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Abstract 

Social media data has proven to be a valuable resource for assessing social impacts, 

especially when combined with rapid advancements in artificial intelligence technologies. 

This combination enables comprehensive analyses of larger datasets than traditional 

methods allow. Additionally, visual content from images can uncover patterns of 

landscape changes that other data types may miss. However, the exploration of social 

impacts related to landscapes through social media images has not been sufficiently 

addressed in current literature or practices. This dissertation assessed the social impacts 

of hydroelectric dams and their reservoirs by employing two computer vision models to 

analyze large social media imagery datasets. 

Chapter One is an introduction. Chapter Two examined the opportunities and challenges 

associated with collecting social media image data for research purposes, advocating for 

a stronger role for governments in access for public good research. Chapter Three utilized 

a ready-to-use pre-trained computer vision model to label landscape images sourced from 

Instagram and geo-tagged to study areas. A topic clustering model was applied to find 

patterns from the labels to interpret the landscape changes and perceptions in areas with 

pre-dam, 32-year, and 56-year dammed landscapes. The analysis identified common 

topics such as plant life, water, energy infrastructure, sunset/sunrise, winter scenes, pets 

and wildlife, people in nature, roads and vehicles, and recreational activities. Chapter 

Four explored the feasibility of training a computer vision model to classify images based 

on cultural ecosystem services (CES) coding themes. Two coders categorized a subset of 

Instagram landscape images into eleven themes, achieving an overall accuracy of 93.8% 

for model training. The model was subsequently used to predict CES provision for the 

entire valid dataset of the three study areas. Chapter Five is a conclusion. 

The results showed that the expansion of water bodies in the reservoir-based landscape 

can reshape local lifestyles by increasing water accessibility and recreational 

opportunities, although it also results in the loss of agricultural lands and traditional 

cultures. The findings also revealed compelling patterns of aesthetic value, place identity, 

recreation, and cultural heritage. Damming a place does not necessarily lead to a 

reduction in values and CES for those who stay or visit. Some social impacts varied from 

case to case, such as impacts to agriculture. Therefore, it would be beneficial to explore 

enriching social impact assessment with social media analysis in planning and managing 

future projects. The findings also suggested that computer vision technologies can 

significantly enhance the social impact assessment toolkit, revealing meaningful patterns 

and implications for projects in practice.  
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Chapter 1 Introduction 

1.1 Rationale 

In Canada, hydroelectricity is a key source of energy, accounting for over 61% of total 

energy production and 55% of the total installed generation capacity in 2019 

(International Hydropower Association, 2020). Although hydropower offers several 

environmental benefits, it faces criticism from social and cultural viewpoints. 

Hydropower stands out among renewable energy sources due to its maturity, large scale, 

long-term impacts, significant effects on landscapes, and the resulting human 

resettlements and lifestyle changes (Hough, 1990; Keilty, Beckley, & Sherren, 2016). 

According to a report by the World Commission on Dams (2001), dam constructions 

have diverted many rivers and displaced millions of people globally. However, conflicts 

at the end of a dam's lifespan can be equally controversial. Jørgensen and Renöfält (2012) 

examined cases in Sweden, revealing that supporters and opponents often frame the 

impacts of dam removal differently: proponents emphasize ecosystem services and river 

fishing, while opponents highlight cultural services related to recreation, aesthetics, and 

heritage. Therefore, understanding the social impact, particularly the long-term and 

cumulative effects, is essential in the decision-making process for hydroelectric projects 

(Arnold et al., 2022). 

Social Impact Assessment (SIA) has become an effective tool to evaluate such impacts 

related to projects (Imperiale & Vanclay, 2023; Vanclay & Esteves, 2011). Since its 

emergence alongside Environmental Impact Assessment (EIA) in the 1970s (Gramling & 

Freudenburg, 1992), SIA has evolved from a regulatory tool into a research field and a 

management instrument used by project proponents (Vanclay, 2020). While traditional 

EIA remains a regulatory requirement in many regions, social impacts have increasingly 

been integrated into the assessment framework, highlighting a broader societal trend 

toward greater respect for human rights, as endorsed by the United Nations’s (2011) 

Guiding Principles on Business and Human Rights. Unlike biophysical impacts, social 

impacts can be complex and prolonged, often beginning even before the development of 

a mature project proposal. Mere rumors about a project can cause anxiety and fears 

(Vanclay, 2020). Additionally, the long-term impacts of large public projects, such as 
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hydroelectric dams, become more pronounced than short-term impacts due to local 

environmental changes and residential relocations (Gramling & Freudenburg, 1992). 

Even accepted changes can cause emotional impacts like nostalgia for former landscapes 

and solastalgia or grief around losses (Galway et al., 2019). In both public and industrial 

projects, social costs and risks are real and must be effectively managed (Grieco, 2018). 

Despite the long history of SIA, gaps still exist, as highlighted by previous research. 

Vanclay and Esteves (2011) identified limitations in traditional SIA methods, including 

inadequate stakeholder engagement and failures to predict residual impacts and 

consequent harm to communities. Vanclay (2020) further updated the gaps, noting a 

limited understanding of the complexities involved in restoring pre-existing livelihoods 

or implementing alternative ones, the non-market costs of these impacts (such as 

psychological, social, or cultural costs), and the inadequacy of one-size-fits-all solutions 

for valuing SIA and compensating for losses. Grieco (2018) pointed out the difficulty of 

fully grasping the complexities of how a project can socially and culturally affect local 

communities. These observations underscore the need for improvements in SIA practices. 

Many practitioners feel they lack the resources to conduct SIA effectively due to barriers 

to accessing available tools (Grieco, 2018). Additionally, Pimental da Silva et al. (2021) 

found a lack of innovation in methods and a gap between scholarly literature and SIA 

practice after reviewing 37 hydroelectric SIA reports. 

In the past decade, social media data has proven valuable in various social science 

research fields, indicating understanding social phenomena and assessing social impacts 

(Chen et al., 2023). For example, Sottini et al. (2019) used a filtered dataset of 9,304 

Flickr photos from 2005 to 2017 to map rural landscapes in Italy, illustrating how 

changes in infrastructure, crops, and environmental factors affect visitors' use of 

agricultural land. Likewise, innovations in SIA methods have emerged, leveraging 

alternative data sources from social media (Sherren et al., 2023). For instance, Chen et al. 

(2018) utilized Instagram images to study hydroelectric landscapes as experienced by 

young people. Aaen et al. (2018) highlighted the significant potential of social media to 

engage citizens in assessing social impacts, though they noted that more efforts are 

needed to effectively integrate social media into the SIA process.  
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However, processing and analyzing the vast amount of social media data and their 

metadata often requires significant human labor. For instance, Cortese et al. (2018) 

needed six well-trained coders to categorize 5,721 profile images over three months, even 

though the categories involved simple binary judgments. To address this challenge, 

artificial intelligence-based image mining and automatic analysis technologies are 

increasingly essential. The concept of machine learning was introduced in the 1940s, but 

the challenge of detecting visual data was not overcome until Fukushima's idea of 

convolutional neural networks (CNNs) in 1980, further improved by LeCun et al. in 1998 

(Heaton, 2015). Models based on CNNs, commonly referred to as computer vision, are 

now increasingly used to classify and code images in social science studies (Karpathy & 

Li, 2017; Vinyals et al., 2016). Many commercial companies, such as Google and 

Microsoft, offer pre-trained and customizable models that social scientists can use. 

However, neither social media data nor computer vision technology has been fully 

explored for SIA purposes. 

1.2 Research objectives 

This dissertation has two main objectives: firstly, to explore methodological innovation 

for SIA by retrieving alternative data sources and applying computer vision-based 

analysis models; and secondly, to understand social impacts caused by large hydroelectric 

dams and their reservoirs, providing insights for decision-making processes in similar 

projects. 

1.3 An interdisciplinary study 

This study spans multiple disciplines, including SIA, energy landscapes, data mining and 

analysis, and computer vision (a subfield of artificial intelligence). With the widespread 

use of social media platforms and recent advancements in artificial intelligence, it has 

become possible to innovate new research methods by using alternative data sources and 

automatic analysis tools for large datasets. These new methods can offer fresh 

perspectives on landscape, renewable energy, and SIA research due to the unique 

characteristics of social media content, such as its younger demographic, online 

behaviors, and user-generated posts. Therefore, an interdisciplinary approach was 
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necessary to explore how technological advancements can drive innovation in traditional 

SIA. 

1.3.1 Energy Transitions and Energy Landscapes 

The world is facing a rapid increase in energy demand, exacerbated by recent supply 

disruptions due to the Russian invasion of Ukraine and the lingering effects of the 

pandemic (International Energy Agency, 2022). Conventional energy sources like coal 

and fossil fuels are plagued by depletion and significant environmental impacts, including 

pollution and climate change. Renewable energy sources, such as hydroelectricity, wind, 

and solar power, are seen as the future of energy. However, while these sources may 

cause less harm to the biophysical environment, if compared to fossil fuels, they can also 

cause social disturbances and impacts such as visual disruption, displacement, changes in 

landscape use, the loss of traditional lifestyles and practices, and social detachment 

(Kirchherr & Charles, 2016). Therefore, understanding these social impacts is crucial for 

informing the decision-making process. 

1.3.2 Social Media Data 

Despite being less than 20 years old, social media has rapidly developed into a valuable 

and rich data source for research, particularly in social sciences such as sociology, 

politics, public health, and environmental studies (Chen et al., 2023). The value of social 

media data lies in three key aspects: first, it represents a younger cohort that is often 

difficult to access through conventional research methods but who will be impacted 

longest by energy decisions (Chen et al, 2018); second, the data is not created for 

research purposes and is thus less influenced by researcher bias (unlike interviews and 

surveys where participants can be guided by preset questions and answers) (Li et al., 

2019); third, it offers a larger dataset at a lower cost compared to traditional approaches 

and could offset collapses in response rates for those traditional approaches (Azevedo et 

al., 2022; Stedman, 2019). Exploring social media data, therefore, holds significant 

potential for research innovation. However, after the Cambridge Analytica Scandal in 

2018 (Confessore, 2018), many social media platforms have restricted their data access 

(Freelon, 2018). Although some platforms (e.g., Meta, X, TikTok) have opened access for 

research purposes more recently, there are still limitations regarding regions, study topics, 
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and data amount and types (Chen et al., 2024). Using social media for social impact 

assessment will require a reliable supply for public good inquiry.  

1.3.3 Artificial Intelligence and Computer Vision 

Recent advancements in artificial intelligence have created numerous opportunities in 

data analysis, applicable across various research and practical areas (Johnson et al., 2021; 

Manley et al., 2022). While computer vision has seen significant improvements, it still 

faces challenges that require further experimentation to fully explore its capabilities (Zou 

& Schiebinger, 2018). Unlike language processing models, where texts are more 

organized and information-dense, visual materials like images often contain noise, such 

as irrelevant objects in the background. This noise raises concerns about the accuracy of 

computer vision models, particularly for more subjective concepts (Vigl et al., 2021). 

Testing different computer vision models to understand lifestyles and social impacts in 

hydroelectric landscapes contributes to methodological innovation, such as the expansion 

of the social impact assessment toolkit. 

1.4 Methods 

The methods in this dissertation include data access, data filtering, and data analysis 

applied in three hydroelectricity case studies across Canada. Data access was subject to 

challenges in retrieving social media data due to API closures after 2018, toward which 

we tested eight different data collection approaches, offering experiences and insights 

valuable to other scholars. Our final approach involved two-step custom designed web 

scraping scripts to extract Instagram data for case study areas. Instagram is a platform 

where people share their day-to-day activities, by contrast with tourist photography sites 

like Flickr or opinion-driven sites like X. Extensive data filtering is required in social 

media studies given the noisy dataset, and in our case included manual filtering of 

landscape-based Instagram posts. It was conducted because the accuracy of computer 

vision was insufficient to achieve this task due to the complexity of the data and the 

limitations of machine power in 2021.  

Data analysis includes two computer vision models, the pre-trained and the custom-

trained models, to assess social impacts related to hydroelectric dams focusing on human 
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dimensions of the landscape and the provision of CES within the landscape. Mixed 

methods are employed, including both qualitative and quantitative approaches. Computer 

vision and natural language processing are quantitative, relying on statistical analysis, 

while image content coding and the interpretation of clustered topics are qualitative.  

1.4.1 Theory 

Landscape perception theory and cultural ecosystem services (CES) are two frameworks 

utilized to understand social impacts in this dissertation.  

Landscape perception theory discusses how landscapes are used and valued by people 

based on physical features (e.g., trees, waterbodies), activities (e.g., boating, dog 

walking), and values (e.g., aesthetics, recreation) (Chen et al., 2018; Chen et al., 2019). 

This was originally inspired by the work of Taylor, Zube, and Sell (1987), who 

summarized previous studies from the 1960s to 1970s, laying the groundwork for later 

landscape studies on topics such as landscape preference, aesthetics, symbolism, and 

sense of place (Jacobsen, 2007). This theory was used in my previous research to 

understand the social and cultural values of the hydroelectric landscape (Chen et al., 

2018; Chen et al., 2019); and, it is now used in this dissertation to interpret the human 

dimensions labeled by the pre-trained computer vision model, connecting the landscape 

physical features to the values. 

CES is a more recently developed concept used to understand the intangible benefits that 

an ecosystem provides to people. The CES categories investigated in this study include 

aesthetic values, sense of place and place identity, recreation, social relations, and cultural 

heritage value, based on the Millennium Ecosystem Assessment report (2005) and 

precedent research in similar research areas (e.g., Cardoso et al., 2022; Mouttaki et al., 

2022; Richards & Friess, 2015). These CES categories were adapted in this study to 

identify relevant physical features in photo content and classify images into different 

CES-based theme coding categories. 

1.4.2 Models 
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Two different computer vision models, a pre-trained model and a custom-trained model, 

were used to assess perceived landscapes via landscape perception and CES-related 

themes, respectively. 

A pre-trained model can identify subjective features from landscape images based on 

millions of preset categories, including biophysical features (e.g., trees, water bodies, 

mountains) and human appearances and activities (e.g., recreation). In this study, we used 

the Google Cloud Vision API, a tool known for its ease of use and cost efficiency. 

However, it has limitations as its labels cannot be customized, and important features 

may be overlooked if they appear small. This model is useful for identifying a large 

number of physical feature labels, and the landscape perception theory provides a 

valuable framework for interpreting these features based on their values. Additionally, a 

natural language processing model, Latent Dirichlet Allocation, was used to cluster the 

large set of labels. This revealed prominent and co-occurring features, helping to 

understand how people perceive, use, and value the landscape. 

The custom-trained model required users to provide a training dataset, allowing for 

customized classification categories based on specific research aims, datasets, and case 

studies. While this approach demands more initial labor and some knowledge of artificial 

intelligence, it offers the potential to capture more complex concepts such as CES. In this 

study, the custom-trained model was developed using Google Cloud Vertex AI. Coders 

manually assigned images to CES-based coding themes, such as natural landscapes, 

humans in nature, recreation, social relationships, and historical features. The trained 

model was then used to predict the valid dataset to understand CES provision in the three 

study areas. 

The rationale for choosing these models was to explore the advantages and limitations of 

the two different types of computer vision models in practice and to understand how they 

can help indicate social impacts in different ways. 

1.4.3 Hydroelectric dam cases 

This dissertation investigates three study areas across Canada with (or facing) large 

hydroelectric dams, including the in-progress Site C Dam (Site C) in British Columbia 
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(BC), the Oldman River Dam (Oldman) built in Alberta in 1991, and the Mactaquac Dam 

(Mactaquac) built in New Brunswick (NB) in 1968 (more details can be found in chapter 

3 and 4). Innovating methods for social impact assessment and leveraging social media 

data is one of the key objectives of this research, but the earliest social media data 

available dates to July 18, 2011, making it impossible to use it to study a long-dammed 

landscape like the 56-year-old Mactaquac. While combining other data types (e.g., 

archival data, news data) could provide a longitudinal perspective, it would detract from 

the primary focus on social media data and computer vision technologies. The research 

approach of comparing three dams at different stages of their lifespan, rather than 

examining longitudinal data from a single dam, is an alternative to long-term studies. 

Such space-for-time substitution is described by Pickett (1989) to allow “the 

extrapolation of a temporal trend from a series of different-aged samples (p.111)”. Thus, 

comparing three hydroelectric dams at different stages (pre-dam, 32 years old, and 56 

years old) is a better approach for understanding potential changes and social impacts 

over a dam’s lifespan while focusing on online data sources and analysis tools. 

1.5 Organization of dissertation 

This dissertation is organized into five chapters, with Chapters 2, 3, and 4 presented in 

their respective journal publication formats. The committee members of this dissertation 

and other contributors are listed as co-authors for Chapter 2, 3, and 4 as journal 

submissions. When writing in the first person, therefore, the term “we” is used rather than 

“I”. I have taken the lead role in research design, data collection, data analysis, results 

interpretation, and draft writing for all three manuscripts. 

Chapter 1 is the introductory chapter, explaining the overarching theme of social impact 

assessment, the rationale of conducting this research, outlining the research objectives, 

describing the choice of study areas, and highlighting the interdisciplinary nature of this 

study. 

Chapter 2 examines various approaches to collecting social media data, particularly in the 

post-API era when platforms have become stricter in their data policies. This chapter 

discusses the challenges and experiences associated with these approaches, along with 

their practical pros and cons. It also proposes the creation of a dedicated API for research 
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purposes to address the issue of data scarcity among scholars. This has been published in 

Frontiers in Big Data.  

Chapter 3 employs a pre-trained computer vision model (Google Cloud Vision API) to 

identify labels in landscape images retrieved from Instagram. These labels are then 

clustered using a natural language processing model (Latent Dirichlet Allocation). The 

clustered topics reveal the prominence and co-occurrence of landscape features and 

human activities in the study areas, showing patterns of change in dammed landscapes 

and the resulting social impacts. This is in review with Landscape and Urban Planning.  

Chapter 4 explores the feasibility of using a custom-trained computer vision model to 

assess cultural ecosystem services. A classification model was trained using Google 

Cloud Vertex AI by learning from a training dataset of images randomly selected from the 

valid dataset, assigning them to 11 CES-related coding themes. The model achieved an 

average precision of 93.8%, demonstrating high accuracy and feasibility. The trained 

model was then deployed to predict the entire dataset, with coding results identifying 

CES provision in the study areas and allowing interpretation of the social impacts of 

damming a landscape. This chapter also discusses the integration of social media data and 

the custom-trained computer vision model into SIA. This is in preparation for Ecosystem 

Services.  

