
Model Free Control of Geomagic OMNI Manipulator

By

Xu Zhang

Submitted in partial fulfillment of the requirements for

the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

August, 2024

 © Copyright by Xu Zhang, 2024

ii

Table of Contents

List of Tables ... iv

List of Figures ... v

Abstract .. vi

List of Abbreviations Used .. vii

Acknowledgements .. viii

CHAPTER 1 Introduction .. 1

1.1 Robot Manipulation Systems .. 1

1.2 The Geomagic OMNI Manipulator System .. 5

1.3 Thesis Motivation .. 6

1.4 Contributions ... 8

1.5 Thesis Outline ... 9

CHAPTER 2 Literature Review ... 11

2.1 A State-of-the-Art Control Algorithms ... 11

2.2 Intelligent Control Algorithms .. 11

CHAPTER 3 Background Theories ... 15

3.1 Robotics Terminology ... 15

3.2 Kinematic Model of Robot Manipulators ... 16

3.3 Modelling of OMNI Robot Manipulators ... 19

1) Forward Kinematic Model of Position ... 20

2)Inverse Kinematic Model of Position .. 22

3)Forward Kinematic Model of Velocity .. 22

4)Inverse Kinematic Model of Velocity .. 22

CHAPTER 4 Improved Algorithms ... 24

4.1 Improved Algorithm with Incremental PID Control 24

4.2 Improved Algorithm with BSO ... 27

4.3 Improved Algorithm with Joint Angle Velocity ... 29

CHAPTER 5 Simulation Results .. 32

5.1 Improved Algorithm with Incremental PID Control Simulation Results 32

5.1.1 Methods.. 32

5.1.2 Results and Analysis .. 32

5.2 Improved Algorithm with BSO Simulation Results 36

5.2.1 Methods.. 36

5.2.2 Results and Analysis .. 36

iii

5.3 Improved Algorithm with Joint Angle Velocity Simulation Results 40

5.3.1 Methods.. 40

5.3.2 Results and Analysis .. 41

CHAPTER 6 Experimental Results ... 44

6.1 Experimentation Description .. 44

6.2 Experimentation Setup .. 50

6.3 Experimentation Results ... 51

CHAPTER 7 Conclusion and Future Work .. 55

7.1 Conclusion ... 55

7.2 Future Work .. 56

Bibliography ... 58

Appendix A Author’s Publications .. 62

iv

List of Tables

Table 1 Denavit-Hartenberg Table for Robot Manipulator ... 17

Table 2 RELATIVE VALUES OF 𝜃3 .. 21

v

List of Figures

Figure 1: The Da Vinci Surgical System ... 2

Figure 2: Example of the Industrial Robot Arm .. 3

Figure 3: 2-DOF Robot Arm .. 4

Figure 4: 3-DOF Robot Arm .. 4

Figure 5: 4-DOF Robot Arm .. 5

Figure 6: OMNI Manipulator ... 6

Figure 7: Illustration of the beetle’s food-foraging behaviour 13

Figure 8: 2R Robot with XYZ Labels for Each Joint Assigned 17

Figure 9: Two Solutions for an Inverse Kinematics .. 19

Figure 10: Modelling of OMNI Manipulator ... 20

Figure 11: Circular Trajectory Tracking Error with Original Algorithm 33

Figure 12: Circular Trajectory Tracking Error with Improved Algorithm 34

Figure 13: Rectangular Trajectory Tracking Error with Original Algorithm 35

Figure 14: Rectangular Trajectory Tracking Error with Improved Algorithm 36

Figure 15: Circular Trajectory Tracking Error with Original Algorithm 37

Figure 16: Circular Trajectory Tracking Error with Improved Algorithm 38

Figure 17: Rectangular Trajectory Tracking Error with Original Algorithm 39

Figure 18: Rectangular Trajectory Tracking Error with Improved Algorithm 40

Figure 19: Circular Trajectory Tracking Error with Original Algorithm 41

Figure 20: Circular Trajectory Tracking Error with Improved Algorithm 42

Figure 21: Rectangular Trajectory Tracking Error with Original Algorithm 43

Figure 22: Rectangular Trajectory Tracking Error with Improved Algorithm 43

Figure 23: Three Actuated Joints on the Omni Manipulator 44

Figure 24: The Button on the Omni Manipulator .. 45

Figure 25: Teach Pendant Experiment Flowchart .. 46

Figure 26: Controlling the Robot Experimental Flowchart ... 49

Figure 27: Experimental Setup .. 50

Figure 28: Tracking Performance of a Linear Triangle Curve 51

Figure 29: Task Path Results.. 53

vi

Abstract

In this thesis, we explore the trajectory tracking control of the OMNI manipulator

using various enhanced beetle bee algorithms. A metaheuristic algorithm mimics the

beetle's ability to locate food in an unknown environment using its two antennas.

Beetles decide to go left or right based on the strength of the scent until they reach

their target. However, the conventional Beetle Antennae Search (BAS) takes a long

to converge, especially when dealing with higher-dimensional systems. To address

this issue, we propose improved beetle bee methods that combine other techniques

with the original algorithm. The proposed approaches enhance the convergence speed

of the algorithm and make it more efficient for higher dimensional systems.

The three proposed hybrid algorithms will be introduced in this thesis. The first one

is adding the incremental PID control to the original algorithm. The second one

combines the BSO (Beetle Swam Optimization) algorithm. The last one is counting

the angular velocity to the objective. The simulation results from the proposed and

cutting-edge metaheuristic algorithms will be compared. Moreover, the experimental

results based on the Omni manipulator system with an improved Beetle Bee

algorithm are also obtained. Experimental results demonstrate significant

improvements in trajectory optimization compared to the original algorithm.

vii

List of Abbreviations Used

DOF Degree of Freedom

MIMO Multi-Input and Multi-Output

PD Proportional-Derivative

PID Proportional-Integral-Derivative

PSO Particle Swarm Optimization

CS Cuckoo Search

GWO Grey Wolf Optimizer

WOA Whale Optimization Algorithm

BSO Beetle Swarm Optimization

BAS Beetle Antenna Search

HBO Honey Bee Optimization

MS Monkey Search

DPO Dolphin Partner Optimization

FA Firefly Algorithm

EE End-Effector

D-H matrix Denavit-Hartenberg matrix

SCC Source Coordinate Center

viii

Acknowledgements

I appreciate everyone who helped me complete the thesis during my MASc studies.

I want to thank my supervisor, Dr. Jason Gu, who accepted me as his MASC student

and allowed me to work on this thesis. I couldn’t find this research topic without his

direction and guidance, so I worked on it under his continuous professional

supervision and encouragement during my MASC study time at Dalhousie.

I am grateful to my fellow researchers at the Robotics laboratory. I mainly thank Dr.

Umar Farooq, Dr. Muhammad Asad, PHD student Hanxiang Zhang, and Koceila

Cherfouh for supporting my thesis.

I also want to thank two professors of my committee members, Dr. Ya-Jun Pan and

Dr. Kamal El-Sankary, for their valuable suggestions.

Finally, I wanted to thank my parents for their support and understanding and my

wife and two lovely sons for their belief and support during my study period. Without

their love, I could not finish this thesis.

1

CHAPTER 1 Introduction

This chapter will overview the robotic manipulator system and introduce the

geomagic OMNI manipulator. Additionally, we will discuss the motivation behind

our thesis. Finally, we will outline the contributions of our thesis and the structure of

the thesis itself.

1.1 Robot Manipulation Systems

Robots have made a substantial contribution to the industrial world in recent decades.

The fields of robotics and artificial intelligence have gained significant attention, not

only in daily life but also in manufacturing. In particular, robot manipulators, or robot

arms, have proven to be very useful, replacing people in complicated and repetitive

jobs [1-2]. They have been used to carry heavy objects, work in high-temperature,

toxic, explosive, and radioactive environments, and complete dangerous and

repetitive work instead of humans. This benefit has reduced the intensity of human

labour while increasing productivity. The use of industrial robots increased

worldwide from 1990 to 2000 because the cost of the robots decreased continuously

while the labour cost increased [3]. There are several reasons why robots have been

gaining significant attention. First, they reduce labour costs. When a robot arm is in

operation, only one person is needed to control or monitor the robot manipulators,

reducing the number of workers and labour costs. In addition, they are more reliable

and secure when performing tasks. Since the robot arm imitates human actions to

complete activities, there is no risk of injury or death in case of emergency, ensuring

safety. Lastly, the accuracy of the product is crucial for factories. Robot arms can

reduce the error rate of products compared to humans and stop when the pre-set goal

is achieved, thus increasing production efficiency [4].

2

The use of robot manipulator systems has shown significant progress in human

healthcare. One example is the da Vinci Surgical System, shown in Figure 1 [5]. The

da Vinci Surgical robot arm has gained popularity in the medical field in recent

decades. This phenomenon happens because it has dramatically improved surgery

accuracy and reduced patient recovery time. Additionally, it causes a much smaller

traumatic surface area, allowing patients to return to their daily lives quickly. For

doctors, the system increases the field of view angle, reduces hand tremors, and

reduces the number of participants required during the operation, increasing

efficiency and reducing labour costs. Researchers have also put effort into improving

the system. Some have created a camera-robot calibration to perform automated tasks

with precision and minimize accumulation error [6]. Others have used a deep learning

approach to create a neural network that estimates interaction force based on the da

Vinci System [7]. Yet others have designed a fuzzy dynamic surface controller on

the Da Vinci System to observe and eliminate uncertainties [8].

Figure 1: The Da Vinci Surgical System

3

Nowadays, robot arms are playing a crucial role in the industrial field. As the Fig. 2

[9] shows.

