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Abstract 

In this thesis, we explore the trajectory tracking control of the OMNI manipulator 

using various enhanced beetle bee algorithms. A metaheuristic algorithm mimics the 

beetle's ability to locate food in an unknown environment using its two antennas. 

Beetles decide to go left or right based on the strength of the scent until they reach 

their target. However, the conventional Beetle Antennae Search (BAS) takes a long 

to converge, especially when dealing with higher-dimensional systems. To address 

this issue, we propose improved beetle bee methods that combine other techniques 

with the original algorithm. The proposed approaches enhance the convergence speed 

of the algorithm and make it more efficient for higher dimensional systems. 

The three proposed hybrid algorithms will be introduced in this thesis. The first one 

is adding the incremental PID control to the original algorithm. The second one 

combines the BSO (Beetle Swam Optimization) algorithm. The last one is counting 

the angular velocity to the objective. The simulation results from the proposed and 

cutting-edge metaheuristic algorithms will be compared. Moreover, the experimental 

results based on the Omni manipulator system with an improved Beetle Bee 

algorithm are also obtained. Experimental results demonstrate significant 

improvements in trajectory optimization compared to the original algorithm. 
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CHAPTER 1 Introduction 

This chapter will overview the robotic manipulator system and introduce the 

geomagic OMNI manipulator. Additionally, we will discuss the motivation behind 

our thesis. Finally, we will outline the contributions of our thesis and the structure of 

the thesis itself. 

1.1 Robot Manipulation Systems 

Robots have made a substantial contribution to the industrial world in recent decades. 

The fields of robotics and artificial intelligence have gained significant attention, not 

only in daily life but also in manufacturing. In particular, robot manipulators, or robot 

arms, have proven to be very useful, replacing people in complicated and repetitive 

jobs [1-2]. They have been used to carry heavy objects, work in high-temperature, 

toxic, explosive, and radioactive environments, and complete dangerous and 

repetitive work instead of humans. This benefit has reduced the intensity of human 

labour while increasing productivity. The use of industrial robots increased 

worldwide from 1990 to 2000 because the cost of the robots decreased continuously 

while the labour cost increased [3]. There are several reasons why robots have been 

gaining significant attention. First, they reduce labour costs. When a robot arm is in 

operation, only one person is needed to control or monitor the robot manipulators, 

reducing the number of workers and labour costs. In addition, they are more reliable 

and secure when performing tasks. Since the robot arm imitates human actions to 

complete activities, there is no risk of injury or death in case of emergency, ensuring 

safety. Lastly, the accuracy of the product is crucial for factories. Robot arms can 

reduce the error rate of products compared to humans and stop when the pre-set goal 

is achieved, thus increasing production efficiency [4]. 
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The use of robot manipulator systems has shown significant progress in human 

healthcare. One example is the da Vinci Surgical System, shown in Figure 1 [5]. The 

da Vinci Surgical robot arm has gained popularity in the medical field in recent 

decades. This phenomenon happens because it has dramatically improved surgery 

accuracy and reduced patient recovery time. Additionally, it causes a much smaller 

traumatic surface area, allowing patients to return to their daily lives quickly. For 

doctors, the system increases the field of view angle, reduces hand tremors, and 

reduces the number of participants required during the operation, increasing 

efficiency and reducing labour costs. Researchers have also put effort into improving 

the system. Some have created a camera-robot calibration to perform automated tasks 

with precision and minimize accumulation error [6]. Others have used a deep learning 

approach to create a neural network that estimates interaction force based on the da 

Vinci System [7]. Yet others have designed a fuzzy dynamic surface controller on 

the Da Vinci System to observe and eliminate uncertainties [8]. 

 

Figure 1: The Da Vinci Surgical System 
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Nowadays, robot arms are playing a crucial role in the industrial field. As the Fig. 2 

[9] shows.  

 

Figure 2: Example of the Industrial Robot Arm 

Industrial robot manipulators can do different tasks, such as Metal processing, 

polishing and grinding, assembly, machine loading and unloading, 

palletizing/transportation, rubber/plastic, sorting, etc. Therefore, researchers 

conducted a study on robot control of the industrial robot arm to maximize accuracy 

[10]. Other researchers have used the industrial KUKA robot arm's dynamic control 

and identification platform to create open-source software for education and research 

purposes [11].  

The robot arm comprises several links joined together by joints that actuators or 

motors can move. The joints can be revolute or prismatic, and the links can be rigid 

or flexible. A common way to categorize robot manipulators is by the number of 

freedoms (DOFs) determined by the number of joints [12]. The three examples will 

be shown as follows.  

The Fig. 3 [13] shows a 2-DOF manipulator. 
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Figure 3: 2-DOF Robot Arm 

Moreover, the 3-DOF arm is shown in Fig. 4 [14]. 

 

Figure 4: 3-DOF Robot Arm 

Fig. 5 [15] shows a 4-DOF arm. 
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Figure 5: 4-DOF Robot Arm 

1.2 The Geomagic OMNI Manipulator System 

There are two main types of robotic manipulators: serial manipulators and parallel 

manipulators. Serial manipulators typically comprise links connected end-to-end, 

forming a kinematic chain controlled by different joints [16]. An example of a serial 

manipulator is the OMNI manipulator, shown in Figure 6 [17]. 
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Figure 6: OMNI Manipulator 

The OMNI manipulator consists of six joints, three of which are actuated and three 

that are non-actuated. Researchers are particularly interested in the three actuated 

joints. In Chapter 3, we will discuss the modelling of the OMNI manipulator, 

including the forward kinematic model of position, inverse kinematic model of 

position, forward kinematic model of velocity, and inverse model of velocity, in 

detail. 

Also, the three actuated joints have a limited range, which will be discussed later.  

1.3 Thesis Motivation 

Robots have made a significant contribution to the industrial world today. They can 

effectively replace humans in dangerous situations and perform complicated and 

repetitive tasks. However, more accurate location monitoring and improved 

metaheuristic algorithm control methods must be developed to meet the required 

high-level demands and criteria. Robots’ challenges in achieving their intended 

performance include time-varying variables, system uncertainties, nonlinearities, and 
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typical coupling effects [18]. A robot manipulator is a multi-input and multi-output 

(MIMO), a highly nonlinear and coupled system designed to perform tasks 

automatically, mimicking or reproducing human actions in a specific area [19]. 

Robot manipulator controllers still frequently use traditional proportional-derivative 

(PD) or proportional-integral-derivative (PID) algorithms despite the current control 

theory's effectiveness [20]. Advanced control methods, such as feedforward 

compensation control methods [21], computed torque methods [22], and nonlinear 

feedback control [23], have been developed to solve optimization problems. 

However, it is challenging to implement these methods in real-time due to the 

system's nonlinearities and uncertainties, making it challenging to find the robot's 

mathematical model. Recently, natural-inspired metaheuristic algorithms have 

gained popularity for resolving optimization issues. The social behaviour of living 

things in their natural habitats influenced the development of various metaheuristic 

algorithms, such as Particle Swarm Optimization (PSO) [24], Cuckoo Search (CS) 

[25], Grey Wolf Optimizer (GWO) [26], and Whale Optimization Algorithm (WOA) 

[27]. The reasons for the popularity of nature-inspired optimization algorithms can 

be summarized into three main parts: simplicity, flexibility, and the ability to avoid 

local minima. 

Meta-heuristics are optimization algorithms based on animal and evolutionary 

concepts, making them easy to understand and use. They are also adaptable, which 

means they can solve various problems without requiring complex adjustments. 

Additionally, they can avoid getting stuck in local minima due to their unpredictable 

search behaviour. 