Chapter 5 concludes the dissertation with a summary of the main findings and 

implications, the contributions of this study, and directions for future research. 
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Chapter 2 From theory to practice: Insights and hurdles in collecting 

social media data for social science research 

A version of this chapter has been published by Frontiers in the journal Frontiers in Big 

Data. Refer to Appendix A for the copyright agreement to reproduce this material. 

 

Chen, Y., Sherren, K., Lee, K, Y., McCay-Peet, L., & Xue, S., Smit, M. (2024). From 

theory to practice: Insights and hurdles in collecting social media data for social science 

research. Frontiers in Big Data, 7, 1379921. https://doi.org/10.3389/fdata.2024.1379921 

 

Statement of Authors’ Contributions: YC is responsible for conducting the experiments of 

all different data collection approaches, the literature review, and writing all sections. KS 

and MS supervised the writing development including providing feedback and editorial 

revisions. KL and LMP provided feedback and editorial revisions on a final draft. SX 

built the code for Instagram data collection, and YC amended the code. 
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Abstract 

Social media has profoundly changed our modes of self-expression, communication, and 

participation in public discourse, generating volumes of conversations and content that 

cover every aspect of our social lives. Social media platforms have thus become 

increasingly important as data sources to identify social trends and phenomena. In recent 

years, academics have steadily lost ground on access to social media data as technology 

companies have set more restrictions on Application Programming Interfaces (APIs) or 

entirely closed public APIs. This circumstance halts the work of many social scientists 

who have used such data to study issues of public good. We considered the viability of 

eight approaches for image-based social media data collection: data philanthropy 

organizations, data repositories, data donation, third-party data companies, homegrown 

tools, and various web scraping tools and scripts. This paper discusses the advantages and 

challenges of these approaches from literature and from the authors’ experience. We 

conclude the paper by discussing mechanisms for improving social media data collection 

that will enable this future frontier of social science research. 
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2.1 Introduction 

Social media has profoundly changed our modes of self-expression, communication, 

receipt and dissemination of information, construction of social bonds, and participation 

in public discourse and events (Lazer et al., 2009; Acquisti, Brandimarte, & Loewenstein, 

2015). In the first decade of the flourishing of social media, the potential value of social 

media data also caught the attention of researchers. Over the subsequent years, it has been 

consistently demonstrated that this data assists in our understanding of society and human 

behavior (Chen et al., 2023; Sherren et al., 2023). Early studies on the use of social media 

in politics confirmed the meaningfulness and power of the data, followed by research in 

various areas like business, communication, health, environment, and sociology (Chen et 

al., 2018; Edwards et al., 2013; Procter, Vis, & Voss, 2013; Savage & Burrows, 2007), 

leveraging platforms such as Twitter, Flickr, Weibo, Panoramio, YouTube, Facebook, and 

Instagram (Chen et al., 2023; Ghermandi & Sinclair, 2019; Gone et al., 2023). 

The Cambridge Analytica Scandal in 2018 – triggered when The New York Times 

reported the data of millions of Facebook users were fraudulently accessed by a 

consulting company (Confessore, 2018) – was a major turning point that led to the 

current “post-API” (application programming interface) age, with social media platforms 

restricting or paywalling access to public search APIs, fine-grained location data, and 

more (Freelon, 2018). The majority of the most widely used platforms have transitioned 

towards a stricter and more commercialized policy, closing access to such data for public 

good research. Instagram closed their less-restricted access; instead, they issued two 

types of API for business app use only (Meta for Developers, 2023). This has an impact 

on research areas that place greater value on image data, such as landscape studies. Meta 

recently launched a new Content Library API in November 2023, an access-controlled 

space to work on Facebook and Instagram data rather than downloading complete copies, 

yet it has not been widely used (Meta, 2023). X, previously known as Twitter, closed 

their academic research API in 2023 after Elon Musk’s acquisition and created three new 

versions of paid-API access (X Developer Platform, 2023). By contrast, the most popular 

short video platform, TikTok, has launched an application-based research API. Currently, 



13 

 

 

the application is only open to US- and Europe-based researchers, but it may become 

available to all researchers in the future (TikTok for developers, 2023).  

Researchers are in an increasingly weak position with respect to social media data access 

(Zuckerman, 2023). John and Nissenbaum (2019) wrote that “researchers are ultimately 

dependent on tech companies for data and have to find a way to collaborate while serving 

the public interest and avoiding bias” (p.3). The increased restrictions in APIs leave social 

media researchers grappling with non-public, legally ambiguous, and ethically grey 

approaches to collecting data, or push them toward impermanent types of data that 

hamper the detection of trends (Kinder-Kurlanda & Weller, 2020; Weller & Kinder-

Kurlanda, 2015). Business-oriented users of data continue unencumbered, while access to 

data for public good is curtailed (Acker & Kreisberg, 2020; Bruns, 2019; John & 

Nissenbaum, 2019). Poletti and Gray (2019) mentioned that “academic research is now 

competing with market research, and it is no longer the dominant party when it comes to 

providing interpretations of society” (p.265).  

Social media imagery data, along with its geo-tags, is recognized for its value across 

diverse social science fields (e.g., environment, sociology, politics, health, etc.), though 

its collection can be complex due to the necessity of retrieving additional image files 

(Chen et al., 2023). In this paper, we considered eight approaches to image-based social 

media data collection: data philanthropy organizations, data repositories, data donation, 

third-party data companies, homegrown tools, and various web scraping tools and scripts. 

To manage the scope, we considered the viability of each approach for an energy 

landscape study in rural Canada. The case leverages our engagement in longitudinal 

research which helped us to understand the challenges after 2018. While the case study 

might not interest a broad research community, the insights garnered from the data 

collection process are universal because: 1) the framework of the eight approaches is 

consistent for all social media data, and 2) various tools examined in this paper can 

extract diverse data types, such as texts and videos, from different social media platforms. 

From the analysis of the approaches, this paper offers three main contributions. First, it 

tests these approaches for their feasibility in gathering Instagram data by geographic 

locations, providing insights for social scientists who are interested in leveraging social 



14 

 

 

media data for place-specific questions. Second, it details advantages and challenges 

from the literature and from the authors’ experience. Third, it raises the idea of a forward-

looking solution for a research API, building on nascent efforts undertaken by social 

media companies and regulatory frameworks. 

2.2 Methods 

The energy landscape project we used to assess the viability of these data collection 

approaches necessitated gathering Instagram posts depicting images of outdoor landscape 

use around hydroelectric dams and reservoirs in rural Canada. We identified eight social 

media data collection approaches from literature and practice to assess for their 

effectiveness, benefits, and drawbacks for the project. These approaches include the 

following: 

Data philanthropy organizations: Entities that distribute data without charge. Many of 

them are based on industry-academic partnerships. 

Data repositories: Entities that host data contributed by scholars for broader re-use.  

Data donation: A relatively new practice in which individual users can request their 

personal social media archives and donate them to data repositories or research projects. 

Third-party data companies: Commercial tools developed by third-party companies to 

monitor, retrieve, and analyze social media data. 

Homegrown tools: Software tools for extracting social media data that are rooted in 

academic soil (i.e., made for researchers by researchers) and tend to charge more 

affordable rates and provide data in researcher-friendly formats. 

Web scraping tools – commercial: Commercial web scraping tools provide the service of 

automatically extracting content from social media posts for profit. 

Web scraping tools – non-commercial: Non-commercial web-scraping tools are 

collaboratively built and shared as open-source software online. 

Web Scraping scripts (single-purpose): Software scripts developed by researchers for a 

specific research project, perhaps using a library or template.
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Table 2.1 Advantages and limitations of social media data collection approaches. 

Approach Examples Advantages Limitations Hurdles from authors’ experiences 
Data philanthropy 
organization 

Facebook Ad Library 
Social Science One 

• Full access to a more 
complete dataset 

• Low or no legal risk 
• No monetary cost to the 

researcher 
 

• Limited social media platforms 
• Delivery delays 
• Veto right reserved by social media companies 
• Requires an application 
• Limited research topics 
• Deadline restriction 

• Instagram does not have 
such organizations to provide 
data 

• Landscape research is not a 
prioritized topic 

Data repositories Inter-university 
Consortium for 
Political and Social 
Research 

• No monetary cost to the 
researcher 
 
 

• Legal and ethical concerns of sharing data 
• No existing data available 
• Data disconnected from original context 
• Requires sustainable funding for the repository 

• No existing data for our study 
cases 

Data donation Breuer et al., 2020 • Data include a wide range of 
user activities 

• No or low legal and ethical risk 

• Requires recruiting participants (time-consuming and 
ethical review) 

• Complicated process 
• Limited size of data and response bias 

• Limited time and budget to 
collect large-sized data 

Third-party data 
companies 

HootSuite 
Sprout Social 

• User-friendly  
• Low legal risk 

• High cost 
• Ill-suited data formats for research purposes 

• Difficult to find a provider 
(they are business-oriented) 

• Limited budget 
Homegrown tools Netlytic 

communalytic 
• Well-suited data formats for 

research purposes 
• User-friendly  
• Affordable price 

• Heavily depend on platforms’ APIs 
• Not always well-maintained or self-sustaining 
 

• Unable to collect data by 
geographic index due to API 
limitations 

Web Scraping tools 
(commercial) 

ScrapeStorm  
Apify 

• Affordable price 
• User-friendly 

• Incomplete dataset (export limit) 
• Ill-suited data formats for research purposes 
• Ethical and legal risk 

• The tool we attempted had a 
maximum data export limit 

Web Scraping tools 
(non-commercial) 

Instagram Scraper • No monetary cost • Not user-friendly and requiring programing skills 
• Inflexible and unstable (can stop working when the 

social media interface changes) 
• Ethical and legal risk 
• Time consuming 
 

• The tool we chose became 
non-functional halfway 
through 

Web Scraping 
scripts (single-
purpose) 

github.com/Titration 
/Ins-Scraping 

• Well-suited data formats for 
research purposes 

• Flexible 
• Low up-front cost 

• Ethical and legal risk 
• Time consuming 
• Requires programing skills 
• Must be customized for each research project and 

platform. 
• Unstable  

• It took us 5 months to collect 
around 80,000 posts 

1
5
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2.3 Results 

Many approaches proved unsuitable for collecting Instagram data in our landscape 

research for diverse reasons (Table 2.1). This section outlines each approach's strengths 

and weaknesses, as per literature and our experiments, and clarifies why most failed. 

2.3.1 Data philanthropy organizations 

The advantages include that researchers can have full access to a more complete dataset 

than would be available through other means without any legal risk, because the 

organization helps to build industry-academic partnerships through which social media 

researchers can obtain data directly from the company (Social Science One, 2022). To 

qualify, the study topics must be narrowly related to specified areas, such as the effect of 

social media on democracy for Social Science One, which eliminates most environmental 

and landscape research like ours. The scrutiny on applications is strict, and the veto right 

reserved by social media companies casts a long shadow over research independence 

(Bruns, 2019). Such organizations often only receive application submissions by 

deadlines, also leaving the data collection work less flexible and incompatible with fast-

changing environmental and social issues. 

2.3.2 Data repositories 

Data repository is an alternative that can reduce the influence of social media companies 

(Acker & Kreisberg, 2020; Borgman, 2019). However, largely due to legal and ethical 

concerns about sharing social media data, many researchers are cautious. Also, the 

specifications required for data collection for one study may make the data useless to 

others. Few scholars use the entirety of social media data during a period; most are 

looking for subsets in specific locations or referencing specific keywords or hashtags. 

Our research project is an example: there were no previous studies we could find that 

collected and shared Instagram posts from our target case areas. Keeping and delivering 

huge social media data can be financially, ethically and technologically difficult 

(Borgman, 2019), especially when most social science users will use a small (but 

unpredictable) fragment of that data (Chen et al., 2023). In repositories, data can become 

disconnected from their context and dealing with data duplicates can be troublesome 
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(Weller & Kinder-Kurlanda, 2015). As such, data repositories may not yet be a solution 

for most research projects.  

2.3.3 Data donation 

Data donation can provide a wide range of user activities including private messages and 

ephemeral content (van Driel et al., 2022). However, since the donation system has not 

been fully developed, it typically requires researchers to find, contact and potentially 

compensate people first and ask them to follow the donation steps (Breuer et al., 2020). 

This may not benefit all kinds of research, especially those requiring large-sized data or 

not focusing on specific actors in a system. In addition, for research using social media 

data as a substitute for conventional approaches like survey and interview, data donation 

follows a more complicated but less mature process. It also introduces response bias on 

top of biases inherent to social media data, and there is not a clear research ethics regime 

in place for encouraging donations to a repository.  

2.3.4 Third-party data companies 

Although free of legal concerns, purchasing data from these third-party companies can be 

expensive and yet not provide data well-suited for research purposes. We inquired with 

two Instagram partner companies to collaborate on data collection for our research 

project on the topic of hydropower landscape. Neither responded to our emails or web 

submission forms. It is easy to understand why: first, both companies are large and likely 

prefer large customers who can bring sizable revenue; second, their business is focused 

on marketing and advertising analytics and their tools are less applicable for research 

purposes. 

2.3.5 Homegrown tools  

Homegrown tools for data collection can provide data in researcher-friendly formats at a 

reasonable cost. For instance, Netlytic is free for small datasets and has been used by 

many social scientists to extract social media data, especially pre-2018. A related product 

communalytic is affordably priced and includes access to historical Reddit data and has 

limited abilities to import other social media data (e.g. comments on a specific YouTube 

video). However, any such tools are heavily dependent on social media APIs which grant 
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them no higher levels of access than the public. We used Netlytic in our original cross-

sectional landscape studies to collect Instagram posts by geographic coordinates. When 

Instagram stopped supporting the geo-location index in their API, Netlytic terminated the 

service for Instagram data. 

2.3.6 Web scraping tools – commercial  

Commercial scraping tools are often more affordable than third-party companies but can 

still be a big investment if a large-sized dataset is required. In our review of widely used 

scraping tools for Instagram data, most provided services by subscription at prices 

ranging from $5 to hundreds of US dollars per month, and there were limitations in terms 

of exported data size and formats (e.g., ScrapeStorm and Apify). Downloading images, 

which are increasingly critical to social media research (Chen et al., 2023) and to 

landscape studies, would result in additional charges. There is another concern on the 

completeness of datasets because most of these tools have a cap on data export amounts. 

2.3.7 Web scraping tools – non-commercial 

Another type of scraping tool is the non-commercial ones, such as Instagram Scraper 

(GitHub, 2022). This tool is not as user-friendly as the commercial tools that operate on a 

graphical interface. Instead, it is code-based which requires users to have basic 

knowledge of and experience with Python to operate it. Instagram Scraper operated 

properly when we started to collect data in September 2020; however, it became quite 

unstable from February 2021 and there was no update of the tool until one year later. 

Open-source software is community-supported, which means a developer needs to be 

willing to contribute their time to ensure the software stays up-to-date with rapidly 

changing social media platforms.   

2.3.8 Web Scraping scripts (single-purpose) 

For researchers with (or with access to) sufficient technical expertise, self-developed 

scraping scripts can provide more flexibility and collect data that is well-suited to the 

scholarly research analysis they have planned. In our case, a local software developer 

agreed to help develop custom scraping scripts based on two Python packages –Selenium 

and Instascrape (our Instagram scraping program code is posted on GitHub at 
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https://github.com/Titration/Ins-Scraping). However, data collection with the scripts was 

time-consuming for several reasons. First, the scripts needed to be maintained and 

updated frequently to cope with the platform’s changes in terms of APIs or the anti-auto-

data-scraping strategies. We retrieved around 80,000 Instagram posts for our study, but it 

took five months. While we have released our scripts as open-source, and it worked at the 

time of release, it too will soon require further development effort to match changes to 

the social media platform.   

Additionally, an extensive list of available Instagram accounts and IP addresses (Internet 

Protocol address, provided by Virtual Private Networks which can establish a digital 

connection between a computer and a remote server) are also necessary to respond to 

blocks by the platform. Once any suspicious actions (e.g., excessive visits) are detected 

and identified as an auto-scraping bot, the IP address and account can be banned, 

temporarily or permanently, from making further requests. According to our experience, 

on average, we changed IP addresses three times per day and switched accounts two 

times per day to download 1,000 posts. Although IP addresses and social media accounts 

can be changed or replaced, the data delay and gaps caused by successive blocks can 

impact research results to different degrees (Freelon, 2018). It is also alarming for 

academics, particularly those early in their careers, to worry about being perceived as 

operating outside of a platform’s legal terms and conditions.  

2.4 Discussion: A better solution? 

The available solutions for academics to access social media data under current 

restrictions are making the research field highly uneven and heterogenous (Acker & 

Kreisberg, 2020; Bruns, 2019). The amount of social media research is increasing, and it 

is easy to have an illusion that we are getting more data than ever before. But while the 

potential supply is growing— users are creating more data every day—we have access to 

a smaller proportion of the corpora or must rely on data collected pre-API closure, 

concerning researchers around issues like data representativeness, currency and 

generalization of results (King & Persily, 2020). Researchers using social media appear 

unwilling to articulate the details of their data collection process (Poletti & Gray, 2019; 

Weller & Kinder-Kurlanda, 2015), either because of cumbersomeness (given the 
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patchwork of tools available) or legal and ethical concerns. The lack of detail in method 

discussion is increasingly pervasive due to some new considerations: (i) published 

methods may not be useful for long given platform policy changes; (ii) the details may be 

too technical for social science audiences to follow; and (iii) there is a motivation to 

protect data and skills to maintain researcher competitiveness (Kinder-Kurlanda & 

Weller, 2014; Weller & Kinder-Kurlanda, 2015).  

While the practices of data philanthropy organizations and repositories are still 

developing and the cost of third-party data companies are high enough to scare many 

researchers away (even if they can be enticed into collaboration), scraping tools and 

scripts may be the most feasible option but remain an imperfect one – the legal status of 

scraping is inherently problematic in addition to the privacy concerns (Bruns, 2019). 

Freelon (2018) noted that “researchers should bear in mind the potential (if unlikely) 

consequences of even small-scale terms of service violations (p.667).” Scraping also 

introduces more general challenges (Weller & Kinder-Kurlanda, 2015). First, data quality 

is problematic in most cases where data is collected with tools without sufficient 

documentation, leading to opaque processes and thus weak replicability. Second, 

platforms may have limits on the type or the amount of data the public can access during 

a given period, which may result in sample biases. Third, ephemerality is a perennial 

challenge of social media research: platform policies can be updated at any minute, and 

the data can be altered or deleted (Walker, 2017). Fourth, platforms with highly restrictive 

APIs (e.g., Instagram and Facebook) might be avoided and more permissive APIs (e.g., 

Flickr and Reddit) might be preferred by researchers, causing either under- or over-

representation of certain social media platforms over others, and thus certain user 

demographics (Barnhart, 2023). 

