved by A⋆-FMS Compared to Shortest Distance
Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Impact of Each Weather Variable on Results . . . . . . . . . . 58

iv



List of Figures

2.1 Interpolated Speed Reduction w.r.t. BN and Wave Incidence
Angle θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Required Domain for Valid Interpolation . . . . . . . . . . . . 19

3.1 First two steps of Hybrid Search . . . . . . . . . . . . . . . . 31

3.2 Hexagonal Partition of Earth using H3 . . . . . . . . . . . . . 34

3.3 Land Avoidance in Modified A⋆ . . . . . . . . . . . . . . . . . 35

3.4 Hyper-parameter settings and improvements of A⋆ . . . . . . . 39

3.5 Improvements over Shortest Distance Routes after applying
FMS to every A⋆ Hyper-parameters . . . . . . . . . . . . . . . 40

3.6 Control Points’ Influence on the Shape and Velocity of Bézier
Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Example of Trapping in Local Extrema . . . . . . . . . . . . . 43

3.8 Convergence Diagram of CMA-ES Bézier Optimizer . . . . . . 44

3.9 Smoothing of A⋆ Output with FMS . . . . . . . . . . . . . . . 48

3.10 Improvements and Smoothing of Hybrid Search with FMS . 49

4.1 Frequency Histogram of Gains Achieved by A⋆-FMS . . . . . . 53

4.2 Improvements in Travel Time Compared to Shortest Distance
Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Travel Time Difference between Yearly Average and Weekly on
Shortest Distance Routes . . . . . . . . . . . . . . . . . . . . . 57

4.4 BN Distribution on Shortest Distance Route . . . . . . . . . . 59

4.5 Distribution of Currents Speed on Shortest Distance Routes . 59

4.6 Distribution of Speed Reductions due to Waves on Shortest
Distance Routes . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Distribution of Speed Changes due to Currents on Shortest
Distance Routes . . . . . . . . . . . . . . . . . . . . . . . . . . 60

v



Abstract

Weather routing involves optimizing routes for vessels to reduce travel time and fuel
consumption by utilizing meteorological data. It is an interdisciplinary problem that
requires insights ranging from naval engineering to mathematics.

This thesis proposes three optimization algorithm for weather routing: Hybrid
Search, Super A∗ Search, and Bézier Evaluation with Evolutionary Strategy (BEES),
paired with a discrete Newton-Jacobi smoothing method. Each method leverages
different mathematical principles: differential equations, graph theory, and evolu-
tionary algorithms. We will evaluate their performance in various meteorological
conditions and analyze their output across different sailing speeds, ocean regions,
and times of the year on a common benchmarking platform.
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Chapter 1

Introduction

1.1 Motivation

The major driving factor of weather routing is reducing emissions. Maritime
transport handles approximately 80% of the world’s trade by volume [1]. ‘The Fourth
International Maritime Organization GHG Study’ estimated that shipping vessels
emitted 1.06 billion metric tonnes of CO2 in 2018, representing 2.89% of total global
anthropogenic CO2 emissions [2]. If this is left unchecked, this number is bound to
increase [3], [4]. The road plan includes reducing the CO2 emissions per transport
work of international shipping by at least 40% by 2030 and reducing total annual
GHG emissions from international shipping by at least 50% by 2050. Ultimately, the
plan aims to phase out GHG emissions from international shipping in this century
[5].

The economy is another contributing factor to the development and research
in weather routing. The cost of fuel accounts for up to 60% of the total operation
costs of maritime transport, making it a significant concern for the industry. Unit
cost of bunker fuel is extremely sensitive to geopolitical developments [6], making it
even more challenging for the industry to invest in sustainable technologies. Adverse
weather conditions, such as cyclones, high tides, and strong wind gusts, account for
approximately 48% of maritime casualties [7], making safety a significant concern
for the industry.

As such, despite its importance in world economy, the sector faces significant
challenges, including rising fuel costs, stringent environmental regulations, and the
need for safe navigation [8], [9]. In this context, weather routing appears as an
efficient solution to alleviate these problems.

1
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1.2 Weather Routing

In recent years, the field of weather routing has gained significant attention from
both academia and industry. This research area addresses the complex mathematical
problem of optimising maritime routes under varying weather conditions. Weather
routing involves interdisciplinary approaches, encompassing various fields ranging
from Mathematics to Computer Science.

The routing problem is about finding efficient routes for ships, considering ocean
conditions, and vessel performances. This complex challenge impacts fuel use, emis-
sions, costs, and travel time. The state of the art in weather routing includes several
methodological approaches, each contributing unique insights and advantages. One
such approach is the isochrones method [10], initially applied by Hanssen in 1960
[11] to optimise routes under stationary weather conditions. The isochrones method
constructs sets of connected points that a vessel can reach within a specific time by de-
parting from a given point and travelling in all feasible directions. While this method
has seen significant developments [12]–[14], it relies on exploration and simulation,
making it computationally expensive, especially when considering time-dependent
weather conditions.

Another optimisation approach is variational optimisation, which utilises a
Lagrangian framework to optimise routes in a continuous space using gradient meth-
ods. Initially proposed by Haltiner in 1962 [15] to minimise time in static settings,
variational optimisation has been applied to weather routing by incorporating fac-
tors such as wave height, direction, and ocean current vector fields [16], [17]. This
approach is exploitative, iteratively modifying an initial route to reduce a given cost
function such as fuel consumption or travel time. However, it heavily relies on the
quality of the initial guess to achieve an optimal route.

Dynamic programming has been widely utilised in weather routing, leveraging
Bellman’s concept of optimality [18]. Dynamic programming divides the routing
problem into smaller sub-problems, finding optimal solutions for each segment and
chaining them together to obtain the optimal solution for the entire journey. The
solution for each segment can be achieved using various optimisation methods or a
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set of predefined rules [19], [20].
Additionally, graph optimisation techniques, such as Dijkstra’s search algo-

rithm [21], [22], have been employed in weather routing. This approach involves
constructing a discrete graph that represents possible vessel locations on the ocean
as nodes. Edges between nodes are weighted to represent the cost of travelling be-
tween them, considering factors such as time or fuel consumption. Graph algorithms
then search for the path between two non-adjacent nodes with the minimum total
cost. Heuristics, such as the A⋆search algorithm [23]–[25], can be used to expedite
the graph search process.

Moreover, evolutionary algorithms have been applied in weather routing, in-
volving the evolution of a set of routes through random perturbations until an optimal
criterion is achieved [24], [26]–[28]. Unlike variational optimisation, which employs
gradient methods to modify the initial route, evolutionary algorithms rely on random
modifications, potentially guided by a set of rules. However, the random nature of
evolutionary algorithms does not guarantee optimality and can result in significant
computational costs.

Despite the various optimisation approaches utilised in weather routing, achieving
standardised comparisons and benchmarks across different studies remains challeng-
ing. The definition and measurement of savings, whether in terms of fuel consump-
tion, sailing time, or both, require standardisation for effective comparison. To ad-
dress this challenge, this study focuses on developing reproducible benchmarks using
historical meteorology and oceanography data from open sources. These benchmarks
are designed to reflect realistic scenarios along commercial trading routes. We will
only focus on reducing sailing time.

The contribution of this study lies in the comprehensive evaluation and com-
parison of three optimisation methods for weather variational optimisation, graph
optimisation, and evolutionary algorithms. By implementing these methods on the
defined benchmarks, we aim to gain valuable insights into their strengths, weak-
nesses, and applicability in different scenarios. This study provides benchmarking
examples and facilitates future research and standardisation efforts in the weather
routing community.
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1.3 Objectives

Research on weather routing typically targets specific scenarios for optimization. It
is essential to understand three key concepts. First, an Origin-Destination Pair
(ODP) identifies the start and end points of a journey, which, in practical applica-
tions, are maritime ports. Initially, weather routing assumed ocean conditions were
static, making ODPs define complete optimization problems. However, current ap-
proaches to weather routing account for changing weather conditions. An itinerary
builds upon the ODP by adding a specific departure date, and possibly a time. A
route, then, specifies the path to follow between the origin and destination. In
weather routing, a route is a solution for an itinerary based on factors such as safety,
efficiency, and optimal utilization of oceanography and weather conditions.

Table 1.1 presents some of the most recent studies in weather routing, detailing
the algorithms they used and the ODPs they examined. A closer look at Table 1.1
reveals a significant challenge: each study operates under its unique set of ODPs,
complicating the comparison of algorithms on equal footing. On the rare occasions
when two studies share an ODP, they differ in departure dates, resulting in distinct
itineraries between works.

The lack of standardized itineraries is a big gap in the research field of weather
routing, as it has been recently noticed by [29]. When assessing the efficiency of
a new methodology, researchers can only score it against basic solutions, such as
the orthodromic or geodesic route [30]–[33]. In some rare cases, they have access
to recorded data from a vessel journey [35]–[37]. Even when some algorithms are
validated against real data, there is still a lack of comparison between different studies.
This observation emphasizes the need for establishing standardized itineraries in
weather routing research to facilitate more direct comparisons and benchmarking of
algorithms. Such standardization could accelerate progress in the field by enabling
researchers to build upon a common foundation of scenarios and data sets.

One notable example of the importance of standardized benchmarks can be seen
in the field of Natural Language Processing (NLP) with the development of bench-
marks for Large Language Models (LLMs). Benchmarks such as the MMLU [38]
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Table 1.1: Examples of recent weather routing studies, indicating the algorithms
they used and the Origin-Destination Pairs (ODPs) they tested on.

Reference Regions and ODPs Algorithm
[29] Mediterranean Sea (Porto Torres to Toulon, Monemva-

sia to Marmaris)
Graph
Search
VISIR-2

[30] North Atlantic Ocean (Charleston to Azores), Indian
Ocean (Somalia to Myanmar), Caribbean Sea (Cancun
to Charleston, Panama to Houston)

Hybrid
Search

[31] Mediterranean Sea (Barcelona to Limassol, Barcelona
to Thessaloniki, Barcelona to Alexandria)

Probabilistic
roadmaps

[32] North Atlantic Ocean (Cap Lizard to New York) Evolutionary
algorithm

[25] North Atlantic Ocean (Boston to Plymouth), Mediter-
ranean Sea (Tunis to Nice, Palma de Mallorca to
Barcelona), others

A⋆ graph
search

[33] Indian Ocean (Singapore to Cape Town), Pacific Ocean
(Shanghai to Los Angeles)

Particle
swarm

[34] Atlantic Ocean (New York to Paramaribo), Indian
Ocean (Cape Town to Mumbai), Mediterranean Sea
(Trieste to Alexandria, Algeciras to Alexandria, Rotter-
dam to Marseille), others

Genetic al-
gorithm

[35] Pacific Ocean (Taipei to Los Angeles, Tacoma to Kaoh-
siung)

Non dis-
closed

[36] North Atlantic Ocean and Mediterranean Sea (Gulf of
Guinea to Marseille)

A⋆ graph
search

[37] Atlantic Ocean (Portugal to Azores) Evolutionary
algorithm
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and HellaSwag [39] have been essential in the evaluation of LLMs like GPT-3 [40],
Mixtral [41], and LLaMA [42]. It has been one of the main components that allowed
the popularity and growth of this field and will help improve many aspects, such as
reasoning, understanding, and text generation.

Another recent example closer to weather routing is Google’s WeatherBench II
[43]. It has set a standard for evaluating weather prediction models by offering a
common dataset and evaluation metrics. This standardization has advanced weather
forecasting by enabling direct comparisons and highlighting the strengths and weak-
nesses of various models, such as IFS HRES [44], ERA5 Forecast [45], and Graphcast
[46] - a new method based on machine learning that outperforms traditional models
in some aspects. These kinds of systems also encourage competition, which drives
improvements in the field.

One of this paper’s contribution is the development of benchmarking standards.
We introduce WeatherRouting Bench 1.0. These benchmarks specify origin and
destination ports, and include data on ocean currents and waves from the Copernicus
Maritime Service [47], [48]. The necessary Python code for data acquisition is made
available in a public repository1. Additionally, a website will soon launch, allowing
researchers to submit their algorithmic solutions for each benchmark. These submis-
sions will undergo scoring and ranking, offering a platform for comparative analysis
against leading methodologies in a standardized setting. Initially, the evaluation
will focus on reducing travel times, taking into account only the effect of waves and
currents, with plans to later incorporate wind effects and fuel consumption metrics.

Another critical aspect of our contribution addresses the lack of variety in weather
conditions across research. Traditional studies often limit their focus to a single
departure date per ODP, overlooking the inherent adaptability of weather routing
to varying conditions. Our benchmarks propose multiple departure dates for each
ODP. This allows for the evaluation of algorithms across 52 different weeks for the
same ODP, providing comprehensive insights into their performance and showcasing
their full potential.