Figure 2: Example of the Industrial Robot Arm

Industrial robot manipulators can do different tasks, such as Metal processing,

polishing and grinding, assembly, machine loading and unloading,

palletizing/transportation, rubber/plastic, sorting, etc. Therefore, researchers

conducted a study on robot control of the industrial robot arm to maximize accuracy

[10]. Other researchers have used the industrial KUKA robot arm's dynamic control

and identification platform to create open-source software for education and research

purposes [11].

The robot arm comprises several links joined together by joints that actuators or

motors can move. The joints can be revolute or prismatic, and the links can be rigid

or flexible. A common way to categorize robot manipulators is by the number of

freedoms (DOFs) determined by the number of joints [12]. The three examples will

be shown as follows.

The Fig. 3 [13] shows a 2-DOF manipulator.

4

Figure 3: 2-DOF Robot Arm

Moreover, the 3-DOF arm is shown in Fig. 4 [14].

Figure 4: 3-DOF Robot Arm

Fig. 5 [15] shows a 4-DOF arm.

5

Figure 5: 4-DOF Robot Arm

1.2 The Geomagic OMNI Manipulator System

There are two main types of robotic manipulators: serial manipulators and parallel

manipulators. Serial manipulators typically comprise links connected end-to-end,

forming a kinematic chain controlled by different joints [16]. An example of a serial

manipulator is the OMNI manipulator, shown in Figure 6 [17].

6

Figure 6: OMNI Manipulator

The OMNI manipulator consists of six joints, three of which are actuated and three

that are non-actuated. Researchers are particularly interested in the three actuated

joints. In Chapter 3, we will discuss the modelling of the OMNI manipulator,

including the forward kinematic model of position, inverse kinematic model of

position, forward kinematic model of velocity, and inverse model of velocity, in

detail.

Also, the three actuated joints have a limited range, which will be discussed later.

1.3 Thesis Motivation

Robots have made a significant contribution to the industrial world today. They can

effectively replace humans in dangerous situations and perform complicated and

repetitive tasks. However, more accurate location monitoring and improved

metaheuristic algorithm control methods must be developed to meet the required

high-level demands and criteria. Robots’ challenges in achieving their intended

performance include time-varying variables, system uncertainties, nonlinearities, and

7

typical coupling effects [18]. A robot manipulator is a multi-input and multi-output

(MIMO), a highly nonlinear and coupled system designed to perform tasks

automatically, mimicking or reproducing human actions in a specific area [19].

Robot manipulator controllers still frequently use traditional proportional-derivative

(PD) or proportional-integral-derivative (PID) algorithms despite the current control

theory's effectiveness [20]. Advanced control methods, such as feedforward

compensation control methods [21], computed torque methods [22], and nonlinear

feedback control [23], have been developed to solve optimization problems.

However, it is challenging to implement these methods in real-time due to the

system's nonlinearities and uncertainties, making it challenging to find the robot's

mathematical model. Recently, natural-inspired metaheuristic algorithms have

gained popularity for resolving optimization issues. The social behaviour of living

things in their natural habitats influenced the development of various metaheuristic

algorithms, such as Particle Swarm Optimization (PSO) [24], Cuckoo Search (CS)

[25], Grey Wolf Optimizer (GWO) [26], and Whale Optimization Algorithm (WOA)

[27]. The reasons for the popularity of nature-inspired optimization algorithms can

be summarized into three main parts: simplicity, flexibility, and the ability to avoid

local minima.

Meta-heuristics are optimization algorithms based on animal and evolutionary

concepts, making them easy to understand and use. They are also adaptable, which

means they can solve various problems without requiring complex adjustments.

Additionally, they can avoid getting stuck in local minima due to their unpredictable

search behaviour.

However, although meta-heuristic algorithms can potentially solve most real-world

optimization problems, the No Free Lunch theorem [28] states that no single

8

algorithm can handle all issues. Some algorithms perform better than others in

specific class problems, while others excel in other situations. This is why we need

distinct meta-heuristic algorithms for real-time issues instead of relying on a single

one.

Metaheuristic algorithms have shown promising results in solving complex

optimization problems in various fields. Therefore, applying these algorithms in the

development of robot manipulators presents an opportunity to improve the efficiency

and effectiveness of these machines.

This thesis aims to explore the application of metaheuristic algorithms, specifically

beetle bee algorithms and particle swarm optimization, to enhance their tracking

performance. The research will involve designing and simulating a robotic

manipulator utilizing these algorithms and comparing the results with those obtained

by the original beetle bee algorithm.

Overall, this thesis aims to contribute to developing an OMNI manipulator that can

improve tracking performance efficiently and effectively, thereby enhancing the

capabilities of these machines and their potential applications in various industries.

1.4 Contributions

As discussed above, this thesis will improve the tracking performance of the original

beetle bee algorithm. The three contributions will be introduced as follows to achieve

better performance compared to the original algorithm.

• The first optimization applied the incremental PID control to the step size of

the proposed algorithm.

• The second optimization algorithm is combined with Beetle Swam

Optimization (BSO) to achieve better tracking performance for the OMNI

9

manipulator.

• The last optimization is adding the angular velocity square to the objective

function to achieve a more stable and faster convergence speed.

1.5 Thesis Outline

This thesis proposes three Improved Beetle Bee Algorithms with Application to

OMNI Manipulator Trajectory Tracking Control. The rest of the paper is structured

as follows.

Chapter 1 provides an introductory overview of the robot manipulator system, with a

specific focus on the OMNI manipulator. It outlines the motivation behind the

research, details the contributions of the thesis, and presents the overall structure and

organization of the work.

Chapter 2 offers a comprehensive review of existing literature, covering both

conventional and intelligent control algorithms relevant to robot manipulators. The

review aims to contextualize the research within the broader field and highlight

significant advancements and methodologies.

Chapter 3 introduces the fundamental theories pertinent to the study, including

robotics methodologies and the kinematic and dynamic models specific to the OMNI

manipulator.

Chapter 4 addresses the development of the improved algorithm, detailing the three

key optimizations incorporated within it. The discussion focuses on the theoretical

underpinnings and practical implications of these optimizations.

Chapter 5 presents the results obtained from simulations, including a detailed analysis

of the methods employed and the outcomes for each case studied. The results are

discussed in terms of their implications and contributions to the field.

10

Chapter 6 summarizes the key findings of the thesis, drawing conclusions from the

research conducted. Recommendations for future research directions are offered,

highlighting potential areas for further investigation and development.

11

CHAPTER 2 Literature Review

This chapter briefly overviews classical and intelligent control algorithms, focusing

on the Beetle Antenna Search (BAS).

2.1 A State-of-the-Art Control Algorithms

Robot manipulator controllers often still need to rely on traditional proportional-

derivative (PD) or proportional-integral-derivative (PID) algorithms despite the

availability of newer and more effective control theory methods [29]. Advanced

control methods, such as feedforward compensation control methods [30], computed

torque methods [31], and nonlinear feedback control [32], are used to solve

optimization problems.

2.2 Intelligent Control Algorithms

Finding the mathematical model of a robot can be a complex task due to the

nonlinearities and uncertainties involved in the system. Therefore, the methods

mentioned above may not be feasible in real-time situations. However, natural-

inspired metaheuristic algorithms have recently gained significant attention for

addressing optimization problems. These algorithms, such as Honey Bee

Optimization (HBO) [33], Monkey Search (MS) [34], Dolphin Partner Optimization

(DPO) [35], and Firefly Algorithm (FA) [36], are developed by observing the social

behaviour of living organisms in their natural habitats. The popularity of these nature-

inspired optimization algorithms can be attributed to their simplicity, flexibility, and

ability to avoid local minima.

Meta-heuristics have some significant advantages. Firstly, they are based on animal

and evolutionary concepts, making them easy to understand and implement.

Secondly, these optimization algorithms are adaptable, meaning they can be applied

12

to many problems without significant modifications. Thirdly, they can avoid getting

stuck in local minima due to their unpredictable search behaviour.

However, even though meta-heuristic algorithms have the potential to address most

real-world issues, it's important to note that no single algorithm can handle all

optimization problems. The No Free Lunch theorem states that some algorithms

might perform better than others in specific optimization problems, while others

might be more effective in other issues. Therefore, it's necessary to have a variety of

meta-heuristic algorithms to tackle real-time problems.

The Beetle Bee Algorithm is an intelligent control algorithm that mimics the food-

searching nature of beetles. Unlike other insects, beetles don't work in swarms and

can hunt for food independently, reducing computational complexity and time

consumption. The algorithm uses two antennae to detect the intensity of the food's

scent and compare it to determine the new movement direction for the following step.

By sensing the difference in smell at each antenna, the beetle can develop a map of

the smell intensity of the unknown environment. This map helps search for maximum

smell change, which is subsequently moved toward the destination position (food

source). The Beetle Antennae Search (BAS) algorithm [37] is another name for the

Beetle Bee Algorithm. BAS has been used in various real-world systems since its

working process [37-38] was introduced. The working process of the original BAS

is shown in Fig. 7. [39].

13

Figure 7: Illustration of the beetle’s food-foraging behaviour

Firstly, the random search behaviour should be implemented as in (1),

(,1)

(,1)

rands k
b

rands k
= (1)

Where 𝑟𝑎𝑛𝑑𝑠(.) denotes a random function, which is a general random function to

get the random value to guarantee the random search behaviour, and 𝑘 represents the

dimensions of the system, the “ .. ” denotes the absolute value.

Since we have this random searching behaviour combined with the beetle antennae

length, which shows a later function that should be sufficiently large to encompass

an appropriate search region to be capable of jumping out of local minimum points

so that we can avoid the local minima problem, and this feature is essential so that

the robotic task can under the desired working trajectory.

Secondly, the algorithm needs to calculate the objective function values for both the

left and right antennae, which are prepared to update the new angle for the next step.

14

Thirdly, the updated angle is used to get the new value of the objective function, and

the location is updated to control the beetle and follow the desired trajectory.