The profound impact of social media on society suggests we should not leave addressing 

this problem solely to the creativity and innovation of researchers. We advocate that a 

better solution is a separate public research API that is not based on social media 

companies imposing an application-approval process. In the long run, we do not believe 

that data philanthropy organizations will be effective because they are often simply a 

distribution center and cannot guarantee the integrity and delivery of the data. Social 
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media companies could change their one-size-fits-all approach to APIs on social media 

platforms to multiple ones that better serve data users with different motivations (Acker 

& Kreisberg, 2020; Shtern et al., 2013). However, a research API where researchers apply 

to the social media company for access, such as currently offered by TikTok is not 

favored, either. This grants the company complete authority to decide who can access 

how much data and when they can receive it. Another option is a research API gatekept 

by a third organization, like the Inter-university Consortium for Political and Social 

Research (ICPSR) at the University of Michigan Institute for Social Research (ISR) for 

Meta Content Library API (Facebook and Instagram). It is unclear how different this is 

than the practice of data philanthropy organization, Social Science One. Decisions about 

access to such a portal should not be based on an application and review process which 

can favor certain research fields, regions, and researchers. However, a simple process to 

verify researcher status will be necessary. The platform should ideally include fact-based 

verification, such as verifying profile pages or email addresses of academic and research 

institutions, without making the topic vulnerable to rejection if it is clearly public good 

rather than those favored by the platforms such as commercial benefits and online 

democracy. As highlighted by Rieder and Hofmann (2020), it is necessary to broaden the 

analytical scope: data for public good should serve broader societal interests like cultural 

production, beyond just critical algorithm studies. 

Social media companies clearly have little incentive to facilitate such a public research 

API (Steen-Johnsen & Enjolras, 2015). It might fulfill the company’s social responsibility 

expectations in the social and government sphere but will not benefit (and might 

potentially weaken) its revenue in terms of data selling. Thus, a new governance model is 

required to enforce the public good values. Government and regulators need to intervene 

with laws or policies and, ideally, processes that support data sharing from social media 

companies to verified researchers (Vogus, 2022). An example is the Digital Services Act 

that was approved by the European Parliament in 2022, which provides rules to establish 

a mechanism for researchers to gain data access to large social media platforms and 

search engines (Joint Research Centre, 2023). At this stage, the effectiveness of this Act is 

not completely known, though X has taken early actions to allow EU researchers to 

access licensed data for DSA-related research purposes by the end of 2023 (X Developer 
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Platform, 2024). However, the European Commission has opened formal proceedings to 

assess whether X may have breached the DSA, including concerns of suspected 

shortcomings in giving researchers access to X’s publicly accessible data (European 

Commission, 2023). Nevertheless, an open gateway in Europe could facilitate 

transnational partnerships, allowing non-EU researchers to access data via EU 

collaborators.  

In general, there must be clear guidelines for researchers, including how to use, store, 

protect, and (possibly) share data, along with the corresponding consequences for 

violations. Currently, such datasets sit outside of the purview of most human research 

ethics boards since the data is notionally available publicly. A new form of research ethics 

review should be developed, including setting the boundary of public data, defining fair 

and public-good use of social media data, and estimating the effectiveness of anonymity 

strategies (Chen et al., 2023; Taylor & Pagliari, 2018). A risk analysis review may also be 

necessary to estimate and monitor the potential harm to individual users of using social 

media data in specific ways and for specific purposes. 

Until such a public research API can be achieved, researchers have a long and potentially 

dark journey ahead. There are many data collection methods at our disposal, but none of 

them are reliable and all come with risks such as personal legal and research quality. 

Researchers should speak frankly about the data collection process and challenges they 

experience, such as adding a supplementary document to disclose their detailed steps of 

data collection and any developed code, if applicable. Collaborative data repositories 

could become a feasible solution only if researchers are willing and able to share social 

media data with other researchers, and critically if the legal and ethical grounds can be 

safely and legally addressed. The precedent Sandvig v. Barr (2020) may provide an 

example: a district court in Columbia in the US granted researchers freedom to use data 

from employment websites to conduct their study. It is in the public interest to give 

public-good researchers legal access to high-quality social media data that is at least 

comparable to what commercial users have; we believe most of those contributing 

content to social media platforms would agree. The next thing we should do is ask them. 
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Chapter 3 Image auto-coding tools for social impact assessment: 

Leveraging social media data to understand human dimensions of 

hydroelectricity landscape changes in Canada 

A version of this chapter has been submitted to the journal Landscape and Urban 

Planning (by Elsevier). Refer to Appendix B for the copyright agreement to reproduce 

this material. 

 

Chen, Y., Smit, M., Lee, K, Y., McCay-Peet, L., & Sherren, K. (In review). Image auto-

coding tools for social impact assessment: Leveraging social media data to understand 

human dimensions of hydroelectricity landscape changes in Canada. Landscape and 

Urban Planning. 

 

Statement of Authors’ Contributions: YC is responsible for conducting the literature 

review, data collection and analysis, and writing all sections. KS and MS supervised the 

writing development including providing feedback and editorial revisions. KL and LMP 

provided feedback and editorial revisions on a final draft. 

  



24 

 

 

Abstract 

Social media data has been shown to be a valuable data source for assessing social 

impacts, particularly when paired with the swift progress in artificial intelligence 

technologies, allowing comprehensive analyses of larger datasets than is possible using 

conventional approaches. We sought to understand the social impacts of hydropower-

related landscape changes based on a quasi-chronosequence of three study cases in 

Canada, using social media images in conjunction with machine learning to conduct 

image and textual analysis. We employed the Google Cloud Vision API, a pre-trained 

deep learning model, to detect labels from over 19,000 landscape images of the relevant 

regions sourced from Instagram. This yielded a comprehensive set of over 188,000 labels. 

We used a generative probabilistic model (Latent Dirichlet Allocation, an unsupervised 

machine learning algorithm) to create clusters based on the labels. These clusters revealed 

prevalent landscape features, human activities, and animate and inanimate objects—as 

well as which frequently co-occurred—allowing us to understand and predict some of the 

social impacts of the landscape changes caused (or that might be caused) by hydroelectric 

dams and reservoirs. This provides a novel example of integrating large-sized social 

media data and automated analysis tools powered by machine/deep learning into social 

impact assessment. Notably, such pre-trained models and “off-the-shelf” unsupervised 

algorithms require minimum programming skills, benefiting scholars and practitioners 

who are less versed in technical domains. The insights gained from hydroelectricity case 

studies can also inform decisions about energy transition. 
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3.1 Introduction  

The development of hydroelectric dams since the mid-20th century has stirred 

controversy, attracting attention not only at the local level but also often provincial and 

nationwide scrutiny (McElroy, 2016). Hydroelectric projects, such as the Oldman River 

Dam in Alberta, have emerged as milestones in Canadian history, sparking public 

awareness of environmental protection and driving legislative initiatives for 

environmental impact assessment (Muldoon et al., 2020; Shpyth, 1991), and such trends 

were also observed in other regions like Tasmania and New Zealand (Rainbow, 1992). 

There is a growing recognition, however, of the social impacts associated with the 

transformation of landscapes and lifestyles due to dams and their reservoirs (Chen et al., 

2018; Chen et al., 2019). This encompasses various aspects, including displacement, 

social networks and status, happiness, social stress and safety concerns, social costs of 

uncertainty, recreation, cultural and historical heritage, and landscape loss (Pimental da 

Silva et al., 2021; Kirchherr & Charles, 2016).  

The limitations of traditional research methods, such as surveys, interviews, and focus 

groups, have become increasingly evident as we continue to live more of our lives online, 

a phenomenon accelerated by the global pandemic (Kulanthaivel et al., 2017; Sherren et 

al., 2023). Although traditional methods are well-established both theoretically and 

empirically, their advantages are now often counteracted by drawbacks like prohibitive 

cost, low response rate, and systematic bias in engagement that may exclude specific 

social groups such as young people (Chen et al., 2019; Stedman et al., 2019). Over the 

past two decades, researchers have leveraged a valuable new data source – social media 

data – to fill the gaps left by conventional research approaches (Azevedo et al., 2022), 

including to understand energy development impacts. For example, Chen et al. (2018) 

utilized Instagram images and captions to understand young people’s perceptions of 

hydropower landscapes, and Mohammadi et al. (2023) assessed the visual impacts of 

wind turbines and solar panels in amenity vineyard landscapes.  

While social media data can serve as a reliable proxy for social phenomena, its sheer 

volume often poses challenges and dilemmas for researchers. In a review conducted by 

Chen et al. (2023), 78% of studies using social media image data in social science 
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research from 2015 to 2019 primarily relied on manual analysis approaches, and only 

18% analyzed more than 10,000 posts – a small fraction of the data available. The full 

potential of social media data has remained largely untapped in prior research, in part 

because of the challenge of manual coding of such amounts of data, particularly for 

images. It wasn’t until recently that advancements in artificial intelligence (AI) 

technologies ushered in a new era and opportunities such as pre-trained models for the 

non-programming research community (Manley et al., 2022). Leveraging AI tools such as 

machine learning and deep learning models in Big Data analysis has become one of the 

focal points of social science research using social media data (Dangi et al., 2022; 

Milusheva et al., 2021). Relatively few researchers, however, have conducted research 

using larger scale social media image data leveraging AI. For instance, Vigl et al. (2021) 

employed the image auto-annotation engine Clarifai to elicit visual-sensory landscape 

values from 100,000 Flickr images. Mouttaki et al. (2022) developed and trained a model 

based on convolutional neural networks to classify 29,000 Flickr photos by cultural 

ecosystem service categories.  

In this paper, we use two AI models, the image object detector Google Cloud Vision API 

and the generative probabilistic model Latent Dirichlet Allocation (LDA) for topic 

clustering, to analyze Instagram images collected by geo-location tags in research areas 

associated with three hydroelectric projects in Canada. We will probe four research 

questions: (1) how is the current landscape perceived and used by people in terms of 

landscape features and human activities; (2) what do the resulting patterns say about how 

landscape changes related to hydroelectric projects impact places and people in terms of 

social and cultural values; (3) what are the implications for the study cases and 

generalized insights; and (4) what are the opportunities and limitations of using the AI 

models for working with social media data to explore hydroelectric social impacts? In the 

following sections, the Methods section will encompass study cases, data collection, and 

details about the two AI models; the Results section will show the landscape clusters that 

consist of landscape features and human activities; and the Discussion and Conclusion 

sections will provide case-based insights and implications for decision-makers and 

identify opportunities and limitations of using social media data and AI tools for future 

research. 
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3.2 Methods 

3.2.1 Study areas 

This research has three study cases across Canada, including the Site C Dam (Site C) in 

British Columbia (BC), the Oldman River Dam (Oldman) in Alberta, and the Mactaquac 

Dam (Mactaquac) in New Brunswick (NB) (see Figure 3.1). The three dams are at 

various stages of their lifespan – Site C is under construction, Oldman was built in the 

early 1990s, and Mactaquac dates to the late 1960s and was approved for a refurbishment 

plan in 2016. The comparison of various cases will offer insights into the social impacts 

of hydroelectric dam projects during their lifespans. 

  

Figure 3.1 Study areas (adapted from Natural Resources Canada, 2001) 

Site C will be the third mega-hydroelectric infrastructure on the Peace River in north BC 

(Clarke, 2014). The river has watered the Peace River Valley for over ten-thousand years, 

supporting human habitation from prehistoric times to modern farming and ranching 

practices (Imrie, 1991). Site C is number 3 (hence “C”) of a string of five dams initially 
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proposed by the former premier William Andrew Cecil (W.A.C.) Bennett in the 1950s 

(Cox, 2018). It was designed to produce up to 1,100 megawatts of power for over a 

century, forming a reservoir 83 km long and up to 55 metres deep (Canadian 

Environmental Assessment Agency, 2014), and inundating a total of 5,550 hectares of 

riparian lands (BC Hydro, 2018). The project has continued to be controversial in public 

discourse and the courts since its approval, including concerns of irreversible negative 

impacts on the biophysical environment, social disturbances, and devastating harms on 

Indigenous communities (Cox, 2018; Muir, 2018). According to proponents, Site C is on 

schedule to start reservoir filling in fall 2024 (BC Hydro, 2023).  

Oldman was built at Three Rivers in southern Alberta where the Oldman River is joined 

by its main tributaries, the Castle and the Crowsnest Rivers (Glenn, 1999). The original 

rationale to dam the river was agricultural irrigation and water management in the 

province due to drought caused by seasonal variations in flows (Rojas et al., 2009). The 

construction started in 1986 and the required access and use of the river and riparian 

lands for dam construction and operation triggered frequent fights and negotiations 

between the government and the closest Indigenous group, the Piikani Nation (Fabris, 

2023; Glenn, 1999). Despite these disputes and without a legal or social license, Oldman 

was finished in late 1991 and started to form its reservoir in the next year (Daschuk & 

Marchildon, 1993). A 32-megawatt Hydroelectricity plant was added in 2003, in 

collaboration with the Piikani Nation, which owns a quarter of the project (Clarion 

Energy Content Directors, 2003).  

Mactaquac was constructed on the St. John River in the late 1960s, in New Brunswick, as 

the largest hydroelectric dam in Atlantic Canada (Bourgoin, 2013). The dam has an 

installed capacity of 670 megawatts, and the reservoir inundated around 5000 hectares of 

riparian land. Its construction bolstered employment and in-migration in the first couple 

of years followed by development based on the reservoir as a recreational site, but the 

biophysical environment was considerably altered and many people suffered from 

displacement, disconnections to social relationships and communities, destruction of 

historical records and cultural heritage, and losing traditional ways of life such as farming 

and grazing (Chen et al., 2018; Lawson et al., 1985; Reilly & Adamowski, 2017). The 
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dam faced a premature end of service life by 2030 due to an alkali-aggregate reaction that 

weakened the concrete, so in 2015, the province invited public input about the dam’s 

future around three feasible options: refurbishment, retaining the reservoir without power 

generation, and river restoration (Stantec, 2016). Despite the initial trauma experienced 

by the pre-dam generation, most local people expressed their preference to keep the dam 

and reservoir intact (Sherren et al., 2016), especially among the cohorts who grew up 

with the reservoir landscape or moved into it as adults (Keilty et al., 2016). The operator 

decided to extend the dam’s current lifespan.  

3.2.2 Data Collection 

We collected data from Instagram, one of the most popular visual content-sharing 

platforms (Instagram, n.d.). It was launched in 2010 and had over 2 billion users as of 

January 2023 (Dixon, 2023a). Slightly over 60% of Instagram users fall into the age 

group of 18 to 34 (Dixon, 2023b). To retrieve Instagram images, we developed a scraping 

tool which contains two main Python packages: Selenium and Instascrape (Chen et al., 

2024). Selenium was employed to login to Instagram, search Instagram posts by location 

IDs, and save post links into a log file (Titration, 2022a). The Instascrape package 

provides a flexible API for scraping Instagram data including images (or videos) and 

metadata based on the post links in the log file (Titration, 2022b).  

Place names of cities, towns, parks, and points of interest near the three hydropower sites 

and along their existing or planned reservoirs were manually identified through Google 

Maps and then searched on Instagram to see: 1) whether there was a related geo-location 

tag that had been created; and 2) whether there were posts geo-tagged to this geo-

location. If both criteria were satisfied, location IDs were collected from Instagram and 

geographic coordinates from Google Maps. We identified 5 in Site C area, 4 valid 

locations in the Oldman case, and 25 in Mactaquac (Appendix C). The uneven 

distribution of locations in the three cases stems from Mactaquac being in a more densely 

populated area with a reservoir flanked by numerous towns.  

The location IDs were used to search geo-tagged posts and store post links in log files 

from May 30 to June 2, 2021. The earliest post retrieved was published on July 18, 2011. 

We identified 49,351 posts in the Site C case, 8,727 in Oldman, and 28,393 in Mactaquac 
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(Figure 3.2). Later, from June 7 to July 25, 2021, images/videos and metadata were 

retrieved using the links. Two percent of the posts could not be properly scraped due to 

errors (e.g., posts were deleted, or accounts were changed to private). We downloaded 

48,301 images/videos with metadata for Site C, 8,555 for Oldman, and 27,891 for 

Mactaquac. Video data were removed from the datasets, leaving 44,875 images in the 

Site C case, 7,980 in Oldman, and 26,178 in Mactaquac. Among the raw datasets, many 

of the images had little value to our research purpose of understanding landscape use and 

value. Thus, we manually filtered out images in which the portion of landscape features 

were less than 60% of the entire content, such as indoor photos and selfies without clearly 

visible landscape. We attempted to train an AI model to automatically filter the raw 

datasets; however, the accuracy was insufficient due to the complexity of the data and the 

limitations of machine power in 2021. As a result, the Site C case had 6,817 images left 

as valid data, 3,060 in Oldman, and 9,292 in Mactaquac.  
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Figure 3.2 Workflow of data collection (shaded background) and analysis (white background). 

3.2.3 Landscape image auto-coding  

We used Google Cloud Vision API (Vision API) to label the images, detecting landscape 

features and human activities (see Figure 3.3 as an example). Vision API is a pre-trained 

machine learning model that can assign labels to images using millions of predefined 

categories (Google Cloud, 2023a). The fundamental algorithm of image detection models 

is based on the convolutional neural network (CNN) (Fukushima, 1980; LeCun et al., 
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1998). The process of utilizing the Vision API (or comparable pre-trained models) is 

straightforward, uploading and receiving predicted labels. However, it still requires basic 

programming skills for batching prediction tasks for multiple images at a time (Google 

Cloud, 2023b). For each image, the model returns a maximum of 10 labels with the 

highest confidence scores. Owing to this limitation, energy facilities like dams, wind 

turbines, and solar panels, if they appeared small in the background, were not accurately 

detected, leading us to manually code valid images for these energy infrastructures. 

During the process, image contents were viewed, and our observations will assist the 

discussion. 

 

Figure 3.3 An example of Vision API results (the image was generated by ChatGPT, and the Vision API results 
were generated in February 2024) 

3.2.4 Topic Clustering 

Latent Dirichlet Allocation (LDA) is a generative probabilistic Bayesian model that 

automatically identifies topics based on the co-presence of certain words in textual 

corpora (Blei et al., 2003). We used the Gensim library, a free open source set of topic 

models. Topic models are unsupervised models that automatically discover statistical co-

occurrence patterns within a corpus (Gensim, 2022), giving the ability to find patterns in 

a dataset. The analysis was conducted in Jupyter Notebook using Python. The script was 
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developed based on Kapadia’s (2019) work and adapted to meet the needs of this study. 

More details can be found in Appendix D. 