Finally, serving as the first use-cases of WeatherRouting Bench 1.0, this thesis
1https://github.com/Weather-Routing-Research/weather-routing-benchmarks

https://github.com/Weather-Routing-Research/weather-routing-benchmarks
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also introduces 3 novel heuristic-based Weather Routing algorithms, Hybrid Search
(Hybrid Search), Super A⋆, and Bezier Evaluation on Evolutionary Strategy (BEES).
Each one is unique in their own right, Hybrid Search [30] solves the Zermelo’s Nav-
igation Equations [49] with a shooting method, Super A⋆ applies the popular A⋆

algorithm [25], [29], [36], [50] shortest paths on a hexagonal grid [51], and allows
jumping over multiple nodes to increase possible course changes [52], and BEES
uses a evolutionary strategy that minimizes costs of batches of Bézier curves. These
algorithms offers a good initial guess to a close-to-optimized solution.

In addition, a refinement step is added after Hybrid Search and A⋆, based on
the Ferraro-Martín de Diego-Sato algorithm (FMS) [17], [53], which modifies the
solution given by the A⋆ using calculus of variations, moving its way-points to a
local optimum while visually smoothing the whole route. The FMS is an exploitative
algorithm that has been recently applied in conjunction with a shooting method for
weather routing [30] and showed great potential. This paper proves that A⋆ provides
a good initial solution for the FMS.

These three optimization methods utilizes knowledge from distinct areas of math-
ematics, including calculus of variations, differential geometry, combinatorics and
graph theory, and genetic algorithms; despite this, all these methods uses a heuris-
tic, which gives although not completely optimized but a ‘good enough’ solution to
the weather routing problem. The algorithms are evaluated on the WeatherRouting
Bench 1.0 set, and we analyze their performances across different ODPs, seasons,
and vessel speeds.

The paper is structured as follows. First, we introduce all the necessary compo-
nents of tackling the Weather Routing problem in 2, where we address information
required, such as, benchmarks and ODP selection in 2.1, modelling, acquisition, and
interpolating weather data in 2.2. Next, we introduce the 3 optimization algorithms
in Chapter 3, Hybrid Searchin Section 3.1, A⋆ in Section 3.2, and BEES in Section
3.3. We also perform a hyperparameter search to ensure we use an efficient configu-
ration of A⋆. We then briefly explain the FMS algorithm in 3.4. Finally, in section
4, we give a cross comparison on each algorithm’s performance on some example
routes and study optimization results generated by A⋆+FMS, analyze the influence
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of the benchmark characteristics, such as the ODP, vessel speed, the relative impact
of currents and waves, and seasons.



Chapter 2

Materials

2.1 Benchmarks

An instance of a weather routing problem is defined by the following components:

• A pair of departure and destination ports (ODP),

• a specified departure date and time,

• vessel characteristics,

• a prescribed cruising speed,

• relevant meteorological information (e.g., waves, currents),

• a cost function that depends on the aforementioned parameters,

• decision variables available to the algorithm to minimize the cost function.

Weather routing algorithms are each designed for a specific kind of optimization prob-
lem. A robust optimization algorithm should be capable of handling all optimization
problems of a same type, provided the set of available decisions remains unchanged.
For WeatherRouting Bench 1.0, we assume that vessels sail at a constant speed
over water vwtr, implying that the vessel’s engine power does not vary along the
route.

A more realistic optimization problem would be to minimize fuel consumption
subject to a prescribed maximum travel duration, allowing both changes in course
and engine power along the route. Future versions of our weather routing benchmark
will incorporate more realistic optimization problems and cost functions such as the
one mentioned above, and possibly extending it also to safety parameters. For this
first version, we believe the proposed optimization problem is already rich enough to
constitute a valid starting point.

9
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2.1.1 Cost function

As mentioned above, we assume that vessels travel at a prescribed speed over (calm)
water, but their actual speed with respect to ground is affected by ocean waves
and currents. The total travel time will depend thus on these navigation conditions
and the chosen route, and it will be the cost function we aim to optimize in this
first version of WeatherRouting Bench 1.0. To calculate this time, we need to
understand how environmental factors affect vessel speed, especially speed loss due
to wave resistance and changes caused by ocean currents.

First, we will analyze the impact of wave-induced speed reduction. Since the
1970s, both academia and industry have put a lot of effort into studying this ef-
fect. Various methods have been developed, ranging from statistical and regression
models based on wave tank experiments [54]–[57] to advanced fluid dynamics and
potential flow models [58]. Recently, data-driven methods, including Machine Learn-
ing and Neural Networks [59]–[61], have further improved our ability to predict wave
resistance and the resulting speed losses.

We have chosen the Townsin-Kwon[57] model in Molland’s Ship Resistance and
Propulsion [62], as it has valid results for a relatively small set of environmental pa-
rameters: significant wave height (in meters) and wave incidence angle θ (in degrees).
It also depends on the speed over water vwtr (in meters per second), its beam length
L (in meters), displacement ∇ (in cubic meters) and block coefficient cB.

Kwon [56] later updated the Townsin-Kwon equations of percentage speed loss
over water:

cw :=
∆vwtr
vwtr

· 100% = cβcuα (2.1)

where cβ is the weather reduction coefficient, cu is the speed reduction coefficient,
α is the correction factor, and we denote the percentage speed loss by cw. These
coefficients are all unit-less, and they are calculated and adapted from Molland [62]
as the following.

The weather reduction coefficient, cβ, depends on the wave incidence angle θ and
the Beaufort number BN:
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2cβ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2 0◦ ≤ θ < 30◦

1.7− 0.03 · (BN− 4)2 30◦ ≤ θ < 60◦

0.9− 0.06 · (BN− 6)2 60◦ ≤ θ < 150◦

0.4− 0.03 · (BN− 8)2 150◦ ≤ θ ≤ 180◦

(2.2)

Beaufort number is a dimensionless quantity usually derived from wind speed
[63], but also related to significant wave height (hwav in meters) by using the relation
between wind speed and wave formation [64] (since the most important factor causing
waves is surface wind):

BN = (κhwav)
2/3 ; κ = 3.83 m−1. (2.3)

The speed reduction coefficient, cu, depends on the Beaufort number BN and
displacement of the vessel ∇ (in cubic meters), according the following expression:

cu = 0.7 BN+
BN13/2

θ∇2/3
; θ = 22 m−2, (2.4)

Lastly, the correction factor α depends on the vessel’s Froude Number Fr. The
formula also depends on its block coefficient cB. For the purpose of our simulation,
we take the formula derived from [62] for cB = 0.6:

α = 2.2− 2.5 Fr− 9.7 (Fr)2 (2.5)

Froude number is a dimensionless quantity defined as:

Fr = vwtr√
gL

, (2.6)

where vwtr is the vessel speed over water, L is the beam length of the vessel and
g ≈ 9.81m/s2 is the gravitational acceleration.

A requirement to the optimization algorithm we present in this paper (Section
3.4) is to take first- and second- order derivatives of the cost function. cβ in equation.
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(2.2) is a piece-wise, discontinuous function with respect to θ, even numerical dif-
ferentiation methods creates artifacts and instability in the optimization phase. To
prevent this, we interpolated the output values of cβ to fit a smooth function seen in
2.1, given by

2ĉβ = c− b · (BN− a)2 (2.7)

where

a = 6 sin(2/3)(α/2) + 2 (2.8)

b =
1

40
(1 + sin(1.2α)− cos(1.2α)) (2.9)

c = 2− 1.6 sin(α/2) (2.10)

Figure 2.1: Comparison of the interpolated values (dotted line) versus the computed
according to [62] (solid line). The top graph shows the speed reduction at increasing
Beaufort numbers, and the bottom graph shows the speed reduction before and after
applying interpolated cβ at various wave incidence angles θ.
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From [56], [62] models wave effect as a percentage reduction in vessel’s speed
over water. The other component of speed reduction comes from currents, unlike the
effects of waves, it is a change in velocity that is determined by the velocity of the
currents along a route, which could work against or with the vessel along the route.

To model the effect of currents on the vessel’s speed, we simply consider vector
addition:

−→v grd = −→v vessel +
−→v cur.

If vcur,∥ and vcur,⊥ are the components of the current velocity parallel and perpendic-
ular to the vessel’s direction, we have:

vgrd = vcur,∥ +
√
(cw · vwtr)

2 − v2cur,⊥ (2.11)

A solution of the optimization problem will be given as a polygonal curve defined
by a sequence of waypoints {qi}, where qi = (xi, yi, ti), i ∈ [N ], and N is the total
number of waypoints along a route. Here, q1 is the starting location, and qN is the
destination. Each waypoint is a triple, where each entry represents the longitude,
latitude, and timestamp at the ith waypoint, respectively. We will adhere to the
convention of specifying the route by providing the position of the vessel at equally
fixed time intervals ∆t = {15, 30, 60} min for the three cases vwtr = {24, 12, 6} knots.

The combined effect of waves (2.1) and currents (2.11) determine the actual speed
vgrd at a given position and time. Let vgrd,i be the speed of the vessel at position qi

and time ti. We are assuming that a value of the waves height and direction and the
ocean currents are available at every position qi in the ocean. Weather and ocean
data as provided by forecasting services (see Section 2.2) are given on a grid as a
NetCDF file, so interpolation functions are necessary to retrieve weather data at an
arbitrary position. We discuss the interpolation methods employed in Section 2.2.2.

We assume that the weather conditions between qi and qi+1 remain constant, and
thus the polygonal curve that defines the route is traversed in a piecewise linear
way. For a more robust numerical scheme, we consider that the speed of the vessel
in covering the segment from qi to qi+1 is given by the average between vgrd,i and
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vgrd,i+1, and thus all waypoints in the route should satisfy the condition

∆di =
1

2
(vgrd,i + vgrd,i+1) ∆t, i = 1, . . . , N − 1, (2.12)

where ∆di be the haversine distance between two consecutive waypoints qi and qi+1.
A route with waypoints {qi = (xi, yi, ti)}Ni=1 must satisfy (2.12) to be compatible with
the vessel cruise speed vwtr and the weather conditions along the route. In the Github
repository we provide functions to test the feasibility of every possible route. We also
provide functions to reparametrize polygonal trajectories so that the reparametrized
waypoints are equally spaced in time while preserving the feasibility of the route.

The decision variables for the optimization problem are thus to determine the
course heading at every ∆t time interval.

This completes the definition of the optimization problem to be tackled in this
thesis and in WeatherRouting Bench 1.0. Future versions of the benchmark will in-
clude other cost functions, such as fuel consumption, GHG emissions or safety at sea,
and other decision variables (freedom to change both engine power and direction).

2.2 Meteorological Data and Processing

2.2.1 Weather data

The analysis of the vessel motion to calculate the travel time needs to have access to
weather data, specifically ocean currents, waves and wind. This Section introduces
the real data used in WeatherRouting Bench 1.0, which uses NEMO 2.2.1 model
to obtain currents data and MFWAM 2.2.1 for waves.

Ocean General Circulation Models (OGCMs)

Ocean General Circulation Models (OGCMs) models simulate the physical inter-
actions of the world’s oceans and atmospheres, capturing the dynamics of ocean
currents, temperature, salinity, and ice cover over time [65]. By mathematically
modelling the fundamental laws of fluid dynamics and thermodynamics, OGCMs
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can predict changes in the oceanic circulation and its interaction with the atmo-
sphere, land, and sea ice. OGCMs can be classified based on the grid type used to
distribute the data. They consists of two grids, a horizontal grid covers the surface
of the earth, while the vertical grid covers the depth levels of the ocean or height
levels of the atmosphere. Most commonly used horizontal grids are the following:

1. Finite Differences: These are the most used grids and discretized the space
evenly, (aka, a regular grid by fixed distance or degrees of arc, both covers
the longitudes and latitudes of the earth). The distribution of data usually
follows Arakawa’s structure [66] that have 5 options, from A to E, increasing
by complexity and accuracy.

2. Finite Element: This is the second most popular choice for ocean modelling,
especially for coastlines and offshore regions. In a finite element grid, weather
variables are discretized by triangular regions. You can adjust the sizes of
triangles according to the weather variable, or the complexity of the shoreline
due to its ‘fractal’ nature. This dynamic nature offers great flexibility and ease
to adjust the detail of the model where you need it most [67].

3. Spectral: These are the least used grids in ocean models, but they are widely
used by atmospheric ones [68]. They are harder to use because of the bound-
aries generated by land.

There are various vertical discretization methods that accurately modelling the depth
of the ocean, the most common ones are Z-coordinates, Sigma(S)-coordinates, and
Isopycnal coordinates. All of these methods offers a great amount of accuracy on the
surface of the ocean, in the domain that we are most interested in.

Nucleus for European Modelling of the Ocean (NEMO)

The Nucleus for European Modelling of the Ocean [69] represents an important com-
ponent for the global oceanographic research. Developed through a collaborative
effort by several leading European research institutions, it is a versatile modelling
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framework designed to study the ocean and its interactions with the lower atmo-
sphere, sea ice, and bio-geochemical processes.

Referring to the grid system, NEMO employs an orthogonal curvilinear grid for
horizontal representation and combines Z and S coordinates for the vertical dimen-
sion, and distribution of output variables is arranged in a three-dimensional Arakawa
C-type grid [66].

NEMO’s framework offers a holistic approach to ocean modelling by integrating
multiple key components. It simulates oceanic physical processes using advanced nu-
merical methods to understand currents, temperature, salinity, and sea level changes
[69]. Additionally, NEMO handles the complex interactions between the ocean and
sea ice, including formation and melting, and their effects on circulation [70]. It also
explores marine ecosystems and bio-chemical cycles to study the ocean’s contribution
to the carbon cycle and environmental responses [71].

