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Abstract

Since the turn of the 21st century, research in the biomedical sciences has dramatically
shifted and become reliant on high throughput bioanalytical measurements for inves-
tigating bio-molecular events that are presumed to be self-orchestrated and organized
in hierarchies. These measurements yield large datasets which, consequently, require
specialized statistical (bioinformatics) approaches with which to extract the most
meaningful information given observational or designed experiments. At the outset,
data acquisition outpaced model development, and ad-hoc approaches were used to
glean the most obvious information. With the maturity of bioinformatics, important
questions are beginning to emerge regarding the extent to which significant biological
information can be extracted from these data given challenges such as: (a) their diver-
gent distributional characteristics, (b) the large dynamic range in their signals, and (c)
allowable effect sizes given limitations in sample size and associated variability. Here,
two approaches are introduced to overcome these challenges. First, kurtosis-based
projection pursuit, augmented with classification and regression trees (kPPA-CART)
is proposed as a robust, easy-to-implement approach to model multi-omics data that
are derived from next-generation sequencing (NGS) and mass spectrometry (MS).
Most of the available methods for unsupervised multi-omics integration suffer from
the inability to model low-intensity (low count) features and instead focus on highly
variable (dominant) features. Comprehensive benchmarking of existing multi-omics
integration tools against kPPA-CART was performed using simulated data where the
changes involved in a hypothetical biological phenomenon are associated with low-
intensity signals and small effect sizes. The results show that kPPA-CART provides a
superior recovery of this information. The application of this method is supported by
the development of an R Package (https://github.com/FabianBong/KPPACart) and
an easily accessible web tool (https://intmove.vercel.app/) that allow experimental-
ists to implement kPPA-CART without the need for computational training. Second,
to the extent that measurement uncertainties affect data analysis strategies, distribu-
tional assumptions accompanying many methods for -omics data analysis assume an
independent, identical, and normally distributed (iid normal) structure for the noise.
When this assumption is violated, one practical solution is to incorporate the true
structure of the measurement error variance in the analysis. However, this requires ex-
tensive replication which can become prohibitive. Here, two approaches (Frequentist
and Bayesian) are introduced for developing a parametric estimate of error variance
incorporating shot and proportional noise for LC-MS data using, as a base, empirical
replicate measurements. This thesis provides evidence that both methods accurately
recapitulate the parameters of the variance function while accounting for sensitivity
differences between replicate samples, and enable test statistics from the exponential
family of distributions to be conducted without loss of generality.
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Chapter 1

Introduction

Beginning in the late 1990s, the paradigm of quantitative biological measurements

has profoundly shifted from traditional single sample (and variable) measurements to

high throughput measurements, powered by rapid advances in bioanalytical technolo-

gies and exponential growth of computational power. This shift has cleaved space for

a novel discipline within biological sciences referred to as bioinformatics, which has

set itself the goal to analyze and manage the large datasets accompanying these mea-

surement strategies. Research in bioinformatics involves a significant investment of

time and computational resources to separate biological from technical variation fol-

lowing simultaneous measurements of biomolecular components of an organism using

bioanalytical technology platforms. Whereas the former (biological variation) reflects

the organism’s observable characteristics (phenotype) [38] it is confounded by the

latter. Conceptually, changes in an organism’s physico-chemical or physiological en-

vironment would correlate with changes in the composition of its biomolecular milieu.

At the time of writing this thesis, biomolecules that have received the most attention

in academic literature are genes, proteins, and metabolites, which are known to play

concerted roles in maintaining biological homeostasis and are directly modulated as

an organism exhibits changes in their phenotype [92].

This interesting and delicate functional interplay between genes, proteins, and

metabolites is formulated as “The Central Dogma of Biology” (Figure 1.1). It was

conceived in 1985 by Francis Crick who is believed to be the father of molecular

biology. The dogma serves as a guiding principle for understanding fundamental

processes governing the flow of biological information. Briefly, it encapsulates the

unidirectional flow of genetic information, postulating that the organism’s pheno-

type is encoded in a sequence of deoxyribonucleic acids (DNA) that make up genes

[25]. DNA consists of a chain of nucleotide polymers that are made up of pyrimidine

1
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(Cytosine, Thymine, andUracil) or purine (Adenine andGuanine) bases attached to

a sugar-phosphate backbone. To form the commonly observed double-stranded helix,

two single strands of chained nucleotide polymers hybridize, matching bases A-to-T

and G-to-C through the formation of hydrogen bonds [108]. Following the flow of

information, the DNA is then transcribed into messenger ribonucleic acid (mRNA),

commonly referred to as gene transcripts.

DNA

Transcription Translation

RNA Protein

Replication

Figure 1.1: Concept figure of “The Cen-
tral Dogma of Biology”. Generally, DNA is
exposed to transcription resulting in RNA
which in turn is translated to a functional
protein. The diagram was created with as-
sets from the Servier Medical Art library
[1], available under CC BY 4.0.

On a macro level, the transcripts

(mRNA) are comparable to a single

strand of DNA with the exception of

Thymine bases being replaced by Uracil.

The formed mRNA, can be translated

into proteins, which are the functional

units of a cell and are made up of peptide

chains of amino acids [3]. Proteins typ-

ically function in tandem with metabo-

lites to actively change the biomolecu-

lar milieu in cells, resulting in changes of

an organism’s observable characteristics

[25]. Over the years, and with increased

knowledge about the fundamental principles of molecular biology, nuanced expansions

have been made to the basic processes, embracing for example, that constitutional

and somatic changes can affect the different steps within the Central Dogma of Biol-

ogy.

The linear flow of information, advanced by the central dogma of molecular biol-

ogy, ignores the occasional occurrence of changes to the pre-determined sequence of

genes within the genome (i.e., mutations), or chemical modifications to the structure

of DNA (i.e., epigenetic modifications). Genetic mutations include constitutional

changes that refer to heritable, direct alterations in an organism’s blueprint which

profoundly affect its biological makeup. On the other hand, somatic mutations refer

 https://creativecommons.org/licenses/by/4.0/
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to changes in genetic sequences through a process involving spontaneous and cumula-

tive (but permanent) alterations to one or several sections of genomic DNA. There is

a wide array of tutorials and reviews that provide detailed overviews of the concept of

genetic mutations and how they relate to changes in phenotypes [86]. For the purpose

of this thesis, an important consideration is that genetic mutations explicitly change

the information stored within the organism’s blueprint. This change propagates into

gene transcripts as well as proteins and can be quantified using bioanalytical technol-

ogy platforms. For example, two groups of people can have differential responses to

drug treatments if they exhibit rare variants that allow them to hyper-metabolize a

drug [86]. Such an observation is measurable by quantifying the expression of genes,

e.g., the Cytochrome P450 family, which is responsible for the metabolism of many

drugs. In diseases such as cancer, somatic mutations can manifest themselves through

deletions, amplifications, or re-arrangements of regions of a gene that may be respon-

sible for maintaining and controlling the division of cells [86]. This information can

also be manifested in the expression levels of genes within the cell cycle which can be

measured analytically.

Other non-mutational alterations to the genetic sequences exist and are driven

by modifications of the chemical structure of individual DNA molecules (rather than

deletions or amplifications of sequences of genes), and are referred to as epigenetic

changes. These include, for example, the addition or removal of methyl- or acetyl

groups to the sugar-phosphate backbone of DNA molecules. The consequence is that

methylation of the 5’ carbon (the fifth carbon) of a cytosine nucleotide, for instance,

will impair the transcription of genes with such modifications. Knowing this provides

opportunities for specialized high throughput bioanalytical approaches to measure

genes that harbor epigenetic changes such as DNA methylation [46].

The quest to measure the sequence of the full complement of genes that comprise

living things (the genome) started as early as 1960 pioneered by Frederick Sanger who,

in 1967, successfully sequenced the 120-nucleotide long sequence of Escherichia coli

(E. coli) [84]. This short sequence created a stepping stone to understanding patho-

genetic properties that relied on the integrity of the genomic sequence. However,
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Sanger’s original method soon lost traction as its simplicity did not meet the require-

ments necessary to sequence larger nucleotide sequences. Thus, bioinformatics, a field

dedicated to developing high-tech instruments for fast, detailed, and high-throughput

quantification was born. Today, bioinformatics-centered research has developed tech-

nology that allows the human genome to be sequenced within time frames as short

as 5 hours.

These advancements in bioanalytical technologies, since Sanger’s original genomic

sequencing, are (un)fortunately accompanied by a deluge of data. The unintended

consequence of this is the emergence of bioinformatics not just as an experimental

biology-focused field but as a sub-specialty of data science dedicated to extracting

meaningful biological information from these data. Researchers commonly split ac-

quired data into groups depending on what stage of the Central Dogma the data

represents. Each stage of the Central Dogma is referred to as a specific -ome and has

their own dedicated and intricate measurement apparatus. The genome encompasses

concepts associated with the DNA, such as both somatic and constitutional alterations

as well as epigenetic changes, and is investigated through high-throughput sequenc-

ing and microarray technologies. The transcriptome, mainly referring to mRNAs, is

quantified with similar approaches. In contrast, the proteome and metabolome, which

focus on proteins and metabolites, respectively, rely on diverse iterations of separa-

tion and mass spectrometry methodologies for qualitative and quantitative analysis

[92].

The first of the advanced and widely-used bioanalytical technologies to quantify

changes in the genome was the gene expression microarray. These were characterized

by tens of thousands of single-stranded DNA segments (each representing a gene) that

were immobilized onto known locations on a glass slide. mRNA’s were then extracted

from the samples of interest, labeled with fluorescence dyes, and hybridized to the

microarray. Such an experiment would result in competitive hybridization of labeled

sample mRNAs to their complementary sequences on the chip and, upon fluorescence

excitation, the extent of this hybridization could be quantified. To achieve best re-

sults, the selected probes must be tailored to the research question of interest. If data
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is required for non-targeted probes after the experiment, a new microarray must be

prepared. Additionally, microarrays tend to stretch financial and temporal resources

while containing large amounts of noise. These shortcomings have led to the advent

of Next Generation Sequencing (NGS) which enables non-specific, parallel sequencing

of millions of DNA and RNA fragments in a single experimental procedure [81].

Figure 1.2: Shotgun sequencing visualized by means of a concept figure. After sample
extraction, the DNA is fragmented, sequenced and assembled based on overlapping
reads to recreate the initial strand in its entirety (Figure Courtesy: National Human
Genome Research Institute) [41].

NGS is an umbrella term encompassing different forms of high throughput se-

quencing and has been described in detail since its inception [85]. In brief, the proce-

dure is as follows. First DNA/RNA is isolated from samples and randomly fragmented

into short sequences using physical or enzymatic methods. Second, these sequences

are prepared by ligating adapters to both ends of the strand to allow for duplication

via the polymerase chain reaction. Once a sufficiently large amount of duplicated frag-

ments are present, the sequencing step can begin. After collecting all base reads, the

numerous shotgun sequences are assembled into the original sequence by identifying

overlaps between different reads. This results in a full recovery of the original sequence

https://www.genome.gov/genetics-glossary/Shotgun-Sequencing
https://www.genome.gov/genetics-glossary/Shotgun-Sequencing
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and avoids targeting solely specific areas of the DNA, as in microarrays [85]. Figure 1.2

provides a simplified visual representation of the method. Slight modifications to the

experimental procedure enable quantification of somatic, constitutional, and epige-

netic alterations.

Figure 1.3: Mass Spectrometry explained
by means of a concept figure. The highly
concentrated sample is injected, vaporized
and accelerated through a drift free region
until it hits the detector. A magnet is used
to filter ions that are outside the m/z re-
gion of interest. Ions that are too light are
deflected against the bottom of the tube
while ions that are too heavy will collide
with the top of the tube [34].

Data collection for the metabolomic and

proteomic landscape is often facilitated

by mass spectrometry (MS) [49]. The

experimental procedure begins with the

extraction of proteins from the biologi-

cal sample of interest followed by diges-

tion into smaller peptide fragments with

the help of enzymes or physical force.

To increase sensitivity, the resulting frag-

ments are enriched (highly concentrated)

via methods such as solid-phase extrac-

tion. The solution of peptides can be in-

jected into the mass spectrometer where

the fragmented proteins are ionized and

accelerated using a magnetic or electrical

field, subsequently separating based on

their mass-to-charge (m/z) ratio (Figure

1.31). The further (shorter) a polypep-

tide travels, the lighter (heavier) it is [101]. The first instrument available at larger

scales was the Time-Of-Flight (TOF) mass spectrometer in the 1960s. TOF-MS works

by measuring the time required for a single ionized compound to travel through a

drift-free, tubular region and combine the result with the strength of the electric field

and length of the travel path to estimate a compound’s molecular mass and relative

abundance [24]. Although still found in labs around the world, new methods such as

the Quadrupole MS or Orbitrap MS (founded on the same underlying principles) have

started to replace TOF instruments and provide higher mass accuracy and resolving

power [75].

1Access for free at https://openstax.org/books/chemistry/pages/1-introduction. Unmodified ac-
cording to CC BY 4.0.

 https://creativecommons.org/licenses/by/4.0/


7

As MS instruments solely separate based on a compound’s m/z ratio, it is common

to directly couple techniques such as liquid chromatography (LC) or gas chromatogra-

phy (GC) with mass spectrometers (LC-MS/GC-MS). This extension of MS enables

the separation based on retention times in the chromatographic process. Thus, two

peptides with a similar m/z are now separable given their behavior in the chromato-

graphic column varies. Other tactics to increase specificity of MS, given the large

number of similar peptides, include tandem MS during which two (or more) stages of

MS are applied independently. The choice of instrument is highly dependent on the

research question and hypothesis [75].

Independent of the choice of instruments required to answer the research ques-

tion, the resulting data matrix, X, is of dimension m by n, where m is the number of

samples and n is the number of features (genes, peptides, proteins, etc...). As -omics

technologies continue to advance, it has become clear that data probing multiple lev-

els of biological complexity can be integratively analyzed (multi-omics integration) to

provide a more complete picture of biological processes accompanying a given patho-

physiological change. Computationally, for single omics experiments, the columns of

X will refer to a single omics type, whereas in multi-omics experiments the columns

are usually pertinent to a variety of data types. Thus, in multi-omics integration

ntotal =
∑︁nomes

i ni, where ni is the number of features collected for the nth omics type.

Depending on the workflow, it is possible to transpose X into a shape of n by m.

A characteristic of the matrix, X, is that it epitomizes big data which raises two

fundamental questions, i.e., what is a good dataset, and what biologically interesting

information can be extracted from the data. Addressing these two questions requires

significant computational developments to understand statistical significance and iso-

late (biological) information from noise given the diverse and heterogeneous nature

of the data. I address these two questions in this thesis by introducing: (a) an al-

gorithm for unsupervised, robust sample classification via projection pursuit using

kurtosis as a projection index (kPPA) and coupling it to classification and regression

trees (CART), and (b) a framework for fitting variance models based on replicate
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measurements devoid of biological significance to recapitulate systematic variation

introduced in -omics data by the analytical measurement procedures.

In the context of -omics analysis provided here, the role of bioinformatics is,

given a data matrix X, to explore the data for quantitative information that relates

an observed biological phenomenon to the acquired measurements that comprise X.

Unfortunately, the wide variety of distributions resulting from different –omics mea-

surement platforms can cause analysis to be highly complex. This has led to the

development of online tools and packages that aim to streamline analysis of multi-

omics data. Most of these tools, nonetheless, assume flawless experimental design,

high sample availability and significant biological differences between samples repre-

senting each phenotype. In reality, those assumptions cannot always be met. For

example studies focused on rare diseases commonly do not have multiple samples;

thus, making estimation of variance and subsequent analysis of statistical significance

difficult. Additionally, diseases with marginal changes in the molecular makeup may

go unnoticed due to the widespread use of variance as an estimator of difference.

Elaborating on problem a), this thesis aims to dislodge the common approach of

unsupervised classification from reliance on variance as the quantity of interest (such

as Principal Component Analysis). The impact of this reliance is highly significant

in datasets with a large range in value-intensity, a common occurence in multi-omics

data. High intensity signals overshadow low intensity signals due to their high vari-

ances. A common remedy involves auto scaling the data. However, this inflates noise;

thus, making detection of biologically important clusters harder. Bioinformaticians

require a method that enables robust, but unsupervised, clustering while allowing low

intensity signals to contribute to biologically interesting solutions. This approach shall

also provide feature importance, comparable to loadings in PCA, for interpretability

of clusters. This concept is explored in Chapter 2.

The second part of this thesis addresses problem b). Given a single, biologically

important LC-MS measurement, it is impossible to determine statistics of interest

such as uncertainty or benchmarking values like the limit of detection (LOD). This
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reveals the need for an approach resulting in a variance function (VF) which allows

the estimation of the missing statistics mentioned above. The function is estimated

by collecting multiple sample measurements of a reference solution. Since replicates

of LC/GC-MS experiments are subject to instrument (or sample) dependent changes

in sensitivity, the fitting process requires proper scaling to account for different sen-

sitives with the goal to avoid inflating variance. Various scaling methods have been

used in prior applications which I argue to be unreliable due to inability to account

for the error in the measurements. Thus, I propose a method composed of iterative

scaling, based on Maximum Likelihood Principal Component Analysis (MLPCA),

followed by fitting the VF. Chapter 3 and 4 explores the problem in more detail and

suggests two approaches; one based on Frequentist statistics; one based on Bayesian

statistics.



Chapter 2

Augmented Kurtosis-based Projection Pursuit: A Novel,

Advanced Machine Learning Approach for Multi-omics Data

Analysis and Integration

2.1 Introduction

Large-scale -omics data deriving from genomics, epigenomics, transcriptomics, etc.,

have revolutionized biological studies allowing many new hypotheses to be derived

from these measurements. These data capture a systems-wide molecular overview of

biological processes that enable screening for disease [77] [92], prognostic forecasting

[77], discovery of biomarkers [21], disease subtyping [19] [65], drug repurposing [107]

and so on. In principle, each -omics measurement provides a specific insight into

a ”layer” of functional biological organization where, e.g., genomics data provide a

systemic, organism-wide blueprint of the phenotype; transcriptomics offers insights

into which proteins are likely to be expressed and so on. Many studies reported in

the literature employ single-omics measurements that aim to decipher, e.g., causes

of known pathologies, refine pathological classifications or stratify their risk, and/or

to select appropriate treatments. Conceptually, extending single -omics measure-

ments to capture additional layers of biological complexity (multi-omics) should lead

to the inference of significantly more valuable, system-wide information. Rationally,

changes observed via gene expression measurements should have a quantifiable corre-

lation with epigenomics measurements that indicate differential methylation at CpG

islands (areas of high concentration of Cytosine and Guanine) around promoters or

enhancers for those same genes.

Although integration and visualization of multi-omics data should yield signif-

icantly more robust biological insights, analyzing these data is a remarkable chal-

lenge. This is unsurprising because experimentally, -omics data arise from a variety

10
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of analytical sources with non-standard distributional characteristics, quality, linear

dynamic range and (often) large differences between the number of variables per

study. Although extensive reviews exist that catalogue limitations associated with

multi-omics integration and visualization [68] [78] [90], consensus appears to be that

high data dimensionality, missing values, imbalance in sample design, and data stor-

age are the most pertinent. The Karakach Lab [89] and others [69] [113] [109] [88]

have maneuvered these challenges and performed high level multi-omics data integra-

tion and demonstrated increased recovery of biological information from integrated

data compared to data arising from individual sources. Smilde et al. [88] fused

gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–mass

spectrometry (LC–MS) metabolomics data to increase the coverage of metabolites in

a study to identify bottlenecks in phenylalanine production in E. coli NST74. Nam

et al. [69] described an approach for integrating transcriptomics and metabolomics

for breast cancer biomarker identification in which t-statistics were used to determine

differentially expressed gene transcripts from breast cancer vs normal subjects. Van

den Berg et al.[103], in a simulation study, devised a maximum likelihood method

for integrating functional genomics data given that such data exhibit different noise

characteristics. Most recently, Heo et al. [45], reviewed the literature and offered a

compendium of computational frameworks that have been used for multi-omics in-

tegration with a specific focus on cancer research. Many of these approaches are,

nonetheless, based on Machine Learning (ML) principles that are highly influenced

by sample sizes, data distributions, and rely on signals that are above a large thresh-

old of signal-to-noise ratio (S/N). In many applications, the latter problem is avoided

by pre-selecting a set of highly variable features, implicitly focusing the analysis on

the most dominant signals at the expense of the low intensity ones. The Karakach

Lab has recently demonstrated that low intensity signals in a biomolecular context

can have significant biological impact and developed error modelled gene expression

analysis (EMOGEA) as a framework that ameliorates dependence on dominant sig-

nals for data classification [8].