However, although meta-heuristic algorithms can potentially solve most real-world 

optimization problems, the No Free Lunch theorem [28] states that no single 



8 
 

algorithm can handle all issues. Some algorithms perform better than others in 

specific class problems, while others excel in other situations. This is why we need 

distinct meta-heuristic algorithms for real-time issues instead of relying on a single 

one. 

Metaheuristic algorithms have shown promising results in solving complex 

optimization problems in various fields. Therefore, applying these algorithms in the 

development of robot manipulators presents an opportunity to improve the efficiency 

and effectiveness of these machines. 

This thesis aims to explore the application of metaheuristic algorithms, specifically 

beetle bee algorithms and particle swarm optimization, to enhance their tracking 

performance. The research will involve designing and simulating a robotic 

manipulator utilizing these algorithms and comparing the results with those obtained 

by the original beetle bee algorithm. 

Overall, this thesis aims to contribute to developing an OMNI manipulator that can 

improve tracking performance efficiently and effectively, thereby enhancing the 

capabilities of these machines and their potential applications in various industries. 

1.4 Contributions 

As discussed above, this thesis will improve the tracking performance of the original 

beetle bee algorithm. The three contributions will be introduced as follows to achieve 

better performance compared to the original algorithm. 

• The first optimization applied the incremental PID control to the step size of 

the proposed algorithm. 

• The second optimization algorithm is combined with Beetle Swam 

Optimization (BSO) to achieve better tracking performance for the OMNI 
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manipulator. 

• The last optimization is adding the angular velocity square to the objective 

function to achieve a more stable and faster convergence speed. 

1.5 Thesis Outline 

This thesis proposes three Improved Beetle Bee Algorithms with Application to 

OMNI Manipulator Trajectory Tracking Control. The rest of the paper is structured 

as follows.  

Chapter 1 provides an introductory overview of the robot manipulator system, with a 

specific focus on the OMNI manipulator. It outlines the motivation behind the 

research, details the contributions of the thesis, and presents the overall structure and 

organization of the work.  

Chapter 2 offers a comprehensive review of existing literature, covering both 

conventional and intelligent control algorithms relevant to robot manipulators. The 

review aims to contextualize the research within the broader field and highlight 

significant advancements and methodologies. 

Chapter 3 introduces the fundamental theories pertinent to the study, including 

robotics methodologies and the kinematic and dynamic models specific to the OMNI 

manipulator. 

Chapter 4 addresses the development of the improved algorithm, detailing the three 

key optimizations incorporated within it. The discussion focuses on the theoretical 

underpinnings and practical implications of these optimizations.  

Chapter 5 presents the results obtained from simulations, including a detailed analysis 

of the methods employed and the outcomes for each case studied. The results are 

discussed in terms of their implications and contributions to the field. 
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Chapter 6 summarizes the key findings of the thesis, drawing conclusions from the 

research conducted. Recommendations for future research directions are offered, 

highlighting potential areas for further investigation and development. 
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CHAPTER 2 Literature Review 

This chapter briefly overviews classical and intelligent control algorithms, focusing 

on the Beetle Antenna Search (BAS). 

2.1 A State-of-the-Art Control Algorithms 

Robot manipulator controllers often still need to rely on traditional proportional-

derivative (PD) or proportional-integral-derivative (PID) algorithms despite the 

availability of newer and more effective control theory methods [29]. Advanced 

control methods, such as feedforward compensation control methods [30], computed 

torque methods [31], and nonlinear feedback control [32], are used to solve 

optimization problems. 

2.2 Intelligent Control Algorithms 

Finding the mathematical model of a robot can be a complex task due to the 

nonlinearities and uncertainties involved in the system. Therefore, the methods 

mentioned above may not be feasible in real-time situations. However, natural-

inspired metaheuristic algorithms have recently gained significant attention for 

addressing optimization problems. These algorithms, such as Honey Bee 

Optimization (HBO) [33], Monkey Search (MS) [34], Dolphin Partner Optimization 

(DPO) [35], and Firefly Algorithm (FA) [36], are developed by observing the social 

behaviour of living organisms in their natural habitats. The popularity of these nature-

inspired optimization algorithms can be attributed to their simplicity, flexibility, and 

ability to avoid local minima. 

Meta-heuristics have some significant advantages. Firstly, they are based on animal 

and evolutionary concepts, making them easy to understand and implement. 

Secondly, these optimization algorithms are adaptable, meaning they can be applied 
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to many problems without significant modifications. Thirdly, they can avoid getting 

stuck in local minima due to their unpredictable search behaviour.  

However, even though meta-heuristic algorithms have the potential to address most 

real-world issues, it's important to note that no single algorithm can handle all 

optimization problems. The No Free Lunch theorem states that some algorithms 

might perform better than others in specific optimization problems, while others 

might be more effective in other issues. Therefore, it's necessary to have a variety of 

meta-heuristic algorithms to tackle real-time problems. 

The Beetle Bee Algorithm is an intelligent control algorithm that mimics the food-

searching nature of beetles. Unlike other insects, beetles don't work in swarms and 

can hunt for food independently, reducing computational complexity and time 

consumption. The algorithm uses two antennae to detect the intensity of the food's 

scent and compare it to determine the new movement direction for the following step. 

By sensing the difference in smell at each antenna, the beetle can develop a map of 

the smell intensity of the unknown environment. This map helps search for maximum 

smell change, which is subsequently moved toward the destination position (food 

source). The Beetle Antennae Search (BAS) algorithm [37] is another name for the 

Beetle Bee Algorithm. BAS has been used in various real-world systems since its 

working process [37-38] was introduced. The working process of the original BAS 

is shown in Fig. 7. [39]. 
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Figure 7: Illustration of the beetle’s food-foraging behaviour 

Firstly, the random search behaviour should be implemented as in (1), 

( ,1)

( ,1)

rands k
b

rands k
=       (1) 

Where 𝑟𝑎𝑛𝑑𝑠(.) denotes a random function, which is a general random function to 

get the random value to guarantee the random search behaviour, and 𝑘 represents the 

dimensions of the system, the “ .. ” denotes the absolute value. 

Since we have this random searching behaviour combined with the beetle antennae 

length, which shows a later function that should be sufficiently large to encompass 

an appropriate search region to be capable of jumping out of local minimum points 

so that we can avoid the local minima problem, and this feature is essential so that 

the robotic task can under the desired working trajectory. 

Secondly, the algorithm needs to calculate the objective function values for both the 

left and right antennae, which are prepared to update the new angle for the next step. 
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Thirdly, the updated angle is used to get the new value of the objective function, and 

the location is updated to control the beetle and follow the desired trajectory. 
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CHAPTER 3 Background Theories 

This chapter will introduce the background theories of the robot manipulator. This 

chapter includes three parts: 

• Robotics terminology 

• Kinematic model of robot manipulators 

• Modelling of OMNI robot manipulators 

3.1 Robotics Terminology 

To ensure a robotic manipulator's safety, effectiveness and efficiency, it is essential 

to follow a methodology before designing and building the robot. The term robot in 

this research refers specifically to the robot manipulator. The methodology can be 

defined as the terminology used in this field. Robotic manipulators consist of links 

joined by joints, forming a kinematic chain. The robot system includes a manipulator, 

arm, wrist, end-effector, actuators, sensors, and controllers. Each rigid body of the 

robot is called a link, and two links are connected by a joint, which can be revolute 

(rotary) or prismatic (translatory). A manipulator is a significant robot component 

consisting of links, joints, and other elements. The wrist is the point in the robot’s 

kinematic chain between the forearm and the end-effector. The end-effector is 

mounted on the last link and is responsible for performing the required work of the 

robot manipulator or arm. Actuators, which operate as drivers, are like the muscles 

of a robot that change its configuration. Sensors detect and collect information from 

the reaction between the end-effector, objects, and environment. Lastly, a controller 

acts like the brain of a human being, enabling the robot to perform its tasks effectively 

and efficiently.  
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3.2 Kinematic Model of Robot Manipulators 

The kinematic model of robot manipulators primarily focuses on object motion rather 

than the force generated by movement. In robot kinematics, we study the higher-

order differentiation of position, velocity, acceleration, and position variables 

concerning time or other variables. The typical research topics in robot kinematics 

are forward kinematics and inverse kinematics. 