We used LDA for topic clustering, to identify patterns within the 188,301 labels 

generated by Vision API. There were four main phases, including label data loading and 

cleaning, data normalization and tokenization, model tuning, and model training (Figure 

3.2). First, labels from the same image were treated as a single document in subsequent 

LDA model training. There were 6752 documents in the Site C case, 3031 in Oldman, 

and 8980 in Mactaquac (2% of images were excluded because they were not 

appropriately loaded). Second, data normalization (removing stop words and lower 

casing the text) and tokenizing (identifying individual words in a document) was 

completed. Third, the LDA model was tuned, the process of identifying the parameters 

that govern its learning process to optimize performance. Finally, the model was trained 

to identify the topic clusters. We received results of clustered labels as topics which were 

then interpreted (Table 3.1)– giving a descriptive title for each topic – by authors through 

examining the labels and related image contents. 

3.3 Results 

3.3.1 Descriptive Statistics  

Using Vision API, there were 67,616 total labels returned for the Site C case, 30,435 for 

Oldman, and 90,250 for Mactaquac, adding to a total of 188,301 labels and 1,704 unique 

ones. Figure 3.4 shows the top 15 labels in each study case. Eleven labels were identified 

from all cases including sky, cloud, natural landscape, plant, tree, grass, landscape, 

people in nature, atmosphere, water, and snow. Site C and Mactaquac shared the label of 

wood, while Oldman and Site C shared ecoregion. Unique labels were happy and vehicle 

for Site C, mountain, highland, and grassland for Oldman, and lake, branch, and water 

resources for Mactaquac. 
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Figure 3.4 Top 15 labels for each study case 

3.3.2 LDA landscape clusters  

Table 3.1 shows the clustered topics according to the LDA model, and the topics were 

interpreted by authors according to key landscape features. The most prominent features 

in the study areas were plants and water. Mountains appeared more frequently with plants 

(including grass and grassland) in Oldman, and with water in Site C, but not at all in 

Mactaquac. Diurnal or seasonal views were clustered such as sunset, sunrise, and winter, 

in all three study cases. However, water only served as a highly weighted element in the 

sunset/sunrise landscape in Mactaquac. In terms of winter landscapes, Site C images 

included more recreation activities (top words include recreation and outdoor); Oldman 

mostly included pure landscape views with key elements like snow, ice, ice cap, and 

freezing; and in Mactaquac buildings frequently occurred with winter elements like snow.  

There were landscape topic clusters involving human appearance and activities, such as 

people in nature, pets and animals, trip-related activities (road and vehicle), and 

recreation. They were common in all study cases but had some differences if comparing 

details of the top words in each set. Oldman had a unique cluster interpreted as people in 

nature, in which no top word indicated any activities. This might illustrate typical images 

showing that people were in the landscape largely to enjoy how it looks and take a photo. 
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Dog walking and playing were popular in all study areas, and it was more common in 

winter landscapes in the Mactaquac case. Birds (bird and beak) and fawn (young deer) 

were identified as prominent words in Oldman and Site C; while Mactaquac includes a 

more domesticated picture of animals (pets or wild animals) walking on asphalt roads. 

Road trips and vehicles were prominent key elements clustered by the model, which 

indicates that people often took pictures while driving or of their vehicles using the 

landscape as the background. In Site C only, electricity transmission or distribution lines 

were captured quite frequently within the road and vehicle landscape.  

Recreational activities were different from case to case. The artistic photography cluster 

in Oldman was comparable to that of people in nature: people were taking pictures with 

the landscape in the background. In the Oldman and Site C case, artistic photography was 

clustered with smile and happy, indicating people’s appreciation and enjoyment of the 

landscape. Besides photography and the winter recreation mentioned above, Site C had 

another cluster related to horseback riding and boating (based on observing photo 

contents, mostly kayaking and canoeing). In the Mactaquac case, smile and happy were 

also clustered with photography, while it had other recreational activities identified like 

biking and leisure activities in the water (e.g., swimming, beach visiting, yachting). 

Compared with Oldman and Site C, water was a more prominent landscape feature for 

recreational purposes in Mactaquac, mostly supported by the Mactaquac reservoir. 

3.3.3 Energy landscape  

The LDA clusters only captured the landscape with wind turbines in the Oldman case and 

transmission line infrastructure in the Site C ‘road and vehicle’ topic, but no other energy-

related topics for Mactaquac. The visibility of energy facilities, such as hydro dams, wind 

turbines, and solar panels, was also manually coded due to the inability of the pre-trained 

model to accurately recognize these objects when they appeared small in the background. 

The results indicate that the hydro dam itself was most frequently captured in the 

Mactaquac area (0.91%, compared with 0.16% for Oldman and 0.09% for Site C, the 

W.A.C. Bennett Dam), while wind turbines were prominent in the Oldman area (18%) 

but not much photographed elsewhere (0.03% in Site C and 0.01% in Mactaquac). Solar 

panels were rarely presented in the datasets: 0.04% in Site C and 0.07% in Oldman.
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Table 3.1 Landscape topic clusters across cases. Asterisks denote the weight of the words in the topic: *** >0.1, **>0.05, *>0.025. 

Topic interpreted 

based on key 

landscape features 

Site C Dam, BC Oldman River Dam, AB Mactaquac Dam, NB 

Plant natural***, landscape***, plant***, sky**, 

tree**, cloud*, grass*, ecoregion*, wood*, 

environment* 

 

plant***, twig**, tree*, flower*, wood*, 

trunk*, terrestrial*, grass*, branch*, shades 

landscape***, natural**, sky**, cloud**, 

plant**, grass**, grassland*, mountain*, 

tree*, lot* 

plant***, grass**, terrestrial*, flower*, 

tree*, leaf*, botany*, community, 

groundcover, flowering 

Water water***, sky**, cloud**, landscape*, 

lake*, landforms*, resources*, mountain*, 

natural*, body* 

water***, landscape*, natural*, sky*, 

landforms*, resources*, lake*, fluvial*, 

streams*, plant 

 

water***, natural**, landscape**, 

landforms**, resources*, plant*, 

watercourse*, tree*, streams*, fluvial* 

Energy 

 

 wind***, natural**, windmill**, sky**, 

farm**, turbine**, landscape*, cloud*, 

ecoregion*, electricity* 

 

 

Sunset/sunrise sky***, cloud**, atmosphere**, 

sunlight**, afterglow**, dusk**, 

landscape*, natural*, sunset, morning 

sky**, landscape**, natural**, cloud**, 

atmosphere**, afterglow*, sunlight*, dusk*, 

ecoregion*, atmospheric 

sky***, natural***, cloud***, landscape**, 

water**, atmosphere**, sunlight*, 

afterglow*, ecoregion*, dusk* 

Winter snow***, freezing**, slope**, tree**, 

sky**, recreation*, cap*, mountain, 

outdoor, ice 

snow**, slope**, freezing**, sky**, 

mountain**, cloud*, cap*, tree*, landscape, 

ice 

landscape***, tree**, natural**, plant**, 

wood**, branch*, sky*, snow*, building*, 

twig* 

Pet and wildlife dog***, carnivore**, animal**, breed**, 

fawn**, working*, mammal*, companion*, 

tree*, vertebrate* 

dog**, carnivore*, animal*, bird*, sky*, 

breed, plant, fawn, terrestrial, beak 

tree**, dog**, road**, sky**, surface*, 

asphalt*, plant*, animal*, carnivore*, 

snow* 

People in nature  plant***, nature**, people**, natural**, 

sky*, landscape*, grass*, tree*, cloud*, 

flower* 

 

Road and 

Vehicle 

road **, asphalt**, surface**, sky**, 

cloud*, tree*, light, electricity, line, 

building 

 

road**, surface **, asphalt**, sky*, cloud*, 

landscape*, natural*, plant, ecoregion, line 

 

vehicle***, tire**, automotive**, wheel**, 

sky**, car*, cloud*, motor*, lighting, hood 

vehicle***, tire***, automotive***, sky**, 

wheel**, light*, cloud*, motor*, car*, 

lighting* 

3
6
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vehicle***, tire***, automotive***, 

wheel**, sky**, car*, motor*, cloud*, 

lighting*, land 

Recreation 

 

horse*, supplies*, equipment*, bird*, sky, 

beak, boating, boats, feather, watercraft  

 

smile**, sleeve*, leg*, plant*, sky, hair, 

flash, photography, clothing, sunglasses 

 

nature ***, people***, happy**, tree**, 

plant*, photography*, flash*, gesture*, 

sky*, smile* 

sky*, nature*, smile*, people*, plant, happy, 

dress, photography, flash, cloud 

 

nature***, people***, happy*, smile*, 

sky*, photography*, flash*, tree*, gesture*, 

bicycle* 

 

sky***, water***, lake**, cloud**, tree*, 

equipment*, recreation*, blue*, leisure*, 

bridge* 

 

3
7
 



38 

 

 

3.4 Discussion 

To answer the four research questions, we will discuss the results in terms of the key 

landscape features and activities identified (answering research question 1 and 2), their 

implications for the study cases (question 3), and the opportunities and limitations of 

using AI tools to analyze social media data for social impact assessment (question 4). 

Except for the results listed above, observations from viewing photo contents will also 

assist discussions. 

3.4.1 Key landscape features and activities 

3.4.1.1 Dams increase the prominence of water in the landscape 

Our first insight is that a mega hydroelectric dam and its reservoir seems to increase the 

prominence of water in the dammed landscape, impacting uses and values. This is 

consistent with Zhang et al.’s (2009) observation in the Tree Gorges Reservoir area of 

Yangtze River from 1977 to 2005 when the waterbodies and built-up lands had a 

significant increase after damming the river by analyzing remote sensing images. In our 

case, among the landscape topic clusters, water was a key feature in Oldman and 

Mactaquac where the dams and reservoirs have existed for decades: they had various 

keywords such as water, watercourse, lake, fluvial, and streams. The increased visual 

impact is no surprise, as demonstrated in previous research that filling a reservoir raises 

the original river’s water level and expands the width of a waterbody upstream by a 

significant amount (Liu et al, 2016), meaning the reservoir is perceived by people more 

like a lake than a river (Ioannidis & Koutsoyiannis, 2020). In Mactaquac, the reservoir 

provided a serene and lake-like view and motivated users to post water-related landscape 

photos, indicating their appreciation of aesthetics (also observed in Chen et al., 2018). 

This aligns with the findings in Sargentis et al. (2005) that water level changes in a 

reservoir did not negatively impact the aesthetic value of the landscape. However, the 

visual impacts can vary in different topographies. For instance, dam infrastructure was 

only captured in 0.16% of the posts in Oldman but 0.91% in Mactaquac, and others have 

shown that the visibility of dam infrastructure and reservoir can be confined in valley 

terrain (Dehkordi & Nakagoshi, 2004; Ioannidis & Koutsoyiannis, 2020): the Oldman 

area is more mountainous (e.g., mountain was identified as a keyword in the topic 
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clusters) than Mactaquac. In addition, transportation development (e.g., roads and 

bridges) can increase visibility by improving accessibility to the dam wall, reservoir, and 

related recreational facilities (Zhao et al., 2021). In Mactaquac, where transportation 

infrastructure is close to the reservoir and even crosses the dam (Lawson et al., 1985), 

water- and recreation-related keywords were clustered, consistent with previous studies in 

the same area (Chen et al, 2018; Chen et al., 2019). 

3.4.1.2 Losing landscape features and traditional practices to dams 

Benefits brought by the development of hydropower and reservoir-based lifestyles often 

come at the cost of sacrificing important landscape features and undermining other social 

and cultural values. Dam-related changes in riparian lands can impact the traditional way 

of life by pushing out people or changing beyond recognition the places that enable it. 

Agricultural land losses have been a marked issue in previous studies (Swe et al., 2023; 

Tilt et al., 2009). This was also observed in the Mactaquac case with an aging dammed 

landscape, where more Instagram photos depicted farming scenes simulated at the 

tourism site built to house historic buildings that were relocated from the reservoir area, 

Kings Landing Historical Settlement (Lawson et al., 1985; Sherren et al., 2016). The 

Oldman area, though it has had a dam since the 1990s, remains less urbanized, continuing 

the traditional rural practices such as farming, grazing, hunting, and fishing identified in 

the Instagram photo contents, as described by Byrne et al.’s (2006) study of the Oldman 

River Basin. In Site C, where the landscape has not yet been completely altered by the 

dam, working animals and horseback riding were clustered in the topics. Farming will 

change significantly after impoundment in Site C, in ways it may not have in Oldman, in 

part because the good agricultural land along the Peace River is more constrained to low-

lying riparian land in that high-topography area (Cox, 2018).  

Another loss from damming rivers is that Indigenous people can be impacted 

significantly by giving up their ceremonial sites, seasonal camps, medicine collection 

areas, locations associated with oral histories, traplines, and fishing camps, as observed in 

Schapper and Urban’s (2021) study in Canada, Aiken and Leigh’s (2015) in Malaysia, 

and Jaichand and Sampaio’s (2013) in Brazil. However, such losses may not be directly 

identified by the clustered landscape topics, in large part because of the biases inherent in 
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our data source and analysis method. In Site C, place names such as Attachie (one of the 

data collection geo-tags) have an important role in Indigenous oral history in the region 

and that continuity may be negatively impacted by inundation (Cox, 2018). 

3.4.1.3 Lifestyle can be reshaped by damming 

Another insight relates to how lifestyles can be reshaped by damming in terms of leisure 

and rural-to-urban shifts in livelihood. Existing recreational activities in a pre-dam 

landscape can be impacted or limited when losing natural ecosystems or certain types of 

landscape features (Sæþorsdottir & Olafsson, 2010). Reservoir creation leading to 

flooding can often eliminate diverse landscape types and sites along the river such as 

gorges, beaches, and islands, reducing opportunities for some outdoor activities 

(Rodrigues & Silva, 2012). In Mactaquac, the once-famous beauty spot Pokiok Falls was 

submerged as the reservoir filled in the 1960s (Lawson et al., 1985), and a similar loss 

could occur in Site C following the dam construction and subsequent reservoir flooding, 

reducing sites for ice climbing on frozen waterfalls that were seen in the dataset. In 

addition, by viewing photo contents, the contrast between the popularity of kayaking and 

canoeing in Site C and motor/pontoon boating and cruising in Mactaquac indicates the 

different opportunities provided by two types of waterbodies, the turbulent river and the 

serene lake-like reservoir. Other activities like hunting and bird watching for particular 

species can be influenced or eliminated (Abreu et al., 2020), when the inundation of 

riparian lands disrupts crucial wildlife habitats (Rodrigues & Silva, 2012; Zhao et al., 

2012). Relevant observations in this study include that clustered keywords of plant, grass, 

tree, flower, leaf, and botany were more related to urban green spaces such as parks and 

backyards than riparian areas in the dammed Mactaquac area, and more wildlife 

keywords (e.g., fawn, bird) were identified in Site C and Oldman. The contrast may 

indicate the limited or at least changing opportunities for wildlife-involved activities in 

dammed landscapes.  

Reservoir-based landscapes also offer recreational activities that increase human 

interaction with waterbodies primarily in the summertime, which was also demonstrated 

by Mácová and Kozáková (2023) where visits to water reservoirs were sensitive to 

seasonality and the main recreation season was summer; a similar conclusion was made 
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from Kriz et al.’s (2020) survey. This was observed in Mactaquac: most of the water-

related recreation happened in summertime according to viewing photo contents and no 

recreation-related keywords were identified within the winter topic. The adopted 

reservoir lifestyle, including most water-based recreational activities (e.g., swimming, 

sunbathing, boating), benefited people in Mactaquac more in the summertime due to 

accessibility and water temperature, something that was also found in previous work via 

manual coding of Instagram (Chen et al., 2018; Chen et al., 2019). In contrast, the pre-

dam landscape of Site C also provided venues for outdoor recreational activities in the 

winter (keywords of outdoor recreation and winter features clustered).  

The reshaping of livelihoods and lifestyles can be attributed in part to migration and rural 

development associated with dams. Dam construction, operation and reservoir tourism 

can create job opportunities and cause labor migration (Tilt et al., 2009), while 

development of roads and settlements near the site and reservoir can often accelerate 

waterfront development (Zhao et al., 2012), leading to a rural-to-urban shift in livelihood 

and lifestyle (Wilmsen, 2018). In Mactaquac, animals were clustered with asphalt and 

road, and buildings were a prominent element in the winter landscape. These topic 

clusters and Instagram photo contents showed a more anthropogenic and domesticated 

landscape, and an industrial (compared with farming) way of life that may be 

characteristic of some hydroelectric transitions. However, we can also see that such 

trajectories differ across the country. As mentioned earlier, in Oldman, despite dam 

construction, the reservoir's formation, and the establishment of a provincial park, high-

quality agricultural land remains widespread so farming remains a vital practice in the 

area (Poirier & de Loë, 2011). Internationally, such differences also existed in Wang et 

al.’s (2013) study on cascading dams on the Upper-Mekong River in China. They found 

that the enhancement of public infrastructures, including roads, hospitals, and schools, 

could promote a more urbanized lifestyle, but regions maintaining agricultural conditions 

akin to those before dam construction enabled relocated farmers to sustain their farming 

practices. 

3.4.1.4 Hydropower infrastructure has limited visual impact 
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Compared to wind turbines, hydroelectric dam infrastructure seems to have limited visual 

impact or at least salience in the dammed landscape to attract the eye. Based on posts, the 

dam wall was more prominent in Mactaquac than Oldman, although both dams feature a 

road across the top and thus ready access to the infrastructure. The higher prominence in 

Mactaquac (0.91% versus 0.16% in Oldman) might imply more acceptance and 

awareness of dam infrastructure due to its longer existence, as observed by Keilty et al. 

(2016) in the same area, but there is also higher population density nearby and a flatter 

topography as discussed above. However, data bias might exist because the collection 

points in Oldman were not as close to the reservoir as they were in Mactaquac. In 

Oldman, Pincher Creek was within visible distance of the Castle River Wind Farm, which 

explained why wind turbines were widely seen in the dataset, a proportion (18%) much 

higher than that of the dam images in the Mactaquac case (1%). Additionally, wind 

energy facilities often have greater visual impacts than hydropower ones (Ioannidis & 

Koutsoyiannis, 2020). Salience analysis was used by Mohammadi et al. (2023) to 

understand the visual impacts of renewable energy facilities and demonstrated differences 

higher impact of wind than solar infrastructure, but built dam infrastructure can be very 

far from its reservoir impacts and thus would be lower still. 