There continues to be no consensus on the de facto approach for performing multi-

omics analysis. However, it can be reasonably argued that any methods for integrating
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multi-omics data must identify biologically meaningful class (dis)similarities and the

concomitant features to allow high-risk, high-reward -omics studies to be conducted.

For my purposes, I define high-risk, high-reward -omics studies as those for which: (a)

the expected biological differences are subtle, and/or (b) pertinent biological informa-

tion is embedded in the low intensity signals. Whereas experimentalists overcome the

former by performing experiments for which large effect sizes are anticipated, there is

no mechanism (other than EMOGEA [8]) to comprehensively deal with the latter to

the best of our knowledge. A common strategy is to exclude the low intensity signals

from analyses as they are assumed to be dominated by noise.

Here, I propose kurtosis-based projection pursuit analysis (kPPA) coupled to

Classification and Regression Trees (CART), as an approach to deal with -omics

data exhibiting small effect sizes and low feature intensities. I specifically employ

kPPA-CART to integrate and visualize data deriving from the most common -omics

platforms: transcriptomics by RNA-seq, epigenomics by DNA methylation chips or

Bisulfite sequencing and proteomics by reverse phase protein arrays or mass spec-

trometry (MS). At the outset, I emphasize that kPPA is an “unsupervised” data

exploration approach that finds patterns in input data without a priori knowledge

of class membership, unlike “supervised” methods that train a model using labeled

training data with known class membership. This absence of labels avoids biasing

the model to find ubiquitous information. The output of kPPA are projections of

the original samples into “interesting” directions which, when plotted against each

other will depict clustering of similar samples. I augment kPPA’s clustering with

Classification and Regression trees which takes, as an input, the kPPA cluster infor-

mation to perform a quasi-supervised classification and decipher feature importance.

While kPPA shows remarkable sample clustering, I demonstrate that the addition of

CART allows for extraction of data that contain meaningful biological information.

I apply this approach to two datasets. First, I use multi-omics data consisting of

transcriptomics by RNA-seq and proteomics by MS reported in Takemon et al.[97]

in which the molecular changes that take place in the kidney during the aging pro-

cess were measured. Using these data as a base, I generate additional artificial data

where I simulate the effects of varying noise and effect sizes and benchmark methods
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for multi-omics analysis. Later I employ kPPA-CART to the experimental data to

reveal additional novel insights. Second, I model Breast cancer data from The Cancer

Genome Atlas (TCGA) [17] to show the extent to which this approach is superior

in identifying cancer subtypes from both individual -omics platforms and through

high-level integration.

The goals of the work presented here are three-fold. First, I show the importance

of the kPPA-CART approach for “distribution agnostic” data classification that is

specifically suited for -omics data with a large dynamic range such as transcriptomics

by RNA-seq or proteomics by MS. I benchmark our kPPA against common multi-

omics data integration and visualization approaches using: (a) the well-behaved multi-

omics data from Takemon et al. [97] to study the relationship between kidney function

and age among diversity outbred male and female mice using transcriptomics and

proteomics, and (b) an artificial dataset simulated based on the same Takemon data

to investigate performance of kPPA-CART given varying effect sizes. I then employ

the Silhouette Coefficient [10] as measure of model performance in each case. Second,

I use the TCGA data to answer the crucial question of whether I can classify cancer

samples into distinct molecular subtypes given the data. Subsequently given the

subtypes, can I then: (1) stratify their risk and forecast their prognosis, and (2) infer

the molecular mechanisms that uniquely drive each subtype. Finally, I provide a web-

based application to allow experimentalists to explore -omics data using kPPA-CART,

allowing the flexibility for feature engineering, analysis of the -omics data (individually

or integratively) followed by functional analyses, and generation of publication ready

figures and reports.

2.2 Methods

Mathematically, -omics data are exceptionally heterogeneous. They exhibit signals

that cover a large linear dynamic range, with unique distributional characteristics,

nonuniform measurement error structures, and biological variations. For example,

transcriptomics measurements acquired using RNA sequencing technologies (RNA-

seq) follow an over-dispersed Poisson distribution (Negative Binomial), while those
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acquired using microarray technologies and MS-based proteomics measurements ex-

hibit a log-normal one [57]. These factors make data integration computationally

challenging requiring transformations, filtering, imputation of missing values, nor-

malization, and/or scaling prior to downstream analyses to (a) limit the influence of

outliers, (b) reduce the number of features considered, and (c) prevent data from one

measurement platform from dominating the results of the integration.

Several computational methods and packages exist to address some of these chal-

lenges to enable integration of multiple of the -omics measurements, includingmixOmics

[82], MoCluster [64], MultiOmics factor analysis (MOFA) [6] and Multiple co-inertia

analysis (MCIA) [7]. mixOmics is an R package containing a collection of computa-

tional tools that classify sample groups, identify discriminant features, and predict

the class membership for new samples. Methods within this package include DIA-

BLO (Data Integration Analysis for Biomarker discovery using Latent Components)

which has the mathematical underpinnings of PLS-DA (Partial Least Squares - Dis-

criminant Analysis), a supervised clustering algorithm that is based on identifying

latent variables maximizing class separation [87]. In addition, mixOmics extends

the Generalized Canonical Correlation Algorithm (GCCA) using sparsity constraints

in which linear combinations of variables with high correlations are identified for

class separation [99]. MoCluster applies multiblock multivariate analysis to define

latent variables that represent shared patterns across -omics datasets. It then uses

distance-based measures to quantify the separation between genes and clusters them

accordingly and is sensitive to the choice of the distance metric.

The packages mentioned here comprise a mix of supervised and unsupervised clas-

sification methods and our kurtosis-based projection pursuit analysis (kPPA) falls

under the latter. Merits for each data classification approach have been extensively

discussed in the literature [18] [102] [100]. However, a clear advantage for unsuper-

vised methods is that they are not only less sample intensive than their supervised

counterparts, but they are also less prone to overfitting, especially when used by non-

experts. For example, Westerhuis et al. [112], showed that although PLS-DA requires
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enough samples to allow model development, validation and prediction, many appli-

cations of this approach in the literature did not include the validation and prediction

steps, leading to unreliable conclusions. Most -omics studies are sample-limited due

to cost, unavailability of samples (e.g. clinical samples), or other ethical factors, mak-

ing unsupervised classification approaches the best strategy for hypothesis generating

analyses under these circumstances. The most widely used unsupervised methods in-

clude principal components analysis (PCA; 73,024 PubMed hits), independent compo-

nent analysis (ICA; 42,089 PubMed hits), hierarchical cluster analysis (HCA; 21,2865

PubMed hits), and multi-dimensional scaling (MDS; 17, 495 PubMed hits), among

others [18] [102] [100]. Although from the inception of -omics approaches in biomed-

ical research PCA has been the dominant method for visualizing high-dimensional

data in lower dimensional spaces, it is based on maximizing the variance along the

projection vectors, a drawback that limits its effectiveness in separating classes. The

Karakach Lab has recently shown, for example, that high intensity signals will domi-

nate the output of PCA and offered a solution that required measurement uncertainty

to be incorporated in the analysis [8]. This problem can also be circumvented using

projection pursuit (PP) analysis, which uses different criteria to identify projection

vectors. While there are examples of the application of this technique to other fields

[39] [28], it is not nearly as widely applied as PCA, ICA and HCA, in part due to

the requirement of a high sample-to-variable ratio and balanced, binary data sets.

These issues are underlined by inaccessibility of a user-friendly format that can be

implemented by experimentalists. Many authors (see citations below) have previously

described efficient and straightforward algorithms to carry out PP analysis, allowing

this tool to be readily adapted. This algorithm is based on minimizing kurtosis as

the preferred projection index for our multi-omics applications and I briefly high-

light the base algorithm for optimizing this projection index and refer the reader to

Daszykowski et al. [28], Croux et al. [26] [27], Hou et al. [47], Driscoll et al. [30] and

Wentzell et al. [111] for more detailed descriptions.

At the outset, I stated that like PCA, PP is a subspace estimation method that

seeks to identify “interesting” projections in a low-dimensional subspace that can

reveal the latent information in these data. Unlike PCA where the directions of the
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greatest variance in the data are assumed to represent this information, PP does

not unambiguously define how to determine what is interesting, instead relying on

the experimentalist to explore projections (including variance) that can maximize

information recovery [29]. PP can be mathematically formulated as follows. Let

Xm x n be a matrix of measurements, e.g., representing n genes transcripts measured

for each of the m samples in a study. In the general principle of subspace estimation,

Xm x n, can be represented as a product of two matrices of equal rank but lower

dimension such that:

X =

p∑︂
i=1

tip
T
i + E (2.1)

where the column vectors ti and pi, represent scores and loadings respectively.

Loadings explain contributions of the individual data variables to construction of

each latent factor. In this equation E is the residual matrix, i.e., part of the data

that is, in principle, devoid of information and is unexplained by a model of p factors.

In the base PP framework suggested by Croux [26], identifying the latent variables

in Eq. 2.1 follows two critical algorithmic steps. First, all the row vectors in X, xi,

are normalized to unit length to represent the set of all possible directions in the data.

The data are then projected onto these directions to form a set of latent factors, fol-

lowing which a projection index (PI) is calculated for each of the latent factors. The

factor with the highest (lowest) projection index is chosen as the direction of the data

that contains the most information. Second, new directions are found in the space

of the data deflated (Step 3c, Table 2.1) by the first most important latent factor

using the same procedure as the first step, to ensure the orthogonality of projection

pursuit features (PPFs). This procedure continues until a pre-determined number

of directions is achieved. Table 2.1 provides the algorithmic details for construction

interesting projections in this base framework.

In this work, I employed kurtosis as the projection index (PI) and implemented

the approach described in Hou et. al. [47] [111] for optimizing the PI, which differs

from the base algorithm. The mathematical details for this optimization are provided
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in references [47] [30] [111], importantly using the quasi-power method to minimize

kurtosis, k. Illustratively, if one considers a sphered data matrix Xm x n (m samples

by n features), the univariate kPPA algorithm begins by randomly selecting a unit

length projection vector, v0 (n x 1), as a starting point of the quasi-power method.

An iterative procedure is then used to update the projection vector until kurtosis is

minimized. The projection vector at each iteration is updated such that:

vk+1 =

[︄
m∑︂
i=1

(vT
k xix

T
i v

T
k )(xix

T
i )

]︄−1

(XTX)vk (2.2)

where xi is the ith row vector of X, and the product xivk is the score, ti, (latent

factor) for sample i ofm, given the current projection vector. Kurtosis is subsequently

calculated using this latent factor such that:

k =
1
n

∑︁n
i=1 (ti − t̄)

4(︁
1
n

∑︁n
i=1(ti − t̄)2

)︁2 (2.3)

where is t̄ the mean of all the m latent factors calculated. It is to note that Equa-

tion 2.2 will converge to a minimum; however the found minimum is not guaranteed

to be global [47].

Step 1 Sphere the data (mean center and scale to unit variance)

Step 2 Construct a matrix, A, containing normalized rows of X such that:
pi = xi

∥xi∥ , where xi is the ith row of X and ∥ · ∥ is the Euclidean
norm.

a. project objects on all possible directions from Step 2 such that
ti = XpT

i and calculate the projection index for each direction.

Step 3 b. find the directions that minimize (maximize) projection index.

c. Deflate the original data and create a new data space X̃ such that
X̃ = tip

T
i and perform a Gram-Schmidt orthogonalization from X.

Step 4 Terminate the procedure if the number of interesting directions found
is lower than p, (the user pre-determined number of PPFs to extract)
otherwise go to step 2.

Table 2.1: Base algorithm for Projection Pursuit.
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2.3 Results

2.3.1 Implementation

Implementing kPPA-CART proceeds as a nested, Ni(∀ i = 1, 2, . . . , p), iterative pro-

cedure with the following steps. For a data matrix Xm x n consisting of m samples

and n features (e.g., gene IDs, Protein IDs, methylation sites etc.), I first select f

random features to form a smaller matrix, X̃m x f, where f is chosen to represent the

smallest possible subset of features presumed to contain the most meaningful bio-

logical information to cluster the data. Second, I employ multi-dimensional scaling

(MDS) to denoise these data. The number of components in MDS, kMDS, is chosen

to be approximately one fifth the number of samples due to limitations of kPPA in

cases of fat data. Following this, I obtain the latent factors, t, that minimize kurto-

sis via an iterative procedure that updates the projection vector until convergence.

Because this is an unsupervised classification, k-means clustering is employed on the

two-dimensional scores to assign arbitrary clusters to samples which are then fed into

a pseudo-supervised random forest (RF) classification [13]. The number of clusters

to be fit in k-means is determined based on experimental expectations. This allows

a feature importance score to be extracted following training of the random forest

classifier. Finally, the index and importance score of the features used in the RF class

prediction are stored in a vector v as a value pair, the features selected in the first

step returned to the matrix X, and the whole procedure is repeated p times. After

finishing p iterations, the final kPPA clustering is generated based on the f features

that provide the highest average importance score across all iterations. The output

of kPPA-CART is a set of projection vectors that best cluster the data (similar to

principal component analysis: PCA scores) and a subset dataset Xsmall, comprising

the original data with all samples but only containing the f features with the high-

est average importance scores from all p iterations. A schematic of this procedure

is shown in Figure 2.1 and a web best implementation can be accessed directly here

(https://intmove.vercel.app/).

https://intmove.vercel.app/
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Figure 2.1: Workflow for kPPA-CART indicating the iterative process of implement-
ing kurtosis-based projection pursuit analysis. In the first instance, a preset number
of variables is selected from the data matrix X and used to find projections minimiz-
ing data kurtosis after application of MDS. Class membership is then determined via
k-means clustering. Using these class IDs, a pseudo-supervised random forest classifi-
cation is performed to determine feature importance for the first iteration. The most
important features are recorded, and the iterative process proceeds with the selection
of second set of random features that are then put through MDS, kPPA, k-means
and random forest classification. After all iterations are run, the features that have
the most importance across all iterations are selected for further biological functional
validation. Within this framework, the set of variables for each iteration and number
of iterations must be chosen such that each feature has a chance to be used at least 10
times in the model development. This number can be determined via a formulation
similar to a “coupon collector’s problem” [33].
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2.3.2 Benchmarking

The Takemon multi-omics dataset [97] includes the transcriptome and the proteome

profile of kidney tissues harvested from genetically diverse mice at different ages. I

employ this dataset to demonstrate the conditions under which standard exploratory

analysis approaches become inadequate. In many analyses, PCA or MDS is typically

performed either on an entire dataset or on a pre-selected set of highly variable fea-

tures. The unfortunate outcome is that low intensity signals, even if they exhibit

biological significance, will be dominated by the high intensity ones, and are hardly

picked up as contributing significantly to the biology. To demonstrate this, I selected

a percentage: 3%, 5%, 10%, 13%, 15%, 18%, 20%, 25% and 30% of the lowest vari-

ance features from the Takemon proteomics and transcriptomics data separately and

analyzed them integratively using methods recently benchmarked by Cantini et al.

[18], with the goal of evaluating their performance in comparison to kPPA-CART. To

further show the effect of selecting highly variable features, I performed the reverse

analysis where I selected a percentage (3%, 5%, 8%, 10%, 12%, 15%, 18% and 20%)

of the highest variance features from the same data (proteomics and transcriptomics

separately) and repeated the integrative analyses. Figure 2.2A and B, show the out-

come of these benchmarking analyses respectively. The methods by Cantini et al.

[18] are referred to as joint Dimensionality Reduction (JDR) methods because they

are used to analyze data that have been integrated via row- or column-wise concate-

nation (high-level data fusion) of individual -omics measurements. The methods in

Cantini’s work rely on different mathematical formulations to identify latent factors

in the data, including PCA, Factor Analysis (FA), independent component analy-

sis (ICA), co-inertia analysis, Gaussian latent model, matrix-tri-factorization, Non-

negative Matrix Factorization (NNMF), or canonical correlations analysis (CCA). I

reasoned that because these methods continue to receive the most attention in the

literature, they would form the best basis against which kPPA-CART would be bench-

marked. Specific methods I tested include: Multi-Omics Factor Analysis (MOFA) [6],

iCluster [55], Integrative NMF (IntNMF) [20], Multiple Co-Inertia Analysis (MCIA)

[7], IPCA [114], an approach that combines ICA and PCA for multi-omics data anal-

ysis, MDS, Joint and Individual Variation Explained (JIVE [60], which I denote as

PCA since they are practically identical).
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Figure 2.2: The sillhouette coefficient for each method of interest as a function of
the percent of: A) features exhibiting the lowest variance. B) features exhibiting
the highest variance. In A), most methods are not able to capture significant sample
classification using low-variable features, but at 15% of the lowest variable features,
kPPA-CART can begin to model these differences. For highly variable features shown
in B), we see that with only the top 3% of the features, class similarity is evident.
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Our results in Figure 2.2A-B are based on the Silhouette Coefficient [10] and show

that low intensity (low variable features) remain difficult to model using standard

tools. Specifically, I show that kPPA-CART begins to show reasonable clustering

at about 15% for low variance features (Figure 2.2A) and at 3% for high variance

features (Figure 2.2B). While other methods provide equivalent quality of separation

for high variance features, the figures provide evidence that that kPPA-CART reveals

meaningful data classification even when only 15% of the least variable features are

used. No other method can provide a similar performance, even in the case of using

up to 30% of the least variable features of each -omics type. Figure 2.3A shows sam-

ple clustering obtained with PCA, IntNMF, MOFA and kPPA using 15% of the least

variable features. In this, I see that kPPA-CART can separate the data based on age

and sex, while PCA minimally shows the effect of sex on these data. Moreover, PC1

vs. PC2 do not show any observable differences perhaps because of potential outliers;

providing another area where kPPA-CART shines. MOFA and IntNMF capture the

same information and potential outliers as PCA. Figure 2.3B provides the separation

for the same methods given the top 3% variable features. While PCA and MOFA

show acceptable clustering for age and sex, kPPA-CART still performs best. IntNMF

struggles to provide any clear separation based on age. Interestingly, PCA, MOFA

and IntNMF do not show the same outliers that were present across PC/Component

1 in the bottom 15% of low intensity signals.

To further benchmark kPPA-CART, I simulated data with differential effect sizes

to capture cases where the differences between study groups is small. I changed this

effect size to vary from 0.2 to 5 (0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.4, 2, 5) using data from

thirty (30), six (6) month-old female diversity outbred mice of which a random set

comprising 100 features were selected to be differentially expressed (50 features were

chosen from proteomics data and another 50 were chosen from transcriptomics data).

To ensure that this effect size is not the same across all the features, I added noise

drawn from a normal distribution to the mean effect size for the block of features

arbitrarily designated as up- or down-regulated. I subsequently tested the methods

described in Cantini’s publication [18] to identify clusters from these data.
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A) the bottom 15% of least variable features. B) the top 3% of most variable features.
Within both subplots kPPA-CART outperforms all of the provided methods.
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Figure 2.4: The sillhouette coefficient for each method of interest as a function of
effect size. The effect size describes separation between two groups. While kPPA-
CART provides a high clustering (SC=0.9) at an effect size of 0.9, no other method
shows a similarly high SC until an effect size of 5.

In Figure 2.4 I show the sillhouette coefficent (SC) determined by each method

as a function of effect size which indicates that kPPA-CART is the top performer.