Generally speaking, forward kinematics determines the end-effector’s position in the 

coordinates by providing a set of joint angles. It is utilized to find the position of each 

arm for the given joint and link parameters. The forward kinematics calculation uses 

the Denavit-Hartenberg (D-H) matrix [40], demonstrating the relationship among 

frames. There are four DH parameters: joint offset 𝑑, joint angle 𝜃, link length 𝑎, and 

twist angle 𝛼. The first two parameters 𝑑𝑖 and 𝜃𝑖 indicate the relative position of link 

𝑖−1 and link 𝑖, whereas the other two parameters 𝑎𝑖 and 𝛼𝑖 define the size and shape 

of link 𝑖. 

After reading the four D-H parameters for each link, the D-H table is generated., The 

transformation matrix can be calculated with the formula: 

1

1 1 1 11

1 1 1 1

0

      

0 0 0 1

i i i

i i i i i i ii

i

i i i i i i i

c s a

s c c c s d s
T

s s c s c d c

 

     

     

−

− − − −−

− − − −

− 
 

− −
 =
 
 
 

 (2) 

The position change from frame 𝑖−1 to frame 𝑖 can be calculated by multiplying the 

corresponding transformation matrix, 

1 1

3 1 3 3 3 1[ ] [ ] [ ]i i i

iP T P− −

  =     (3) 

Multiplication of all transformation matrices can be applied to determine an overall 

transformation matrix, 
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0 0 1 2 1

1 2 1        i i

i i iT T T T T− −

−=     (4) 

An example is made by calculating the forward kinematics for a 2 DOF planar arm 

robot. 

The first step is to assign all three labels for each robot joint. Following the rules that 

the Z axis is the rotation axis and applying the right-hand rule, the axes are given 

below in Fig. 7. 

 

Figure 8: 2R Robot with XYZ Labels for Each Joint Assigned 

The D-H Table shown in Table 3 can be constructed by observing Figure 7. Note that 

frame {0} is attached to the base so that 
0 =0 and 

0a =0. 

Table 1 Denavit-Hartenberg Table for Robot Manipulator 

Link i  i  
ia  

id  
i  

1 0 1L  0 1  

2 0 2L  0 2  

 

Next, substitute the values into the formula for calculating the transformation matrix. 

The following equations can be obtained where, 
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1 1 1 1

0 0
1 1 1 10 1 1

1

0

0

0 0 1 00 0 0 1

0 0 0 1

c s L c

s c L sR Q
T

  

  

− 
 

 
 = = 
  
 
 

   (5) 

2 2 2 2

1 1
2 2 2 21 2 2

2

0

0

0 0 1 00 0 0 1

0 0 0 1

c s L c

s c L sR Q
T

  

  

− 
 

 
 = = 
  
 
 

   (6) 

12 12 1 1 2 12

12 12 1 1 2 120 0 1

2 1 2

0

0
                   

0 0 1 0

0 0 0 1

c s L c L c

s c L s L s
T T T

   

   

− + 
 

+
 = =
 
 
 

  (7) 

Thus, the Cartesian position and orientation of the last joint concerning the base 

frame {0} can be represented by the following rotation matrix and translation matrix. 

12 12 1 1 2 12

0 0

2 12 12 2 1 1 2 12

0

0 ,

0 0 1 0

c s L c L c

R s c Q L s L s

   

   

− +   
   

= = +
   
      

   (8) 

As for the inverse kinematics, which gives the position of the end-effector to find the 

corresponding joint angles, The inverse kinematics is used to find all joint parameters 

for a given end-effector, which contains the position information of the last joint with 

respect to the base. However, unlike the forward kinematic, which has a unique 

solution, inverse kinematics can have multiple solutions. This can be incredibly 

complicated for robots with a high degree of freedom. 

For a 2 DOF robot, an inverse kinematic may have two solutions. In other words, two 

different situations of arm position have the same end effector, as shown in Fig. 9. 

Assume the hip joint is located at (x, y) 
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Figure 9: Two Solutions for an Inverse Kinematics 

The relationship between angles α, β, γ, and two joint angles can be observed as 

follows, 

Solution 1 (Fig. 9 Left): 

1 2,     = − = −      (9) 

Solution 2 (Fig. 9 Right): 

1 2,     = + = −      (10) 

The angle γ can be calculated using arctangent, 

tan 2( , )a y x =      (11) 

The angles α and β can be calculated using the law of cosines, 

2 2 2 2

1 2 1 2

2 2 2 2 2 2

1 1 2

2 cos

2 cos

L L L L x y

x y L L x y L





+ − = +

+ + − + =
   (12) 

To simplify these, we have, 

2 2 2 2
1 1 2

2 2

1

cos
2

x y L L

L x y
 − + + −
=

+
    (13) 

2 2 2 2
1 1 2

1 2

cos
2

L L x y

L L
 − + − −
=     (14) 

 

3.3 Modelling of OMNI Robot Manipulators 

The OMNI manipulator shown in Fig. 10 is a 3-DOF device that allows kinematic 

integration with complex virtual objects. The haptic device kinematics includes the 
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position and derivates to evaluate the device’s performance by implementing the 

proposed improved Beetle Bee Algorithm. 

The modelling of the OMNI manipulator includes the forward kinematic model of 

position, inverse kinematic model of position, forward kinematic model of velocity, 

and inverse model of velocity. 

 

Figure 10: Modelling of OMNI Manipulator 

1) Forward Kinematic Model of Position 

The forward kinematic position of a manipulator is determined by the relationship 

between the Cartesian coordinates, which represent the position and orientation of 

the end-effector, and the joint space coordinates, which correspond to the joint angles. 

This relationship is expressed mathematically, as shown in equation (15), 

( )x f =       (15) 

Where 𝑥 ∈  ℝ3×1 denotes the vector of the Cartesian coordinates of the end-effector 

and 𝜃 ∈  ℝ3×1 represents the vector of joint coordinates. The operational coordinates 

for X, Y, and Z coordinates of real-time values can be calculated from the kinematics 
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chain of the OMNI haptic device, and the needed variables and constants can be found 

in Fig. 10. 

The kinematic chain of the OMNI haptic device, along with the representation of 

the variables and constants involved in the model, is illustrated in Fig. 10. The 

variables and constants are all shown in Fig. 10. The L1 is the length of the first link, L2  

is the length of the second link, L1 = L2 = 0.135m, and A = 0.035m when L1 and L2 are 

perpendicular shows in Fig. 10, L4 = L1+A. L3=0.025m. These parameters will be used 

in the calculation of the kinematic model. Calculating the kinematic chain is the 

position of the End-Effector (EE) from the Source Coordinate Center (SCC) to the EE 

of the manipulator. After performing the coordinate transformation, also known as the 

kinematics chain from the point (0,0,0) in Fig. 10. 

