
1.5em

ANALYZING AES POWER TRACES FOR SIDE-CHANNEL
ATTACKS: GENERATION, CLASSIFICATION, KEY

DEDUCTION, AND MITIGATION STRATEGIES - NEW

by

Keerthana Rajeev

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

July 2024

© Copyright by Keerthana Rajeev, 2024

I dedicate this work to Lord Guruvayoorappan and my family.

ii

Table of Contents

List of Tables . vii

List of Figures . viii

Abstract . xiii

List of Abbreviations and Symbols Used xiv

Acknowledgements . xvii

Chapter 1 Introduction . 1

1.1 Motivation . 4
1.1.1 Vulnerabilities in cryptographic algorithms 4
1.1.2 Challenges in traditional methods 5
1.1.3 Underutilization of advanced DL techniques 5
1.1.4 Analyzing and classifying AES implementations from power

traces . 6
1.1.5 Feature Extraction and Retracting to original power traces . . 6
1.1.6 Synthetic Data to Augment Training Data 6
1.1.7 Lack of Mitigation Strategies 7

1.2 Contribution . 7
1.2.1 Module 1: Generation and analysis of power traces 8
1.2.2 Module 2: Feature extraction, classification and retracing of

power traces . 9
1.2.3 Module 3: Key deduction using ResTraceNet and GRUTrace . 9
1.2.4 Module 4: Mitigation strategies 10

1.3 Organization of the Thesis . 10

Chapter 2 Background Knowledge and Literature Review 13

2.1 Background Knowledge . 13
2.1.1 Side-channel attacks . 13
2.1.2 History and implications . 14
2.1.3 Types of SCAs . 15
2.1.4 Profiling vs non-profiling attacks 16
2.1.5 Electromagnetic emission analysis and power analysis 17
2.1.6 Simple power analysis, differential power analysis and correla-

tion power analysis . 18
2.1.7 DPA vs CPA . 19

iii

2.1.8 Cryptographic algorithms vulnerable to SCAs 19
2.1.9 AES algorithm . 20
2.1.10 AES against SCAs . 21
2.1.11 Drawbacks of traditional methods 22
2.1.12 Limitations of Machine Learning(ML) 23
2.1.13 Advantages of Deep Learning (DL) over traditional methods . 25
2.1.14 DL models . 26

2.2 Literature Review . 29
2.2.1 Differential Power Analysis (DPA) and Correlation Power Anal-

ysis (CPA) . 29
2.2.2 Deep Learning (DL) based side-channel attacks 31
2.2.3 Summary of Literature Survey 37
2.2.4 Research gap . 38
2.2.5 Novelty . 38

Chapter 3 Module 1: Generation And Analysis of Power Traces 40

3.1 Methodology . 41
3.1.1 Power trace collection using an Emulator 41
3.1.2 Generation of synthetic power traces 47
3.1.3 Analysis of the power traces 49

3.2 Results and Discussion . 50

3.3 Summary . 60

Chapter 4 Module 2 : Feature extraction, classification and retrac-
ing of power traces . 61

4.1 Dataset . 62
4.1.1 Dataset overview . 62
4.1.2 Piñata Board . 62
4.1.3 Data Organization . 63
4.1.4 Number of traces . 63
4.1.5 Trace Collection . 64

4.2 Methodology . 66
4.2.1 Classification of Power Traces 66
4.2.2 Focus on PCA for improved classification 68
4.2.3 Optimal Threshold Calculation and Retracing the Power Traces 69

4.3 Results and discussion . 75

4.4 Comparitive analysis with existing state of the art 91

iv

4.5 Summary . 92

Chapter 5 Module 3: Key deduction using ResTraceNet and GRU-
Trace
. 93

5.1 Dataset . 93
5.1.1 Problem with AES PTV2 dataset 93
5.1.2 ASCAD Dataset . 94

5.2 Methodology . 96
5.2.1 ResTraceNet: ResNet-Inspired Architecture for Power Trace

Analysis . 98
5.2.2 ResTraceNet model . 101
5.2.3 GRUTrace: Adaptation of GRU for Analyzing Power Trace Data105
5.2.4 GRUTrace model . 106
5.2.5 Testing on attack phase data and predicting Sbox output . . . 108
5.2.6 Key deduction . 108
5.2.7 Key Deduction Using ResTraceNet and GRUTrace Models with

100 power traces . 108

5.3 Results and discussion . 109
5.3.1 ResTracenet variant1 . 109
5.3.2 ResTracenet variant2 . 109
5.3.3 ResTracenet variant3 . 110
5.3.4 GRUTrace model . 110
5.3.5 Using 100 power traces with ResTraceNet and GRUTrace model 111
5.3.6 S-box prediction and key deduction 111

5.4 Comparitive Analysis with existing state of art 125

5.5 Summary . 126

Chapter 6 Module 4: Mitigation strategies 128

6.1 Methodology . 129
6.1.1 Importance of shared key and nonce 129
6.1.2 Post-Implementation Analysis 130
6.1.3 Gaussian Noise . 130
6.1.4 Adding Gaussian Noise to the Power Trace 131
6.1.5 Masking ciphertext and adding Gaussian noise 132
6.1.6 Structured Masking and Controlled Noise Addition 134

6.2 Results and discussion . 138
6.2.1 Graph Analyis . 138

v

6.3 Comparitive analysis with existing state of art 141

6.4 Summary . 142

Chapter 7 Conclusions . 144

7.1 Contributions . 145
7.1.1 Generation of AES Power Traces 145
7.1.2 Classification of Power Traces Using AES Implementation: . . 145
7.1.3 Deep Learning Based on ResTraceNet: 145
7.1.4 Deep Learning Based on GRUTrace 145
7.1.5 Mitigation Strategies . 146
7.1.6 Module summary . 146

Chapter 8 Discussion . 148

8.1 Limitations . 148

8.2 Future work . 149

Bibliography . 151

vi

List of Tables

4.1 Comparative analysis of Module 2 with existing work 91

5.1 Overview of ResTraceNet Architecture Components 100

5.2 Comparison of different ResTraceNet variants in hyperparame-
ters and performance metrics 105

5.3 Summary of Experimental Results - Dataset: ASCAD, (Legend:
Profiling: Prof., Key Deduction: KD (In Bytes), Not Provided:
NP, Accuracy: Acc) . 125

6.1 Comparative analysis of Module 4 with existing work 141

vii

List of Figures

1.1 A high-level overview of side-channel attacks 2

1.2 Six Key Motivating Factors Driving Proposed Research Work 4

1.3 The Four Key Modules in Analysing AES Power Traces for SCA 8

2.1 Profiling vs non-profiling attacks 17

2.2 Power analysis attack . 18

2.3 Encryption and decryption operation in AES implementation . 21

2.4 Literature review on Non-profiling methods 29

2.5 Literature review on deep learning (DL) based side-channel at-
tacks . 32

2.6 Literature review on deep learning (DL) based side-channel at-
tacks . 33

2.7 Literature review on deep learning (DL) based side-channel at-
tacks . 34

3.1 Research Contributions: Highlighted Module 1 40

3.2 Data collection setup in a masked AES implementation 42

3.3 Power traces collection method 43

3.4 Syscomp CircuitGear 1.24 software 44

3.5 Power Analysis Collection Setup for Arduino UNO Running
Masked AES Algorithm . 45

3.6 The synthetically generated power traces 51

3.7 Comparison of synthetic and real power traces 51

3.8 Comparison of real and synthetic power trace after smoothing
and filtering . 52

3.9 Timing analysis of the collected power traces 53

3.10 Comparison using Fast-fourier transform 54

3.11 Comparison using Principal component analysis 54

viii

3.12 Comparison using independent component analysis 55

3.13 Comparison using cross-correlation analysis 55

3.14 DTW Alignment path between synthetic and real traces . . . 56

3.15 Comparison of real and synthetic power trace using DTW . . 57

3.16 Correlation for various wavelength coefficients from level 0 to
level 3 . 57

3.17 Comparison of reconstructed synthetic and real aes power traces
using selected wavelength coefficients 58

3.18 Comparison using linear regression 58

3.19 Comparison using random forest 59

4.1 Research Overview: Highlighted Module 2 61

4.2 AES PT dataset in hierarchical structure(based on the device
and operation) . 63

4.3 AES PT dataset in hierarchical structure (based on the meta-
data) . 64

4.4 Feature extraction, classification and optimal threshold calcu-
lation . 71

4.5 Feature extraction using permutation importance 75

4.6 Feature extraction using recursive feature elimination 76

4.7 Feature extraction using L1 76

4.8 Feature extraction using principal component analysis 77

4.9 Feature extraction using mutual information 77

4.10 Feature extraction using SHAP 78

4.11 Confusion matrix of SVM for all the feature extraction techniques 78

4.12 Confusion matrix of the model with statistical properties Me-
dian and Q1 . 79

4.13 Confusion matrix of the model with statistical properties IQR
and kurtosis . 79

4.14 Confusion matrix of the model with statistical properties for
Q3 and skewness . 80

ix

4.15 Confusion matrix of the model with statistical properties for
mean and Q3 . 80

4.16 Confusion matrix of the model with statistical properties for
IQR and std . 81

4.17 Confusion matrix of the model with statistical properties for
mean,min,max and std . 81

4.18 Confusion matrix of the model with statistical properties for
mean,median,min and max . 82

4.19 Feature distribution graph for statistical properties median and
q1 . 83

4.20 Feature distribution graph for statistical properties IQR and
kurtosis . 83

4.21 Feature distribution graph for statistical properties Q3 and skew-
ness . 84

4.22 Feature distribution graph for statistical properties mean and Q3 84

4.23 Feature distribution graph for statistical properties IQR and std 85

4.24 Feature distribution graph for statistical properties mean,std,min
and max . 85

4.25 Feature distribution graph for statistical properties mean,median,min
and max . 86

4.26 Feature distribution graph for statistical properties mean,median,min
and max in classifying all implementations 87

4.27 Confusion matrix for classifying AES implementations 88

4.28 The ROC curve . 88

4.29 Box plot of feature distributions for train and test sets for hash-
ing . 89

4.30 Density plots of feature distributions for train and test sets for
ID method . 90

5.1 Research Contributions: Highlighted Module 3 93

5.2 The ASCAD dataset hierarchical structure 94

5.3 Overall Methodology Workflow 98

x

5.4 The architecture of ResTraceNet variant3 113

5.5 The architecture of GRUTrace model 114

5.6 The PCA variance explained graph for ResTraceNet Variant 1 114

5.7 training vs validation accuracy and training vs validation loss
for ResTraceNet variant 1 . 115

5.8 The PCA variance explained graph for ResTracenet Variant 2 115

5.9 training vs validation accuracy and training vs validation loss
for ResTraceNet variant 2 . 116

5.10 The PCA variance explained graph for ResTracenet Variant 3 116

5.11 training vs validation accuracy and training vs validation loss
for ResTraceNet variant 3 . 117

5.12 The PCA variance explained graph for GRUTrace model . . . 117

5.13 Training vs validation accuracy and training vs validation loss
for GRUTrace . 118

5.14 The training vs. validation accuracy and loss graph for Re-
sTraceNet model using 100 traces 118

5.15 Training vs validation accuracy and training vs validation loss
for GRUTrace using 100 traces 119

5.16 Pie chart representing the confidence in the most likely key byte
for ResTraceNet model . 120

5.17 Histogram of key candidate frequencies using ResTraceNet model121

5.18 confusion matrix for ResTraceNet model using 100 traces . . . 121

5.19 Temporal accuracy analysis for ResTraceNet model 122

5.20 Line chart for key candidate frequencies for GRUTrace model 122

5.21 Confusion matrix for GRUTrace model 123

5.22 Histogram of key candidate frequency and confusion matrix for
GRUTrace and ResTraceNet using 100 power trace 124

6.1 Research Overview: Highlighted Module 4 128

6.2 All the three proposed mitigation strategies 130

xi

6.3 Sequence diagrams for structured masking and controlled Gaus-
sian noise at both sender and receiver sides 135

6.4 Training vs validation accuracy and training vs validation loss
graph for method 1 . 139

6.5 Training vs validation accuracy and training vs validation loss
graph for method 2 . 140

6.6 Training vs validation accuracy and training vs validation loss
graph for method 3 . 140

7.1 The summary of contribution depicting methodology and results144

xii

Abstract

Side-channel attacks (SCAs) exploit leakages from a system’s physical implemen-

tation, like acoustic signals, electromagnetic, and power emissions, to deduce sensitive

information, thus bypassing traditional security measures. SCAs appeal to hackers

due to their non-invasive nature and low cost and thereby necessitate robust coun-

termeasures.