In detail, over the range of effect sizes, it is evident that kPPA-CART almost con-

sistently achieves the highest SC. For low effect size, IntNMF seems to provide some

clustering but does not show the expected increase in clustering ability with an in-

crease in effect size. The higher the effect size, the better variance-based methods

perform. Moreover, given knowledge of the features that are differentially expressed,

the rate at which kPPA-CART recovers these features (true positive rate) can be

calculated. The true positive rate steadily increases reaching more than 90% for any

effect size that is larger than 0.7 and reaches 100% for effect sizes of 2 and larger.

This provides significant evidence that kPPA-CART is capable of detecting biological

features useful in understanding the phenotype of the organsim.
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2.3.3 Modelling the Aging Process in Mouse Kidneys

Using the Takemon data to simulate artificial measurements by modifying parameters

such as effect size and variable features has allowed us to mimic common challenges

encountered in -omics research. The original experiment consists of important biolog-

ical information obtained via a multi-omics experiment. Using diversity outbred mice,

the fundamental objective of this study was to understand the molecular changes that

take place in the kidney during the aging process, and if these are different between

sexes. MS-based and RNA-seq data were acquired from flash frozen kidneys of ani-

mals in 3 age categories: 6 weeks (n = 30 males and n = 33 females); 12 week (n =

31 males and n = 31 females); and 18 weeks (n= 34 males and n = 29 females).

Following standard pre-processing steps for RNA-seq and MS-based proteomics,

the data were analyzed starting with the individual datasets (proteomics followed

by transcriptomics) and subsequently combining them to increase the information

recovery associated with multi-omics integration. Without subdividing the data into

age categories, Figure 2.5A(i) shows PCA results for proteomics with two clusters

along PC2 that largely separate male from female mice regardless of age. When I

analyze the data comparing two ages at a time (i.e., 6- and 12-week-old mice; 6- and

18-week-old mice, and 12- and 18-week-old mice), PCA gives similar classification

patterns where sex is the dominant factor, while age cannot be modeled (Figure 2.5A

(ii-iv)), with outliers in two of the categories. Figure 2.5B shows kPPA analysis of

the same data with a much clearer separation between the two sexes; however, an

apparent age separation is only possible when comparing 6 versus 18 months old mice

(Figure 2.5B(iii)). For a similar analysis with RNA-seq data, the results indicate a

weaker class dissimilarity in these data as shown in Figure 2.5C and D, with no age

separation with either PCA or kPPA.

This was followed by integrating the two datasets, starting with the subset con-

sisting of 6- and 18-week-old mice for which proteomics measurements showed a sep-

aration via kPPA analysis. Figure 2.6 show the classification of integrated data using

PCA (left panel) and kPPA (right panel), while Figure 2.7 is a boxplot of four of

the most important (protein and RNA) features (genes) for this classification. For
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Figure 2.5: Comparison of clustering ability of PCA and kPPA-CART applied to the
proteomics and transcriptomics dataset by Takemon et al. [97] A) PCA applied to
proteomics. B) kPPA-CART applied to proteomics. C) PCA applied to transcrip-
tomics. D) kPPA-CART applied to transcriptomics.
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Figure 2.6: Integrative analysis of the Takemon dataset for 6- and 18-week-old mice.
The left panel shows the resulting PCA separation. The right panel provides the
clustering of kPPA-CART.

example, in Figure 2.7A it is apparent that at 6 weeks, there is no difference in the

abundance of Cyp2d26 and Coenzyme A synthase (Coasy), among female mice, while

for male mice the abundance of these two proteins is vastly different. This observa-

tion is consistent up to 18 weeks. In contrast, there is an age-related change in the

relative abundance of Slc7a7 compared to Cyp2d26 where the male and female mice

at 6 weeks show a small difference in the abundance levels of these two proteins at

week 6, but this difference increases at week 18. Consistent with previous results,

the top 4 most important RNA transcripts only show difference in sex but not age.

Finally, Figure 2.8 is a heatmap of features selected by kPPA after passing through

the classification and regression trees (CART) protocol. These figures indicate that

kPPA-CART indeed identifies features with biological (rather than simply mathe-

matical) importance.

2.3.4 Modelling Breast Cancer Multi-omics Data

Next, the kPPA-Cart approach was applied to well-established experimental data

that simultaneously answer a known question in biomedical research. To provide

context, I chose to focus on Breast Cancer (BC) as it affects a disproportionate num-

ber of women world-wide (1 in 8) with most deaths occurring among black women

with metastatic breast cancer (MBC) [115]. Already, significant effort has gone into
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Figure 2.7: In each subplot, the statistical difference were obtained by means of a
t-test and can be used to compare relative expression and abundance levels between
phenotypes. A) Abundance of the four of the most important proteins for each
phenotype. B) The expression levels for four of the most important genes for each
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Figure 2.8: Heatmap of the most important features (including genes and proteins) as
determined by kPPA-CART. The data has been scaled across rows. A checkerboard
pattern separating the samples based on sex and age is observable.

understanding the molecular basis of MBC and yielded a significant number of pub-

lic data generated by large consortia, including TCGA [17], Molecular Taxonomy

of Breast Cancer International Consortium (METABRIC) [66] and AURORA US

Metastatic Project [37]. In combination with early seminal work by Perou et al. [76]

that identified four BC subtypes (normal-like tumors, i.e., basal-like, HER2-enriched,

luminal, further divided into two subgroups), it becomes possible to stratify patients

into treatment categories. Perou et al.’s molecular subtypes were identified by se-

lecting a set of self-consistent “intrinsic” genes within a tumor subtype followed by

hierarchical clustering to separate patients into transcriptionally distinct groups. This

50-gene signature has been referred to as the PAM50. Unfortunately, only samples

in large retrospective studies could be classified by this signature. In the effort to

develop more reliable classifiers that could identify the subtype of a single tumor,

later studies identified new gene expression patterns and prognostic models [94] [50]

[74] [43], and these have largely continued to be used.
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Figure 2.9: A heatmap of the genes that are accepted to stratify PAM50 phenotypes
according to Perou [76].
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Figure 2.10: Volcano plot resulting from differential expression analysis from edgeR
with the Basal PAM50 subtype as a reference.
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kPPA-CART was applied to the PAM50 classification that accompanies many

RNA-seq data in public repositories. I start with TCGA RNA-seq data which com-

prise of 1057 measurements of samples of primary breast cancer tumors from a cohort

of female participants (59 years median age). A total of 735 participants self-identified

as white, 168 as black or African American, 58 as Asian, and 1 as Native American,

while 94 were unidentified. Among the PAM50 classifications, 162 samples were la-

belled “Basal”, 52 as “Her2”, 449 as “Luminal A”, and 340 as “Luminal B” while, 52

were labelled “Normal”. At the outset, I show a heatmap of the original genes used

to define the PAM50 subtypes in Figure 2.9 to serve as a reference against which:

(a) the conventional approaches for analyzing RNA-seq data, and (b) kPPA-CART

are used to recapitulate these subtypes. The first step consists of filtering for low

expressed genes and normalization to stabilize variance prior to analysing the data

via edgeR [116]. Taking the Basal group as reference, Figure 2.10 and 2.11 show

a volcano plot and heatmap, respectively, that correspond to differential expression

of genes within this classification along with the heatmap of the most differentially

expressed genes where a subset of the original panel of PAM50 genes is marked. The

left panel of Figure 2.12 shows classification via standard approach (PCA), while the

right panel of Figure 2.12 shows the kPPA-CART classification of a balanced (52

random samples per class, except normal type) subset of the data. Further, Figure

2.13 provides a heatmap of the 350 most important variables that classify the four

BC subtypes, with the original panel of PAM50 genes marked.

To verify the ability of the features selected by kPPA-CART to classify PAM50

phenotypes, I randomly chose 40 samples from each of the four groups as a training

set to perform a new kPPA-CART analysis, identified the most important variables,

trained a random forest classifier based on the the training set, and predicted the

remaining (12 of each group) samples. In Table 2.2 I show the confusion matrix de-

picting the accuracy of prediction. This step verifies that the features picked out by

kPPA-CART carry importance when classifying the PAM50 subtype.

However, apart from classifying samples, the features should also carry biolog-

ical significance. To determine the biological relevance of the genes identified via
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Figure 2.11: Heatmap of the most differentially expressed genes based on differential
expression analysis that uses the basal group as a reference. The genes indicated on
the right are part of the previously established panel of PAM50 genes.
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PCA (left panel) and kPPA-CART (right panel). For kPPA-CART the dataset has
been balanced and the samples classified as normal were removed.
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Figure 2.13: Heatmap of the 350 features determined by kPPA-CART to provide
high importance in the classification of PAM50 subtypes. The genes indicated on the
right are part of the previously established panel of PAM50 genes.

Type Basal Her2 LumA LumB
Basal 12 1 1 0
Her2 0 11 0 2
LumA 0 0 9 0
LumB 0 0 2 10

Table 2.2: Confusion matrix resulting from the prediction of a test set containing
48 samples. The underlying random forest classifier was trained on a training set
(160 samples) with 350 features that were determined to be significant in PAM50
stratification according to kPPA-CART.

kPPA-CART, I selected the top six most important features which are: GSTM1,

ESR1, AGR3, CCDC170, C5AR2 and GATA3, and performed survival analysis using

a readily available online tool called KMPlot [42]. These genes are shown to signifi-

cantly impact patient overall survival despite not being part of the original PAM50

panel as evident in Figure 2.14. In KMPlot, the gene C5AR2 can be found under the
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Figure 2.14: Kaplan-Meier survival plots [40] for the six most important genes identi-
fied by kPPA-CART analysis. The panels were created with the help of KMPlot [42].
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synonym of GPR77 and CCDC170 can be found under the synonym of C6ORF97 [63].

Using the AURORA data as an independent validation set, a differential expression

is observed between some of the genes in primary tumors compared to metastatic

breast cancers visualized in Figure 2.15.
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Figure 2.15: The expression levels of the six most important genes according to
kPPA-CART for different PAM50 subtypes across metastatic and primary tumors.
The displayed p-values are acquired by means of t-test. The data shown are extracted
from the AURORA dataset [37].

Lastly, the gProfiler web tool [79] was used to get a high-level overview of the

functional role of the genes extracted by kPPA-CART. In short, the results indicate

that the genes of interest are involved in biological processes related to cancer pro-

gression, specifically system development as well as cell development and regulation

of growth. Some of the genes identified by kPPA-CART, e.g., GATA3 and GSTM1,

https://biit.cs.ut.ee/gprofiler/gost
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play a crucial role in breast cancer as well as other cancers [58] [96] [22] [95]. Similar

links to breast cancer can be made with some of the remaining genes, e.g., ESR1 and

C5AR2. Both genes have been reported as potential biomarkers in breast cancer [15]

[117].

2.4 Discussion

I report the first implementation of kurtosis-based projection pursuit augmented with

classification and regression trees (kPPA-CART) for the unsupervised analysis of -

omics data to date. I have benchmarked the performance of kPPA against 7 of the

most popular methods for multi-omics integration that have recently been expertly

reviewed in Cantini et al. [18], and find that it offers superior sample classification.

I specifically challenge these methods to model hard-to-access information in -omics

data. In the most modern methods for analysis of omics data, low intensity signals

are discarded, and the focus is turned to the highly variable features (HVF) which

also happen to be the most dominant signals. I show that when the most prominent

methods are employed to analyze low intensity signals, no biological groupings are

discernible. Via kPPA, not only do I identify sample classification, but I also show

that these features, which I identify via CART, carry biological significance.

Additionally, when inter-cluster dissimilarity is low (effect size), it is generally dif-

ficult to separate samples into their respective groups. This forces experimentalists

to design experiments at the extreme ends of expected outcomes. For observational

studies, effect sizes can be small, and kPPA-CART offers an opportunity to model a

wide range of effect sizes for such studies or even studies where the effect sizes are

implicitly small.

I have also employed kPPA-CART to model data derived from an experiment

investigating the molecular changes that occur during the aging process of both male

and female mice kidneys and show important biological changes. kPPA-CART ap-

plied to proteomics data shows four clusters of the data based on age and sex for 6-

and 18-week-old mice. This separation is not clear when using standard approaches.



37

When I analyze mRNA data, I show that there is no clear separation, but when

the data are combined and analyzed integratively, I continue to see the differences

between male and female mice grouped according to their ages. I see that of the

top 1000 features selected by CART, 215 represent protein features while the rest

are drawn from the RNA set. This provides insights into which -omics type provides

information that is most pertinent to the phenotype (clustering).

Extending our analysis to a more challenging breast cancer study, I show that

kPPA-CART can identify novel features that classify BC data into: Basal, Her2,

LumA and LumB subtypes better than the original features proposed by Perou et

al. [76]. Compared to PCA classification, kPPA shows much crisper clusters of

which features identified by CART exhibit biological importance in separating the

two classes. Intriguingly, when the expression levels of these genes are compared

across the PAM50 subtypes, they show only marginal differences but, via kPPA-

CART, their biological significance can be identified.

2.5 Conclusion

This chapter explored a novel application of kurtosis projection pursuit analysis to en-

able clustering as well as feature extraction from high-dimensional multi-omics data,

especially in cases where biological information is contained within low effect sizes

and low variance features. After introducing the algorithm based on kPPA and clas-

sification and regrerssion trees, I have used simulations to show that kPPA-CART

outperforms current methods. Further, I have applied kPPA-CART to two experi-

mental data sets and provided evidence that the model is able to extract biological

meaningful variables while providing coherent and correct clusters.



Chapter 3

Estimation of Measurement Error Models for LC-MS Data

in Proteomics and Metabolomics

3.1 Introduction

The estimation of measurement error variance is critical to the evaluation of analyt-

ical data in several contexts that include the assessment of statistical significance,

the assignment of uncertainty in derived results, the comparison of methods, and

the evaluation of figures of merit such as limit of detection (LOD). Typically, mea-

surement uncertainty is determined through the use of multiple experiments carried

out at an appropriate level of replication that includes instrumental noise, as well

as other potential sources of variation (sampling, biological variation, etc.). When

measurements comprise a signal vector, the analytical errors may be characterized

as correlated or independent, and may also be described as homoscedastic (uniform

variance) or heteroscedastic (non-uniform variance). Consequently, the description

of errors for a given instrument or method can represent a complex problem that is

specific for a given technique.

In certain cases, especially where instrumental measurement errors are largely

independent and the variance characteristics are somewhat predictable, the use of a

variance function (VF) to describe the measurement error variance can be particularly

convenient [98]. If we imagine a series of related measurements in a vector, x (e.g.,

a spectrum), then a specific measurement, xi, can be defined in terms of the “true”

(unknown) measurement, xo
i , and the realization of the error, ei, as given in Equation

3.1.

xi = xo
i + ei (3.1)

38
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In VF modeling, it is assumed that the measurement error variance can be de-

scribed in terms of a parameterized function of the measurement amplitude and (po-

tentially) other variables as shown in Equation 3.2.

σ2(xi) = E[(xi − xo
i )

2] = f(xo
i , ...) ≈ f(xi, ...) (3.2)

Here, E denotes the expectation operator and f is the VF. Additional variables

may be explicit (e.g., temperature) or implicitly expressed in the parameterization

(e.g., which instrument is employed), but in practice the VF is usually expressed

only as a function of the amplitude, x. It is assumed to be an exact function of

the true value, which is unknown, but typically approximated for real measurements

using the observed value. The form of function is dependent on the nature of the

measurement, but common empirical forms are usually assumed. For example, a

model used in liquid chromatography/mass spectrometry (LC-MS) measurements is

given by Equation 3.3, which incorporates components of Poisson noise in the detector

(first term) and source flicker noise (proportional) in the ion source (second term) [72]

[104].

σ2(xi) = β2
1x

o
i + β2

2(x
o
i )

2 (3.3)

Generally, the parameters (β) associated with the VF are determined using repli-

cated data to estimate the mean and standard deviation for each set of measurements

and then fitting the model given in Equation 3.4.

s2(xi) = f(x̄i) + δi (3.4)

Note that the mean, x̄, is used as an approximation of the true value in this esti-

mation. Here, δi describes random error. Fitting the model parameters is generally

carried out using a least squares method, although this is complicated by weighting

issues and asymmetric residuals [98].

When a VF can be reliably used to model error variance, it has a number of

important advantages. First, the VF is likely to give a more reliable estimate of

measurement uncertainty than simple replication, since estimates of variance based
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on a limited number of samples are known to be highly uncertain themselves [98]

and very susceptible to outliers. The use of hundreds or thousands of data points to

estimate a VF can lead to a more dependable estimate as long as the model is valid.

A second, very practical advantage is that measurement uncertainty can be estimated

for cases where replicate measurements are unavailable, which is often a reality for

experiments where repeat measurements are limited by sample availability or exper-

imental design. Third, the functional form of the VF allows for a more well-defined

determination of figures of merit such as LOD in the presence of heteroscedastic noise.

Finally, the functional form of the VF facilitates a better elucidation of sources of

variance for a particular instrument or method and permits some comparisons to be

made across platforms. In spite of these advantages, however, it is important to be

aware of the limitations of VFs. Notably, their utility is restricted to the context of

their estimation. For example, a function developed simply to model instrumental

noise will no longer be valid when other sources of variation (e.g., sample preparation)

are present, although the model can still provide an indication of limiting uncertainty.

The central purpose of this work is to propose an approach for estimating variance

functions for LC-MS data typically recorded for proteomics and metabolomics exper-

iments. Although traditional approaches based on Equation 3.4 have been used [5],

these ignore the issue of sensitivity variation between experiments in MS data. The

term “sensitivity” used in this context refers to the ratio of instrument response to a

given analyte concentration and can encompass both variation in instrument perfor-

mance (e.g., detector response) and variation in the apparent analyte concentration

(e.g., due to variations in the amount of sample injected). While the former case can

be regarded as a true change in instrumental sensitivity, the latter is only an apparent

change, but the implications are the same for replicated experiments. Such changes

can be observed when data for duplicate samples are plotted against one another and

yield a line with a slope that deviates significantly from the theoretical value of unity.

In some cases, these deviations can be small, but in others they can be substantial. Or-

dinarily, some type of normalization is performed to accommodate sensitivity changes

at the data analysis stage, but such a procedure complicates estimation of the VF. If

replicates are analyzed without normalization, the VF is likely to be dominated by the
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systematic (correlated) noise reflected in the sensitivity changes, which is generally

not of interest. On the other hand, the use of normalization can result in combining

measurements with different variances, leading to a mixture of distributions rather

than true replicates drawn from a single distribution. Moreover, the normalization

process itself will likely influence the resulting distribution. Therefore, the method

proposed here couples the VF estimation with a normalization procedure based on

maximum likelihood principal components analysis (MLPCA). Additionally, the new

approach optimizes the VF parameters using the distribution of standardized resid-

uals rather than traditional least squares objective functions. The novel method is

demonstrated with diverse experimental datasets from proteomics and metabolomics

studies, and validated through the use of simulations.

3.2 Background

3.2.1 Normalization

Figure 3.1 is intended to conceptualize the process of normalization for LC-MS data

in the context of VF estimation. For the sake of illustration, we will assume dupli-

cate signals are recorded, although more replicates would typically be used for the

estimation of variance. Figure 3.1A shows the ideal case where there is no change in

sensitivity between the two experiments. The vertical axis shows the signal amplitude

of the replicate measurements, with red and blue points used to represent measure-

ments from the duplicate experiments. This amplitude could be expressed in various

ways, such as chromatographic peak height or area in terms of detector counts. The

horizontal axis is labeled as a “reference amplitude”, xref , which can be considered

to be a “true” amplitude or population mean for the sake of conceptualization, but

in practice would likely be represented by a sample mean. The purple line shows

the ideal slope of unity, with dashed lines showing 95% confidence boundaries for an

arbitrary VF with an amplitude dependence. Although the nature of the measure-

ment and any low-level preprocessing will have implications for the characteristics of

the VF, this will be considered later. The error bar shown in the middle of the plot

reflects the population standard deviation (95% confidence interval) for a particular

point and captures the true variance of the measurement. Note that the uniform
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spread of measurements along the x-axis shown in Figure 3.1 is atypical of most pro-

teomics/metabolomics results, which are normally skewed to low intensities, but this

is intended for illustration only.