The final representation of the position vector of Cartesian coordinates for the 

forward kinematic model is shown in (16): 

1 1 2 2 3

3 2 3 1 2

4 1 1 2 2 3

sin ( cos sin )

cos sin

cos ( cos sin )

x L L

y L L L

z L L L

  

 

  

= − +

= − +

= − + +

   (16) 

Where 𝜃1,  𝜃2,  𝜃3 are the joint angles. The range of 𝜃1  is from −50° to 55°, 𝜃2  is 

from 0 to 105°, and 𝜃3 is not in a specific range which depends on the value of 𝜃2 

[14]. Therefore, table 2 shows the corresponding angle values with respect to the 𝜃2. 

All angles are in degrees. 

Table 2 RELATIVE VALUES OF 𝜃3 

𝜽𝟐 𝜽𝟑 𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝜽𝟑 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 

0 -20 65 

15 -15 90 

30 -9 105 

40 0 110 

50 10 112 

60 20 113 
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80 40 114 

90 50 114 

105 60 110 

2)Inverse Kinematic Model of Position 

The inverse kinematic model of the manipulator is the computation of the given EE 

position to find the corresponding angle in real time. The mathematical relation is 

shown in (17), 

1( )f x −=       (17) 

3)Forward Kinematic Model of Velocity 

The forward kinematic model of velocity is defined in (18): 

x J=        (18) 

Where 𝑥̇ ∈ ℝ3×1 represents the velocities vector for each joint, 𝐽 ∈  ℝ3×3 denotes the 

Jacobian matrix of the manipulator and 𝜃̇ ∈  ℝ3×1 is the joint velocities vector. After 

the deformation of (3) and rearranging into the matrix form [40], it becomes in (19): 

11 12 13 1

21 22 23 2

31 32 33 3

x J J J

y J J J

z J J J







    
    

=     
    
    

                 (19) 

Where,  𝐽11 = −(𝐿1𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 + 𝐿2𝑠𝑖𝑛𝜃3𝑐𝑜𝑠𝜃1),  

𝐽12 = 𝐿1𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2,  

𝐽13 = −𝐿2𝑐𝑜𝑠𝜃3𝑠𝑖𝑛𝜃1, 

𝐽21 = 0, 

𝐽22 = 𝐿1𝑐𝑜𝑠𝜃2, 

𝐽23 = 𝐿2𝑠𝑖𝑛𝜃3, 

𝐽31 = −𝐿1𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1 − 𝐿2𝑠𝑖𝑛𝜃3𝑠𝑖𝑛𝜃1, 

𝐽32 = −𝐿1𝑠𝑖𝑛𝜃2𝑐𝑜𝑠𝜃1, 

𝐽33 = 𝐿2𝑐𝑜𝑠𝜃3𝑐𝑜𝑠𝜃1. 

4)Inverse Kinematic Model of Velocity 



23 
 

The inverse kinematic model of velocity is defined in (20): 

1J x −=       (20) 

Where 𝐽−1 ∈   ℝ3×3 represents the inverse Jacobian matrix and denoted in (21): 

1 ( )

det( )

adj J
J

J

− =       (21) 

Where 𝑎𝑑𝑗(𝐽)  ∈  ℝ3×3 define the adjoint matrix and 𝑑𝑒𝑡(𝐽) denotes its determinant, 

which is described in (22): 

1 2 1 2 2 3

2

1 2 3 2 2

2

2 2 3

2 3 2

det( ) ( cos sin sin

             cos cos sin

             sin cos

             sin cos cos )

J L L L

L L

L

L

  

  

 

  

= −

+ +

−

+

   (22) 

And is equation being under a condition of existence 𝜃3 ≠ 𝜃2 + 𝜋/2 which will 

guarantee the configuration of haptic device is in the nonsingular space. 
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CHAPTER 4 Improved Algorithms 

This chapter will describe three proposed algorithms that can contribute to the 

original algorithm.  

4.1 Improved Algorithm with Incremental PID Control 

This part will discuss the first improved algorithm for trajectory-tracking circular and 

rectangular curves. 

The original Beetle Antennae Search utilized quadratic optimization to minimize 

location tracking error, representing the difference between the reference path and 

the actual trajectory. Equation (23) expresses the optimization in position error as 

follows: 

min ( ( ), ( ))

. . 

T

rg x t t e e

s t




  
+−

=

 

     (23) 

Where 𝜃− = [𝜃1
−, 𝜃2

−, 𝜃3
−, . . . 𝜃𝑚

−]𝑇 denotes the minimum angle of each joint and 

𝜃+ = [𝜃1
+, 𝜃2

+, 𝜃3
+, . . . 𝜃𝑚

+]𝑇 . The tracking error e is defined as the position error 

between the reference curve and the real position of the end-effector. The final 

objective function in was using the common performance assessment criteria called 

integral square error (ISE), the performance of convergence was not fast enough. 

In digital processors, two types of discrete PID are commonly used: positional PID 

and incremental PID [41]. Incremental PID is preferred over positional PID as it 

requires fewer memory units and calculators to store errors and parameters. The 

method is more straightforward, requires fewer parameters, and has a concise 

calculation method [42]. As the abstract states, incremental PID control adjusts the 

step length during each iteration. It replaces the cumulative effect by finding the 

increment, reducing computing performance and storage space requirements. The 

following are the significant steps of the proposed algorithm. 
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A. Step 1 

Calculate the endpoint of both antennae and project them into the constrained space 

corresponding to the joint angle limit shown in (24). 

( )

( )

L k k

R k k

P b

P b

  

  

= +

= −
      (24) 

P(..) is the projection function and puts the endpoint of both antennae to the 

constrained condition concerning the objective function. And 𝜃𝐿 and 𝜃𝑅 represents 

projected the right and left beetle antennas. 𝜆𝑘 is a hyperparameter that denotes the 

length of the beetle antennas. 𝜃𝑘 is the theta value at the time 𝑡𝑘. 

B. Step 2 

Based on Step 1, we can use forward kinematics to calculate the end-effector position 

of both directions, which is determined by Equation 2. Then, we will find the 

objective function value for 𝑔𝐿 and 𝑔𝑅which are prepared to find the new updated 

theta value 𝜃𝑛𝑒𝑤, the mathematical expression is showed (25). 

( ( ) ( ) )new k k k L RP sign g g b   = − −    (25) 

where 𝜃𝑛𝑒𝑤 is the new updated location of the end-effector. And 𝑠𝑖𝑔𝑛(𝑔𝐿 − 𝑔𝑅)𝑏⃗  

ensures that the beetle moving direction is the small objective function value between 

both directions. 𝛿𝑘(𝜆𝑘) stands for the step size. Before introducing the incremental 

PID control rule adjusting the step size, the idea of basic PID control law should be 

clarified as 

1 ( )
( ) [ ( ) ( ) ]p d

i

de t
u t K e t e t dt T

T dt
= + +    (26) 

Where pK  is the proportional gain, iT  is the integral time constant, and dT  is the 

derivative time constant. 