Météo-France Wave Model (MFWAM)

The Météo-France Wave Model (MFWAM) is an advanced, flexible modelling frame-
work designed to simulate the generation, propagation, and dissipation of ocean
waves. It serves both as a scientific tool for understanding wave dynamics and as a
core element in operational wave forecasting systems.

MFWAM employs the ECWAM-IFS-38R2 [72] computing code, incorporating
dissipation terms developed by [73]. This foundation ensures robust performance
in simulating wave dynamics. In November 2014, the MFWAM model received
significant upgrades, thanks to advancements from the European research project
“My Wave” [48], [74].

Operationally, the MFWAM model is driven by 6-hourly analysis and 3-hourly
forecast winds from the ECMWF-IFS atmospheric system. The wave spectrum is
discretized into 24 directions and 30 frequencies, ranging from 0.035 Hz to 0.58 Hz,
providing detailed wave information. Additionally, it utilizes partitioning to separate
the swell spectrum into primary and secondary swells, allowing for more nuanced and
precise wave predictions.
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Data processing

The maintenance of waves (MFWAM) and currents (NEMO) data are undertaken
by [75], a program initiated by the European Union designed to enhance European
informational services through the utilization of satellite Earth Observation and in
situ (non-space) data.

The primary aim of Copernicus is to provide comprehensive monitoring and
forecasting of the environmental state across terrestrial, marine, and atmospheric
domains. This project supports a broad spectrum of objectives, including aiding
climate change mitigation and adaptation strategies, fostering efficient emergency
management practices, and enhancing the security and well-being of European citi-
zens.

GLOBAL_ANALYSISFORECAST_PHY_001_024 is a Copernicus product that provides
a comprehensive dataset including over 30 variables such as salinity, potential tem-
perature, and currents, among others [47]. Within this project, the focus is primarily
on the current data, which is analyzed in terms of its vertical (v0) and horizontal (u0)
components. The dataset is structured on a regular grid with a resolution of 1/12◦,
spanning from 180◦W to 179.92◦E and 89◦S to 90◦N (4320× 2041 resolution). This
product features 50 depth levels, arranged on an Arakawa C type grid [47]. However
only the surface level is utilized for this analysis. Considering that the usual draught
of a container vessel is 12m [76], the currents vary 0.01 m/s on average between the
surface layer and at 12m depth, which has a negligible effect compared with a vessel’s
typical speed.

GLOBAL_ANALYSISFORECAST_WAV_001_027 is another product offered by Coperni-
cus, which provides users the sea surface significant wave height and direction, along
with a comprehensive list of variables [48]. The spatial resolution of this dataset is
1/12◦, spanning 180◦W to 179.92◦E and 89◦S to 90◦N, the same data dimensions as
the product mentioned previously; however the temporal resolution is 3 hours.

In this model, currents are recorded on a daily basis due to their relatively sta-
ble nature, with significant changes occurring over longer periods, and waves are
stored every 3 hours. Consequently, the dataset comprises a NetCDF (Network
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Common Data Form) file for each day of the year, adhering to the naming conven-
tion: YYYY-MM-DD.nc. NetCDF is a set of software libraries and machine-independent
data formats that support the creation, access, and sharing of array-oriented scien-
tific data [77]. This arrangement results in a collection of 365 files1, each with near 9
million data points for each variable, creating a dataset of 16 GB containing currents
data and 128 GB of waves data.

2.2.2 Interpolation

Given the dynamic nature of vessel locations at sea, it is imperative to estimate the
ocean current magnitudes at these positions accurately. To achieve this, we employ
bicubic interpolation on meteorological datasets, including ocean currents speed in
northward and eastward directions, and wave height and northward direction.

The most typical interpolation methods in a 1- or 2-D setting are Nearest Neigh-
bour, Bilinear, and Bicubic. Although computationally, Nearest Neighbour and
linear methods are the simplest, both methods have a shortcoming: they produce a
discontinuous field. This is detrimental to variational methods that expect a contin-
uous field, such as the FMS algorithm that we will introduce in section 3.4. For this
reason, We use bicubic interpolation.

Let si,j where i = 0, 1, . . . , 2147 and j = 0, 1, . . . , 4319, represent any meteoro-
logical condition, indexed by the grid point along the latitudinal and longitudinal
coordinates. The (i, j) indices are determined by the grid solution, which is avail-
able through netCDF files from Copernicus product [75]. We construct a bicubic
polynomial like the following:

We build a bicubic polynomial for each 1/12◦ × 1/12◦ square, this polynomial
can be represented as:

f(i,j)(x, y) =
3∑

m=0

3∑

n=0

ai,j · xm · yn

1Weather Data: Google Drive file

https://drive.google.com/file/d/1S2heqdax__h2L6CtDv764nSl6E_1l9m_/view?usp=sharing
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si−1,j+2 si,j+2 si+1,j+1 si+2,j+2

si−1,j+1 si,j+1 si+1,j+1 si+2,j+1

si−1,j si,j si+1,j si+2,j

si−1,j−1 si,j−1 si+1,j−1 si+2,j−1

Figure 2.2: Interpolation Grid at index (i, j). To compute the bicubic polynomials
valid for square si,j, si+1,j, si+1,j+1, si,j+1 (coloured in red and orange), we need to
access all the values surrounding and including the square (the ones labeled in black).

In matrix form, it can also be expressed as:

f(i,j)(x, y) =
[
1 x x2 x3

]

⎡

⎢⎢⎢⎢⎢⎣

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

1

y

y2

y3

⎤

⎥⎥⎥⎥⎥⎦

To compute the coefficients ai,j, it is necessary to have a minimum of 16 linearly
independent equations. These equations can be obtained by initially considering the
immediate 4 × 4 square that surrounds the grid square of interest, indexed by the
lower left corner (i, j) (highlighted in red in the diagram below). Subsequently, the
values at these 16 points are taken into account, as depicted in the following diagram:
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We arrange the above values into a length 16 vector −→s , and we define the inter-
polation matrix M as a block matrix like the following:

M =

⎡

⎢⎢⎢⎢⎢⎣

0 2A 0 0

2B −A 2A B

A −2A A 0

B A −A −B

⎤

⎥⎥⎥⎥⎥⎦
(2.13)

where

A =
1

3

⎡

⎢⎢⎢⎢⎢⎣

0 6 0 0

−2 −3 6 −2

3 −6 3 0

−1 3 −3 1

⎤

⎥⎥⎥⎥⎥⎦
(2.14)

and

B =
1

9

⎡

⎢⎢⎢⎢⎢⎣

0 −6 0 0

2 3 −6 1

−3 6 −3 0

1 −3 3 −1

⎤

⎥⎥⎥⎥⎥⎦
(2.15)

As these matrix coefficients are defined, notice that this matrix M is a 16 by 16

matrix. We also ensure that these polynomials agrees on the boundaries, i.e.,

⎧
⎨

⎩
f(i,j)(−, 0) = f(i,j−1)(−, 1)

f(i,j)(−, 1) = f(i,j+1)(−, 0)
(2.16)

⎧
⎨

⎩
f(i,j)(0,−) = f(i−1,j)(1,−)

f(i,j)(1,−) = f(i+1,j)(0,−)
(2.17)

to ensure that no sudden discontinuity is introduced in interpolation.

Then coefficients vector −→a can be determined by multiplying −→s with the above
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defined matrix M as follows:
M−→s = −→a

Where s and a are defined as follows:

−→s =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

si−1,j+2

si,j+2

si+1,j+1

si+2,j+2

si−1,j+1

si,j+1

si+1,j+1

si+2,j+1

si−1,j

si,j

si+1,j

si+2,j

si−1,j−1

si,j−1

si+1,j−1

si+2,j−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−→a =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a00

a01

a02

a03

a10

a11

a12

a13

a20

a21

a22

a23

a30

a31

a32

a33

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.18)

Note that these coefficients −→a , is only valid within the square with corners si,j, si+1,j,
si+1,j+1, si,j+1.

It is evident that the resulting vector −→a is also of length 16. To facilitate further
analysis, we reshape this vector into a 4× 4 matrix denoted as A:

A =

⎡

⎢⎢⎢⎢⎢⎣

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

⎤

⎥⎥⎥⎥⎥⎦

The above matrix of 16 coefficients are dependent on the grid point of interest (i, j).
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Using this matrix, we can construct the bicubic polynomial f(i,j)(x, y) at any point
(x, y) in the square.

This process is very similar to striding in convolution in signal and image pro-
cessing or Convolutional Neural Networks (CNNs), which we can utilize Numpy’s
strengths in multi-dimension matrix algebra and computing to interpolate the entire
data grid all at once instead of a nested for-loop, which drastically decreases compute
time, trading off system Random Access Memory Usage, which could be a limitation
in some hardware configurations.

To address this limitations, we use an approach also used in CNNs , known as
chunking. With chunking, depending on the ODPs of interest, we isolate the area on
the surface of earth to apply interpolation. This significantly reduces the amount of
data points involved in interpolation, by at most 90% in shorter voyages, and around
50% in cross pacific or atlantic voyages.

2.3 WeatherRouting Bench 1.0

Having introduced what constitutes a weather routing problem, we can now define
the set of instances that make the first version of WeatherRouting Bench 1.0. We
will need to define the ODPs, departure dates, vessel parameters and operational
characteristics. The cost function has already been introduced in Section 2.1.1.

Selecting a good set of ODPs for weather routing requires attention, as it first
need to be representative of real world applications. In Table 1.1, all ODPs reflects
real shipping routes. It also need to be of interest to test various weather routing
algorithms to their full capacity. This not only requires weather routing algorithms to
find an optimal path according to some criterion, but also consider obstacle avoidance.
These ODPs should therefore appear in different levels of complexity, including land
presence and difficult meteorological conditions.

To meet the first criteria, we can take a look at maritime networks. A maritime
network is a system of maritime flows and connections between ports and other
locations [78]. Maritime networks reveal various aspects of global shipping, including
mapping traffic densities to show the spatial patterns of vessel movements [79]. Via
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the density of maritime networks, we can identify the major hubs: the ports that are
most visited. We have chosen a set of instances based on these major hubs, as they
will represent ODPs relevant for the shipping industry. A literature review has been
conducted to extract the major hubs in recent maritime shipping [80]–[82].

Next step is to ensure that our instances include ODP with several levels of
complexity. The ODPs for the five chosen shipping routes are shown in Table 2.1.
Each of these five routes will be considered in direct and reverse direction. As for
the departure dates, we consider a departure for every Sunday of 2023, for a total
of 52 departure dates per ODP. This ensures a variety of scenarios, as the ocean
conditions change with the seasons.

Table 2.1: List of Origin-Destination Pairs chosen, grouped by regions connected.

Ocean Port 1 (Code) Port 2 (Code)
Atlantic Ocean Hamburg (DEHAM) New York (USNYC)
Atlantic Ocean New York (USNYC) Colón (PAONX)
Pacific Ocean Balboa (PABLB) Callao (PECLL)
Indian Ocean Kuala Lumpur (MYKUL) Hurghada (EGHRG)
Mediterranean Sea Said (EGPSD) Algeciras (ESALG)

For the vessel type, in this first version of the benchmark we will use a typical
container ship. Its parameters are listed in table 2.2. We assume the vessel can
achieve constant power delivery for the entire duration of the journey, and as such,
the vessel sails at constant speeds over water, vwtr. We considered three different
speeds, at very slow (6 knots), slow (12 knots), and normal speed (24 knots).

Together with the 52 departure dates per ODP, ten pairs of ODPs, and at three
different speeds, we have a total of 1,560 instances, providing a comprehensive basis
for the purposes of this study.

The goal for all instances will always be to minimize the travel time, accounting
for the effect of waves and water currents as explained in Section 2.1.1. Solutions for
every route will be reported as polygonal curve with includes waypoints specifying the
vessel’s position (latitude, longitude) at constant time intervals of ∆t = {15, 30, 60}
min when the vessel has speed vwtr = {24, 12, 6} kn, respectively. With this choice,
the average distance between waypoints is around 10km, which is of the same order
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Table 2.2: Parameters of every instance of WeatherRouting Bench 1.0.

Journey
ODP See Table 2.1 (10 ODPs).
Departure Date Every Sunday of 2023, starting on 00:00 01-01-2023

UTC and finishing on 00:00 24-12-2023 UTC (52
dates).

Vessel
Length L = 220 m
Displacement ∇ = 36500 m3

Block Coefficient cB = 0.6
Speed over Water vwtr = {6, 12, 24} kn (constant)
Optimization Problem
Cost Function Travel time affected by waves and water currents.
Solution Polygonal curve with waypoints (latitude, longi-

tude) specifying vessel position at constant time
intervals.

as the grid spacing of weather data. This ensures that the hypothesis that weather
conditions remain constant over each segment of the route is sound.