3.4.2 Implications for study cases 

The Mactaquac case, as an aging dam that is now approved for refurbishment, may help 

us to understand the future of Oldman and the in-construction Site C. Although the three 

cases were at different stages of a dam’s lifespan, their landscapes had similar topics 

portrayed through Instagram use, which may indicate that a long-dammed landscape can 

be considered by residents as comparable to a natural one. This is consistent with 

Jørgensen’s (2017) findings that people could develop different understanding of what 

‘nature’ is and accept the dammed landscape as natural, which is also discussed by 

Ioannidis and Koutsoyiannis (2020). Jørgenses (2017) also noted that this can cause 

conflicts around dam removal or make recommissioning decisions difficult to resolve, 

which will happen sooner in Mactaquac than Oldman and Site C. The initiation and 

construction of a new mega hydroelectric dam can be highly controversial (Clarke et al., 

2008; Sternberg, 2008), but the conflict at the end of a dam’s lifespan can be just as 
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complex, as seen in local resistance to dam removal. Jørgensen and Renöfält (2012) 

studied cases in Sweden and found that proponents and opponents could have different 

framings of the impacts of the dam removal: ecosystem services and river fishing versus 

cultural services of recreation, aesthetic, and heritage. Similar findings were also 

discussed in Fox et al.’s (2016) research in New England, US. Such controversy 

happened in Mactaquac as well in the 2010s, when local and wider-scale discourses 

converged to resist the loss of the dam and reservoir (Sherren et al., 2017). Yet changes of 

landscape, livelihood, and lifestyle may benefit very different people among residents 

(Keilty et al., 2016), as well as between locals and visitors (Terkenli et al., 2019). Hence, 

decision makers involved in large-scale hydroelectric projects should not only balance the 

benefits against the potential losses, but consider who is impacted and who benefits to 

make more informed decisions about just landscape transitions. 

3.4.3 Opportunities and limitations of AI tools to analyze social media data for SIA 

3.4.3.1 Opportunities 

Social media data has been shown to offer valuable insights into social science topics, 

including landscape uses and values, due to its extensive scale and the cost-effectiveness 

of data collection (Chen et al., 2023). Even though the study areas were not in densely 

populated cities but rather in rural Canada, over 86,000 posts were gathered. The recent 

advancements in AI tools, particularly pre-trained models, enable the automated analysis 

of large-scale social media data including text (Gone et al., 2023) and images (as shown 

here). These models are user-friendly, cost-efficient, and highly accurate (Vigl et al., 

2021). Additionally, commercial AI platforms offer tools for training customized models, 

which aids researchers with limited programming skills to create models better suited to 

their specific data and cases. Labels generated by image detection models can be further 

analyzed by Natural Language Processing models such as LDA. These opportunities for 

data acquisition and quick analysis can significantly enhance the SIA toolkit. 

3.4.3.2 Limitations 

The limitations of this study mainly appear in two aspects, regarding the social media 

data and the AI tools for analysis. The accessibility of social media data for many most 
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popular platforms has been significantly limited since the Cambridge Analytica Scandal 

in 2018 (Confessore, 2018). Many large social media platforms such as Instagram and X 

have removed free access for public search, especially the fine-grained location data 

(Freelon, 2018). Thus, in this study, we relied solely on existing location tags on 

Instagram to collect data, resulting in gaps in remote areas where no place names were 

created as tags. For example, in the Oldman River case, only one location was adjacent 

enough to the reservoir; the small town named Cowley was located upstream, and the 

largest dataset was retrieved from Pincher Creek which was 10 km from the water. By 

contrast, 25 location tags were identified along the reservoir in the Mactaquac area. 

Moreover, data collection was time-intensive and required a certain level of programming 

skills (Chen et al., 2024). Collecting Instagram data by geo-tags encountered other 

challenges like using different names for the same place (e.g., Oldman River Dam, 

Oldman Dam, Old Man Dam, etc.) and unpredictable geographic location for a lengthy 

river (e.g., the geo-tag of Oldman River was located far away downstream from the dam 

area). Besides, lacking demographic details of social media users in the datasets can be a 

problem to distinguish residents from visitors and understand how landscape changes can 

impact different groups of people. 

AI tools leveraged in this study have limitations as well. Google Cloud Vision API has 

limited accuracy of identifying specific objects in the image content, such as 

distinguishing a reservoir from a lake, or a year-round house from a summer vacation 

house. It could only return a maximum of 10 labels per image at the time when analysis 

was conducted. Important landscape features, the energy infrastructure for instance, can 

be overlooked if they appear small or are unfamiliar to the trained model (e.g., an earthen 

dam can look like natural topography).  Those are limitations commonly shared by pre-

trained models (Gosal et al., 2019). Another limitation is that pre-trained models are often 

better at detecting high- to median-level concepts, and details and nuance can be weak 

(Pathak et al., 2019). In this study, high-level concept categories were identified like 

nature, atmosphere, ecoregion, plant, and waterbody. However, Vision API also detected 

very detailed categories like damselfly and apple, which caused unevenness of the results 

and made the interpretation work quite challenging. In addition, the pre-defined 

categories may contain some uninterpretable and useless labels such as ecoregion. 
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Regarding the LDA topic clustering model, it requires knowledge and skills in machine 

learning, the model tuning is time-consuming (Qomariyah et al., 2019), and noise in the 

datasets may influence training performance (Yoon et al., 2021). 

3.5 Conclusion 

This study employed social media image data and artificial intelligence models including 

an automated image coding tool (Google Cloud Vision API) and a topic clustering model 

(Latent Dirichlet Allocation) to understand landscape changes and social impacts in three 

study areas involved hydroelectric dams in Canada. Over 19,000 valid landscape images 

were retrieved from Instagram, generating more than 180,000 labels detected by Vision 

API. The topics clustered by the LDA model were interpreted by key features such as 

plant, water, energy infrastructure, sunset/sunrise, winter, pet and wildlife, people in 

nature, road and vehicle, and recreation. The similarities among the three study areas 

suggest that the construction of dams and the formation of reservoirs have many similar 

impacts on different regions, while the differences may provide insights about landscape 

changes at varying stages of a dam’s lifespan or by geographic characteristics, offering 

opportunities for cross-site learning. For example, the expansion of the waterbody by 

reservoir filling made water more prominent in the dammed landscape, benefiting some 

locals in various ways while causing losses to others. Lifestyles in the dam era will likely 

be reshaped due to increased water accessibility and calmer flows that may enhance the 

variety and popularity of reservoir-based recreational activities, particularly in the 

summer. Additionally, dams can contribute to suburban development and tourism, leading 

to more modernized and urbanized lifestyles; however, the loss of certain types of 

landscapes, such as agricultural land and Indigenous traditional lands, harms cultures and 

activities. The visual impact of hydroelectric dams may be less than that of other 

renewable energy facilities like wind turbines, and their long-term presence may increase 

the acceptance of the infrastructure, complicating decisions regarding aging dam projects. 

Methodologically, this study demonstrates that social media data and AI models can aid 

in understanding energy landscapes and efficiently processing large datasets, making 

them viable as a novel tool for social impact assessment. However, they also have certain 
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limitations, including data biases, and the unevenness of results generated by pre-trained 

automated image analysis tools.  
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Chapter 4 Using computer vision to assess cultural ecosystem services 

relating to hydropower landscapes in Canada. 

 

A version of this chapter is in preparation for submission to the journal Ecosystem 

Services (by Elsevier). Refer to Appendix B for the copyright agreement to reproduce this 

material. 

 

Chen, Y., Smit, M., Lee, K, Y., McCay-Peet, L., Margeson, K., & Sherren, K. (In 

preparation). Using computer vision to assess cultural ecosystem services relating to 

hydropower landscapes in Canada. Ecosystem Services. 

 

Statement of Authors’ Contributions: YC is responsible for conducting the literature 

review, data collection and analysis, and writing all sections. KS and MS supervised the 

writing development including providing feedback and editorial revisions. KL and LMP 

provided feedback and editorial revisions on a final draft. KM coded the training dataset 

to validate the coding results. 
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Abstract 

Cultural ecosystem services (CES) assessment is challenging due to its complex and 

subjective nature. However, CES analysis can be a promising tool for social impact 

assessment in large hydroelectric dam projects, which often cause extensive landscape 

changes and social disruptions. Recently, social media data has demonstrated its utility in 

understanding CES provision. With recent advancements in artificial intelligence, 

particularly in computer vision, automatic analysis of social media image content has 

become feasible. In this research, we trained a computer vision model to identify CES-

related themes from over 18,000 social media images collected from three study areas 

involving dam projects, achieving an average precision of 93.8%. The results reveal how 

damming for hydroelectricity impacts CES provision, with insights including limited 

effects on aesthetic values, the local nature of place identity, potential for recreational 

enhancement, and the need for careful planning to safeguard cultural heritage. 

Importantly, this study underscores the potential of using large-sized social media image 

data and customized computer vision models in CES assessment, discussing benefits 

(including compared with manual approach and pre-trained models), limitations, and 

future research directions. 
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4.1 Introduction 

Cultural ecosystem services (CES) are one of the four main categories of ecosystem 

services, along with supporting, regulating, and provisioning services (Millennium 

Ecosystem Assessment, 2005). Ecosystem services are defined as “the benefits people 

obtain from ecosystems” (MEA, 2005, p. V). CES often refers to the non-material 

benefits arising from human-nature interactions (Tengberg et al., 2012). CES are key to 

human wellbeing, related in part to good social relationships, a sense of cultural identity, 

and a sense of security (Díaz et al., 2006; Kosanic & Petzold, 2020). Widely agreed 

categories of CES include recreation, aesthetic values, spiritual, education, cultural 

heritage, intrinsic (existence), inspiration, sense of place, knowledge, social relations, and 

cultural diversity (Milcu et al, 2013). A more recently updated guidance, Common 

International Classification of Ecosystem Services (CICES 5.1 by Haines-Young & 

Potschin, 2018), listed similar classes of culture services related to biotic and abiotic 

aspects. The CES categories investigated in specific studies vary depending on the topic, 

the study area, and data. Márquez (2023) found that recreation, aesthetic values, cultural 

heritage, and sense of place and identity were most assessed among papers published 

from 2010 to 2022, while knowledge systems, cultural diversity, and sports services 

(recently proposed in research articles) were the least touched. In general, cultural 

services are not tangible, and so it can be more difficult to integrate into assessments 

based on monetary value (Chan et al., 2012; Hirons et al., 2016).  

Social impact assessment (SIA) has now been widely discussed and practiced as a tool to 

predict and manage the social issues of development (Esteves et al., 2012), including 

energy projects (Buchmayr et al., 2022). Large hydroelectric dam developments can be 

an immense driver for changes in landscape use and values in host areas, such as altering 

traditional practices (Hernández-Ruz et al., 2018) or developing a recreational lifestyle 

around lake-like reservoirs (Chen et al., 2018). Darvill and Lindo (2016) mentioned that 

the development of a hydroelectric dam can impact cultural aspects of ecosystem services 

including heritage resources, cultural and provisioning use of biodiversity, and recreation. 

Hydroelectricity landscapes can be complex since they are often an amalgam of the pre-

dam landscape and subsequent alterations brought about by the new ecosystem and 
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residents in the dammed landscape (Calvert et al., 2019). There are relatively few studies 

focused on cultural services of hydroelectric-related landscapes (Davis & Kidd, 2012; 

Hale et al., 2019). However, understanding baseline pre-dam CES provision is important 

for SIA, while monitoring CES changes may help to assess the social impacts brought by 

such dam projects.  

Lacking sufficient data and tools for assessment has been a challenge in CES analysis 

when integrating it into decision making and landscape management (Kosanic & Petzold, 

2020). The shift toward leveraging social media data and recent advancements in 

computer vision (CV: a sub-field of artificial intelligence) brings opportunities 

(Langemeyer et al., 2023; Havinga et al., 2020). Social media data has been proven to be 

valuable to understand social phenomena and values (Chen et al., 2023), with some 

advantages over traditional survey methods: large data size, extensive spatial and 

temporal scales, low cost, detailed metadata (e.g., geographic tag, time stamp), various 

types of data (e.g., text, image, video) (Havinga et al., 2024). There is increasing research 

leveraging social media to assess cultural services, such as Ruiz-Frau et al.’s (2020) 

applied network analyses on hashtags collected from Instagram and Twitter to assess CES 

in coastal areas. More recently, Benati et al. (2024) retrieved Twitter data to probe the 

relationship between accessibility of urban green spaces and CES provision. 

Nevertheless, social media data has not been fully taken advantage of due to increasing 

constraints on data access (Chen et al., 2024) and limitations in analysis models and 

methods (Manley et al., 2022). Manually processing and analyzing large datasets often 

demands immense human effort (Chen et al., 2019). Thus, even recent CES 

measurements heavily relied on generic indicators like counting numbers of posts and 

geographic tags, without considering the contents (Havinga et al., 2024). 

The recent rapid advancement of artificial intelligence facilitates the substitution of some 

human labor with machine power, allowing in-depth analysis when extracting meanings 

from textual or visual contents (Johnson et al., 2021; Vigl et al., 2021). The first wave of 

leveraging artificial intelligence in CES studies started with Natural Language Processing 

(NLP) models on analyzing textual social media data. For example, recently Gugulica 

and Burghardt (2023) applied NLP to annotate Flickr and Instagram textual data to map 



51 

 

 

CES indicators in urban green spaces. Gone et al. (2023) used NLP to understand human 

activities impacted by hydroelectric energy projects. More recently, computer vision has 

been used to detect image content. Richards and Lavorel (2022) used a pre-trained model 

to extract keywords from Flickr images to understand CES in New Zealand. Cardoso et 

al. (2022) trained a Convolutional Neural Network model to automatically classify 

natural and human elements related to CES based on Flickr and Wikiloc images. 

Constructing and training models for computer vision often requires more sophisticated 

design, tuning, and calculating power, which drives many studies to rely on these ready-

to-use pre-trained models (Chen et al., 2024; Huai et al., 2022). However, such models 

can have characteristics such as pre-defined categories, high- to mid-level categories, 

useless or irrelevant categories, limited accuracy, and tend to miss details and small 

objects in photo contents. With more platforms providing services to train a model based 

on users’ own data, without learning coding and algorithms, custom-trained models can 

be a promising opportunity for future research. 

In this study, we gathered Instagram images by geo-tags from three study areas associated 

with hydroelectric dams in Canada: The Site C Dam (Site C) in British Columbia 

(construction pending in late 2024), the Oldman River Dam (Oldman) in Alberta 

(constructed in the 1990s), and the Mactaquac Dam (Mactaquac) in New Brunswick 

(built in the 1960s and approved for refurbishment in 2016). There were two main 

objectives. First, we aimed to explore the feasibility of training a model to categorize 

images according to CES coding themes (i.e., themes for content analysis) by evaluating 

the accuracy of the training. The complexity stems from the abstract and subjective 

nature of CES, which encompasses a broad spectrum of human experiences, perceptions, 

and cultural contexts (Mouttaki et al., 2022). The discussion will extend to the general 

application of social media data and CV tools in CES research, as well as future 

directions. Second, we aimed to use the trained model to categorize valid images 

collected from the three study areas, to indicate the provision of CES at these somewhat 

chronosequenced locations, shedding light on the impacts upon CES from hydroelectric 

dams. The Mactaquac site was chosen for more detailed interpretation at the geocode 

scale as an example to show the patterns within one site. 



52 

 

 

4.2 Methods 

4.2.1 Study areas 

The study areas in this research include three regions across Canada, each featuring a 

hydroelectric dam project at a different maturity: the Site C, scheduled to begin reservoir 

filling and power generation in 2024; the Oldman, constructed in the early 1990s with 

power generation starting in the early 2000s; and the Mactaquac, built in the late 1960s 

and approved for refurbishment in 2016 (see Figure 3.1). Given that social media data is 

only available from about 2006 onward, obtaining longitudinal data over an entire dam 

lifespan is challenging, particularly for rural areas. Therefore, selecting three 

hydroelectric dams at different stages can illuminate changes in CES provision over the 

lifespan of a dam, using space for time replacement. 

Site C is in the Peace River Valley, an area with a longstanding history of farming and 

ranching. It is the third mega-hydroelectric infrastructure on the Peace River in northern 

British Columbia (Clarke, 2014), producing up to 1,100 megawatts, forming a reservoir 

83 km long and up to 55 meters deep (Canadian Environmental Assessment Agency, 

2014), and inundating a total of 5,550 hectares of riparian lands (BC Hydro, 2018).  The 

Oldman Dam, situated at Three Rivers in southern Alberta, was originally constructed for 

agricultural irrigation to assist farmers frequently facing extreme droughts (Glenn, 1999). 

In 2003, it was augmented with a 32-megawatt hydroelectric facility (Clarion Energy 

Content Directors, 2003), with the total area of the Oldman River Reservoir covering 

2,203 hectares (Angler’s Atlas, 2024), considerably smaller than the other two. 

Mactaquac Dam, built in the late 1960s on the St. John River in New Brunswick, is the 

largest hydroelectric dam in Atlantic Canada (Bourgoin, 2013). It has an installed 

capacity of 670 megawatts and the reservoir has inundated approximately 5,000 hectares 

of riparian land. The dam's structural integrity was compromised by an alkali-aggregate 

reaction, leading to a premature service life end by 2030. Consequently, in 2015, a 

decision was made to refurbish the dam, opting against other alternatives like retaining 

the reservoir without power generation or river restoration (Stantec, 2016). 

4.2.2 Data collection 
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Data was gathered from Instagram, one of the leading visual content-sharing platforms, 

launched in 2010. As of January 2024, it boasted over two billion users, ranking fourth 

after Facebook, YouTube, and WhatsApp (Statista, 2024). Instagram was selected for its 

prevalent use by individuals posting everyday photos, which are crucial for understanding 

CES provision through daily land use (Chen et al., 2018; Gugulica & Burghardt, 2023). 

Following a 2018 update, Instagram restricted searches by precise geographic coordinates 

(Chen et al., 2024; Kaiser et al., 2021), necessitating reliance on pre-set geo-tags for 

location-based post collection. We initially used Google Maps to search for cities, towns, 

parks, visiting sites, and landmarks around the three hydroelectric dam sites and near 

their existing or planned reservoirs. These locations were then checked on Instagram for: 

1) if there were associated geographic location tags (geo-tags); and 2) if there were posts 

tagged with them. When both conditions were satisfied, location IDs from Instagram and 

geographical coordinates from Google Maps were documented. Our study found 5 geo-

tags at Site C, 4 at Oldman, and 25 at Mactaquac, as listed in Appendix C. The variation 

in geo-tag numbers across study areas can be attributed to Mactaquac's higher population 

density and the presence of numerous towns along its reservoir, in contrast to the more 

rural settings of the other sites. 