26 
 

As computer control is a form of sampling control, it can only compute the control 

quantity based on the variation of the sampling time. It cannot continuously output 

the control quantity like analogue control. Because of this, we need to discretize the 

integral and differential terms in (26). Here are some approximations of the 

transformations: 

1

0

( )
( ) ,  

k
k k

i

i

e ede t
e t T e

dt T

−

=

−
     (27) 

Where k is the sampling time, and T is the sampling period. Then we put (27) into 

(26) to get the discretized PID expression in (28). 

k 1

0

( )
k

k

k p k i d

ii

e eT
u K e e T

T T

−

=

−
= + +    (28) 

Where 
ku  is the output at the kth sampling time. Then, the output of the k-1 sampling 

time is written as 

1
1 2

1 1

0

( )
k

k k

k p k i d

ii

e eT
u K e e T

T T

−
− −

− −

=

−
= + +    (29) 

Use (28) to subtract (29) and rearrange to get the final incremental PID control rule: 

1

1 1 2       =K ( ) K ( ) K ( 2 )

k k k

p k k i k d k k k

u u u

e e e e e e

−

− − −

 = −

− + + − +
 (30) 

Where K p  is the proportional coefficient, K (K / )i p iT T=  is the integral coefficient, 

and K ((K ) / )d p dT T=  is the derivative coefficient. Resultantly, the incremental PID 

control is defined as 

1k k ku u u−= +      (31) 

Consequently, incremental PID control applies to the step size 𝛿𝑘  in the proposed 

algorithm can be obtained as  
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1k k k  −= +      (32) 

C. Step 3 

The third step is to use the new theta value 𝜃𝑛𝑒𝑤 to find the new objective function 

value 𝑔𝑛𝑒𝑤, and based on this to compare with objection value 𝑔(𝑥(𝑡), 𝜃𝑘) from the 

last time constant theta value 𝜃𝑘, the relation is given in (33): 

1

,    ( ( ), )

,  ( ( ), )

k new k

k

new new k

if g g x t

if g g x t

 


 
+


= 


    (33) 

As long as the robot arm’s position has been updated. The whole process will be 

repeated. 

The improved algorithm has incorporated incremental PID control to the step size in 

each iteration to make the tracking progress more stable and controllable. As a result, 

the algorithm's convergence performance has significantly improved. In the next 

chapter, we will discuss the simulation results of both the original and improved 

algorithms in detail. 

4.2 Improved Algorithm with BSO 

This section will introduce the Beetle Swarm Optimization (BSO) algorithm. The 

BSO algorithm is derived from the classical Particle Swarm Optimization (PSO) 

technique, a computational optimization method used to solve practical control 

optimization problems [43]. It was initially proposed by Kennedy and Eberhart in 

1995 [44]. 

 Beetle Swarm Optimization is a metaheuristic algorithm inspired by the swarming 

behaviour of beetles. The algorithm involves a swarm of beetles, each capable of 

conducting exploration and exploitation. Each beetle represents a potential solution 

to the optimization problem and works collaboratively with other beetles to share 
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information. This collaborative approach enhances the stability of the optimization 

process and reduces the chances of falling into local minima. 

From the idea of the Particle Swam Optimization, there is a swam population of n 

beetles and  
1 2( , ,..., )nX X X X=  represents the beetles in the S-dimensional space, 

where i  th beetle denotes as 
1 2( , ,..., )i i i iSX X X X=  which means the position of i  th 

beetle in the S-dimensional space, which also is a potential solution to the problem. 

In addition, the speed of the i  th beetle is represented as 
1 2( , ,..., )i i i iSV V V V= . The 

individual best of the beetle is expressed as 
1 2( , ,..., )i i i iSP P P P=  and the global best of 

swam is represented as 1 2( , ,..., )g g g gSP P P P= . The mathematical expression for 

updating the position of the beetle is: 

1 (1 )k k k k

is is is isX X V  + = + + −     (34) 

Where 1,2,...,s S= ; 1, 2,...,i n= ; k is the current number of iterations. k

iSV  is the 

speed of beetles, and k

iS  denotes the increase in beetle position movement.   is a 

positive constant. 

The speed expression which in (34) is: 

1

1 1 2 2( ) ( )k k k k k k

is is is is gs gsV V c r P X c r P X+ = + − + −   (35) 

Where 
1c  and 

2c  are two positive constants. 
1r  and 

2r  are two random functions in 

the range [0,1].   is the inertia weight. In the standard PSO algorithm,   is a 

constant value. However, for this proposed algorithm, a decreasing inertia weight 

rule for the   showed below: 

max min
max *k

K

 
 

−
= −     (36) 
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Where 
min and 

max denotes the minimum and maximum value of the inertia weight 

 . K  is the maximum of iterations, k is the current number of iterations. In this 

algorithm, the 0.9 set to 
max  and 0.2 set to

min . In this case, the algorithm can search 

an extensive range at the beginning of the search process and find the optimal solution 

as fast as possible.  

And for the   expression which defines the incremental function: 

1 * * ( ( ) ( ))k k k k k

is is ls rsV sign f X f X + = −   (37) 

The searching behaviour of the right and left antenna are represented as: 

1

1

*
2

*
2

k k k

rs rs is

k k k

ls ls ls

d
X X V

d
X X V

+

+

= −

= +

     (38) 

The BSO algorithm improves trajectory tracking speed and convergence. The 

simulation results will be discussed in a later chapter. 

4.3 Improved Algorithm with Joint Angle Velocity 

In this part, the last improvement will be introduced.  

The original Beetle Antennae Search was the quadratic optimization in position 

tracking error [40]. The expression of optimization in position error is shown below: 

min ( ( ), ( ))

. .

T

rg x t t e e

s t




  − +

=

 

    (39) 

Where 𝜃− = [𝜃1
−, 𝜃2

−, 𝜃3
−, . ..  , 𝜃𝑚

−]𝑇 denotes the minimum angle of each joint and 

𝜃+ = [𝜃1
+, 𝜃2

+, 𝜃3
+, . ..  , 𝜃𝑚

+]𝑇. The tracking error 𝑒 is defined as the position error 

between the reference curve and the real position of the end-effector. The final 

objective function in was using the common performance assessment criteria called 

Integral square error (ISE), the performance of convergence was not fast enough. 
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The improved Beetle Bee Algorithm is designed as below: 

min ( ( ), ( ))

. .

    

T T

rg x t t e e

s t


  

  

  

− +

− +

= +

 

 

    (40) 

Where 𝜃̇  is the joint angle velocity. 𝜃̇− = [𝜃̇1
−, 𝜃̇2

−, 𝜃̇3
−, . ..  , 𝜃̇𝑚

−]𝑇 demotes the 

minimum angular velocity at each joint and 𝜃̇+ = [𝜃̇1
+, 𝜃̇2

+, 𝜃̇3
+, . ..  , 𝜃̇𝑚

+]𝑇stands for 

maximum angular velocity at each joint. 

Three significant steps for the proposed algorithm will be introduced as follows. 

Step 1 involves projecting the endpoint of beetle antennae onto a constrained space 

that corresponds to the joint angle limit, as shown below: 

( ),  ( )L k k R k kP b P b     = + = −    (41) 

P(..) is the projection function and puts the endpoint of both antennae to the 

constrained condition concerning the objective function. And 𝜃𝐿 and 𝜃𝑅 represents 

projected the right and left beetle antennas. 𝜆𝑘 is a hyperparameter that denotes the 

length of the beetle antennas. 𝜃𝑘 is the theta value at the time 𝑡𝑘. 

Based on step 1, we can use forward kinematics to calculate the end-effector position 

in both directions using equation 2. Then, we will find the objective function value 

for 
Lg  and 

Rg  which are prepared to find the new updated theta value. 

( ( ) ( ) )new k k k L RP sign g g b   = − −    (42) 

Where 𝜃𝑛𝑒𝑤  is the new updated location of the end-effector. And ( )L Rsign g g b−

ensures that the beetle moving direction is the small objective function value between 

both directions. 𝛿𝑘(𝜆𝑘) stands for the step size. 

As a third step, the updated theta value is used to calculate the new objective function 

value. Compare it to the previous theta value to determine the relationship between 

them. The relationship is shown below: 



31 
 

1

  ,    ( ( ), )

,  ( ( ), )

k new k

k

new new k

if g g x t

if g g x t

 


 
+


= 


   (43) 

After updating the robot arm's position, the process is repeated. 

In the updated algorithm, the objective function now includes velocity minimization. 