15

CHAPTER 3 Background Theories

This chapter will introduce the background theories of the robot manipulator. This

chapter includes three parts:

• Robotics terminology

• Kinematic model of robot manipulators

• Modelling of OMNI robot manipulators

3.1 Robotics Terminology

To ensure a robotic manipulator's safety, effectiveness and efficiency, it is essential

to follow a methodology before designing and building the robot. The term robot in

this research refers specifically to the robot manipulator. The methodology can be

defined as the terminology used in this field. Robotic manipulators consist of links

joined by joints, forming a kinematic chain. The robot system includes a manipulator,

arm, wrist, end-effector, actuators, sensors, and controllers. Each rigid body of the

robot is called a link, and two links are connected by a joint, which can be revolute

(rotary) or prismatic (translatory). A manipulator is a significant robot component

consisting of links, joints, and other elements. The wrist is the point in the robot’s

kinematic chain between the forearm and the end-effector. The end-effector is

mounted on the last link and is responsible for performing the required work of the

robot manipulator or arm. Actuators, which operate as drivers, are like the muscles

of a robot that change its configuration. Sensors detect and collect information from

the reaction between the end-effector, objects, and environment. Lastly, a controller

acts like the brain of a human being, enabling the robot to perform its tasks effectively

and efficiently.

16

3.2 Kinematic Model of Robot Manipulators

The kinematic model of robot manipulators primarily focuses on object motion rather

than the force generated by movement. In robot kinematics, we study the higher-

order differentiation of position, velocity, acceleration, and position variables

concerning time or other variables. The typical research topics in robot kinematics

are forward kinematics and inverse kinematics.

Generally speaking, forward kinematics determines the end-effector’s position in the

coordinates by providing a set of joint angles. It is utilized to find the position of each

arm for the given joint and link parameters. The forward kinematics calculation uses

the Denavit-Hartenberg (D-H) matrix [40], demonstrating the relationship among

frames. There are four DH parameters: joint offset 𝑑, joint angle 𝜃, link length 𝑎, and

twist angle 𝛼. The first two parameters 𝑑𝑖 and 𝜃𝑖 indicate the relative position of link

𝑖−1 and link 𝑖, whereas the other two parameters 𝑎𝑖 and 𝛼𝑖 define the size and shape

of link 𝑖.

After reading the four D-H parameters for each link, the D-H table is generated., The

transformation matrix can be calculated with the formula:

1

1 1 1 11

1 1 1 1

0

0 0 0 1

i i i

i i i i i i ii

i

i i i i i i i

c s a

s c c c s d s
T

s s c s c d c

 

     

     

−

− − − −−

− − − −

− 
 

− −
 =
 
 
 

 (2)

The position change from frame 𝑖−1 to frame 𝑖 can be calculated by multiplying the

corresponding transformation matrix,

1 1

3 1 3 3 3 1[] [] []i i i

iP T P− −

  = (3)

Multiplication of all transformation matrices can be applied to determine an overall

transformation matrix,

17

0 0 1 2 1

1 2 1 i i

i i iT T T T T− −

−= (4)

An example is made by calculating the forward kinematics for a 2 DOF planar arm

robot.

The first step is to assign all three labels for each robot joint. Following the rules that

the Z axis is the rotation axis and applying the right-hand rule, the axes are given

below in Fig. 7.

Figure 8: 2R Robot with XYZ Labels for Each Joint Assigned

The D-H Table shown in Table 3 can be constructed by observing Figure 7. Note that

frame {0} is attached to the base so that
0 =0 and

0a =0.

Table 1 Denavit-Hartenberg Table for Robot Manipulator

Link i i
ia

id
i

1 0 1L 0 1

2 0 2L 0 2

Next, substitute the values into the formula for calculating the transformation matrix.

The following equations can be obtained where,

18

1 1 1 1

0 0
1 1 1 10 1 1

1

0

0

0 0 1 00 0 0 1

0 0 0 1

c s L c

s c L sR Q
T

  

  

− 
 

 
 = = 
  
 
 

 (5)

2 2 2 2

1 1
2 2 2 21 2 2

2

0

0

0 0 1 00 0 0 1

0 0 0 1

c s L c

s c L sR Q
T

  

  

− 
 

 
 = = 
  
 
 

 (6)

12 12 1 1 2 12

12 12 1 1 2 120 0 1

2 1 2

0

0

0 0 1 0

0 0 0 1

c s L c L c

s c L s L s
T T T

   

   

− + 
 

+
 = =
 
 
 

 (7)

Thus, the Cartesian position and orientation of the last joint concerning the base

frame {0} can be represented by the following rotation matrix and translation matrix.

12 12 1 1 2 12

0 0

2 12 12 2 1 1 2 12

0

0 ,

0 0 1 0

c s L c L c

R s c Q L s L s

   

   

− +   
   

= = +
   
      

 (8)

As for the inverse kinematics, which gives the position of the end-effector to find the

corresponding joint angles, The inverse kinematics is used to find all joint parameters

for a given end-effector, which contains the position information of the last joint with

respect to the base. However, unlike the forward kinematic, which has a unique

solution, inverse kinematics can have multiple solutions. This can be incredibly

complicated for robots with a high degree of freedom.

For a 2 DOF robot, an inverse kinematic may have two solutions. In other words, two

different situations of arm position have the same end effector, as shown in Fig. 9.

Assume the hip joint is located at (x, y)

19

Figure 9: Two Solutions for an Inverse Kinematics

The relationship between angles α, β, γ, and two joint angles can be observed as

follows,

Solution 1 (Fig. 9 Left):

1 2,     = − = − (9)

Solution 2 (Fig. 9 Right):

1 2,     = + = − (10)

The angle γ can be calculated using arctangent,

tan 2(,)a y x = (11)

The angles α and β can be calculated using the law of cosines,

2 2 2 2

1 2 1 2

2 2 2 2 2 2

1 1 2

2 cos

2 cos

L L L L x y

x y L L x y L





+ − = +

+ + − + =
 (12)

To simplify these, we have,

2 2 2 2
1 1 2

2 2

1

cos
2

x y L L

L x y
 − + + −
=

+
 (13)

2 2 2 2
1 1 2

1 2

cos
2

L L x y

L L
 − + − −
= (14)

3.3 Modelling of OMNI Robot Manipulators

The OMNI manipulator shown in Fig. 10 is a 3-DOF device that allows kinematic

integration with complex virtual objects. The haptic device kinematics includes the

20

position and derivates to evaluate the device’s performance by implementing the

proposed improved Beetle Bee Algorithm.

The modelling of the OMNI manipulator includes the forward kinematic model of

position, inverse kinematic model of position, forward kinematic model of velocity,

and inverse model of velocity.

Figure 10: Modelling of OMNI Manipulator

1) Forward Kinematic Model of Position

The forward kinematic position of a manipulator is determined by the relationship

between the Cartesian coordinates, which represent the position and orientation of

the end-effector, and the joint space coordinates, which correspond to the joint angles.

This relationship is expressed mathematically, as shown in equation (15),

()x f = (15)

Where 𝑥 ∈ ℝ3×1 denotes the vector of the Cartesian coordinates of the end-effector

and 𝜃 ∈ ℝ3×1 represents the vector of joint coordinates. The operational coordinates

for X, Y, and Z coordinates of real-time values can be calculated from the kinematics

21

chain of the OMNI haptic device, and the needed variables and constants can be found

in Fig. 10.

The kinematic chain of the OMNI haptic device, along with the representation of

the variables and constants involved in the model, is illustrated in Fig. 10. The

variables and constants are all shown in Fig. 10. The L1 is the length of the first link, L2

is the length of the second link, L1 = L2 = 0.135m, and A = 0.035m when L1 and L2 are

perpendicular shows in Fig. 10, L4 = L1+A. L3=0.025m. These parameters will be used

in the calculation of the kinematic model. Calculating the kinematic chain is the

position of the End-Effector (EE) from the Source Coordinate Center (SCC) to the EE

of the manipulator. After performing the coordinate transformation, also known as the

kinematics chain from the point (0,0,0) in Fig. 10.

The final representation of the position vector of Cartesian coordinates for the

forward kinematic model is shown in (16):

1 1 2 2 3

3 2 3 1 2

4 1 1 2 2 3

sin (cos sin)

cos sin

cos (cos sin)

x L L

y L L L

z L L L

  

 

  

= − +

= − +

= − + +

 (16)

Where 𝜃1, 𝜃2, 𝜃3 are the joint angles. The range of 𝜃1 is from −50° to 55°, 𝜃2 is

from 0 to 105°, and 𝜃3 is not in a specific range which depends on the value of 𝜃2

[14]. Therefore, table 2 shows the corresponding angle values with respect to the 𝜃2.

All angles are in degrees.

Table 2 RELATIVE VALUES OF 𝜃3

𝜽𝟐 𝜽𝟑 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝜽𝟑 𝒎𝒂𝒙𝒊𝒎𝒖𝒎

0 -20 65

15 -15 90

30 -9 105

40 0 110

50 10 112

60 20 113

22

80 40 114

90 50 114

105 60 110

2)Inverse Kinematic Model of Position

The inverse kinematic model of the manipulator is the computation of the given EE

position to find the corresponding angle in real time. The mathematical relation is

shown in (17),

1()f x −= (17)

3)Forward Kinematic Model of Velocity

The forward kinematic model of velocity is defined in (18):

x J= (18)

Where 𝑥̇ ∈ ℝ3×1 represents the velocities vector for each joint, 𝐽 ∈ ℝ3×3 denotes the

Jacobian matrix of the manipulator and 𝜃̇ ∈ ℝ3×1 is the joint velocities vector. After

the deformation of (3) and rearranging into the matrix form [40], it becomes in (19):

11 12 13 1

21 22 23 2

31 32 33 3

x J J J

y J J J

z J J J







    
    

=     
    
    

 (19)

Where, 𝐽11 = −(𝐿1𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 + 𝐿2𝑠𝑖𝑛𝜃3𝑐𝑜𝑠𝜃1),

𝐽12 = 𝐿1𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2,

𝐽13 = −𝐿2𝑐𝑜𝑠𝜃3𝑠𝑖𝑛𝜃1,

𝐽21 = 0,

𝐽22 = 𝐿1𝑐𝑜𝑠𝜃2,

𝐽23 = 𝐿2𝑠𝑖𝑛𝜃3,

𝐽31 = −𝐿1𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1 − 𝐿2𝑠𝑖𝑛𝜃3𝑠𝑖𝑛𝜃1,

𝐽32 = −𝐿1𝑠𝑖𝑛𝜃2𝑐𝑜𝑠𝜃1,

𝐽33 = 𝐿2𝑐𝑜𝑠𝜃3𝑐𝑜𝑠𝜃1.