The Advanced Encryption Standard (AES) is a widely used symmetric key cryp-

tography known for its robustness, but it remains susceptible to SCAs. This research

analyzes power traces to identify vulnerabilities, classifies power traces based on AES

implementation, employs Deep Learning(DL) models to deduce cryptographic keys,

and develops mitigation strategies against SCAs.

We generated and analyzed real and synthetic power traces from masked AES im-

plementations using a Syscomp waveform generator and a Python script. Techniques

like Fast Fourier Transform (FFT), Wavelet transform, and linear regression were used

to correlate the traces. Power traces from the AES Power Trace (AES PT) dataset

were classified into three AES implementations using feature extraction techniques

and Support Vector Machine (SVM) classification based on statistical properties from

Principal component analysis (PCA).We used hashing and metadata techniques re-

trieved original power traces from the feature set.

The study used ANSSI Side-channel Analysis Database (ASCAD) and adopted

deep learning models for key deduction: Residual Networks were transformed into

ResTraceNet using 1D convolutional layers, and Gated Recurrent Units (GRUs) were

modified into GRUTrace to process 1D power traces. These models deduced one key

byte using only 100 power traces, achieving testing accuracies of 96.68% and 96.28%.

We proposed a mitigation strategy involving structured masking and Gaussian noise

to obscure relationships between cryptographic keys and power consumption patterns.

Our proposed research provides a comprehensive analysis of AES power traces,

using DL models to perform feature extraction, classify and deduce cryptographic

keys, and proposes mitigation techniques to enhance defenses against SCAs.

xiii

List of Abbreviations and Symbols Used

Acronyms

3DES Triple DES

AESPT AES Power trace

AES Advanced Encryption Standard

ASCAD ANSSI Side-channel Attack

AUC Area Under Curve

B-CNN Bilinear Convolutional Neural Networks

CCA Cross-correlation Analysis

CER Cross-Entropy Ratio

CNN Convolutional Neural Network

CO-DLA Correlation Optimization Deep Learning Analysis

CPA Correlation Power Analysis

CV Coefficient Of Variation

CWT Continuous Wavelet Transform

DDLA Deep Learning-based Differential Learning Analysis

DES Data Encryption Standard

DL Deep Learning

DNN Deep Neural Network

DPA Differential Power Analysis

xiv

DTW Dynamic Time Warping

ECC Elliptic Curve Cryptography

EDA Estimation of distribution algorithms

ELM Extreme Learning Machine

EM Electromagnetic Emissions

FFT Fast-Fourier Transform

FI Feature Importance

FPR False Positive Rate

GE Guessing Entropy

GRU Gated Recurrent Network

HD Hamming Distance

HW Hamming Weight

ICA Independent Component Analysis

IQR Interquartile Range

LASSO Least Absolute Shrinkage and Selection Operator

LSTM Long Short-Term Memory

MLP Machine Learning

MLP Multi-Layer Perceptron

MTD Minimum Traces to Disclosure

NIST National Institute of Standards and Technology

PA Power Analysis

xv

PCA Principal Component Analysis

PI Permutation Importance

Q1 First Quartile

Q3 Third Quartile

Relu Rectified Linear Unit

ResNet Residual Network

RFE Recursive Feature Elimination

RF Random Forest

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

RSA Rivest, Shamir, and Adelman

SCA Side-channel attack

SHAP SHapley Additive exPlanations

SHA Secure Hashing Algorithm

SPA Simple Power Analysis

STD Standard Deviation

SVM Support Vector Machine

TA Template Attack

TPR True Positive Rate

WT Wavelet Transform

xvi

Acknowledgements

First, I want to thank God and my family for their constant support and encour-

agement, which have been my guiding light throughout this journey. I am especially

grateful to my parents, Rajeev and Sreejaya who have been with me every step of the

way, offering wisdom and love, and to my sister, Anagha whose faith and belief in

my abilities have continually inspired me to aim for the stars. Thank you for being

my motivation and cheerleader. I also extend heartfelt thanks to my grandmothers,

whose guidance and support have been crucial in my educational journey.

Secondly, I want to express my deepest gratitude to Dr. Srinivas Sampalli for

his outstanding support. His guidance, encouragement, and unwavering belief in

my abilities have been invaluable. Dr. Sampalli’s expertise and dedication have

profoundly influenced my academic and personal growth, and I am incredibly grateful

for his mentorship.

I would also like to thank Dr. Darshana Upadhyay for her continuous support.

Her regular check-ins and constructive feedback have been monumental in shaping

my research journey and keeping me on the right track. Dr. Upadhyay’s insights and

encouragement are greatly appreciated.

Additionally, I am thankful to Dr. Jaume Manero for his technical expertise and

support. His knowledge and assistance have been essential in navigating the crucial

aspects of my research.

I am also immensely grateful to my best friends, Sushumna, Naveen, and Dhee-

manth, whose support has been invaluable. They provided not just guidance but also

the joy and friendship that sustained me through this beautiful journey.

Lastly, I want to acknowledge my best friends back home, Akshay and Vaishakh,

along with all my friends and family who have helped me immensely and everyone

who has supported me in any way during this journey.

xvii

Chapter 1

Introduction

Side-channel attacks (SCAs) pose a significant threat to systems by targeting their

physical implementation rather than exploiting flaws in the design of the algorithm

or protocol. These attacks analyze various side-channel information such as elec-

tromagnetic emissions, power consumption patterns, acoustic signals, and thermal

patterns to extract sensitive information[1]. In the context of cryptography, side-

channel information leaked during the execution of a cryptographic operation, such

as the S-box operation in the Advanced Encryption Standard (AES) algorithm, can

be used to deduce sensitive information, including cryptographic keys or fragments of

the cryptographic key (e.g., 1 or 2 bytes) [2]. Figure 1.1 shows a side-channel analysis.

These attacks were first discovered and introduced by cryptographer Paul Kocher

in 1996, and over the years, they have gradually grown stronger. Kocher identi-

fied a timing attack that exploited variations in the timing of various cryptographic

operations to extract sensitive information. [3].

SCAs can be broadly classified into two major categories based on: a) the nature

of the leakage they exploit, and b) the methodology used to perform the attack. In the

former category, the attack is carried out based on the type of side-channel used, where

accidental leakages are utilized by the attackers. These leaks can arise from various

sources such as timing information, electromagnetic emissions, power consumption,

acoustic emissions, thermal emissions, and so on [4]. The crux of this research explores

Power Analysis (PA), which monitors power consumption patterns. PA attacks are

classified into three categories namely, Simple Power Analysis (SPA), Differential

Power Analysis (DPA), and Correlation Power Analysis (CPA). SPA directly observes

power variations to deduce information regarding cryptographic operations [5]. DPA

is a powerful technique that involves collecting large amounts of power traces from

a cryptographic device. CPA builds upon the capabilities of DPA by applying more

refined and enhanced statistical techniques [6].

1

2

Figure 1.1: A high-level overview of side-channel attacks

The latter category of attacks relies on techniques and methods used to extract

sensitive information from side-channels and is classified into profiling and non-

profiling attacks. Profiling attacks involve creating a model of the target device under

various conditions and using this model to interpret attack data. Examples include

Template Attack (TA) and Deep Learning (DL)-based attacks [7]. In non-profiling

attacks, there is no profiling phase; data is directly analyzed without prior processing.

DPA and CPA fall into this category [8].

SCAs have significant implications for the security and integrity of cryptographic

algorithms. The non-invasive nature of SCAs is particularly concerning, as most

existing attack techniques focus on directly targeting the device or causing physical

damage. SCAs can also bypass traditional defense mechanisms, which are primarily

aimed at software vulnerabilities. The low cost and high effectiveness of SCAs make

them extremely appealing to attackers, who can execute these attacks with limited

resources and achieve substantial success. Failure to address these vulnerabilities can

lead to severe consequences, including data breaches, financial loss, and erosion of

user confidence in digital security solutions [9].

Both symmetric and asymmetric key cryptographic algorithms are vulnerable to

SCAs. Some of the most widely known algorithms include symmetric key crypto-

graphic algorithms like the AES and the Data Encryption Standard (DES), as well

as asymmetric key cryptographic algorithms such as RSA (Rivest-Shamir-Adleman)

and Elliptic Curve Cryptography (ECC). Regardless of the cryptographic properties

3

AES possesses, SCAs can be easily executed because these attacks exploit the physi-

cal implementation of AES, particularly by observing power trace profiles to infer the

encryption stages or deduce keys.[10].

Traditional methods like DPA and CPA face significant challenges. They require

vast amounts of power traces and expert domain knowledge, and are highly sus-

ceptible to noise and jitters [11] These methods assume linear relationships between

power consumption and cryptographic operations, missing intricate interactions. Ad-

ditionally, DPA and CPA struggle with scalability, compromising performance and

efficiency with high-dimensional and large-volume data [12].

Deep Learning (DL) offers good solutions to the limitations of traditional meth-

ods. DL models can autonomously perform feature extraction from raw power traces,

identifying necessary features without expert input. They detect complex non-linear

relationships between side-channel information and sensitive data, providing a com-

prehensive attack overview. DL models are highly accurate, robust against noise, and

require fewer traces for information deduction when properly trained [13]. Addition-

ally, they can generalize from large datasets, handling a wide range of cryptographic

algorithms and attack scenarios. DL models such as Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs) can analyze temporal and spatial

patterns in power traces, creating models powerful enough to break strong crypto-

graphic algorithms [14].