This addition improves the stability and controllability of the tracking progress, 

resulting in a significant improvement in convergence performance. The following 

chapter will discuss a detailed comparison of simulation results between the original 

and updated algorithms. 
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CHAPTER 5 Simulation Results 

This chapter presents the MATLAB simulation results for the original and improved 

algorithms. Additionally, the performance of convergence speed will be discussed 

based on the results. 

To evaluate the performance of position tracking, we utilized two target trajectories 

based on original and improved algorithms. The first reference curve is a circular 

path, while the second one is a rectangular path. This section discusses the results of 

three different improved methods compared to the original one, which include joint 

angle velocity, incremental PID, and BSO methods. 

5.1 Improved Algorithm with Incremental PID Control Simulation Results 

5.1.1 Methods 

This section presents the MATLAB simulation results for the original and improved 

algorithms of the incremental PID control. The performance of convergence speed 

will also be discussed based on the results. 

Based on the original and improved algorithms, we evaluated position-tracking 

performance using two target trajectories: circular and rectangular paths. 

5.1.2 Results and Analysis 

A. Circular Trajectory Tracking Results of Original Algorithm 

The Beetle Antennae Search algorithm uses the quadratic position error and 

calculates the step length by taking the square root of this value. The algorithm 

initially sets up joint angles for each joint, and the circular curve is located at y=0, 

causing the error difference in the y-axis to be negligible. The position error in three 

dimensions will be demonstrated below. 
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Figure 11: Circular Trajectory Tracking Error with Original Algorithm 

Based on the data presented in Fig. 11, we can analyze the circular trajectory tracking 

performance of the original algorithm in terms of the error observed in different axes. 

It should be noted that the error in the y-axis is always zero and can be disregarded 

for further analysis. However, we can observe the error curves in the x and z 

directions, as shown in Fig. 3. Specifically, the error in the x-axis approaches zero 

after around 0.5104 iterations. In contrast, on the z-axis, it takes around 0.8104 

iterations to reach zero difference. 

B. Circular Trajectory Tracking Results of Improved Algorithm 

Based on the results presented in Fig. 12, we can observe the errors for different axes 

for the circular trajectory tracking achieved by the improved algorithm. The 

incremental PID control added to the step size has significantly improved the 

convergence speed for both the x and z axes. This control eliminates the need for 

repetitive integration operations [45] by adding the step size in each iteration. The 

error in the x-axis drops to zero after approximately 0.1104 iterations, while it takes 
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around 0.2104 iterations in the z-axis. Hence, the convergence speed for both axes 

is approximately four times faster than the original algorithm. 

 

Figure 12: Circular Trajectory Tracking Error with Improved Algorithm 

C. Rectangular Trajectory Tracking Results of Original Algorithm 

Based on the information provided in Fig. 13, we can determine the errors for 

different axes in the rectangular trajectory tracking performance using the original 

algorithm. However, we can also observe the error curves for both the x and z 

directions, as shown in Fig. 5. The error in the x-axis reaches zero difference after 

roughly 0.4104 iterations, while the error in the z-axis reaches zero difference after 

approximately 0.4104 iterations. 
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Figure 13: Rectangular Trajectory Tracking Error with Original Algorithm 

D. Rectangular Trajectory Tracking Results of Improved Algorithm 

Based on the results obtained from Fig. 13, it is evident that the improved algorithm 

successfully reduces errors in different axes in circular trajectory tracking. To achieve 

this, incremental PID controllers were utilized over positional PID controllers. This 

is because incremental PID controllers require less storage, have lower overshoot, 

and are more resilient than positional PID controllers [46]. The error in the x-axis is 

reduced to zero after approximately 0.1104 iterations, while the error in the z-axis 

is also reduced to zero after 0.1104 iterations. This means that the convergence 

speed for both x and z is approximately four times faster than the original algorithm. 
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Figure 14: Rectangular Trajectory Tracking Error with Improved Algorithm 

5.2 Improved Algorithm with BSO Simulation Results 

5.2.1 Methods 

This section presents the MATLAB simulation results for the original and improved 

algorithms of the BSO. The convergence speed performance will also be discussed 

based on the results obtained. 

Using original and improved algorithms, circular and rectangular target trajectories 

were used to evaluate position-tracking performance. 

5.2.2 Results and Analysis 

A. Circular Trajectory Tracking Results of Original Algorithm 

Fig. 15 illustrates the tracking error performance of the original algorithm. The graph 

shows that the error in the x direction reduces to zero after approximately 0.5104 

iterations, while the convergence time in the z direction is relatively 0.7  104 

iterations. As previously discussed, the error in the y direction can still be considered 

negligible. 
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Figure 15: Circular Trajectory Tracking Error with Original Algorithm 

B. Circular Trajectory Tracking Results of Improved Algorithm 

Based on Fig. 16, it can be inferred that the tracking performance and convergence 

speed in the x and z directions have improved. This is due to the implementation of 

the improved algorithm that utilizes the original beetle and the beetle swarm 

optimization method. The swarm can communicate with one another and share 

information, which results in faster search speeds and helps avoid falling into local 

minima. The error difference in the x direction dropped to zero in only about 100 

iterations, which is a significant improvement compared to the original algorithm. 

Additionally, the convergence speed for the error in the z direction is much faster and 

converges to zero in approximately 100 iterations, as opposed to the original 

algorithm, which takes longer. 
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Figure 16: Circular Trajectory Tracking Error with Improved Algorithm 

C. Rectangular Trajectory Tracking Results of Original Algorithm 

We conducted the same simulation for the rectangular trajectory, and the results are 

shown in Fig. 17. The figure indicates that the error convergence in the x direction 

occurs in approximately 5000 iterations, while in the z direction, it occurs in almost 

the same amount of iterations. 



39 
 

 

Figure 17: Rectangular Trajectory Tracking Error with Original Algorithm 

D. Rectangular Trajectory Tracking Results of Improved Algorithm 

As for the results of the rectangular curve from Fig. 18, after we add more beetles 

into the work, beetles share the information and sensitivity, and the efference will 

speed up. The figure implies that the error difference in the x direction drops to zero 

in 200 iterations, almost 20 times faster than the original algorithm. As for the z 

direction, the tracking error convergence to zero using approximately 100 iterations 

is 30 times faster than the original algorithm. 
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Figure 18: Rectangular Trajectory Tracking Error with Improved Algorithm 

5.3 Improved Algorithm with Joint Angle Velocity Simulation Results 

5.3.1 Methods 

In this section, we propose an updated version of the Beetle Antennae Search 

Algorithm that includes velocities in joints to minimize power consumption and 

quadratic position error. The simulation results will be shown below.  

A. Circular Trajectory Tracking Results of Original Algorithm 

In this section, we present the results of the circular trajectory tracking using the 

original algorithm. Specifically, we will show the three-dimensional position 

error with respect to the initial conditions. The initial conditions correspond to 

the joint angles set up at the start of the experiment. The target curves, which 

are circular and rectangular, are located on the y=0 plane. Thus, any error 
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differences in the y-axis will always be zero and will be neglected in our 

discussion. 

5.3.2 Results and Analysis 

Fig. 19 shows oscillations in the X and Z directions and a severe chattering effect. 

A control system should be stable and able to converge towards zero or close to 

it, indicating that the error between the target curve and the proposed curve is 

minimized. 

 

Figure 19: Circular Trajectory Tracking Error with Original Algorithm 

B. Circular Trajectory Tracking Results of Improved Algorithm 

Based on the information presented in Fig. 20, we can conclude that the tracking 

error for the y direction is negligible because the target curve is on the x-z plane. 