For an easier interpretation of the results, all computed times will be compared
with a reference standard route which is given with the instance. This standard route
is chosen to be the orthodromic or shortest distance route. Thus, rather than giving
the total time of a given candidate solution, we will report the relative reduction (or
increase) in travel time of the candidate route with respect to the shortest distance
route departing on the same moment.



Chapter 3

Heuristic Methods

3.1 Zermelo’s Navigation Problem and Hybrid Search

3.1.1 Zermelo’s Navigation Problem on the plane

This problem was proposed in 1931 by Ernst Zermelo [49], is a classic time-optimal
control problem, where its aim is to find time minimum trajectories under the
influence of a drift vector

w⃗(x1, x2) = ⟨w1(x1, x2), w2(x1, x2)⟩

where x1, x2 are local coordinates, and where w1, w2 are the vector components chosen
relative to a local frame. This drift vector can be interpreted as wind or water current.
In small scale simulations, the coordinates and the vector components can be taken
to be Euclidean. Once we pass to larger scale simulations that take into account the
curvature of the Earth, the coordinates (x1, x2) indicate longitude and latitude (in
degrees), while the vector components are taken relative to a local east-north framing
(in meters).

The goal is to navigate from a specified initial point along a path that minimizes
time, under the influence of w⃗, assuming the vessel provides constant thrust V (speed
over water) and has a heading angle (over water) α w.r.t. the x1-axis. Thus, the
velocity components over ground can be expressed as:

dx1

dt
= V cosα + w1(x1, x2)

dx2

dt
= V sinα + w2(x1, x2)

(3.1)

Using the Calculus of Variations, one can show that such a path necessarily obeys
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the following differential equation, first derived by Zermelo [49]

dα

dt
= sin2(α)w2,1 + sin(α) cos(α) (w1,1 − w2,2)− cos2(α)w1,2 (3.2)

where for the sake of brevity, we write wi,j = ∂wi/∂xj.
Equation (3.2) is known as the Zermelo differential equation. Together with

(3.1) it gives the form for time-optimal trajectories as a dynamical system in the
3-dimensional space parameterized by (x1, x2,α). We will refer to the initial value
problem for this 3-dimensional dynamical system as the ZIVP. This means that
given a current vector field (w1(x1, x2), w2(x1, x2)), an initial position (x(0)

1 , x(0)
2 ) and

an initial heading α, the trajectory defined by the initial value problem is guaranteed
to be time optimal, i.e. each point in that trajectory cannot be reached in shorter
time by a vessel with constant speed over water V starting from (x(0)

1 , x(0)
2 ).

For the interest of completeness, the derivation of this last equation is fully ex-
plained in Appendix .2.

3.1.2 Zermelo’s Navigation Problem on the Sphere

We now modify the above equations to the case where the ship is traveling on the
surface of the Earth - idealized here as a perfect sphere. We first adopt spherical
coordinates x1 = θ (longitude) and x2 = φ (latitude) measured in units of κ radians.
In particular, it may be convenient to take κ = π/180 if we wish to measure in
degrees. The velocities of currents will be given relative to a east-north framing,
which we represent as the following 2× 2 matrix

F (θ,φ) =

[
K cos θ 0

0 K

]

where K is the conversion scale from the units used to measure θ, φ and the units
used to measure local velocities. For example, if global position is measured using
degrees of arc, and local velocities are measured in kilometers, then letting R be the
Earth’s radius in kilometers (R ≈ 6367 km), we have K = κR = πR/180 ≈ 111.1

kilometers per 1 degree of arc.
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With these conventions in place, the velocity over ground of a vehicle moving at
a speed of V over water is given as

K cos(κφ)
dθ

dt
= V cos(κα) + w1(θ,φ)

K
dφ

dt
= V sin(κα) + w2(θ,φ)

(3.3)

where α is the vessel’s heading measured relative to an East-North framing, w⃗(θ,φ) =
⟨w1(θ,φ), w2(θ,φ)⟩ with w1 being the component of displacement relative to east, and
w2 the component of displacement relative to north.

Using the Calculus of Variations once again, now on the sphere, one can show
that such a path necessarily obeys the following differential equation,

κK
dα

dt
=
[
cos(κα) sin(κα)

] [sec(κφ)w1,1 w1,2

sec(κφ)w2,1 w2,2

][
sin(κα)

− cos(κα)

]

− cos(κα) tan(κφ)(V + cos(κα)w1 + sin(κα)w2)

(3.4)

Equation (3.4) can be considered the analogue of the Zermelo differential equation
for motion on a sphere. For the sake of completeness, the derivation of this equation
is fully explained in Appendix .2 [30].

3.1.3 Hybrid Search method

Hybrid Search (HS) is the three-step algorithm proposed in this paper for solving the
ZNP in either Euclidean or Spherical background. The three steps are (i) exploration,
(ii) refinement, and (iii) smoothing. The output of the exploration and refinement
phases is a piece-wise optimal trajectory that connects a starting location with a
desired destination.

In effect, exploration is a shooting method based on the Zermelo’s initial value
problem (ZIVP). The exploration algorithm formulates multiple instances of a ZIVP
with a given initial position and a cone of directions aimed towards the target. The
trajectories are then evolved using RK4 numerical solutions to the Zermelo Differen-
tial Equation with dynamic termination conditions. The most obvious termination
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condition is to select the trajectory that minimizes the distance to the target. In
practice, it turns out that a better heuristic is to terminate each trajectory when
the difference between the heading angle and the direction to target exceeds a cer-
tain pre-set threshold. The algorithm is greedy, in that a single “winner” trajectory
is selected from the list of dynamically terminated trajectories. This selection is
performed on the basis of minimum distance to target.

The refinement phase is just a second run of the exploration algorithm, but this
time the cone of initial directions is more narrow and centered on the winner shot
angle of the previous exploration phase. The candidate trajectories are then evolved
using the same heuristic and a winner is selected based on proximity to the target.
Then a new exploration phase begins, starting at the final waypoint of the winner
segment. The precise details of the exploration and refinement sub-algorithms are
detailed in sections 3.1.3 and 3.1.3 respectively.

The third phase consists of smoothing the output of the refinement using the
FMS algorithm [17], [53]. This algorithm is a numerical Boundary Value Problem
scheme that works by iteratively shifting a given discretized trajectory towards a
time-minimizing route. The approach is based on the discrete Calculus of Varia-
tion and can, in principle, be utilized with any given Lagrangian. In our case, we
select the time-minimizing Lagrangian such that the corresponding Euler-Lagrange
equations are precisely the Zermelo Differential Equation. We then discretize the
time-minimizing Lagrangian using a pre-selected time-step and begin the iteration
with the piece-wise optimal solution generated by the exploration and refinement
sub-algorithms. Because the initial trajectory is piece-wise optimal, the overall effect
is that of smoothing the sharp turns present in the initial trajectory and converting
the piece-wise smooth and piece-wise optimal solution to a smooth, near optimal
solution of the Zermelo problem. The relevant details of the FMS algorithm are
specified in section 3.4.

Exploration step

Given a start point xA = (xA,1, xA,2), and a goal point xB = (xB,1, xB,2), we can
first centre a search cone in the direction of ΛA,B, following equation (3.5) (assuming
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an euclidean space). The amplitude for the search cone is γ. If the vector field was
null and we started a trajectory with heading α = ΛA,B, the vessel would eventually
arrive to xB. Thus, by taking this search cone, we are assuming that the optimal
route will always point close to the destination and that the vector field will have
a small effect on the vessel trajectory. However, this assumption can be relaxed by
increasing the amplitude of the cone, γ (up to 2π, covering all directions).

Λi,j = Λ(xi,xj) = arctan

(
xj,2 − xi,2

xj,1 − xi,1

)
(3.5)

Equation (3.5) defines the angle Λi,j from point xi to point xj . This equation is
applicable in Euclidean space, and can be generalized to spherical geometry for short
distances. However this does not hold for our study as distances between start and
end points are significant, so when working in spherical space it is better to replace
equation (3.5) by the following:

Λi,j = arctan

(
−cj · si + ci · sj

− (ci · cj + si · sj) · sin(xi,2) + (c2i + s2i ) · sin(xj,2)

)
(3.6)

where c = cos(x1) · cos(x2); and s = sin(x1) · cos(x2).

Next, we generate N initial shooting angles, namely

αn(0) ∈ [ΛA,B − γ/2, ΛA,B + γ/2] .

To do so we N -sect the search cone into α0, . . . ,αN , evenly spread across the whole
cone, and use each of these αn as an initial condition to solve the system of ODE via
the Fourth order Runge-Kutta method (RK4). We will use these shooting angles to
generate N local paths, or trajectories qn(t) = (xn,1(t), xn,2(t),αn(t)), n ∈ [0, N ].

The N generated trajectories evolve using RK4, in iterations of time τ > ∆t

(where ∆t is the time step of RK4). After every iteration τ , each trajectory n is
checked individually to assert whether it meets any one of three stopping conditions.
If it does, trajectory n is left out of the RK4 loop and will not evolve further. These
three rules are:
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1. Trajectory n is stopped at time T if

D (xn(T ),xB) ≤ d,

being D(xa,xb) the distance metric between two points, defined according to
the space we are operating on, and d a certain distance threshold. This implies
the vessel has reached its goal.

2. Trajectory n is stopped at time T if its heading αn(T ) deviates too much from
the goal. To assert this, we take point xn(T ), and compute its angle to xB,
named Λ(xn(T ),xB), see equations (3.5) and (3.6). Otherwise, the trajectory
keeps evolving while the following condition is met:

(Λ(xn(T ),xB)− γd/2) ≤ αn(T ) ≤ (Λ(xn(T ),xB) + γd/2) ,

where γd is the maximum deviation allowed from the goal, typically equal or
lower than the search cone γd ≤ γ. The higher γd, the more exploratory is this
method, but it will take more iterations to converge.

3. Trajectory n is stopped at time T if any of its points xn(t), t ∈ [0, T ] are located
in land. In addition to stopping the trajectory, the algorithm discards all the
way-points qn(t), t ≥ tland, being xn(tland) the first point located in land. The
trajectory qn(t), t < tland is kept, as it may still be the optimal route and just
needs a course correction, that will be done in a later step.

Note that each trajectory may be stopped at a different time T . For this reason,
we denote as Tn the last moment of trajectory n, i.e. its waypoints are qn(t), t ∈
[0, Tn].

One can argue that the second rule is too strict for small γd, as the vessel can be
heading “wrongly” for a negligible amount of time before turning “correctly” again,
and that the resulting route might be optimal. However, when working with real
scenarios, the influence of the vector field is small enough to justify that a vessel
going in a “wrong” direction will not turn “correctly” on time to compensate this
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deviation.

(a) (b)

Figure 3.1: First two steps of the Hybrid Search (HS) method: (a) exploration and (b)
refinement. Each trajectory is generated from a different shooting angle (in orange)
and evolves using Fourth order Runge-Kutta method (RK4) method iteratively with
τ = 0.1, until their heading deviates more than γd = π/2 radians from the goal.
After all local paths are computed, the one that got closer to the destination is
chosen as best (highlighted in the graph). The search cone had an amplitude of
γ = π radians in the exploration step and was centred on the direction of the goal.
During refinement, the search cone was centred on the shooting angle of the best
route found in the exploration step, and its amplitude is narrower, γ = π/5.

Figure 3.1a shows a visualization of this exploration step, highlighting the one
which got closest to the goal. RK4 method ensures that all trajectories are time
optimal. After all N trajectories stop, if none of them reached the goal xB (i.e. none
met the first stopping rule), we choose the trajectory

m : D (xm(Tm),xB) ≤ D (xn(Tn),xB) ∀n ∈ [0, N ] (3.7)

We denote this trajectory m as the “best trajectory”, then move to the refinement
step (section 3.1.3).
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Refinement step

In the exploration step, we assumed that the optimal route should be heading closely
towards the goal xB, and evolved trajectories defined by the points

qn(t), t ∈ [0, Tn], n ∈ [0, N ].

with initial shooting angles αn(0) ∈ [ΛA,B − γ/2, ΛA,B + γ/2].
We now generate a narrower search cone, with amplitude γb << γ (for instance,

γb = γ/5) and we center it on αm, where m is the “best trajectory” from the ex-
ploration step. Thus, the newly generated initial shooting angles are evenly spread
across

αn(0) ∈ [αm − γb/2, αm + γb/2] , n ∈ [0, N ]

We now re-run the exploration algorithm for this last segment. At some point,
all the trajectories will have stopped due to the three rules we set. If no trajectory
reached the goal xB (i.e. no trajectory meets the first stopping criteria), we update
the “best trajectory” m following equation (3.7). The algorithm goes back to the
exploration step (section 3.1.3) using xA = xm(Tm) as the starting point.

This loop between exploration-refinement continues until the first stopping rule
happens, i.e. one trajectory gets close enough to the destination xB. Figure 3.10a
displays one possible result of this process. One issue is apparent: the vessel takes
sharp turns in the connections between local paths. This happens because each
segment (except the last one) is stopped due to deviating from the goal, so the vessel
is forced to correct its course by turning sharply to reach its destination.