To collect Instagram images and metadata, we created a scraping tool using two main 

Python packages: Selenium and Instascrape (Chen et al., 2024). Selenium was employed 

to log into Instagram, search for posts by location IDs (i.e., geo-tags) from the study 

areas, and record post links in a log file (Titration, 2022a). This initial phase ran from 

May 30 to June 2, 2021, and the earliest post retrieved dated back to July 18, 2011. In this 

phase, we identified 49,351 posts for Site C, 8,727 for Oldman, and 28,393 for 

Mactaquac (Figure 4.1). Subsequently, from June 7 to July 25, 2021, the Instascrape 

package was utilized to scrape images (or videos) and metadata from the saved post links 

(Titration, 2022b). Approximately two percent of the posts were not successfully scraped, 

and video data were excluded, resulting in 44,875 images for Site C, 7,980 for Oldman, 

and 26,178 for Mactaquac. We manually excluded images where landscape features 

constituted less than 60% of the content, such as indoor photos and selfies that did not 

prominently display landscapes. Consequently, 6,817 images remained as valid data for 

Site C, 3,060 for Oldman, and 9,292 for Mactaquac. Although we attempted to develop a 
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CV model to autonomously filter the raw datasets, the complex nature of the data and the 

limitations of computer vision technology in 2021 hindered its accuracy and we relied on 

manual analysis. 

 

Figure 4.1 Workflow of data collection (shaded background) and analysis including model training and prediction 
(white background). 

4.2.3 CES coding themes and training dataset preparation 
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Modern computer vision models are typically based on Convolutional Neural Network 

(LeCun et al., 1998). Researchers can construct these models using open-source libraries 

like Keras for Python, which allows them to customize the architecture. They can also 

utilize structured frameworks such as ResNet-152 or opt for commercial platforms that 

offer computer vision models ready for customer-specific training (e.g., Google Cloud 

Vision Vertex AI), during which the model refines itself to produce accurate responses by 

learning from prepared data. Finally, they can use pre-trained models with various 

capabilities and no customization. We chose to use Vertex AI because it offers the most 

time- and cost-efficient solution for researchers who may not be proficient in algorithms 

and model tuning, but still allows the creation of custom-trained models using a prepared 

training dataset.  

Media-based CES measures face a challenge in identifying indicators of people’s positive 

experiences of nature: how does an individual piece of media convey a person’s 

experience (Havinga et al., 2024). Existing CES research leveraging CV tools relied on 

annotating physical features (Cardoso et al., 2022; Mouttaki et al., 2022), often with 

specific and distinct foci; for example, Mouttaki et al. (2022) coded fishing recreation 

and Cardoso et al. (2022) recognized species of animals and plants. In this study, the 

provision of CES was identified with a similar approach through coding themes: images 

were not directly assigned to CES categories, instead we chose to assign images to 

feature-based coding themes based on a detailed codebook (Table 4.1 and Appendix E). 

CES complexity and subjectivity necessitates linkage to the physical features of 

ecosystems where value is attributed through conceptual bridges like place and landscape 

(Gee & Burkhard, 2010; Milcu et al., 2013). Given this fact, and since CV tools excel in 

identifying objective attributes, we crafted coding themes anchored in tangible elements, 

and then interpreted coding themes in the sense of CES provision (Table 4.1). This 

approach aids human coders in categorizing images using clear-cut and replicable 

standards. For instance, instead of coding the aesthetic value of a landscape on coders’ 

subjective perceptions of beauty, we focused on coding wide-angled natural landscape 

views. Subsequently we trained the CV model by feeding it with manually coded data to 

identify such images, thereby inferring the landscape's aesthetic value as indicated. 
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Under this framework, eleven coding themes were identified, indicating 6 CES categories 

(Table 4.1, based on Milcu et al.’s [2013] work). Each coding theme also needed enough 

data of minimum 100 images for training as required by Vertex AI. Landscape aesthetics 

were primarily denoted by coding themes of ‘landscape’ and ‘natural features’. Other 

themes like 'human in nature' and 'object in nature' in which the landscape serves as a 

background also indicate aesthetic appreciation for the landscape. The concepts of sense 

of place and place identity were captured through place-specific features such as signage, 

flags, or landmarks (e.g., bridges, railroads, statues, dams), and sense of home that was 

coded to identify the images showing private houses and their proxies for ownership and 

belongingness. Recreational value was implied by the category of general ‘recreational’ 

and ‘dog walking’. We separated dog walking from other recreations because it was 

pervasive across various locations and might have a close connection with sense of home. 

Social relations were reflected directly from social events and gatherings. Cultural 

heritage values were identified by historical sites and buildings and the agricultural 

practices presenting rural cultural heritages (Swinton et al., 2007). 

The training dataset was coded by two coders (YC and KM) based on the codebook 

(Appendix E). We randomly selected 1563 images1 and both coders independently 

categorized them into the 11 feature-based coding themes; multi-category coding was 

allowed. Disagreements accounted for 8.2%, and there was an additional 3.3% where at 

least one of the coders was unsure. Agreements were reached after discussions with a 

third person (KS). We originally included spirituality and religion services that were 

coded by relevant activities or buildings. However, there were insufficient images to train 

the model for this category. 

  

 
1 Initially, 1,500 images were randomly selected. However, to meet the minimum requirement of 100 
images per category for training, an additional 63 images were added. Categories were multi-coded. 



57 

 

 

Table 4.1 Coding themes and cultural ecosystem services (adapted from MEA, 2005; more details can be found 
in Appendix E). 

Coding themes 

(# of images coded in 

training dataset) 
Main coding criteria 

Cultural 

ecosystem 

services 

Description (adjusted to 

suit research purpose) 

(Natural) Landscape (150) The image mainly 

focuses on aesthetic 

appreciation of the 

natural landscape and 

there is no indicator 

to assign this image to 

any other category. 

Aesthetic values People find beauty or 

aesthetic value in various 

aspects of ecosystems, as 

reflected in scenic drives 

and the selection of taking 

pictures, including using 

nature as a backdrop for 

pictures of people and 

things. 

(Cardoso et al., 2022; 

Mouttaki et al., 2022; 

Richards & Friess, 2015) 

 

Natural features (300) The image aims to 

appreciate the natural 

features (e.g. animal 

and plant) in detail or 

at the focus point. 

Human in nature (158) The image shows the 

person(s) in the place 

without indicators for 

specific activities or 

purposes (except for 

being in the place). 

Object in nature (121) The image shows 

inanimate object(s) 

using landscape as 

photo setting. 

Place-based features 

(213)  
The image shows 

place-based features 

such as signage, flag, 

and landmark. 

Sense of place 

and identity 
People recognize features of 

their environment that 

represent a strong identity 

to them like their home 

place or memories attached 

to a place. 

(Chen et al., 2020)  

Sense of home (100) 

Recreational (245) The image shows 

recreational activities 

or equipment. 

Recreation People often choose where 

to spend their leisure time 

based in part on the 

characteristics of the natural 

or cultivated landscapes in a 

particular area. 

(Fox et al., 2021; Lingua et 

al., 2022) 

Dog walking (170) 
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Social relationship (194) The image shows 

social gatherings and 

events, or people 

with intimacy (e.g. 

arm in arm, hug, kiss, 

etc.) 

Social relations Ecosystems influence the 

types of social relations that 

are established in particular 

cultures/places. 

(Riechers et al., 2016; Xin et 

al., 2020) 

Historical features (163) The image shows 

historical site or 

building, or activity. 

Cultural heritage 

values 
Many societies place high 

value on the maintenance of 

historically important 

landscapes, such as 

historical sites and 

agricultural traditions. 

(Power; 2010; Richards & 

Friess, 2015; Swinton et al., 

2007) 

Agriculture (148) The image shows 

agricultural land, 

activity, or 

equipment. 

 

4.2.4 Model training and performance, and CES prediction 

Utilizing the coded images as the training dataset, we trained a model through the Vertex 

AI platform. The 1563 images manually labelled (Table 4.1 shows details for each coding 

theme) were split into: 80% for training (1247), 10% for validation (157), and 10% for 

testing (159). The trained model was then used to predict all valid photos which were 

automatically assigned to one or multiple coding themes. Only those with a confidence 

score higher than 90% were kept. As a result, based on this threshold, 5406 images 

(90.6% out of valid images) coded with at least one theme in Site C, 2371 in Oldman 

(89.9%), and 7738 in Mactaquac (85%). 

The prediction results (show in Table 4.2) were displayed by the average percentage of 

each coding theme per study case that was calculated as follows (using agriculture in Site 

C as an example): 

Average percentage of agriculture in Site C = 

sum of images predicted with agriculture in Site C (3 valid geo-tags) / sum of total valid 

images in Site C (3 valid geo-tags) 

And, CES richness aims to show that one place may provide multiple CES. It was 

calculated as follows: 
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CES richness (average coding themes per image) = 

sum of themes coded from valid images in Site C (3 valid geo-tags) / sum of total valid 

images in Site C (3 valid geo-tags) 

or 

CES richness for images have at least one theme coded= 

sum of themes coded from valid images in Site C (3 valid geo-tags) / sum of images have 

at least one theme coded in Site C (3 valid geo-tags) 

4.3 Results 

4.3.1 Model training results 

The average precision (calculated by the area under the precision-recall trade-off curve) 

for the whole training set was 93.8%, the precision (the percentage of predictions that 

were correct or true positive) was 92.9% with the confidence threshold at 90% (this 

threshold will also be used when analyzing predicted results), and the recall was 77.3% 

(the percentage of all ground truth items that were successfully predicted by the model). 

For each coding theme, the precision at 90% confidence threshold was landscape 

(85.7%), dog walking (100%), human in nature (91.7%), historical features (87.5%), 

sense of home (87.5%), agriculture (100%), place-based features (100%), object in nature 

(100%), natural features (85.7%), recreational (93.8%), and social relationship (94.4%). 

However, there is no universally agreed-upon threshold for what constitutes a sufficiently 

well-performing model; this can vary depending on user expectations and the baseline 

performance achievable by humans (Kay et al., 2015). In this case, the 8.2% 

disagreement rate and an additional 3.3% uncertainty in manual coding can serve as a 

reference. The precision of 92.9% at a 90% confidence threshold is comparable. 

4.3.2 CES prediction results 

4.3.2.1 Comparison among study areas 

In Mactaquac, there were 26 geo-tags for data collection, of which 14 had over 100 valid 

landscape images and 4 had over 1000 (Woodstock, 2197; Mactaquac Provincial Park, 
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1593; Hartland, 1288; and Kings Landing, 1187). Site C had fewer geo-tags (5 in total) 

with most valid images concentrated in Fort St. John (5781), followed by Hudson’s Hope 

(907) and Bear Flat (55). Oldman had 4 with only two yielding large datasets: Pincher 

Creek (2526) and Cowley (470). To minimize bias from smaller geocode datasets, the 

analysis and discussion will focus only on the larger datasets (those geocodes with >=100 

images for Mactaquac, and >=50 for Site C and Oldman). More detailed results for each 

study area are available in Appendix F. 

Mactaquac had the largest dataset with 9139 images and the most themes coded at 8957, 

followed by Site C with 6743 images and 5951 themes, and Oldman with 2996 images 

and 2568 themes (Table 4.2). CES richness was highest in Mactaquac (0.98 coding 

themes per image for all valid photos; and 1.1 for images have at least one theme coded), 

followed by Site C (0.88, 1.08) and Oldman (0.85, 1.15). Mactaquac also had five coding 

themes with over 10% prevalence where the other two sites only had three. Aesthetic 

value relates to coding themes of landscape, natural features, humans in nature, and 

objects in nature. There were no significant patterns indicating impacts from damming on 

the landscape. Natural landscape images were slightly more prevalent in Oldman 

(19.3%), while the other three themes were more concentrated in Site C. Place identity is 

interpreted through themes of place-based features and sense of home, as defined in Table 

4.1. Mactaquac had the highest percentage of place-based features (13.4%), with no 

notable difference in sense of home across the areas. Recreational activities were more 

frequently identified in Mactaquac (8.8%). Dog walking was slightly higher in Site C 

(6.6%). Social relationships, including social events and gatherings, were more prominent 

in Site C (13.5%). Historical features were mostly coded from Mactaquac (12.7%), while 

agricultural heritage was most concentrated in Oldman (18.2%). 
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Table 4.2 Average percentage of coding themes in study areas (top 3 bolded for each case; highest site for each 
coding theme shaded). Note that the columns will not sum to 1 because images could be categorized in more 
than one theme (or none). 

 Site C, BC Oldman, AB Mactaquac, NB 

Total valid Image# 6743 2996 9139 

Image# coded with >= 1 theme at 90% 

confidence score 

5406 2371 7738 

Coding theme# 5951 2568 8957 

Coding themes:    

(Natural) Landscape 16.5% 19.3% 18.0% 

Natural features 19.3% 17.4% 16.5% 

Human in nature 5.6% 2.8% 4.5% 

Object in nature 4.1% 1.9% 1.5% 

Place-based features 4.8% 6.3% 13.4% 

Sense of home 2.7% 1.6% 2.4% 

Recreational 7.5% 4.6% 8.8% 

Dog walking 6.6% 4.2% 5.0% 

Social relationship 13.5% 6.6% 10.2% 

Historical features 1.4% 2.6% 12.7% 

Agriculture 6.3% 18.2% 5.0% 

CES Richness for all valid images 0.88 0.85 0.98 

CES Richness for images have at least 1 

theme coded 

1.10 1.08 1.15 

 

4.3.2.2 Results for Mactaquac 

This subsection will focus only on the results in Mactaquac; additional details are 

available in Appendix F, which includes tables for each study area displaying results by 

coding themes and geo-tags. The Mactaquac case was selected for detailed examination 

due to its distribution across 14 geo-tags, all very proximate to the dam and reservoir, 

suggesting reduced bias as no single geo-tag dominates the dataset. 

In Mactaquac, CES richness exceeded 1 in four geo-tags, specifically Hartland (1.164), 

Nackawic (1.004), Bear Island (1.031), and Kings Landing (1.073): the first two are a 

historical town and a town built alongside the dam over 50 years ago to house those 

relocated from the area of reservoir inundation, Bear Island is a rural community and 

campground, and Kings Landing is a tourist site and historical re-enactment site 

comprising historic houses. In terms of aesthetic coding themes, seven geo-tags had over 

20% of images coded by natural landscape and six by natural features, with the most 
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prominent being Mactaquac Provincial Park, Davidson Lake (characterized by cottages 

and second homes on a lake near the reservoir), rural areas like Dumfries and Prince 

William, and Bear Island’s campsite. Place-based features were primarily identified in 

upstream old towns such as Hartland (37.3%), Woodstock (11.8%), and Meductic 

(12.3%), as well as in the newer town of Nackawic (31.9%). Agriculture was most 

prevalent (16.7%) in Kings Landing, which simulates early settlement farming activities, 

which also recorded the highest percentage of historical features (49.6%). Sense of home 

was identified highest in rural areas like Dumfries and Keswick Ridge. Recreational 

activities were most frequently identified in tourism parks like Woolastook Park (26.3%) 

and Mactaquac Provincial Park (20.4%), as well as at Davidson Lake (23.5%). 

4.4 Discussion 

4.4.1 CES provision 

Aesthetic value may not be widely impacted by long-term damming. 

Damming a natural landscape may not necessarily diminish its aesthetic value over time, 

especially regarding the appreciation of expansive, unobstructed views. This observation 

emerges from comparing three study areas: the highest frequency of natural landscape 

views was captured in Oldman, dammed 32 years ago, followed by Mactaquac, dammed 

for 56 years, and lastly, the pre-dam landscape in Site C. The numerical differences were 

not substantial, which can be explained by Ioannidis and Koutsoyiannis (2020) who 

suggested that artificial reservoir-based landscapes can eventually be perceived as 

'natural.' Jørgensen (2017). Keilty et al. (2016) also discussed how 'nature' can be 

variously interpreted, allowing people to accept dammed landscapes as natural. A slight 

potential decline in the experience of aesthetic landscapes due to dam construction might 

be inferred from the more frequent appearance of 'human in nature' and 'object in nature' 

themes in the pre-dam landscape of Site C compared to the dammed landscapes in 

Oldman and Mactaquac. In our study, these coding themes often depicted individuals or 

man-made items within the natural scenery, likely chosen for their perceived beauty as 

backgrounds, as also suggested by Kaiser et al. (2021). This is consistent with 

interpretations of users' behaviors and expectations when sharing content on social 

media, particularly on Instagram. Lee et al. (2019) suggested that anticipation of 
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encountering picturesque natural locales, as might be expected for Site C in a pre-

dammed state, leads to a higher prevalence of nature-centric images on social platforms. 

However, as noted by Art et al. (2021), a common trend of emphasizing appealing 

landscapes in social media posts can result in the prevalence of such images across study 

areas, whether there was a dam or not. Gugulica & Burghardt (2023) also observed that 

aesthetic appreciation was more prominently identified in Instagram posts than on Flickr. 

A 3-point chronosequenced approach like the one we used is not temporally granular 

enough to detect the aesthetic impacts immediately post-dam, but this will soon be 

possible for Site C.  

While the presence of an energy facility often reduces the aesthetic appreciation of a 

place, the impact is generally less significant for hydroelectric dams compared to more 

visible energy infrastructure like wind turbines (Gee & Burkhard, 2010; Ioannidis & 

Koutsoyiannis, 2020). In Mactaquac, for instance, the natural landscape coding theme 

was most frequently identified in the natural setting of Davidson Lake (not on the 

reservoir) and the theme of natural features at Bear Island, a campsite well upriver from 

the dam infrastructure. However, landscape aesthetics near the dam did not show a 

marked decrease compared to points upriver, as open landscape views were still 

commonly captured (details in Appendix F). This suggests that the impact of 

hydroelectric dams on aesthetic values might be subtle and limited to areas within visible 

range of the infrastructure itself, although even that can be difficult to identify up close 

from the reservoir side (Chen et al., in review). 

Sense of place and place identity impacts can be quite place-specific. 

The findings of our study may indicate a trend where locations dammed for longer 

periods are more likely to feature place-based elements, suggesting an enhanced sense of 

place and place identity. However, the key determinant appears to be the settlement 

history of the location rather than the presence of the dam, as evidenced by the 

prevalence of place-based features in older towns upstream in Mactaquac. Some elements 

contributing to the symbolic value of a place and its identity may be compromised by 

hydroelectric developments. A notable example, Kings Landing near Mactaquac, involves 

historical buildings that were rescued to avoid reservoir flooding, subsequently 
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transforming the area into a heritage site for visitors in the dammed era (Lawson et al., 

1985). 

The concept of 'sense of home' might remain stable despite the damming of a river if it is 

strictly linked to residential settlements (as per our coding guide), since no notable 

differences existed across study areas. Yet, a broader interpretation of sense of home 

might include individuals' farms, workplaces, and family connections (Stephenson, 

2008). Damming may preserve sense of home by promoting community development and 

enhancing population density. Sherren et al. (2016) spoke to locals in the Mactaquac area 

and found people perceived the long-dammed place as home as long as they were still 

living there. A sense of home was not observed to be high in Oldman where remains 

primarily an agricultural community without expansive industrial development or 

urbanization (Chen et al., 2024). It was not possible to have a longitudinal comparison 

with the data before damming, however, relocation due to reservoir flooding can be a 

reason for losing sense of home (Million, 1992). Furthermore, our results suggest that 

sense of home could be more prominent in rural areas in Mactaquac, where other CES 

aspects like recreational opportunities and specific landmarks may be less prevalent. 