We focus on implementing two robust DL models, ResTraceNet (adapted from

Residual Networks, originally based on CNN architectures) and GRUTrace (adapted

from Gated Recurrent Units), to demonstrate the effectiveness of side-channel attacks

(SCAs). ResTraceNet adapts the deep CNN-based architecture of Residual Networks

for sequential data analysis, making it well-suited for cryptographic settings [15].

Meanwhile, GRUTrace, evolved from traditional GRU components of Recurrent Neu-

ral Networks (RNNs), excels at modeling dependencies in sequential data, making it

particularly effective for analyzing time-series patterns in power consumption [16].

4

Figure 1.2: Six Key Motivating Factors Driving Proposed Research Work

1.1 Motivation

The landscape of cryptography is rapidly evolving, making it a crucial area of

interest. With the increasing reliance on digital systems to store, receive, and transmit

vast amounts of confidential information, it is essential to prioritize the robustness,

efficiency, and adaptability of cryptographic algorithms and methods.

Fig 1.2 lists the Six key motivation factors driving the proposed research work.

1.1.1 Vulnerabilities in cryptographic algorithms

Demonstrating the vulnerability of cryptographic algorithms against SCAs is cru-

cial. By meticulously examining power traces and using deep learning (DL) models,

we can understand how attacks identify normal patterns and deduce critical infor-

mation, such as cryptographic keys. Understanding the susceptibility of each AES

implementation to SCAs allows us to devise effective countermeasures.

5

1.1.2 Challenges in traditional methods

Traditional methods like Differential Power Analysis (DPA) and Correlation Power

Analysis (CPA) are rudimentary approaches for detecting and preventing SCAs. How-

ever, they face significant challenges in real-world applications, such as high sensitiv-

ity to noise and jitter. Power traces collected from equipment like oscilloscopes often

contain noisy emissions, complicating analysis with DPA or CPA.

Additionally, these methods struggle to evaluate complex relationships between

power measurements and cryptographic operations, as they typically rely on linear

relationships and simple statistical techniques. This limitation restricts their adapt-

ability, especially in the cryptographic domain. Moreover, traditional methods require

expert domain knowledge to identify points of interest in the traces, making them

time-consuming and inefficient. They also lack the robustness to handle variations

in hardware or environmental conditions and may not adapt well to countermeasures

implemented by system designers.

1.1.3 Underutilization of advanced DL techniques

Deep Learning (DL) has expanded into various domains, providing powerful tools

for data analysis and pattern identification. Although it shows excellent potential,

DL remains underutilized in cryptography. Models like CNNs and RNNs significant

advantages over traditional techniques. They can automatically perform precise fea-

ture extraction from raw data, recognize complex patterns, and provide clear analysis

by eliminating noise and jitters.

There are numerous unexplored DL models that can be effectively utilized. Identi-

fying and tuning hyperparameters such as epochs, batch size, optimizer, and learning

rate can help develop robust models capable of extracting sensitive information.

The strength of DL can be leveraged to develop highly efficient models that can

detect and mitigate SCAs. This, in turn, can help us identify existing vulnerabilities

and provide solutions to combat them.

6

1.1.4 Analyzing and classifying AES implementations from power traces

The Advanced Encryption Standard (AES) is one of the most commonly used sym-

metric key cryptographic algorithms and functions as a block cipher. The widespread

usage of AES makes it an appealing target for side-channel attacks. There are differ-

ent implementations of AES, namely unprotected and protected AES, each exhibiting

varying levels of vulnerability to side-channel attacks. Classifying and analyzing these

implementations will provide us with insights into how an attacker targets each type

based on its weaknesses. This understanding is crucial for developing tailored miti-

gation strategies to address the specific vulnerabilities of each AES implementation.

1.1.5 Feature Extraction and Retracting to original power traces

Feature extraction is crucial in analyzing power traces, which are time-series data

lacking embedded features or labels. Employing feature extraction techniques helps

deduce statistical properties and identify relationships relevant to AES classification

and key deduction. Traditional methods require manual feature selection, which is

cumbersome and relies heavily on domain expertise. In contrast,DL models streamline

this process by automating feature selection, eliminating the need for prior knowledge

about the underlying AES implementation.

Moreover, retracing the original power traces from the derived feature set confirms

the accuracy of the feature set in representing the original traces and effectively

defining the cryptographic operations involved.

1.1.6 Synthetic Data to Augment Training Data

Synthetic power traces can be generated using a Python script in a controlled

and repeatable environment, employing the Hamming Weight (HW) concept [17].

These synthetic traces can be compared with collected raw power traces during AES

implementation. Correlating and aligning the collected and generated power traces

provide insights into the accuracy and precision of the synthetic traces, aiding in their

validation. This approach is particularly useful when obtaining real power traces is

challenging due to a lack of domain knowledge.

7

Various techniques, such as Fast-Fourier Transform (FFT), Principal Component

Analysis (PCA), and Random Forest, can validate the reliability of the generated

traces. If the aligned traces accurately represent the real raw traces, they can augment

the training data, especially when the existing dataset is insufficient for thorough

analysis. This augmentation enhances the generalizability and resilience of the models

in detecting and countering SCAs.

1.1.7 Lack of Mitigation Strategies

Although there has been significant progress in uncovering the vulnerabilities in

various cryptographic algorithms and demonstrating how attackers assess complex

relationships, there remains a deficiency in developing robust mitigation strategies

to combat existing SCAs. Most current methods focus on recognizing vulnerabilities

rather than implementing prevention measures. There is a pressing need to deploy

mitigation strategies that can effectively protect our cryptographic algorithms from

these sophisticated attacks.

1.2 Contribution

The objective of this research is to analyze power traces from AES implemen-

tations for side-channel Attacks (SCAs) to assess vulnerabilities, classify the power

traces into their corresponding AES implementations, and apply deep learning (DL)

models to identify the S-BOX outputs. Subsequently, the goal is to deduce the cryp-

tographic keys and develop effective mitigation strategies to protect these algorithms

from SCAs.

The work is divided into four key modules, each focusing on and exploring the

potential problems as shown in Fig 1.3

• Module 1: Generation and Analysis of Power Trace

• Module 2: Classification of power traces

• Module 3: Key Deduction using Deep Learning (DL) Models

• Module 4: Mitigation Strategies against SCAs

8

1.2.1 Module 1: Generation and analysis of power traces

The first module of the research focuses on the generation and detailed analysis

of real and synthetic power traces collected while running a masked AES implemen-

tation. The real power traces are collected using an emulator setup that involves

running the masked AES implementation on the ARDUINO platform using an AR-

DUINO UNO, and then collecting those power traces with the Syscomp device, which

serves as a digital oscilloscope. To mimic the real power traces, synthetic power traces

are generated using a Python script that employs the Hamming Weight concept to

create a dataset with traces, ciphertext, plaintext, S-Box output, and a 128-bit key.

We implement a wide variety of techniques such as Fast Fourier Transform (FFT),

Principal Component Analysis (PCA), linear regression, and Random Forest to align

the real power traces with the synthetically generated traces and to smoothen the

generated power traces. This step validates whether the synthetically generated power

traces can be utilized as an alternative to real traces for augmenting the training data,

Figure 1.3: The Four Key Modules in Analysing AES Power Traces for SCA

9

provided they exhibit the behavior of the real traces collected.

1.2.2 Module 2: Feature extraction, classification and retracing of

power traces

The second module explores the classification of power traces into various AES

implementations, namely Unprotected, Masked1, and Masked2 (both of which fall

under the category of protected). The classification is carried out after applying

multiple feature extraction methods such as Mutual Information, Recursive Feature

Elimination (RFE), Permutation Importance (PI), PCA, and more. The extracted

statistical properties—mean, standard deviation, minimum, and maximum—are then

fed as features into the Support Vector Machine (SVM) classifier to classify the power

traces. An optimal threshold that differentiates each class is also calculated based on

the probability score.

To ensure the integrity and reliability of the classifier and the classification process,

we apply hashing and metadata techniques to retract the original power trace from

the derived feature set containing the statistical properties.

1.2.3 Module 3: Key deduction using ResTraceNet and GRUTrace

The third module provides an in-depth exploration of key deductions using DL

models. We employ advanced DL models such as ResTraceNet and GRUTrace on

the ASCAD Dataset. These models are selected based on their ability to work with

sequential data, uncovering complex and non-linear latent relationships, which makes

them ideal candidates for key prediction.

These models are then tested on the attack dataset to correctly predict the S-

box output and subsequently deduce the key. To further test the capability and

reliability of our models, we select 100 power traces and test both our ResTraceNet

and GRUTrace models to determine if they can accurately extract the key.

10

1.2.4 Module 4: Mitigation strategies

The last module addresses the problem of mitigation strategies to protect the AES

algorithm against SCAs. We propose three different approaches:

• Adding Gaussian Noise to the power traces

• Adding Gaussian Noise and then masking the Ciphertext(CT)

• Adding Gaussian Noise and Structured Masking (Masking Plaintext, encrypting

and masking CT)

These methods are deployed to ensure that the relationship between the power traces

and cryptographic operations remains as obscure and complex as possible, making

it difficult for attackers to deduce information and identify the hidden relationships

between them.

1.3 Organization of the Thesis

Chapter 2: Background and Related Studies: In this chapter, we review

the required definitions and primitives of side-channel attacks (SCAs), including sim-

ple power analysis (SPA), differential power analysis (DPA), and correlation power

analysis (CPA). Additionally, we explain the AES algorithm and its susceptibility to

SCAs. We delve into the advantages of deep learning over traditional methods in

cryptanalysis. We also present research on deep learning-based side-channel analysis.

We conclude the chapter by introducing the ASCAD dataset and its relevance to our

study.

Chapter 3: Generation and Analysis of Power Traces: This chapter focuses

on the methodology of generating and analyzing power traces. First, we discuss

the collection of real power traces using the Syscomp CGR-101 oscilloscope and the

generation of synthetic traces using the Hamming weight model. We then detail the

timing analysis techniques used to align and correlate these traces, and we evaluate

the effectiveness of synthetic data in augmenting real data. Finally, we present the

11

results of our analysis, including the high correlation achieved using Random Forest

regression.

Chapter 4: Feature Extraction, Classification, and Retracing of Power

Traces: In this chapter, we describe the feature extraction techniques applied to

improve the classification accuracy of AES implementations. We explain methods

such as permutation importance, recursive feature elimination, L1 regularization,

mutual information, and SHAP. We detail the use of Principal Component Analysis

(PCA) to select the optimal features and the application of Support Vector Machine

(SVM) for classification. Finally, we discuss the retracing of original power traces

using hashing and the ID method, and we present the results of our classification

experiments.

Chapter 5: Key Deduction using ResTraceNet and GRUTrace Models:

This chapter explores the use of deep learning models, specifically ResTraceNet and

GRUTrace, for predicting the S-box output and deducing the cryptographic key. We

describe the datasets used, including the problems encountered with the AES PT

dataset and the selection of the ASCAD dataset. We provide a detailed explana-

tion of the ResTraceNet and GRUTrace architectures, the training process, and the

testing on attack phase data. We present the results of key deduction, including the

successful extraction of the third key byte using 100 power traces. We conclude with

a comparative analysis of our results with existing work.