The situation illustrated in Figure 3.1A is ideally suited for traditional VF mod-

eling of instrumental measurement noise since the experiments are true replicates

and the only source of variance is instrument noise (i.e., no changes in sensitivity).

Figure 3.1B illustrates a more likely scenario where there is a change in instrumental

sensitivity between experiments. Although the change is exaggerated here for the

sake of illustration, it is not unrealistic for some experiments. The solid lines (red

and blue) reflect the sensitivity of each experiment and the reference intensity (xref )

could be considered to be the true mean for the purpose of illustration. The dashed

lines represent the 95% limits for the instrumental noise in each experiment. With

no normalization applied, it is clear that the estimated variance of a given pair of

measurements will include both the random instrumental variations and the system-

atic differences introduced by changes in sensitivity. This is illustrated by the purple

error bar that reflects the anticipated confidence intervals for a typical point, which

are substantially enlarged over the example in Figure 3.1A. Using such measurements

to estimate a VF is undesirable for a number of reasons. Principally, this approach

would not yield a useful VF model for experiments where normalization is routinely

performed to mitigate systematic variations. Any model developed would overesti-

mate the variances under these circumstances and would also ignore the fact that the

systematic variations reflect a high level of correlated noise, violating assumptions of

independence that may be made in applying the VF model. Moreover, a VF model

based on the mean of measurements under these conditions would be unlikely to cap-

ture the true functional relationship for instrument variability because it is not based

on the mean instrument signal under fixed conditions.

If we reject the unacceptable approach illustrated in Figure 3.1B, the logical ap-

proach would be to normalize the replicate experiments before estimating the VF

model. This is the situation illustrated in Figure 3.1C, where the two datasets in Fig-

ure 3.1B have been appropriately normalized so that they reflect the same sensitivity.

In the simplest implementation, which will be assumed here, normalization involves
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Figure 3.1: Illustration of normalization and variance function estimation for du-
plicate experiments. A) Variance estimation in the ideal case where there are no
sensitivity changes and normalization is not required. B) Variance estimation in the
presence of sensitivity differences but without normalization. C) Variance estimation
in the presence of sensitivity differences following normalization. D) Normalization
of the data in B) using the MA method. In B) and C), the red and blue dashed lines
indicate the true 95% confidence intervals of each set of measurements individually.
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the scaling of measurements from each experiment, as given in Equation 3.5.

xNorm
ij = αjxij (3.5)

Here, xij represents measurement i from experiment j and αj is the normalization

factor for that replicate set. The normalization factor is typically determined by a

regression procedure, described in more detail below. The scaling is intended to ad-

just all of the replicates to the same sensitivity, although the actual reference scale

is arbitrary. Typically, signals are normalized to the mean or the experiment with

the highest sensitivity. Although there are issues associated with the normalization

itself, for the sake of simplicity, it is assumed here that the normalization is per-

formed perfectly so that there is no residual variance due to sensitivity change and

only the instrumental noise variance remains. Since normalization involves scaling

measurements to adjust the magnitudes of the observed intensities, errors in those

measurements are subsequently scaled, which leads to different error distributions.

This is represented by the red and blue confidence intervals shown by the dashed

lines in Figure 3.1C. This results in a mixture of distributions and the uncertainty

calculated through the combination of normalized measurements (indicated by the

purple error bars for a representative point) will not reflect the true nature of the

variance model. Although the divergence of individual standard deviations may be

small, this can have important implications for VF modeling, depending on the na-

ture of the model. If only proportional errors are observed (i.e., the relative standard

deviation, RSD, in the measurements is constant), then normalization will produce

homogenous distributions. However, models are generally more complex and may not

follow this proportional structure, especially at low intensities.

Given that VF modeling is intricately connected to the normalization process,

a more detailed examination of normalization practices is required. Normalization

procedures, many of which have been adapted from DNA microarray protocols for

transcriptomics, vary widely and include the use of reference measurements (e.g.,

internal standards, marker analytes), statistical transformations (e.g., median cen-

tering, variance stabilization, quantile normalization) and regression-based methods

[51]. It is important to note that, in the more general context of -omics studies,
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normalization is applied to experimental measurements that are not replicates; that

is, the experiments typically involve some change in the biology where differential

expression of some analytes is expected. Therefore, the “correct” normalization is

often ill-defined. For example, in some cases, one may be interested in changes in ab-

solute concentration of an analyte, while in others, changes relative to other analytes

may be of interest. Most normalization methods rely on an assumption that most

analytes do not change their expression levels during the course of an experiment

and can therefore be used to correct for systemic measurement artifacts. The most

appropriate normalization method may depend on the system under study.

In the present context, where replicate experiments are being examined to obtain a

model for measurement error variance, the goal is more well-defined since there should

be no differential expression of analytes. Variations in the analyte measurements

should therefore be random (except for sensitivity changes) and, at least to a first

approximation, independent. A simple approach to determine normalization factors

in a set of I measurement channels across each of J experiments would be to use a

regression model of the form given in Equation 3.6 to fit the normalization factors for

each experiment, αj.

xij = αjx
ref
i + ϵij (3.6)

In practice, there are several difficulties with this approach. First is the need to

define a reference signal, xref, for each of the measurements. Ideally this would be

the “true” (error-free) measurements for one of the experimental datasets, or perhaps

the population mean for each measurement channel. Since these are unavailable, the

actual (noisy) data for one set of experiments or the sample means can be used.

However, this introduces uncertainty in the independent variable and, in the latter

case, errors that are correlated with those of the dependent variable. A larger prob-

lem is that the measurement errors are typically proportional i.e., they increase with

the magnitude of the signal. Given that the distribution of measurements in -omics

experiments often have the highest density for low-intensity signals, the higher vari-

ance in higher intensity (high leverage) signals will tend to increase the variance in

estimates of the normalization factors, making them less reliable. A solution to this
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problem is to use weighted regression, but this requires prior knowledge of the model

for measurement errors, which is the VF model we are trying to obtain.

In practice, the solution to the problem of heteroscedastic measurement errors is

often to use a logarithmic transformation of the data. This assumes that the mea-

surements exhibit a proportional error structure so that, by propagation of error, a

logarithmic transformation will lead to a uniform error variance; that is if σx = γx,

then σ(logb(x)) = γ/ln(b). Empirically, the assumption of proportional errors is ap-

proximately valid for many experiments, especially for high-intensity measurements.

The transformation of the model in Equation 3.6 now becomes the form represented

in Equation 3.7.

logb(xij) = logb(αj) + logb(x
ref
i ) + δij (3.7)

The problem now becomes one of obtaining an estimate of the intercept in a case

where the slope is unity, which can be solved using the mean of the difference between

the first and last log terms. Commonly the logarithmic approach is often imple-

mented through the so-called MA (“minus/average”) normalization method adopted

from transcriptomics [16]. The MA approach can also allow the normalization factor

to effectively change as a function of intensity through to use of global or localized

regression. In the current application which involves simple replicates from methods

with good linearity, the normalization factor is assumed to remain fixed.

The logarithmic or MA approach is an effective normalization strategy for repli-

cated experiments but is not without its deficiencies. As illustrated with the MA plot

for the simple simulation in 3.1D, the variance tends to increase at low intensities

where Poisson noise dominates, making a weighted regression more appropriate, al-

though this is not possible without an error model.

Perhaps a more rational strategy to the problem of normalization in the present

context is an errors-in-variables approach in which one set of measurements is re-

gressed against the other (e.g., x2 vs. x1) while considering uncertainties in both

variables. Noting that the intercept should be zero, this problem is most conveniently
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presented as a latent variable model such that:

[xi1 xi2] = ti · [v1 v2] + [ei1 ei2] = ti · vT + eTi (3.8)

In this form, ti represents the underlying latent variable (or score) for measurement

pair i (proportional to xref) and the vector v contains the scale factors (loadings)

for the two experiments. Typically, v is constrained to be unit length to remove

ambiguities of scale in this formulation. This representation is easily extended for

additional replicate experiments to give a multilinear equation in higher dimensional

space and is presented in matrix form in Equation 3.9.

X = t · vT + E (3.9)

Here, X and E have dimensions of I measurement channels by J experiments

(replicates), t is an Ix1 score vector and v is a Jx1 vector of loadings with a Eu-

clidean norm of unity. In the simplest case where the measurement errors in X

are independent and identically distributed with a normal distribution (iid normal,

E(e2ij) = σ2), the maximum likelihood estimates for t and v are provided by simple

principal components analysis (PCA) or singular value decomposition (SVD), where

v is the first eigenvector. In this case, the maximum likelihood estimates of the mea-

surements is provided by an orthogonal projection onto the loading vector, as given

in Equation 3.10.

X̂ = XvvT = t · vT (3.10)

A major impediment to the implementation of this approach to normalization

is that the measurement errors for LC-MS experiments deviate significantly from

iid normal and show a large degree of heteroscedasticity (non-uniform variance).

Therefore, to apply the latent variable model it is necessary to employ a method

that incorporates more complex error structures. One of these methods, and the

one employed in this work, is maximum likelihood principal components analysis

(MLPCA), as described in the next section.
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3.2.2 Maximum Likelihood PCA

MLPCA is a technique for fitting linear subspaces in higher dimensions using latent

variables and considering known error characteristics of the multidimensional mea-

surements [110]. The name is intended to highlight that the results are presented in

a format analogous to PCA, but whereas PCA is intended to model the maximum

amount of residual variance in the data with successive components irrespective of

the source of the variance, MLPCA attempts to highlight the meaningful variance by

partitioning it from the error variance using prior information. Consequently, many

of the properties familiar in the application of PCA are not necessarily shared with

MLPCA. Moreover, MLPCA is truly a maximum likelihood method only if the sub-

space model is valid and the measurement errors are normally distributed and have a

known variance/covariance structure. The approach is closely related to other errors-

in-variables methods, such as total least squares [93] and positive matrix factorization

[73]. The theoretical foundations and practical application of MLPCA have been dis-

cussed elsewhere [110] and will be treated only briefly here.

The general framework of MLPCA is intended to accommodate a range of inde-

pendent and correlated measurement error structures, although multivariate normal-

ity is assumed in all cases. For the normalization problem under consideration, we

will assume independence of the measurement errors and a general non-uniformity of

variance, which corresponds to “case C” in the descriptions of MLPCA algorithms

[110]. For the moment, we will assume that the error variance for each measurement

is known a priori. In this scenario, the problem of normalization becomes one of

fitting the one-dimensional model described in the previous section in the J dimen-

sional space of replicated experiments. For the case of duplicate experiments, this is

illustrated in Figure 3.2 using the previous example. Maximum likelihood estimation

requires minimization of the objective function, S2, given in Equation 3.11.

S2 =
∑︂
i

∑︂
j

(xij − x̂ij)
2

σ2
ij

=
∑︂
i

(xi•−x̂i•)Σ
−1
i (xi•−x̂i•)

T =
∑︂
j

(x•j−x̂•j)
TΣ−1

j (x•j−x̂•j)

(3.11)

Here, σij is the error standard deviation for measurement xij as previously defined,
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xi• is a 1xJ row vector in X with Σi as the corresponding JxJ (diagonal) error

covariance matrix (ECM), and x•j is an Ix1 column vector in X with Σj as the

corresponding IxI ECM. This is similar to the objective function minimized in PCA

except: (1) no weighting is used in PCA, and (2) PCA uses an orthogonal projection

to estimate x, whereas MLPCA employs a maximum likelihood (oblique) projection

as given in Equation 3.12.

x̂i• = xi•Σ
−1
i v(vTΣ−1

i v)−1vT (3.12)

As before, v is the Jx1 loading vector which contains the scaling factors for the

normalization.

These concepts are illustrated in Figure 3.2 for the simple two-dimensional case

where the measurements from experiment 2 are plotted against the measurements

from experiment 1. The uncertainty ellipses (red) are shown for three selected points

(blue), with an expanded view for one of the points. Each ellipse represents the

uncertainty of the corresponding point as determined by its 2x2 ECM (1σ, or 39%

confidence interval), and the black line corresponds to the maximum likelihood esti-

mate of v (i.e., its slope is v2/v1). The axes are shown at equivalent scales, so the

longer horizontal axis in each ellipse corresponds to larger uncertainty in the first

measurement, and the increasing size of the ellipses corresponds to their dependence

of the uncertainty on the magnitude of the measurement. The red asterisks show

the maximum likelihood projections of the blue points onto the model, where the

direction of the projection depends on the relative magnitudes of the uncertainties.

Although the figure illustrates the case of a one-dimensional model in two dimen-

sions, it is easily extended to higher dimensions (more replicates), where the ECM is

represented as a hyper-ellipsoid.

If the measurement error structure is accurately known for all of the measurements

in Figure 3.2 and the model is correctly estimated, then the standardized residuals

(see section 3.2.4) across all measurements should follow a standard normal distri-

bution, as shown in inset (A) in the figure. This forms the basis of estimating the

correct VF in this work, as described in section 3.2.5.
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Figure 3.2: Illustration of normalization by MLPCA in two dimensions. The black line
indicates the line of best fit (v). For three selected pairs of measurements (blue dots)
the uncertainty ellipses are shown (1 standard deviation) along with the maximum
likelihood projection (red asterisk). An expanded view for the first point is shown.
Inset A) shows the distribution of standardized residuals.
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MLPCA estimates the model using an alternating least squares (ALS) algorithm

and utilizes error variances specified for each measurement. In the present application,

however, the error variance estimates should be obtained using a variance function

provided to the algorithm. This requires a modification to the original software to

what will be referred to as dynamic MLPCA, as described in the next section.

3.2.3 Dynamic MLPCA

Modification of the original MLPCA algorithm [110] for the present application is,

on the surface, fairly straightforward, by simply replacing the matrix of measurement

error variances passed to the algorithm with the VF and allowing the variance to be

calculated for each measurement. However, two adjustments are required for this new

implementation.

First, the VF can be used to estimate the measurement error variances directly

from the measurements passed to the algorithm, but this is expected to be less accu-

rate than using the measurements projected onto the model, which are not available

until the model is estimated. To solve this problem, an iteratively re-weighted least

squares strategy is invoked with an outer loop added to the ALS procedure within the

algorithm. Initially, variance estimates are obtained from the original measurements

and used to estimate the loading vector, v, and the maximum likelihood estimates

of the points, X̂, using Equation 3.12. These estimates are then used in the VF

to update the variance estimates. This process is repeated until convergence of the

solution, which normally requires only a few iterations.

A second, more subtle adjustment to the algorithm results from the need to ac-

commodate the rare cases where the VF gives rise to invalid variances (e.g., negative,

zero or undefined) based on measured or projected values. This will depend on the

form of the VF but is likely to occur only when measured/projected values are zero

or negative. In these circumstances, the measurements are treated as missing and

assigned infinitely large variance which corresponds to this data point not contribut-

ing to the MLPCA model. As long as there is at least one valid variance for a given
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variable (row of X), a projected measurement can be calculated. However, if at any

point all of the measurements or projections for a given variable are invalid, it is no

longer possible to calculate that projection and none is returned from the algorithm.

This is an infrequent occurrence, however.

The inputs to the dynamic MLPCA algorithm include the matrix of measure-

ments, the VF and its parameters, and an initial estimate for the loading vector, v

(optional). The most reliable way to obtain an initial estimate for v is to use a tra-

ditional normalization approach, such as the MA method discussed in section 3.2.1.

Once the normalization factors have been obtained in the form of a vector, α, this

can be transformed to a loading vector by scaling with the Euclidean norm as given

in Equation 3.13.

vinit = α/||α|| (3.13)

The algorithm can accommodate missing measurements in X (represented as “not

a number”, or NaN in Julia [12]). If an initial estimate of v is not provided, it

will be approximated using simple PCA applied to the rows of X with no missing

measurements. The algorithm returns the vectors for the decomposition in standard

SVD format (U, S, V) from which the projected data can be calculated (X̂ = uSvT ).

3.2.4 Standardization of Residuals

The foundation of the present approach is that when the normalization factors (in

the form of the loading vector, v) and the VF are correctly estimated, the residuals

will follow a predicted distribution. In this case, the distribution of residuals can

be considered individually (for each measurement) or collectively (for each set of

replicates at a given channel). For the second approach, the strategy is to calculate

the Mahalanobis distance, dM , for each set of replicates, according to Equation 3.14,

[61].

dM(i) =
√︂

(xi − x̂i)Σ
−1
i (xi − x̂i)T (3.14)

Here, xi is a 1xJ row vector in X representing replicated experiments for a given
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variable and Σi is its corresponding error covariance matrix. In principle, the squared

Mahalinobis distances should follow a χ2 distribution with J − 1 degrees of freedom

(DOF) and this could be used to evaluate the error model [14]. A drawback of this

approach, however, is that it requires a full set of measurements for each variable to

have consistent DOF. It is very common for at least one measurement to be miss-

ing from each variable set, and the likelihood for this increases with the number of

replicate experiments conducted. An advantage of MLPCA for normalization is that

missing measurements (or outliers) can be accommodated by associating them with

a large variance, which means they are excluded from the fit without the necessity of

removing the other measurements in the same set. While the dM can still be calcu-

lated in the presence of missing measurements, the statistical properties will not be

consistent across all variables.

An alternative approach, used here, was to standardize the individual residuals

and compare their distribution to a standard normal distribution. This raises the

question of how to standardize the residuals. In an ordinary regression problem in

which the measurement error variances in y are much larger than those in x, one would

typically standardize based on division of the residuals by σy. However, for errors-

in-variables methods, the standardization is more complex and depends on both the

model (the loading vector, v) and the uncertainties of all of the measurements in a

set. This dependence structure is visible by examining the calculated residuals from

the one-dimensional MLPCA model as shown in Equation 3.15.

∆xi = xi − x̂i = xi −Pixi = (IJ −Pi)xi (3.15)

Here, xi is a Jx1 vector representing the J replicate measurements for channel

i, with its maximum likelihood estimate, x̂i, given by pre-multiplication by the JxJ

projection matrix, Pi, which is defined according to Equation 3.16.

P = v(vTΣ−1
i v)−1vTΣ−1

i = Kivv
TΣ−1

i (3.16)

In this equation, v is the Jx1 loading vector defining the model, Σi is the JxJ

error covariance matrix for measurement vector xi, and Ki is a scalar representing
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the term in parentheses. In the case of uncorrelated errors, this is given by Equation

3.17. Here it is interesting to note that P depends on v and Σi which must also

propagate into the variance of the residual.

Ki = (vTΣ−1
i v)−1

=

⎛⎜⎜⎜⎜⎜⎝[v1v2 . . . v3]

⎡⎢⎢⎢⎢⎢⎣
σ−2
i1 0 . . . 0

0 σ−2
i2 . . . 0

...
...

. . .
...

0 0 . . . σ−2
iJ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
v1

v2
...

vJ

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
−1

=
(︁
v21/σ

2
i1 + v22/σ

2
i2 + · · ·+ v2J/σ

2
iJ

)︁−1

=
1

v21/σ
2
i1 + v22/σ

2
i2 + · · ·+ v2J/σ

2
iJ

(3.17)

For convenience, for the remainder of this derivation, the subscript i will be re-

moved and it will be assumed that the equations refer to a particular set of replicates.

To determine the standardization factors, it is necessary to calculate the covariance

matrix for ∆x, whose diagonal elements will give the variance of the individual terms.

This can be done by using either propagation of error and matrix derivatives or by

using the expected value. The derivation shown in Equation 3.18 is based on the

latter [4]. The constant multiplicative factor, (I−P), is replaced by M for simplicity.

Cov(∆x) = E[(∆x − E[∆x])(∆x − E[∆x])
T ]

= E[(Mx− E[Mx])(Mx− E[Mx])T ]

= E[(Mx−Mx̄)(Mx−Mx̄)T ]

= E[M(x− x̄)MT (x− x̄)T ]

= ME[(x− x̄)(x− x̄)T ]MT

= MΣMT

= (I−P)Σ(I−P)T

= Σ∆x

(3.18)

In this equation, Σ = E[(x−x̄)(x−x̄)T ] = E[(x−E(x))(x−E(x))T ] [4] represents

the error covariance matrix of x. The standardization factors can be determined
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directly from the diagonal elements of Σ∆x, but it is convenient to reduce theses to

algebraic expressions for greater clarity. Expanding the terms leads to Equations 3.19

and 3.20.