Regarding the x direction, we observe that the chattering effect is decreasing, 

and the tracking error is converging to zero. This occurs in approximately 1.2 

seconds, which is a reasonable duration for research purposes. In the case of the 

z direction, the system is becoming controllable, and the tracking error is 

reduced to zero in approximately 1 second.  
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Figure 20: Circular Trajectory Tracking Error with Improved Algorithm 

C. Rectangular Trajectory Tracking Results of Original Algorithm 

In addition, we conducted rectangular position tracking and obtained error 

curves, as shown in Fig. 21. The figure indicates that the end-effector's position 

error reduces to nearly zero in about 10 seconds. However, it also indicates that 

the original algorithm needs to be more robust as the end-effector oscillates 

around zero. 
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Figure 21: Rectangular Trajectory Tracking Error with Original Algorithm 

D. Rectangular Trajectory Tracking Results of Improved Algorithm 

Figure 22 shows that the error dynamics in the y-direction are still zero, as the 

trajectory remains in the x-z plane. The error-convergence performance in the x 

and z directions takes approximately 2 seconds, practically five times faster than 

the original algorithm. 

 

Figure 22: Rectangular Trajectory Tracking Error with Improved Algorithm 
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CHAPTER 6 Experimental Results 

This chapter presents the experimental results obtained from evaluating the 

developed robotic manipulator system. This chapter will briefly introduce the Omni 

manipulator system, hardware setup, and the shared experimental results. 

6.1 Experimentation Description 

This work uses the Omni Bundle robotic system and communicates with MATLAB. 

The Omni Bundle is a cost-effective and efficient way to perform the control 

concepts of robotics and haptics. The Omni is a robot manipulator with the six 

revolute joints we discussed in previous sections. As we all know, only three of the 

joints are actuated, which is what we are interested in. The three actuated joints are 

J1, J2 and J3 shown in Fig. 23 [47].  

 

Figure 23: Three Actuated Joints on the Omni Manipulator 

The whole process of the experiment will be divided into two main parts. The first 

part of the process is called Teaching Points. This part we named the teach pendant 
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experiment, where a set of discrete points are taught to the robot. During playback 

motion, the robot traverses each of the taught points. Programming the robot to do 

this is a three-step process. It involves creating a routine to teach the points to the 

robot, then creating a desired path between those points that the robot should follow, 

and then finally creating a routine to control the robot along that path. This step is 

learning how to teach Omni different points in space and then create linear 

trajectories between those points. However, in many applications it may be necessary 

that we design for the path of the end-effector and not the joints. Applications of this 

design are more intuitive. If the robot is required to move along  

 

Figure 24: The Button on the Omni Manipulator 
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Figure 25: Teach Pendant Experiment Flowchart 

a welding contour, then it may be a more intuitive motion of the end-effector and not 

the joints. As a result, we will observe that the end-effector moves from one point to 

the next. Every time the button shown in Fig. 24 is pressed, a new row is created in 

each of these variables to store the information. For instance, if the button is pressed 

four times, matrices q and pos on the workspace will be both 4x3.  

The experimental flowchart is shown in Fig. 25. The flowchart illustrates the entire 

process for recording joint positions in response to a button press event. There are 

four main blocks shown in this flowchart. The initial stage is named wait for button 

press. This step begins in a standby mode, continuously waiting for a button press 

event. This loop ensures the system remains idle and conserves resources until user 

interaction is detected. The second stage is called button press detection. The system 

monitors for a button press. If no button press is detected, it loops back to the initial 

waiting state. This decision point is critical for ensuring that the system only proceeds 
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when there is active user input. The next stage is called record joint positions. Once 

a button press is detected, the system exits the waiting loop and proceeds to record 

the current joint positions. This involves capturing the joint angles and positions at 

the exact moment of the button press, which is essential for accurate data collection. 

The last stage is named save data to workspace. The recorded joint positions are then 

saved to the workspace in the form of matrices labelled q and pos. These matrices 

store the joint angles (q) and their corresponding positions (pos), providing a 

structured format for further analysis and processing. The significance of the 

flowchart is highlighted as a simple yet effective method for capturing joint position 

data based on user interaction. By implementing a wait mechanism for button presses, 

the system ensures that data is only recorded at relevant moments, minimizing 

unnecessary data collection and enhancing the accuracy of the recorded information. 

The second main phase is called Controlling the robot. The experimental flowchart 

is shown in Fig. 26. This process illustrates the iterative process of optimizing control 

gains for better tracking performance of a haptic device setup. This process leverages 

an optimization algorithm to refine the control parameters, ensuring improved 

stability and performance of the system. This process includes five steps. The first 

step is Pre-tuned Gains. The process starts with a set of pre-tuned gains. These initial 

control parameters have been manually or heuristically determined to provide a 

baseline performance. The second step is feeding the gains to the Optimization 

Algorithm. The pre-tuned gains are fed into the optimization algorithm, referred to 

as the "Beetle Bee" algorithm. This algorithm iteratively adjusts the control gains to 

improve the system's performance. The output of this step is a set of optimized gains. 

The next block is the newly optimized gains are applied to the system. Then the 

optimized gains are fed into the simulink file to control the Omni manipulator to 
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perform the trajectory tracking. Then the block shows the methods to check the 

tracking performance, which is the trajectory plot check or objective value check, 

and we have this named “fbest”. The system’s performance with the new gains is 

evaluated. This can be done by visually inspecting a trajectory plot or by checking 

an objective value (fbest), which quantitatively measures the system's performance. 

The image within the flowchart shows a setup involving the Quanser Omni Bundle 

haptic device and a computer displaying the evaluation results. This visual feedback 

is crucial for the next decision step. The last step is the stability and objective value 

decision point. The flowchart includes a decision point where the stability of the 

trajectory or the objective value (fbest) is assessed. If the trajectory is more stable or 

fbest is smaller (indicating better performance), the optimized gains are deemed 

successful, which needs to save the best objective value (fbest) and the new plot, 

indicating that the optimized parameters have improved the system. However, if the 

performance has not improved, the process loops back to the pre-tuned gains, and the 

optimization algorithm runs again with potentially new parameters, which means that 

it is a “No” decision that needs to return to the optimization algorithm step with the 

current or adjusted gains for further refinement. The significance of this flowchart is 

that it outlines a systematic approach to enhancing the performance of a haptic device 

through iterative optimization. Integrating both automated optimization (via the 

Beetle Bee algorithm) and manual verification (through trajectory plots and objective 

values) ensures that the gains are theoretically optimal and practically effective. 
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Figure 26: Controlling the Robot Experimental Flowchart 

 

 

 

 

 

 

 



50 
 

6.2 Experimentation Setup 

 

Figure 27: Experimental Setup 

This experiment setup shown in Fig. 27 gives us an operating system. This advanced 

experimental setup is centred around the Quanser Omni Bundle, a state-of-the-art 

haptic device integrated with a computer workstation. This configuration is 

indicative of a high-precision research environment focused on manipulation control. 

The components of the setup from the image show that there is a Quanser Omni, a 

robust and precise haptic interface, which is the critical module of the whole setup 

placed on the left side of the workstation. This device allows users to interact with 

virtual environments or control remote systems with exceptional precision and 

realism. It is widely used in research fields requiring detailed manipulation and touch 

feedback. Another main module is the computer workstation. A monitor displays a 

graphical interface related to the control and data acquisition for the haptic device. 
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And also the supporting infrastructure, such as a study desk and appropriate cable 

management, to ensure a clutter-free and efficient working environment. 

Overall, the Quanser Omni experimental setup represents a highly specialized and 

professional environment designed for trajectory-tracking research in the field of 

haptic technology and control systems. 