Chapter 6: Mitigation Strategies: In this chapter, we examine and evaluate

various mitigation strategies to protect AES implementations from SCAs. We intro-

duce three methods: adding Gaussian noise to the power traces, masking ciphertext

and adding Gaussian noise, and structured masking with controlled noise addition.

We detail the methodology and implementation of each strategy and present the re-

sults of their effectiveness. We conclude with a comparative analysis of our proposed

mitigation strategies against existing methods.

Chapter 7: Conclusion: This chapter summarizes the research, highlighting

the key contributions and findings. We discuss the limitations encountered during

the study and propose directions for future work. We emphasize the significance of

integrating deep learning models and mitigation strategies to enhance the security of

12

cryptographic implementations against side-channel attacks.

Chapter 8: Limitations and future work: The final discusses limitations and

future work.

Chapter 2

Background Knowledge and Literature Review

Side-Channel Attacks (SCAs) exploit unintentional information leakage from cryp-

tographic systems, such as power usage, electromagnetic signals, and timing, to ex-

tract sensitive data. SCAs can be categorized by the type of leakage (e.g., power,

electromagnetic, acoustic, thermal) and the method used (e.g., SPA, DPA, CPA,

template attacks, machine learning-based attacks). Electromagnetic attacks ana-

lyze emissions to understand cryptographic operations, while power analysis attacks

monitor power consumption—SPA directly observes power patterns, and DPA uses

statistical methods to find key correlations. Profiling attacks involve creating a device

model for targeted attacks, whereas non-profiling attacks analyze data without a prior

model. Algorithms like AES, RSA, and DES are particularly vulnerable due to their

distinctive power consumption patterns and emissions. Traditional methods such as

DPA, CPA, and SPA face challenges like sensitivity to noise, the need for expert

feature selection, and issues with scalability. Deep Learning (DL) models, including

RNN, ResNet and CNN address these challenges by automating feature extraction,

handling complex patterns, being robust against noise, and generalizing well across

different scenarios, thus improving the detection and mitigation of SCAs.

2.1 Background Knowledge

2.1.1 Side-channel attacks

Side-channel attacks (SCAs) are a class of attacks that exploit information leaked

from the physical implementation of a system rather than from software vulnerabilities

or mathematical characteristics. These attacks utilize indirectly leaked information

such as power emissions, electromagnetic emissions, acoustic signals, thermal energy,

timing signals, and more to deduce sensitive information like cryptographic keys,

outputs of various cryptographic operations, and plaintext [1].

13

14

2.1.2 History and implications

SCAs were first introduced by Paul Kocher in 1996 [18] with the concept of timing

attacks, which calculated the timing variations in performing different operations and

how they correlated with the input text and secret data. Before the advent of side-

channel attacks by Kocher, the primary focus was on protecting systems from unau-

thorized access and ensuring robustness. However, Kocher’s valuable findings caused

a significant shift in the cryptographic community towards considering both the phys-

ical and environmental vulnerabilities of cryptographic implementations. Over time,

these attacks expanded to include critical methods such as Power Analysis (PA) at-

tacks, which have proven to be extremely powerful in breaking crucial algorithms.

The non-invasive nature of these attacks, which enables an attacker to gather infor-

mation without damaging or altering the system, makes them very hard to detect and

stealthy. The cost-effectiveness and high success rate of SCAs, leveraging commonly

available and inexpensive tools like oscilloscopes and probes, make them a preferred

choice for attackers [2].

The implications of SCAs are immense, as they undermine the security, confiden-

tiality, and integrity of cryptographic systems without needing to compromise the

underlying algorithm. This approach allows attackers to bypass traditional security

measures, which mainly focus on algorithmic robustness rather than targeting the

physical properties of the system [9]. SCAs follow a structured approach that begins

with data collection, where side-channel information such as electromagnetic emis-

sions, power traces, or thermal traces are gathered from the targeted device. The

second phase involves analyzing the collected data using statistical techniques or ma-

chine learning methods to identify correlations or hidden patterns that can reveal

sensitive information. The final step is deducing the critical information based on

the analysis and insights generated, thereby compromising the security goals of the

target device [19].

15

2.1.3 Types of SCAs

SCAs are classified based on the type of information they leak and the attack

methodology used to carry out the attack, which is critical for understanding underly-

ing vulnerabilities and developing mitigation strategies. Channel information leakages

include several types, such as power analysis, electromagnetic analysis, acoustic anal-

ysis, timing analysis, and thermal analysis. Power analysis monitors the power con-

sumption patterns of the target device to extract sensitive information and includes

subdivisions such as Simple Power Analysis (SPA), which observes power consump-

tion to glean cryptographic operations, and Differential Power Analysis (DPA), which

employs statistical methods to find correlations between power consumption and pro-

cessed data [20]. Electromagnetic analysis collects the electromagnetic emissions gen-

erated by electronic components during cryptographic operations to deduce internal

state details, revealing critical information like cryptographic keys [21]. Acoustic

analysis uses the sound produced by a device’s electronic or mechanical components

during operation, collecting these acoustic signals with high-sensitivity microphones

to identify subtle differences in sound waves that expose operational states and specific

instructions being executed [22]. Timing attacks exploit the time it takes to execute

cryptographic operations, relying on the fact that different operations take varying

amounts of time based on input data and the internal state of the system [23]. Finally,

thermal analysis involves assessing the heat emitted during cryptographic operations

and how it varies with different computational processes to infer the operations being

performed. Thermal attacks are the least commonly used approach. [24]

Based on the methodology used for the attack, SCAs are classified into profiling

and non-profiling attacks. Profiling attacks consist of two phases: the profiling phase

and the attack phase. In the profiling phase, the attacker creates a device similar to

the target device and conducts experiments under varying conditions to understand

the system’s behavior, including normal side-channel information. This information is

leveraged to build a detailed model that characterizes how the side-channel informa-

tion pertains to the internal state of the device, including various operations or keys.

Once the profiling phase is complete, the model is used to analyze the attack data

16

collected from the actual target device to deduce critical information [25]. Examples

of profiling attacks include template attacks (TA), machine learning (ML)-based at-

tacks, and deep learning (DL)-based attacks. In a template attack, a template of the

target system is created during the profiling phase, capturing the critical relationship

between the obtained side-channel information and cryptographic operations. During

the attack phase, this template is applied to the actual data to deduce information

with high accuracy. DL-based attacks use DL models such as CNNs, RNNs and GRU

to extract essential features and learn complex relationships, making them applicable

to real-world scenarios [26].

In contrast, non-profiling attacks do not have a profiling phase for model build-

ing. Instead, they directly analyze the information collected from the target system

to glean sensitive information. During the data collection phase, the attacker gathers

side-channel information and then applies data analysis techniques, ranging from Es-

timation of distribution algorithms (EDA) to statistical and analytical methods, to

identify and extract relevant patterns that reveal critical information [27]. Since they

do not use a predefined model, non-profiling attacks rely on methods such as differen-

tial power analysis (DPA) and correlation power analysis (CPA). DPA involves gath-

ering multiple power traces while the system performs cryptographic operations with

varying inputs. CPA is an enhanced version of DPA that uses correlation coefficients

to compute linear relationships, offering greater accuracy in identifying key-dependent

power consumption patterns [28]

2.1.4 Profiling vs non-profiling attacks

Both profiling and non-profiling attacks vary greatly concerning accuracy, com-

plexity, resource requirements, and adaptability. Profiling attacks achieve greater

accuracy due to the presence of the profiling phase that requires extensive knowledge

of the cryptographic system but is relatively more complex and takes longer duration

to carry out [29]. In contrast, non-profiling attacks are simpler and easier to set up

since they do not have a profile-building phase but may tend to be less accurate and

precise. Profiling attacks require a larger amount of resources, including computa-

tional time, power, and access to a device that is similar to the target device. On the

17

other hand, non-profiling attacks require fewer resources in terms of the pre-attack

setup phase but would require vast quantities of power traces to secure accurate re-

sults. Moreover, profiling attacks are extremely adaptable to various characteristics

of the system which makes them more reliable. Non-profiling attacks might struggle

with robustness and adaptability as they might not be able to deal with variations in

the device [25]. Fig. 2.1 shows how a profiling and non-profiling attack works.

Figure 2.1: Profiling vs non-profiling attacks

2.1.5 Electromagnetic emission analysis and power analysis

We will dive deeper into electromagnetic emissions (EM) and power analysis,

which form the core of this research. EM attacks target the electromagnetic emissions

generated by electronic devices during their operations. These emissions are generally

captured using specialized instruments such as antennas, probes, and oscilloscopes.

The captured emissions are then analyzed to infer information about the internal

state and functioning of the target device. The major advantage of EM attacks is that

they can be conducted from a distance without requiring physical contact, making

18

them difficult to detect [30]. On the other hand, power analysis attacks monitor

the power consumption of a device while it is performing cryptographic operations.

These attacks leverage the concept that the power consumption pattern of a device

can change depending on the data being processed and the operation being carried

out. By gathering and assessing such power traces—patterns of power consumption

over time—key information can be deduced [31]. Fig. 2.2 shows a sequence diagram

indicating how a power analysis attack is carried out.

Figure 2.2: Power analysis attack

2.1.6 Simple power analysis, differential power analysis and correlation

power analysis

PA attacks are divided into several types, with the most popular ones being Sim-

ple Power Analysis (SPA), Differential Power Analysis (DPA), and Correlation Power

Analysis (CPA). SPA directly measures the power consumption of a cryptographic

system while it is performing its operations. The visual patterns of the power traces

are then analyzed to find their correlation to cryptographic operations [31]. For

example, operations such as S-BOX, MixColumns, and ShiftRows in an AES imple-

mentation might produce distinct signatures, and the challenge is to identify these

19

patterns and deduce information.

DPA is a more sophisticated and resilient technique compared to SPA. In DPA, the

input is varied while the device performs various cryptographic operations, and a large

number of power traces are collected. The main concept is to statistically identify

variations in power traces as the inputs change. The observed power consumption

can be correlated with hypothetical models built to identify key bits [32].

CPA builds upon the capabilities of DPA by applying more refined and enhanced

statistical techniques, such as the Pearson Correlation Coefficient, which calculates

the linear relationship between power consumption measurements and hypothetical

power consumption models. A power consumption model is created based on Ham-

ming weight (HW) or Hamming distance (HD) using hypothetical values of the cryp-

tographic key. The correlation between this generated model and real traces is then

analyzed, with the key hypothesis that yields the highest correlation likely being the

correct key. CPA is generally more powerful than DPA as it can identify even the

smallest correlations [33].

2.1.7 DPA vs CPA

Both DPA and CPA are quite similar in their approach, but they differ in pa-

rameters such as methodologies, accuracy, and robustness. DPA can be less precise

and more susceptible to noise and jitter, making it less effective in environments with

significant external interference. In contrast, CPA uses a correlation-based approach

to accurately identify key bytes, which makes it robust against external interference.

