
IDENTIFYING NETWORK TRAFFIC SIGNATURES FOR
TEXTING VIA INSTANT MESSAGING APPLICATIONS: A

MACHINE LEARNING APPROACH

by

Srivathsan Thirumurugan

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2024

© Copyright by Srivathsan Thirumurugan, 2024



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Instant Messaging Applications Used . . . . . . . . . . . . . . . . . . 13
3.1.1 Messenger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Telegram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Discord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.5 Skype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.6 Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.7 WhatsApp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Types of Text Communications . . . . . . . . . . . . . . . . . . . . . 18

3.3 Generating Realistic Texting Behaviours . . . . . . . . . . . . . . . . 20

3.4 Capturing the Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Framework for Texting Traffic Generation . . . . . . . . . . . . . . . 24

3.6 Emulation: Automation of User Behaviours . . . . . . . . . . . . . . 24

3.7 Flow Extractor: Tranalyzer2 . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Filtering the background traffic . . . . . . . . . . . . . . . . . . . . . 28

3.9 Machine Learning Models Employed . . . . . . . . . . . . . . . . . . 29

ii



3.9.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9.2 Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . 30
3.9.3 Extreme Gradient Boosting . . . . . . . . . . . . . . . . . . . 31
3.9.4 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4 Evaluations and Results . . . . . . . . . . . . . . . . . . . 34

4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Classification Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Classification Dataset . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Feature Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Group of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Group of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 Private . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Identification of Network Siganures . . . . . . . . . . . . . . . . . . . 44

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 5 Conclusion and Future Work . . . . . . . . . . . . . . . . 54

Appendix A Feasture Description . . . . . . . . . . . . . . . . . . . . . 62

A.1 Flow extracted from Tranalyzer . . . . . . . . . . . . . . . . . . . . 62

Appendix B Extra Results . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.1 10-Fold Cross Validation: Training Dataset . . . . . . . . . . . . . 68

Appendix C Feature Importance . . . . . . . . . . . . . . . . . . . . . . 75

C.1 Extreme Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . 75

iii



List of Tables

2.1 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Data collection duration for synchronous . . . . . . . . . . . . . 19

3.2 Packet Count for Asynchronous . . . . . . . . . . . . . . . . . . 23

3.3 Packet Count for Synchronous . . . . . . . . . . . . . . . . . . 23

3.4 Naming format for the traffic captured . . . . . . . . . . . . . . 24

3.5 Number of Flows - Synchronous communications . . . . . . . . 27

3.6 Number of Flows - Asynchronous communications . . . . . . . 27

3.7 Number of Flows after filtering - Synchronous Communications 29

3.8 Number of Flows after filtering - Asynchronous Communications 29

4.1 Sample for filtered Skype Private Asynchronous vs other . . . . 35

4.2 Naive Bayes Test Results : Group of 3 . . . . . . . . . . . . . 37

4.3 Multi-Layer Perceptron Test Results : Group of 3 . . . . . . . 37

4.4 Extreme Gradient Boosting Test Results : Group of 3 . . . . . 38

4.5 Random Forest Test Results : Group of 3 . . . . . . . . . . . . 38

4.6 Naive Bayes Test Results : Group of 4 . . . . . . . . . . . . . 39

4.7 Multi-Layer Perceptron Test Results : Group of 4 . . . . . . . 40

4.8 Extreme Gradient Boosting Test Results : Group of 4 . . . . . 40

4.9 Random Forest Test Results : Group of 4 . . . . . . . . . . . . 41

4.10 Naive Bayes Test Results : Private . . . . . . . . . . . . . . . . 42

4.11 Multi-Layer Perceptron Test Results : Private . . . . . . . . . 42

4.12 Extreme Gradient Boosting Test Results : Private . . . . . . . 43

4.13 Random Forest Test Results : private . . . . . . . . . . . . . . 43

B.1 Random Forest group 3 asyn vs other on Training Dataset . 68

iv



B.2 Random Forest group 3 syn vs other on Training Dataset . . 69

B.3 Random Forest group 4 asyn vs other on Training Dataset . 69

B.4 Random Forest group 4 syn vs other on Training Dataset . . 70

B.5 Random Forest private asyn vs other on Training Dataset . . 70

B.6 Random Forest private syn vs other on Training Dataset . . 71

B.7 Extreme Gradient Boosting group 3 asyn vs other on Training
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.8 Extreme Gradient Boosting group 3 syn vs other on Training
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.9 Extreme Gradient Boosting group 4 asyn vs other on Training
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.10 Extreme Gradient Boosting group 4 syn vs other on Training
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.11 Extreme Gradient Boosting private asyn vs other on Training
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.12 Extreme Gradient Boosting private syn vs other on Training
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

v



List of Figures

3.1 Asynchronous texting emulation . . . . . . . . . . . . . . . . . 21

3.2 Synchronous conversation emulation . . . . . . . . . . . . . . . 22

3.3 Overview of the Framework . . . . . . . . . . . . . . . . . . . 25

4.1 Comparing Random forest group of 3 user feature importance
for Skype, discord, and Teams . . . . . . . . . . . . . . . . . . 45

4.2 Comparing Random forest group of 3 user feature importance
for WhatsApp, telegram, signal, and Messenger . . . . . . . . 48

4.3 Comparing Random forest group of 4 user feature importance
for Skype, discord, and Teams . . . . . . . . . . . . . . . . . . 49

4.4 Comparing Random forest group of 4 user feature importance
for WhatsApp, telegram, signal, and Messenger . . . . . . . . 50

4.5 Comparing Random forest private user feature importance for
Skype, discord, and Teams . . . . . . . . . . . . . . . . . . . . 51

4.6 Comparing Random forest private user feature importance for
WhatsApp, telegram, signal, and Messenger . . . . . . . . . . 52

4.7 Number of Ports opened by each IMA . . . . . . . . . . . . . 53

C.1 Comparing Extreme Gradient Boosting Group 3 user feature
importance for Skype, discord, and Teams . . . . . . . . . . . 75

C.2 Comparing Extreme Gradient Boosting Group 3 user feature
importance for WhatsApp, telegram, signal, and Messenger . . 76

C.3 Comparing Extreme Gradient Boosting Group 3 user feature
importance for Skype, discord, and Teams . . . . . . . . . . . 77

C.4 Comparing Extreme Gradient Boosting Group 3 user feature
importance for WhatsApp, telegram, signal, and Messenger . . 78

C.5 Comparing Extreme Gradient Boosting Private user feature
importance for Skype, discord, and Teams . . . . . . . . . . . 79

C.6 Comparing Extreme Gradient Boosting Group 3 user feature
importance for WhatsApp, telegram, signal, and Messenger . . 80

vi



Abstract

As Instant Messaging Applications become more popular, they can be used for a

variety of purposes, including sending files, making voice and video calls as well

as texting in groups and private channels for both personal and professional pur-

poses. I aim to explore network traffic signatures in instant messaging applications

for network monitoring and analysis purposes. To achieve this I designed and devel-

oped a framework to automatically generate and capture traffic from the seven most

used and popular instant messaging applications, namely Discord, Messenger, Signal,

Skype, Teams, Telegram, and WhatsApp. I have analyzed and discovered patterns

of texting via IMAs from the perspective of texting behaviour such as synchronous

and asynchronous communications. Moreover, their traffic is generated and captured

with different types of user communication based on the number of participants such

as private texting with two users, group texting with three users, and group tex-

ting with four users. The resulting end-to-end encrypted traffic is analyzed using

a machine-learning-based approach to traffic metadata without using deep packet

inspection. Evaluations show that it is possible to identify between private, groups

with different users for asynchronous and synchronous instant messaging applica-

tions. This in return could help better planning and management of the network

operations for user quality of service.

vii



List of Abbreviations

IMA Instant Message Application

HTTP HyperText Transfer Protocol

SSH Secure Shell

VPN Virtual private network

QR Quick Response

HD High definition

DEMA Deactivated Except Messenger Account

PIN Personal Identification Number

WPM Words Per Minute

ETL Event Trace Log

PCAP Packet capture

PCAPNG Packet capture Next Generation

PC Personal Computer

GUI Graphical User Interface

IP Internet Protocol

SYN Synchronize

SYN-ACK Synchronize - Acknowledgement

ACK Acknowledge

XGBoost Extreme Gradient Boosting

viii



Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor and co-

supervisor, Dr. Nur Zincir-Heywood, and Dr. Riyad Alshammari, for their moti-

vation, guidance, support, and feedback throughout this research. Their support

played a key role in bringing this work to completion.

I am also thankful to Dalhousie University for providing a learning space to

meet and work with experts from various fields, and to everyone from the Network

Information Management and Security (NIMS) research lab for accompanying me

throughout this journey.

Finally, I would like to thank my parents and friends for their unwavering support

and encouragement, which have been the driving force behind this research.

ix



Chapter 1

Introduction

With the rise of a number of employers/employees offering/choosing to work from

home (more than 50% when compared to during COVID lockdown) [1], the incor-

poration of instant messaging into the workplace is done as an additional means

of communication. Most instant messaging applications (IMAs) have audio, and

video call functionalities along with the ability to send text messages. Addition-

ally, within messaging, there are private (one-to-one) and group (many-to-many)

functions. Maina et al. [2] focused on the Instant messaging application for the

workplace by discussing the advantages and disadvantages of the instant messaging

functions. Maina et al. concluded that one of the main reasons why IMAs were

so popular was the texting functionality of IMAs in real-time without face-to-face

meetings. This is still considered to be one of the main reasons for using instant

messaging in the workplace. This in return increases IMA-based traffic on an organi-

zation’s network and necessitates further research to understand the different usage

behaviours in such traffic for better network/service operations and management.

To this end, Ede et al. [3] proposed a semi-supervised machine learning-based

approach for fingerprinting mobile applications based on their encrypted network

traffic. Pektas et al. [4], focused more on the IMA traffic and used a machine

learning-based approach to differentiate IMA traffic from non-IMA traffic. In a more

recent work [5], Erdenebaatar et al. used a machine learning-based approach to

identify IMA vs. Non-IMA traffic as well as identify different IMAs within the IMA

traffic. In particular, they focused on the texting function of IMAs for only 2 users.

While these works are important as the initial steps to better understand the different

usage patterns of IMAs in network traffic, more research is still needed to identify

network traffic signatures for different functionalities of IMAs.

1



2

In this thesis, my research objective is to explore whether it is possible to identify

network traffic signatures specifically for different texting behaviours that can be

found in IMAs traffic. To achieve this, I designed and developed a framework to

automatically generate and capture traffic from the seven popular IMAs, namely

Discord, Messenger, Signal, Skype, Teams, Telegram, andWhatsApp. My framework

involves generating and capturing realistic data using texting via these IMAs from

individual devices instead of virtual machines. For realistic texting behaviour, I

have employed various techniques based on existing research. I have analyzed and

discovered patterns of texting via IMAs from the perspective of different texting

behaviours such as synchronous and asynchronous texting as well as types of user

communication with different numbers of users, namely private texting with two

users, group texting with three users, and group texting with four users.

The resulting end-to-end encrypted traffic is analyzed using a Machine Learning

(ML) approach to traffic metadata without deep packet inspection. For this anal-

ysis, four ML models are used, namely Random Forest, Naive Bayes, Multi-Layer

Perceptron, and Extreme Gradient Boosting. My results show that it is possible to

identify network signatures for different texting behaviours by just using network

traffic metadata without using deep packet inspection. To this end, drilling deeper

into the best-performing Random Forest model enables the discovery of unique net-

work signatures for different texting behaviours, namely synchronous, asynchronous,

and different numbers of users.

Thus, the new research contributions of this thesis include:

1. Automating the process of generating and capturing encrypted texting traffic

on individual devices for conditions including two, three, and four users for the

aforementioned IMAs.

2. Automating the process of generating and capturing encrypted texting traffic

for the above users and IMAs under synchronous and asynchronous communi-

cations.

3. Discovering the Network Signatures of different IMA traffic to identify different

texting behaviours from a number of users to synchronous and asynchronous

communications.



3

4. Designing, developing, and evaluating a comprehensive framework to deliver

the above activities on the seven IMAs for traffic analysis purposes.

The rest of the thesis is organized as follows: Chapter 2 summarizes the existing

literature in this field. Chapter 3 introduces the methodology describing the IMAs

used and the framework built around which different texting behaviours are inte-

grated, how they are captured, filtered, and exported into flows to extract metadata

as well as the Machine Learning Models used. Chapter 4 presents the performance

metrics, and the feature sets utilized as well as all the evaluations conducted and the

network signatures obtained. Finally, conclusions are drawn and the future work is

discussed in Chapter 5.



Chapter 2

Literature Review

The growth of mobile applications has led to an increase in encrypted network traf-

fic, which has posed a challenge for application detection using network traffic. Tra-

ditional fingerprinting methods are inadequate without the knowledge of the ap-

plications due to the dynamic mobile environment where applications are usually

installed, updated, or uninstalled. To overcome these limitations Ede et al. [3]

proposed a ”FLOWPRINT” a semi-supervised model for fingerprinting mobile ap-

plications from encrypted network traffic. The ”FLOWPRINT” doesn’t rely on prior

knowledge of the applications but rather identifies the pattern created by the network

traffic. This was done by grouping encrypted TCP/UDP flows based on the app’s

destinations and or any features that correlated to the destination features. Ede et

al. has utilized various datasets from different sources where datasets are obtained

under different circumstances, namely ReCon which consists of various Android ap-

plications from the Google Play Store including the same applications of different

versions over eight years, Cross Platform which is not only has user-generated data

from android but also from iOS devices, Andrubis which also only contains data from

android applications but this also has dataset for the potentially harmful applica-

tions that were classified by the VirusTotal, as the final addition the author used the

browser dataset by scraping Alexa websites on an android 6.0.1 device. Despite using

datasets from varying working conditions, time, and environments such as Android

and iOS, the author could detect both seen and previously unseen applications with

an accuracy of 89.2% and detect applications within 300 seconds with the F1 score

of 82.4%. Their approach showed the need for an increase in security and application

management in mobile networks and proposed the need for VPNs as an additional

user safeguard. The author did not focus on any specific collection of messaging

applications or messaging application traffic with more than 2 users.

4



5

Pektaş et al. [4] have presented a classification method by utilizing the existing

public NIMS1 [6] dataset which contains the network traffic that belongs to 20 ap-

plication categories such as SFTP, Telnet, SCP, HTTP, SSH, etc. In addition to the

existing dataset, new network traffic of the instant messaging application was also

collected. The new data collection is done where a smartphone is connected to a

hotspot hosted by a Windows laptop and with the use of the Wireshark sniffing tool

all the traffic originating from the laptop is captured. Finally, the NetMate tool is

used as a means of feature extraction to extract statistical features. As the dataset

consisted of imbalanced datasets, the author utilized a 10-fold stratified K-Folds

validator split for their binary classification cross-validation approach. The author

achieved an average F1-Score of 99%.