4)Inverse Kinematic Model of Velocity

23

The inverse kinematic model of velocity is defined in (20):

1J x −= (20)

Where 𝐽−1 ∈ ℝ3×3 represents the inverse Jacobian matrix and denoted in (21):

1 ()

det()

adj J
J

J

− = (21)

Where 𝑎𝑑𝑗(𝐽) ∈ ℝ3×3 define the adjoint matrix and 𝑑𝑒𝑡(𝐽) denotes its determinant,

which is described in (22):

1 2 1 2 2 3

2

1 2 3 2 2

2

2 2 3

2 3 2

det() (cos sin sin

 cos cos sin

 sin cos

 sin cos cos)

J L L L

L L

L

L

  

  

 

  

= −

+ +

−

+

 (22)

And is equation being under a condition of existence 𝜃3 ≠ 𝜃2 + 𝜋/2 which will

guarantee the configuration of haptic device is in the nonsingular space.

24

CHAPTER 4 Improved Algorithms

This chapter will describe three proposed algorithms that can contribute to the

original algorithm.

4.1 Improved Algorithm with Incremental PID Control

This part will discuss the first improved algorithm for trajectory-tracking circular and

rectangular curves.

The original Beetle Antennae Search utilized quadratic optimization to minimize

location tracking error, representing the difference between the reference path and

the actual trajectory. Equation (23) expresses the optimization in position error as

follows:

min ((), ())

. .

T

rg x t t e e

s t




  
+−

=

 

 (23)

Where 𝜃− = [𝜃1
−, 𝜃2

−, 𝜃3
−, . . . 𝜃𝑚

−]𝑇 denotes the minimum angle of each joint and

𝜃+ = [𝜃1
+, 𝜃2

+, 𝜃3
+, . . . 𝜃𝑚

+]𝑇 . The tracking error e is defined as the position error

between the reference curve and the real position of the end-effector. The final

objective function in was using the common performance assessment criteria called

integral square error (ISE), the performance of convergence was not fast enough.

In digital processors, two types of discrete PID are commonly used: positional PID

and incremental PID [41]. Incremental PID is preferred over positional PID as it

requires fewer memory units and calculators to store errors and parameters. The

method is more straightforward, requires fewer parameters, and has a concise

calculation method [42]. As the abstract states, incremental PID control adjusts the

step length during each iteration. It replaces the cumulative effect by finding the

increment, reducing computing performance and storage space requirements. The

following are the significant steps of the proposed algorithm.

25

A. Step 1

Calculate the endpoint of both antennae and project them into the constrained space

corresponding to the joint angle limit shown in (24).

()

()

L k k

R k k

P b

P b

  

  

= +

= −
 (24)

P(..) is the projection function and puts the endpoint of both antennae to the

constrained condition concerning the objective function. And 𝜃𝐿 and 𝜃𝑅 represents

projected the right and left beetle antennas. 𝜆𝑘 is a hyperparameter that denotes the

length of the beetle antennas. 𝜃𝑘 is the theta value at the time 𝑡𝑘.

B. Step 2

Based on Step 1, we can use forward kinematics to calculate the end-effector position

of both directions, which is determined by Equation 2. Then, we will find the

objective function value for 𝑔𝐿 and 𝑔𝑅which are prepared to find the new updated

theta value 𝜃𝑛𝑒𝑤, the mathematical expression is showed (25).

(() ())new k k k L RP sign g g b   = − − (25)

where 𝜃𝑛𝑒𝑤 is the new updated location of the end-effector. And 𝑠𝑖𝑔𝑛(𝑔𝐿 − 𝑔𝑅)𝑏⃗

ensures that the beetle moving direction is the small objective function value between

both directions. 𝛿𝑘(𝜆𝑘) stands for the step size. Before introducing the incremental

PID control rule adjusting the step size, the idea of basic PID control law should be

clarified as

1 ()
() [() ()]p d

i

de t
u t K e t e t dt T

T dt
= + + (26)

Where pK is the proportional gain, iT is the integral time constant, and dT is the

derivative time constant.

26

As computer control is a form of sampling control, it can only compute the control

quantity based on the variation of the sampling time. It cannot continuously output

the control quantity like analogue control. Because of this, we need to discretize the

integral and differential terms in (26). Here are some approximations of the

transformations:

1

0

()
() ,

k
k k

i

i

e ede t
e t T e

dt T

−

=

−
  (27)

Where k is the sampling time, and T is the sampling period. Then we put (27) into

(26) to get the discretized PID expression in (28).

k 1

0

()
k

k

k p k i d

ii

e eT
u K e e T

T T

−

=

−
= + + (28)

Where
ku is the output at the kth sampling time. Then, the output of the k-1 sampling

time is written as

1
1 2

1 1

0

()
k

k k

k p k i d

ii

e eT
u K e e T

T T

−
− −

− −

=

−
= + + (29)

Use (28) to subtract (29) and rearrange to get the final incremental PID control rule:

1

1 1 2 =K () K () K (2)

k k k

p k k i k d k k k

u u u

e e e e e e

−

− − −

 = −

− + + − +
 (30)

Where K p is the proportional coefficient, K (K /)i p iT T= is the integral coefficient,

and K ((K) /)d p dT T= is the derivative coefficient. Resultantly, the incremental PID

control is defined as

1k k ku u u−= + (31)

Consequently, incremental PID control applies to the step size 𝛿𝑘 in the proposed

algorithm can be obtained as

27

1k k k  −= + (32)

C. Step 3

The third step is to use the new theta value 𝜃𝑛𝑒𝑤 to find the new objective function

value 𝑔𝑛𝑒𝑤, and based on this to compare with objection value 𝑔(𝑥(𝑡), 𝜃𝑘) from the

last time constant theta value 𝜃𝑘, the relation is given in (33):

1

, ((),)

, ((),)

k new k

k

new new k

if g g x t

if g g x t

 


 
+


= 


 (33)

As long as the robot arm’s position has been updated. The whole process will be

repeated.

The improved algorithm has incorporated incremental PID control to the step size in

each iteration to make the tracking progress more stable and controllable. As a result,

the algorithm's convergence performance has significantly improved. In the next

chapter, we will discuss the simulation results of both the original and improved

algorithms in detail.

4.2 Improved Algorithm with BSO

This section will introduce the Beetle Swarm Optimization (BSO) algorithm. The

BSO algorithm is derived from the classical Particle Swarm Optimization (PSO)

technique, a computational optimization method used to solve practical control

optimization problems [43]. It was initially proposed by Kennedy and Eberhart in

1995 [44].

 Beetle Swarm Optimization is a metaheuristic algorithm inspired by the swarming

behaviour of beetles. The algorithm involves a swarm of beetles, each capable of

conducting exploration and exploitation. Each beetle represents a potential solution

to the optimization problem and works collaboratively with other beetles to share

28

information. This collaborative approach enhances the stability of the optimization

process and reduces the chances of falling into local minima.

From the idea of the Particle Swam Optimization, there is a swam population of n

beetles and
1 2(, ,...,)nX X X X= represents the beetles in the S-dimensional space,

where i th beetle denotes as
1 2(, ,...,)i i i iSX X X X= which means the position of i th

beetle in the S-dimensional space, which also is a potential solution to the problem.

In addition, the speed of the i th beetle is represented as
1 2(, ,...,)i i i iSV V V V= . The

individual best of the beetle is expressed as
1 2(, ,...,)i i i iSP P P P= and the global best of

swam is represented as 1 2(, ,...,)g g g gSP P P P= . The mathematical expression for

updating the position of the beetle is:

1 (1)k k k k

is is is isX X V  + = + + − (34)

Where 1,2,...,s S= ; 1, 2,...,i n= ; k is the current number of iterations. k

iSV is the

speed of beetles, and k

iS denotes the increase in beetle position movement.  is a

positive constant.

The speed expression which in (34) is:

1

1 1 2 2() ()k k k k k k

is is is is gs gsV V c r P X c r P X+ = + − + − (35)

Where
1c and

2c are two positive constants.
1r and

2r are two random functions in

the range [0,1].  is the inertia weight. In the standard PSO algorithm,  is a

constant value. However, for this proposed algorithm, a decreasing inertia weight

rule for the  showed below:

max min
max *k

K

 
 

−
= − (36)

29

Where
min and

max denotes the minimum and maximum value of the inertia weight

 . K is the maximum of iterations, k is the current number of iterations. In this

algorithm, the 0.9 set to
max and 0.2 set to

min . In this case, the algorithm can search

an extensive range at the beginning of the search process and find the optimal solution

as fast as possible.

And for the  expression which defines the incremental function:

1 * * (() ())k k k k k

is is ls rsV sign f X f X + = − (37)

The searching behaviour of the right and left antenna are represented as:

1

1

*
2

*
2

k k k

rs rs is

k k k

ls ls ls

d
X X V

d
X X V

+

+

= −

= +

 (38)

The BSO algorithm improves trajectory tracking speed and convergence. The

simulation results will be discussed in a later chapter.

4.3 Improved Algorithm with Joint Angle Velocity

In this part, the last improvement will be introduced.