CPA can handle higher-dimensional data better than DPA, resulting in a higher de-

gree of accuracy. However, a major challenge of using CPA, which also applies to

DPA, is the vast quantity of data and computational resources required to perform

the correlation analysis [34]

2.1.8 Cryptographic algorithms vulnerable to SCAs

Cryptographic algorithms, classified into asymmetric and symmetric key algo-

rithms, can both be compromised by SCAs. Examples of symmetric algorithms

20

include the Advanced Encryption Standard (AES), the Data Encryption Standard

(DES), and Triple DES (3DES). Prominent examples of asymmetric algorithms in-

clude Rivest-Shamir-Adleman (RSA), Elliptic Curve Cryptography (ECC), and Diffie-

Hellman (DH). AES is particularly renowned for its extensive use in securing data,

yet it is susceptible to timing and power analysis attacks. DES remains vulnerable to

DPA and is rarely used today due to its inherent weaknesses. 3DES is also vulnerable

to power analysis techniques like DPA and CPA, which can extract keys based on the

visualization and analysis of power traces. RSA is exposed to timing attacks because

of the various mathematical operations involved, while ECC is vulnerable to power

analysis and electromagnetic emission attacks. DH is predominantly used for key

exchange and is mostly exposed to timing attacks [35].

2.1.9 AES algorithm

AES is a symmetric key cryptographic algorithm widely known for its robustness,

efficiency, and flexibility. Adopted as a major standard by the National Institute

of Standards and Technology (NIST) in 2001, AES is commonly used in a broad

range of applications, from securing online communications to encrypting sensitive

information. As a block cipher, AES operates on fixed-size blocks and supports key

sizes of 128, 192, and 256 bits [36].

AES operates on a 4x4 matrix, referred to as the state, and involves both encryp-

tion and decryption processes, with the number of rounds depending on the key size.

The process begins with key expansion, where the initial key is expanded to produce

unique keys for every round of encryption. The state matrix is then combined with

the first round key using a bitwise XOR operation, establishing a relationship between

the input data and the encryption key. Each round comprises four phases: SubBytes,

ShiftRows, MixColumns, and AddRoundKey. In the SubBytes phase, each byte is

substituted with its corresponding byte from an S-box to introduce non-linearity.

During ShiftRows, each row of the matrix is cyclically shifted to the left. In the

MixColumns phase, columns are treated as polynomials and multiplied by a fixed

polynomial to provide diffusion. Lastly, the AddRoundKey phase combines the state

matrix with a round key using a bitwise XOR operation, adding confusion. In the

21

final round, all operations are performed except for MixColumns. The decryption

process involves reversing these steps using the same round keys but applying inverse

transformations to reproduce the plaintext [37]. Fig 2.3 shows the encryption and de-

cryption operation of an unprotected AES implementation. 1 shows the pseudocode

for an unprotected AES encryption implementation.

(a) Encryption operation of AES Implementa-
tion

(b) Decryption operation of AES Implementa-
tion

Figure 2.3: Encryption and decryption operation in AES implementation

2.1.10 AES against SCAs

Although AES is a powerful algorithm, it is particularly vulnerable to SCAs due

to the power consumption patterns and EM emissions generated during each cryp-

tographic operation. The basic structure of AES, with its multiple rounds of sub-

stitution, permutation, and key scheduling, causes different kinds of data leakage, as

the power consumption changes based on the data and operations being carried out.

These leakages can be exploited by attackers, making AES a prime target for SCAs

[38].

22

Algorithm 1 AES Encryption Algorithm pseudocode

Input: plaintext, key

Output: ciphertext

1 Function AESencrypt(plaintext, key):

2 blocks := divideIntoBlocks(plaintext) roundKeys := getRoundKeys(key)

foreach block in blocks do

3 addRoundKey(block, roundKeys[0]) for i← 1 to (numRounds− 1) do

4 subBytes(block) shiftRows(block) mixColumns(block)

addRoundKey(block, roundKeys[i])

5 end

6 subBytes(block) shiftRows(block) addRoundKey(block,

roundKeys[numRounds])

7 end

8 ciphertext := reassemble(blocks) return ciphertext

EM attacks capture the power emissions emitted during the execution of the

AES algorithm on a target device using electronic equipment such as oscilloscopes

or picoscopes. These emissions are correlated with the internal state of the AES

algorithm and can be used to deduce cryptographic keys, S-box outputs, or plaintext.

The emissions can be captured without being in close proximity to the target device,

making it a very difficult attack to detect and counter. This, in turn, makes EM

attacks an extremely powerful tool for breaking AES implementations, especially

when combined with complex side-channel analysis techniques such as DPA, CPA,

and deep learning-based techniques [39].

2.1.11 Drawbacks of traditional methods

While DPA, CPA, and SPA are valuable tools for conducting side-channel attacks,

they have significant limitations that can affect their real-world applicability. SPA

relies on the visual analysis of collected power traces to deduce information, mean-

ing it heavily depends on the quality of the power traces, which must be clear and

distinct—an expectation that might not be feasible in all cases. Moreover, SPA does

23

not use statistical measures to identify patterns, resulting in less detailed information

compared to DPA and CPA [40].

DPA, one of the more sophisticated techniques, faces challenges due to its sensi-

tivity to noise, limiting its applicability in real-world scenarios. In practice, power

traces might be generated in contaminated environments, degrading the quality of the

collected data and exposing it to noise and other operations, making it difficult to

perform DPA. Additionally, DPA requires a large amount of data to perform reliable

analysis, making it resource-constrained and time-consuming. It also assumes a linear

relationship between the power traces and the internal state of the algorithm, which

might not always be true and could fail to capture complex relationships. Similarly,

CPA, while more refined than DPA, is also susceptible to noise, which can obscure

unseen patterns. It requires heavy computational resources due to the complex sta-

tistical operations involved, making it challenging for resource-constrained devices.

CPA’s heavy reliance on the hypothetical power model can also reduce accuracy; any

inaccuracies or deficiencies in the model can pose significant problems [41]. Common

limitations across all these methods include the need for domain experts to interpret

the collected power traces and identify points of interest, making them less accessible

to non-specialists. They also struggle with high-dimensional data and large volumes

of data, which can compromise performance and efficiency, leading to scalability is-

sues. Lastly, these methods are not effective against modern devices with strong

countermeasures such as random delays, masking, and other forms of obfuscation.

2.1.12 Limitations of Machine Learning(ML)

Machine learning (ML) techniques have been extensively used for various tasks

in pattern recognition and data analysis. However, they possess certain limitations

when applied to complex tasks like side-channel attacks (SCA) analysis on AES im-

plementations. Recognizing these limitations is crucial for justifying the shift towards

more sophisticated models like Deep Learning (DL).

Traditional ML models often rely heavily on handcrafted features or require do-

main expertise to design effective features for the specific task. This approach can

limit the model’s ability to capture complex patterns inherent in power trace data,

24

which are crucial for detecting subtle cryptographic operations [42]. In contrast, DL

models, particularly CNNs and RNNs, excel in automatic feature extraction. They

can learn to identify intricate patterns directly from raw data, thus eliminating the

need for manual feature engineering.

ML models can struggle with scalability and flexibility when dealing with high-

dimensional data or when the data distribution changes over time. This is particularly

problematic in side-channel analysis where electronic noise and device variations can

alter data characteristics. DL models are inherently more scalable and can adapt to

new, unseen variations in data through transfer learning and fine-tuning techniques.

This makes them more robust to changes in the dataset and device characteristics

[43].

Most ML models do not natively handle sequential and temporal dependencies in

data, which are critical in analyzing time-series data like power traces. DL models

like LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units) are de-

signed to process sequences with complex dependencies over time. This capability is

vital for effective modeling of power traces where temporal patterns directly relate to

cryptographic processes [44].

ML models often have limited generalization capabilities, particularly when trained

on datasets that do not represent the full spectrum of real-world scenarios. This can

lead to poor performance when the model is applied outside the scope of its training

data. DL models generally provide better generalization due to their deeper and more

complex architectures. They are capable of learning more abstract representations

that are effective across a broader range of conditions [45].

While ML models are typically easier to train and require less computational

resources than DL models, they often require more expertise in selecting and tun-

ing the hyperparameters to achieve optimal performance. Although DL models are

computationally intensive, recent advances in hardware accelerations (like GPUs and

TPUs) and software frameworks have significantly reduced these challenges, making

it feasible to train complex models efficiently.

Given these considerations, our decision to employ DL models over ML models is

driven by the need to handle high-dimensional, sequential data with higher accuracy

25

and generalization. DL models’ ability to automatically extract meaningful features

from raw data and their robustness to variations in data make them particularly suited

for detecting and mitigating side-channel attacks on cryptographic implementations.

This approach aligns with the cutting-edge of research in the field, where DL continues

to push the boundaries of what’s possible in security analytics.

2.1.13 Advantages of Deep Learning (DL) over traditional methods

Deep Learning (DL) models have advanced capabilities that can address the chal-

lenges posed by DPA, SPA, and CPA. Traditional methods heavily rely on manual

feature extraction, where domain experts identify points of interest and relevant fea-

tures from the power traces. This process is time-consuming and heavily dependent

on domain knowledge. In contrast, DL models can automatically identify and ex-

tract essential features from raw power traces. Models such as CNN and RNN can

learn hierarchical feature representations from the provided input without explicit

human interference, reducing the dependency on domain experts and streamlining

the analysis [46].

Traditional SCA techniques are based on linear relationships between power con-

sumption and cryptographic operations, limiting their ability to capture complex

non-linear relationships that are crucial. DL models excel at utilizing non-linear re-

lationships due to their robust architectures and use of activation functions. Models

such as CNN and RNN can capture both spatial and temporal dependencies, thereby

enhancing the accuracy and reliability of SCAs. A major challenge for power analysis

techniques is noise and variations inherent in the power traces. DL models are robust

to noise because they can learn and generalize from large datasets. By training on a

diverse set of noisy and clear raw traces, DL models can filter out unwanted noise and

jitter, revealing the underlying latent patterns. Data augmentation techniques can

also be used to generate synthetic power traces, increasing the diversity and size of the

training set, which further boosts the models’ robustness against external interference

[47].

One of the greatest advantages of DL models is their ability to generalize from

large datasets. Once trained on a substantial volume of data, these models can adapt

26

to other variations of cryptographic algorithms and attack scenarios without requiring

major modifications, providing a versatile solution across various circumstances. DL

models can handle high-dimensional data and large volumes of power traces, unlike

traditional methods. DPA and CPA tend to struggle with scalability issues because

they rely heavily on statistical properties and techniques. In contrast, DL models can

utilize advanced optimization techniques and hardware acceleration, such as GPUs,

to process large datasets efficiently [48].

Finally, many modern cryptographic devices implement strong countermeasures

like masking, delays, and noise injection to combat SCAs. Traditional methods find it

challenging to bypass such security mechanisms, while DL models, with their ability

to identify new complex patterns and their continuous learning capabilities, are well-

equipped to overcome these barriers.