(I−P)Σ = (I−KvvTΣ−1)Σ

= Σ−KvvT

=

⎡⎢⎢⎢⎢⎢⎣
σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
J

⎤⎥⎥⎥⎥⎥⎦−K

⎡⎢⎢⎢⎢⎢⎣
v21 v1v2 . . . v1vJ

v1v2 v22 . . . v2vJ
...

...
. . .

...

v1vJ v2vJ . . . v2J

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
σ2
1 −Kv21 −Kv1v2 . . . −Kv1vJ

−Kv1v2 σ2
2 −Kv22 . . . −Kv2vJ

...
...

. . .
...

−Kv1vJ −Kv2vJ . . . σ2
J −Kv2J

⎤⎥⎥⎥⎥⎥⎦

(3.19)

(I−P)T = IT − (KvvTΣ−1)T

= I−Σ−1vvTK

=

⎡⎢⎢⎢⎢⎢⎣
1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎦−K

⎡⎢⎢⎢⎢⎢⎣
σ−2
1 0 . . . 0

0 σ−2
2 . . . 0

...
...

. . .
...

0 0 . . . σ−2
J

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
v21 v1v2 . . . v1vJ

v1v2 v22 . . . v2vJ
...

...
. . .

...

v1vJ v2vJ . . . v2J

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
1−Kv21/σ

2
1 −Kv1v2/σ

2
1 . . . −Kv1vJ/σ

2
1

−Kv1v2/σ
2
2 1−Kv22/σ

2
2 . . . −Kv1vJ/σ

2
2

...
...

. . .
...

−Kv1vJ/σ
2
J −Kv2vJ/σ

2
J . . . 1−Kv2J/σ

2
J

⎤⎥⎥⎥⎥⎥⎦
(3.20)

Combining the equations above gives Equation 3.21.
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Σ∆x = (I−P)Σ(I−P)T

=

⎡⎢⎢⎢⎢⎢⎣
σ2
1 −Kv1v2 . . . −Kv1vJ

−Kv1v2 σ2
2 −Kv22 . . . −Kv2vJ

...
...

. . .
...

−Kv1vJ −Kv2vJ . . . σ2
J −Kv2J

⎤⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣
1−Kv21/σ

2
1 −Kv1v2/σ

2
1 . . . −Kv1vJ/σ

2
1

−Kv1v2/σ
2
2 1−Kv22/σ

2
2 . . . −Kv1vJ/σ

2
2

...
...

. . .
...

−Kv1vJ/σ
2
J −Kv2vJ/σ

2
J . . . 1−Kv2J/σ

2
J

⎤⎥⎥⎥⎥⎥⎦

(3.21)

For simplicity, we will only calculate the upper left element of Σ∆x, which gives

the variance in ∆x1. Similar results can be verified for the other diagonal elements.

The variance in question can be calculated from the inner product of the first row

of the left-hand matrix and the first column of the right-hand matrix. This gives

Equation 3.22.

σ2
∆x1

= σ2
1 −Kv21 −Kv21 +K2v41/σ

2
1 +K2v21v

2
2/σ

2
2 + · · ·+K2v21v

2
J/σ

2
J

= σ2
1 − 2Kv21 +K2v21

(︃
v21
σ2
1

+
v22
σ2
2

+ · · ·+ v2J
σ2
J

)︃
= σ2

1 − 2Kv21 +K2v21 ·K−1

= σ2
1 −Kv21

= σ2
1 −

v21
v21
σ2
1
+

v22
σ2
2
+ · · ·+ v2J

σ2
J

(3.22)

=
v21 + v22

σ2
1

σ2
2
+ · · ·+ v2J

σ2
1

σ2
J
− v21

v21
σ2
1
+

v22
σ2
2
+ · · ·+ v2J

σ2
J

= σ2
1 ·

v22
σ2
2
+ · · ·+ v2J

σ2
J

v21
σ2
1
+

v22
σ2
2
+ · · ·+ v2J

σ2
J

= σ2
1 ·

∑︁
i ̸=1

v2i
σ2
i∑︁

i
v2i
σ2
i
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This is one form of the expected variance of the residuals, but a more convenient

form which is easily derived from the above is given in Equation 3.23 in general form

applicable to every sample and feature.

σ2
∆xiK

= σ2
iK ·

(︄
1− (v2K/σ

2
iK)/

J∑︂
j=1

v2j/σ
2
ij

)︄
= σ2

iK · ηiK (3.23)

For a given measurement, xiK , where i is the variable number and K is the repli-

cate number, this equation gives the expected variance of the residual in terms of

the measurement uncertainty from the error model (σiK) and an adjustment factor,

ηiK . The adjustment factor can be regarded as a correction for degrees of freedom

and depends on both the normalization vector, v, and the uncertainties of each of

the measurements in replicate set.

Although the derivation above appears complex, it can be appreciated intuitively

by examining various limiting cases. If we consider the case of four replicates where

the normalization factors are all unity (vj = v = 0.5) and the measurements have

equal uncertainties (σj = σ), the maximum likelihood projection (Equation 3.12) is

the mean of the four measurements and Equation 3.23 gives η = 3
4
for each mea-

surement. This is consistent with estimation of variance around a mean, with the

expectation value E[(x − x̄)2] = (N − 1)σ2/N . If we modify the circumstances so

that one of the measurements is missing (e.g., σ4 = inf), then the projected vector

is the mean of the other three measurements, with η = 2
3
for those measurements

and η = 0 for the missing measurement, which is inconsequential since no residual

is calculated for the missing value. In the case of non-uniform measurement uncer-

tainty (but retaining unity normalization factors), the projection becomes a weighted

mean, and the adjustment factor reflects the contribution of each measurement in

the projection. For example, if σ1 = 1, σ2 = 2, σ3 = 3, and σ4 = 4, the resulting

adjustment factors are η1 = 0.298, η2 = 0.824, η3 = 0.922, and η4 = 0.956. Since

more precise measurements are weighted more in the calculation of the projection,

they are expected to have smaller residuals relative to their measurement uncertainty,

as indicated in the increasing values. Reducing this to the simple bivariate case where

σy ≫ σx (i.e., linear regression), ηy goes to unity and σ∆y = σy, as expected.
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The role of the loading vector, v (i.e., the normalization factors) in Equation 3.23

also relates to the way that the measurement vector is projected onto the model,

with the projection direction being more highly aligned with the axes with higher

values of v. Considering the simple bivariate case where σx = σy, as the slope of

the normalization line decreases and becomes more horizontal (vx increases relative

to vy), the projection becomes more vertical and ηx increases relative to ηy. At the

limit of vx = 1 (horizontal line), the projection is vertical, reflecting no variance in

∆x, and ηy has a value of unity.

A few final comments can be made regarding Equation 3.23. First, note that,

regardless of the parameters, the sum of the adjustment factors will be equal to one

less than the number of replicates,
∑︁

ηj = J−1. Second, whenever all but one of the

measurements in a set is missing, both the residual and the adjustment factor for the

single measurement will be zero, so the standardized residual is undefined and should

not be included in the distribution. Finally, the standardization should technically

include an adjustment for the fact that v is estimated for the measurements, but for a

large number of measurements, this should be negligible. The standardization formula

given in Equation 3.23 has been tested extensively with simulations and found to be

reliable.

3.2.5 Optimization of the Fit Parameters

The procedure described so far consists of providing estimates for the measurement

uncertainties, σij, using the variance function (e.g., Equation 3.3) with estimated

parameters, β, and then applying these uncertainties to estimate the normalization

factors of the replicate datasets as v through MLPCA (section 3.2.2), with corre-

sponding updates to the uncertainty estimates as described in section 3.2.3. The

maximum likelihood estimates and residuals for each measurement are then calcu-

lated and standardized as described in section 3.2.4. In principle, if the error model

and its parameters are correctly chosen, the standardized residuals should follow a

standard normal distribution. Therefore, a suitable objective function is needed to

evaluate the distribution of residuals and optimize the model parameters, β.
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In statistical analysis, there are many quantities suitable for assessing the simi-

larity of some data to a standard normal distribution (or any distribution of choice).

Examples include the Kolmogorov–Smirnov test or Pearsons χ2 test [11] [61]. How-

ever, both tests require the optimization (e.g. minimization) of a test statistic and

(or) p-value. While there is no explicit rule preventing such use of test statistics, it

may cause unexpected difficulties during the optimization process. Therefore, this

thsis explores the less commonly used Kullback–Leibler (KL) divergence as a suitable

objective function.

The Kullback–Leibler divergence, also known as relative entropy, is a measure used

in information theory to quantify the divergence of one probability distribution from

a second, reference probability distribution. In the context of the problem statement

provided here, the statistic enables a comparison of the distribution of standardized

residuals to a standard normal distribution. Since the normalized residuals cannot

be extrapolated to a continuous distribution, it is necessary to apply a discretized

version of the KL divergence as defined in Equation 3.24. Here, Q(x) is some reference

distribution while P (x) is any probability distribution to be compared [61].

DKL(P ||Q) =
∑︂
x∈X

P (x) log

(︃
P (x)

Q(x)

)︃
dx (3.24)

To construct the required discrete probability distributions, an evenly spaced num-

ber of bins, nbins, is created based on the first and 99th percentile of a standard normal

distribution. The residuals are sorted into bins, counted, and normalized by the total

number of residuals (data points), resulting in a discrete estimate of P (x), where x

represents the bins. Q(x) is created using the same bins and the reference standard

normal distribution. For a single bin P (x) describes the observed fraction of resid-

uals within that bin while Q(x) describes the expected fraction of residuals. This

allows the KL-Divergence to be calculated between P (x) and Q(x) (Equation 3.24).

A smaller value indicates a closer fit between both distributions;thus, signifying a

better fit.
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There exists a number of important nuances when using KL-Divergence for op-

timization. If outliers are present the bins at the tail of the discretized distribution

of observations, P (x), may become inflated. This results, even with a small number

of outliers, in a higher than expected KL-Divergence which consequently affects the

estimation of β negatively. A simple remedy is to remove residuals that fall outside

of the 1st percentile on the low end and 99th percentile on the high end by simply

cutting off the tails. After the removal of values, both distributions must be adjusted

to integrate (sum) to unity. Another area of concern are bins of P (x) that do not

contain any residuals, consequently causing the log term to become invalid. There-

fore, any bins with zero-counts are removed from P (x) and Q(x). This is feasible

since limx→0+ xlog(x) = 0. The last consideration needs to be given to the number of

bins. If nbins is too small the intricacies of the normal distribution may not be cap-

tured well enough to provide a good fit. This is especially severe close to the global

minimum. On the other hand, choosing nbins too large can decrease the precision of

the fit if the normalized residuals do not follow a standard normal distribution closely

by over-fitting small discrepancies. Generally, nbins = 40 provides good results and

an easy to find global minimum.

The defined objective function, variance model (e.g. Equation 3.3) and non-

normalized residuals need to be passed to any optimization (e.g. minimization) al-

gorithm of choice. In each optimization step, a new β is suggested which, in turn,

is used to estimate the (adjusted, section 3.2.4) variance. Residuals are normalized

and KL-Divergence is calculated by using a standard normal distribution as the ref-

erence. These steps are repeated until convergence to a global minimum (meaning:

no significant change in β and the objective function). Repeated test on simulated

data suggest that the Nelder-Mead Simplex algorithm [36] reliably finds the global

optimum and accurately estimates β.

3.2.6 Iterative Optimization of Fit Parameters and Scaling Factors

The previous sections provided a thorough overview of the individual pieces required

to build an algorithm that iteratively optimizes fit parameters, β, and scaling factors,

v. To recall, this iterative process is necessary due to the dependence of MLPCA on
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β and the dependence of β on v (a result from MLPCA). Figure 3.3 visualizes the

algorithm by means of a flow chart.

As a starting point the scaling vector, v, and parameter estimates, β, must

be initialized using educated guesses. The initial values are passed to dynamic 1-

Dimensional MLPCA (refer to section 3.2.3) to calculate u, S, v, and, subsequently,

X̂. The residuals (R = X− X̂) allow estimation of a new β (refer to section 3.2.5).

If at least one parameter (of β or v) exhibits a percent change in-between iterations

that exceeds the set convergence limit, a new iteration is started; else the current

optimization is completed.

Given the inconsistencies within LC-MS data, the algorithm contains mechanisms

to treat missing values and outliers. With respect to the former issue the algorithm

can handle any rows in X that provide at least one value; the minimum required for

MLPCA to estimate a projection. All other rows in X must be discarded. The latter

issue is treated by progressing into a new iteration (further called outlier pass) after

setting any values in X with normalized residuals above four to NA. This approach of

handling outliers (in addition to removing inflated tails while fitting the parameters)

aims to curb the effect of extreme values on MLPCA. Should this cause a single row

to have less than one available data point, the row is discarded.

Once a single iteration, including passes to remove outliers, is finished, it is rec-

ommended to start a new iteration with freshly initialized guesses for v and β while

resetting the data matrix, X. This practice is useful to combat scenarios in which a

single iteration does not find the global optimum due to poor initial estimates. Such

case will also lead to incorrect removal of outliers in each outlier pass, essentially

nullifying the results. After performing multiple, independent runs and retaining the

results, the run with the lowest final objective function may be retained.
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Figure 3.3: Flow chart visualizing the algorithm to iteratively fit variance function
parameters (β) and scaling factors (v).
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3.3 Results and Discussion

3.3.1 Simulation Studies

The data used in this section have been generated based on the following specifica-

tions. First, a hypothetical reference experiment is considered and represented by a

column vector, xref, (Ix1), corresponding to a single sample with I measurements.

Then, the complete data matrix is obtained by the multiplication: xrefα, where α

is a row vector (1xJ) of scaling factors for each of the replicates J , giving rise to

the matrix Xbase of dimension IxJ . Second, a structured error is injected into Xbase

following Equation 3.25.

(Xsim)ij = (Xbase)ij +
√︁

V F ((Xbase))ijϵij,where ϵ ∼ N(0, 1) (3.25)

In this equation, VF consists of parameters β1 (shot noise component) and β2 (pro-

portional/flicker noise component) as defined in Equation (3.3) and which, for illus-

tration purposes are set to 1 and 0.1 respectively. To account for sensitivity differences

between replicate measurements, arbitrary scaling factors α = (0.6, 0.8, 1.0, 1.2, 1.4)

were set.

To recover these values, we used the model outlined in Figure 3.3 with 5 outlier

passes, running the calculations up to 10 times (individually) and retaining the calcu-

lation with the lowest objective function. This has been done to avoid the algorithm

getting stuck in local minima. After examining the detailed results for a single real-

ization of error and to be able to asses accuracy and precision, different realizations

of error were fit with the same model ten times; leading to ten individual estimates

of β. The code was executed in Julia [12].

The Ideal Case

In an ideal scenario the collected data are free of missing or outlying observations;

equivalent to the unmodified, simulated data matrix Xsim. The error model is fit

to a single realization of error to examine diagnostics. The fit results in β1 and β2

to be 1.022 and 0.095, respectively. The scaling factors, obtained from MLPCA, are
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Figure 3.4: Diagnostic plots based on the error model fit to an ideal dataset following
the introduced algorithm. A) A density histogram of the normalized residuals which
should follow a standard normal distribution in a successful fit. The density of a
standard normal distribution is overlaid in red. B) Contour plot showing the best
estimate of the parameters, β1 and β2, as well as the true parameters (1 and 0.1,
respectively). A dark blue corresponds to a low objective function. A bright red
corresponds to a high objective function. C) The error model (red) superimposed on
the robust standard deviation (Qn) of the residuals. The axes are log-scaled. The
quadratic and linear component are shown in purple and green, respectively.
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v = (0.2586, 0.3439, 0.4298, 0.5162, 0.6034). Normalizing the scaling factors by 0.4298

recreates the true α = (0.6, 0.8, 1.0, 1.2, 1.4). Figure 3.4 visualizes the results for the

same realization of error. Subplot A provides evidence of the viability of the algo-

rithm by showing that the normalized residuals follow a standard normal distribution.

Further, subplot C provides visual evidence of a useful fit by showing the pooled Qn

[83] (robust estimate of standard deviation) against the median of pooled X̂ 1 [5]. The

contour plot shown in subplot B underlines that the method for optimization of the

variance model parameters is suitable to find the minimum. However, it also depicts

a large area of objective function minima which may cause discrepancies between the

true and fitted parameters, making multiple iterations with newly initialized starting

values even more important.

Figures 3.7A and 3.8A show stability of the error model parameter and scaling

factor estimates across multiple realizations of error. A slight bias towards the high

end for β1 and the low end for β2 is observable. This trend stands in direct correlation

with the trough of minima in Figure 3.4B and is most likely attributable to the

optimization getting stuck in local minima. This issue can be resolved by adjusting

the objective function (e.g. tuning nbins) or using a different minimization algorithm;

potential subjects of future research.

Missing Data

To simulate the effect of missing data on the model, 5% of data points have been

randomly chosen and removed (set to NA). Any rows (channels) that result in less

than two available data points are discarded due to inability of MLPCA to estimate

a projection. The fit of a single error realization determines β1 and β2 to be 1.093 and

0.0848, respectively. The scaling factors are v = (0.2584, 0.3439, 0.4296, 0.5175, 0.6022).

Normalizing by 0.4296 recreates the true α = (0.6, 0.8, 1.0, 1.2, 1.4). Visual results

of the fit are provided in Figure 3.5. All subplots follow the outlined expectations.

Thus, it can be said that the error model remains viable for data with missing val-

ues. This is expected due to (1.) random removal of data points not influencing the

1In detail, the values of X̂ and X − X̂ are flattened into a row vector (x̂ and r) and are sorted
so that the values in x̂ increase while also applying the same order to the residual vector. Then the
Qn [83] and median are calculated for bins of 100 for r and x̂, respectively.



66

Figure 3.5: Diagnostic plots based on the error model fit to data with 5% of missing
values following the introduced algorithm. A) A density histogram of the normalized
residuals which should follow a standard normal distribution in a successful fit. The
density of a standard normal distribution is overlaid in red. B) Contour plot showing
the best estimate of the parameters, β1 and β2, as well as the true parameters (1 and
0.1, respectively). A dark blue corresponds to a low objective function. A bright red
corresponds to a high objective function. C) The error model (red) superimposed on
the robust standard deviation (Qn) of the residuals. The axes are log-scaled. The
quadratic and linear component are shown in purple and green, respectively.
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assumption of normality of the remaining residuals and (2.) variances accounting

for missing values with the adjustment factor, η, propagating into a low weight for

affected points in MLPCA. However, if missing values are correlated (for example due

to a faulty LC-MS device), the model may be unable to handle such cases due to the

normal distribution being affected heavier in certain regions.

Figure 3.7B and 3.8B indicate a similar trend as observed in the previous sim-

ulation. β1 is seemingly biased towards the high-end whereas β2 is slightly biased

towards the low-end, explained by the same trough seen in Figure 3.5B. While it

may seem that the bias is lower than in the simulation of ideal data, this difference

is most likely caused by a small sample size. The scaling factors are stable across

different realizations of errors due to their low sensitivity to small changes in model

parameters.

Outliers

Outliers may cause failure of the model as their effect potentially voids the assumption

of normality of the standardized residuals. This concern necessitates an examination

of the models robustness. To simulate outliers, 5% of data points are chosen at random

and have their standard deviation inflated 10-fold. It is to note that this is a crude

method of simulating outliers and does not account for more complex cases, such as

correlated outliers. After fitting the model on a single error realization the resulting

β1 and β2 are found to be 1.0208 and 0.1037, respectively. The scaling factors are

v = (0.2575, 0.3435, 0.4294, 0.5162, 0.6040). Normalizing by 0.4294 recreates the true

α = (0.6, 0.8, 1.0, 1.2, 1.4).