3.2 Graph Optimization: A Super Star Search

Graph optimization is a powerful mathematical technique widely used in the field of
weather routing [25], [50]. These algorithms represent the ocean as a graph and aim
to find the path that minimizes a specific objective function. The objective function
can be travel time, fuel consumption, or other operational costs, depending on the
requirements of the application. One advantage of graph search algorithms is their
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ability to easily incorporate constraints, such as obstacle avoidance, by disallowing
certain nodes in the graph. Nevertheless, this flexibility necessitates discretizing the
search space, resulting in routes with abrupt turns, which are impractical for real-
world applications. However, these routes serve effectively as initial solutions for
more refined optimization methods, as is the case for the FMS algorithm that we
will introduce in Section 3.4.

3.2.1 Grid Resolution

To implement graph optimization, we need to discretize the world map using a grid.
Each node of the grid corresponds to a coordinate in latitude and longitude. The grid
avoids points on land, as there are no currents or waves reading on land. A sensible
graph would be to consider the data grid provided in our meteorological data; the
distance between points in currents data being 1/12◦ ≃ 0.083◦ (approximately 10
km at the equator). This results in a grid of size 4320 × 2041, containing near 9
million nodes. This grid would then transformed into an undirected weighted graph,
where each node represents a coordinate, the edges connect adjacent squares, and
weights are computed with the cost function T defined in Section 2.1.1. However
using square grids, (aka, Mercator Projection) has limitations due to the Earth’s
spherical shape, which requires significant distortion to fit the grid.

To address this issue, we instead utilize an hexagonal grid provided by the H3
library [51]. As shown in Figure 3.2, hexagons together with 12 appropriately shaped
pentagons accurately cover the round shape of the Earth. There are different sizes
of hexagons ranging from 4 × 106 km2 to 1 m2 with 15 resolution levels. Our A⋆

graph search algorithm will be tested grid resolutions 3 to 5. The specifics of these
resolutions are shown in table 3.1.

3.2.2 Neighbours Exploration

Each hexagon of the H3 grid has six neighbours, allowing for two more possible
directions per node compared to a traditional square grid. This is important for real
applications of weather routing, as vessels take smooth turns. A square forces 90◦
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Figure 3.2: Partition of the Earth into hexagonal grids of different sizes, using H3.
Image from [51].

Table 3.1: H3 resolutions and Hexagon sizes. Data from [51].

H3 Hexagon Hexagon Edge Number of
Res. Area (km2) Length (km) unique indexes

3 12,392 59.8 41,162
4 1,770 22.6 288,122
5 253 9.8 2,016,830

turns while an hexagon reduces that to 60◦. However, that is still a sharp turn for
maritime standards. To address this challenge, we connect each node to its N-order
neighbours, effectively providing 6 · (1 +

∑N−1
k=0 k) possible directions and reducing

the angle of course changes, as depicted in Table 3.2.

One of the main challenges faced by weather routing algorithms is avoiding land.
To ensure land avoidance, we implement two rules when building the graph: (1)
hexagons located directly on land are removed and (2) edges that cross land are also
removed, preventing any jumping over the land. This is shown in Figure 3.3.
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Table 3.2: Graph characteristics dependence on the N -order neighbours.

N Maximum number of Minimum
available neighbours course correction

1 6 60◦

2 18 30◦

3 36 20◦

Figure 3.3: Demonstration of how the algorithm can jump over several neighbours,
enhancing the flexibility of the route. It also shows the two techniques to ensure
land avoidance: Hexagons located directly on land are removed, ensuring that every
path on the pruned graph lies entirely on water. Note that the hexagons here are for
illustrative purposes only.

3.2.3 Heuristic

With the graph constructed, the goal of our weather routing algorithm is to find the
minimal path between two nodes (nstart, nend). The minimal path is defined as the
one with the least travel time. The most popular method used in graph optimization
problems is Dijkstra’s algorithm [83]. This algorithm computes the minimal path
between each pair of nodes, requiring exploration of the entire graph. However, in
this case, exploring the entire graph is not feasible due to its size (over 10 million
nodes). An alternative is the A⋆ algorithm [84], which unlike Dijkstra’s algorithm,
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does not need to explore the entire graph to find the minimal path between two
nodes, thanks to the use of an heuristic inside the cost function. Thus, the cost
function for node n is defined as:

f(n) = g(n) + h(n), (3.8)

where g(n) is the cost of the path from nstart to n, and h(n) is the heuristic cost of
the path from n to nend. Following Huang [85], we choose

h(n) =
d(n, nend)

v̄short
, (3.9)

where d(n, nend) is the Haversine (or great circle) distance between nodes n and nend

and v̄short is the average ground speed of the vessel computed along the route of
shortest distance (orthodromic).

A⋆ takes into account both the explored path and an approximation of the re-
maining path. Thus, A⋆ provides an optimal solution as long as the heuristic is
admissible, i.e. it does not overestimate the real cost from n to nend.

A⋆ takes into account both the explored path and an approximation of the re-
maining path. Thus, A⋆ provides an optimal solution as long as the heuristic is
admissible, i.e. it does not overestimate the real cost from n to nend. Although A⋆ is
guaranteed to find an optimal route if the heuristic is admissible, the quality of the
heuristic affects the number of nodes explored by the algorithm, so the complexity
of A⋆ depends on the heuristic chosen. In the worst-case scenario, a poor heuristic
will force A⋆ to explore every node in the graph, similarly to Dijkstra’s algorithm.

There are several variations of A⋆ that can help the algorithm converge faster.
One of them is Weighted A⋆ [86], where the cost function is defined as:

f(n) = g(n) + w · h(n) (3.10)

Here, w is a weight that multiplies the heuristic component, affecting the number of
nodes explored by the algorithm. For example, setting w = 0 cancels the heuristic
component, making A⋆ behave like Dijkstra’s algorithm. Conversely, assigning a
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very high value to w causes the path from nstart to n to be disregarded, resulting
in a Greedy Best First Search [87]. Higher values of w are expected to speed up
the algorithm, but do not guarantee the optimal result, even when using admissible
heuristics.

3.2.4 Hyper-parameter Search

We have run experiments for a number of different configurations for the A⋆ algorithm,
namely

• Grid resolution: 3, 4, 5

• N -order neighbours: 1, 2, 3

• Weight of the heuristic w: 0.5, 1.0, 1.25

This amounts to 27 different configurations, run across all ten ODPs (five pairs of
ports in both directions) at three different velocities (6, 12 and 24 knots), for a total
of 810 different experiments. For each experiment we registered the computation
time of the A⋆ algorithm and the time it takes the vessel to reach its destination
- the target to be optimized. We then compared that travel time with the time
taken by following the minimum distance route (circumnavigation), computing the
percentage gain of the A⋆ with respect to it. All experiments where conducted on
the same machine1.

It is worth noting that A⋆ was not able to find a route for 90 out of the 810
experiments. The main source of this issue were the ODPs between EGHRG and
MYKUL. Due to the narrow Suez canal, some grid configurations did not present any
feasible connection between the start and end nodes. Particularly, grid resolution 4
with 1st-order neighbours and grid resolution 3 with 1st- and 2nd-order did not reach
a feasible solution. This challenge is not a limitation of the A⋆ algorithm itself but
rather a consequence of the H3 graph structure’s resolution constraints. To address
this, one potential improvement is to implement an adaptive multi-scale resolution

1Intel Core i9-14900K, with 128GiB RAM.
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Table 3.3: Pearson correlation coefficient (PCC) between the gains produced by
A⋆ (compared with the minimum distance), its computation time and the different
hyper-parameters of this algorithm.

PCC Gain Compute time
Vessel speed -0.258 0.030
N-order neighbours 0.678 0.146
Grid resolution 0.211 0.269
Weight of the heuristic -0.253 -0.242
Explored nodes 0.150 0.757
Wave height 0.107 0.030

strategy that increases grid granularity in the presence of complex land masses like
archipelagos or straits.

We computed the Pearson correlation [88] between hyper-parameters and results,
to better understand their impact. These Pearson coefficients are shown in Table
3.3, comparing instance’s parameters such as speed, explored nodes, and wave height.
In relation to problem instances, it is evident that higher vessel speeds result in
less gains. On the other hand, an increased number of nodes and the presence of
strong currents and high waves increase the potential gains achieved by A⋆. Among
A⋆ hyper-parameters, increasing the N-order neighbours significantly improves opti-
mization, because it adds more nodes to explore at each step, as shown in Table 3.2.
Additionally, the weight of the heuristic and grid resolution greatly impact compu-
tation time, which is crucial for deployment and implementation of this system.

Figure 3.4 groups the A⋆ gains by N -order neighbours and grid resolution, vali-
dating our expectations: a finer grid resolution and a bigger neighbour order opens
more paths to explore, and thus improves the overall results. We also observe, how-
ever, that a grid resolution of 5 increases the computation time by at least an order
of magnitude while only managing to net gains similar to resolution 4. To balance
gains with a reasonable computation time, we will choose a grid resolution of 4 with
3rd-order neighbours. Next we decide a weight for the heuristic.

Looking at Table 3.4 we conclude that an heuristic weight of 0.5 offers the best
results without a significant cost in computation time. We also observe, however,
that A⋆ still struggles to achieve gains over the minimum distance routes in some
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Figure 3.4: Hyper-parameter settings for A⋆, grouped by N -order neighbours and
grid resolution. The gain of A⋆ over circumnavigation is shown, and computation
times are plotted below.

Table 3.4: Gain and computation time of A⋆, showing mean (std) across configura-
tions. Grid resolution is fixed to 4, and 3rd-grade neighbours.

Speed Weight of Gain (%) Compute time
(knots) Heuristic (min)

6 0.5 3.79 (2.43) 1.51 (1.73)
6 1.0 3.00 (1.83) 0.36 (0.65)
6 1.25 -0.56 (2.46) 0.14 (0.23)
12 0.5 1.34 (2.03) 1.03 (1.06)
12 1.0 0.88 (1.72) 0.37 (0.46)
12 1.25 -1.89 (1.74) 0.09 (0.17)
24 0.5 0.01 (0.84) 1.48 (1.82)
24 1.0 -0.16 (0.88) 0.42 (0.52)
24 1.25 -2.75 (1.41) 0.11 (0.21)
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scenarios. To improve its results, we will apply a FMS refinement discussed in Section
3.4 to every A⋆ output. This ensures that FMS will always output a solution at least
as good as the seed route provided by A⋆.

Figure 3.5: The box-plot show the gain of A⋆+FMS over shortest distance route, for
every A⋆ configuration. Below them, the bars show the average increase (in gain %)
that FMS achieves when applied to A⋆.

FMS is able to improve any A⋆ configuration greatly, as illustrated in Figure 3.5.
FMS is able to neutralize the disadvantages resulted by sub-optimal A⋆ configura-
tions, to the extent where the average gain in each A⋆ configuration is always greater
than 0. As such, worse A⋆ configurations benefit more from FMS, witnessing an
increase of around 8% in gains for 1st-grade neighbours. The choice of A⋆ hyper-
parameters is not so crucial after applying the FMS algorithm, whose addition is a
great improvement over a pure graph optimization method.

3.3 Bézier Evaluation on Evolutionary Strategy (BEES)

We also propose combining a black-box optimiser with a solution space consisting of
a parameterisation of the vessel trajectories going from origin to destination. This
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approach is similar to variational optimisation in the sense that full routes are gener-
ated and iteratively adapted so as to minimise a functional, instead of progressively
assembled leg by leg. We choose the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES)[89] as our optimiser, while we parameterise the trajectories using an
K-degree Bézier curve.

3.3.1 Parameterisation

Two-dimensional Bézier curves of degree K use a set of control points

ccc0, . . . , cccK ∈ R2

We fix ccc0 and cccK as the source and destination points, respectively, and leave
ccc1, . . . , cccK−1 free.

Although the general Bézier formula reads

f(t) = (x(t), y(t)) =
K∑

k=0

(
K

k

)
(1− t)K−ktkccck, (3.11)

we use De Casteljau’s recurrence [90] instead, which is known to be more numerically
stable: f(t) = ccc(n)0 , where

ccc(i)k :=

⎧
⎨

⎩
ccc(i−1)
k (1− t) + ccc(i−1)

k+1 t

ccc(0)k := ccck.
(3.12)

Bézier’s method yields smooth (infinitely differentiable) curves, which can be very
expressive with few degrees of freedom (see Fig. 3.6).

3.3.2 Optimizer

CMA-ES is an evolutionary optimization algorithm that proposes candidate solu-
tions using an adaptive multivariate Gaussian distribution. We start with an initial
solution µµµ0 which is a straight path connecting source with destination. At each
iteration t, the distribution follows N (µµµt,Σt) and is defined so as to approximate
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(a) (b)

Figure 3.6: Different sets of control points (shown in orange) can yield almost iden-
tically shaped Bézier curves, however velocity along the curve varies

the geometry of the score function around µµµt. Then, a sample xxx1, . . . ,xxxP is drawn
from it. The function is evaluated on each xxxp and the values are used to define the
next distribution N (µµµt+1,Σt+1). The sequence µµµt can be understood as a stochastic
version of gradient descent, whereby noisy samples around the point are taken at
each iteration (the mutations) so that the algorithm has higher chances of escaping
local minima. In contrast, the optimizer is derivative-free, which makes it applicable
to a wide range of scenarios. At the same time, the fact that P samples are evaluated
in batch at each t makes it easy to parallelize: as we will show, our algorithm can
score more than 1000 vessel trajectories per second.