Alan et al. [7] aimed to use the TCP/IP headers of the network traffic instead

of the traditional Deep Packet Inspection or analysis utilizing the HTTP header, to

do that the author collected data from 86,109 application launches total of 1,595

applications by running them repeatedly on 4 distinct devices. The author used 2

Android mobile and 2 Android tablets as the devices for collecting data. The author

were able to create a model by training and testing using the first 64 packets of its

packet size from the same device, which proved it achieved a classification result of

88%. However, this was dropped to 38% and 67% when trained with different OS and

devices. Despite the author working across various devices and applications, none

have specifically addressed messaging applications with varying numbers of users.

Erdenebaatar et al. [8] proposed a new framework for data collection, and analysis

for 6 Instant Messaging Applications. The framework was built utilizing the Android

studio virtual machine for emulating the text asynchronous and synchronous texting

between the users. The message input and sent actions were coded using the ADB

(Android Debug Bridge) functions. With the help of Netstat, they filtered the net-

work traffic of a particular application and stored it as PCAP files [8]. The two-way

traffic data collection, i.e. when text was sent and received by two users done for the

6 IMAs including WhatsApp, Team, Telegram, Discord, Messenger, and Signal [9].

They utilized synchronous and asynchronous text-based communications. They used

8 ML models and reported that the Random Forest model was the best-performing

model in their evaluations. They were able to achieve more than 99% of the F1 score.



6

Although various IMAs were analyzed in their work, texting with more than 2 users

and creating more realistic emulations as a means to mimic real-world behaviours

were not the focus of their research [5].

Wang et al. [10] aimed to demonstrate that even under the presence of encrypted

network traffic an attacker can determine the user’s behaviour. To support their

claim, the author utilized a series of mobile devices running either iOS or Android

OS to collect data from wide categories of applications while performing various

actions. The author has also included IMAs which he referred as ’Online Chatting’

which included Facebook’s messenger, Tencent QQ, and Snapchat while sending and

receiving text and pictures. The author was able to achieve a best score of 87.23%

when using all of the features and a worse case score of 68.59% using selected features.

This work does include some messaging applications, but this does not include some

of the most used IMAs and IMAs with 3 or more users.

Vu et al. [11] used a different method for their analysis of the encrypted traffic,

where the author took the time series as a feature set for their train and test dataset.

Along with their time series feature set the author has employed a deep learning-

based technique using LSTM (Long Short-Term Memory) nodes. From the entire

time series attributes, the author have extracted the attributes that are significant

by analyzing the receiving packets. The author has utilized the VPN and Non-VPN

dataset which was created by the Canadian Institute of Cybersecurity where the data

was generated and collected under a network transmission between users ‘Bob’ and

‘Alice’. For the evaluation of their deep learning, the author have utilized precision,

recall, and F1 score as their choice of metric for the model which was trained with

80% of the dataset, and the rest is used as testing. For each of their epoch in the

deep learning model, the author have used the 10% of the dataset as a validation

dataset. From their findings, in their model, the return for accuracy per feature size

starts to diminish after 55 feature size with a continuous increase in training and

testing at and after 205 feature size. By analyzing the author was able to decrease

the flow size from 20 to 2 and increase in accuracy by ∼2%. The author achieved

an F1 score of 98% for all of their classes such as chat, email, VPN-chat, VPN-P2P,

VPN-VoIP, etc. The inclusion of more data from IMA such as VoIP and P2P with

VPN was present, but did work with different IMA and test their proposed model.



7

Liu et al. [12] used the Multi-attribute Markov Probability Fingerprints for clas-

sifying encrypted traffic. Utilizing critical features such as ’length block sequence’

which effectively captures the time-series packets. 18 different application of various

categories such as mailing, music streaming, browser, and messaging were used in

the data collection from which flows were extracted combined to give a dataset of

950,000+ flows. As for the results, the author were able to achieve a True Positive

Rate (TPR) of 96.4% and a False Positive Rate (FPR) of 0.2%. Despite using var-

ious types of applications it produced good results, the Tencent QQ was the only

messaging application used, and judging by any lack of additional IMAs the Tencent

QQ was just included for the sake of having a messaging application and was not

attempted to explore.

Zou et al. [13] proposed a Convolutional Neural Network as a means for packet

feature extraction, as for the time sequence feature extraction which is done on a

flow level using a Long Short-Term Memory (LSTM). The author has utilized a

public dataset published by the University of New Brunswick, where the author has

relabeled the existing labels to emails, chat, streaming, file VoIP, and P2P for both

VPN and non-VPN types. The raw data consists of 25GB of the network traffic

mentioned in a pcap format. Three consecutive packets at a random location in a

flow are made and split as 80% and 20% for training and testing respectively. The

recurrent layer is introduced using an LSTM where all the states are initialized to

be zero. The three 256-dimension packet feature vectors are sent to the LSTM cell,

furthermore, the hidden unit in the LSTM is set to 256. In the aim of preventing the

overfitting problem in LSTM, output probability is set to 0.8 and finally accompanied

by softmax which is used as an activation function. As for the evaluation metrics,

the author have used precision and recall for both their CNN and CNN-LSTM. The

author were able to create a model that can automatically extract features from both

the packet level and flow level. The author were able to achieve a score of over 95% in

precision and recall as a best case for both the P2P and VPN VoIP for the CNN and

CNN-LSTM and between 70% and 85% for both precision and recall as the worst

case from chat. Similar to the previous literature the use of VPN and Non-VPN

for the same type of VoIP and P2P is also present here along with other network

traffic types, the use of different chats with more than two users or asynchronous



8

and synchronous texting via IMAss is not present, and mentioned. The author also

lacks variation in the number of IMAs used.

Casas et al. [14] proposed a WebScanner. They captured the network traffic of

the Chrome web browser accessing the top most visited sites from Alexa’s top-sites

list for the desktop and Android smartphone platforms. Additionally, encrypted

traffic from YouTube, Facebook, Amazon, and BBC News was captured from a web

browser and also from their application under for their training and testing purposes.

They were able to perform the classification of applications with an F1 score greater

than 80%. Even though they worked on identifying encrypted network traffic in their

research, the inclusion of any kind of IMA was not the focus.

Ren et al. [15] proposed a model that can classify encrypted application traffic

with their TCP-stream layer attributes such as TCP stream length and SSL/TLS

handshake message type. Ren et al. used data collection equipment consisting of

a Wi-Fi Access Point and wireshark was used as a means to collect communication

access points and the Internet. With the help of volunteers who would connect to the

access point and collect the traffic generated by the smartphone applications. The

author used applications such as Bilibili, QQ, WeChat, TikTok, and Weibo making a

good collection of applications with applications capable of video transfer, browsing

content, application behaviour, and chat functionality. Random forest was utilized

as a classification model, where their proposed system was able to achieve 99.3% of

True Positive Rate and 0.2% of False Positive Rate. There isn’t a presence of a wide

range of messaging applications even when focusing on only private chat.

Jay et al. [16], aims to explore the feasibility of detecting the malware without

decrypting HTTPS traffic using machine learning. Jay et al. defined their feature

model by analyzing the data logs generated. They categorized the feature sets into

three namely, connection features, SSL features, and certificate features. The author

has used publicly available datasets such as honeypots. Extreme Gradient Boosting

is used with the dataset from the previously mentioned feature sets to classify the

network traffic. Text messaging was not included nor discussed in their work.

Sun et al. [17] created automatically identifying applications utilizing mobile

devices’ encrypted traffic with the help of a custom system designed to collect, pre-

process, and filter the traffic, and cluster the HTTP to extract the fingerprints. The



9

application’s traffic was captured under different user-interacting activities. For their

use case, the author has chosen some of the popular social applications from China

such as Weibo, weixin, and Zedge. To capture the network traffic the author has

connected the smartphone of choice to a Linux computer where the Wireshark is

utilized as a means to capture the data generated by the smartphone. For evaluating

the fingerprinting mechanism that was developed, the authors conducted 4 different

experiments, where for the first experiment, the generated fingerprints were used to

match the corresponding applications in a dataset without background traffic and

all application traffic. For the second experiment, the effectiveness of each app’s

fingerprint was tested separately along with data collected from each application

specifically. For the third experiment, the fingerprints of one application were used

to match the traffic data of the other applications, which will tell if the generated fin-

gerprints work as expected against unintended applications. The fourth experiment

is a repeat of the first step but along with background traffic to mimic real-world sce-

narios better. Messaging applications are included as their primary focus of testing,

but the inclusion of traffic generated from more than 2 users is not investigated.

Cha et al. [18] explored the impact of encrypted traffic on network performance

to improve IDS (Intrusion Detection System). The proposal is to use CART classi-

fication which is supported by the tests done based on the real-world dataset. The

dataset used was captured from the Hacker 2013 honeypot competition. Based on

comparing the 4 classification algorithms namely; Naive Bayes, Support Vector Ma-

chine, CART, and AdaBoost, it was found that CART has an accuracy of 99.9%

and also performs 2.9 times more efficiently. The inclusion of Instant Messaging

application traffic was absent.

Li et al. [19] proposed FusionTC as a means for encrypted traffic identification,

instead of the existing single-modal feature pattern extraction approaches. FusionTC

on the other hand follows a more multi-modal approach, by following a classification

based on feature fusion of flow sequence. To achieve this, the author captured their

dataset which is obtained from mobile phones by imitating the behavior of application

users. 15 mainstream applications were installed and tested 25 times for about 10

minutes. Applications with audio and video functions were also included in their

data collection. FusionTC is proposed as an enhancement specifically because it



10

comprises of two-level subclassifiers for performing multi-modal feature fusion on a

decision level by using an upgraded stacking method. From using FusionTC on an

application built by the author, the results were shown to be 3.2% better than the

state-of-the-art approaches that are currently employed. The author has utilized real

devices to capture their data, but messaging application involving more than 2 users

was not explored.

Wang et al. [20] has done a comparative study on 10 different algorithms that

are typically used for malicious traffic detection. Three different datasets are used

for this comparative study namely; IoT honeypot data of 2017-2018 comprising of

data traffic of one and half years, a sample of Internet traffic from Japan to the

USA collected over different periods, UNIBS dataset comprising 3 consecutive days

collected in their university campus. Two experiments were done in total, each

with a specific target ideology. The experiments focus on analyzing the statistical

numerical feature sets and algorithms using a mixed dataset. It was found that RF,

XGBoost, C4.5, AdaBoost, CART, and KNN performed specifically well, respectively

in the mentioned order. Encrypted traffic classification was the focus, but Instant

Messaging Applications were not included in their classifications.



11

T
ab

le
2.
1:

L
it
er
at
u
re

O
ve
rv
ie
w

R
e
fe
re
n
ce

T
y
p
e
o
f
A
p
p

IM
A
s
U
se
d

M
a
ch

in
e
L
e
a
rn

in
g
M

o
d
e
ls

P
la
tf
o
rm

D
a
ta
se
t

P
ri
v
a
te

a
n
d
G
ro

u
p

S
im

u
la
ti
o
n

E
m
u
la
ti
o
n

R
e
a
l
v
s
V
ir
tu

a
l
d
e
v
ic
e
s

E
d
e
et

al
.
[3
]

*
*

1
A
n
d
ro
id

an
d
iO

S
R
eC

on
,
C
ro
ss

P
la
tf
or
m
,
A
n
d
ru
b
is

*
*

*
*

E
rd
en
eb
aa
ta
r
et

al
.
[5
]

IM
A
,

N
on

-I
M
A

D
is
co
rd
,
M
es
se
n
ge
r,

S
ig
n
al
,
T
ea
m
s,

T
el
eg
ra
m
,
an

d
W

h
at
sA

p
p

8
A
n
d
ro
id

G
en
er
at
ed

-
-

�
V

P
ek
ta
ş
et

al
.
[4
]

IM
A
,

N
on

-I
M
A

S
k
y
p
e,

T
el
eg
ra
m

V
ib
er
,
w
ec
h
at

an
d
W

h
at
sA

p
p

3
A
n
d
ro
id

N
IM

S
d
at
as
et

[6
]

-
-

-
V

V
u
et

al
.
[1
1]

C
h
at
,

N
on

-I
M
A

*
1

*
U
N
S
W

-N
B
15
,

N
S
L
-K

D
D

-
-

-
V

Z
ou

et
al
.
[1
3]

C
h
at
,

N
on

-I
M
A

*
1

*
IS
C
X

-
-

-
V

A
la
n
et

al
.
[7
]

*
*

1
A
n
d
ro
id

G
en
er
at
ed

-
�

-
R

W
an

g
et

al
.
[1
0]

IM
A
,

N
on

-I
M
A

M
es
se
n
ge
r,
T
en
ce
n
t
Q
Q

an
d
S
n
ap

ch
at

1
A
n
d
ro
id

an
d
iO

S
G
en
er
at
ed

-
-

�
R

L
iu

et
al
.
[1
2]

IM
A
,

N
on

-I
M
A

W
ei
b
o,

T
en
ce
n
t
Q
Q

1
*

G
en
er
at
ed

-
-

-
R

R
en

et
al
.
[1
5]

IM
A
,

N
on

-I
M
A

W
eC

h
at

an
d
W
ei
b
o

1
M
ob

il
e
d
ev
ic
e

G
en
er
at
ed

-
�

-
R

C
as
as

et
al
.
[1
4]

N
on

-I
M
A

-
1

D
es
k
to
p
an

d
S
m
ar
tp
h
on

e
G
en
er
at
ed

-
�

-
R

S
u
n
et

al
.
[1
7]

IM
A
,

N
on

-I
M
A

W
ei
x
in

an
d
W
ei
b
o

2
A
n
d
ro
id

G
en
er
at
ed

-
�

-
R

L
i
et

al
.
[1
9]

*
*

2
A
n
d
ro
id

G
en
er
at
ed

-
�

-
R

C
h
a
et

al
.
[1
8]

*
*

4
*

*
-

-
-

V

W
an

g
et

al
.
[2
0]

*
*

10
*

H
ac
ke
r
20
17

to
20
18

h
on

ey
p
ot

co
m
p
et
it
io
n

*
*

*
*

S
h
ah

et
al
.
[1
6]

*
*

1
*

T
ra
ffi
c
fr
om

H
on

ey
p
ot
s

-
-

-
V

M
y
P
ro
p
os
al

IM
A

D
is
co
rd
,
M
es
se
n
ge
r,
S
ig
n
al
,

S
k
y
p
e,

T
ea
m
s,
T
el
eg
ra
m
,

an
d
W

h
at
sA

p
p

4
W

in
d
ow

s
P
C
s

G
en
er
at
ed

�
-

�
R

L
e
g
e
n
d
:

•
*
(n
ot

m
en
ti
on

ed
)

•
-
(n
ot

u
se
d
)

•
R

(R
ea
l
D
ev
ic
es
)

•
V

(V
ir
tu
al

D
ev
ic
es
)



12

Table 2.1 gives an overview of the literature summarized in this Chapter in terms

of their datasets, approaches, platforms, and IMA included. This enables me to put

my thesis research into the context of the literature.