2.1.14 DL models

Among the many deep learning models, ResNet and GRU have gained notable

popularity for their ability to handle complex patterns. ResNet, which is based on

convolutional neural network (CNN) architecture, excels at processing spatial data

due to its deep layer structure. In contrast, GRU, a type of recurrent neural net-

work (RNN), is particularly effective at sequential data modeling, capturing time-

dependent nuances in datasets [49].

ResNet Architecture

ResNet is a type of deep neural network (DNN) designed for training deep architec-

tures and addresses the problem of vanishing gradients, which can hinder the training

of deep networks. It consists of residual blocks that ensure the network learns residual

functions with respect to input layers rather than unreferenced functions. ResNets

have demonstrated exceptional performance in image recognition tasks and can learn

intricate hierarchical feature representations, enhancing accuracy in key prediction

[50].

A ResNet (Residual Network) architecture is a kind of deep neural network which

is developed to address the vanishing gradient problem by bringing in skip connections

or shortcuts that enables gradients to flow more smoothly during backpropagation

27

[51]. The architecture starts with an initial Conv1D layer with 64 filters, a kernel

size of 7, and a stride of 2. This layer is succeeded by a batch normalization layer

and a LeakyReLU activation function [52]. Batch normalization is a technique that

normalizes the input of each layer, maintaining the mean output close to 0 and the

output standard deviation close to 1. This helps in the training process and improving

the stability of the network. The LeakyReLU activation function is a variant of the

Rectified Linear Unit (ReLU) that allows a small, non-zero gradient when the unit

is not active, which helps to mitigate the problem of dead neurons and improves

the learning capability of the network [52]. The network then includes a series of

residual blocks, each containing two Conv1D layers with filters, kernel sizes, and

strides consistent with the block’s design, typically 64, 128, 256, or 512 filters, kernel

sizes of 3, and strides of 1 for the first layer and 2 for the second layer within the

block. Each Conv1D layer in the residual block is followed by batch normalization and

LeakyReLU activation [52]. The vanishing gradient problem occurs when gradients

used to update the weights become very small, effectively preventing the network

from learning. Residual blocks address this by using skip connections that allow the

gradient to bypass certain layers, making it easier for the network to learn even with

increased depth. Skip connections are added to each residual block to allow the input

to bypass the block and be added to the output of the block [51]. After the series of

residual blocks, a global average pooling layer is applied to reduce the dimensions of

the feature maps before passing them to a fully connected (dense) layer. A dropout

layer with a rate of 0.5 is added to prevent overfitting [53]. The final output layer uses

a softmax activation function for classification tasks. The network is compiled with

the Adam optimizer, which is used for its adaptive learning rate capabilities [54]. The

loss function used is categorical cross-entropy, suitable for multi-class classification

problems. To enhance training efficiency and prevent overfitting, a learning rate

scheduler adjusts the learning rate dynamically during training, and early stopping

is implemented to halt training when the validation loss stops improving [55]. The

model is trained with a batch size of 32 and for a total of 100 epochs.

Gated recurrent unit (GRU) Architecture

Introduced by Cho et al. in [56], GRU is a type of RNN designed to handle

28

sequential data. They are a simplified version of Long Short-Term Memory (LSTM)

models, featuring fewer parameters and a gating mechanism. The ability to capture

temporal dependencies and identify the sequential characteristics of power traces

makes GRUs an ideal choice for deducing sensitive information. Both models can

automatically extract features, model sequential relationships, provide robustness to

noise and variations in data, and handle large volumes of data, making them ideal

choices in the field of SCAs [57]. In a GRU architecture, each unit contains two

gates: the reset gate and the update gate. The reset gate determines how much of

the past information to forget, while the update gate controls how much of the past

information to retain and how much of the new information to add. This allows the

GRU to maintain long-term dependencies without explicitly storing a separate cell

state [58]. A bidirectional GRU extends the standard GRU by processing the input

data in both forward and backward directions. This bidirectional processing enables

the network to capture information from both past and future states, enhancing its

ability to understand the context in sequential data. Each bidirectional layer consists

of two GRUs: one processing the input sequence in the forward direction and the

other in the backward direction. The outputs of these two GRUs are concatenated to

form the final output of the bidirectional layer [59]. When using the return sequences

parameter, the GRU layer outputs the full sequence of outputs for each input time

step, rather than just the final output. This is particularly useful in tasks where the

entire output sequence is needed, such as in sequence-to-sequence models for machine

translation or speech recognition [58].

To improve the generalization and prevent overfitting, a dropout layer is applied

with a typical dropout rate of 0.5 [60]. Layer normalization is also applied, which

normalizes the activations of the neurons in a layer to improve training speed and

performance stability [61].

The loss function used is categorical cross-entropy, suitable for multi-class clas-

sification problems [62]. To enhance training efficiency and prevent overfitting, a

learning rate scheduler such as ReduceLROnPlateau is used to reduce the learning

rate when the validation loss plateaus, and early stopping is implemented to halt

training when the validation loss stops improving [63]. The model is trained with a

29

typical batch size of 32 and for a total of 100 epochs [62].

2.2 Literature Review

2.2.1 Differential Power Analysis (DPA) and Correlation Power

Analysis (CPA)

Fig. 2.4 illustrates various studies that have been conducted using traditional

methods such as DPA and CPA for side-channel attacks on AES implementations.

Each entry in the table focuses on attributes such as the dataset used, the technique

applied, evaluation parameters, and whether a mitigation strategy was employed.

Figure 2.4: Literature review on Non-profiling methods

30

• Attacking AES Implementations Using Correlation Power Analysis

on ZYBO Zynq-7000 SoC Board: This study used a dataset from the

ZYBO Zynq-7000 SoC board and employed CPA to assess the number of traces

and success rate. No mitigation strategy was implemented [64].

• An Effective Differential Power Attack Method for Advanced En-

cryption Standard: This research utilized a proprietary dataset created using

Estimation of Distribution Algorithms (EDA) tools and simulations, applying

DPA to determine the number of traces needed and the key recovery rate. No

mitigation strategy was employed [65].

• Power Side-Channel Attack of AES FPGA Implementation with Ex-

perimental Results using Full Keys: This study used a dataset based on

the Xilinx Artix 7 XC7A100 FPGA and the ChipWhisperer platform, employ-

ing CPA to analyze the number of power traces, success rate, and Euclidean

distance fluctuation. No mitigation strategy was proposed [66].

• Side-channel Leakage Assessment Strategy on Attack-Resistant AES

Architectures: This analysis used the SAKURA-G side-channel Evaluation

Board, employing both CPA and Welch’s t-test to identify points of interest

and compute power consumption. Mitigation strategies such as additive and

multiplicative masking were implemented [67].

• Differential Power Analysis Attacks on Different Implementations of

AES with the ChipWhisperer Nano: This study used the ChipWhisperer

Nano to generate the dataset, applying DPA to analyze the number of traces,

success rate, and implementation type. No countermeasures were proposed [68].

• First-Round and Last-Round Power Analysis Attack Against AES

Devices: This research used a dataset based on 8-bit MCU devices and em-

ployed DPA to evaluate the number of traces, success rate, and correlation

coefficient. No mitigation strategy was mentioned [69].

31

• Novel Hybrid CMOS-Memristor Implementation of the AES Algo-

rithm Robust Against Differential Power Analysis Attack: This study

used a synthetic dataset based on the SAKURA-GII platform and custom sim-

ulation environments, employing a hybrid CMOS-Memristor design to obscure

power traces. This strategy effectively mitigated power analysis attacks by en-

hancing security [70].

2.2.2 Deep Learning (DL) based side-channel attacks

Fig. 2.5, 2.6 and 2.7 presents a comprehensive overview of various studies employ-

ing deep learning techniques for side-channel analysis (SCA) on AES implementations.

Each field explores various attributes such as the dataset used, the method leveraged,

evaluation parameters, and the mitigation strategy employed.

• Make Some Noise: Unleashing the Power of Convolutional Neural

Networks for Profiled Side-channel Analysis: This study made use of

three datasets namely DPAv4 contest dataset, AES HD, and ASCAD datasets,

utilizing models like Convolutional Neural Networks (CNN) with noise addi-

tion, regularization, batch normalization, dropout, and 1-D VGG for the assess-

ment. The evaluation parameters consisted of guessing entropy (GE), number of

traces, noise levels, and training time. No mitigation strategy was implemented

[71].

• Deep Learning for Side-Channel Analysis and Introduction to AS-

CAD Database: This analysis utilized the ASCAD dataset and employed deep

learning techniques such as CNN and Multi-Layer Perceptron (MLP). Evalu-

ation parameters included the number of epochs, batch size, rank function,

accuracy, and training time. No countermeasures were employed [72].

• A Novel Evaluation Metric for Deep Learning-Based Side-Channel

Analysis and Its Extended Application to Imbalanced Data: This study

leveraged ASCAD, AES RD, and DPAv4 contest datasets, introducing a cross-

entropy ratio (CER) metric and CER loss function for evaluation. Mitigation

32

Figure 2.5: Literature review on deep learning (DL) based side-channel attacks

strategies such as data balancing and the use of the CER loss function were

implemented, focusing on GE and success rate (SR) [73].

• Effective Deep Learning-Based Side-Channel Analyses Against AS-

CAD: This work used the ASCAD dataset and applied CNN with heatmap

and SNR reduction, multi-label classification, and transfer learning. Evalua-

tion parameters included the number of traces and training time. No measures

to combat side-channel attacks were implemented [74].

• Towards Strengthening Deep Learning-Based Side-Channel Attacks

with Mixup: This study leveraged the ASCAD desync50 and desync100

datasets with data augmentation via Mixup and Correlation Power Analysis

33

Figure 2.6: Literature review on deep learning (DL) based side-channel attacks

(CPA). Evaluation parameters included the number of traces, attack success

rate, and Mixup parameter. No mitigation strategy was employed [75].

• Leveraging Deep CNN and Transfer Learning for Side-Channel At-

tack: This study utilized ASCAD, AES RD, and AES HD datasets, employing

deep 2-D CNN, Continuous Wavelet Transform (CWT), scalograms, and models

like GoogLeNet, InceptionV3, VGG16, and MobileNetV2. Evaluation param-

eters included key rank, accuracy, and the number of traces. No mitigation

strategy was mentioned [76].

• Multilabel Deep Learning-Based Side-Channel Attack: This research

utilized the ASCAD dataset and leveraged multi-label deep learning models.

34

Figure 2.7: Literature review on deep learning (DL) based side-channel attacks

The evaluation focused on GE, the number of traces, model hyperparameters,

and training time. No mitigation strategies were implemented [77].

• A Backpropagation Extreme Learning Machine Approach to Fast

Training Neural Network-Based Side-Channel Attack: This study made

use of the ASCAD dataset and examined Extreme Learning Machine (ELM),

backpropagation, and Convolutional Autoencoder (CAE) with ensemble learn-

ing. It introduced two models: Ensemble bpELM and CAE-bpELM. Evalua-

tion parameters used comprised Minimum Traces to Disclosure (MTD), training

time, and attack success rate. There was no mitigation strategy applied [78].