Instead of discarding paths that cross land, we include a penalization term. The
cost we add is equal to the total distance traversed on land times a large enough
factor (we chose 106 in our experiments). This progressively guides the optimizer
out of invalid routes into routes that fully circumnavigate the land. Although this
strategy can result in local minima for certain shore lines (see Fig. 3.7), this is not
a problem in practice if the CMA-ES hyperparameter σ0 (initial mutation rate) is
chosen high enough.

Figure 3.8 illustrates the convergence of this method over different random seeds.
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Figure 3.7: Trajectories crossing hourglass-shaped land may lie at a local minimum
of the land penalization function. Still, the CMA-ES optimizer was often able to
escape such minima in our experiments.

3.4 Smoothing Method - Ferraro-Martín de Diego-Sato (FMS)
Algorithm

We employ a Ferraro-Martín de Diego-Sato (FMS) algorithm [17], [53], which is able
to, firstly, smooth out sharp course corrections and, secondly, find further savings
in the route. We do this by numerically solving a Boundary Value Problem of the
Zermelo’s Navigation Problem. This approach is based on Calculus of Variations
and Lagrangian Mechanics on a discrete setting.

Let us quickly review the Newton-Jacobi iterative algorithm for solving nonlinear
equation. Consider an equation of the form 0 = f(x) where f(x) is a differentiable
function of one variable. Newton’s method proposes that we pick an approximate
solution x = x(0) and then solve the linearized system

f(x(0)) + f ′(x(0))(x(1) − x(0)) = 0

to obtain an x(1). If x(0) is sufficiently close to a root of f(x) = 0, one can show
that |f(x(1))|< |f(x(0))| and we can iterate to produce a sequence x(0), x(1), x(2), . . .

by solving, at each stage the linearized system

f(x(i)) + f ′(x(i))(x(i+1) − x(i)) = 0.
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(a) Panama → New York (b) New York → Hamburg

Figure 3.8: Convergence of CMA-ES Bézier for five different random seeds and two
different (source, destination) pairs. In open sea (left), CMA-ES Bézier converges
in a fairly stable way. In contrast, areas with frequent land obstacles (right) yield
a harder optimization landscape, with routes occasionally failing to reach the global
optimum.

The Newton-Jacobi method generalizes Newton’s method to the case of an n×n

system of nonlinear equations F (q) = 0 where q is a point in n-dimensional space and
F is a transformation of n-dimensional space; i.e., F (q) = (F1(q), . . . , Fn(q)) is an
n-vector of functions. As above, we begin with an initial guess q0 and then construct
a sequence of approximate solutions by solving the linearized equations

F (qi) +DF (qi)(qi+1 − qi) = 0

for qi+1. Under suitable assumptions, one can show that the sequence q0, q1, q2, . . .

converges to a zero of F .

The key idea introduced in [17] is to apply tr apply the NJ method iteratively to
primitive 3-point trajectories, i.e. trajectory trajectories path consisting of qk−1, qk,
qk+1. For each such trajectory we freeze qk−1, qk+1 and seek for the optimal placement
of qk. This amounts to a solution of the discrete Euler-Lagrange equation

D2Ld(qk−1, q̄k) +D1Ld(q̄k, qk+1) = 0
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for an unknown q̄k. The complete derivation of the system of discrete Euler-Lagrange
equations is included in Appendix .3.

We now apply the NJ method by taking

F (q) = D2Ld(qk−1, q) +D1Ld(q, qk+1)

and apply one iteration of the method to solve the linearized system

F (qk) +DF (qk)(q
∗
k − qk) = 0

for the unknown q∗k. Fully written, the system for q∗k is then

D2Ld(qk−1, qk) +D1Ld(qk, qk+1)+

+ (D22(qk−1, qk) +D11Ld(qk, qk+1)) (q
∗
k − qk) = 0

We now apply the same one-step iteration to all the primitive trajectories

(qk−1, qk, qk+1), k = 1, · · · , N − 1

to obtain a new trajectory q∗ = (q∗k)
N
k=0 with q∗0 = q0 and q∗N = qN . If the initial tra-

jectory q(0) is well chosen, then the iterated sequence of trajectories q(i), i = 0, 1, . . .

where q(i+1) = q(i)∗ converges to a solution of the discretized Euler-Lagrange equa-
tions. Moreover, this solution is ensured to be time optimal, since the conditions
based on the positivity of the Hessian matrix hold generically for the Lagrangian of
the Zermelo problem (see Theorems 10 and 14 in [53]). By locally time optimal, we
mean that any neighboring trajectory will employ a larger time to reach the target.

In the original Zermelo problem seen in Section 3.1.1, we deal with a constrained
optimization problem whose Lagrangian function has the form

L = ṫ+ λ1(ẋ1 − (V cosα + w1)ṫ) + λ2(ẋ2 − (V sinα + w2)ṫ) (3.13)

A full explanation of the derivation of the above Lagrangian is given in Appendix
.2. The constraints associated to that Lagrangian are
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ẋ1 = (V cosα + w1)ṫ

ẋ2 = (V sinα + w2)ṫ
(3.14)

We will apply the FMS algorithm to the Euclidean Zermelo problem after suit-
ably transforming (3.13) into a non-constrained optimization problem. It is possible
to extend the FMS methodology to spherical backgrounds and to constrained opti-
mization, but we do not pursue these directions in the present paper.

We begin by combining (3.14) into the single constraint

(ẋ1 − w1ṫ)
2 + (ẋ2 − w2ṫ)

2 = V 2ṫ2. (3.15)

Setting

X =
√

ẋ2
1 + ẋ2

2

W =
√

w2
1 + w2

2

we rewrite (3.15) as the following quadratic equation in ṫ:

(V 2 −W 2)ṫ2 + 2XW cos β −X2 = 0,

where β is the angle between ẋ and w. The solution gives us the following uncon-
strained Lagrangian:

L̂ = ṫ =
X

V 2 −W 2

(
−W cos β +

√
V 2 −W 2 sin2 β

)

As given, the above L̂ is not a regular Lagrangian, and the corresponding L̂d

will not give a convergent FMS algorithm. This difficulty can be remedied by ob-
serving that L̂2 is regular, and so we take L̂2

d as the discrete Lagrangian for our
implementation of the FMS algorithm.

Figure 3.10b shows the results of FMS after 10 000 iterations, applied to the route
generated at the end of the exploration and refinement loop.
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The algorithm iteratively moves a finite number of points along a route, say
{qi}i∈[n], to a set of points {q′i}i∈[n] that gives a lower cost compared to the previous
iteration, i.e., L ({q′i}) < L ({q′i}). The FMS algorithms contains 3 hyper-parameters:
damping, maximum iterations, and early stopping, so we can determine how much
every point along a route is moved in one iteration, and how many iterations should
be applied before we reach local minima. This can be best explained by applying
an analogy to Neural Networks; damping is similar to learning rate, it is applied to
determine the step size taken to reach a local minima at each iteration. This hyper-
parameter offers a trade off between rate of convergence and overshooting [91]. A
number of maximum iterations is set to 2,000. Before reaching that limit, the early
stopping may stop the FMS if the cost function does not decrease for 20 consecutive
iterations. This hyper-parameter avoid unnecessary computation time once the FMS
reaches the local minima. More details are provided in [30] and references therein.

In Figure 3.9, we see the sudden change in directions along the route. After
applying few hundred iterations of the FMS algorithm, we can see that these sudden
changes in direction have been smoothed out. Not only does FMS provide a smoother
trajectory, but also FMS is guaranteed to converge to a locally optimal solution of
the variational problem, as proved in [17], [53].

The shortcoming of FMS is that this locally optimal trajectory might be far from
the global optimum, as it happens with many gradient descent methods. In [30] an
exploration phase Our proposed algorithm is a concatenation

FMS is able to improve any A⋆ configuration greatly, as illustrated in Figure 3.9.
FMS is able to neutralize the disadvantages resulted by sub-optimal A⋆ configura-
tions, to the extent where the average gain in each A⋆ configuration is always greater
than 0. As such, worse A⋆ configurations benefit more from FMS, witnessing an
increase of around 8% in gains for 1st-grade neighbours. The choice of A⋆ hyper-
parameters is not so crucial after applying the FMS algorithm, whose addition is a
great improvement over a pure graph optimization method.

Similarly, we apply this algorithm to Hybrid Search,
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Figure 3.9: Route comparison between the shortest distance route (purple), A∗ (yel-
low) and A∗-FMS (red). One can see that after applying FMS, the ‘jagged’ turns
from A∗ are smoothed out, as we move from the discrete space of A∗ to a continuous
space.
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(a) (b)

Figure 3.10: (a) Optimized route obtained by alternating the first two steps of HS
method. The segments are locally optimal (thanks to RK4) but are joined by sharp
turns. (b) The whole route is then smoothed with FMS method for 10 000 iterations.



Chapter 4

Results

4.1 Comparison

These algorithms have been tested and compared in three different benchmarks,
previously described in Section 2.1. The study was conducted at three different ship
speeds, as the ship’s speed directly influences the extent to which meteorological data
affects the results. Three different variables have been used to study the behaviour
of the algorithms:

• Travel time in hours,

• Total distance of the route in kilometers, and

• Computation time.

The results are presented in Tables 4.1, 4.2, and 4.3. The tables show the
mean results of the three algorithms, min_distance, Astar, and Bézier, and the
HybridSearch algorithm. The results are presented for three different ship speeds:
6, 12, and 24 kt.

Furthermore, the study was carried out weekly for one year, starting on Jan 1,
2023. This approach allows us to study the seasonal variability of the weather and
how this changes the optimal route.

4.2 A∗-FMS Results

After performing a hyper-parameter search for the first week of each benchmark,
we selected the configuration of our algorithm by considering the trade-offs between
compute time and relative route savings. The A⋆ algorithm is configured with the
following parameters: grid resolution of 4, 3rd-order neighbors, and a heuristic weight
of 0.5. The output is then smoothed by the FMS algorithm with no damping, for
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Speed Method Travel time Distance Comp. time
(kt) (h) (km) (s)

6 min_distance 419.8 4533.38 69.85
Astar 401.4 4801.86 99.03
Bézier 403.6 4609.60 96.20
HybridSearch 418.5 4554.27 12.41

12 min_distance 209.0 4533.38 59.09
Astar 205.7 4646.74 100.95
Bézier 204.5 4630.49 97.88
HybridSearch 209.4 4551.95 3.12

24 min_distance 125.7 4533.38 57.73
Astar 125.2 4593.63 101.97
Bézier 124.5 4569.99 91.54
HybridSearch 125.7 4536.92 2.08

Table 4.1: Mean results on the journey Charleston - Azores during a year. We
compare the route of minimum distance (geodesic) with the output from our routing
methods. Computation time is provided for illustration purposes.

Speed Method Travel time Distance Comp. time
(kt) (h) (km) (s)

6 min_distance 575.4 6201.00 93.51
Astar 571.21 6352.43 155.05
Bézier 564.8 6249.33 109.05
HybridSearch 572.0 6231.82 17.46

12 min_distance 286.5 6201.00 77.60
Astar 289.4 6363.43 158.09
Bézier 284.8 6220.52 108.50
HybridSearch 286.8 6235.55 8.19

24 min_distance 172.0 6200.00 66.26
Astar 174.7 6351.27 158.97
Bézier 171.5 6211.00 88.55
HybridSearch 172.6 6233.60 4.62

Table 4.2: Mean results on the journey Somalia - Myanmar during a year. We
compare the route of minimum distance (geodesic) with the output from our routing
methods. Computation time is provided for illustration purposes.
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Speed Method Travel time Distance Comp. time
(kt) (h) (km) (s)

6 min_distance 257.7 2601.86 58.31
Astar 269.8 2800.52 34.85
Bézier 255.2 2638.77 66.95
HybridSearch 260.2 2661.81 6.26

12 min_distance 124.6 2601.86 52.44
Astar 132.0 2800.52 34.65
Bézier 124.3 2608.68 65.68
HybridSearch 126.8 2660.27 2.82

24 min_distance 73.6 2601.86 45.95
Astar 78.6 2800.52 34.62
Bézier 73.7 2603.82 61.67
HybridSearch 75.4 2666.88 1.97

Table 4.3: Mean results on the journey Panama - Houston during a year. We compare
the route of minimum distance (geodesic) with the output from our routing methods.
Computation time is provided for illustration purposes.

a maximum of 2,000 iterations, and is subject to early stopping if no improvements
are observed in the previous 20 consecutive iterations.

There are five pairs of ports, introduced in Table 2.1, that can be traveled in both
directions, totaling ten ODPs. Departures occur every Sunday of 2023, starting on
January 1st, resulting in 52 departures per benchmark. We assume ocean data is
available for the entire journey duration. The vessel model remains constant, but it
travels at three different speeds over water: 6 knots, 12 knots, and 24 knots. This
setup results in 1,560 experiments. To facilitate further analysis and discussion, we
group the experiments to study different effects.