2.1 Summary

Various types of analysis and research are done for instant messaging applications,

from working with the existing publicly available dataset to creating a new framework

and capturing network traffic via emulation. But work on instant messaging appli-

cations without using virtual machines is very limited, and to add to that there isn’t

any existing framework that was built to mimic real-world texting behaviours such

as Synchronous and Asynchronous texting between 2 or more users. To bridge the

gap a new framework has been made to shed light on Instant Messaging Application

characteristics that best represent real-world communication of the various instant

messaging applications based on different numbers of users and their behaviours.



Chapter 3

Methodology

This chapter introduces the methodology followed and the framework proposed in

this research to analyze the private and group messaging traffic of Instant Messaging

Applications (IMAs). First I will go over in detail of the different IMAs used for

this research. Followed by the two types of texting behaviours used, and techniques

employed in making a realistic conversation. The framework created is explained

along with how they use private and group texting using different PCs. Finally, I

have also explained how the generated data is captured and flows are extracted.

3.1 Instant Messaging Applications Used

Seven Instant Messaging Applications are used in this research. All of them are

account-oriented rather than platform-oriented. In other words, for users to com-

municate with each other using these IMAs, they need to have user accounts for

each IMA they would like to use. However, each user can have a different operating

system for the particular IMA they choose. In this thesis, various source and login

methods were utilized to set up the IMAs. These are discussed in more detail in the

following.

3.1.1 Messenger

Owned by Facebook and created to work alongside a Facebook account. Among

the 7 IMAs mentioned in this section, Messenger is one of the 2 which offers various

means of logging into an account. User can log in either using their existing Facebook

account or the email or phone number of the account created based on. Among all

the 6 other IMAs, to use Messenger the user needs to have a Facebook account which

can be created based on the methods mentioned above. Messenger is the only IMA

where social media is required to access the application. But Facebook also gives

users the option to deactivate their Facebook account while retaining the Messenger

13



14

account created from the account, facebook refers to this function as DEMA which

is Deactivated Except Messenger Account.

Installation: Messenger can be installed from the Microsoft Store or by down-

loading the executable file from the Messenger site, for this thesis the messenger was

downloaded from the official site [21].

Feature and functionality: Though Messenger and Facebook are linked in

a way that users are required to create a Facebook account to access Messenger,

functionality such as story, and notifications are independent. Unlike some of the

other IMAs mentioned here, Facebook doesn’t allow users to add another account;

in comparison, its mobile counterpart does.

3.1.2 Telegram

Telegram being one of the biggest competitors for other IMAs, has been steadily

increasing in terms of users and downloads going from 35 million users in 2014 to

500 million users in the recent 2021 [22]. Telegram is one of the two IMAs that has a

paid subscription version as ”Telegram Premium” with additional functionality and

features.

Installation: To get the application up and running, the user can either down-

load it from the telegram site [23] or also from the Windows store or both which

gives the user the ability to use the application installed to have different accounts.

The process to log into Telegram is where the user can either use a QR code which

appears on the application, or the user number, the only difference is that when using

the user number option the code is sent from a Telegram chat rather than getting it

via the SMS as default. Unfortunately, the requirement for the user to log into an

application is either having access to the carrier number used in creating the account

or the existing account logged in a separate device. Telegram can also be logged into

its web version from any of the Windows browsers.

Feature and functionality: Most if not all the functionality and settings such

as chat, privacy, and security for a Telegram account can be accessed and changed

on the Windows application which will also be reflected in its mobile app. On top of

that, the Telegram application also allows the user to have more than one account on

a single application. It also provides features such as a chat folder where users can



15

put private or group chat under a custom folder such as family, friend, etc. Telegram

also has features such as bots that can interact with users in a group chat.

3.1.3 Discord

Discord gives the user the ability to log in either by email or phone number of their

account, or the user can also utilize the QR code and log in from any mobile device

where the desired account is logged in. This has been around since 2015 designed for

gamers which was seen in their functionality such as providing channels and servers in

addition to the private or group chat [24]. Discord was able to successfully capitalize

on the gaming community and younger age group users [25].

Installation: Similar to messenger and telegram the discord application can be

installed from the Windows store or executable file from the discord site. For this

thesis discord was downloaded from its official site [26] and installed via executable

file. The user can log into their Discord with either login credentials or a QR scan,

discord also gives users the option to create a new account.

Feature and functionality: Among the 7 IMAs discord is the only one other

than the Telegram application that provides its version of the Discord shop which can

give the user the option to customize their account. Along with Telegram, Discord

also has a paid 2-tier Nitro version where users can subscribe to get more benefits

such as more upload speed, HD video streaming, etc. In terms of features and

settings available between its mobile variant and PCs, all the accounts are accessible

for users from both platforms with the addition of more settings that are specific to

the Windows Platform such as open on start-up, minimize to the tray, etc,

3.1.4 Signal

The Signal application provides the strongest security features and encryptions when

compared to other IMAs [27]. There are more settings and features for users to

increase security which can be accessed from mobile devices. Signal also has only

local backup in comparison to other IMAs.

Installation: For users to have a Signal application on the Windows system,

the only source for them is to get from the developer’s site [28], which they have

access to the executable file and install those files onto the Windows system. There



16

is only one way to use Signal,i.e., log in via QR scan. The user is required to log into

their existing account from their mobile by scanning the QR code appearing on the

screen. Signal requires the user to have an account created using a carrier number

to log into the application. Unlike some of the other IMAs, Signal doesn’t have an

option for a web version and will require them to install the Signal application.

Feature and functionality: Signal doesn’t have a feature for a user’s last seen

or online status but has an option for typing status which is off by default, these

features may be considered basic by many since they are available in most of the

IMAs (also present in all the 6 other IMAs mentioned here) but were purposely

omitted to preserve the privacy of the user.

3.1.5 Skype

Skype is the oldest messaging application of the 7 IMAs here, and it does show

in the interface which hasn’t gone through any major changes in recent years. In

terms of functionality and features, it is not too far behind the other considering

the age of the application and getting only minor updates. The big update that

Skype received was the access to copilot natively, which should be the impact of

being under the umbrella of Microsoft. Due to Skype being available for a long

time, it has been used for face-to-face virtual interviews minimizing the gap between

geographical restrictions [29].

Installation: Skype is installed alongside Microsoft Office but can also be down-

loaded from the Microsoft Store [30] which was what followed here. Users can log

in with an account created with either a mail ID or mobile number. For users who

don’t have an account, they can create one from the Skype application itself.

Feature and functionality: Skype has all the basic features, but in comparison

to other IMAs does lack some new features such as automatic replies, broadcast, etc,

The skype PC application provides the user with all the necessary options to change

or reset their accounts, this cannot be said to some of the other IMAs mentioned

here.



17

3.1.6 Teams

Similar to Skype, Teams was created with a focus on workplace use. From [31],

the majority of the age group in which the user falls is 35 and above. This is

understandable as this was made in focus with work and comparatively the exact

opposite of Discord.

Installation: Teams can be installed alongside Microsoft Office or can be down-

loaded from Microsoft Store [32]. Like some of the other IMAs used, user can either

log into their existing account or be given the option to create a new account.

Feature and functionality: Teams among the 7 IMAs, were from the ground

up made for professional use, from [33] this can be seen from the spike in the usage

of teams during the Covid and hasn’t declined much after that. Unlike the other

IMAs, teams provide many functions that can help in workflow space such as setting

up meetings and tracking meetings from calendars, notes, access to user’s Onedrive

plugin applications, and more. In terms of options and settings available, it can be

changed or accessed from all the platforms. The more I explore the more it’s evident

in teams being built with the primary use in the workplace.

3.1.7 WhatsApp

WhatsApp has been one of the most popular IMA in terms of the number of active

users, and the number of messages that are being sent daily. Since 2013, it has

steadily continued to increase the number of active and shows no signs of slowing

down [34]. In 2018, WhatsApp had a new addition known application as the What-

sApp business app, this was streamlined with features that would attract a business

owner to incorporate WhatsApp into their workflow by providing automatic greeting

replies, away messages, connecting Instagram accounts, and more. For this research

purpose in hopes of being consistent between all the IMAs, the consumer version of

WhatsApp will be analyzed.

Installation: The application was downloaded directly via the built-in Microsoft

store that is present in the latest Windows operating system [35]. To set up and

start using WhatsApp on a PC users should have an existing account or have a new

account created using their carrier number. Users can utilize two methods for login,

One is where they can scan a QR code appearing on the PC’s application from their



18

mobile device in which the required existing account is logged in, and the second

method is where users can enter their carrier number which was used in creating the

WhatsApp account and request for a unique code to be generated by the WhatsApp

application which can be entered from the mobile device either navigating through

their ”Linked Devices” in the application or from the notification of the code. On

top of having an application installed, the user can also utilize the browser to access

WhatsApp web which can have a different account than the application installed in

Windows following the same instructions to log in as the app.

Feature and functionality: There are some major functionality differences

between the Windows application and the mobile application. Privacy settings are

non-existent fromWindows and any changes on needs can be only done on the mobile

device. In addition to that, not all the chats from users are available, some of the

very old chats will require the users to refer to their mobile devices.

3.2 Types of Text Communications

In this thesis, I aim to analyze IMA traffic under asynchronous and synchronous

communications for texting, specifically private, groups with 3 and 4 users. In

this context, the synchronous and asynchronous concepts represent different ways

in which real-world texting takes place. Here I will explore the similar and different

factors for my research purposes.

Synchronous Communication: Synchronous texting happens when all the

users who engage in a message are texting each other in real-time. The Working and

characteristics of the synchronous communication are as follows:

1. Initiating texting: User 1 will start texting when all the other users are live in

the communication.

2. Continuation: The other Users will continue the communication by replying

to the message sent by User 1, and this exchange of messages will continue,

imitating real-time communication.

3. Data collection Duration: The duration is set based on the number of flows

extracted. The aim is to have at least 5000 flows from all the 7 IMAs from



19

private, groups with 3 and 4 users. The duration for the private communication

is greater than or equal to the duration set for the group communications. This

is because in private communication the traffic is captured from two Users in

comparison to group communication where the capture is obtained from 3 and

4 Users for groups of 3 and 4 users, respectively.

Table 3.1: Data collection duration for synchronous

IMA
Private
(Hours)

Group of 3
(Hours)

Group of 4
(Hours)

Skype 4 2 2
Discord 4 3 2

Messenger 2 2 1
Teams 3 2 1

WhatsApp 5 3 2
Teams 5 4 3
Signal 5 3 2

Table 3.5 can be referred to as the number of flows extracted under a syn-

chronous text conversation from the data collected for the duration shown in

Table 3.1. More about synchronous communication is to be explained in the

next Section 3.3 with the help of Figure 3.2 along with delays used to means

to mimic real-world conversation.

Asynchronous Communication: Asynchronous communication is where the

users join the texting at a different time than the user who initiated the texting.

This is done by using different types of delays such as ’reply delay ’. The Working

and characteristics of the asynchronous communication are as follows:

1. Initiating texting: Similar to the synchronous, User 1 will initiate the conver-

sation by sending the first text message while other users are not live in the

communication.

2. Continuation: Unlike the synchronous setup, User 2 (in case of private) or User

3 or User 4 (in case of the group) will join the communication after a randomly

specified delay referred to as ’reply delay’. The ’reply delay’, as mentioned

in section 3.2 is a predefined variable that was critical for emulating scenarios

where users do not respond immediately. This delay helped in understanding



20

how the network traffic will behave and change its pattern due to the delayed

messages.

3. Data collection Duration: Unlike synchronous texting, in asynchronous texting

via IMAs, I have used a constant 6-hour period consisting of varying numbers

of users. This is done because asynchronous texting uses a reply delay of an

average of 20 minutes in addition to the read and type delays, to incorporate

more communication in the data collection, the emulation is performed dur-

ing 6 hours. Additionally, I didn’t need to use varying durations because in

asynchronous texting the number of flows generated was generally high. This

might be because it needs to make the necessary connections. More on this

along with the delays employed to mimic the time taken to reply are explained

in section 3.3 along with Figure 3.1.

3.3 Generating Realistic Texting Behaviours

The SAMsum corpus [36] is a product of collaborative research aimed at developing

a model capable of summarizing conversations. These conversations range from

informal to formal, incorporating slang, emoticons, and typos to reflect realistic text

interactions. The corpus includes dialogues and corresponding summaries generated

by models for those dialogues. This data is particularly valuable for my research

purposes, as it encompasses conversations with varying numbers of participants.

Isolating text conversations with 2, 3, and 4 users allows me to utilize these

dialogues for different types of user communication, such as private texting with 2

users and group texting with 3 or 4 users. Emoticons are then removed from all

communications for implementing delays based on the number of words present in

the text. The delays introduced for this purpose are determined by the number of

words in each text message sent and received between the users. To emulate the

time taken by a user to type and read a text message, I have introduced delays

such as ”type delay” referring to the time taken by the user to type a message, and

”read delay” referring to the time taken by a user to read the received message. The

SAMsum corpus is then employed to create ”type” and ”read” delays for messages

sent using synchronous and asynchronous texting behaviours between users.



21

For calculating these delays, I used Baker et al. [37] work which revolved around

analyzing the computer typing style and speed. Where Baker et al. were able to

determine the average typing speed on a computer was 50.4 WPM, this is used as a

means to incorporate the typing duration users make when sending a text message.

As for the read delay, work done by Mpofuet et al. [38] on determining reading speed

on different platforms, where they concluded that the average reading speed using

computers is 106 WPM. This is used to mimic the duration taken by the users to

read an opened message.

Since this research focused on textual messages, both synchronous and asyn-

chronous texting via IMAs are studied. In synchronous texting, all users of a given

communication continuously send text messages for the desired duration. In asyn-

chronous texting, one of the users, i.e. user 1, initiates the texting by sending the

first text message, and the remaining users join after a randomly generated ”reply

delay”. In addition to that, after a series of messages from all users, the application

is closed and reopened, to emulate the asynchronous texting behaviours. The reply

delay is based on a range where the average is 1200 seconds (20 minutes) and the

standard deviation is 600 seconds (10 minutes) [39].