Recreation may thrive if venues are provided. 

Introducing a hydroelectric dam and reservoir into a landscape typically creates new 

construction and opportunities for sports and recreational activities (World Commission 

on Dams, 2020), as seen in the Mactaquac dataset where such activities were more 

prevalent compared to other study areas. However, the mere presence of a dam and 

reservoir does not automatically enhance recreational value. For example, in Oldman, 

recreational activities remained sparse due to the continued dominance of agricultural 

practices, despite the construction of the dam and the establishment of a provincial park. 

Additionally, the availability of recreational values may not be directly tied to proximity 

to dam infrastructure but is more often associated with locations that provide suitable 

venues or facilities. In Mactaquac, notable recreational spots include Davidson Lake, 

favored for water-based activities like boating, and the two provincial parks near the dam. 

Although agricultural lands can present significant opportunities for agritourism (Power, 
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2010), it was not evident in our dataset except for the simulated farming at Kings 

Landing near Mactaquac. 

Settler-focused cultural heritage values can survive. 

It was not surprising that settler-focused cultural heritage values were most evident in 

Mactaquac, particularly due to the presence of Kings Landing, a popular historical 

tourism site, and Hartland, home to the world's longest covered bridge since 1901. The 

agricultural heritage of an area can be compromised by the introduction of a hydroelectric 

dam and its reservoir, especially when fertile lowlands are submerged. In Mactaquac, 

agricultural lands and scenes were least represented, with the most pertinent images 

coming from Kings Landing, where farming scenes are recreated for tourism. In contrast, 

the extensive history of farming in Site C and Oldman positions agriculture as a 

fundamental aspect defining both the place and its people. Although agriculture primarily 

provides food, fuel, and fiber, it also offers diverse cultural services such as aesthetic 

rural landscapes, the cultural heritage of farming practices, and opportunities for 

agritourism (Power, 2010; Swinton et al., 2007). Apart from images from Kings Landing 

in Mactaquac, categorizing other images definitively under agricultural heritage or 

recreational values when coding training dataset proved challenging. For instance, an 

image of a man riding a horse could ambiguously represent either a recreational activity 

or a working scene, depending on the context. In addition, cultural services and values 

related to Indigenous groups were rarely represented in this study due to the data nature, 

though three study areas included Indigenous lands and people. 

4.4.2 Implications for hydroelectric landscapes 

Damming a river can adversely affect certain CES, yet it may also enhance its overall 

CES diversity and richness, as evidenced by the high CES richness in the long-dammed 

landscape of Mactaquac. Areas with a long history of settlement, diverse communities, 

and various industries tend to offer a wider and more varied range of CES and thus 

deserve special consideration during the assessment of hydroelectric dam projects. For 

example, the old towns identified in Mactaquac exhibited higher CES richness. 

Stephenson (2008) emphasized the importance of "time-thickness" in landscapes, which 

enhances people's perception and appreciation of a place by connecting the present to the 
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past; inappropriate development can disrupt these historical connections, but advance 

planning (as for Kings Landing) can reduce such disruption. However, it is important to 

note that Indigenous history and practices can be underrepresented when using social 

media data to assess CES, as evidenced in this study where only a few images may 

indicate relevant content. 

Another key point is that evaluating the effects of landscape changes such as 

development on CES provision needs to be tailored to individual cases; while 

overarching insights and comparisons between different cases can aid in understanding 

and predicting changes, the specifics can vary from one case to another and obfuscate the 

impacts of development. Establishing a baseline understanding of the area's existing CES 

is crucial such as using conventional media to capture longitudinal pictures (Pimentel da 

Silva et al., 2021). Subsequent planning and management after dam construction are vital 

for preserving and enhancing CES provision, advocating for the establishment of 

sustainable tourism that harmonizes with local natural resources and cultural heritage 

(Albrecht et al., 2024; Stamatiadou et al., 2023). Provincial parks are examples of the 

former, and Kings Landing in Mactaquac exemplifies the latter. Indigenous CES 

outcomes require much more in-depth and fine-grained attention than is possible using 

CV.  

4.4.3 CES assessment via social media images and custom-trained CV tools 

The innovative methodology is a key focus of this study, offering valuable insights for the 

broader research community interested in social media data and CV tools. To address the 

objective outlined earlier—evaluating the feasibility of training an CV model to assess 

CES in hydropower-related landscapes—we will discuss the methodology with respect to 

the following questions: 1) Is it feasible and worthwhile to train a CV model to analyze 

social media images? 2) Does this model effectively capture CES based on assumptions 

about connections to physical landscape features? 3) What are the directions for future 

research in this area? 

Firstly, it is feasible and beneficial to explore such a method. The primary reason is the 

robust results from model training and the meaningful interpretation of the prediction 

results by the trained model as discussed above. Utilizing the Vertex AI platform to assess 
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CES provision through feature-based coding themes achieved a high average accuracy 

(93.8%). Labor and time investments included coding a training dataset of 1563 images 

by two coders over one month, with the training process taking 3 hours and prediction for 

18,831 images taking 10 hours. The monetary cost other than data gathering and human 

labour was 95.50 USD for training and 95.99 USD for deploying (cost for data gathering 

can be found at Chen et al., 2024). Overall, such CV tools are time and cost-effective for 

large datasets. 

CES evaluation has developed over decades, incorporating a variety of assessment 

methods, some of which have been established through the introduction of new data 

sources and technologies. Nevertheless, neither social media data nor artificial 

intelligence technologies can fully replace traditional, established approaches. Social 

media data can serve as a supplementary resource, helping to address gaps or mitigate 

some of the drawbacks inherent in conventional methods such as interviews, surveys, and 

public participation GIS (PPGIS)—these include the underrepresentation of younger 

demographics, low response rates, and biases introduced from preset questions (Chen et 

al., 2018), and the extensive time and resources required for data collection (Langemeyer 

et al., 2023). Platforms like Instagram offer fresh perspectives on everyday life and local 

lifestyles that traditional data sources like maps, aerial photographs, and satellite images 

cannot provide (Gugulica & Burghardt, 2023; Skokanová et al., 2021). Kaiser et al. 

(2021) utilized interview results to affirm that social media predominantly showcases 

daily activities in the landscape, especially in non-touristic areas. While traditional 

methods such as surveys and interviews can be designed to provide valuable longitudinal 

data, typically they capture only temporal and spatial snapshots (Gee & Burkhard, 2010; 

Tajima et al., 2023). The dataset in this study, spanning from July 18, 2011, to May 30, 

2021, offers a decade-long perspective that could be pivotal for monitoring shifts in CES. 

Future research might explore these chronological changes more comprehensively; a 

particular opportunity exists to continue to monitor Site C following the filling of its 

reservoir later this year. That said, changes to platform rules or demographic use can also 

affect longitudinal datasets.  
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The limitations of using social media data in CES assessment should be carefully 

considered, relating to the second question regarding the use of a feature-based coding 

strategy based on selected CES categories instead of directly coding services. It's crucial 

to acknowledge that social media data may not effectively represent all CES categories. 

Intangible CES categories such as spiritual values, inspiration, education, arts, life-

sustaining, therapeutic/health, intrinsic/existence, and wilderness/pristine values are less 

feasible to identify, not only through social media data but also through some 

conventional methods like PPGIS (Daymond et al., 2023; Vieira et al., 2021). 

Additionally Indigenous cultural heritage is less identifiable in such datasets than built 

settler-based heritage. This limitation was evident in our research, where spiritual value, 

education, and arts were underrepresented in the dataset, as also seen in previous research 

using Instagram data (Chen et al., 2020). Other CES categories suggested in social media 

images can only be imperfectly inferred based on tangible features, such as a wide-open 

landscape photo for aesthetic value (Mouttaki et al., 2022). Otherwise, interpretations can 

be overly subjective if depending on the researcher's judgment of what constitutes beauty 

in a landscape. 

Furthermore, intrinsic biases in social media data include the lack of socio-demographic 

information, which can restrict its utility for policymaking, such as demonstrating the 

disproportionate impacts of landscape changes on various groups (Kaiser et al., 2021; 

Kosanic & Petzold, 2020). This issue might be mitigated through a data donation 

approach, where users voluntarily provide their data from social media platforms for 

research purposes, but this is difficult to achieve at scale (Chen et al., 2024). Additionally, 

the instability of social media platforms' policies and APIs poses challenges for 

longitudinal research (Kaiser et al., 2021). Before 2018, precise locations of Instagram 

photos were accessible; now they are not, and collecting these photos has become 

increasingly difficult. Consequently, this leads to an imbalance in data collection, 

favoring platforms like Flickr that are easier to utilize for data gathering (Vieira et al., 

2021). 

Artificial intelligence technologies are particularly effective when handling large 

datasets, which explains their widespread use with social media data (Mouttaki et al., 
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2022; Vieira et al., 2021). The advanced capabilities of CV tools allow for an analysis 

based on photo content, providing insights into CES assessment beyond mere counts of 

posts, a method prevalent in earlier research (Langemeyer et al., 2023; Sherren et al., 

2017). However, when we initiated this research in 2021, computer vision tools faced 

significant limitations, particularly in distinguishing relevant landscape photos from 

irrelevant ones like selfies or indoor photos, necessitating labor-intensive manual work. 

Computer vision models are primarily feature- and statistic-based, making them adept at 

recognizing or categorizing images based on tangible distinctions. A crucial principle is 

that if the training dataset's codebook is confusing for human coders, it will likely 

confuse the CV model even more. This limitation also explains why CES categories were 

often coded based on physical features. Yet, challenges arise in nuances, such as 

differentiating between a year-round house and a summer vacation home using these 

models. There is also a risk of self-evidence in the interpretation of results: for instance, if 

a historical building (or in our case, historic covered bridge) is coded as an indicator of 

historical features, it's expected that this location will show a high concentration of such 

features in the predictive results. Therefore, researchers must interpret results with 

caution. 

In our longitudinal research on hydroelectric landscapes, we utilized various methods to 

analyze social media image data, including manual coding (Chen et al., 2018; 2019; 

2020), pre-trained CV models (Chen et al., submitted), and custom-trained CV models in 

this study. Due to the typically large size of social media datasets and the advancements 

in CV technologies, we generally do not recommend manual coding unless the dataset is 

small and requires detailed analysis. The use of a pre-trained model to detect an image is 

largely limited by its preset labels, which are mostly based on physical features. Another 

study analyzing the same dataset with a pre-trained CV model identified 1704 unique 

labels, ranging from high-level concepts like 'landscape' and 'nature' to detailed ones like 

'damselfly' (Chen et al., submitted). Categorizing these labels into CES categories would 

be challenging and time-consuming. Custom-trained CV models show more promise for 

future applications, particularly as commercial platforms develop user-friendly training 

tools. However, manual coding for training data remains a burden, though its higher 

quality will enhance training results. Another potential direction for future research is to 
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incorporate different types of data, such as textual captions and comments, which were 

not utilized in this study. Textual data can help address some limitations of passive 

crowdsourcing of imagery data, providing insights into CES categories like spirituality 

and education that are less easily captured through images alone (Chen et al., 2020; 

Gugulica & Burghardt, 2023). 

4.5 Conclusions 

This paper illustrates the use of large-scale social media image data and a custom-trained 

computer vision model to evaluate CES provision as a tool for SIA across three study 

areas at different stages in the lifecycle of hydroelectric dams: pre-dam, 32-year, and 56-

year damming landscapes. The results demonstrate the model's ability to categorize visual 

content based on landscape feature-related themes, achieving an average precision 

93.8%, with some themes reaching 100%. The findings from the hydroelectric dam 

landscapes show that meaningful patterns can be discerned using this method regarding 

aesthetic value, place identity, recreation, and cultural heritage values. However, it is 

important to note that this approach cannot replace traditional first-hand methods like 

interviews and surveys, such as for the purposes of SIA. Indigenous impacts are 

particularly invisible. Social media data should be seen as providing a supplementary 

perspective, especially given their demographic and temporal biases. CV models 

currently have limitations, such as a reduced capability to identify subjective concepts 

and a tendency to overlook small details. A key challenge for researchers is integrating 

social media data and computer vision technology into the CES assessment framework to 

achieve a more comprehensive understanding of CES provision. To achieve this, future 

studies should explore diverse tools and models, combine various types of online data 

(such as text, images, videos, and metadata), and develop reliable CES indicators that can 

be analyzed through social media data.  
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Chapter 5 Conclusion 

This dissertation has two main objectives:  

(1) To explore methodological innovation for SIA by retrieving alternative data 

sources and applying computer vision-based analysis models; 

(2) To understand social impacts caused by large hydroelectric dams and their 

reservoirs, providing insights for decision-making processes in similar projects. 

This chapter will conclude this dissertation following the two objectives, respectively, 

integrating key findings, contributions and recommendations for further work. 

5.1 SIA methodological innovation  

This dissertation research project began in 2018 and quickly encountered challenges in 

the post-API era when the previously used data collection tool, Netlytic, discontinued its 

Instagram service. Several alternative approaches were tested and failed until self-

developed web scraping scripts successfully retrieved data from Instagram by geotags. 

Although progress has been made with the recent introduction of research APIs from 

platforms like TikTok, Meta, and others, researchers still struggle to obtain social media 

data in a suitable format without legal and privacy concerns. The discussion of the eight 

approaches tested in this dissertation provided insight into the advantages and limitations 

of each. It became clear that collaboration among government, technology companies, 

and academia is essential to improve access to social media data for research purposes. 

Government leadership is particularly crucial in providing a safe and regulated 

environment. For example, the Digital Services Act, approved by the European 

Parliament in 2022, establishes rules for social media and search engine data access for 

research purposes (Joint Research Centre, 2023). However, it is important to note the 

limitations and biases in social media data, such as demographic biases (more young 

users), spatial biases (less data from rural areas) and positive biases (lifestyle posts tend 

to be positive). Therefore, social media data should be seen as supplementary rather than 

a substitute for conventional data sources like census data, surveys, and interviews. 
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Two computer vision approaches were used to understand the social impacts of 

hydroelectricity, demonstrating the potential of applying these state-of-the-art 

technologies in real-world cases, a relatively unexplored area in social impact studies. 

Using different approaches for the same dataset reveals how they can be used more 

efficiently. The meaningful patterns identified through the pre-trained model indicate its 

suitability for detecting direct and physical feature-based elements in visual content. Our 

success in custom-training a computer vision model highlights its potential to understand 

complex and sophisticated concepts like CES provision in landscapes through large-sized 

social media images. However, there is no simple answer to choosing between a pre-

trained or a custom-trained computer vision model when generalizing to other research. 

The decision depends on research goals, timeline, budget, and data. Pre-trained models 

may seem easy to use initially because they do not require the effort of preparing a 

training dataset or knowledge of computer vision algorithms and programming 

languages. However, the workload increases when dealing with numerous labels and the 

noise from irrelevant and incorrect labels which can obscure key information. 

Conversely, a custom-trained model is labor-intensive at the beginning, requiring careful 

preparation of the training dataset and tuning of the model. Once successfully trained, it 

can be directly used on similar datasets to obtain categorical results.  

Another insight lies in the choice between manual and automatic approaches. Manual 

approaches require significant effort but offer precise control over the meaning-extraction 

process, allowing for the identification of multiple layers of meaning. Manual processes 

can also more easily identify cryptic elements such as dam structures, which can be 

overlooked or mistaken for other infrastructure by computer vision (e.g., a reservoir 

versus a lake). Automatic approaches can handle larger datasets more efficiently but may 

be more suitable for seeking specific features. The cost of using commercial tools like 

Google Cloud Platform is reasonable: $3,000 USD in research credits were received over 

three years, but only 15% of the credits were utilized for data analysis in this research. 

While current artificial technology can detect subjective and subtle concepts to some 

degree, it is not as agile as humans in distinguishing them. However, considering how 

rapid the recent development has been in the artificial intelligence area, it will be 

interesting to see how far it can go toward matching human analysts. 
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This research also brings insights for methodological innovation in SIA. First, it 

demonstrates the validity of image-based impact assessments, contrasting with traditional 

language-based methods like surveys and interviews, or metadata-based social media 

data usage, such as simply counting posts without analyzing content (e.g., value is 

assumed by the appearance of a post without investigating post contents, as observed in 

Chen et al., 2023). Visual content reveals patterns that cannot be fully captured by other 

data types. Second, the space-for-time substitution approach, also known as comparative 

SIA, can be employed when longitudinal data is difficult or expensive to obtain from 

conventional sources (Asselin & Parkins, 2019; Pickett, 1989). Comparing cases with 

similar situations and features can indicate how a place may be impacted by development 

by learning from how it has played out elsewhere. Third, the models tested in this 

research can serve as successful exemplars for other applications of computer vision 

technology and social media data in SIA research and practice, such as other renewable 

energy projects like wind which also bring landscape changes. Additionally, the 

innovative approaches in this study may contribute to two further layers of social impact 

assessment in the future: 1) monitoring real-time impacts (social media data provides 

real-time updates and computer vision analysis is faster than human analysis); and 2) 

longitudinal research: social media could offer consistent data for longitudinal studies for 

events occurring after 2006 (the advent of social media, or 2010 when it became more 

prevalent). 

Future research could consider combining different types of data, encompassing various 

sources (e.g., conventional and big data; social media data from different platforms) and 

formats (e.g., text, images, videos, and metadata). Each data type has its limitations: 

conventional methods can be difficult to engage young participants in the digital era, 

while social media data may lack perspectives, such as the Indigenous communities 

affected by the dams in this study. To integrate social media data and computer vision 

models into the existing SIA framework, future researchers need to identify gaps these 

methods can fill, additional insights and implications they can bring, and how they can 

make SIA a more reliable and rigorous process for planning and managing large projects. 

Another direction is to investigate how the public perceives and accepts the use of their 

data in public-good research. The future direction of custom-trained models lies in their 
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potential to identify more subjective themes, which was not fully achieved in this study 

where CES was indicated through feature-related coding criteria. Specific questions may 

arise, such as whether future computer vision models can identify very subjective 

concepts without relying on physical indicators (e.g., determining if a landscape in a 

photo is beautiful) and whether such models can identify key information while filtering 

out noise (e.g., identifying a small hydroelectric dam facility in the background, which 

was a hurdle in this study). Future AI tools should facilitate human-machine 

communication in natural language and operate on user-friendly interfaces. The evolution 

from deploying computer vision generative models through coding scripts to using the 

Midjourney Discord interface and now Dall-E 3 in ChatGPT illustrates this trend. 