4.2.1 Vessel Speed

The first study conducted with these results examines how the gains of our A⋆-FMS
algorithm are affected by vessel speed. Figure 4.1 shows a histogram of gains across
all benchmarks based on vessel speed over water. Results indicate that lower vessel
speeds achieve greater gains with weather routing. At a vessel speed of 6 knots, time
savings average 3.60% (with a standard deviation of 2.61). For 12 knots, savings are
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Figure 4.1: Time savings histogram and best-fit normal distribution for each vessel
speed of our A⋆-FMS algorithm compared to circumnavigation.

1.36% (1.61), and for 24 knots, they decrease to 0.51% (0.58).

It is relevant to note that at higher speeds, there are benchmarks in which the
optimized route does not improve upon the circumnavigation time. Specifically, when
sailing at 12 knots, seven out of 520 experiments show negative gains. At 24 knots, 14
experiments yield worse results with A⋆-FMS compared to circumnavigation. These
losses are marginal, the lowest being -0.4% (20 minutes longer than circumnavigation
for an 84-hour journey). However, these cases are still worth investigating as they
represent very challenging scenarios and/or shortcomings of our A⋆-FMS algorithm.
In contrast, at lower speeds, A⋆-FMS can save up to 27% of travel time in some
scenarios. We will explore these extreme cases in detail later.

Overall, these results highlight the significant impact of vessel speed on the effec-
tiveness of weather routing algorithms. The reduced effectiveness at higher speeds
suggests that external conditions and the vessel’s interaction with the environment
become more challenging to optimize, underscoring the importance of algorithmic
improvements for high-speed scenarios.
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Figure 4.2: Percent reduction in travel time achieved by the A⋆-FMS algorithm
compared to the circumnavigation route at 6 knots

4.2.2 ODP Effect

Our next discussion focuses on how the gains from weather routing depend on the
Origin-Destination Pair (ODP). As noted in Table 1.1, each paper employs a different
set of ODPs, making it essential to assess whether this choice affects the results
reported by the algorithm. In Figure 4.2, we compare the overall gains (travel time
reduction relative to circumnavigation) of our A⋆-FMS algorithm for each set of
ODPs, sorted by direction of travel, when sailing at 6 knots. The general trend of
these boxplots is similar for vessel speeds of 12 and 24 knots, with gains inversely
proportional to speed.
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We first observe that median gains differ between pairs of ports. From lowest to
highest gains:

• 1.9% for Balboa (PABLB) - Callao (PECLL),

• 2.1% for Hamburg (DEHAM) - New York (USNYC),

• 2.5% for Port Said (EGPSD) - Algeciras (ESALG),

• 3.7% for Hurghada (EGHRG) - Kuala Lumpur (MYKUL),

• 4.2% for Colón (PAONX) - New York (USNYC).

The variance also differs significantly between ODPs, confirming our hypothesis
that the choice of itineraries plays a crucial role in the results reported by weather
routing algorithms. The presence of strong oceanographic conditions, such as the
Gulf Stream in PAONX-USNYC, increases the potential gains of weather routing.
We also observe that gains tend to increase with the distance between ODPs, as
this allows the algorithm to explore a broader space. Indeed, the longest routes
present the largest outliers, demonstrating that the algorithm can exploit certain
favourable conditions when the weather is advantageous. We will explore the effect
of seasonality later on.

In section 4.2.1, we noted that the algorithm could not outperform the circum-
navigation route at higher speeds. We now see that this effect is dependent on the
ODP: at 24 knots, PABLB-PECLL shows eight instances out of 52 with negative
gains, PAONX-USNYC shows four, while EGPSD-ESALG and DEHAM-USNYC
have only one each, and none in EGHRG-MYKUL.

These findings emphasize the importance of carefully selecting ODPs when eval-
uating the performance of weather routing algorithms. Variations in oceanographic
conditions, route length, and external factors significantly influence the potential
gains, highlighting the need for a diverse set of benchmarks to accurately assess
algorithm performance.
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4.2.3 Seasonal Study

We have assessed how vessel speed and the ODP affect the overall gains achievable
with weather routing. Next, we discuss the seasonal effect on the gains of a journey.
We group our benchmarks by seasons in the Northern Hemisphere, as shown in Table
4.4.
Table 4.4: Gains of A⋆-FMS algorithm over circumnavigation, grouped by each sea-
son of 2023 in the Northern Hemisphere.

Season Avg. Gain % (Std.)
6 kn 12 kn 24 kn

Winter 5.02 (3.69) 2.09 (2.61) 0.71 (0.93)
Spring 4.06 (1.75) 1.42 (0.75) 0.53 (0.31)
Summer 2.74 (1.84) 0.96 (0.94) 0.39 (0.36)
Autumn 2.53 (1.87) 0.99 (1.28) 0.39 (0.49)

We identify greater savings across all speeds during winter, and less so in spring,
compared to summer and autumn. In fact, gains in winter almost double the ones
in other seasons. The standard deviation of winter is also the highest, implying that
this is the season with the biggest weekly differences, i.e., the most variability.

To better asses the impact of seasonality, we will focus on how the circumnav-
igation time changes across the year. We compute the average travel time and
compared each week’s circumnavigation time against the average. The percent dif-
ference is shown in the bars of Figure 4.3, while the lines depict the gains of A⋆-FMS
for every week.

Between DEHAM and USNYC, in winter, we see a significant increase in circum-
navigation time due to harsher weather conditions. In particular, during the third
and fourth week, we observe an increase in travel time of around 35% compared
to the yearly average. With such a great discrepancy in time, increased savings of
nearly 25% due to A⋆-FMS can be observed. This is only evident in the first few
weeks of the year. In spring, summer, and fall, most circumnavigation routes perform
consistently with similar savings. These variations are largely due to the fact that
the routes between DEHAM and USNYC are in the North Atlantic, where studies
have observed extreme wave climates in winters [92], [93].
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Figure 4.3: Percent difference between circumnavigation route per week to yearly av-
erage, and A⋆-FMS compared to circumnavigation with respect to time and distance.
Each week is coloured by season, starting with winter.
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Such extreme wave climates are also observed in the Mediterranean Sea, although
this is not reflected in our benchmarks, as seen in subfigure 3 of Figure 4.3.

In contrast, routes between USNYC and PAONX show small fluctuations in travel
time across the year, without a clear seasonal tendency.

4.2.4 Weather Variables

To conclude this discussion, it is relevant to study which weather variable has a
greater impact on weather routing. We know from the equations in section 2.1.1
that waves can reduce the vessel speed by up to 70% in adverse conditions. Likewise,
strong ocean currents can reach speeds of 5 knots (https://oceanservice.noa
a.gov/facts/gulfstreamspeed.html). Following these prior assumptions, we
expect waves to have a bigger impact, with currents becoming more relevant for slow
steaming.

We ran our experiments again, considering only waves or only currents. We
compared the gains of both experiments in Table 4.5. Currents play a bigger role in
terms of gains; the spread of gains with only currents is not only tighter than with
only waves, but also consistently higher, especially at lower speeds.

Analyzing the routes, we see that around 35% of the route has a BN of 3 and 4,
with a maximum at 5, as shown in Figure 4.4, with an average BN of 3. According
to our speed reduction data in Table 2.1, this results in a maximum of 5% speed
reduction. At a nominal sailing speed of 24 knots, this gives a net speed reduction of
around 1.8 knots. The vessel does not encounter extremely high waves along these
routes, with occurrences of BN greater than 5 being less than 3%, and only in outlier
cases.

Table 4.5: Comparison between considering different weather variables, percentage
gains (standard deviation) with only currents, only waves, and total.

Velocity Gains avg. (std.) (%)
(knots) Only Currents Only Waves Both

6 3.10 (1.72) 0.47 (2.03) 3.55 (2.58)
12 1.06 (0.59) 0.35 (1.53) 1.34 (1.59)
24 0.42 (0.25) 0.12 (0.55) 0.50 (0.58)

https://oceanservice.noaa.gov/facts/gulfstreamspeed.html
https://oceanservice.noaa.gov/facts/gulfstreamspeed.html
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Figure 4.4: Distribution and boxplot of BN along the circumnavigation route.

Figure 4.5: Distribution and boxplot of current speeds along the circumnavigation
route, relative to the speed of the vessel. The sign of current speed indicates whether
the current’s direction is along or against the vessel’s direction of travel.
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Figure 4.6: Distribution and boxplot of speed change from waves and BN of vessel
speed along the circumnavigation route.

Figure 4.7: Distribution and boxplot of speed change from currents along the cir-
cumnavigation route.
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Notice that in Figure 4.6, as we have modelled our wave effect reduction, it al-
ways results in a decrease in speed. As discussed above, the average speed reduction
due to waves is minimal, around 0.3%. However, compared to the speed change from
currents, it results in around a 0.6% increase in the vessel’s speed, while reaching 5%
at its maximum. This matches our results in Table 4.5, as gains over the circumnavi-
gation route are higher on average and more consistent (smaller standard deviation)
with currents than with waves.



Chapter 5

Discussion

In this thesis, we introduced a common benchmarking platform for weather routing
algorithms, 3 heuristics based, optimal route finding algorithms, and a route smooth-
ing algorithm to address and alleviate some shortcomings of the first 2 algorithms.

In Hybrid Search, it employs a technique of shooting different guesses centered
around the direction towards the destination by solving the Zermelo’s Navigation
Equations. We alternate between and exploration and exploitation phases, together
with some stopping criteria, Hybrid Search is able to output a chain of trajectories
connecting the origin and destination ports. Each segment are locally optimal given
the weather conditions, and the final trajectory is then smoothed by the Ferraro-
Martín de Diego-Sato FMS algorithm, which converges to a time optimal trajectory
[30].

In A⋆, we discretize the earth’s surface into a hexagonal grid, and apply the fa-
mous A⋆ algorithm to find the optimal path between two points. We modify the
A⋆ algorithm with different heuristic weights, and allowing neighbour jumping to
provide more options to explore. We then refine the path with the FMS algorithm
to smooth out sharp turns and find further savings in the route. We compare the
performance of A⋆-FMS with Hybrid Search and CMA-ES across a common bench-
marking platform, WeatherRouting Bench 1.0 [94].

Lastly in BEES, we use Bézier curves to generate a route, as a few control points
can generate very flexible and complex Bézier curves. We then apply an evolutionary
algorithm, CMA-ES, to the control points of the Bézier curve to optimize the route,
as Bézier curves are smooth, and reached local optimal, we did not see the need to
apply FMS to the route.

Amongst these three algorithms, in the case of travel time, the best algorithm has
consistently been BEES, closely followed by Hybrid Search. On the other hand, A⋆

Graph Search yields poor results due to the limitations of working on a grid, resulting
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in strange artifacts. This is clearly shown in routes which are not in open sea, like
Panama-Houston. Moreover, to optimize for more precise scenarios would require
a thinner mesh that would produce a huge number of nodes and a more complex
computation.

On the other hand, our optimization algorithms have been shown to travel up to
9% more distance in exchange of reducing the total time. It is also worth to note
that Hybrid Search finds shorter routes but makes less efficient use of currents, in
contrast to CMA-ES which is the best for efficient routing.

In terms of computation time, Hybrid Search is the fastest, while A⋆ is the slow-
est. This makes sense due to the extensive graph exploration required by the A⋆

algorithm, considering the large number of points it needs to examine. CMA-ES is
an evolutionary algorithm, so its computation time can be reduced by adjusting the
stopping criteria to be more flexible, yet it still yields excellent results with a run
time of around a minute and a half. Finally it can be seen how these results only
depend on the algorithm and the distance, the computation time is not affected by
the speed of the ship. This is normal, because the larger the space of solutions the
longer it takes to explore them.

We also introduce a benchmarking platform for other academics and industry
partners to contribute to the weather routing problem. Creating easily accessible
weather data files to download, provided in our repository https://github.com/W
eather-Routing-Research/weather-routing-benchmarks, identifiable, realistic
sets of ODPs, and a realistic, but simple cost function to compute resistances due
to waves and speed changes from currents, one can easily optimize and test routes
to the benchmarks we computed with A⋆-FMS. Also providing comprehensive fore-
casting data and models from trusted meteorological sources, one can understand
and optimize routes with greater accuracy and score the routes’ performance with a
comprehensive list of weather variables to identify strengths and weaknesses of their
optimization algorithm.

We also introduce a new optimization algorithm, A⋆-FMS, that we utilize a hexag-
onal grid that tiles and discretize the surface of earth to apply A⋆, then move to a
refining process by applying the FMS algorithm. This new optimization algorithm

https://github.com/Weather-Routing-Research/weather-routing-benchmarks
https://github.com/Weather-Routing-Research/weather-routing-benchmarks
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serves as the first use case of the above-mentioned benchmark platform, to evaluate
A⋆-FMS’ performance across our benchmarks.