Figure 3.1: Asynchronous texting emulation



22

Figure 3.1 illustrates the asynchronous texting between 2 users. In this case, User

1 will open an IMA type the desired text, and wait for the ”type delay” duration to

be completed. Only after that will the message be sent. Then, User 2 will wait for a

set duration including first the ”Read delay” and then the ”reply delay”. Once the

reply message is typed by User 2, the next message is then sent after ”reply, read,

and type delays”

Figure 3.2: Synchronous conversation emulation

Figure 3.2 illustrates the synchronous conversation. Unlike the asynchronous one,

all the users participating in the synchronous conversation will join and end at the

same time eliminating the need for ’reply delay” and only using the ”type delay” and

”read delay”.



23

3.4 Capturing the Traffic

The data collection for the IMAs was conducted using four Windows 11 PCs. These

devices were designated as follows: two for private chat, three for group chats with

three users, and all four for group chats with four users. The data collection encom-

passed both synchronous and asynchronous communication in IMAs.

”Pktmon” or Packet Monitor, available natively from Windows 10 (build 19041)

[40], is used for packet capturing, event tracing, packet drop detection, packet filter-

ing, and counting. One of the benefits of Pktmon is its integration within Windows,

making it a built-in tool accessible through various commands, allowing users to uti-

lize many of its functions. By default, the traffic capture is saved in ETL files and

includes a command to convert ETL files into PCAP [41] (more precisely, PCAPNG)

format. Table 3.2 and Table 3.3 show the number of packets captured under different

texting conditions discussed in the previous Section 3.2 and Section 3.3.

Table 3.2: Packet Count for Asynchronous

IMA Private Group of 3 Group of 4
Skype 1028246 1542910 1900652
Discord 1002436 1253352 1721634

Messenger 1304538 1894746 2632752
Teams 1099418 1541740 3424762

WhatsApp 1866830 2591169 3410086
Telegram 2144322 3130956 3935270
Signal 2033120 2766604 3318780

Table 3.3: Packet Count for Synchronous

IMA Private Group of 3 Group of 4
Skype 803094 674352 835646
Discord 518546 625622 639950

Messenger 1370378 993868 586480
Teams 738508 740216 410484

WhatsApp 509262 615916 721540
Telegram 480832 2019776 1167214
Signal 653580 737162 1039966

The captured traffic was saved with a specific naming format to prevent over-

writing, starting with ”PC” followed by the IMA, continuing with synchronous or



24

asynchronous, and followed by private, group 3, or group 4 chat, representing private

communication, the group with 3 users communication and group with 4 users com-

munication respectively and then finally timestamp. Table 3.4 refers to the naming

convention along with an example using Signal as an Instant Messaging Application

with synchronous texting from private chat:

Table 3.4: Naming format for the traffic captured

Format PC X {ima} {Texting Via IMAs} {chat type} {timestamp}.etl
X: 1,2,3,4

Texting Via IMAs: syn/asyn
communication: private/group 3/group 4
Timestamp: year month date hh mm ss

Example PC 1 signal syn private 0000 00 00 00 00 00.etl

3.5 Framework for Texting Traffic Generation

As shown in Figure 3.3, four devices were used in the framework for data collection

namely PC 1, PC 2, PC 3, and PC 4. The network connection was established for

all four devices via a hotspot from the main device. The data collection is based

on 2 users (one per device) for private communications, and 3 and 4 users for group

communications (again one user per device).

All the devices mentioned in the framework for data collection were debloated i.e.,

software that is not relevant to our use case was removed. On top of that when data

collection for a specific Instant messaging application is undergoing the rest of the

IMAs are not installed in the PCs. This is to avoid any interference between IMAs

during data collection. Data collected are then moved to a controlled environment

where the flow extraction, filtering background, and classification are performed.

3.6 Emulation: Automation of User Behaviours

Python’s library ”pyautogui” was used to automate the process of generating texting

of a user opening the application, selecting texting, typing a message, and sending it.

The library provides functions such as moving pointers, sending left and right-click

commands, input text, hotkeys, etc. A combination of all the functions mentioned



25

Figure 3.3: Overview of the Framework

above was used. The integration of ‘pyautogui‘ into the framework ensured that

the actions performed were consistent and replicable across multiple test runs. The

typical workflow involved:

1. Initializing PyAutoGUI: Setting up the library and calibrating initial positions

and parameters. The automation process began with emulating the user open-

ing the chat application. Using the ‘pyautogui‘ library, the script could locate

the x and y coordinates of the screen and use it to interact with the applica-

tion on the device or taskbar and initiate and open the application (Instant

Messaging Application in this case).

2. Opening the Application: I have pinned the instant messaging application on

the taskbar, with the help of hotkey events I can start the the instant messaging

application. Closing the application is custom-made as some instant messaging

applications in some cases could require to be closed through the taskbar in

addition to closing the application’s window.



26

3. Selecting the Texing Window: Once the application was open, the script navi-

gated to the texting window. This involved using a series of mouse movements

and clicks to ensure that the correct chat interface was selected. Functions such

as ‘pyautogui.moveTo(x, y, duration)‘ and ‘pyautogui.click()‘ were employed to

perform these actions seamlessly. Navigate through the application’s interface

to the correct texting window.

4. Typing and Sending Messages: Emulating the sending of messages with the use

of ’pyautogui.typewrite(text)’ is the process of typing and sending messages

with the type and read delays discussed in section 3.3, both in private and

group texting.

3.7 Flow Extractor: Tranalyzer2

Flow extractors are used to extract statistical features over aggregated packets (based

on 5-tuples, namely source/destination IP addresses, source/destination Port num-

bers, and the Protocol) using the captured network traffic (Pcapng). This approach

eliminates the need to perform a deep packet inspection of the captured traffic. Tr-

analyzer2 is a popular lightweight flow extractor (used by [5]) that can extract flows

even from large sets of captured data. Tranalyzer2 is an open-source system built

upon libpcap library and implemented in C. These characteristics of Tranalyzer2

enables it to handle large volumes of network traffic, therefore making it suitable for

flow generation, network monitoring, and traffic analysis.

By default, the Tranalyzer2 produces 107 features, this can be increased to gen-

erate more statistical features by utilizing additional plugins depending on the goals

of the research conducted.

In my case, I have enabled the variance feature flag known as ’BS VAR’ under

the plugin ’basicStats ’ [42] which gives additional features such as ’varPktSize’ and

’varIAT’ [43] in addition to the base 107 features using the Algorithm 1. The final

flow extracted will have 109 features which now includes two new additional features.

Tables 3.5 and 3.6 show the number of flows extracted from the PCAPNG traffic

capture files of the respective IMAs for synchronous and asynchronous texting. As



27

Algorithm 1 Setup and Configuration

1: procedure Setup and Configuration

2: python3 -m pip install multipledispatch

3: sudo apt-get install python3-pip

4: python3 -m pip install pandas pdoc3

5: t2py

6: T2Utils.list config(’basicStats’)

7: T2Utils.get config(’basicStats’, ’BS AGGR CNT’)

8: T2Utils.set config(’basicStats’, ’BS VAR’, 1)

9: T2Utils.build(’basicStats’)

10: end procedure

discussed in section 3.2, the aim is to have at least 5000 flows from each IMA (fol-

lowing the previous work [5]) for the machine learning model to have enough data

for training and testing purposes without overfitting.

Table 3.5: Number of Flows - Synchronous communications

IMA Private Group of 3 Group of 4
Skype 5633 5446 7005
Discord 5672 7037 6407

Messenger 5004 8089 5565
Teams 5695 7256 5034

WhatsApp 5318 6876 7168
Telegram 5267 7624 7371
Signal 6121 6139 5460

Table 3.6: Number of Flows - Asynchronous communications

IMA Private Group of 3 Group of 4
Skype 12418 18815 17779
Discord 11004 16187 18893

Messenger 14950 22561 27521
Teams 11330 16433 45955

WhatsApp 36125 46652 60821
Telegram 36784 55246 56985
Signal 37396 39435 44204



28

3.8 Filtering the background traffic

To the best of my knowledge, there is not one way to capture the network traffic of

an instant messaging application in Windows. In some instances, applications such

as Teams and Messenger have more than 32 ports (the maximum number of filters

that can be added) active during their usage. Thus, in this research, I captured the

entire network traffic first. And then, I filtered out any traffic other than the Instant

Messaging Application that is being studied.

Algorithm 2 Filtering Non-IMA Traffic

1: procedure Filtering Non-IMA Traffic(pcapng)

2: for each packet in pcapng do

3: Check for the ACK packets and store its port Y

4: Check for the SY N packets with same port Y

5: if packet contains ’ACK’ and doesn’t have ’SYN’ for the same port then

6: Mark the IP X as Non-IMA Traffic

7: end if

8: end for

9: for flow in flows do

10: if destination IP belongs to series Non-IMA Traffic IP X then

11: Drop the flow entry

12: end if

13: end for

14: end procedure

To this end, to determine the non-IMA traffic, a Python script is developed, Al-

gorithm 2, to identify the ’ACK’ packet present in the PCAPNG captured (traffic).

The script searches for a ’SYN’ packet for the ports of IMAs. This is used to deter-

mine whether a connection was initialized before the data collection was started. If

so, then it is categorized as non-IMA traffic. The IP address of all non-IMA traffic

is then converted into the network traffic class and all flows from the same class are

then dropped.

The flows extracted from an IMA’s traffic are then filtered, Tables 3.7 and 3.8

show the number of flows available for the synchronous and asynchronous texting



29

Table 3.7: Number of Flows after filtering - Synchronous Communications

IMA Private Group of 3 Group of 4
Skype 4896 4667 6020
Discord 5329 6664 5879

Messenger 4860 7829 5413
Teams 5159 6557 4535

WhatsApp 4907 6421 6579
Telegram 4934 7077 6807
Signal 5680 5676 4976

Table 3.8: Number of Flows after filtering - Asynchronous Communications

IMA Private Group of 3 Group of 4
Skype 11230 16951 15555
Discord 10597 15500 18122

Messenger 14375 21795 26516
Teams 10051 14645 43807

WhatsApp 35629 45820 59746
Telegram 36234 54405 55860
Signal 36826 38529 43145

traffic, respectively (after filtering out the flows which started before the data cap-

turing process was started).

3.9 Machine Learning Models Employed

This section presents the machine learning models used for classification. These

include Random Forest, Extreme Gradient Boosting, Multi-Layer Perceptron, and

Naive Bayes classifiers along with their advantages and disadvantages.

3.9.1 Naive Bayes

The Naive Bayes algorithm is based on Bayes’s Theorem and works on the principle

that features independence hence the name ”Naive” [44]. This model works by

assuming that every feature of a dataset is conditionally independent of each other,

this classification algorithm helps in making a simple and effective model.

For approximating the target function X → Y or P(X—Y), T is a Boolean values

random variable and X is a vector containing n Boolean attributes. For a given input



30

Naive Bayes works as follows:

1. Calculate the prior probabilities for each class based on the training data.

2. Computing likelihood for each feature for a given class by estimating the prob-

ability distribution for each feature per class.

3. Calculate the posterior probability for each class of a given input using Bayes

theorem.

4. Assign the class with the highest posterior probability to the input example.

This is a probabilistic classifier meaning the model prediction is made based on

the probability calculated for an instance of the data for a given feature value, as-

suming that the feature contributing to predictions has no relation with any other

features.

3.9.2 Multi-Layer Perceptron

A Multi-Layer Perceptron is an artificial neural network [44]. It consists of an input

and an output layer with one or more hidden layers between them. The activa-

tion function acts as a weighted sum of inputs which introduces nonlinearity to the

network to learn complex patterns in the data. When data is passed through the

input layer during the feedforward, each neuron calculates its weighted sum of the

input based on the activation function employed and moves it to the next layer.

The weights are adjusted by comparing the network’s output layer value and actual

value. During the backpropagation, weights are adjusted based on the gradient loss

function used [44]. For real input values, Multi-Layer Perceptron works as follows:

1. The preprocessed data is first fed to the input layer.

2. The hidden layer calculates the output from each neuron via weights and acti-

vation functions which are then fed into the next layer.

3. The error is calculated by the difference between the actual values and predicted

output.



31

4. Apply error propagation and gradient descent for optimization weights to min-

imize the error.

5. The steps are repeated for a given epoch until error reduction.

3.9.3 Extreme Gradient Boosting

Extreme Gradient Boosting which is also known as XGBoost is an ensemble boosting

technique that combines multiple decision trees to create a robust final model [44].

It builds a series of decision trees, where every new tree will try to correct the errors

made by the previous tree. For the final model to make an accurate prediction on

the training dataset, a gradient descent algorithm is used to determine an optimal

weight in each tree. XGBoost works as follows:

1. As an initial approximation with the target values an initial prediction is made.

2. Error from the initial prediction is then calculated by the difference between

the actual and predicted values.

3. A new tree which is a weak learner is trained to reduce the error made by the

initial model.

4. Update the model’s predictions by adding the output from the newly con-

structed tree to the existing predictions.

5. The prediction of all the trees combined to make a prediction.

3.9.4 Random Forest

The Random Forest algorithm is also an ensemble learning technique [44]. The

bagging method is improved upon by the Random Forest strategy, which combines

both bagging and feature randomness. Random Forest uses many Decision trees as

basic classifiers which are completely independent of each other and take into account

all potential feature splits, providing an essential comparison [44]. The likelihood of

overfitting can be reduced, and produce more precise predictions by taking into

account all possible sources of variation in the data. Feature bagging adds a degree



32

of randomness to the dataset while decreasing the correlation between decision trees.

Random Forest works as follows:

1. Input the sample preprocessed data.

2. For the given data sample, several random subsets of features is chosen as

training.

3. The error is calculated by the difference between the actual values and predicted

output.

4. Testing is done using the trained model containing a collection of decision trees.

5. Final prediction is made by a majority vote.

3.10 Summary

In this Chapter, I presented the different IMAs used along with all of their application-

oriented features. Also further described the framework and how the IMA was set

for working with different texting via IMAs such as asynchronous and synchronous

from the perspective of user communication from different numbers of users such as

2 users for private, a group of 3 users, and a group of 4 users. I also discussed the

various delays incorporated which were created and used as a way to generate more

realistic user data based on the time taken by users to read, write, and reply to a

message sent/received. Detailed explanation was given on the two different texting

behaviours, namely asynchronous and synchronous, along with what makes them dif-

ferent. I also went over the naming convention used for the traffic capturing method

and described the automation of realistic text behaviours for traffic generation and

capturing of PCAPNG files. Additionally, I explained how I created the Python

scripts, and how they were utilized with the help of available libraries. These were

then used to emulate the text behaviours for opening, closing, and sending messages

from IMAs used.