Visual results are provided in Figure 3.6. Subplot A provides evidence that the

algorithm handles outliers well as their presence does not heavily skew the resulting

normalized residuals. This is expected due to the removal of values that would show

up in the tail of the distribution. Future work may focus on simulating the impact

of outliers that inflate the tails in regions that are not cutoff. Slightly heavier tails

are observable (when looking closely) but can be considered meaningless. Subplot C

provides a useful fit and does not show any signs of outliers due to choosing a robust
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Figure 3.6: Diagnostic plots based on the error model fit to data with 5% of outlying
values following the introduced algorithm. A) A density histogram of the normalized
residuals which should follow a standard normal distribution in a successful fit. The
density of a standard normal distribution is overlaid in red. B) Contour plot showing
the best estimate of the parameters, β1 and β2, as well as the true parameters (1 and
0.1, respectively). A dark blue corresponds to a low objective function. A bright red
corresponds to a high objective function. C) The error model (red) superimposed on
the robust standard deviation (Qn) of the residuals. The axes are log-scaled. The
quadratic and linear component are shown in purple and green, respectively.
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Figure 3.7: Estimate of the fit parameters, β, for different realizations of error. A)
The ideal case. B) 5% of data points are missing. C) 5% of data points are outliers.
The orange ellipse indicates the 95% confidence interval around the mean estimate.

Figure 3.8: Absolute distance of the scaling factors, α, from their true value for
different realizations of error. The scaling factors were normalized by the third sample;
thus this sample has no derivation from the true value. A) The ideal case. B) 5% of
data points are missing. C) 5% of data points are outliers.



70

estimate of the standard deviations for visualization. The trough seen in subplot B

is similar to the previous simulations.

Results of repeated realizations of error are found in Figure 3.7C and 3.8C. The

plots strongly mirror the observations from the previous simulations indicating ro-

bustness of the algorithm. This robustness can be attributed to the strong cutoff

of non-normal residuals during the calculation of the objective function (see section

3.2.5) as well as the addition of outlier passes.

The simulation studies provide evidence for three key aspects of the model: Accu-

racy, Precision and Robustness. This underlines the models suitability to be applied

to experimental, non-simulated data. However, future work may need to focus on

optimizing the minimization algorithm to more reliably find the true minimum (im-

proving accuracy, increasing precision, decreasing correlation in β1 and β2), exploring

the effect of fitting a wrong error model (under-/over-estimating variances) and un-

derstanding different cases of outliers and missing values (correlated outliers/missing

values, different magnitudes).

3.3.2 Experimental Data

After performing simulation studies, the model is tested on three experimental datasets.

The selected data varies in quality (sample pre-processing, missing values) and size

(how many data points). For each dataset the algorithm was run ten times. Each iter-

ation was executed with 5 outlier passes. The run resulting in the minimum objective

function was retained. The code was executed in Julia [12].

MSREPS

The MSREPS dataset has been collected by Nickerson et al. as part of their research

on the impact of different sample preparation techniques on the observed variance

in LC-MS experiments. MSREPS is used as a baseline standard with five collected,

replicated, pooled and detergent-free samples. Detailed sample preparation proce-

dures can be found in the publication [72]. Due to the marginal processing, this
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Figure 3.9: Diagnostic plots for the fit of the MSREPS dataset. A) A density his-
togram of the normalized residuals with the true standard normal distribution overlaid
in red. B) The error model (red) superimposed on the pooled Qn of the residuals
plotted against the pooled median of X̂. The linear and quadratic component of the
model are indicated using dashed lines. The axes are log-scaled.

dataset is expected to be the well-behaved. It consists of 19,255 measured channels

and five samples such that X19255 x 5 and, after removing channels (rows) with less

than two available values, the dimension of X shrinks to 16,078 by 5 and still contains

10,499 missing values.

After fitting the error model, the estimated values of β1 and β2 are 1.0369 and

0.0482, respectively, with scaling factors: v = (0.461, 0.4588, 0.4378, 0.4447, 0.4330).

Dividing by an arbitrary number, say the maximum, results in the following (easier

to digest) scaling factors: α = (1.000, 0.9953, 0.9497, 0.9650, 0.9391). This indicates a

small difference in sensitivity between samples. Diagnostic plots are shown in Figure

3.9. Subplot A visualizes an ideal fit of the normalized residuals to a standard nor-

mal distribution. This represents the most important metric, indicating a functional

objective function and algorithm in the case of true experimental data. Subplot B

visualizes the pooled robust standard deviation (Qn) [83] against the pooled median

of X̂. The figure provides an acceptable model fit for the majority of data. However,

there are slight discrepancies to note at the lower end of the fit where the VF over-

estimates the true variances. A potential cause could be error introduced by sources
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other than shot noise or flicker noise. If that is the case, this result would call for an

extension of the fitted VF. Additionally, this observation could be caused by signal

processing anomalies for low intensity signals; a problem that does not have a simple

remedy but can also be considered insignificant.

In comparison, the publication by Nickerson et al. reported a β1 of 0.74 and a

β2 of 0.0673 [72]. The estimate of the proportional error (β2) is comparable while

the shot noise parameter (β1) varies by a bigger margin. The difference in parameter

estimates is most likely caused by the difference in modelling methods (Nickerson

used locally pooled error models) and thus becomes hard to compare.

INGEL

The INGEL dataset was collected as part of the same research by Nickerson et al.

[72]. Section 2.5 of their publication indicates the extraction procedure in detail;

importantly containing the use of a detergent and extraction procedure. Therefore,

the data is expected to be noiser than MSREPS. Four samples were collected in

this manner [72]. The dataset contains 19,376 measurement channels of which only

11,322 remain after removing rows with less than two available data points. Of

the total 45,288 data points 11135 are not available. Fitting the variance function

results in β1 to be 0.8915 and β2 to be 0.1555. The scaling factors come out as

v = (0.5112, 0.4808, 0.6160, 0.3579). Scaling them by the maximum provides more

reader friendly providesα = (0.8300, 0.7806, 1.000, 0.5810). Contrary to theMSREPS

dataset, the sensitivity difference are larger with the fourth sample exhibiting almost

half the sensitivity as the third sample. This is to be expected given the more intricate

sample preparation procedure. Figure 3.10 visualizes the diagnostic plots with the

same contents as Figure 3.9. Subplot A does not indicate any noticeable deviations

from normality while subplot B represents a reasonable fit. At the low end, a similar

observation regarding overestimation of the variance can be made.

Nickerson et al. reported β1 as 0.6928 and β2 as 0.1542 [72]. A similar trend

as with the MSREPS dataset is observable; β1 is lower and β2 is comparable in

Nickerson’s findings.
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Figure 3.10: Diagnostic plots for the fit of the INGEL dataset. A) A density his-
togram of the normalized residuals with the true standard normal distribution overlaid
in red. B) The error model (red) superimposed on the pooled Qn of the residuals
plotted against the pooled median of X̂. The linear and quadratic component of the
model are indicated using dashed lines. The axes are log-scaled.

TNBC

The TNBC dataset was collected as part of a study of triple-negative breast cancer

(TNBC) by Lixian Li et al. Blood serum from patients was passed through ultra-

high-performance liquid chromatography-high resolution mass spectrometry [59]. The

dataset consists of a total of eight replicated samples which were solely collected for

quality control and should not contain any biological variability. Apart from en-

abling comparisons to different processing techniques, the fitted error model can

further be applied to samples containing biological variation to assist in methods

such as MLPCA. The data is of dimension 1, 856 by 8 and does not require any

removal of rows. Of the 14,848 data points, 2903 are entered as NA. However, the

overall sample size comparatively low for this data. After fitting the variance func-

tion β1 results in 13.2147 and β2 results in 0.0477. The scaling factors are v =

(0.4123, 0.3771, 0.3662, 0.3526, 0.3363, 0.3281, 0.3211, 0.3247), and normalized by the

maximum result in α = (1.000, 0.9145, 0.8881, 0.8553, 0.8156, 0.7957, 0.7788, 0.7874).

The sensitivity differences are acceptable. Figure 3.11 provides the resulting diagnos-

tic plots. This dataset provides a case where it is clear that the normalized residuals

do not follow a standard normal distribution, most noticeably in the tails (subplot
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Figure 3.11: Diagnostic plots for the fit of the TNBC dataset. A) A density histogram
of the normalized residuals with the true standard normal distribution overlaid in red.
B) The error model (red) superimposed on the pooled Qn of the residuals plotted
against the pooled median of X̂. The linear and quadratic component of the model
are indicated using dashed lines. The axes are log-scaled.

A). This observation explains the poor fit in subplot B. Most of the variances seem

to be underestimated by the model despite using a robust estimate of the standard

deviation.

Assuming the heavy tails in subplot A are caused by outliers, this dataset high-

lights the need for future work in this specific area. It is important to note that at

this point it is difficult to argue whether the outliers are true outliers or simply heav-

ily under-/over-estimated data points due to the model insufficiently accounting for

the total variance. This could be tested by expanding the error model with addition

parameters.

3.4 Conclusion

Chapter 3 has introduced a novel approach for estimating variance models through

the means of an iterative algorithm based on dynamic MLPCA and fit parameter

optimization. The main improvement relates to dynamic MLPCA as a means of nor-

malization, allowing for more accurate modelling of the VF by using the normalized
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(and adjusted) residuals in connection with KL-Divergence to estimate the VF pa-

rameters. Simulation studies prove the robust, precise and accurate nature of the

model, even in the presence of outliers and missing data, while application to ex-

perimental data provides evidence of the suitability of the model in more complex

scenarios. However, the TNBC dataset does highlight the need of future work focused

on outlier handling and model expansion.

Lastly, the results from each fitted variance function provide quantitative values

to create comparisons of precision between different extraction methods (MSREPS

vs INGEL). If such comparison is not required, the variance function also enables

functional estimates of uncertainty for applications such as MLPCA or similar.



Chapter 4

A Bayesian Interpretation of Estimation of Measurement

Error Models for LC-MS Data in Proteomics and

Metabolomics

4.1 Introduction

4.1.1 The Basics of Bayesian Statistics

While the problem examined in the previous chapter (3) can be solved using tra-

ditional Frequentist approaches, it is interesting to examine the problem from a

Bayesian perspective. Bayesian inference is rooted in the works of Thomas Bayes

who discovered a novel framework for statistical reasoning and model fitting in 1763

[32]. The theorem provides a relationship between conditional probabilities, prior

knowledge about the model of interest and observed data. Literature suggests that

the Bayesian method may provide three major benefits in comparison to the more

prevalent Frequentist approaches: (1.) it allows to estimate the probability that a

given hypothesis is true, rather than estimating the probability of obtaining a dataset

more extreme than the collected dataset (p-value). (2.) it allows the user to incorpo-

rate prior knowledge, proving especially helpful when data are sparse. (3.) it allows

for continued model estimation based on prior results once new data becomes avail-

able, a process commonly referred to as Bayesian updating. Additionally, it is argued

that the results of Bayesian analysis are easier to interpret for statistical experts and

experimentalists alike [35].

Before introducing Bayes’ theorem mathematically, a short review of probabilistic

concepts is provided in this paragraph by introducing the following three expressions:

P (A), P (A ∩ B) and P (A|B). The first expression describes the probability of ob-

serving A under any circumstances, the second describes the probability of observing

76
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A and B at the same time, while the last expression describes the conditional prob-

ability of observing A given B. Generally, P (A ∩ B) = P (A)P (B) = P (B ∩ A) and

P (A|B) = P (A∩B)
P (B)

but importantly P (A|B) ̸= P (B|A). A more detailed review of

probabilistic concepts as well as non-abstract examples can be reviewed in Bauer’s

book Probability theory [9].

Combining these concepts, Bayes’ theorem can be derived based on the two con-

ditional probabilities shown in Equation 4.1 and 4.2.

P (A|B) =
P (A ∩B)

P (B)
, P (B) ̸= 0 (4.1)

P (B|A) = P (A ∩B)

P (A)
, P (A) ̸= 0 (4.2)

Solving for P (A ∩ B) in Equation 4.2 and substituting into Equation 4.1 yields

the most abstract form of Bayes’ theorem shown in Equation 4.3 [62].

P (A|B) =
P (B|A)P (A)

P (B)
, P (B) ̸= 0 (4.3)

This means that the conditional probability of A given B equals the product of

the probability of B given A and the probability of A, divided by the probability

of B. Clearly, the quantity is only defined in cases where P (B) ̸= 0 [31]. For the

remainder of the thesis, this condition is not continuously mentioned but implicitly

still holds.

To understand this representation of Bayes’ theorem in the context of estimating

models, we adjust the Eqn. 4.3 with more meaningful variables such that:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(4.4)

Here, θ represents some model and D represents some data. Expressing this ver-

sion of Bayes’ theorem in natural language provides an easy-to-understand description

of the concept. It states that the product of the probability of the data given the

model (P (θ|D), data likelihood) and the probability of the model itself (P (θ), prior),
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normalized by the probability of the data (P (D), evidence), can estimate the prob-

ability of the model given the data (P (θ|D), posterior). Thus, as long as likelihood,

prior and evidence can be defined, it is possible to estimate the probability of any

model given the currently observed data.

4.1.2 Introductory Examples

The following subsections will provide two examples based on the introduced Bayesian

concepts to enable a deeper understanding of the relationships between prior, like-

lihood and posterior. Both examples make use of the grid approximation method.

This approach discretizes the target posterior distribution, P (D|θ), by choosing a

set of discrete values for θ, as it is impossible to evaluate the distribution at every

possible θ [54]. Methods that can determine a continuous θ, and provide a better,

non-discrete estimate of the posterior distribution, are introduced in later sections.

The Coin Flip

A simple application of Bayesian statistics focuses on estimating the true probability,

p, of observing heads in an unbiased coin flip. As a starting point, the quantities on

the right-hand side of Equation 4.4 need to be well defined. The model, θ, consists

of p, where 0 ≤ p ≤ 1 due to the nature of probabilities. Based on the grid approx-

imation, p is discretized into eleven evenly spaced values (model options) within its

bounds. The options are listed in row one of Table 4.1. The prior, P (θ), is set to be

uniform. Conceptually this states that every grid option of θ has the same likelihood

θ (p) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P (D|θ) 0 0.0038 0.053 0.16 0.23 0.19 0.1 0.029 0.0033 0 0

P (θ) 1 1 1 1 1 1 1 1 1 1 1

P (D|θ)P (θ) 0 0.0038 0.053 0.16 0.23 0.19 0.1 0.029 0.0033 0.0 0

P (θ|D) 0 0.049 0.69 2.06 2.95 2.51 1.31 0.38 0.043 0 0

Table 4.1: Calculated quantities of the data likelihood, prior, proportional posterior
and normalized posterior for each discrete model option of θ based 5 heads in 12
coinflips.
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of being the truth. This concept is commonly referred to as an uninformative prior

1. To calculate P (D|θ) correctly, a distribution best describing the observed data is

required to calculate the data likelihoods. Coin flips are analogous to success-failure

experiments; thus the binomial distribution which is parameterized by the number

of trials, n, the number of successes, k, and the likelihood of success, p, is a natural

choice. Lastly, P (D) is often impossible to estimate as there are no suitable methods

to calculate the probability of a single dataset. Therefore it is conveniently ignored

or used as a normalization factor by marginalizing (integrating) over θ resulting in

P (D) =
∫︁
P (D, θ) dθ where the joint probability distribution of D and θ (P (D, θ))

is the same as the numerator in Baye’s Theroem (P (D|θ)P (θ)). This shortcut does

not influence the information contained within the posterior distribution as it simply

normalizes the area under the posterior to one, making the posterior a true probabil-

ity density function. Table 4.1 lists the quantities for θ (which is equal to p), P (D|θ),
P (θ), P (D|θ)P (θ) and P (θ|D) given five heads in 12 coin flips. Figure 4.1 represents

the data provided in Table 4.1 visually.

0.0 0.2 0.4 0.6 0.8 1.0
0.94

0.96

0.98

1.00

1.02

1.04

1.06

P(
)

A

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.00

0.05

0.10

0.15

0.20

0.25

P(
D

|
)

B

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P(
|D

)

C

Figure 4.1: A) The prior distribution put on the model, θ, which consists of p. It
assumes that there is no preference for any value of θ. B) The likelihood of observing
the data, D, at differing values of the model, θ. The highest likelihood is observed at
θ = 5

12
. C) The normalized posterior distribution which represents a mixture of the

prior distribution and data likelihood. The shaded area integrates to 1.

With the goal of explicitly helping the reader understand the origin of the quan-

tities listed in Table 4.1 (and visualized in Figure 4.1), this paragraph provides the

1A popular discussion revolves around the meaning of uninformative. Using an uniformative
prior expresses that nothing is known about the model but that in itself contains some information.
There is no true uninformative prior.
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exact equations needed to recreate the example. The data likelihood, P (D|θ) repre-
sents the probability of observing the data, 5 heads with 12 flips, given the current

model (some value for p) and number of trials (which is constant). It can be calcu-

lated based on the probability mass function for binomial distributions provided in

Equation 4.5, where n represents the number of trials, k is the number of heads and

p is the probability of heads (θ).

P (k|p, n) =
(︃
n

k

)︃
pk(1− p)n−k (4.5)

The probability of the prior, P (θ), is calculated given the currently selected model

along with its prior distribution, answering the question of the likelihood of observing

this model, θ, under the prior. Equation 4.6 provides the mathematical expression

for this quantity under a uniform prior.

P (θ) =
1

1− 0
, for 0 ≤ θ ≤ 1 (4.6)

In the last step, the posterior likelihood can be estimated using Equation 4.7. If

posterior probabilities are required, the resulting data can be normalized to integrate

to 1 as shown in the fifth row of Table 4.1.

P (θ|D) = P (D|θ)P (θ) (4.7)

This example is well suited to address the concept of Bayesian updating. A first

step consists of collecting more data; flipping a coin 20 additional times yields 12 heads

and 8 tails. To construct a new model, the previously estimated posterior becomes

the new prior. In other words, the posterior resulting from the first dataset becomes

the current belief about the model before infusing knowledge gained from a second

dataset. Equations 4.5 through 4.7 equally apply in this new context. Figure 4.2

shows the prior (previous posterior), the new data likelihood as well as the normalized

posterior. Visually, it is of value to note the posterior merging the distributions of

the prior and data likelihood.
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Figure 4.2: Results obtained after Bayesian updating. A) The new prior consists of
the old, normalized posterior. B) The data likelihood for each option of p. It peaks
at p = 12

20
. C) The posterior is a mixture of the prior and likelihood. It is shown in

the normalized form. The shaded area integrates to 1.

Estimating Population Mean and Variance

The previous example is concerned with the estimation of a single-parameter model

which is a rare occurrence in real-life problems. While building on the introduced pro-

cesses, the following example aims to elaborate on the Bayesian approach given a more

complex question. Figure 4.3 visualizes the
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Figure 4.3: Distribution of heights from
members of the !Kung tribe.

density distribution of heights from

people in the !Kung tribe collected

by Nancy Howell [48]. The goal

consists of estimating the popula-

tion parameters under the assump-

tion that the heights are normally dis-

tributed. Thus, our model, θ, con-

sists of µ and σ, the population param-

eters for the assumed normal distribu-

tion.

Using the grid approach, µ is dis-

cretized into steps of one given 100 ≤ µ ≤ 260 and σ is discretized in steps of

0.5 given 5 ≤ σ ≤ 15. The grid results in 3381 model options. Each model parameter

requires its own prior distribution. Since the world wide average height is estimated
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at 178 cm, it is reasonable to believe that µ ∼ N (178, 20) 2. There is no prior be-

lief for σ. However, it is zero-constrained and will, conceptually, not exceed 50 cm.

Therefore, justifying σ ∼ U(0, 50). Calculation of P (θ) becomes trivial provided the

question: What is the likelihood of observing one model combination (of µ and σ) in

the grid given the respective priors? Mathematically, for µ = 100 and σ = 5, this is

expressed in Equation 4.8. Since likelihoods can become smaller than floating point

accuracy, it is best practice to work with log likelihoods.

log (P (θ100,5)) = log (P (X = 100 | X ∼ N (178, 20)))

+ log(P (X = 5 | X ∼ U(0, 50)))

= log

(︃
1

20
√
2π

e
− (100−178)2

2×202

)︃
+ log

(︃
1

50− 0

)︃ (4.8)

The probability of the data given the model, P (D|θ), is calculated as the cumula-

tive likelihood of observing the data given every model options in the grid. Equation

4.9 provides an example based on the same µ and σ from above.