35

• Non-Profiling-Based Correlation Optimization Deep Learning Anal-

ysis: This research utilized the ASCAD dataset and used techniques such as

Correlation Optimization Deep Learning Analysis (CO-DLA). The evaluation

parameters dealt with the number of traces and attack success rate. No miti-

gation strategy was mentioned [79].

• Optimizing Implementations of Non-Profiled Deep Learning-Based

Side-Channel Attacks: This research leveraged a combination of three datasets

namely publicly available ASCAD, ChipWhisperer-Lite, and their own dataset.

They employed Modified Deep Learning-Based Differential Learning Analysis

(DDLA) with early stopping, parallel architecture, and shared layers. Eval-

uation metrics consisted of training metrics, memory usage, and attack time.

There is no countermeasure [80].

• Improving Deep Learning-Based Second-Order Side-Channel Analy-

sis with Bilinear CNN: This work used the dataset ASCAD and CHES CTF

2018 datasets. It demonstrated the power of Bilinear CNN (B-CNN) and ex-

plored various evaluation parameters such as the number of traces, convergence

speed, and attack success rate. No mitigation strategy was provided [81].

• The Best of Two Worlds: Deep Learning-Assisted Template Attack:

This analysis made use of ASCAD, AES HD, and AES RD datasets. It em-

ployed deep learning-assisted template attacks with similarity learning, triplet

networks, and hybrid distance metrics. The evaluation parameters were guess-

ing entropy (GE), the number of traces, and training time. Mitigation strategies

were not applied [82].

• Playing With Blocks: Toward Re-Usable Deep Learning Models for

Side-Channel Profiled Attacks: This research used ASCAD, AES HD, and

a dataset with random keys. It explored deep learning modular networks, au-

toencoders, transfer learning, and reusable training modules. Evaluation pa-

rameters included GE, the number of traces, and training time. No mitigation

strategy was mentioned [83].

36

• Study of CNN and LSTM based on ASCAD database with different

kinds of noise: This study utilized the ASCAD dataset with synthetic Gaus-

sian noise, employing CNN and LSTM models. The evaluation parameters were

the number of traces, accuracy, training time, and loss. No mitigation strategies

were implemented in this study [84].

• Deep Learning-based Attacks on Masked AES Implementation: This

paper used the publicly available ASCAD and ChipWhisperer datasets. The

study leveraged Multi-Layer Perceptron (MLP), CNN, Differential Deep Learn-

ing Analysis (DDLA), and Mask Value Profiling. The evaluation parameters

were accuracy, number of traces, and attack success rate. No mitigation tech-

niques were employed [85].

• AISY - Deep Learning-based Framework for Side-channel Analysis”

(2022): This study utilized multiple datasets, namely ASCAD, ASCAD Ran-

dom Keys, CHES CTF 2018, AES HD, and AES HD Extended. They extended

the AISY Framework with Keras/TensorFlow, focusing on deep learning, pro-

filing side-channel analysis, hyperparameter tuning, data augmentation, and

visualization. Evaluation parameters included accuracy, loss, guessing entropy,

and success rate, without any mitigation strategies [86].

• A Transfer Learning Approach for Electromagnetic Side-channel At-

tack and Evaluation: This study used the ASCAD dataset and applied

techniques such as transfer learning, CNN, MLP, ResNet, Autoencoder, pre-

training, freezing, and fine-tuning. Evaluation parameters included guessing

entropy (GE), number of traces, and training time, with no mitigation strate-

gies mentioned [87].

• Autoscaled-Wavelet Convolutional Layer for Deep Learning-Based

Side-Channel Analysis: This study utilized the ASCAD dataset and ap-

plied Autoscaled-Wavelet Convolutional Layer (ASW-CL), Continuous Wavelet

Transform (CWT), and CNN. The evaluation parameters were signal-to-noise

37

ratio (SNR), guessing entropy (GE), and the number of traces. No countermea-

sures were employed in this paper [88].

2.2.3 Summary of Literature Survey

In the literature survey on Differential Power Analysis (DPA) and Correlation

Power Analysis (CPA), the focus is primarily on improving statistical methods to

effectively analyze vulnerabilities in cryptographic systems through power trace anal-

ysis. DPA involves collecting many power traces and statistically analyzing them to

detect patterns that reveal cryptographic keys. CPA builds on this by using correla-

tion coefficients to better match predicted power consumption with actual measure-

ments, thus refining the accuracy in deducing keys.

The evaluation metrics for DPA and CPA focus on the success rate, the number

of traces required to successfully deduce information, and how well these methods

perform in the presence of noise and countermeasures. These metrics are crucial in

developing statistical models that can perform well even with fewer data points or

under interference, which is essential for their practical application.

On the other hand, research involving Deep Learning (DL) methodologies for side-

channel attacks is centered around using neural networks like CNNs and RNNs. These

models automate the process of extracting useful features from power traces, which

minimizes the need for extensive domain knowledge and allows for direct processing

of raw data, greatly improving the efficiency of the analysis.

For DL approaches, the evaluation metrics include model accuracy, robustness

against noisy data, and the ability to adapt across different cryptographic algorithms

and datasets. Additionally, the computational efficiency of these models is also con-

sidered due to the significant resources required to train complex neural architectures,

affecting their practical deployment.

In summary, both traditional and DL-based methods are evolving to incorporate

more advanced statistical and machine learning tools to better address challenges

in cryptographic security. This progress not only enhances the effectiveness of side-

channel attacks but also aids in the development of more effective defenses against

such threats.

38

2.2.4 Research gap

The identified research gap in the existing literature primarily revolves around

the absence of robust mitigation strategies against side-channel attacks (SCAs) and

limited exploration of advanced deep-learning techniques to enhance security. Numer-

ous studies rely heavily on conventional deep learning models like CNNs and MLPs

without incorporating effective countermeasures against SCAs.

While some papers introduce novel evaluation metrics or hybrid techniques, there

remains a substantial gap in applying these sophisticated methods extensively across

various datasets or in tandem with robust mitigation measures. Furthermore, these

studies typically restrict their evaluations to standard datasets like ASCAD, over-

looking the potential for these methods to provide broader defense mechanisms across

different cryptographic scenarios.

Additionally, there is a notable absence in varying the number of power traces

used in training and evaluation, which is crucial for understanding how these models

perform under data-constrained conditions. This oversight indicates an opportunity

to expand research to include a wider array of conditions and attack types, ensuring

that findings are robust and applicable in real-world scenarios where data availability

may vary.

Finally, a notable research deficiency exists in the classification of power traces

and the generation of simulated or synthetic power traces, which are essential for

developing adaptable and resilient cryptographic defenses. The absence of compre-

hensive studies that classify power traces or create their synthetic equivalents suggests

an area for further exploration and development. These studies highlight the need for

advanced techniques and strategies to improve the resilience of AES implementations

against side-channel attacks.

2.2.5 Novelty

Our research introduces several innovative approaches to enhance security analysis

and key deduction capabilities.

• Generation and analysis of synthetic power traces: We develop a method

39

to create synthetic power traces, which allows for a controlled study of side-

channel attack vectors without the need for actual hardware.

• Classification of AES implementations: By analyzing power traces, we cat-

egorize different AES implementations based on distinctive features extracted

during cryptographic operations. This classification helps in identifying vulner-

able AES configurations.

• Traces retrieval through Hashing and Metadata: Utilize advanced hash-

ing and metadata techniques to uniquely retract the original power traces from

processed datasets. This capability is crucial for verifying the integrity of data

and ensuring the reproducibility of our analysis.

• Key deduction using GRUTrace and ResTraceNet Models with 100

power traces: We employ two novel deep learning architectures, GRUTrace

and ResTraceNet that are designed to capture and exploit temporal and resid-

ual patterns in power trace data, significantly improving the precision of key

deduction. Our models aim to demonstrate their efficiency by deducing keys

from as few as 100 power traces, highlighting their potential for high-accuracy

performance even under data-limited conditions.

• Mitigation strategies: Our research focused on employing a mitigation strat-

egy involving structured masking and adding Gaussian noise to protect AES

algorithm against SCAs.

Chapter 3

Module 1: Generation And Analysis of Power Traces

The focus of Module 1 was on collecting and analyzing power traces from a masked

AES implementation. The primary objective was to gather real power traces using an

emulator setup and to generate synthetic power traces with a Python script based on

the Hamming Weight (HW) power model. Various techniques were then employed to

align and analyze both the real and synthetic power traces to validate the accuracy

and reliability of the generated synthetic traces. This module is crucial in determining

the feasibility of using synthetic data to augment real training data (raw power traces)

in side-channel attacks analysis, which is essential in scenarios where obtaining real

power traces is challenging or impossible. Figure 3.1 provides an overview highlighting

Module 1 of the research contributions.

Figure 3.1: Research Contributions: Highlighted Module 1

40

41

3.1 Methodology

This section provides a comprehensive account of the methodologies employed

to collect and analyze the power traces from a masked AES implementation. The

methodologies are classified into three main sections:

• Collection of power traces using an emulator setup

• Generation of power traces using a Hamming weight (HW) based Python script

• Analyzing, aligning, and correlating the power traces using various techniques

3.1.1 Power trace collection using an Emulator

The masked AES algorithm was implemented on an Arduino UNO microcon-

troller. Masked AES implementation enhances resistance against SCAs by introduc-

ing randomness into the encryption process [89]. The AES-masked code was devel-

oped and executed with small modifications to incorporate masking, using the Ar-

duino Integrated Development Environment (IDE) on Serial Port 4 to ensure efficient

implementation and functionality. This modification ensures that each execution of

the algorithm yields a varied power consumption profile, making it more difficult for

attackers to infer information from these traces. This setup is critical for providing an

environment where all the operations in AES can be monitored to generate accurate

power traces at a frequency of 1 MHz, which is suitable for capturing variations in

power consumption patterns during encryption. Fig. 3.2 shows the data collection

setup used for collecting power traces.

Setup:

The power trace collection setup for analyzing the masked AES algorithm requires

an extensive array of equipment to ensure precise implementation and collection of

the generated power traces from the Arduino UNO. The core of this setup is the

Syscomp CGR-101, a compact digital oscilloscope and waveform generator. This

powerful, general-purpose signal generator is portable and user-friendly, with a maxi-

mum bandwidth of 2 MHz and a real-time sampling rate of 20 Mega Samples/second,

featuring a 3.2-inch LED display. It offers 20 MS/s dual-channel, 10-bit oscilloscope

42

capabilities, a 2 MHz DDS arbitrary waveform generator, and eight-channel digital

I/O. It is USB powered, requiring no AC adaptor, and comes with open-source soft-

ware compatible with Windows, Linux, and Mac. Power is supplied to the Arduino,

which performs the encryption operation, using a 9V battery [90]. A 220-ohm re-

sistor is used in the circuit setup to regulate the current flow and control the power

input to the Arduino. This setup is crucial for providing an environment where all

AES operations can be monitored to generate accurate power traces at a frequency

of 1 MHz, appropriate for capturing variations in power consumption patterns during

encryption. Power traces were collected exclusively from Channel A, while Channel

B was disabled. The amplitude, frequency, and time base were adjusted to obtain

accurate and reliable readings.