I also explained the Tranalyzer2 flow extractor utilized in converting the packet cap-

tures, PCAPNG files, to flows for extracting statistical features to represent the IMA

traffic. This section also included how to enable all the necessary plugins which result



33

in obtaining additional features. Following, I presented the algorithm used in the

process of filtering out all the traffic established before the data collection was started

as a means to focus on the Instant Messaging Applications. Traffic before and after

filtering the background traffic was also discussed in the same section. Moreover, all

the Machine Learning Models used were discussed in this Chapter.



Chapter 4

Evaluations and Results

In this chapter, I present the training and testing results obtained based on the

captured traffic as described in Chapter 3. The following presents the evaluation

metrics used, the features employed, and the results of the classification process. In

addition to the results, the feature importance is analyzed for the best-performing

machine learning model, namely the Random Forest classifier, to gain insight and

uncover any patterns created by the IMAs.

4.1 Evaluation Metrics

As introduced in the previous chapter, various machine learning models are employed,

and utilized under several different scenarios or texting via IMAs including (i) Private

Synchronous Texting, (ii) Private Asynchronous Texting, (iii) Group (3 or 4 users)

Synchronous Texting, and (iv) Group (3 or 4 users) Asynchronous Texting. Since

there may be overlays between models in terms of which scenario they would perform

better, I evaluated those machine learning models using the following performance

metrics. For all performance metrics used in this research, Higher Values Indicate

Better Performance, namely Precision, Recall, and F1-Score. Furthermore, TP, TN,

FP, and FN refer to True Positive, True Negative, False Positive, and False Negative

ratios.

Precision: Precision also refered to as positive predictive value is the fraction of

relevant instances (TP) among all retrieved instances [45].

TP

TP + FP
(4.1)

34



35

Recall: Recall (sometimes called sensitivity) is the fraction of relevant instances

that were retrieved [45].

TP

TP + FN
(4.2)

F1-score: F1-score is the harmonic mean of the precision and recall [45].

2 ∗ (Precision ∗Recall)

Precision+Recall
(4.3)

Accuracy: It is the ratio of the correctly predicted values by a total number of

predictions. It can be calculated by [45]:

TP + TN

TP + TN + FP + FN
(4.4)

4.2 Classification Process

4.2.1 Classification Dataset

Table 4.1: Sample for filtered Skype Private Asynchronous vs other

IMA
Private Group 3 Group 4

asyn syn asyn syn asyn syn

Skype
11230 4893 16951 4667 15555 6020
Class 1 Class 0 (Random sample 11230)

Table 4.1, shows a sample of how a dataset is built from the collected flows. Binary

classification is performed in this case between the Skype private asynchronous class

1 (in-class) which is the class that is needed to classify and the rest is regarded as

class 0 (out-class). In the above example, the goal is to classify private asynchronous

from the data point of asynchronous and synchronous groups with 3 and 4 users

along with private synchronous. Class 0 is always of the same size as class 1, this

is made to prevent an imbalanced training dataset and have structure between the

other combinations of in and out classes of Skype such as Skype Private Synchronous

vs other, Skype Group of 3 users Synchronous vs other, Skype Group of 3 users

Asynchronous vs other, Skype Group of 4 users Synchronous vs other, and Skype

Group of 4 users Asynchronous vs other. This is repeated for all the 7 IMAs used in

the data collection.



36

4.2.2 Feature Set

The 109 default features output by Tranalyzer2 discussed in section 3.7 include a

combination of time and size-related packet features, statistical features, and also

what I call the ’biased’ features. Biased features include IP addresses, port numbers

as well as country codes, etc. These were all excluded to minimize the bias created by

these in terms of their correlation to the ground truth (label) of the data. I considered

these as biased features because I only have four devices on my framework. This then

creates a high correlation between different texting behaviours and devices used in

the framework.

With the means to create a Machine learning model that could generalize well

for the given dataset the destination and source of IP and port numbers are removed

from the dataset. ’timefirst ’ and ’timelast ’ are also considered biased for the nature

of the classification used here. This could easily influence the classification since the

flow extracted will be from the connection created by the message sent. Therefore,

the ’timefirst ’ and ’timelast ’ are also regarded as biased features and are removed.

4.3 Results and Discussions

Here the aim is to determine a reliable and consistent model explained in previous

sections that can distinguish the different texting such as asynchronous and syn-

chronous from different numbers of users for the 7 IMAs used. All the results for the

group with 3 users were from four machine learning models mentioned in Section 3.9

with the same training and testing datasets.

4.3.1 Group of 3

Out of the four models’ results, Naive Bayes is among the poorer-performing models

here. From Table 4.2, we can observe that even the best-performing IMA for the

asynchronous vs. other is Skype when compared with the other models here it is

easily outshined in most cases. Hence for asynchronous vs other groups with 3 users,

Naive Bayes isn’t a viable route. Shifting the focus to the Multi-Layer Perceptron

from Table 4.3, had a noticeable increment in performance in IMAs Discord, Teams,

Telegram, and Messenger when compared with the Naive Bayes. However, the results



37

Table 4.2: Naive Bayes Test Results : Group of 3

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.577 0.494 0.481 0.524 0.531 0.505 0.500

F1 0.565 0.349 0.335 0.436 0.436 0.353 0.350
Recall 0.575 0.501 0.505 0.523 0.529 0.505 0.500

Precision 0.583 0.514 0.675 0.560 0.587 0.588 0.498
Synchronous vs other

Accuracy 0.555 0.503 0.487 0.589 0.529 0.469 0.494
F1 0.555 0.363 0.332 0.534 0.396 0.320 0.334

Recall 0.556 0.508 0.501 0.578 0.513 0.498 0.500
Precision 0.556 0.581 0.551 0.637 0.572 0.335 0.514

Table 4.3: Multi-Layer Perceptron Test Results : Group of 3

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.554 0.495 0.625 0.514 0.465 0.531 0.516

F1 0.515 0.463 0.592 0.378 0.401 0.508 0.471
Recall 0.551 0.491 0.640 0.512 0.466 0.531 0.516

Precision 0.574 0.489 0.725 0.592 0.440 0.539 0.524
Synchronous vs other

Accuracy 0.580 0.629 0.604 0.597 0.730 0.793 0.712
F1 0.580 0.605 0.597 0.528 0.724 0.791 0.712

Recall 0.581 0.632 0.601 0.586 0.726 0.800 0.713
Precision 0.582 0.678 0.606 0.685 0.742 0.812 0.713

are not close to the other two models.

Moving on to the next model Extreme Gradient Boosting, the results from Table

4.4 show us that there is a significant increase in performance throughout the IMAs

for asynchronous vs other when compared to the other two models explained prior.

WhatsApp and Telegram are among the poorest results from the Extreme Gradient

Boosting Model despite still performing about 50% better than the Naive Bayes and

Multi-Layer Perceptron. Finally, the Random Forest results from Table 4.5 bring

the best performance among the four different models used here for asynchronous vs

other. It is either on pair or performance better than the extreme Gradient Boosting

models even with the WhatsApp and Telegram IMAs.



38

Table 4.4: Extreme Gradient Boosting Test Results : Group of 3

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.758 0.676 0.760 0.617 0.615 0.610 0.670

F1 0.757 0.670 0.758 0.599 0.589 0.604 0.665
Recall 0.758 0.678 0.766 0.616 0.614 0.610 0.670

Precision 0.760 0.694 0.779 0.641 0.651 0.618 0.679
Synchronous vs other

Accuracy 0.825 0.824 0.870 0.910 0.913 0.878 0.877
F1 0.825 0.823 0.870 0.910 0.913 0.878 0.877

Recall 0.826 0.824 0.871 0.911 0.913 0.881 0.876
Precision 0.826 0.828 0.871 0.910 0.912 0.881 0.880

Table 4.5: Random Forest Test Results : Group of 3

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.764 0.690 0.765 0.618 0.620 0.626 0.687

F1 0.764 0.688 0.765 0.607 0.604 0.619 0.686
Recall 0.764 0.691 0.768 0.618 0.619 0.626 0.687

Precision 0.766 0.695 0.770 0.632 0.642 0.635 0.689
Synchronous vs other

Accuracy 0.819 0.813 0.869 0.908 0.901 0.874 0.876
F1 0.819 0.813 0.869 0.908 0.901 0.874 0.876

Recall 0.820 0.814 0.869 0.909 0.901 0.876 0.876
Precision 0.820 0.815 0.869 0.909 0.901 0.875 0.879

For the synchronous vs. other, as observed from Table 4.2 and 4.3 representing

the results from the Naive Bayes and Multi-Layer Perceptron respectively, except

WhatsApp IMA which performed similarly in both the Multi-Layer Perceptron, was

consistently better than the Naive Bayes by around 50% in some cases. Moreover,

the performance from Telegram, Skype, and Messenger IMAs is significantly higher

than its asynchronous vs other results from the same IMAs.

Extreme Gradient Boosting and Random Forest results from Table 4.4 and 4.5

respectively have performed better than Naive Bayes and Multi-Layer Perceptron.

Results from Extreme Gradient Boosting were increased for WhatsApp and Telegram

IMAs which produced the least performance in asynchronous vs other. Overall in



39

comparison with their own asynchronous vs other results, both models here produced

better results of more than 80% throughout the 7 IMAs making them pair with each

other.

In summary of the results discussed, from the 4 models used Random forest and

extreme gradient boosting had performed better. From the asynchronous vs other

and synchronous vs other, Random forest performed better in some IMAs whereas

Extreme gradient boosting performed better in other IMAs. However extreme gra-

dient boosting performed below 60% in Telegram and Signal IMAs of asynchronous

vs other, therefore making Random Forest the more reliable and consistent of the

two here.

4.3.2 Group of 4

Table 4.6: Naive Bayes Test Results : Group of 4

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.484 0.504 0.541 0.507 0.506 0.503 0.494

F1 0.333 0.360 0.432 0.363 0.368 0.362 0.368
Recall 0.500 0.504 0.531 0.507 0.505 0.505 0.502

Precision 0.504 0.538 0.611 0.570 0.535 0.552 0.514
Synchronous vs other

Accuracy 0.521 0.535 0.485 0.631 0.649 0.555 0.540
F1 0.389 0.393 0.332 0.589 0.614 0.407 0.433

Recall 0.503 0.508 0.500 0.621 0.642 0.525 0.535
Precision 0.515 0.544 0.493 0.693 0.712 0.695 0.634

For the group of 4 users results of the Naive Bayes can be referred from Table 4.6,

which shows that Naive Bayes is among the poorer side performance for classifying

the asynchronous vs other for the IMAs used. Although the feature-independent

nature of the model uses an efficient algorithm, it provides an easier understanding

and is inexpensive and easy to implement when compared to black-box models such

as the multi-layer perceptron used here. But this doesn’t help much in favor of this

model as expecting to have an independent feature has caused it to make a model

with poor generalization being easily influenced by irrelevant features. Shifting to

the multi-layer perceptron model performance as shown in Table 4.7, although this



40

Table 4.7: Multi-Layer Perceptron Test Results : Group of 4

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.581 0.497 0.561 0.506 0.538 0.502 0.594

F1 0.557 0.488 0.477 0.412 0.512 0.464 0.594
Recall 0.589 0.496 0.571 0.506 0.538 0.503 0.595

Precision 0.618 0.496 0.718 0.516 0.548 0.504 0.595
Synchronous vs other

Accuracy 0.538 0.628 0.546 0.794 0.645 0.719 0.625
F1 0.532 0.600 0.534 0.793 0.606 0.718 0.621

Recall 0.543 0.646 0.542 0.799 0.637 0.718 0.627
Precision 0.547 0.723 0.546 0.814 0.714 0.718 0.634

Table 4.8: Extreme Gradient Boosting Test Results : Group of 4

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.854 0.681 0.811 0.637 0.624 0.637 0.715

F1 0.854 0.678 0.810 0.634 0.619 0.633 0.713
Recall 0.856 0.681 0.813 0.637 0.625 0.636 0.716

Precision 0.860 0.688 0.821 0.642 0.633 0.642 0.722
Synchronous vs other

Accuracy 0.804 0.823 0.901 0.917 0.925 0.875 0.899
F1 0.804 0.823 0.901 0.917 0.925 0.875 0.899

Recall 0.806 0.826 0.901 0.918 0.925 0.877 0.899
Precision 0.806 0.825 0.901 0.917 0.925 0.875 0.901

is not producing results as poor as the Naive Bayes it’s still not close to the other

two models.

In comparison, Random Forest and Extreme Gradient Boosting produce better

results as seen in Table 4.9 and Table 4.8 respectively as they are much more no-

ticeable for the IMA Messenger, Skype and Teams of asynchronous vs other results.

The classification of the group of 4 users is much better than the group of 3 users

from the same Models results. And, the performance improvement from Extreme

Gradient Boosting is now more significant than between the same models from a

group of 3.

Continuing with the results, it is observed that in synchronous vs other for Naive



41

Table 4.9: Random Forest Test Results : Group of 4

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.865 0.691 0.819 0.642 0.629 0.643 0.730

F1 0.865 0.691 0.819 0.640 0.625 0.641 0.730
Recall 0.866 0.691 0.819 0.642 0.629 0.643 0.731

Precision 0.867 0.693 0.819 0.646 0.635 0.647 0.733
Synchronous vs other

Accuracy 0.814 0.828 0.908 0.917 0.916 0.869 0.897
F1 0.814 0.828 0.908 0.917 0.916 0.869 0.897

Recall 0.815 0.830 0.908 0.918 0.916 0.870 0.896
Precision 0.814 0.829 0.908 0.917 0.916 0.869 0.899

Bayes from Table 4.6 there is a noticeable increase from its asynchronous vs other

results in the case of IMAs such as WhatsApp, Telegram, Signal, and Messenger.

Shifting to Multi-Layer Perceptron, which improves from the results of the Naive

Bayes across the board for all the IMAs, where even in the best case is more than

50% increment for IMA such as Signal.

Despite the improvement Multi-Layer Perceptron from the Naive Bayes, it still

isn’t within the range of the best-performing models here such as Extreme Gradient

Boosting and Random Forest. The results for Extreme Gradient Boosting and Ran-

dom Forest from Table 4.8 and 4.9 respectively show that both the models were able

to perform better for the classification of the Synchronous vs other except Skype

when compared with the asynchronous vs other. Similar to the group of 3, Random

forest was able to slightly outperform the extreme gradient boosting in most of the

IMAs results.