P (D | θ100,5) =
nD∑︂
i=0

log(P (X = Datai | X ∼ N (100, 5)))

=

nD∑︂
i=0

log

(︃
1

5
√
2π

e−
(Di−100)2

2·52

)︃ (4.9)

In the last step, likelihood and prior surface are summed (log rules) and normalized

to 1, resulting in P (θ|D), the posterior probability surface. All three surfaces are

visualized in Figure 4.4. The surface exhibits a maximum probability of θ at σ = 8.5

and µ = 153. The concept of Bayesian updating can be applied in a similar fashion

to the coin flip example should new heights be collected in the future.

2The prior should not be influenced by looking at the data but should rather represent the current
state of knowledge.
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Figure 4.4: In each subplot a darker blue indicates a higher likelihood (probability).
A) The log prior surface for every combination of σ and µ. B) The log likelihood
surface for every σ and µ given the available data. C) The normalized posterior
surface showing a single area of highest probability which corresponds to the estimated
population mean and variance. D) The section of highest probability from subplot
C enlarged.
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4.2 Advanced Bayesian Concepts

The provided examples, solved with help of the grid approximation method, are well

suited to gain an understanding of the basic concepts; mainly enabling an under-

standing of the interplay of prior and data likelihood. However, most problems in the

scientific domain require a precise estimation of a continuous posterior distribution.

While an almost continuous approximation would be possible if the grid is split into

infinitesimal small intervals, this approach is not feasible in practice. Additionally,

ignoring (or simplifying) the evidence term, P (D), due to computational intractabil-

ity is good enough for conceptual purposes but not suitable for scientific research.

Therefore, a group of new methods that have the ability to provide precise posterior

distributions for models with any number of parameters is required.

4.2.1 The Metropolis-Hastings Algorithm

In 1953, the paper Equation of State Calculations by Fast Computing Machines [67]

introduced an algorithm revolutionizing the estimation of posterior distributions for

latent variable models. Over the years, this algorithm has been coined after one of

the authors: Nicholas Metropolis. The Metropolis Algorithm (M-Algorithm) aims

to estimate some probability distribution, P (θ|D), given a function f(θ,D) which is:

(1.) proportional to P (θ|D) (2.) defined and computable for every θ and D [80]. The

initial version of the Metropolis algorithm ended up being replaced by a more gen-

eral version proposed by W.K. Hastings in 1970, resulting in the Metropolis-Hastings

Algorithm (MH-Algorithm) [80].

From prior discussion it is trivial to see that in a Bayesian context f(θ,D) ∝
P (D|θ)P (θ) ∝ P (θ|D). With this knowledge, the first step in the algorithm consists

of choosing of some arbitrary θi. This value is used to determine θ∗ based on some

proposal function, g(θ∗|θi). The Metropolis algorithm requires the proposal function

to be symmetric, g(θ∗|θi) = g(θi|θ∗), whereas the Metropolis-Hastings algorithm does

not impose such restrictions. A common symmetric proposal function is g(θ∗|θi) =
θ∗ ∼ N(θi, σ

2) for some σ. The generated θ∗ is accepted as the new θi with a

probability, Pacc(θi → θ∗), calculated as shown in equation 4.10. It is noteworthy
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that the quantity calculated in Equation 4.10 does not require the evidence term,

P (D) [54] [80].

Pacc(θi → θ∗) = min

(︃
1,

P (D|θ∗)P (θ∗)

P (D|θi)P (θi)

g(θi|θ∗)
g(θ∗|θi)

)︃
(4.10)

Picking a new θ∗ and accepting it based on Pacc(θi → θ∗) is repeated an arbitrary

number of times. This results in a random walk of θ within the parameter space.

The posterior distribution can be examined by using a histogram of all accepted θ

normalized to a density of one; further called a density histogram. A plot of the

values of θ against the number of iterations, called a trace plot, helps validate the

algorithm. Ideally, the random walk generated by the algorithm should walk around

the true value of the parameter to be estimated [54]. Navigating to this web page

(https://chi-feng.github.io/mcmc-demo/app.html#EfficientNUTS,banana) allows to

visual inspection of the MH-Algorithm one step at a time [105].

The MH-/M-Algorithm does come with a downside. The proposal function,

g(θ∗|θi), needs to be chosen wisely. Functions that result in small changes of θ will re-

sult in a high acceptance rate and inefficient exploration of the posterior distribution

space as seen in Figure 4.5 A I and II. On the other hand, if the proposal function

generates a new θ, in steps that are too large for the space to be explored, there is a

risk of never exploring the posterior region of highest likelihood. This case is visual-

ized in Figure 4.5 C I and II. Panel B (I and II) in the same figure provides a case

in which the proposal function has been chosen properly for the problem at hand.

This short-coming is important to keep in mind when estimating models of higher

complexity as it may require a different method to estimate the posterior distribution.

[54]

The Metropolis Algorithm and Coin Flip

Section 4.1.2 introduced an example with the goal of finding the posterior, P (θ|D),

where θ is p, the probability of observing heads in an unbiased coin flip. Previously,

the grid approximation method was used, resulting in a discretized, rough estimate

of the posterior distribution. With the introduced background, Figure 4.6 shows the

histogram and trace plot of all samples of θ resulting from the Metropolis Algorithm

https://chi-feng.github.io/mcmc-demo/app.html#EfficientNUTS,banana
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Figure 4.5: The first part of each sub figure (I) provides a density histogram of the
collected samples. The red line represents the true probability distribution to be
approximated. The second part of each sub figure (II) visualizes the trace plot of
the samples across iterations. A) The chosen proposal function provides too small
of steps leading to high acceptance rates but slow exploration. B) The proposal
function is chosen ideally. C) The proposal function generates new proposals at too
large of steps leading to a low acceptance rate and inadequate approximation of the
distribution of interest.
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(symmetric proposal function) implemented in Python’s PYMC library [2]. It is clear

to see that the posterior distribution matches up closely withe the grid approximation

albeit the Metropolis algorithm providing a continuous approximation. The trace plot

does not exhibit any concerning deviations mentioned in Figure 4.5.
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Figure 4.6: A) Posterior distribution as well as a histogram of p after 5000 sam-
ples were generated using the Metropolis-Algorithm. B) All 5000 samples of p (θ)
visualized as a trace plot.

4.2.2 Hamilton Monte Carlo

As discussed previously, the short-coming of the MH-/M-Algorithm is the choice of

the proposal function and step size. Once models become more complex, resulting

in a high dimensional parameter space that is to be explored, the MH-/M-Algorithm

breaks down by achieving an acceptance rate too small or too large with highly auto-

correlated proposals, struggling to explore the posterior distribution. The Hamilton

Monte Carlo Algorithm (HMC) is another method for obtaining a random walk se-

quence while avoiding the inherent issues of the MH-/M-Algorithm by creating a

pseudo-physical system and applying Hamiltonian concepts; thus more effectively ex-

ploring the posterior space with lower auto-correlation. The algorithm first appeared

in 1987 when it was used in lattice quantum chromodynamics. It remained unpopular

until the 2010s when Radford M. Neal published their paper MCMC using Hamilton

dynamics resulting in the algorithm becoming more widely used [71].

As a starting point to understand the HMC algorithm, it is most trivial to imagine

a ball rolling on a surface. Given some posterior distribution P (θ|D), inverting it will

result in some minimum equivalent to the optimum model parameters (conceptually
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refer to Figure 4.4). The HMC algorithm places a ball on the surface causing the ball

to naturally move due to potential and kinetic energy. At arbitrary time steps the

algorithm provides new momentum to the ball. Recording all positions at which new

momentum is transferred creates a random walk sequence which can be visualized

in a histogram, normalized to a density of one, resulting in an approximation of the

posterior distribution. Mathematically, these exact movements can be expressed with

Hamiltonian Mechanics.[71]

Hamilton mechanics is used to describe the motion and energy of a physical system

using kinetic and potential energies expressed as functions of position and momen-

tum. The following paragraphs aim to familiarize the reader with the basic ideas

involved in HMC sampling. A more elaborate explanation can be found in Neal’s

Paper: MCMC using Hamiltonian dynamics [71]. An extensive, bottom-up, review

of Lagrangian and Hamiltonian concepts is available in A Student’s Guide to La-

grangians and Hamiltonians [44].

For the application of Hamiltonian concepts to Bayesian model estimation, the

position of the ball is expressed as a vector of θ, the parameters of interest 3. The

momenta are expressed as some arbitrary same length vector, r. It can be shown that

the Hamiltonian in this pseudo-physical system is equal to Equation 4.11. Here, M is

a symmetric and positive definite mass matrix and f(θ) represents the non-normalized

target density; from the previous section it is clear that f(θ) = P (D|θ)P (θ) [71].

H(r, θ) =− log[f(θ)] +
1

2
rTM−1r

=− log[P (θ)P (D|θ)] + 1

2
rTM−1r

= U(θ) +K(r)

(4.11)

Equation 4.11 easily shows the parts of the Hamiltonian that represent the poten-

tial, U(θ), and kinetic energy, K(r). With knowledge of the Hamiltonian, the HMC

algorithm uses Hamilton’s Equations from Equation 4.12 and 4.13 to calculate the

3To stay consistent with references and general literature in the Bayesian domain, vectors and
matrices are not bold.
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path of the rolling ball [71].

dθi
dt

=
∂H

∂ri
(4.12)

dri
dt

=
∂H

∂θi
(4.13)

Since the differential equations are dependent on each other, it is required to

choose a method for discretization. The most common choice is the leapfrog method,

which requires two tune-able parameters: the number of steps, L, and the step size,

∆t. Very generally speaking, the smaller ∆t and the larger L, the better the simula-

tion of the Hamiltonian system, leading to better exploration of posterior space but

at the cost of computational requirements. This method also requires the derivative

of U(θ) with respect to θ, making it intractable should such gradient be impossible

to calculate. A more in-depth review of the leapfrog method can be found here [52].

After discretization, a new θ∗ is generated based on the Hamiltonian system. A

new momentum vector, r∗, is sampled at random and independent from the pre-

vious iteration. The new values are part of a modified Metropolis-Hastings ac-

ceptance probability, calculated according to Equation 4.14. By theory, the HMC

algorithm will always yield an acceptance probability of 1 if the system is simu-

lated exactly (no error due to simulation). However, even with error introduced

due to simulation, the HMC algorithm yields high acceptance probabilities [71].

Repeatedly generating and accepting new samples of θ results in a random walk

(similar to the MH-/M-Algorithm) which can be visualized to provide an estimate

of the posterior density. The web tool suggested above also allows for visualiza-

tion of the HMC algorithm. It can be found here (https://chi-feng.github.io/mcmc-

demo/app.html#EfficientNUTS,banana)[105].

Pacc(θi → θ∗, ri → r∗) = min [1, exp(−U(θ∗) + U(θi)−K(r∗) +K(ri))] (4.14)

Over the years the general idea of HMC sampling has been extended to improve

https://chi-feng.github.io/mcmc-demo/app.html#EfficientNUTS,banana
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performance. Some examples include the No U-Turn Sampler (NUTS), partial mo-

mentum refreshment or the Langevin method. However, exploration of these modi-

fications is outside the scope of this thesis and can be researched as needed. Some

references are available here [71] [23].

The HMC and the Coin Flip Example

Applying HMC sampling to the coin flip example from before becomes a simple task.

Conceptually, it does not stray far away from rolling a ball within a 1-Dimensional

trough. By intuition, the ball will visit the lowest points of the trough, the most

probable p, the most often. Figure 4.7 shows the resulting posterior distribution and

trace plot obtained through HMC sampling with PYMC in Python [2]. Through a

direct comparison to the results obtained by the Metropolis-Algorithm, it is visible

that HMC sampling has a higher density of samples in the area of highest likelihood.

The trace plot exhibits excpected behaviour of varying around the true value.
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Figure 4.7: A) Posterior distribution as well as a histogram of p after 5000 samples
generated using HMC sampling. B) All 5000 samples of p visualized as a trace plot.

4.2.3 Slice Sampling

The last sampling approach to be discussed is slice sampling. This method aims to

estimate the posterior under the condition that a gradient, specifically ∆U(θ), can-

not be calculated for HMC sampling and the parameter space is too high-dimensional

for the MH-/H-Algorithm. It provides an alternative should none of the previously

discussed methods be suitable. The first mention of slice sampling applied in the

Bayesian context was in the 2003 paper Slice sampling written by Radford M. Neal
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[70]. Surprisingly, slice sampling is considered to be one of the easier sampling meth-

ods but is usually computationally slower than the MH-/H- or HMC algorithm.

As seen previously, the distribution to be estimated and sampled from is the non-

normalized posterior, P (D|θ)P (θ). In a first step, θi is randomly (or arbitrarily)

initialized. The posterior is evaluated at θi, resulting in some value y. A random

height, u, is sampled uniformly between 0 and the current height, y, of the posterior.

In a next step, the algorithm’s goal is to find an interval, [L,R], within which the

posterior is greater than u. The interval is initially centered around θi by using an

arbitrary width w, resulting in [θi−w, θi+w]. By means of looping, L is extended left-

wards until P (D|L)P (L) ≤ u and R is extended rightwards until P (D|R)P (R) ≤ u.

The resulting interval represents a slice of the posterior distribution that is above u.

During the last step, a new θ∗ is randomly generated from the specified interval. If

P (D|θ∗)P (θ∗) ≥ u, then θi → θ∗ else the interval is adjusted to exclude the rejected

θ∗ and a new θ∗ is sampled. Once a θ∗ is accepted, the height y is recalculated, a new

interval is created around θ∗ and the algorithm is repeated until sufficient samples

have been generated. As before, visualizing the random walk in a density histogram

provides an estimate of the posterior distribution. [70].

The previously mentioned web tool does not offer a simple visualization of the

slice algorithm. This deficit promted me to create my own interactive web tool to un-

derstand slice sampling. It can be found here (https://slice-sampling.fabianbong.me).

Slice Sampling and Coin Flips

The only condition required to apply slice sampling is a prior and data likelihood;

thus making the method easily applied to the coin flip example. Figure 4.8 shows

the resulting posterior and trace plot obtained through PYMC in Python [2]. The

approximated posterior distribution is highly similar to the distribution obtained by

HMC sampling. The trace plot exhibits the expected random walk around the true

value.

https://slice-sampling.fabianbong.me
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Figure 4.8: A) Posterior distribution as well as a histogram of p after 5000 samples
generated using slice sampling. B) All 5000 samples of p visualized as a trace plot.

4.2.4 Diagnostic Quantities

As with any fitting algorithm, there exists a suite of more detailed concepts useful

to understand and improve fit quality. Examples include best practices, diagnos-

tic quantities and many more. In the case of Bayesian statistics, these are usually

independent of the sampling method. The following paragraphs aim to provide a

broken-down overview of the most prevalent concepts.

As a starting point, a good practice to follow consists of collecting more than one

random walk at a time, usually in parallel, to confirm that a single random walk is

not stuck in a local minimum. This is comparable to running multiple iterations for

the algorithm in Chapter 3. Each random walk should start from different initial

values and is referred to as a chain of samples. Additionally, an arbitrary number

of samples are discarded at the beginning of each chain to allow the random walk to

travel to the area of highest likelihood without affecting the estimate of the posterior

distribution. This is referred to as burn-in [53].

When visualizing multiple chains on a trace plot (excluding the burn-in phase),

ideally the chains overlap, indicating that they found the same minimum. This con-

cept is captured in the traditional R̂ statistic. It is calculated as the square root of

the variance between chains divided by the variance within chains. The closer R̂ is

to one, the higher the agreement between chains. However, this statistic does not

necessarily indicate a good fit. R̂ can still result in 1 if all chains find the same local

(wrong) minimum. Generally, any R̂ ≤ 1.05 is considered acceptable. Lastly, there
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are a number of shortcomings of the traditional R̂ calculation and recent research

suggests the use of more sophisticated methods to calculate R̂. The concepts can be

explored in the reference [106].

Another quantity of interest is the effective sample size (ESS, Neff). This value

represents how many non-auto-correlated (independent) samples are needed to cap-

ture the same information as the collected, auto-correlated samples. Simply speaking,

the higher the ESS (Neff) (in relation to the actual number of collected samples) the

better the observed samples are to gain information about the true posterior distri-

bution. Usually, Neff is expressed as the minimum of the 5% and 95% quantiles of

the posterior distribution. [91] [56].

4.3 Error Model Estimation with Bayesian Statistics

With the established background knowledge follows the application of Bayesian statis-

tics to the problem introduced in Chapter 3.

4.3.1 Model Construction

Given the data matrix X of size I by J , where I describes the number of channels

(features) and J describes the number of samples, it has been established that the

standardized residuals follow a standard normal distribution (see section 3.2.4). This

directly translates to xi,j ∼ N(µi,j, σi,j), where µi,j is the mean response and σi,j

the adjusted standard deviation for the corresponding replicate and channel. The

values can be estimated as shown in Equation 4.15 and 4.16, assuming that MLPCA

is applied in one dimension and returns a vector u of length I, a constant singular

value, S, and a loadings vector v of length J .

µi,j = uiSvj (4.15)

σi,j =
√︂

(β2
1µi,j + β2

2µ
2
i,j)ηi,j (4.16)

In the equations above, β1 and β2 refer to to the parameters to be estimated. As

such, they are given the following priors based on the expected range of the variable.
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Conceptually, the parameters are constrained to be above zero but do not have an

upper limit. Values closer to zero are more likely but values as high as 10 are possible.

Thus, the exponential distribution becomes a reasonable choice for the parameters.

Explicitly, β1 ∼ E(0.5) and β2 ∼ E(5) which have a mean of 2 and 0.2, respectively.

The above model posterior for β can be estimated using slice sampling. Other sam-

pling methods are not suitable. The problem is too complex for the MH-/H-Algorithm

and it is intractible to define a gradient for MLPCA to utilize HMC sampling.

4.3.2 Missing Data and Outliers

Missing Data

Missing data points are defined as observations that do not have a numeric value asso-

ciated with them. A collection of samples has a high likelihood of containing missing

data points across single features (channels); therefore it is required to determine a

strategy to handle such cases. In the context of mass spectrometry, the observance

of missing data can confidently be attributed to randomness inherent to the world,

γ. This is mathematically described by P (M = 1|X, γ) = P (M = 1|γ), where

the random variable M describes a data point that is missing (M = 1) or present

(M = 0). Thus, there is no need to consider any dependence structure between ob-

served and missing data. If any measurement channel has at least one non-missing

value, MLPCA can be used to estimate a mean projection allowing calculation of a

likelihood despite other missing data points. However, if less than two values are

present for any channel, that channel needs to be discarded.

Outliers

Outliers are more difficult to define than missing values as they, by definition, do not

follow a known distribution. The Frequentist approach handles outliers by identifying

them based on the number of standard deviations a value deviates from the mean

and then discarding them. A Bayesian approach to the same problem consists of

increasing the likelihood of outlying values and thus only decreasing their effect on
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the model but not removing them completely [59]. This can be achieved by substitut-

ing the normal distribution with a three-parameter-form of the student-t-distribution

which exhibits increased density in the tails with lower degrees of freedom. A modified

model (from section 4.3.1) assumes xi,j ∼ StudentT(ui,j, σi,j, ν) where σi,j, µi,j and ν

represent the scale, location and degrees of freedom of the distribution, respectively.

This adjustment adds ν as another parameter to be estimated; thus requiring a prior.

Since ν ≥ 0 (by definition) and ν ≫ 100 very closely mirrors a normal distribution,

a prior consisting of ν ∼ U(0, 100) is reasonable.

The change in distribution is accompanied by some difficulties. Mainly, σi,j does

not represent the standard deviation but rather the scale of the t-distribution. Thus,

the model itself fits pseudo-variances (or pseudo-standard-deviations). These are lin-

early proportional to the real variances by a factor of ν
ν−2

. Since each step in the

model (most importantly MLPCA) is independent of scale, the model estimated for

pseudo-variances is equivalent to the model used for real variances and does not re-

quire adjustment.