6.3 Experimentation Results 

 

Figure 28: Tracking Performance of a Linear Triangle Curve 

The obtained tracking results are shown in Fig. 28. Five figures are shown in the 

figure, labelled “Figure 10”, “Figure 8”, “Figure 6”, “Figure 4”, and “Figure 2”, each 

comparing the tracking performance of an "Omni" manipulator trajectory and a 

"Linear" trajectory system. 

The first plot, labelled “Figure 10” at the top left, shows that the red line represents 

the Omni tracking curve, and the blue line expresses the linear desired curve. These 

two lines show notable discrepancies, especially at points of rapid direction change. 

The performance of this trial indicates that the Omni manipulator tracks the linear 

system but still exhibits significant deviations, particularly in areas with high 

curvature. The second plot, located at the top middle, shows that the gap between the 
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Omni and Linear trajectories begins to reduce. The Omni system (red) is starting to 

show a more consistent path closer to the reference. Improvement is noticeable in 

terms of the results, as the Omni manipulator tracks the trajectory more accurately 

than the first plot. The deviations are less pronounced, indicating better handling of 

direction changes and overall smoother tracking. In addition, for the third plot, which 

is placed at the top right, we can perceive that the Omni manipulator continues to 

show progress, with its trajectory more closely following the reference path 

compared to the previous plots. As a result, the performance improvement trend 

continues, with the Omni system showing reduced deviations and better alignment 

with the reference trajectory. The Linear system still shows larger deviations, 

especially in high-curvature sections. Then, for the following plot, which is at the 

bottom left, we notice that the trajectories for both systems are becoming more 

aligned, with the Omni manipulator's path nearly overlapping the reference trajectory. 

From the perspective of this plot, significant improvements are evident in the Omni 

system's tracking performance. The Omni trajectory is smoother and shows minimal 

deviations from the reference path. The Linear system's performance remains 

consistent with prior observations but is outperformed by the Omni system. From the 

last plot in the bottom right corner, we can observe the closest alignment between the 

Omni manipulator's trajectory and the reference path. Based on the analysis of this 

plot, the Omni manipulator achieves the best tracking performance in this trial. The 

trajectory is highly accurate, with minimal deviation throughout the path. The Omni 

system's robustness and precision in tracking are clearly demonstrated, significantly 

outperforming the Linear system. 

In conclusion, upon completing this experiment, we can summarize the following. 

From “Figure 10” to “Figure 2”, the Omni manipulator's tracking performance 
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improves progressively with each experiment trial. Initially, the Omni system shows 

significant deviations, particularly in high-curvature areas. However, as the trials 

progress, these deviations reduce, and the Omni manipulator's trajectory becomes 

smoother and more closely aligned with the reference path. By “Figure 2”, the Omni 

manipulator demonstrates superior tracking accuracy, robustness, and precision, 

clearly outperforming the Linear system in all key performance aspects. This trend 

indicates effective adaptation and optimization of the Omni manipulator's control 

mechanisms over successive trials. 

 

Figure 29: Task Path Results 

From Fig. 29, we can observe that the ability to track predefined trajectories 

accurately is critical in the realm of Omni manipulation and control. This figure 
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shows the tracking performance of an Omni manipulator system when provided with 

three pre-taught points. The objective is to evaluate how these predefined points 

influence the manipulator's ability to follow a complex trajectory.  

We can notice that three key points were selected along the desired trajectory, marked 

as point 1, point 2, and point 3. These points serve as reference landmarks for the 

manipulator. Subsequently, the Omni manipulator will follow the trajectory while 

utilizing the pre-taught points as guides. Thereafter, the actual position of the 

manipulator was recorded throughout the trajectory, and the results were plotted for 

analysis. The manipulator begins the trajectory with a close alignment to point 1, 

indicating a strong initial adherence to the pre-taught path. Afterward, the 

manipulator successfully reaches point 2, maintaining a consistent path with minimal 

deviation. This demonstrates the system's ability to handle the complexity and 

elevation changes in the trajectory. Ultimately, the manipulator accurately reaches 

point 3, completing the trajectory with precision. This indicates effective control and 

stability throughout the entire path. 

In the final analysis, implementing pre-taught points in trajectory tracking for the 

Omni manipulator proves to be highly effective. The pre-taught points are reliable 

references, guiding the manipulator through complex paths with enhanced accuracy 

and stability. 
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CHAPTER 7 Conclusion and Future Work 

7.1 Conclusion 

This thesis presents several improved Beetle Bee Algorithms for position tracking 

control of OMNI manipulators in simulation using MATLAB. The first proposed 

algorithm adds incremental PID control to the step size in each iteration. This 

approach provides increment to the control system without an integral effect, 

effectively avoiding the problem of critical saturation. As a result, the system 

becomes more stable when unknown disturbances are introduced, making it more 

robust. The second improved algorithm combines beetle swarm optimization to 

become a hybrid algorithm to improve tracking performance. The last proposed 

algorithm adds the angular velocity to the objective function to enhance the trajectory 

tracking performance. The proposed algorithms rely on values from the end-effector 

by using forward kinematics based on the BAS algorithm. The simulation was 

performed in different scenarios, such as circle and rectangle trajectories. These 

tracking simulations on the OMNI manipulator prove that the proposed algorithm 

performs better in terms of convergence speed. In order to validate the effectiveness 

of these proposed optimization algorithms, real-world experiments were conducted 

on the Omni robotic manipulator system. The experimental results confirmed that, 

with successive iterations, the parameters were continually optimized, yielding 

increasingly stable and accurate trajectory tracking relative to the reference path. 

These findings underscore the proposed optimization strategies' potential to 

significantly enhance the Omni robotic systems' performance in trajectory-tracking 

tasks. 
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7.2 Future Work 

While the current study has yielded promising results, several avenues for future 

research could further enhance the performance and applicability of the optimization 

algorithms for trajectory tracking in the Omni robotic systems. 

As part of our future work, one potential way to refine the optimization algorithms is 

to further enhance the convergence speed and accuracy. We suggest modifying the 

proposed algorithms to experiment with better hyperparameters and pre-tuned 

parameters, improving the tracking performance.  

Additionally, investigating real-time optimization strategies and adaptive control 

mechanisms to address dynamic environments and unforeseen disturbances would 

be crucial for practical applications of the Omni robotic manipulator system in 

complex scenarios. 

Moreover, it is suggested that comparative studies be conducted with other state-of-

the-art optimization algorithms and control strategies to gain valuable insights for 

further enhancing the trajectory tracking accuracy and efficiency of the Omni robotic 

manipulator system. Evaluating the position-tracking performance of both the 

original algorithm and the enhanced algorithms on a manipulator with a higher degree 

of freedom (DOF) is recommended to enable comparison with the Omni system and 

potential publication in other conferences. 

Next, it is imperative to explore real-time optimization strategies and adaptive control 

mechanisms to address dynamic, unpredictable environments and unforeseen 

disturbances. This is especially relevant for implementing the Omni robotic 

manipulator system in complex scenarios. This approach can be further optimized 

and applied to various robotic applications research may explore the optimization of 
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the number and placement of pre-taught points to further refine trajectory tracking 

capabilities. 

Furthermore, it is crucial to explore real-time optimization strategies and adaptive 

control mechanisms structures to address dynamic, unpredictable environments and 

unforeseen disturbances. This is especially pertinent for the practical implementation 

of the Omni robotic manipulator system in complex scenarios. 

Last but not least, to tackle complex systems, such as those encountered in PhD 

studies, we propose to build a master-slave OMNI system. This system can execute 

trajectory tracking using our developed and tested algorithms. We aim to achieve 

optimal performance and efficiency through this approach. 
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