In summary, random forest and extreme gradient boosting provide comparable

results of the 4 Machine Learning models used in this section. Between the two

models, apart from the results of IMAs Telegram, Signal, and Messenger from syn-

chronous vs other, Random Forests was able to perform slightly better making it a

more consistent of the two models. From the Naive Bayes poor performance, we can

conclude that the dataset isn’t easily linearly separable. One of the main reasons for

Random Forest’s better performance is due to its ability to handle non-linear rela-

tionships of the dataset well. In addition to that random forest being an ensemble



42

of decision trees is less prone to overfitting as the sizable trees used are the average

of the uncorrelated trees which in turn helps in reducing the overall prediction error

and variance.

4.3.3 Private

Table 4.10: Naive Bayes Test Results : Private

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.512 0.495 0.484 0.530 0.521 0.527 0.512

F1 0.445 0.347 0.331 0.435 0.420 0.439 0.383
Recall 0.511 0.499 0.502 0.531 0.523 0.527 0.504

Precision 0.521 0.490 0.682 0.594 0.580 0.573 0.521
Synchronous vs other

Accuracy 0.504 0.494 0.514 0.535 0.590 0.471 0.498
F1 0.339 0.365 0.344 0.402 0.536 0.342 0.337

Recall 0.502 0.502 0.500 0.521 0.579 0.495 0.499
Precision 0.668 0.512 0.529 0.627 0.636 0.461 0.449

Table 4.11: Multi-Layer Perceptron Test Results : Private

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.541 0.587 0.553 0.510 0.545 0.572 0.523

F1 0.507 0.584 0.553 0.363 0.507 0.567 0.507
Recall 0.540 0.586 0.553 0.510 0.544 0.572 0.520

Precision 0.555 0.589 0.553 0.628 0.563 0.576 0.522
Synchronous vs other

Accuracy 0.570 0.562 0.458 0.793 0.613 0.726 0.555
F1 0.570 0.561 0.453 0.792 0.564 0.725 0.510

Recall 0.570 0.562 0.461 0.792 0.625 0.724 0.555
Precision 0.570 0.562 0.459 0.794 0.749 0.726 0.587

The pattern for Naive Bayes seen from the results for 4.3.1 and 4.3.2 continues

to be present in Private also. The results are still worse among the four models used

here which can be observed from Table 4.10 for asynchronous vs other. Continuing,

the Multi-Layer Perceptron does show an increment in the results from Naive Bayes

in all the IMAs apart from WhatsApp asynchronous vs other as seen in Table 4.11.



43

Table 4.12: Extreme Gradient Boosting Test Results : Private

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.745 0.696 0.757 0.697 0.682 0.709 0.697

F1 0.744 0.696 0.756 0.689 0.672 0.703 0.695
Recall 0.745 0.697 0.760 0.697 0.683 0.709 0.698

Precision 0.746 0.698 0.767 0.720 0.711 0.727 0.705
Synchronous vs other

Accuracy 0.819 0.810 0.865 0.929 0.918 0.881 0.852
F1 0.818 0.810 0.865 0.929 0.918 0.881 0.852

Recall 0.819 0.811 0.866 0.929 0.918 0.883 0.852
Precision 0.822 0.812 0.867 0.929 0.917 0.883 0.855

Table 4.13: Random Forest Test Results : private

Metric
IMAs

Skype Discord Teams WhatsApp Telegram Signal Messenger

Asynchronous vs other
Accuracy 0.746 0.699 0.752 0.689 0.676 0.705 0.702

F1 0.746 0.699 0.752 0.682 0.666 0.699 0.701
Recall 0.746 0.700 0.754 0.689 0.677 0.705 0.703

Precision 0.747 0.701 0.755 0.710 0.702 0.722 0.705
Synchronous vs other

Accuracy 0.811 0.797 0.862 0.929 0.896 0.868 0.853
F1 0.811 0.797 0.862 0.929 0.896 0.868 0.853

Recall 0.811 0.797 0.863 0.930 0.896 0.869 0.853
Precision 0.812 0.798 0.863 0.929 0.896 0.868 0.855

Moving over to Extreme Gradient Boosting Model results as shown in Table 4.12

it is observed that the extreme gradient boosting performs significantly better than

the previously mentioned models. When compared with the Random Forest results

from Table 4.13, extreme gradient boosting still maintains performance on par with

random forest for the asynchronous vs other results.

Jumping to the synchronous results starting with Naive Bayes from Table 4.10,

the models were able to perform better in the Telegram when compared to the

results from asynchronous vs other for the same IMA. The rest of the results for the

synchronous vs other are either similar to that of the results from asynchronous vs

other or slightly worse. It is observed there to be an increase in performance in the



44

model Multi-Layer Perceptron synchronous vs other results from Table 4.11 where

results from WhatsApp and Telegram had significant improvement in comparison to

its asynchronous vs other results.

Similar to the previous sections 4.3.1 and 4.3.2, Extreme Gradient Boosting and

Random Forest outperformed the other two models used in the synchronous vs other

and this is evident from their results observed in Table 4.12 and 4.13. Surprisingly,

the extreme gradient boosting performed noticeably better for Telegram and Singal

IMAs in comparison to the results from Random Forest of the same IMAs.

Out of the 4 models discussed here, Random Forest and Extreme Gradient boost-

ing are the best-performing models by a huge margin. Among the two models, either

they are within the marginal difference in performance or extreme gradient boost-

ing performed better. Therefore among the two models extreme gradient boosting

performed better for private chat in both asynchronous and synchronous.

4.4 Identification of Network Siganures

My results show that the Random Forest model consistently performs better in the

group of 3 users and group of 4 users among the 4 machine learning models used in

this thesis. The best and worst results are 92.9% and 60.7% from Private synchronous

vs other, and Group of 3 users asynchronous vs other in WhatsApp, respectively. I

have used the inbuilt ’features importance’ of the Random Forest classifier to compare

the asynchronous vs other, and synchronous vs other models. The feature importance

from Random Forest is determined based on the Gini importance and Mean Decrease

in Impurity (MDI) by measuring the model’s performance when certain variables are

excluded. To this end, the top 10 common and uncommon features are extracted

from the asynchronous vs other models, and synchronous vs other models for each

IMA, and compared to identify the network signatures.

Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 show the top 10 features and their importance

given the Random Forest model used for the evaluations conducted. Tables 4.13,

4.5 and 4.9 show the performances of the models. Among the top 10 important

features the common ones between asynchronous vs other, and synchronous vs other

communications are shown in the bar chart, and the uncommon features (if any),

are shown in the Venn diagram.



45

Figure 4.1: Comparing Random forest group of 3 user feature importance for Skype,
discord, and Teams

Looking into the Group of 3 results between the asynchronous vs other, and

synchronous vs other in Figure 4.1 and Figure 4.2, the very first observation is that

among the 7 IMAs, there are unique sets of top 10 important features. What is

noticed is that among the uncommon features, the synchronous vs other models

consistently utilize more Packet size-related features than the asynchronous vs other

models. This can be seen in the Venn diagrams for the IMAs. Additionally, what was

observed from the common features is that asynchronous vs other models utilizes and

gives more preference to the Time-based features such as Inter-Arrival Time (IAT).

This is evident from the feature importance figures shown. Moreover, asynchronous



46

vs other models also utilize features that are responsible for establishing a connection

such as Round Trip Time (RTT).

Moving on to the features important for a Group of 4 Users in Figure 4.3 and

Figure 4.4, it is observed that the feature importance of the model for the group

of 4 users also shows similar patterns found in the group of 3 feature importance.

Again, the synchronous vs other model utilizes packet size-related features, and the

asynchronous vs other model utilizes the connection establishment features such as

RTT as seen in the Venn diagram. The bar chart using the common features shows

that IAT is again utilized by the asynchronous vs other models at a higher importance

than the synchronous vs other models.

Similar to the network signatures identified for the group of 3 and group 4 users

results above, the private asynchronous vs other model and synchronous vs other

model’s features importances are shown in Figure 4.5 and Figure 4.6. These figures

demonstrate that the signatures identified are consistent across the board. In all the

cases, synchronous vs other texting behaviours can be identified using the packet

size-related features, and asynchronous vs other texting behaviours can be identified

using time-based features such as IAT and RTT.

My results are also supported by the work of Bahramali et al., [46]. They also

worked on IMAs and utilized delays (similar to what I use) which they termed as

’Inter-Message Delay ’ for their experiments. They stated that ’extremely close mes-

sages create a combined traffic burst in the encrypted IM traffic’. In my evaluations,

I recognize this as well. While the asynchronous vs other model utilizes time-related

features, the synchronous vs other model utilizes packet size-related features.

Figure 4.7 presents the total number of ports opened in the captured encrypted

traffic concerning different IMAs. It is observed that each IMA has a different number

of connections established. In both synchronous and asynchronous texting via IMAs,

the number of ports opened are as follows (from the highest to the lowest): Messenger,

Signal, Teams, Discord, Skype, WhatsApp, and Telegram. Moreover, though the

number of ports opened is different between asynchronous and synchronous, the

hierarchy remains the same. This indicates that in asynchronous texting, the ports

opened are always higher than the number of ports opened in synchronous texting.

This could contribute to the signatures identified, given the feature importance of



47

the asynchronous vs other models based on different IMAs.

4.5 Summary

In this chapter, I have discussed the evaluation metrics used and how they are cal-

culated to obtain the results. I also went over how the binary classification dataset

was prepared for the classification of different IMAs and respective texting types

such as Signal private asynchronous vs other. As the next step, I focused on 4 ma-

chine learning models used, which are Naive Bayes, Multi-Layer Perceptron, Random

Forest, and Extreme Gradient Boosting. I went over the results individually for a

group of 3 users, a group of 4 users, and 2 users, private, for asynchronous vs other,

and synchronous vs other communications. Lastly, based on the results discussed, I

showed that the Random Forest model performed better than the other 3 models, in

Section 4.3. I presented the results of my analysis using the model’s built-in feature

importance. This was used to understand the patterns present. From Section 4.4

it is evident that there is a difference in the characteristic of how encrypted traffic

is generated between the different texting via IMAs such as asynchronous vs other

that utilize time and connection-based features, and synchronous which prioritizes

packet size based features more. These network signatures were discovered based on

the Random Forest training model results for each of the 7 IMAs.



48

Figure 4.2: Comparing Random forest group of 3 user feature importance for What-
sApp, telegram, signal, and Messenger



49

Figure 4.3: Comparing Random forest group of 4 user feature importance for Skype,
discord, and Teams



50

Figure 4.4: Comparing Random forest group of 4 user feature importance for What-
sApp, telegram, signal, and Messenger



51

Figure 4.5: Comparing Random forest private user feature importance for Skype,
discord, and Teams



52

Figure 4.6: Comparing Random forest private user feature importance for What-
sApp, telegram, signal, and Messenger



53

Figure 4.7: Number of Ports opened by each IMA



Chapter 5

Conclusion and Future Work

As shown in the Messaging application Market Data [47], there has been a steady

growth in the number of users joining the instant messaging application platforms.

Considering that instant messaging applications are also being used in the work-

place, it is crucial to understand the network signatures of different types of user

communication of such applications.

In this thesis, I have proposed, designed, and implemented a framework using

individual devices to explore network traffic signatures using Instant Messaging Ap-

plications for texting. To achieve this I automated the process of emulating sending

and receiving text messages as part of a communication between 2 users, i.e. private

texting, a group of 3 users, and a group of 4 users, i.e. group texting. Messages were

sent as synchronous and asynchronous texting behaviours with delays generated for

’read ’ [38], ’type’ [37], and ’reply ’ [38] activities based on real-world behaviours pub-

lished in the literature. Synchronous and asynchronous texting is made to use the

delay in such a way that it aims to mimic the delay seen in real-world texting. The

data generation and collection were conducted based on these behaviours for differ-

ent types of user communication using seven popular IMAs, namely Skype, Discord,

Teams, Telegram, WhatsApp, Signal, and Messenger.

To ensure the ground truth-based labeling of the traffic is automated, IMA traffic

was filtered from the entire collected traffic. Thus, a new filtering method was pro-

posed. The proposed filtration method checks that for every ’ACK ’ present whether

the connection initiation packet of the same port is also present or not. If the con-

nection initiation packet from the same port is not present then the connection is

labeled as the background connection and the IPs of the background connection are

stored. All the IP classes that belong to the stored background connection are then

removed from the dataset before splitting the data for training and testing for the

machine learning models.

54



55

The flow extractor Tranalyzer2 is then used on the collected data to export the

flows for Machine Learning analysis. Then, Naive Bayes, Multi-Layer Perceptron,

Random Forest, and Extreme Gradient Boosting machine learning algorithms are

used. Furthermore, a feature importance analysis is utilized based on the best-

performing classifier, namely the Random Forest trained model, in identifying and

understanding the patterns present in different texting behaviours. This is done by

studying the features that are common and uncommon between the trained models

of the different texting behaviours for the types of user communication. The result

of this analysis enabled me to identify the network traffic signatures for texting via

instant messaging applications.

This thesis research used the ML classifiers by their default parameters. Thus,

future work will explore generalization as well as hyperparameter tuning of ML clas-

sifiers for the better optimization and performance of all the classifiers used in this

thesis. Utilizing binary classification, unique signatures are discovered for asyn-

chronous and synchronous communications for each IMA under private and group

texting in this thesis. Future work will explore all the IMAs collectively by per-

forming a Multi-class classification approach. This might enable further signatures

for understanding different communication behaviours. Furthermore, IMAs provide

various functions in addition to sending private and group messages. Most IMAs

support VoIP and video calls. Thus, future research will also study, and analyze

their strengths and weaknesses. Also, publicly available data is scarce and future

research might help to close the gap. Additionally, IMAs have started to include

money transactions as a premium feature either via purchase or subscription. More-

over, some IMAs have introduced an electronic funds transfer which gives the user

an option to send money to another user. As more functionalities are introduced,

especially currency transactions into an IMA, more research is needed to understand

their behaviours and identify their signatures for providing a better-operated and

managed networks and services.



Bibliography

[1] Intuition. Remote Working Statistics You Need to Know in 2024. https://

www.intuition.com/remote-working-statistics-you-need-to-know-in-

2024/. Accessed: December 2023. Dec. 2023.

[2] Tirus Muya Maina. Instant messaging an effective way of communication in

workplace. 2013. arXiv: 1310.8489 [cs.CY]. url: https://arxiv.org/abs/

1310.8489.

[3] Thijs van Ede et al. “FlowPrint: Semi-Supervised Mobile-App Fingerprinting

on Encrypted Network Traffic”. In: Network and Distributed System Security

Symposium (NDSS) 27 (). doi: 10.14722/ndss.2020.24412. url: https:

//par.nsf.gov/biblio/10192513.

[4] Abdurrahman Pektaş. “Proposal of Machine Learning Approach for Identifi-

cation of Instant Messaging Applications in Raw Network Traffic”. In: Inter-

national Journal of Intelligent Systems and Applications 6 (June 2018). doi:

10.18201/ijisae.2018642060.