Lastly, while providing a method to better fit the data, the newly introduced

parameter, ν, also has conceptual meaning. The lower ν, the higher the non-normality

of the standardized residuals and thus the worse the quality of the model for the

specific dataset. A large ν on the other hand indicates that the model is well suited

for the data; the normalized residuals are normal.

4.4 Results and Discussion

As in the previous chapter the results section is split into two parts. The first section

focuses on fitting variance models to simulated data with the goal of validating the

algorithm. In the second section follows the application of the algorithm to experi-

mental data introduced before.

4.4.1 Simulation Studies

The data used in this section has been simulated according to the specifications

mentioned in section 3.3.1 of the previous chapter. Each run is considered a single



96

execution of the Bayesian model using slice sampling with two chains of which each

chain consists of 30 burn-in samples and 100 retained samples. The low number of

chains and samples is ideal to simply test the algorithm. The model was executed in

Python’s PYMC version 5.15.1 [2].

The Ideal Case

For this simulation, the model has been fit to the simulated data, Xref without any

added irregularities. This case assumes full data coverage and no outliers. While

such case is rare to come across in real datasets, the results verify the validity of the

Bayesian method. After fitting the model, β1 results in 1.005± 0.005 and β2 results

in 0.096 ± 0.001 while v = (0.258, 0.345, 0.430, 0.516, 0.603) or normalized by 0.403,

α = (0.6, 0.8, 1.0, 1.2, 1.4). The degrees of freedom of the student t-distribution are

optimal at ν = 85.474 ± 7.955; which corresponds to a high degree of normality 4.

This is expected as the data is specifically simulated so that the normalized residu-

als follow a normal distribution. The high variability in the estimate of ν is not of

concern since the shape of the t-distribution does not change significantly within a

2 standard deviation range (85.474 ± 15.91). R̂ is observed as 1.01, 1.00 and 1.05

for β1, β2 and ν, respectively, indicating convergence. This is further underlined by

acceptably high effective sample sizes of 188, 155 and 109, respectively.

Figure 4.9 provides the resulting fit for a single realization of the error. More elab-

orate diagnostic plots including posterior distributions and trace plots can be found

in the supplemental material (Figure A.1). The diagnostics underline the accuracy

and viability as indicated by the parameter estimates above. Figure 4.9A confirms

that the residuals correctly fit to a t distribution (or normal distribution) with 85.763

degrees of freedom. In the same figure, subplot B shows a highly acceptable model fit

to the robust estimate of the standard deviation (Qn of Rousseeuw and Croux [83])

across the pooled residuals against the median of the pooled X̂. The graphs provided

in Figure 4.12A and 4.13A show accuracy across multiple error realizations and abil-

ity of the model to accurately recall scaling parameters. While the variability of the

scaling parameters does not differ much in comparison to the Frequentist approach,

4Any ν > 30 can be considered to be highly similar to a normal distribution
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the Bayesian approach provides greater precision and improved accuracy compared

to the Frequentist approach in the parameter estimates. For this simulation, the

Bayesian approach does also not exhibit a correlation between β1 and β2 as observed

for the Frequentist approach. This comes at the expense of computational time with

a single chain of 100 samples requiring upwards of 30 minutes.
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Figure 4.9: Diagnostic plots for an ideal dataset. A) Histogram of normalized resid-
uals (by pseudo-variance) with a student t distribution of 85.474 degrees of freedom
as reference (red). B) Pooled Qn suggested by Rousseeuw and Croux [83] of non-
normalized residuals against pooled median of X̂ with a bin size of 100. The red line
visualizes the error model fit based on β1 and β2. The green and orange line show
the linear and quadratic component, respectively. The axes are log-scaled.

Missing Data

The dataset in this simulation has missing data introduced completely at random.

5% of the data are missing. Results are expected to not deviate vastly from the

previous simulation due to random removal of data not influencing the expected dis-

tribution of pseudo-normalized residuals. The estimates of β1, β2 and ν are observed

at 1.000 ± 0.006, 0.095 ± 0.001 and 82.957 ± 12.957, respectively. The scaling fac-

tors are found to be v = (0.258, 0.345, 0.430, 0.516, 0.603) or normalized by 0.430,

α = (0.6, 0.8, 1.0, 1.2, 1.4). The parameters of interest show an R̂ of 1.04, 1.02 and

1.20 as well as an effective sample sizes of 84 , 119 and 12, respectively. The diagnostic

values indicate acceptable convergence despite some lower Neff and a higher R̂. This

can mostly be attributed to a decrease in available samples in the dataset, Xsim, but
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may be corrected by increasing the number of samples collected.
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Figure 4.10: Diagnostic plots for data with missing values. A) Histogram of normal-
ized residuals (by pseudo-variance) with a student t distribution of 82.957 degrees of
freedom as reference (red). B) Pooled Qn suggested by Rousseeuw and Croux [83]
of non-normalized residuals against pooled median of X̂ with a bin size of 100. The
red line visualizes the error model fit based on β1 and β2. The green and orange line
show the linear and quadratic component, respectively. The axes are log-scaled.

Figure 4.10 depicts the resulting fit for a single realization of errors and missing

values. Subplots A and B provide results that do not differ from expectations. Ad-

ditional diagnostic plots (trace plot and posterior distribution) are available in the

supplemental material (Figure A.2). There is no concern that the method does not

hold for data with missing values. Figure 4.12B and 4.13B shows repeated parameter

and scaling factor estimates on different realizations of the error (and removed val-

ues), again, proving reproducibility and precision. As before, these results indicate

higher accuracy and precision (without correlation in β) of the Bayesian method in

comparison to the Frequentist approach.

Outliers

The introduction of outliers is completely at random. For 5% of data points the

standard deviation has been inflated 10 fold. This simulation is of interest to under-

stand the behaviour of the degrees of freedom. Fitting the model results in β1, β2

and ν as 0.932 ± 0.007, 0.107 ± 0.001 and 2.948 ± 0.032, respectively. In the same
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Figure 4.11: Diagnostic plots for data with outlying values. A) Histogram of nor-
malized residuals (by pseudo-variance) with a student t distribution of 2.948 degrees
of freedom as reference (red). B) Pooled Qn suggested by Rousseeuw and Croux [83]
of non-normalized residuals against pooled median of X̂ with a bin size of 100. The
red line visualizes the error model fit based on β1 and β2. The green and orange line
show the linear and quadratic component, respectively. The axes are log-scaled.

order, R̂ is observed to be 1.02, 1.03 and 1.05 while Neff is 133, 96 and 68; both di-

agnostic values indicate acceptable convergence. Scaling factors are found to be v =

(0.259, 0.345, 0.430, 0.518, 0.601) or normalized by 0.430, α = (0.6, 0.8, 1.0, 1.2, 1.4).

The low value of ν indicates a higher degree of non-normality caused by the out-

liers. In contrast to the previous simulations, the standard deviation for ν is small as

changes in such a low range correspond to large changes in the shape of the distribu-

tion.

Figure 4.11 contains the necessary diagnostic plots with additional visualization

provided in the supplemental material (Figure A.3). As with previous fits, the diag-

nostic plots do not show noteworthy deviations from expectations. The low value of

ν does indicate that this model may not be optimal given the amount of outliers. In

connection with this finding, Figure 4.11B does indicate that even the robust standard

deviations in the pooled visualization show the model to (very) slightly underestimate

the true variance. Additionally, Figure 4.12C does highlight that parameters tend to

have a bias towards the low end in multiple simulations with different error realiza-

tions. This bias is not reflected in the estimates of the scaling factors (Figure 4.13C).
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Figure 4.13: Estimates of the scaling factors, α, for different realizations of error
centered around the true value for each sample. A) The data does not contain any
outliers or missing values. B) 5% of the available data is missing. C) 5% of the
available data are outliers but present.
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The bias towards a lower β1 is not observed in the Frequentist approach. However,

the precision of the biased estimate is still higher in the Bayesian model which, de-

pending on the application, may be of higher importance than accuracy (or bias).

Future work may focus on methods to avoid such bias but retain precision; keeping

the best parts of the Frequentist and Bayesian approach.

4.4.2 Experimental Data

The following datasets are equivalent to the datasets used in the previous section. For

a more thorough explanation of the origin and sample preparation refer to Chapter

3 (section 3.3.2). To achieve accurate results, the model has been fit using slice

sampling and five chains with 100 burn-in samples followed by 200 retained samples.

The model was executed in Python’s PYMC version 5.15.1 [2].

MSREPS

The parameter estimates for the MSREPS dataset come out as β1 = 0.924 ± 0.004,

β2 = 0.055 ± 0.001, ν = 8.431 ± 0.227. The scaling factor result in v = (0.461,

0.459, 0.438, 0.444, 0.433). Division by the maximum scaling factor provides α =

(1.000, 0.995, 0.950, 0.963, 0.940). The convergence statistics are 1.01, 1.02 and 1.03

for R̂ for β1, β2 and ν, respectively. In the same order, Neff results in 596, 670 and

231. The quantities provide evidence that the algorithm did successfully converge on

the highest likelihood solution.

Figure 4.14 depicts the diagnostic plots. Density histograms and trace plots are

provided in the supplementary material (Figure A.4). Subplot A shows an accept-

able fit of the normalized residuals to a student t distribution with 8.431 degrees

of freedom. The high degrees of freedom indicate that the normalized residuals are

close to normal which correlates with the observations made in Chapter 3. Subplot

B visualizes the pooled robust standard deviation (Qn) against the pooled median of

X̂; depicting an acceptable fit.

Generally, due to its normality, this dataset does not show a strong deviation from

the Frequentist results, except the estimate of β1 being slightly lower. In comparison
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to Nickerson’s findings, β1 is higher in this approach while β2 is comparable. The

scaling factors (v) between the two approaches introduced here are highly similar.
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Figure 4.14: Diagnostic plots resulting from the Bayesian error model fit to the
MSREPS dataset. A) Histogram of normalized residuals (by pseudo-variance) with
a student t distribution of 8.431 degrees of freedom as reference (red). B) Pooled Qn

suggested by Rousseeuw and Croux [83] of non-normalized residuals against pooled
median of X̂ with a bin size of 100. The red line visualizes the error model fit based
on β1 and β2. The green and orange line show the linear and quadratic component,
respectively.

INGEL

Fitting the INGEL dataset using the Bayesian model results in β1 = 0.565 ± 0.010,

β2 = 0.214 ± 0.003 and ν = 4.950 ± 0.135. R̂ (and Neff) are found to be 1.02 (473),

1.02 (265) and 1.02 (334), respectively. The scaling factors are v = (0.499, 0.471,

0.621, 0.378). Division by the maximum provides normalized scaling factors: α =

(0.804, 0.758, 1.000, 0.609). The fit statics provide evidence of sufficient convergence.

Figure 4.15 shows the diagnostic plots while the posterior distribution and trace

plot can be found in the supplemental material (Figure A.5). Subplot A shows an ac-

ceptable fit of the normalized residuals to a t distribution of 4.950 degrees of freedom.
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Figure 4.15: Diagnostic plots resulting from the Bayesian error model fit to the INGEL
dataset. A) Histogram of normalized residuals (by pseudo-variance) with a student t
distribution of 4.95 degrees of freedom as reference (red). B) Pooled Qn suggested by
Rousseeuw and Croux [83] of non-normalized residuals against pooled median of X̂
with a bin size of 100. The red line visualizes the error model fit based on β1 and β2.
The green and orange line show the linear and quadratic component, respectively.

The tails are visibly thicker indicating either a high number of outliers or an insuf-

ficient variance model. Subplot B shows a reasonable fit of the model to the robust

standard deviation of the pooled residuals. Lastly, a comparison to the Frequentist

approach reveals a stark contrast of β1 (Frequentist: 0.8915; Bayesian: 0.565) while

β2 is reasonably comparable (Frequentist: 0.1555; Bayesian: 0.214). These difference

were expected due to the low ν. Interestingly, when contrasting the fit between the

Bayesian and Frequentist approach there is visual evidence of a better fit when us-

ing the Bayesian approach, especially at the low end (refer Figure 3.10B and Figure

4.15B). In terms of Nickerson’s findings, β1 is different (Nickerson: 0.6982; Bayesian

0.565) while β2 is comparable (Nickerson: 0.1542; Bayesian: 0.214). The scaling

factors are highly similar between the introduced approaches.
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TNBC

Fitting the TNBC data results in β1 = 9.269 ± 0.522, β2 = 0.117 ± 0.004 and

ν = 1.683±0.04. R̂ (and Neff) are found to be 1.05 (378), 1.08 (238) and 1.03 (344), re-

spectively. The scaling factors are found to be: v = (0.413, 0.383, 0.366, 0.353, 0.328,

0.326, 0.322, 0.327). The scaling factors, normalized by the maximum, are: α =

(1.000, 0.927, 0.886, 0.855, 0.794, 0.789, 0.780, 0.792). The convergence statistics indi-

cate that convergence may not be achieved as some parameters provide a higher than

usual R̂. Apart from the number of chains and samples collected, this issue may also

be due to the small sample size with only 1860 channels (rows) per sample including

missing values.
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Figure 4.16: Diagnostic plots resulting from the Bayesian error model fit to the TNBC
dataset. A) Histogram of normalized residuals (by pseudo-variance) with a student
t distribution of 1.683 degrees of freedom as reference (red). B) Pooled Qn suggested
by Rousseeuw and Croux [83] of non-normalized residuals against pooled median of
X̂ with a bin size of 100. The red line visualizes the error model fit based on β1 and
β2. The green and orange line show the linear and quadratic component, respectively.

Figure 4.16 shows the diagnostic plots; posterior distribution and trace plot are

found in the supplementary material (Figure A.6). The low ν indicates that the model

may not be a good fit for the data and that the pseudo-normalized residuals are highly

non-normal. This observations correlates with the deviation from normality observed
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in Chapter 3 (refer Figure 3.11B). Subplot A, the normalized residuals, shows a good

fit to the appropriate t distribution of 1.683 degrees of freedom. The heavy tails

are important to notice. The center of the distribution seems to be containing a

larger than expected number of residuals. Subplot B shows a non-ideal fit in which

the error model underestimates most of the variances. This, in combination with a

low ν and unacceptable fit diagnostics, provides more evidence for an insufficiently

chosen error model or unreliable data. Additionally, the fit parameters are highly

different in between the two introduced methods (β1 = 13.21 (Frequentist) and 9.27

(Bayesian), β2 = 0.048 (Frequentist) and 0.12 (Bayesian)). However, despite this,

none of the methods shows a reasonable fit. The scaling factors remain highly similar

as in previous applications.

4.5 Conclusion

In conclusion, this chapter has demonstrated the potential of Bayesian statistics im-

proving the process of fitting measurement error models to LC-MS data. If the most

important model assumption of normally distributed residuals is met, the Bayesian

approach provides VF estimates with less correlation in β and higher accuracy and

precision than the equivalent Frequentist model. As a summary, Table 4.2 and 4.3

collect the model estimates for the simulated as well as the experimental datasets for

each available method (including Nickerson’s paper), respectively. Lastly, the find-

ings in this chapter suggest a broader integration of Bayesian methods in the field;

potentially enabling more precise and accurate model development.

Ideal Data Missing Data Outlying Data

Frequentist
β1 1.072± 0.051 0.992± 0.066 1.037± 0.066
β2 0.087± 0.011 0.102± 0.011 0.099± 0.012

Bayesian
β1 0.996± 0.004 0.991± 0.004 0.932± 0.012
β2 0.098± 0.001 0.097± 0.001 0.112± 0.004
ν 89.13± 2.50 88.28± 2.400 3.965± 1.507

Nickerson
β1 N/A N/A N/A
β2 N/A N/A N/A

Table 4.2: Parameter estimates for the simulated datasets discussed in Chapter 3 and
4.



106

MSREPS INGEL TNBC

Frequentist
β1 1.037 0.892 13.22
β2 0.0482 0.156 0.048

Bayesian
β1 0.924± 0.004 0.565± 0.010 9.269± 0.522
β2 0.055± 0.001 0.214± 0.003 0.117± 0.004
ν 8.431± 0.227 4.950± 0.135 1.683± 0.040

Nickerson
β1 0.747 0.693 N/A
β2 0.067 0.146 N/A

Table 4.3: Parameter estimates for the experimental datasets discussed in Chapter 3
and 4.



Chapter 5

Conclusions

This thesis set out to suggest two solutions to prevalent problems associated with mod-

eling high throughput -omics data: (a) an algorithm for unsupervised, robust sample

classification via projection pursuit using kurtosis as a projection index (kPPA) and

coupling it to classification and regression trees (CART), and (b) a framework for

fitting variance models based on replicate measurements devoid of biological signifi-

cance to recapitulate systematic variation introduced in -omics data by the analytical

measurement procedures.

In Chapter 2, I have shown that kPPA-CART provides superior classification for

datasets with small effect sizes; enabling high-risk, high-reward studies. Further, I val-

idated the algorithm with two experimental datasets consisting of the Takemon (pro-

teomics and transcriptomics) and TCGA Breast Cancer dataset (transcriptomics).

While kPPA-CART allowed for superior classification of the integrated Takemon data,

I further provided evidence that kPPA-CART is capable of discovering novel genes

for the classification of PAM50 in the TCGA dataset and that these genes are bio-

logically significant.

In Chapters 3 and 4, I propose a novel approach for error modeling of LC-MS ex-

periments based on MLPCA as a normalization approach; accounting for sensitivity

differences in-between replicate samples. The variance function parameters are then

fit by using KL-Divergence, optimizing the parameters so that the normalized (and

adjusted) residuals follow a standard normal distribution. By use of simulations, I

provide evidence that both (Frequentist and Bayesian) models accurately recapitu-

late the pre-determined scaling factors and error parameters with high accuracy and

precision. Application of the models to experimental data provides reasonable diag-

nostics for the INGEL and MSREPS dataset. However, the same diagnostics for the
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TNBC dataset suggest that either the error model does not account for most of the

variance contained within the data or that the data contains too much noise; creating

avenues for future research.
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fari, Ali Bashashati, Roslin Russell, Steven McKinney, Anita Langerød, An-
drew Green, Elena Provenzano, Gordon Wishart, Sarah Pinder, Peter Watson,
Florian Markowetz, Leigh Murphy, Ian Ellis, Arnie Purushotham, Anne-Lise
Børresen-Dale, James D. Brenton, Simon Tavaré, Carlos Caldas, and Samuel
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naud Droit. Integration strategies of multi-omics data for machine learning
analysis. Computational and Structural Biotechnology Journal, 19:3735–3746,
2021.
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A.0.1 Simulation Studies of Bayesian Error Modelling
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Figure A.1: The plots refer to the ideal case discussed in the simulation studies of
chapter 4. A), C) Posterior distribution of β1 and β2, respectively. Different colors
represent different chains. B), D) Trace plot for β1 and β2, respectively. Different
colors represent different chains.
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Figure A.2: The plots refer to the missing data case discussed in the simulation studies
of chapter 4. A), C) Posterior distribution of β1 and β2, respectively. Different colors
represent different chains. B), D) Trace plot for β1 and β2, respectively. Different
colors represent different chains.
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Figure A.3: The plots refer to the outlying data case discussed in the simulation
studies of chapter 4. A),C) Posterior distribution of β1 and β2, respectively. Different
colors represent different chains. B), D) Trace plot for β1 and β2, respectively.
Different colors represent different chains.
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A.0.2 Experimental Results of Bayesian Error Modelling
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Figure A.4: The plots refer to the MSREPS dataset discussed in chapter 4 (and 3).
A), C) Posterior distribution of β1 and β2, respectively. Different colors represent
different chains. B), D) Trace plot for β1 and β2, respectively. Different colors
represent different chains.
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Figure A.5: The plots refer to the INGEL dataset discussed in chapter 4 (and 3).
A), C) Posterior distribution of β1 and β2, respectively. Different colors represent
different chains. B), D) Trace plot for β1 and β2, respectively. Different colors
represent different chains.
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Figure A.6: The plots refer to the TNBC dataset discussed in chapter 4 (and 3).
A), C) Posterior distribution of β1 and β2, respectively. Different colors represent
different chains. B), D) Trace plot for β1 and β2, respectively. Different colors
represent different chains.
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