The original Beetle Antennae Search was the quadratic optimization in position

tracking error [40]. The expression of optimization in position error is shown below:

min ((), ())

. .

T

rg x t t e e

s t




  − +

=

 

 (39)

Where 𝜃− = [𝜃1
−, 𝜃2

−, 𝜃3
−, . .. , 𝜃𝑚

−]𝑇 denotes the minimum angle of each joint and

𝜃+ = [𝜃1
+, 𝜃2

+, 𝜃3
+, . .. , 𝜃𝑚

+]𝑇. The tracking error 𝑒 is defined as the position error

between the reference curve and the real position of the end-effector. The final

objective function in was using the common performance assessment criteria called

Integral square error (ISE), the performance of convergence was not fast enough.

30

The improved Beetle Bee Algorithm is designed as below:

min ((), ())

. .

T T

rg x t t e e

s t


  

  

  

− +

− +

= +

 

 

 (40)

Where 𝜃̇ is the joint angle velocity. 𝜃̇− = [𝜃̇1
−, 𝜃̇2

−, 𝜃̇3
−, . .. , 𝜃̇𝑚

−]𝑇 demotes the

minimum angular velocity at each joint and 𝜃̇+ = [𝜃̇1
+, 𝜃̇2

+, 𝜃̇3
+, . .. , 𝜃̇𝑚

+]𝑇stands for

maximum angular velocity at each joint.

Three significant steps for the proposed algorithm will be introduced as follows.

Step 1 involves projecting the endpoint of beetle antennae onto a constrained space

that corresponds to the joint angle limit, as shown below:

(), ()L k k R k kP b P b     = + = − (41)

P(..) is the projection function and puts the endpoint of both antennae to the

constrained condition concerning the objective function. And 𝜃𝐿 and 𝜃𝑅 represents

projected the right and left beetle antennas. 𝜆𝑘 is a hyperparameter that denotes the

length of the beetle antennas. 𝜃𝑘 is the theta value at the time 𝑡𝑘.

Based on step 1, we can use forward kinematics to calculate the end-effector position

in both directions using equation 2. Then, we will find the objective function value

for
Lg and

Rg which are prepared to find the new updated theta value.

(() ())new k k k L RP sign g g b   = − − (42)

Where 𝜃𝑛𝑒𝑤 is the new updated location of the end-effector. And ()L Rsign g g b−

ensures that the beetle moving direction is the small objective function value between

both directions. 𝛿𝑘(𝜆𝑘) stands for the step size.

As a third step, the updated theta value is used to calculate the new objective function

value. Compare it to the previous theta value to determine the relationship between

them. The relationship is shown below:

31

1

 , ((),)

, ((),)

k new k

k

new new k

if g g x t

if g g x t

 


 
+


= 


 (43)

After updating the robot arm's position, the process is repeated.

In the updated algorithm, the objective function now includes velocity minimization.

This addition improves the stability and controllability of the tracking progress,

resulting in a significant improvement in convergence performance. The following

chapter will discuss a detailed comparison of simulation results between the original

and updated algorithms.

32

CHAPTER 5 Simulation Results

This chapter presents the MATLAB simulation results for the original and improved

algorithms. Additionally, the performance of convergence speed will be discussed

based on the results.

To evaluate the performance of position tracking, we utilized two target trajectories

based on original and improved algorithms. The first reference curve is a circular

path, while the second one is a rectangular path. This section discusses the results of

three different improved methods compared to the original one, which include joint

angle velocity, incremental PID, and BSO methods.

5.1 Improved Algorithm with Incremental PID Control Simulation Results

5.1.1 Methods

This section presents the MATLAB simulation results for the original and improved

algorithms of the incremental PID control. The performance of convergence speed

will also be discussed based on the results.

Based on the original and improved algorithms, we evaluated position-tracking

performance using two target trajectories: circular and rectangular paths.

5.1.2 Results and Analysis

A. Circular Trajectory Tracking Results of Original Algorithm

The Beetle Antennae Search algorithm uses the quadratic position error and

calculates the step length by taking the square root of this value. The algorithm

initially sets up joint angles for each joint, and the circular curve is located at y=0,

causing the error difference in the y-axis to be negligible. The position error in three

dimensions will be demonstrated below.

33

Figure 11: Circular Trajectory Tracking Error with Original Algorithm

Based on the data presented in Fig. 11, we can analyze the circular trajectory tracking

performance of the original algorithm in terms of the error observed in different axes.

It should be noted that the error in the y-axis is always zero and can be disregarded

for further analysis. However, we can observe the error curves in the x and z

directions, as shown in Fig. 3. Specifically, the error in the x-axis approaches zero

after around 0.5104 iterations. In contrast, on the z-axis, it takes around 0.8104

iterations to reach zero difference.

B. Circular Trajectory Tracking Results of Improved Algorithm

Based on the results presented in Fig. 12, we can observe the errors for different axes

for the circular trajectory tracking achieved by the improved algorithm. The

incremental PID control added to the step size has significantly improved the

convergence speed for both the x and z axes. This control eliminates the need for

repetitive integration operations [45] by adding the step size in each iteration. The

error in the x-axis drops to zero after approximately 0.1104 iterations, while it takes

34

around 0.2104 iterations in the z-axis. Hence, the convergence speed for both axes

is approximately four times faster than the original algorithm.

Figure 12: Circular Trajectory Tracking Error with Improved Algorithm

C. Rectangular Trajectory Tracking Results of Original Algorithm

Based on the information provided in Fig. 13, we can determine the errors for

different axes in the rectangular trajectory tracking performance using the original

algorithm. However, we can also observe the error curves for both the x and z

directions, as shown in Fig. 5. The error in the x-axis reaches zero difference after

roughly 0.4104 iterations, while the error in the z-axis reaches zero difference after

approximately 0.4104 iterations.

35

Figure 13: Rectangular Trajectory Tracking Error with Original Algorithm

D. Rectangular Trajectory Tracking Results of Improved Algorithm

Based on the results obtained from Fig. 13, it is evident that the improved algorithm

successfully reduces errors in different axes in circular trajectory tracking. To achieve

this, incremental PID controllers were utilized over positional PID controllers. This

is because incremental PID controllers require less storage, have lower overshoot,

and are more resilient than positional PID controllers [46]. The error in the x-axis is

reduced to zero after approximately 0.1104 iterations, while the error in the z-axis

is also reduced to zero after 0.1104 iterations. This means that the convergence

speed for both x and z is approximately four times faster than the original algorithm.

36

Figure 14: Rectangular Trajectory Tracking Error with Improved Algorithm

5.2 Improved Algorithm with BSO Simulation Results

5.2.1 Methods

This section presents the MATLAB simulation results for the original and improved

algorithms of the BSO. The convergence speed performance will also be discussed

based on the results obtained.

Using original and improved algorithms, circular and rectangular target trajectories

were used to evaluate position-tracking performance.

5.2.2 Results and Analysis

A. Circular Trajectory Tracking Results of Original Algorithm

Fig. 15 illustrates the tracking error performance of the original algorithm. The graph

shows that the error in the x direction reduces to zero after approximately 0.5104

iterations, while the convergence time in the z direction is relatively 0.7  104

iterations. As previously discussed, the error in the y direction can still be considered

negligible.

37

Figure 15: Circular Trajectory Tracking Error with Original Algorithm

B. Circular Trajectory Tracking Results of Improved Algorithm

Based on Fig. 16, it can be inferred that the tracking performance and convergence

speed in the x and z directions have improved. This is due to the implementation of

the improved algorithm that utilizes the original beetle and the beetle swarm

optimization method. The swarm can communicate with one another and share

information, which results in faster search speeds and helps avoid falling into local

minima. The error difference in the x direction dropped to zero in only about 100

iterations, which is a significant improvement compared to the original algorithm.

Additionally, the convergence speed for the error in the z direction is much faster and

converges to zero in approximately 100 iterations, as opposed to the original

algorithm, which takes longer.

38

Figure 16: Circular Trajectory Tracking Error with Improved Algorithm

C. Rectangular Trajectory Tracking Results of Original Algorithm

We conducted the same simulation for the rectangular trajectory, and the results are

shown in Fig. 17. The figure indicates that the error convergence in the x direction

occurs in approximately 5000 iterations, while in the z direction, it occurs in almost

the same amount of iterations.

39

Figure 17: Rectangular Trajectory Tracking Error with Original Algorithm

D. Rectangular Trajectory Tracking Results of Improved Algorithm

As for the results of the rectangular curve from Fig. 18, after we add more beetles

into the work, beetles share the information and sensitivity, and the efference will

speed up. The figure implies that the error difference in the x direction drops to zero

in 200 iterations, almost 20 times faster than the original algorithm. As for the z

direction, the tracking error convergence to zero using approximately 100 iterations

is 30 times faster than the original algorithm.

40

Figure 18: Rectangular Trajectory Tracking Error with Improved Algorithm

5.3 Improved Algorithm with Joint Angle Velocity Simulation Results

5.3.1 Methods

In this section, we propose an updated version of the Beetle Antennae Search

Algorithm that includes velocities in joints to minimize power consumption and

quadratic position error. The simulation results will be shown below.

A. Circular Trajectory Tracking Results of Original Algorithm

In this section, we present the results of the circular trajectory tracking using the

original algorithm. Specifically, we will show the three-dimensional position

error with respect to the initial conditions. The initial conditions correspond to

the joint angles set up at the start of the experiment. The target curves, which

are circular and rectangular, are located on the y=0 plane. Thus, any error

41

differences in the y-axis will always be zero and will be neglected in our

discussion.

5.3.2 Results and Analysis

Fig. 19 shows oscillations in the X and Z directions and a severe chattering effect.

A control system should be stable and able to converge towards zero or close to

it, indicating that the error between the target curve and the proposed curve is

minimized.