[5] Zolboo Erdenebaatar et al. “Depicting Instant Messaging Encrypted Traffic

Characteristics through an Empirical Study”. In: 2023 32nd International Con-

ference on Computer Communications and Networks (ICCCN). 2023, pp. 1–10.

doi: 10.1109/ICCCN58024.2023.10230093.

[6] Network Information Management and Security Group (NIMS). NIMS Dataset.

https://projects.cs.dal.ca/projectx/Download.html. 2017.

[7] Hasan Faik Alan and Jasleen Kaur. “Can Android Applications Be Identified

Using Only TCP/IP Headers of Their Launch Time Traffic?” In: Proceedings

of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Net-

works. WiSec ’16. Darmstadt, Germany: Association for Computing Machinery,

2016, pp. 61–66. isbn: 9781450342704. doi: 10.1145/2939918.2939929. url:

https://doi.org/10.1145/2939918.2939929.

56



57

[8] Zolboo Erdenebaatar et al. “Instant Messaging Application Encrypted Traffic

Generation System”. In: NOMS 2023-2023 IEEE/IFIP Network Operations

and Management Symposium. 2023, pp. 1–3. doi: 10.1109/NOMS56928.2023.

10154297.

[9] Zolboo Erdenebaatar et al. “Analyzing Traffic Characteristics of Instant Mes-

saging Applications on Android Smartphones”. In: NOMS 2023-2023 IEEE/IFIP

Network Operations and Management Symposium. 2023, pp. 1–5. doi: 10.

1109/NOMS56928.2023.10154386.

[10] Qinglong Wang et al. “I know what you did on your smartphone: Inferring app

usage over encrypted data traffic”. In: 2015 IEEE Conference on Communi-

cations and Network Security (CNS). 2015, pp. 433–441. doi: 10.1109/CNS.

2015.7346855.

[11] Ly Vu et al. “Time Series Analysis for Encrypted Traffic Classification: A

Deep Learning Approach”. In: 2018 18th International Symposium on Com-

munications and Information Technologies (ISCIT). 2018, pp. 121–126. doi:

10.1109/ISCIT.2018.8587975.

[12] Chang Liu et al. “MaMPF: Encrypted Traffic Classification Based on Multi-

Attribute Markov Probability Fingerprints”. In: 2018 IEEE/ACM 26th In-

ternational Symposium on Quality of Service (IWQoS). 2018, pp. 1–10. doi:

10.1109/IWQoS.2018.8624124.

[13] Zhuang Zou et al. “Encrypted Traffic Classification with a Convolutional Long

Short-Term Memory Neural Network”. In: 2018 IEEE 20th International Con-

ference on High Performance Computing and Communications; IEEE 16th In-

ternational Conference on Smart City; IEEE 4th International Conference on

Data Science and Systems (HPCC/SmartCity/DSS). 2018, pp. 329–334. doi:

10.1109/HPCC/SmartCity/DSS.2018.00074.

[14] Pedro Casas et al. “Fingerprinting Web Pages and Smartphone Apps from En-

crypted Network Traffic with WebScanner”. In: 2022 IEEE 11th International

Conference on Cloud Networking (CloudNet). 2022, pp. 1–9. doi: 10.1109/

CloudNet55617.2022.9978877.



58

[15] Qiuning Ren, Chao Yang, and Jianfeng Ma. “App identification based on en-

crypted multi-smartphone sources traffic fingerprints”. In: Computer Networks

201 (2021), p. 108590. issn: 1389-1286. doi: https://doi.org/10.1016/j.

comnet.2021.108590. url: https://www.sciencedirect.com/science/

article/pii/S138912862100493X.

[16] Jay Shah. “Detection of malicious encrypted web traffic using machine learn-

ing”. In: (2018).

[17] Jianhua Sun et al. “Automatically identifying apps in mobile traffic”. In: Con-

currency and Computation: Practice and Experience 28.14 (2016), pp. 3927–

3941. doi: https : / / doi . org / 10 . 1002 / cpe . 3703. eprint: https : / /

onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3703. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3703.

[18] Seunghun Cha and Hyoungshick Kim. “Detecting Encrypted Traffic: A Ma-

chine Learning Approach”. In: Mar. 2017, pp. 54–65. isbn: 978-3-319-56548-4.

doi: 10.1007/978-3-319-56549-1_5.

[19] Shengbao Li et al. “FusionTC: Encrypted App Traffic Classification Using

Decision-Level Multimodal Fusion Learning of Flow Sequence”. In: Wireless

Communications and Mobile Computing 2023.1 (2023), p. 9118153. doi: https:

//doi.org/10.1155/2023/9118153. url: https://onlinelibrary.wiley.

com/doi/abs/10.1155/2023/9118153.

[20] Zihao Wang, Kar Wai Fok, and Vrizlynn L.L. Thing. “Machine learning for

encrypted malicious traffic detection: Approaches, datasets and comparative

study”. In: Computers amp; Security 113 (Feb. 2022), p. 102542. issn: 0167-

4048. doi: 10.1016/j.cose.2021.102542. url: http://dx.doi.org/10.

1016/j.cose.2021.102542.

[21] Meta Platforms, Inc. Messenger for Desktop Download. Accessed: December

2023. Dec. 2023. url: https://www.messenger.com/desktop.

[22] Laiby Thomas and Subramanya Bhat. “A Comprehensive Overview of Tele-

gram Services - A Case Study”. In: International Journal of Case Studies in

Business, IT, and Education (IJCSBE) 6.1 (2022), pp. 288–301. doi: https:

//doi.org/10.5281/zenodo.6513296.



59

[23] Telegram Messenger LLP. Telegram Desktop Download. Accessed: December

2023. Dec. 2023. url: https://desktop.telegram.org/.

[24] Jack Vance. STS Research Paper. https://libraetd.lib.virginia.edu/

downloads/9593tv939?filename=Vance_Jack_STS_Research_Paper.pdf.

Accessed: December 2023. Dec. 2023.

[25] TechReport. Discord Statistics. https : / / techreport . com / statistics /

software-web/discord-statistics/. Accessed: December 2023. Dec. 2023.

[26] Discord Inc. Discord Download. Accessed: December 2023. Dec. 2023. url:

https://discord.com/download.

[27] Corina-Elena Bogos, Razvan Mocanu, and Emil Simion. “A security analysis

comparison between Signal, WhatsApp and Telegram”. In: (Jan. 2023).

[28] Signal Foundation. Signal for Windows Download. Accessed: December 2023.

Dec. 2023. url: https://signal.org/download/windows/.

[29] Rebecca Mirick and Stephanie Wladkowski. “Skype in Qualitative Interviews:

Participant and Researcher Perspectives”. In:Qualitative Report 24 (Dec. 2019),

pp. 3061–3072. doi: 10.46743/2160-3715/2019.3632.

[30] Microsoft. Another Microsoft App. https://apps.microsoft.com/detail/

9wzdncrfj364?hl=en-us&gl=US. Accessed: December 2023. Dec. 2023.

[31] Business of Apps. Microsoft Teams Statistics. https://www.businessofapps.

com/data/microsoft-teams-statistics/. Accessed: December 2023. Dec.

2023.

[32] Microsoft Corporation. Microsoft Teams Download for Desktop. Accessed: De-

cember 2023. Dec. 2023. url: https://www.microsoft.com/en-ca/microsoft-

teams/download-app#download-for-desktop.

[33] Focus on Business.Microsoft Teams Grew Over 90% in 2020 Due to Pandemic:

145M Daily Active Users in 2021. https://focusonbusiness.eu/en/news/

microsoft- teams- grew- over- 90- in- 2020- due- to- pandemic- 145m-

daily-active-users-in-2021/4223. Accessed: December 2023. Dec. 2023.

[34] Rasayel. WhatsApp User Statistics. https://learn.rasayel.io/en/blog/

whatsapp-user-statistics/. Accessed: December 2023. Dec. 2023.



60

[35] Microsoft.Microsoft App. https://apps.microsoft.com/detail/9nksqgp7f2nh?

hl=en-US&gl=US. Accessed: December 2023. Dec. 2023.

[36] Bogdan Gliwa et al. “SAMSum Corpus: A Human-annotated Dialogue Dataset

for Abstractive Summarization”. In: Proceedings of the 2nd Workshop on New

Frontiers in Summarization. Ed. by Lu Wang et al. Hong Kong, China: Asso-

ciation for Computational Linguistics, Nov. 2019, pp. 70–79. doi: 10.18653/

v1/D19-5409. url: https://aclanthology.org/D19-5409.

[37] Nancy A. Baker and Mark S. Redfern. “The Association between Computer

Typing Style and Typing Speeds”. In: Proceedings of the Human Factors and

Ergonomics Society Annual Meeting 51.15 (2007), pp. 869–873. doi: 10.1177/

154193120705101501.

[38] Bongeka Mpofu. “University Students Use of Computers and Mobile Devices

for Learning and their Reading Speed on Different Platforms”. In: Universal

Journal of Educational Research 4 (Apr. 2016), pp. 926–932. doi: 10.13189/

ujer.2016.040430.

[39] Avi Rosenfeld et al. “WhatsApp usage patterns and prediction of demographic

characteristics without access to message content”. In: Demographic Research

39 (Sept. 2018), pp. 647–670. doi: 10.4054/DemRes.2018.39.22.

[40] Microsoft. Pktmon - Packet Monitor. https://learn.microsoft.com/en-

us/windows-server/networking/technologies/pktmon/pktmon. Accessed:

December 2023. Dec. 2023.

[41] Microsoft. Pktmon ETL to PCAP File Conversion. https://learn.microsoft.

com/en-us/windows-server/administration/windows-commands/pktmon-

etl2pcap?source=recommendations. Accessed: December 2023. Dec. 2023.

[42] Tranalyzer. T2Py Tutorial. https://tranalyzer.com/tutorial/t2py. Ac-

cessed: May 2023. May 2023.

[43] Tranalyzer. Tranalyzer Documentation. https://tranalyzer.com/download/

doc/documentation.pdf. Accessed: May 2023. May 2023.



61

[44] Ethem Alpaydin. Introduction to Machine Learning. Accessed: December 2023.

MIT Press, 2020. isbn: 9780262043793. url: https://mitpress.mit.edu/

9780262043793/introduction-to-machine-learning/.

[45] Towards AI. Confusion Matrix. 2023. url: https://pub.towardsai.net/

confusion-matrix-179b9c758b55.

[46] Alireza Bahramali et al. “Practical Traffic Analysis Attacks on Secure Messag-

ing Applications”. In: Jan. 2020. doi: 10.14722/ndss.2020.24347.

[47] Business of Apps. Messaging App Market Data (2023). Accessed: December

2023. Dec. 2023. url: https://www.businessofapps.com/data/messaging-

app-market/.



Appendix A

Feasture Description

A.1 Flow extracted from Tranalyzer

Col No. Name Description

1 dir Flow direction

2 flowInd Flow index

3 flowStat Flow status and warnings

4 timeFirst Date time of first packet

5 timeLast Date time of last packet

6 duration Flow duration

7 numHdrDesc Number of different headers de-

scriptions

8 numHdrs Number of headers (depth) in

hdrDesc

9 hdrDesc Headers description

10 srcMac Mac source

11 dstMac Mac destination

12 ethType Ethernet type

13 ethVlanID VLAN IDs

14 srcIP Source IP address

15 srcIPCC Source IP country

16 srcIPOrg Source IP organisation

17 srcPort Source port

18 dstIP Destination IP address

19 dstIPCC Destination IP country

20 dstIPOrg Destination IP organisation

62



63

Col No. Name Description

21 dstPort Destination port

22 l4Proto Layer 4 protocol

23 macStat macRecorder status

24 macPairs Number of distinct

source/destination MAC ad-

dresses pairs

25 srcMac dstMac numP Source/destination MAC ad-

dress, number of packets of MAC

address combination

26 srcMacLbl dstMacLbl Source/destination MAC label

27 dstPortClassN Port-based classification of the

destination port number

28 dstPortClass Port-based classification of the

destination port name

29 numPktsSnt Number of transmitted packets

30 numPktsRcvd Number of received packets

31 numBytesSnt Number of transmitted bytes

32 numBytesRcvd Number of received bytes

33 minPktSz Minimum layer 3 packet size

34 maxPktSz Maximum layer 3 packet size

35 avePktSize Average layer 3 packet size

36 varPktSize Variance layer 3 packet size

37 stdPktSize Standard deviation layer 3 packet

size

38 minIAT Minimum inter-arrival time

39 maxIAT Maximum inter-arrival time

40 aveIAT Average inter-arrival time

41 varIAT Variance inter-arrival time



64

Col No. Name Description

42 stdIAT Standard deviation inter-arrival

time

43 pktps Sent packets per second

44 bytps Sent bytes per second

45 pktAsm Packet stream asymmetry

46 bytAsm Byte stream asymmetry

47 tcpFStat tcpFlags status

48 ipMindIPID IP minimum delta IP ID

49 ipMaxdIPID IP maximum delta IP ID

50 ipMinTTL IP minimum Time to Live

51 ipMaxTTL IP maximum Time to Live

52 ipTTLChg IP Time to Live change count

53 ipToS IP Type of Service hex

54 ipFlags IP aggregated flags

55 ipOptCnt IP options count

56 ipOptCpCl Num IP aggregated options, copy-class

and number

57 ip6OptCntHH D IPv6 Hop-by-Hop destination op-

tion counts

58 ip6OptHH D IPv6 aggregated Hop-by-Hop des-

tination options

59 tcpISeqN TCP initial sequence number

60 tcpPSeqCnt TCP packet seq count

61 tcpSeqSntBytes TCP sent seq diff bytes

62 tcpSeqFaultCnt TCP sequence number fault

count

63 tcpPAckCnt TCP packet ACK count

64 tcpFlwLssAckRcvdBytes TCP flawless ACK received bytes



65

Col No. Name Description

65 tcpAckFaultCnt TCP ACK number fault count

66 tcpBFlgtMx TCP Bytes in Flight MAX

67 tcpInitWinSz TCP initial effective window size

68 tcpAveWinSz TCP average effective window

size

69 tcpMinWinSz TCP minimum effective window

size

70 tcpMaxWinSz TCP maximum effective window

size

71 tcpWinSzDwnCnt TCP effective window size change

down count

72 tcpWinSzUpCnt TCP effective window size change

up count

73 tcpWinSzChgDirCnt TCP effective window size direc-

tion change count

74 tcpWinSzThRt TCP packet count ratio below

window size WINMIN threshold

75 tcpFlags TCP aggregated protocol flags

(FINACK, SYNACK, RSTACK,

CWR, ECE, URG, ACK, PSH,

RST, SYN, FIN)