In addition, creating a comprehensive list of ODPs creates variability in weather
conditions, considering global seasonal changes and heat transfers between water
bodies, landmasses, and atmosphere. This evens the playing ground instead of uti-
lizing special current streams in different regions of the ocean that may introduce
inconsistency or bias to different algorithms. This would benefit our future bench-
mark versions, as projects such as wind-powered cargo ships [95] would require more
accurate wind forecasts, while projects like slow-steaming [96], would benefit from
more accurate currents and waves forecasts. Furthermore, with all-year-round depar-
ture dates, we can infer certain weather patterns and characteristics from optimized
routes, reinforce weather forecasts with past seasonal experiments, and even taking
advantage of foresight in weather patterns to set sail on certain periods of the year
to achieve greater savings or avoid extreme sea conditions.

However our consumption models can be improved, not only from ship designs,
but also better understanding and simulation of other friction and resistance terms
would be crucial to a more detailed and accurate power prediction. In the aspects of
ship designs, we are only taking into account of length, displacement and block coeffi-
cient of the vessel, however there are more variables that impact the performance of a
vessel, such as the beam, drought, Prismatic coefficient, Midships Coefficient Factor,
presence and design of Bulbous bow, and longitudinal centre of buoyancy [54], [55].
All of the previously mentioned is taking into account of vessel hull designs, and
all of them are required to simulate and compute resistances, such as resistance of
appendages, wave-making and wave-breaking resistance, bulbous bow pressure near
water surface, and etc. [54]; these resistance terms would not only better inform
future ship designs and refitting, but also offers an opportunity to use main engine
power output, or equivalently, fuel consumption, which directly influences fuel and
operational cost of a shipping vessel, as a viable cost function, instead of using time
spent on route. This would better align us towards the sustainable development
strategies set out by the IMO and the UN [97], [98]. As an added benefit, we can
model ship motions and identify hazardous conditions that might put crew or cargo
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in danger, which, in some cases, is of an higher concern for high sensitivity cargo
that needs specialized handling.

Particularly, one challenge we face is uncertainties in weather forecasts. We
assumed that we have access to the ocean forecast for the whole duration of the
journey, as our benchmark is performed on past data reanalysis. However, when
operating in real conditions, one only has access to up to 10 days in the future [75],
with less accuracy the further ahead the forecast is. So uncertainties in weather
forecasts demands an even more robust benchmarking platform.

As we have developed a platform to accelerate research and implementation of
weather routing, we plan to address these above-mentioned shortcomings in our next
version, adequately named Weather Routing Bench 2.0, we will introduce more accu-
rate ship dynamics and power output modelling, as well as improved cost functions
that better reflect real world costs and operation challenges. With these additions,
we aim to provide a even more comprehensive set of benchmarks to better evaluate
and score different weather routing algorithms.
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.1 Published and Submitted Papers

The following papers have been published or submitted to journals that I have co-
authored:

• D. Precioso, R. Milson, L. Bu, et al., “Hybrid search method for zermelo’s
navigation problem,” Computational and Applied Mathematics, vol. 43, no. 4,
p. 250, 2024. doi: 10.1007/s40314-024-02756-w

– This study was conducted with collaboration with Canonical Green in the
summer of 2023, when the first MITACS internship took place.

– In this work we applied a shooting method as an Initial Value Problem to
solve Zermelo’s Navigation Equations, both in synthetic vectorfields and
real ocean currents.

– My role was developing the Zermelo’s Navigation Equations in Python,
parallelizing the numerical differential equations solver, and generating
the pipeline for the software package.

– Section 3.1 is largely based on this work.

• J. J. de la Jara, D. Precioso, L. Bu, et al., “Weatherrouting bench 1.0: Towards
comparative research in weather routing,” Manuscript submitted for publication,
2024

– This study was conducted during the second MITACS internship, in the
summer of 2024, with Canonical Green in Madrid, Spain.

– In this work we introduced a common testing platform for weather routing
algorithms, and applied the A∗ search algorithm to solve the optimal path
problem in a hexagonal grid, and then refined the path with the FMS
algorithm. We compared the various characteristics of the benchmarks
and the performance of the algorithm.

– My role in this work was running simulations on our A∗ -FMS algorithm,
between different ports, different times of the year, and different ves-
sel speeds. I ran scripts to cross analyze and generate results. I also

https://doi.org/10.1007/s40314-024-02756-w
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contributed to developing the cost function 2.1.1 and the writing of the
paper.

– Chapters 2, 4, Sections 3.2 are based on this work.

.2 Derivation of Zermelo’s equations

.2.1 Zermelo’s Navigation Problem on the plane

We are dealing here with a constrained optimization problem whose Lagrangian
function has the form

L = ṫ+ λ1(ẋ1 − (V cosα + w1)ṫ) + λ2(ẋ2 − (V sinα + w2)ṫ). (1)

The goal is to find trajectories x(s), ẋ(s) = x′(s), t(s), ṫ(s) = t′(s) > 0, α(s) with
fixed end-points that minimize t(s1)− t(s0) =

∫ s1
s0

Lds, and obey constraints

ẋ1 = (V cosα + w1)ṫ

ẋ2 = (V sinα + w2)ṫ
(2)

The quantities λ1,λ2 are known as Lagrange multipliers. As we now show, their
form is determined by the Euler-Lagrange equations associated with the above La-
grangian, namely

dLṫ

ds
= 0 (3)

Lxi −
dLẋi

ds
= 0 i = 1, 2 (4)

Lα = 0, (5)

Equation (3) gives

d

ds
(λ1(V cosα + w1) + λ2(V sinα + w2)) = 0

which implies that

λ1(V cosα + w1) + λ2(V sinα + w2) = C (6)
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where C ̸= 0 is a constant. Equation (5) gives

λ1 sinα− λ2 cosα = 0. (7)

Together, (6) (7) determine the form of the Lagrange multipliers, namely:

λ1 =
C cosα

V + w1 cosα + w2 sinα
(8)

λ2 =
C sinα

V + w1 cosα + w2 sinα
(9)

Going forward, we re-parameterize all curves with respect to time t so that

d

dt
=

1

ṫ

d

ds
.

E-L equations (4) give the dynamics of the Lagrange multipliers, namely

dλ1

dt
= −λ1w1,1 − λ2w2,1 (10)

dλ2

dt
= −λ1w1,2 − λ2w2,2 (11)

Rewriting (7) as
tanα =

λ2

λ1
,

and taking derivatives, gives

sec2(α)
dα

dt
=

d

dt

(
λ2

λ1

)

(
λ2
1 + λ2

2

λ2
1

)
dα

dt
=

1

λ2
1

(
−λ2

dλ1

dt
+ λ1

dλ2

dt

)

dα

dt
=

λ2
2w2,1 + λ1λ2(w1,1 − w2,2)− λ2

1w1,2

λ2
1 + λ2

2

dα

dt
= sin2(α)w2,1 + sin(α) cos(α) (w1,1 − w2,2)− cos2(α)w1,2 (12)
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.2.2 Zermelo’s Navigation Problem on the sphere

The modified Lagrangian takes the form

L = ṫ+ λ1

(
θ̇ −K−1 sec(κφ) (V cos(κα) + w1) ṫ

)

+ λ2

(
φ̇−K−1 (V sin(κα) + w2) ṫ

)

The E-L equations (4) now read

K
dλ1

dt
= − sec(κφ)λ1w1,1 − λ2w2,1 (13)

K
dλ2

dt
= −λ1κ sec(κφ) tan(κφ)(V cos(κα) + w1)− λ1 sec(κφ)w1,2 − λ2w2,2 (14)

In the current setting (5) gives

tan(κα) =
λ2

λ1
cos(κφ)

Taking d/dt yields

κ sec2(κα)
dα

dt
=

cos(κφ)

λ2
1

(
−λ2

dλ1

dt
+ λ1

dλ2

dt

)

− κ

K
tan(κα) tan(κφ)(V sin(κα) + w2)

κK sec2(κα)
dα

dt
=

λ2

λ1
w1,1 +

λ2
2

λ2
1

cos(κφ)w2,1 − w1,2 −
λ2

λ1
cos(κφ)w2,2

− κ tan(κφ)(V cos(κα) + w1)

− κ tan(κα) tan(κφ)(V sin(κα) + w2)

κK sec2(κα)
dα

dt
= sec(κφ) tan(κα)w1,1 + sec(κφ) tan2(κα)w2,1 − w1,2

− tan(κα)w2,2 − tan(κφ)(V cos(κα) + w1)

− κ tan(κα) tan(κφ)(V sin(κα) + w2)

κK
dα

dt
=
[
cos(κα) sin(κα)

] [sec(κφ)w1,1 w1,2

sec(κφ)w2,1 w2,2

][
sin(κα)

− cos(κα)

]

− cos(κα) tan(κφ)(V + cos(κα)w1 + sin(κα)w2) (15)
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.3 Euler-Lagrange equations

.3.1 Continuous Euler-Lagrange equations

Define an action functional along a curve q(t) in n-dimensional space with fixed end
points as follows,

J(q(t)) =

∫ b

a

L(t, q(t), q̇(t))dt, q(a) = α, q(b) = β. (16)

The function L(t, q(t), q̇(t)) is called the Lagrangian of the optimization problem.
The classical problem in the Calculus of Variations is to minimize J by subjecting
q(t) to suitable constraints.

A necessary condition for minimization is that the variation δJ vanishes for all
possible variations of the trajectory δq = ϵφ, where φ(t) vanishes at the endpoints,
and ϵ is the variational parameter. From the functional (16), define

h(ϵ) = J(q + ϵφ) =

∫ b

a

L(t, q(t) + ϵφ(t), q̇(t) + ϵφ̇(t))dt.

Now differentiate and use the smoothness of L to interchange the derivative and the
integral to get

h′(ϵ) =
d

dϵ
J(q + ϵφ) =

∫ b

a

d

dϵ
L
(
t, q(t) + ϵφ(t), q̇(t) + ϵφ̇(t)

)
dt

=

∫ b

a

φ(t)

[
∂L

∂q

(
t, q(t) + ϵφ(t), q̇(t) + ϵφ̇(t)

)

+ φ̇(t)
∂L

∂q̇

(
t, q(t) + ϵφ(t), q̇(t) + ϵφ̇(t)

)]
dt.

Now setting ϵ = 0 and using our definition of the variational derivative yields

δJ(q)(φ) =

∫ b

a

[
φ(t)

∂L

∂q
(t, q, q̇) + φ̇(t)

∂L

∂q̇
(t, q, q̇)

]
dt. (17)

This functional is known as the first variation of J . In order to obtain an explicit
formula for δJ , we need the integral on the right side of the above equation to be
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linear in φ(t). We can accomplish this via integration by parts.

∫ b

a

φ̇(t)
∂L

∂q̇
(t, q, q̇)dt =

[
φ(t)

∂L

∂q̇
(t, q(t), q̇(t))

]t=b

t=a

−
∫ b

a

φ(t)
d

dt

(
∂L

∂q̇
(t, q, q̇)

)
dt

Since φ(b) = φ(a) = 0, by assumption, we obtain the following formula for the first
variation:

δJ(q)(φ) =

∫ b

a

[
∂L

∂q
− d

dt

∂L

∂q̇

]
φ(t)dt.

Therefore, in order for δJ(φ) to vanish for all φ, the critical trajectory q(t) must
satisfy the Euler-Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (18)

.3.2 Discrete Euler-Lagrange equations

Now consider two positions: q0 and q1, and a time step h > 0. We discretize a
continuous Lagrangian L(q, q̇) by assuming that q1, q0 are close together so that q̇

can be approximated by (q1 − q0)/h. This allows us to define the following discrete
Lagrangian

Ld(q0, q1;h) :=
h

2

(
L

(
q0,

q1 − q0
h

)
+ L

(
q1,

q1 − q0
h

))
,

which approximates the action integral along a straight trajectory from q0 to q1. In
the discrete Calculus of Variations, we replace a continuous curve q(t) with a piece-
wise linear curve determined by a sequence of points {qk}Nk=0 with h units of time
required to go from qk to qk+1. We will now calculate the discrete action over this
sequence by summing the discrete Lagrangian.

Jd =
N−1∑

k=0

Ld(qk, qk+1;h).

We now vary the trajectory by dq = {dqk}Nk=0 with dq0 = dqN = 0 in order to fix the
boundary points q0, qN . Note that we use dq rather than ϵφ to describe the variation
because the discretized system has finite degrees of freedom. The variation of the
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discrete action can now be given as

dJd =
N−1∑

j=1

∂

∂xj

(
N−1∑

k=0

Ld(qk, qk+1;h)

)
dqj

=
N−1∑

k=0

[D1Ld(qk, qk+1;h)dqk +D2Ld(qk, qk+1;h)dqk+1]

Recall that each xj = (qj1, . . . , qjn) is a point in n-dimensional space, so that
∂/∂xj , D1, D2 are actually n-vectors of partial derivative operators. Rearranging
the above sum (this corresponds to the integration by parts step in the continuous
case) we obtain

dJd =
N−1∑

k=1

[D2Ld(qk−1, qk;h) +D1Ld(qk, qk+1;h)] dqk.

If we require that the variation of the action is 0 for all dqk, then we obtain the
discrete Euler-Lagrange equations

D2Ld(qk−1, qk;h) +D1Ld(qk, qk+1;h) = 0, k = 1, . . . , N − 1. (19)
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