Figure 19: Circular Trajectory Tracking Error with Original Algorithm

B. Circular Trajectory Tracking Results of Improved Algorithm

Based on the information presented in Fig. 20, we can conclude that the tracking

error for the y direction is negligible because the target curve is on the x-z plane.

Regarding the x direction, we observe that the chattering effect is decreasing,

and the tracking error is converging to zero. This occurs in approximately 1.2

seconds, which is a reasonable duration for research purposes. In the case of the

z direction, the system is becoming controllable, and the tracking error is

reduced to zero in approximately 1 second.

42

Figure 20: Circular Trajectory Tracking Error with Improved Algorithm

C. Rectangular Trajectory Tracking Results of Original Algorithm

In addition, we conducted rectangular position tracking and obtained error

curves, as shown in Fig. 21. The figure indicates that the end-effector's position

error reduces to nearly zero in about 10 seconds. However, it also indicates that

the original algorithm needs to be more robust as the end-effector oscillates

around zero.

43

Figure 21: Rectangular Trajectory Tracking Error with Original Algorithm

D. Rectangular Trajectory Tracking Results of Improved Algorithm

Figure 22 shows that the error dynamics in the y-direction are still zero, as the

trajectory remains in the x-z plane. The error-convergence performance in the x

and z directions takes approximately 2 seconds, practically five times faster than

the original algorithm.

Figure 22: Rectangular Trajectory Tracking Error with Improved Algorithm

44

CHAPTER 6 Experimental Results

This chapter presents the experimental results obtained from evaluating the

developed robotic manipulator system. This chapter will briefly introduce the Omni

manipulator system, hardware setup, and the shared experimental results.

6.1 Experimentation Description

This work uses the Omni Bundle robotic system and communicates with MATLAB.

The Omni Bundle is a cost-effective and efficient way to perform the control

concepts of robotics and haptics. The Omni is a robot manipulator with the six

revolute joints we discussed in previous sections. As we all know, only three of the

joints are actuated, which is what we are interested in. The three actuated joints are

J1, J2 and J3 shown in Fig. 23 [47].

Figure 23: Three Actuated Joints on the Omni Manipulator

The whole process of the experiment will be divided into two main parts. The first

part of the process is called Teaching Points. This part we named the teach pendant

45

experiment, where a set of discrete points are taught to the robot. During playback

motion, the robot traverses each of the taught points. Programming the robot to do

this is a three-step process. It involves creating a routine to teach the points to the

robot, then creating a desired path between those points that the robot should follow,

and then finally creating a routine to control the robot along that path. This step is

learning how to teach Omni different points in space and then create linear

trajectories between those points. However, in many applications it may be necessary

that we design for the path of the end-effector and not the joints. Applications of this

design are more intuitive. If the robot is required to move along

Figure 24: The Button on the Omni Manipulator

46

Figure 25: Teach Pendant Experiment Flowchart

a welding contour, then it may be a more intuitive motion of the end-effector and not

the joints. As a result, we will observe that the end-effector moves from one point to

the next. Every time the button shown in Fig. 24 is pressed, a new row is created in

each of these variables to store the information. For instance, if the button is pressed

four times, matrices q and pos on the workspace will be both 4x3.

The experimental flowchart is shown in Fig. 25. The flowchart illustrates the entire

process for recording joint positions in response to a button press event. There are

four main blocks shown in this flowchart. The initial stage is named wait for button

press. This step begins in a standby mode, continuously waiting for a button press

event. This loop ensures the system remains idle and conserves resources until user

interaction is detected. The second stage is called button press detection. The system

monitors for a button press. If no button press is detected, it loops back to the initial

waiting state. This decision point is critical for ensuring that the system only proceeds

47

when there is active user input. The next stage is called record joint positions. Once

a button press is detected, the system exits the waiting loop and proceeds to record

the current joint positions. This involves capturing the joint angles and positions at

the exact moment of the button press, which is essential for accurate data collection.

The last stage is named save data to workspace. The recorded joint positions are then

saved to the workspace in the form of matrices labelled q and pos. These matrices

store the joint angles (q) and their corresponding positions (pos), providing a

structured format for further analysis and processing. The significance of the

flowchart is highlighted as a simple yet effective method for capturing joint position

data based on user interaction. By implementing a wait mechanism for button presses,

the system ensures that data is only recorded at relevant moments, minimizing

unnecessary data collection and enhancing the accuracy of the recorded information.

The second main phase is called Controlling the robot. The experimental flowchart

is shown in Fig. 26. This process illustrates the iterative process of optimizing control

gains for better tracking performance of a haptic device setup. This process leverages

an optimization algorithm to refine the control parameters, ensuring improved

stability and performance of the system. This process includes five steps. The first

step is Pre-tuned Gains. The process starts with a set of pre-tuned gains. These initial

control parameters have been manually or heuristically determined to provide a

baseline performance. The second step is feeding the gains to the Optimization

Algorithm. The pre-tuned gains are fed into the optimization algorithm, referred to

as the "Beetle Bee" algorithm. This algorithm iteratively adjusts the control gains to

improve the system's performance. The output of this step is a set of optimized gains.

The next block is the newly optimized gains are applied to the system. Then the

optimized gains are fed into the simulink file to control the Omni manipulator to

48

perform the trajectory tracking. Then the block shows the methods to check the

tracking performance, which is the trajectory plot check or objective value check,

and we have this named “fbest”. The system’s performance with the new gains is

evaluated. This can be done by visually inspecting a trajectory plot or by checking

an objective value (fbest), which quantitatively measures the system's performance.

The image within the flowchart shows a setup involving the Quanser Omni Bundle

haptic device and a computer displaying the evaluation results. This visual feedback

is crucial for the next decision step. The last step is the stability and objective value

decision point. The flowchart includes a decision point where the stability of the

trajectory or the objective value (fbest) is assessed. If the trajectory is more stable or

fbest is smaller (indicating better performance), the optimized gains are deemed

successful, which needs to save the best objective value (fbest) and the new plot,

indicating that the optimized parameters have improved the system. However, if the

performance has not improved, the process loops back to the pre-tuned gains, and the

optimization algorithm runs again with potentially new parameters, which means that

it is a “No” decision that needs to return to the optimization algorithm step with the

current or adjusted gains for further refinement. The significance of this flowchart is

that it outlines a systematic approach to enhancing the performance of a haptic device

through iterative optimization. Integrating both automated optimization (via the

Beetle Bee algorithm) and manual verification (through trajectory plots and objective

values) ensures that the gains are theoretically optimal and practically effective.

49

Figure 26: Controlling the Robot Experimental Flowchart

50

6.2 Experimentation Setup

Figure 27: Experimental Setup

This experiment setup shown in Fig. 27 gives us an operating system. This advanced

experimental setup is centred around the Quanser Omni Bundle, a state-of-the-art

haptic device integrated with a computer workstation. This configuration is

indicative of a high-precision research environment focused on manipulation control.

The components of the setup from the image show that there is a Quanser Omni, a

robust and precise haptic interface, which is the critical module of the whole setup

placed on the left side of the workstation. This device allows users to interact with

virtual environments or control remote systems with exceptional precision and

realism. It is widely used in research fields requiring detailed manipulation and touch

feedback. Another main module is the computer workstation. A monitor displays a

graphical interface related to the control and data acquisition for the haptic device.

51

And also the supporting infrastructure, such as a study desk and appropriate cable

management, to ensure a clutter-free and efficient working environment.

Overall, the Quanser Omni experimental setup represents a highly specialized and

professional environment designed for trajectory-tracking research in the field of

haptic technology and control systems.

6.3 Experimentation Results

Figure 28: Tracking Performance of a Linear Triangle Curve

The obtained tracking results are shown in Fig. 28. Five figures are shown in the

figure, labelled “Figure 10”, “Figure 8”, “Figure 6”, “Figure 4”, and “Figure 2”, each

comparing the tracking performance of an "Omni" manipulator trajectory and a

"Linear" trajectory system.

The first plot, labelled “Figure 10” at the top left, shows that the red line represents

the Omni tracking curve, and the blue line expresses the linear desired curve. These

two lines show notable discrepancies, especially at points of rapid direction change.

The performance of this trial indicates that the Omni manipulator tracks the linear

system but still exhibits significant deviations, particularly in areas with high

curvature. The second plot, located at the top middle, shows that the gap between the

52

Omni and Linear trajectories begins to reduce. The Omni system (red) is starting to

show a more consistent path closer to the reference. Improvement is noticeable in

terms of the results, as the Omni manipulator tracks the trajectory more accurately

than the first plot. The deviations are less pronounced, indicating better handling of

direction changes and overall smoother tracking. In addition, for the third plot, which

is placed at the top right, we can perceive that the Omni manipulator continues to

show progress, with its trajectory more closely following the reference path

compared to the previous plots. As a result, the performance improvement trend

continues, with the Omni system showing reduced deviations and better alignment

with the reference trajectory. The Linear system still shows larger deviations,

especially in high-curvature sections. Then, for the following plot, which is at the

bottom left, we notice that the trajectories for both systems are becoming more

aligned, with the Omni manipulator's path nearly overlapping the reference trajectory.

From the perspective of this plot, significant improvements are evident in the Omni

system's tracking performance. The Omni trajectory is smoother and shows minimal

deviations from the reference path. The Linear system's performance remains

consistent with prior observations but is outperformed by the Omni system. From the

last plot in the bottom right corner, we can observe the closest alignment between the

Omni manipulator's trajectory and the reference path. Based on the analysis of this

plot, the Omni manipulator achieves the best tracking performance in this trial. The

trajectory is highly accurate, with minimal deviation throughout the path. The Omni

system's robustness and precision in tracking are clearly demonstrated, significantly

outperforming the Linear system.

In conclusion, upon completing this experiment, we can summarize the following.