76 tcpAnomaly TCP aggregated header anomaly

flags

77 tcpOptPktCnt TCP options packet count

78 tcpOptCnt TCP options count

79 tcpOptions TCP aggregated options

80 tcpMSS TCP maximum segment size

81 tcpWS TCP window scale



66

Col No. Name Description

82 tcpMPTBF TCP MPTCP type bitfield

83 tcpMPF TCP MPTCP flags

84 tcpMPAID TCP MPTCP address ID

85 tcpMPDSSF TCP MPTCP DSS flags

86 tcpTmS TCP time stamp

87 tcpTmER TCP time echo reply

88 tcpEcI TCP estimated counter incre-

ment

89 tcpUtm TCP estimated up time

90 tcpBtm TCP estimated boot time

91 tcpSSASAATrip TCP trip time (A: SYN, SYN-

ACK, B: SYN-ACK, ACK)

92 tcpRTTAckTripMin TCP ACK trip min

93 tcpRTTAckTripMax TCP ACK trip max

94 tcpRTTAckTripAve TCP ACK trip average

95 tcpRTTAckTripJitAve TCP ACK trip jitter average

96 tcpRTTSseqAA TCP round trip time (A: SYN,

SYN-ACK, ACK, B: ACK-ACK)

97 tcpRTTAckJitAve TCP ACK round trip average jit-

ter

98 tcpStatesAFlags TCP state machine anomalies

99 icmpStat ICMP Status

100 icmpTCcnt ICMP type code count

101 icmpBFTypH TypL Code ICMP Aggregated type H

(>128), L (<32) & code bit field

102 icmpTmGtw ICMP time/gateway

103 icmpEchoSuccRatio ICMP Echo reply/request success

ratio



67

Col No. Name Description

104 icmpPFindex ICMP parent flowIndex

105 connSip Number of unique source IPs

106 connDip Number of unique destination IPs

107 connSipDip Number of connections between

source and destination IP

108 connSipDprt Number of connections between

source IP and destination port

109 connF The f number: connSipDprt /

connSip [EXPERIMENTAL]



Appendix B

Extra Results

B.1 10-Fold Cross Validation: Training Dataset

Table B.1: Random Forest group 3 asyn vs other on Training Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.775 0.761-0.794 0.684 0.672-0.692 0.770 0.756-0.781
F1 Score 0.788 0.770-0.807 0.705 0.693-0.720 0.781 0.769-0.790
Recall 0.823 0.800-0.850 0.749 0.726-0.768 0.831 0.820-0.847
Precision 0.754 0.739-0.770 0.664 0.652-0.681 0.737 0.721-0.755

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.621 0.607-0.630 0.623 0.619-0.630 0.630 0.620-0.638 0.685 0.677-0.694
F1 Score 0.678 0.671-0.687 0.687 0.682-0.694 0.671 0.665-0.681 0.701 0.687-0.717
Recall 0.793 0.772-0.808 0.820 0.809-0.830 0.753 0.730-0.771 0.738 0.712-0.758
Precision 0.592 0.578-0.604 0.590 0.582-0.598 0.606 0.594-0.612 0.667 0.653-0.681

68



69

Table B.2: Random Forest group 3 syn vs other on Training Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.823 0.809-0.838 0.823 0.804-0.838 0.877 0.858-0.891
F1 Score 0.823 0.800-0.844 0.831 0.809-0.843 0.878 0.851-0.889
Recall 0.848 0.823-0.881 0.858 0.845-0.866 0.899 0.880-0.912
Precision 0.795 0.765-0.825 0.804 0.774-0.834 0.859 0.824-0.884

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.906 0.891-0.916 0.903 0.890-0.919 0.879 0.861-0.895 0.879 0.866-0.887
F1 Score 0.907 0.894-0.915 0.901 0.885-0.919 0.879 0.860-0.902 0.884 0.874-0.892
Recall 0.925 0.912-0.932 0.915 0.902-0.941 0.905 0.875-0.923 0.922 0.898-0.934
Precision 0.889 0.863-0.909 0.891 0.863-0.913 0.852 0.820-0.881 0.850 0.842-0.854

Table B.3: Random Forest group 4 asyn vs other on Training Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.865 0.861-0.871 0.699 0.682-0.707 0.824 0.818-0.832
F1 Score 0.868 0.861-0.873 0.714 0.702-0.723 0.825 0.816-0.831
Recall 0.895 0.885-0.907 0.744 0.735-0.762 0.806 0.795-0.814
Precision 0.842 0.831-0.862 0.682 0.671-0.696 0.847 0.843-0.850

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.645 0.639-0.652 0.630 0.620-0.648 0.647 0.635-0.654 0.734 0.727-0.740
F1 Score 0.610 0.605-0.622 0.592 0.576-0.609 0.618 0.609-0.625 0.744 0.737-0.748
Recall 0.552 0.544-0.564 0.534 0.518-0.551 0.571 0.565-0.576 0.776 0.763-0.786
Precision 0.681 0.671-0.700 0.663 0.647-0.682 0.675 0.665-0.689 0.715 0.702-0.723



70

Table B.4: Random Forest group 4 syn vs other on Training Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.825 0.810-0.848 0.833 0.814-0.852 0.911 0.904-0.919
F1 Score 0.826 0.810-0.846 0.835 0.822-0.856 0.910 0.900-0.921
Recall 0.848 0.828-0.876 0.873 0.855-0.897 0.933 0.920-0.948
Precision 0.809 0.782-0.829 0.802 0.763-0.825 0.891 0.859-0.911

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.918 0.906-0.928 0.923 0.911-0.934 0.883 0.872-0.896 0.897 0.885-0.918
F1 Score 0.917 0.903-0.931 0.921 0.906-0.931 0.882 0.862-0.897 0.901 0.889-0.922
Recall 0.935 0.924-0.950 0.934 0.920-0.947 0.897 0.874-0.921 0.937 0.918-0.960
Precision 0.898 0.884-0.909 0.908 0.886-0.927 0.865 0.836-0.883 0.866 0.837-0.898

Table B.5: Random Forest private asyn vs other on Training Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.745 0.731-0.761 0.703 0.686-0.719 0.748 0.74-0.761
F1 Score 0.758 0.748-0.769 0.718 0.699-0.732 0.757 0.744-0.784
Recall 0.787 0.766-0.799 0.756 0.738-0.778 0.798 0.778-0.812
Precision 0.731 0.721-0.749 0.685 0.666-0.716 0.717 0.704-0.759

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.699 0.683-0.708 0.684 0.676-0.693 0.708 0.698-0.715 0.704 0.689-0.722
F1 Score 0.741 0.729-0.751 0.731 0.72-0.739 0.745 0.736-0.758 0.720 0.704-0.74
Recall 0.856 0.845-0.866 0.854 0.848-0.862 0.845 0.835-0.854 0.763 0.744-0.789
Precision 0.653 0.64-0.668 0.639 0.623-0.649 0.667 0.658-0.678 0.680 0.663-0.698



71

Table B.6: Random Forest private syn vs other on Training Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.815 0.798-0.846 0.811 0.789-0.832 0.872 0.857-0.888
F1 Score 0.815 0.786-0.847 0.816 0.804-0.836 0.873 0.858-0.882
Recall 0.828 0.798-0.855 0.847 0.822-0.870 0.890 0.863-0.906
Precision 0.799 0.765-0.830 0.791 0.764-0.816 0.861 0.845-0.889

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.926 0.919-0.942 0.897 0.885-0.906 0.873 0.851-0.886 0.853 0.834-0.874
F1 Score 0.925 0.909-0.941 0.896 0.874-0.911 0.875 0.859-0.891 0.857 0.845-0.876
Recall 0.950 0.929-0.963 0.910 0.897-0.921 0.894 0.877-0.912 0.893 0.858-0.911
Precision 0.903 0.887-0.921 0.882 0.870-0.900 0.854 0.834-0.869 0.829 0.803-0.878

Table B.7: Extreme Gradient Boosting group 3 asyn vs other on Training

Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.763 0.75-0.78 0.669 0.661-0.685 0.771 0.767-0.777
F1 Score 0.778 0.765-0.794 0.711 0.702-0.728 0.794 0.788-0.803
Recall 0.820 0.804-0.844 0.811 0.796-0.826 0.901 0.887-0.913
Precision 0.740 0.73-0.754 0.633 0.618-0.654 0.710 0.695-0.724

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.615 0.601-0.625 0.619 0.613-0.625 0.614 0.605-0.620 0.670 0.663-0.676
F1 Score 0.686 0.672-0.694 0.694 0.687-0.702 0.657 0.642-0.667 0.703 0.692-0.714
Recall 0.837 0.819-0.859 0.861 0.838-0.880 0.737 0.707-0.759 0.781 0.770-0.796
Precision 0.581 0.569-0.591 0.582 0.571-0.589 0.593 0.577-0.601 0.639 0.623-0.652



72

Table B.8: Extreme Gradient Boosting group 3 syn vs other on Training Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.811 0.787-0.839 0.828 0.814-0.840 0.879 0.864-0.898
F1 Score 0.818 0.794-0.849 0.835 0.817-0.853 0.881 0.863-0.903
Recall 0.860 0.830-0.887 0.874 0.862-0.895 0.908 0.898-0.923
Precision 0.780 0.753-0.826 0.800 0.772-0.815 0.855 0.829-0.885

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.908 0.900-0.915 0.910 0.900-0.924 0.879 0.862-0.891 0.877 0.863-0.891
F1 Score 0.907 0.897-0.918 0.908 0.897-0.922 0.881 0.865-0.894 0.883 0.872-0.892
Recall 0.919 0.909-0.934 0.918 0.902-0.939 0.921 0.900-0.942 0.924 0.903-0.936
Precision 0.895 0.871-0.904 0.899 0.881-0.913 0.846 0.817-0.877 0.845 0.830-0.858

Table B.9: Extreme Gradient Boosting group 4 asyn vs other on Training

Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.858 0.851-0.866 0.688 0.678-0.696 0.811 0.803-0.818
F1 Score 0.863 0.856-0.873 0.716 0.703-0.727 0.801 0.791-0.808
Recall 0.907 0.889-0.928 0.784 0.768-0.800 0.733 0.723-0.741
Precision 0.824 0.813-0.851 0.660 0.644-0.676 0.882 0.873-0.892

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.637 0.628-0.644 0.626 0.616-0.639 0.637 0.631-0.645 0.720 0.716-0.732
F1 Score 0.601 0.591-0.614 0.580 0.564-0.594 0.595 0.590-0.601 0.740 0.734-0.748
Recall 0.545 0.532-0.563 0.515 0.497-0.534 0.531 0.523-0.541 0.799 0.781-0.811
Precision 0.671 0.662-0.691 0.664 0.652-0.676 0.676 0.665-0.682 0.689 0.680-0.699



73

Table B.10: Extreme Gradient Boosting group 4 syn vs other on Training

Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.821 0.805-0.841 0.829 0.819-0.843 0.906 0.895-0.916
F1 Score 0.824 0.807-0.848 0.835 0.821-0.849 0.907 0.897-0.915
Recall 0.855 0.832-0.889 0.881 0.855-0.904 0.929 0.910-0.964
Precision 0.796 0.770-0.813 0.793 0.765-0.815 0.886 0.856-0.896

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.919 0.905-0.929 0.922 0.909-0.937 0.878 0.867-0.885 0.897 0.873-0.919
F1 Score 0.918 0.905-0.929 0.921 0.903-0.936 0.878 0.862-0.888 0.902 0.877-0.924
Recall 0.937 0.922-0.954 0.934 0.920-0.945 0.906 0.891-0.932 0.944 0.918-0.956
Precision 0.900 0.878-0.916 0.908 0.887-0.927 0.851 0.825-0.870 0.863 0.834-0.896

Table B.11: Extreme Gradient Boosting private asyn vs other on Training

Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.750 0.739-0.766 0.701 0.685-0.721 0.756 0.739-0.769
F1 Score 0.764 0.750-0.780 0.718 0.706-0.738 0.775 0.758-0.794
Recall 0.796 0.783-0.816 0.755 0.731-0.786 0.863 0.846-0.881
Precision 0.734 0.717-0.756 0.684 0.663-0.712 0.704 0.683-0.740

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.700 0.686-0.712 0.688 0.680-0.697 0.711 0.698-0.724 0.703 0.683-0.719
F1 Score 0.742 0.727-0.752 0.737 0.725-0.746 0.746 0.735-0.754 0.726 0.708-0.744
Recall 0.856 0.844-0.860 0.868 0.857-0.880 0.841 0.824-0.855 0.792 0.746-0.818
Precision 0.655 0.639-0.670 0.640 0.625-0.652 0.670 0.661-0.681 0.671 0.642-0.693



74

Table B.12: Extreme Gradient Boosting private syn vs other on Training Dataset

Skype Discord Teams

Avg Range Avg Range Avg Range

Accuracy 0.821 0.801-0.853 0.818 0.798-0.840 0.883 0.870-0.897
F1 Score 0.827 0.806-0.861 0.826 0.814-0.848 0.886 0.872-0.896
Recall 0.867 0.834-0.901 0.872 0.852-0.891 0.915 0.902-0.932
Precision 0.791 0.750-0.824 0.785 0.762-0.810 0.859 0.844-0.877

WhatsApp Telegram Signal Messenger

Avg Range Avg Range Avg Range Avg Range

Accuracy 0.933 0.923-0.946 0.908 0.898-0.924 0.881 0.863-0.898 0.858 0.831-0.874
F1 Score 0.932 0.917-0.945 0.907 0.896-0.923 0.883 0.869-0.899 0.865 0.843-0.884
Recall 0.955 0.948-0.963 0.919 0.901-0.936 0.921 0.903-0.941 0.906 0.885-0.933
Precision 0.910 0.886-0.933 0.895 0.879-0.915 0.848 0.826-0.861 0.828 0.797-0.869



Appendix C

Feature Importance

C.1 Extreme Gradient Boosting

Figure C.1: Comparing Extreme Gradient Boosting Group 3 user feature importance
for Skype, discord, and Teams

75



76

Figure C.2: Comparing Extreme Gradient Boosting Group 3 user feature importance
for WhatsApp, telegram, signal, and Messenger



77

Figure C.3: Comparing Extreme Gradient Boosting Group 3 user feature importance
for Skype, discord, and Teams



78

Figure C.4: Comparing Extreme Gradient Boosting Group 3 user feature importance
for WhatsApp, telegram, signal, and Messenger



79

Figure C.5: Comparing Extreme Gradient Boosting Private user feature importance
for Skype, discord, and Teams



80

Figure C.6: Comparing Extreme Gradient Boosting Group 3 user feature importance
for WhatsApp, telegram, signal, and Messenger