5.2 Hydroelectric social impacts 

This study identified a broad trend of social acceptance of hydroelectric landscapes in 

long-dammed areas, but the results also underscore the importance of case-specific 

characteristics in understanding the cultural and social value of these landscapes. The 

results highlight the significance of reservoirs, despite their artificial nature, and the 

recreational lifestyles they foster among locals. These findings align with the concepts of 

social acceptance of energy discussed by Wüstenhagen et al. (2007), where acceptance 

can increase after deployment. The Mactaquac project, once controversial during its 

construction (Lawson et al., 1985), now benefits locals by reshaping lifestyles around 

increased water accessibility and recreational activities. However, place-specific 

characteristics play an important role in this process, as demonstrated by the different 

outcomes in Oldman, where ongoing agricultural practices create a contrast with 

Mactaquac. 

Despite these differences, this research holds pragmatic value for the recently constructed 

Site C dam by providing insights into how people might perceive and use the new 

landscape, drawing from the findings of older dams like Oldman and Mactaquac. Given 

Site C's history of agricultural practices, the current situation at Oldman may offer a more 

relevant perspective on its future. If the future of Mactaquac is locally desirable, tourism 

and industry development could help to enhance such a goal. These implications can be 

generalized to other hydroelectric projects with similar developments and features, but 
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caution is needed to account for the unique characteristics of each case that can influence 

outcomes. 

However, as mentioned earlier in this section it is important to consider the limitations of 

social media data, which may present a positive bias toward hydroelectric landscapes, 

especially data retrieved from Instagram where users tend to share scenic views. We do 

not see posts from those who have left the region, for instance, perhaps because of 

displacement or trauma, and there is comparatively little from those who are unhappy 

with the landscape. Therefore, social media insights should be triangulated with other 

data sources, such as news media, public opinion surveys and Indigenous engagement, to 

provide a more balanced perspective (Pimentel da Silva et al., 2021). This understanding 

can guide future research towards mixed methods studies. 

5.3 Summary 

In conclusion, this dissertation compared three different hydroelectric landscapes in 

Canada – pre-dam, 32-year, and 56-year dammed – and indicated changes in social and 

cultural values, confirming that reservoirs and long-dammed landscapes can be positively 

perceived by people; thus, hydroelectric projects need further investigations in decision-

making processes in the future. It also explored two computer vision models (pre-trained 

and custom-trained) to analyze social media images for SIA. These models showed high 

accuracy in identifying meaningful patterns, though limitations still exist. This work sets 

the foundations for many possible research directions in SIA innovation, hydroelectricity 

landscape change, and applied computer vision. It also provides examples of uncovering 

patterns using large-scale passive crowdsourced image data to assess social impacts and 

inform decision-makers.  
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Appendix C: Location name and ID for data collection (X: longitude, Y: latitude) 

Site Name Site ID Y X 

Mactaquac Provincial Park 4146896 45.96117 -66.8948 

Mactaquac 965634720 45.9788 -66.6276 

Woolastook Park 2072336633008070 45.86425 -66.8986 

Keswick Ridge 1032136740 46.00255 -66.8746 

Kingsclear 315405255 45.85424 -66.9285 

Upper Queensbury, New Brunswick 139911169373043 45.99558 -67.2076 

Queensbury Parish, New Brunswick 409880646 45.96757 -67.0146 

Kings Landing, New Brunswick 16565482 45.87976 -66.9774 

Prince William, New Brunswick 430746127 45.91998 -67.0514 

Bear Island (New Brunswick) 108158722546469 45.92232 -67.0263 

Davidson Lake (sjö i Kanada, New 

Brunswick) 

1956126391279140 45.93943 -67.1549 

Dumfries, New Brunswick 809660864 45.9618 -67.1418 

Nackawic, New Brunswick 258975485 46.00754 -67.2382 

Hawkshaw, New Brunswick 135620713138737 45.97425 -67.2327 

Pokiok, New Brunswick 129194380455217 45.95155 -67.249 

Meductic, New Brunswick 285194361 45.99279 -67.4797 

Northampton Parish, New Brunswick 297048430 46.06671 -67.5478 

Woodstock, New Brunswick 116657058 46.14942 -67.5767 

Woodstock First Nation 289475363 46.11143 -67.5714 

Lower Woodstock, Nouveau Brunswick 253004261379353 46.11726 -67.5835 

Grafton, New Brunswick 139643799399519 46.14778 -67.5621 

Pembroke, New Brunswick 138323019531085 46.18393 -67.5332 

Wakefield, New Brunswick 630774388 46.2341 -67.5164 

Victoria Corner, New Brunswick 1005548118 46.27382 -67.5106 

Hartland, New Brunswick 258264458 46.30179 -67.5223 

Somerville, New Brunswick 339720957 46.30408 -67.54 

Fort Saint John, British Columbia 268647134 56.25327 -120.84 

Attachie, British Columbia 107349732633924 56.21933 -121.433 

Hudson's Hope, British Columbia 267521741 56.03595 -121.899 

Farrell Creek, British Columbia 465407726 56.17737 -121.576 

Bear Flat, British Columbia 417374340 56.27324 -121.227 

Old Man Dam 379665350 49.58311 -113.92 

Pincher Creek 225208439 49.48556 -113.948 

Pincher Station, Alberta 571002191 49.52115 -113.949 

Cowley, Alberta 334100342 49.56811 -114.074 
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Appendix D: Latent Dirichlet Allocation model for label analysis 

All labels detected by Vision API were exported and saved into an Excel spreadsheet with 

columns titled Image (Instagram shortcode), Description (label), and Score (confidence 

of the label detected). Later, we transformed the data format to comma-separated values 

(csv) files. Data collected from different locations were compiled by study areas (Site C, 

Oldman, and Mactaquac). We then utilized a topic clustering model – Latent Dirichlet 

Allocation (LDA) – to identify patterns within the 188,301 labels. LDA is a Bayesian 

model that automatically identifies topics based on the co-presence of certain words in 

textual corpora (Blei et al., 2003), and we use it to identify topics based on the co-

presence of labels for specific images. The analysis was conducted in Jupyter Notebook 

using Python. The script was developed based on Kapadia’s (2019a) work and revised to 

meet the needs of this study. The details of each phase will be presented in the following 

subsections. 

Label data loading and cleaning 

First, comma-separated values files containing labels from each study area were loaded 

as a dataframe. Each image had up to 10 labels detected by Vision API. Labels from the 

same image were grouped together and treated as a single document in subsequent LDA 

model training. There were 3031 documents (labels for each image) in the AB case, 6752 

in BC, and 8980 in NB. A minor portion (2%) of images was excluded due to 

unrecognizable shortcodes (tokenized words were grouped as documents by shortcodes 

and the index). 

Data normalization and tokenization  

Second, data normalization was conducted to make the data more regular and reduce the 

complexity, and thus comparable. Often, this process is used to process natural language 

(e.g., articles), including removing punctuation and stop words (those such as ‘and’ and 

‘the’ that do not add meaning), lower casing, and stemming (finding the root or base form 

of words so that terms such as like, liking, liked can all be clustered together) or 

lemmatization (similar process but based on the meaning of the word). In this case, labels 

were pre-identified categories, and stored as separate words or phrases. We thus skipped 
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the steps of removing punctuation and stemming/lemmatization, because it was not 

necessary to further simplify the textual materials. The documents were then tokenized 

into list data as separate words instead of phrases.  

LDA modeling tuning and training 

LDA model tuning (find the parameters that can guide its learning process to optimize the 

performance) and training (identify the topic clusters) used the gensim library—a free 

open source of topic models including Latent Semantic Indexing, Latent Dirichlet 

Allocation, etc.—unsupervised models that automatically discover statistical co-

occurrence patterns within a corpus (Gensim, 2022). The hyperparameters in the LDA 

model which are used to guide the learning process were tuned by measuring the 

coherence score (Kapadia, 2019b). There are three pre-determined hyperparameters that 

will shape the distribution: the number of topics, alpha, and beta. Alpha and beta define 

the prior distributions of the document-topic and word-topic assignment matrices, 

respectively. The results show the coherence score of the LDA model given different 

combinations of k (number of topics), alpha, and beta. The range of k is 1 to 20, 25, and 

50. The potential values of alpha are 0.01, 0.05, 0.1, 0.2, 0.5, and 1; while that of beta are 

0.01, 0.05, 0.1, 0.2, 0.5, 1, and 1/k (Maier et al., 2018). Also, 10% and 25% of corpus was 

randomly removed and the rest was tested for coherence because it might improve the 

score by deleting noise in the dataset. 

By choosing the highest coherence scores, the hyperparameters were determined 

for the model training process (see Table A1). In the Mactaquac case, the highest 

coherence score was 0.514 achieved by 90% of the corpus. Because the other two cases 

had the highest coherence scores with the complete corpus; to be comparable, we decided 

to use the highest hyperparameters achieved with the complete corpus as well for the 

Mactaquac case: 8 topic numbers while alpha and beta both equal to 1. The coherence 

score is 0.490 which is close to the highest of 75% corpus (0.514). The parameters were 

then used to train the model and cluster the landscape topics by analyzing the processed 

labels. 

Table A1: Model tuning results 
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Study case 
Best coherence 

score 

Corpus 

percentag

e 

K (number of 

topics) 
Alpha 

 

Beta 

The Oldman Dam, AB 0.461 100% 10 0.1 1 

The Site C Dam, BC 0.548 100% 11 0.5 1 

The Mactaquac Dam, NB 0.490 100% 8 1 1 

Reference 
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Machine Learning Research, 3, 993-1022. 

Gensim. (2022). Gensim: topic modelling for humans. 

https://radimrehurek.com/gensim/index.html 

Kapadia, S. (2019a, April 14). Topic Modeling in Python: Latent Dirichlet Allocation 

(LDA). Medium. https://towardsdatascience.com/end-to-end-topic-modeling-in-

python-latent-dirichlet-allocation-lda-35ce4ed6b3e0 

Kapadia, S. (2019b, August 19). Evaluate Topic Models: Latent Dirichlet Allocation 

(LDA). Medium. https://towardsdatascience.com/evaluate-topic-model-in-python-

latent-dirichlet-allocation-lda-7d57484bb5d0 

Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, 

B., Heyer, G., Reber, U., Häussler, T., Schmid-Petri, H., & Adam, S. (2018). 

Applying LDA topic modeling in communication research: Toward a valid and 

reliable methodology. Communication Methods and Measures, 12(2-3), 93-118. 
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Appendix E: Codebook for Coding Themes 

Coding Theme  
(# of images coded) 

Description (focusing on what is valued or 
beneficial to human well-being) 

Criteria 

(Natural) Landscape  
(150)  
   
   
   
   
   

The image mainly focuses on aesthetic 
appreciation of the natural landscape and 
there is no indicator to assign this image to any 
other category. This is a category exclusive to 
others.  

• Wide scale and open landscape  

• Focus of image is view of landscape  

• No humans or pets in image  

• Wild animals are not the focus of the image  

• Artificial objects (e.g., roads, energy facilities which 
are not indicators for other coding themes) do not 
occupy over 40% of the frame  

Natural features  
 (294)  
   

The image aims to appreciate the natural 
features which are captured in detail (close-up) 
or at the focus point.   

• Images showing details of or focusing on wild 
animals, plants, or living organisms  

• (or) images showing details of or focusing on 
natural things (rock, ice, sky, sun, water, tree, etc.)   

Human in nature  
 (158)  

The image shows the person(s) in the place 
without indicators for recreational activities or 
social events and relations. The main value 
comes solely from being in the place.  

• People in the landscape without signs of specific 
activities or social events and relations  

• (if) there are more than one person, they do not 
meet the criteria for social events or relationships  

Place-based features  
(213)  

The image shows place-based features.  • Images showing place-based signage, flag, or 
landmark (e.g., bridges, railroad, statues, dams, 
etc.)  

Object in nature  
(121)  

The image shows the inanimate object(s) in the 
place which is an indispensable part of the 
image.  

• Inanimate manmade objects (e.g., cars, buildings) 
in the landscape which is the focus of the image 
(highlighting to the objects)  

Sense of home  
(100)  

• Images showing private house(s)  

Recreational  
   

The image shows the person(s) doing 
recreational activities or equipment in the 
landscape.  
   

• Images showing people doing recreational 
activities  

• (or) images showing activity equipment, except 
cars, motorcycles or boats  

Dog walking  • Images showing dog(s)  

Social relationship  
 (194)  

The images show social gatherings/events or 
indicators of social relations.  

• Images showing events (e.g., graduation, prom, 
wedding, funeral), or group of people  

• (or) images showing family together (adults and 
kids) or people showing intimacy (arm in arm, hug, 
kiss, look at each other, etc.)  

Historical features  
(162)  

The images show indicators of historical 
values.  

• Images showing historical site or building  

Agriculture  
 (147)  

The images show agricultural landscapes, 
activity, or equipment.  

• Images showing agricultural activities (including 
farming, logging, and grazing), facilities, tools, or 
livestock  

• (or) images showing farmland or meadow (must be 
focus of image or occupy over 40% of frame)  

N/A  
Spirituality and 
religion  

The image shows spiritual and religious 
facilities or activities.  

• Images showing religion activities and buildings 
(e.g., church)  
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• (or) Images showing spiritual monuments and 
activities  

N/A  
Energy infrastructure  

The image shows energy infrastructure (i.e., 
dams, wind turbines, and solar panels).  

• The image shows dams, wind turbines, or solar 
panels.  

*N/A means the number of valid images coded was less than the model training threshold of 100.
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Appendix F: Prediction results for each study areas by geo-tags                                     

 

Tabel A2: Percentage of coding themes in each geo-tag in Mactaquac (=images assigned to the coding theme/total valid image# of the geo-tag); Only 
dataset >=100; CES richness = coding theme#/Image#; top 1 shaded for each coding theme; numbers for each coding theme are percentage) 

 
Hartlan
d 

Woodsto
ck 

Meducti
c 

Nackawi
c 

Davidso
n Lake 

Dumfrie
s 

Prince 
Willia
m 

Bear 
Islan
d 

Kings 
Landing 

Kingsclear Woolasto
ok Park 

Mactaqu
ac 
Provincial 
Park 

Keswic
k Ridge 

Mactaqu
ac 

Characteristics Old 
town 

Old 
town 

Small 
old 
town 

New 
town 

Cottag
e 

Rural Rural Cam
p site 

Historic
al 
tourism 

Indigeno
us 

Tourism 
park 

Tourism 
park 

Rural 
(farm) 

Tourism 
park 
(wrong 
location) 

Image# 1288 2197 154 787 102 159 391 128 1187 694 114 1593 194 151 

Coding theme# 1499 1955 137 790 97 130 358 132 1274 634 102 1544 176 129 

1
0

7
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Landscape 0.112 0.197 0.279 0.146 0.294 0.220 0.240 0.13
3 

0.072 0.183 0.202 0.272 0.180 0.212 

Natural features 0.095 0.200 0.149 0.154 0.108 0.201 0.220 0.46
9 

0.098 0.210 0.114 0.176 0.201 0.113 

Human in 
nature 

0.032 0.056 0.032 0.042 0.029 0.013 0.056 0.03
9 

0.052 0.042 0.009 0.045 0.031 0.086 

Object in nature 0.026 0.021 0.045 0.014 
 

0.006 0.010 
 

0.001 0.026 0.009 0.008 0.010 0.013 

Place-based 
features 

0.373 0.118 0.123 0.319 0.049 0.050 0.028 0.00
8 

0.074 0.053 0.044 0.026 0.041 0.046 

Sense of home 0.012 0.039 0.006 0.024 0.029 0.057 0.026 0.00
8 

0.019 0.035 
 

0.008 0.046 0.033 

Agriculture 0.038 0.035 0.019 0.017 
 

0.019 0.043 0.05
5 

0.167 0.056 
 

0.010 0.144 0.033 

Recreational 0.045 0.056 0.058 0.079 0.235 0.031 0.087 0.14
1 

0.009 0.112 0.263 0.204 0.072 0.093 

Dog walking 0.021 0.034 0.058 0.055 0.049 0.132 0.069 0.09
4 

0.003 0.082 0.132 0.087 0.067 0.066 

Social 
relationship 

0.068 0.103 0.097 0.142 0.157 0.057 0.107 0.08
6 

0.083 0.095 0.105 0.129 0.072 0.132 

Historical 
features 

0.342 0.031 0.019 0.013 
 

0.031 0.028 
 

0.496 0.019 0.018 0.004 0.041 0.026 

CES richness 1.164 0.890 0.890 1.004 0.951 0.818 0.916 1.03
1 

1.073 0.914 0.895 0.969 0.907 0.854 

1
0

8
 



109 

 
 

 

      

Table A3: Percentage of coding themes in each geo-tag in Site C (=images assigned to the coding theme/total valid image# of the geo-tag); Only 
dataset >=50; CES richness = coding theme#/Image#; top 1 shaded for each coding theme; numbers for each coding theme are percentage) 

Site Name Hudson's 
Hope 

Bear Flat Fort Saint John 
Characteristics Historic town Rural Largest town 

nearby 
Image# 907 55 5781 
Coding theme# 778 59 5114 
Landscape 0.314 0.218 0.141 
Natural features 0.149 0.182 0.200 
Human in nature 0.053 0.018 0.057 
Object in nature 0.031 0.073 0.042 
Place-based features 0.049 0.018 0.048 
Sense of home 0.010 0.018 0.030 

1
0

9
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Agriculture 0.041 0.182 0.066 
Recreational 0.072  0.076 
Dog walking 0.040 0.109 0.069 
Social relationship 0.077 0.255 0.143 
Historical features 0.023  0.013 
CES Richness 0.858 1.073 0.885 

 

 

Table A4: Percentage of coding themes in each geo-tag in Oldman (=images assigned to the coding theme/total valid image# of the geo-tag); Only 
dataset >=50; CES richness = coding theme#/Image#; top 1 shaded for each coding theme; numbers for each coding theme are percentage) 

Site Name Cowley Pincher Creek 
Characteristics Rural 

(agriculture) 
Old town 
(agriculture) 

Image# 470 2526 
Coding theme# 411 2157 

1
1

0
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Landscape 0.217 0.188 
Natural features 0.179 0.173 
Human in nature 0.013 0.031 
Object in nature 0.021 0.019 
Place-based features 0.055 0.065 
Sense of home 0.011 0.017 
Agriculture 0.232 0.172 
Recreational 0.023 0.050 
Dog walking 0.040 0.043 
Social relationship 0.043 0.071 
Historical features 0.040 0.024 
CES Richness 0.874 0.854 

 

 1
1
1

 