From “Figure 10” to “Figure 2”, the Omni manipulator's tracking performance

53

improves progressively with each experiment trial. Initially, the Omni system shows

significant deviations, particularly in high-curvature areas. However, as the trials

progress, these deviations reduce, and the Omni manipulator's trajectory becomes

smoother and more closely aligned with the reference path. By “Figure 2”, the Omni

manipulator demonstrates superior tracking accuracy, robustness, and precision,

clearly outperforming the Linear system in all key performance aspects. This trend

indicates effective adaptation and optimization of the Omni manipulator's control

mechanisms over successive trials.

Figure 29: Task Path Results

From Fig. 29, we can observe that the ability to track predefined trajectories

accurately is critical in the realm of Omni manipulation and control. This figure

54

shows the tracking performance of an Omni manipulator system when provided with

three pre-taught points. The objective is to evaluate how these predefined points

influence the manipulator's ability to follow a complex trajectory.

We can notice that three key points were selected along the desired trajectory, marked

as point 1, point 2, and point 3. These points serve as reference landmarks for the

manipulator. Subsequently, the Omni manipulator will follow the trajectory while

utilizing the pre-taught points as guides. Thereafter, the actual position of the

manipulator was recorded throughout the trajectory, and the results were plotted for

analysis. The manipulator begins the trajectory with a close alignment to point 1,

indicating a strong initial adherence to the pre-taught path. Afterward, the

manipulator successfully reaches point 2, maintaining a consistent path with minimal

deviation. This demonstrates the system's ability to handle the complexity and

elevation changes in the trajectory. Ultimately, the manipulator accurately reaches

point 3, completing the trajectory with precision. This indicates effective control and

stability throughout the entire path.

In the final analysis, implementing pre-taught points in trajectory tracking for the

Omni manipulator proves to be highly effective. The pre-taught points are reliable

references, guiding the manipulator through complex paths with enhanced accuracy

and stability.

55

CHAPTER 7 Conclusion and Future Work

7.1 Conclusion

This thesis presents several improved Beetle Bee Algorithms for position tracking

control of OMNI manipulators in simulation using MATLAB. The first proposed

algorithm adds incremental PID control to the step size in each iteration. This

approach provides increment to the control system without an integral effect,

effectively avoiding the problem of critical saturation. As a result, the system

becomes more stable when unknown disturbances are introduced, making it more

robust. The second improved algorithm combines beetle swarm optimization to

become a hybrid algorithm to improve tracking performance. The last proposed

algorithm adds the angular velocity to the objective function to enhance the trajectory

tracking performance. The proposed algorithms rely on values from the end-effector

by using forward kinematics based on the BAS algorithm. The simulation was

performed in different scenarios, such as circle and rectangle trajectories. These

tracking simulations on the OMNI manipulator prove that the proposed algorithm

performs better in terms of convergence speed. In order to validate the effectiveness

of these proposed optimization algorithms, real-world experiments were conducted

on the Omni robotic manipulator system. The experimental results confirmed that,

with successive iterations, the parameters were continually optimized, yielding

increasingly stable and accurate trajectory tracking relative to the reference path.

These findings underscore the proposed optimization strategies' potential to

significantly enhance the Omni robotic systems' performance in trajectory-tracking

tasks.

56

7.2 Future Work

While the current study has yielded promising results, several avenues for future

research could further enhance the performance and applicability of the optimization

algorithms for trajectory tracking in the Omni robotic systems.

As part of our future work, one potential way to refine the optimization algorithms is

to further enhance the convergence speed and accuracy. We suggest modifying the

proposed algorithms to experiment with better hyperparameters and pre-tuned

parameters, improving the tracking performance.

Additionally, investigating real-time optimization strategies and adaptive control

mechanisms to address dynamic environments and unforeseen disturbances would

be crucial for practical applications of the Omni robotic manipulator system in

complex scenarios.

Moreover, it is suggested that comparative studies be conducted with other state-of-

the-art optimization algorithms and control strategies to gain valuable insights for

further enhancing the trajectory tracking accuracy and efficiency of the Omni robotic

manipulator system. Evaluating the position-tracking performance of both the

original algorithm and the enhanced algorithms on a manipulator with a higher degree

of freedom (DOF) is recommended to enable comparison with the Omni system and

potential publication in other conferences.

Next, it is imperative to explore real-time optimization strategies and adaptive control

mechanisms to address dynamic, unpredictable environments and unforeseen

disturbances. This is especially relevant for implementing the Omni robotic

manipulator system in complex scenarios. This approach can be further optimized

and applied to various robotic applications research may explore the optimization of

57

the number and placement of pre-taught points to further refine trajectory tracking

capabilities.

Furthermore, it is crucial to explore real-time optimization strategies and adaptive

control mechanisms structures to address dynamic, unpredictable environments and

unforeseen disturbances. This is especially pertinent for the practical implementation

of the Omni robotic manipulator system in complex scenarios.

Last but not least, to tackle complex systems, such as those encountered in PhD

studies, we propose to build a master-slave OMNI system. This system can execute

trajectory tracking using our developed and tested algorithms. We aim to achieve

optimal performance and efficiency through this approach.

58

Bibliography

[1] B. Xiao and S. Yin, “Exponential tracking control of robotic manipulators with uncertain

dynamics and kinematics,” IEEE Transactions on Industrial Informatics, vol. 15, no. 2,

pp. 689–698, 2019.

[2] X. P. Shi and S. R. Liu, “A Survey of Trajectory Tracking Control for Robot

Manipulators,” Control Engineering of China, vol. 18, no. 1, pp. 116-122, 2011. [3] Craig,

J.J. (2005) Introduction to robotics: Mechanics and control. Upper Saddle River, N.J:

Pearson/Prentice Hall.

[3] L.M. Capisani, A. Ferrara, L. Magnani, Second order sliding mode motion control of

rigid robot manipulators, in: Proceedings of the 46th IEEE Conference on Decision and

Control, New Orleans, LA, USA, 2007, pp. 12–14.

[4] OFweek. Available at: https://robot.ofweek.com/2021-09/ART-8321200-8300-

30526867.html, 2021.

[5] C. Molnár, T. D. Nagy, R. N. Elek and T. Haidegger, “Visual servoing-based camera

control for the da Vinci Surgical System,” 2020 IEEE 18th International Symposium on

Intelligent Systems and Informatics (SISY), Subotica, Serbia, 2020, pp. 107-112, doi:

10.1109/SISY50555.2020.9217086.

[6] O. Özgüner et al., “Camera-Robot Calibration for the Da Vinci Robotic Surgery System,”

in IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 2154-

2161, Oct. 2020, doi: 10.1109/TASE.2020.2986503.

[7] N. Tran, J. Y. Wu, A. Deguet and P. Kazanzides, “A Deep Learning Approach to Intrinsic

Force Sensing on the da Vinci Surgical Robot,” 2020 Fourth IEEE International

Conference on Robotic Computing (IRC), Taichung, Taiwan, 2020, pp. 25-32, doi:

10.1109/IRC.2020.00011.

[8] M. H. Hamedani et al., “Robust Dynamic Surface Control of da Vinci Robot Manipulator

Considering Uncertainties: A Fuzzy Based Approach,” 2019 7th International

Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 2019, pp. 418-423,

doi: 10.1109/ICRoM48714.2019.9071876.

[9] China, R.D.K. 17 Industrial Robot Applications for Smart Manufacturing, RoboDK Blog.

Available at: https://robodk.com/cn/blog/ndustrial-robot-applications/, 2022.

[10] M. Abdelaal, "A Study of Robot Control Programing for an Industrial Robotic

Arm," 2019 6th International Conference on Advanced Control Circuits and Systems

(ACCS) & 2019 5th International Conference on New Paradigms in Electronics &

information Technology (PEIT), Hurgada, Egypt, 2019, pp. 23-28, doi: 10.1109/ACCS-

PEIT48329.2019.9062878.

[11] L. Salameen, A. Estatieh, S. Darbisi, T. A. Tutunji and N. A. Rawashdeh, "Interfacing

Computing Platforms for Dynamic Control and Identification of an Industrial KUKA

Robot Arm," 2020 21st International Conference on Research and Education in

Mechatronics (REM), Cracow, Poland, 2020, pp. 1-5, doi:

10.1109/REM49740.2020.9313878.

https://robot.ofweek.com/2021-09/ART-8321200-8300-30526867.html
https://robot.ofweek.com/2021-09/ART-8321200-8300-30526867.html
https://robodk.com/cn/blog/ndustrial-robot-applications/

59

[12] M.W, Spong and M, Vidyasagar, Robot Dynamics and control. New York: Wiley, 2004.

[13] 2 DOF serial flexible link Quanser. Available at: https://www.quanser.com/products/2-

dof-serial-flexible-link/, 2021.

[14] J. S. Martin and G. T. Phedes , “ Proceedings of the Third Workshop on Virtual Reality

Interactions and Physical Simulations”, VRIPHYS 2006.

[15] Qarm Quanser. Available at: https://www.quanser.com/products/qarm/, 2021.

[16] R.N, JAZAR, “Robot Components,” in Theory of applied robotics: Kinematics,

dynamics, and control. New York: Springer, 2010.

[17] A. J. Silva, O. A. D. Ramirez, V. P. Vega and J. P. O. Oliver, "PHANToM OMNI Haptic

Device: Kinematic and Manipulability," 2009 Electronics, Robotics and Automotive

Mechanics Conference (CERMA), Cuernavaca, Mexico, 2009, pp. 193-198, doi:

10.1109/CERMA.2009.55.

[18] L.M. Capisani, A. Ferrara, L. Magnani, Second order sliding mode motion control of

rigid robot manipulators, in: Proceedings of the 46th IEEE Conference on Decision and

Control, New Orleans, LA, USA, 2007, pp. 12–14.

[19] F. Loucif, S. Kechida, and A. Sebbagh, “Whale optimizer algorithm to tune PID

controller for the trajectory tracking control of robot manipulator,” Journal of the

Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 1, 2019.

[20] Y. Su, P. C. Müller and C. Zheng, "Global Asymptotic Saturated PID Control for Robot

Manipulators," in IEEE Transactions on Control Systems Technology, vol. 18, no. 6, pp.

1280-1288, Nov. 2010, doi: 10.1109/TCST.2009.2035924.

[21] Y. Zhang, C. Wu and S. Li, “Research on compound control algorithm for motion control

system,” 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing,

2017, pp. 5035-5040, doi: 10.1109/CCDC.2017.7979388.

[22] E. Rastogi and L. B. Prasad, “Comparative performance analysis of PD/PID computed

torque control, filtered error approximation based control and NN control for a robot

manipulator,” 2015 IEEE UP Section Conference on Electrical Computer and

Electronics (UPCON), Allahabad, 2015, pp. 1-6, doi: 10.1109/UPCON.2015.7456706.

[23] M. Reyhanoglu, “Feedback control of a flexible joint robot,” 1997 European Control

Conference (ECC), Brussels, 1997, pp. 3194-3199, doi: 10.23919/ECC.1997.7082602.

[24] R. Tamias et al., "Particle Swarm Optimization Algorithm for Optimizing Item

Arrangements in Storage Warehouse," 2021 3rd International Conference on

Electronics Representation and Algorithm (ICERA), Yogyakarta, Indonesia, 2021, pp.

167-172, doi: 10.1109/ICERA53111.2021.9538775.

[25] A. Mallick, S. Roy, S. S. Chaudhuri and S. Roy, “Study of parametric optimization of

the Cuckoo Search algorithm,” Proceedings of The 2014 International Conference on

Control, Instrumentation, Energy and Communication (CIEC), 2014, pp. 767-772, doi:

10.1109/CIEC.2014.6959194.

https://www.quanser.com/products/2-dof-serial-flexible-link/
https://www.quanser.com/products/2-dof-serial-flexible-link/
https://www.quanser.com/products/qarm/

60

[26] A. A. Musa, S. Hafiz Imam, A. Choudhary and A. P. Agrawal, "Parameter Estimation of

Software Reliability Growth Models: A Comparison Between Grey Wolf Optimizer and

Improved Grey Wolf Optimizer," 2021 11th International Conference on Cloud

Computing, Data Science & Engineering (Confluence), Noida, India, 2021, pp. 611-617,

doi: 10.1109/Confluence51648.2021.9377194.

[27] Y. Ling, Y. Zhou and Q. Luo, “Lévy Flight Trajectory-Based Whale Optimization

Algorithm for Global Optimization,” in IEEE Access, vol. 5, pp. 6168-6186, 2017, doi:

10.1109/ACCESS.2017.2695498.

[28] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” in IEEE

Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, April 1997, doi:

10.1109/4235.585893.

[29] Á. Jimenez-Uribe, L. F. Serna-Hernández, J. M. Hernández-Paredes and B. Muñoz-

Barrón, "Comparative Study of a PID and PD Control Bounded by Hyperbolic Tangent

Function in Robot 3 DOF," 2015 International Conference on Mechatronics, Electronics

and Automotive Engineering (ICMEAE), Cuernavaca, Mexico, 2015, pp. 199-204, doi:

10.1109/ICMEAE.2015.35.

[30] G. Wang and N. Liu, “Design and Implementation of a New Approach Based on the

Error Feedforward Compensation for Motion Controller,” 2006 Chinese Control

Conference, Harbin, China, 2006, pp. 1579-1584, doi: 10.1109/CHICC.2006.280759.

[31] E. Rastogi and L. B. Prasad, “Comparative performance analysis of PD/PID computed

torque control, filtered error approximation based control and NN control for a robot

manipulator,” 2015 IEEE UP Section Conference on Electrical Computer and

Electronics (UPCON), Allahabad, 2015, pp. 1-6, doi: 10.1109/UPCON.2015.7456706.

[32] M. Reyhanoglu, “Feedback control of a flexible joint robot,” 1997 European Control

Conference (ECC), Brussels, 1997, pp. 3194-3199, doi: 10.23919/ECC.1997.7082602.

[33] M. T. Vakil-Baghmisheh and M. Salim, "A modified fast marriage in honey bee

optimization algorithm," 2010 5th International Symposium on Telecommunications,

Tehran, Iran, 2010, pp. 950-955, doi: 10.1109/ISTEL.2010.5734159.

[34] M. Zein, A. E. Hassanien, A. Badr and T. -H. Kim, “Human Activity Classification

Approach on Smartphone Using Monkey Search Algorithm,” 2015 Seventh International

Conference on Advanced Communication and Networking (ACN), Kota Kinabalu,

Malaysia, 2015, pp. 84-88, doi: 10.1109/ACN.2015.31.

[35] Y. Shiqin, J. Jianjun and Y. Guangxing, “A Dolphin Partner Optimization,” 2009 WRI

Global Congress on Intelligent Systems, Xiamen, China, 2009, pp. 124-128, doi:

10.1109/GCIS.2009.464.

[36] S. Goel and V. K. Panchal, “Performance evaluation of a new modified firefly algorithm,”

Proceedings of 3rd International Conference on Reliability, Infocom Technologies and

Optimization, Noida, India, 2014, pp. 1-6, doi: 10.1109/ICRITO.2014.7014717.

[37] X. Jiang and S. Li, “BAS: Beetle Antennae Search Algorithm for Optimization

Problems”, International Journal of Robotics and Control, vol. 1, no. 1, p. 1, 2018.

61

[38] A. H. Khan, S. Li and X. Luo, “Obstacle Avoidance and Tracking Control of Redundant

Robotic Manipulator: An RNN-Based Metaheuristic Approach,” in IEEE Transactions

on Industrial Informatics, vol. 16, no. 7, pp. 4670-4680, July 2020, doi:

10.1109/TII.2019.2941916.

[39] A. Khan, X. Cao, S. Li and C. Luo, “Using Social Behavior of Beetles to Establish a

Computational Model for Operational Management”, IEEE Transactions on

Computational Social Systems, vol. 7, no. 2, pp. 492-502, 2020.

[40] L. Wu, R. Crawford and J. Roberts, “An Analytic Approach to Converting POE

Parameters Into D–H Parameters for Serial-Link Robots,” in IEEE Robotics and

Automation Letters, vol. 2, no. 4, pp. 2174-2179, Oct. 2017, doi:

10.1109/LRA.2017.2723470.

[41] M. Liu, H. Zhang, Y. Zhang and C. Yuan, “Design and Performance Analysis of ZYNQ

Based Incremental PID-PWM Controller,” 2022 IEEE International Conference on

Electrical Engineering, Big Data and Algorithms (EEBDA), 2022, pp. 1123-1126, doi:

10.1109/EEBDA53927.2022.9744964.

[42] L. Y. and S. S, "Design of flow cytometer liquid circuit control system based on

incremental PID algorithm", Journal of Physics: Conference Series, vol. 1633, pp.

012001, 2020.

[43] W. Chu, X. Gao and S. Sorooshian, "Fortify particle swarm optimizer (PSO) with

principal components analysis: A case study in improving bound-handling for optimizing

high-dimensional and complex problems," 2011 IEEE Congress of Evolutionary

Computation (CEC), New Orleans, LA, USA, 2011, pp. 1644-1648, doi:

10.1109/CEC.2011.5949812.

[44] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-

international conference on neural networks, vol. 4, pp. 1942–1948, IEEE, 1995.

[45] H. Niu, X. Liao, Y. Dai, C. Hu, L. Zhang and S. Chen, “A Multi-factor Control System

in Greenhouse Based on The Internal Incremental PID Algorithm,” 2021 International

Conference on Electronic Information Technology and Smart Agriculture (ICEITSA),

2021, pp. 99-105, doi: 10.1109/ICEITSA54226.2021.00028.

[46] X. Guo, Z. Li and G. Sun, “The Robot Arms Control Based on RBF with Incremental

PID and Sliding Mode Robustness,” 2019 WRC Symposium on Advanced Robotics and

Automation (WRC SARA), 2019, pp. 97-102, doi: 10.1109/WRC-SARA.2019.8931971.

[47] J., Apkarian, P., Karam, D., Crymble, A., Abdossalami, & R., Samra, STUDENT

WORKBOOK Omni Bundle Robotics Experiment. Quanser Inc, 2021.

62

Appendix A Author’s Publications

1. X. Zhang, J. Gu, M. U. Asad, U. Farooq and G. Abbas, "Beetle Bee Algorithm

Applied to Trajectory Tracking Control of OMNI Manipulator," 2022

International Conference on Emerging Trends in Electrical, Control, and

Telecommunication Engineering (ETECTE), Lahore, Pakistan, 2022, pp. 1-5, doi:

10.1109/ETECTE55893.2022.10007292.

2. X. Zhang, J. Gu, M. U. Asad, and U. Farooq. “Beetle Bee with Incremental PID

Control Algorithm Applied to Trajectory Tracking Control of OMNI

Manipulator,” The 10th International Workshop on Soft Computing Applications

(SOFA 2022). Arad.

3. X. Zhang, J. Gu, M. U. Asad, U. Farooq and K. Cherfouh, “Beetle Bee With BSO

Algorithm Applied to Trajectory Tracking Control of OMNI Manipulator,”

(submitted to IEEE ETECTE 2024).

4. K. Cherfouh, J. Gu, Ali J.-F. and X. Zhang “Geometrical Parameter Optimization

of Double Rotor Axial-Flux Permanent Magnet Synchronous Motor,” accepted

for presentation at 2024 IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE). Kingston, August, 2024.

5. M. U. Asad, J. Gu, U. Farooq, Khurram, Q. K., K. Cherfouh, and X. Zhang

“Design of Limited System Inspired Intelligent Controller with Application to

Unmanned Surface Vehicles,” accepted for presentation at The OCEANS

September, 2024. Halifax.