Figure 3.2: Data collection setup in a masked AES implementation

Data collection:

Power traces were collected at specific points during the execution of the crypto-

graphic operations to provide maximum coverage of all stages of the AES algorithm.

These points of interest were strategically chosen to capture the different phases, of-

fering a detailed view of the power traces. They were collected during the following

43

Figure 3.3: Power traces collection method

phases: Fig 3.3 shows both the power collection methods.

• Initialization Phase: Power traces were collected as the initial key and state

matrix were set up, serving as a baseline for power trace collection.

• SubBytes Phase: Power consumption was monitored as each byte in the

state matrix was substituted using the S-box, introducing nonlinearity into the

process.

• ShiftRows Phase: Power traces were collected during the cyclic left shift of

each row in the state matrix, analyzing the effect of transposition on power

consumption. This step is crucial for providing diffusion, an integral security

feature of the algorithm.

• MixColumns Phase: Power traces were gathered when the columns of the

state matrix were mixed and multiplied by a fixed polynomial, further enhancing

diffusion within the algorithm.

• AddRoundKey Phase: Power consumption was recorded as the state matrix

was combined with the round key using a bitwise XOR operation, introducing

confusion. This phase is particularly crucial as it directly involves the crypto-

graphic key.

44

• Final Round: In the final round, traces were collected during all operations

except MixColumns, ensuring that the final transformation of the state matrix

was captured comprehensively.

Data Analysis:

The data analysis process leverages the Syscomp CircuitGear 1.24 software, which

collects and computes the voltage drop across the resistor to calculate the power traces

during the execution of certain cryptographic operations in a masked AES algorithm

implementation. From the collected measurements, a detailed dataset was created

using the settings provided in the software that converted the power traces into a

CSV file. This dataset encapsulates all the variations in power consumption, enabling

the evaluation of masking’s effectiveness in concealing potential data leakage. The

dataset is crucial for determining whether sensitive information can be deduced from

these raw power traces and, if so, for developing stronger countermeasures to enhance

cryptographic security. Fig. 3.4 shows the Syscomp CircuitGear 1.24 software.

Figure 3.4: Syscomp CircuitGear 1.24 software

Mathematical Derivation of Power Consumption for Masked AES Al-

gorithm Using Oscilloscope Measurements

45

We derive a mathematical equation for the power analysis collection setup, for

which we take into account the collected power traces from the Arduino UNO running

a masked AES algorithm. The crux of the implementation consists of a Syscomp

CGR-101 oscilloscope and waveform generator, which has specific capabilities and

configurations. Fig. 3.5 shows the visual representation of the power traces collection

along with the mathematical components needed to derive the power consumption.

Figure 3.5: Power Analysis Collection Setup for Arduino UNO Running Masked AES
Algorithm

Step 1: Define the Setup

• Oscilloscope Specifications:

46

– Bandwidth: 2 MHz

– Sampling Rate: 20 MSa/s

– Dual-channel, 10-bit resolution (only Channel A is used)

– Power Supply: USB, powered by a 9V battery

• Resistor in Circuit: R = 220Ω

• Frequency for Power Traces: 1 MHz

Step 2: Voltage and Current Relationship

The voltage V (t) across the 220-ohm resistor is directly related to the current I(t)

flowing through the Arduino circuit as per ohms law.

V (t) = I(t) ·R (3.1)

Given R = 220Ω, we have:

V (t) = 220 · I(t) (3.2)

Step 3: Power Consumption Calculation

The instantaneous power P (t) consumed by the Arduino can be calculated using:

P (t) = V (t) · I(t) (3.3)

Substitute V (t) = 220 · I(t):

P (t) = (220 · I(t)) · I(t) (3.4)

P (t) = 220 · I(t)2 (3.5)

Step 4: Sampling and Data Collection

The oscilloscope samples the voltage at a rate of 20 MSa/s. Let Vi be the sampled

voltage at the i-th sample. The corresponding instantaneous current Ii is:

47

Ii =
Vi

220
(3.6)

The instantaneous power at the i-th sample is then:

Pi = 220 ·
(︃

Vi

220

)︃2

(3.7)

Pi =
V 2
i

220
(3.8)

Step 5: Frequency Adjustment

The power traces have been collected at a frequency of 1 MHz, which allows us to

examine the power consumption for each cycle of the AES algorithm. It’s important

to analyze the oscilloscope data to ensure it matches the 1 MHz frequency.

Step 6: Mathematical Representation

We derive the mathematical equation for the power traces collected by combining

the steps above,

Pi =
V 2
i

220
(3.9)

where Vi is the voltage measured at the i-th sample by the oscilloscope.

The power consumption Pi at each sample point i can be calculated using the

equation:

Pi =
V 2
i

220
(3.10)

The equation here represents the connection between the voltage recorded by

the oscilloscope and the power usage of the Arduino executing the AES algorithm.

Accurate analysis of power traces requires careful consideration of the oscilloscope’s

specifications and the circuit configuration.

3.1.2 Generation of synthetic power traces

The primary objective is to programmatically generate power traces that can

accurately mimic the raw traces captured during the execution of a masked AES

48

algorithm in a controlled environment. As described in the previous section, AES

is implemented with an additional masking mechanism to obscure the relationship

between cryptographic operations and power consumption data. The implemented

Python script performs AES encryption operations by applying masking at various

phases, ensuring that the power consumption profile obtained is distinct for each

phase. Emulating a real-world scenario where an attacker attempts to deduce key

information, this step is crucial for understanding and mitigating potential vulnera-

bilities.

Data collection:

During each encryption cycle iteration, the code logs various key pieces of infor-

mation:

• Power Traces: Generated based on the Hamming Weight model.

• Plaintext: The original data before encryption.

• S-box Output: Results from the substitution box operation that provides

non-linearity.

• Ciphertext: The encrypted output.

• Key: The encryption key used in that specific cycle.

The primary purpose of collecting this information is to generate a detailed dataset

that illustrates how the power trace profiles vary based on the cryptographic opera-

tions being performed. This comprehensive dataset is crucial for aligning and com-

paring the synthetic traces with the real traces during the analysis phase. By doing

so, it helps validate the accuracy and reliability of the synthetic traces in mimicking

real-world power consumption patterns.

Hamming Weight(HW) model:

The power consumption of the masked AES implementation during the encryption

process is correlated to the Hamming Weight (HW) of the data’s state. The HW

measures the number of ones in the input data, which correlates with the power

consumed by a digital circuit when changing state from 0 to 1 [91]. For every byte

49

of input processed, the Python script computes an HW value, which is then used

to generate the power trace measurement for that operation. This process simulates

the actual measurements observed during real power trace collection. The Hamming

weight HW[x] is the number of bits in x that are 1.

HW [x] =
n

∑︂

i=1

xi (3.11)

The primary objective of this research is to generate a synthetic dataset that can

simulate real power traces in a controlled and repeatable environment. The implica-

tions of this synthetic dataset are multifold. It can be augmented with training data

for machine learning or deep learning models to recognize vulnerabilities or evaluate

the efficacy of the implemented masking techniques. Additionally, it can validate

side-channel analysis in scenarios where collecting real power traces and setting up

the real environment is expensive and cumbersome. This approach also allows for

the identification of potential weaknesses in the cryptographic implementation under

various attack scenarios.

3.1.3 Analysis of the power traces

The collected raw power traces and synthetic traces are subjected to various tech-

niques to analyze and find the correlation between the two types of traces. These

techniques help us comprehend the behavior of the collected power traces, their rela-

tionships with cryptographic processes, and validate the reliability of the synthetically

generated power traces. We apply eight techniques:

Fast-Fourier Transform (FFT) converts time-domain signals into frequency-domain

signals, aiding in understanding periodic noise and components in the power traces[92].

Principal Component Analysis (PCA), a dimensionality reduction technique, trans-

forms the original variables into principal components that retain integral features

while reducing data complexity. Independent Component Analysis (ICA) explores

the maximum statistical independence of the principal components, helping to seg-

regate overlapping signal sources and isolate specific parts of the encryption process

[93].

50

Cross-correlation analysis computes the similarity between the real and synthetic

power traces based on their relative displacement [94]. Dynamic Time Warping

(DTW) analyzes the similarity between two temporal sequences that differ in speed,

aligning the real and synthetic power traces for accurate comparison. The wavelet

transform performs a time-frequency analysis of the power traces for non-stationary

signals whose frequency varies over time, identifying transient features [95].

Linear regression establishes a linear relationship between the dependent and inde-

pendent variables, predicting real power traces based on synthetic traces to validate

efficiency. Lastly, Random Forest, an ensemble method, is used for classification

and regression, predicting or classifying behavior based on features derived from the

power traces, thus offering insights into how these features correlate with different

cryptographic states or operations [96].

3.2 Results and Discussion

The primary objective of this section is to discuss the results of the power trace col-

lection and analysis, focusing on both real and synthetically generated power traces.

Real Power Trace Collection

In the first section, we successfully implemented the masked AES algorithm using

the Arduino IDE on an Arduino UNO microcontroller. We collected the power traces

using the Syscomp CGR-101 oscilloscope. These power traces provided a baseline for

understanding how power consumption patterns correlate with each cryptographic

operation. This baseline is essential for comparing and validating the synthetic power

traces.

Synthetic Power Trace Generation

In the second section, we generated synthetic power traces programmatically based

on the Hamming Weight (HW) model using a Python script. These synthetic power

traces, as shown in Fig. 3.6 simulate the actual power traces collected in the first step.

The comparison of the synthetic and real power traces is illustrated in the Encryption

Step vs. Power Consumption and Frequency vs. Amplitude graphs as in Fig. 3.7

51

Figure 3.6: The synthetically generated power traces

Figure 3.7: Comparison of synthetic and real power traces

Filtering and Smoothing

To improve the quality of the synthetic power traces, we applied filtering and

smoothing techniques. The resulting traces, shown in Fig. 3.8 highlight the synthetic

52

Figure 3.8: Comparison of real and synthetic power trace after smoothing and filtering

and real power traces after applying these techniques. Filtering and smoothing are

essential for reducing noise and enhancing the quality of the data for further analysis.

Timing Analysis

A detailed timing analysis was performed on the real and synthetic power traces,

as indicated in Fig. 3.9. This analysis explored the temporal aspects of the power

consumption patterns to align the real and synthetic traces, achieving a high level of

correlation between the two. The figures also depict the marked operations such as

SubBytes, MixColumns, and AddRoundKey.

Techniques Applied for Analysis and Alignment of Real and Synthetic

Power Traces

Using Fast-fourier transform (FFT), as shown in Fig. 3.10 we compared the syn-

thetic power traces with the smoothed real power traces. The correlation coefficient

53

Figure 3.9: Timing analysis of the collected power traces

for this comparison is 0.1967, indicating a lower degree of similarity compared to the

raw traces.

The correlation between the synthetic traces and Principal component analysis(PCA)-

transformed real traces is shown in Fig. 3.11. The PCA technique reduced the di-

mensionality of the data while retaining the most significant features, resulting in

a correlation coefficient of 0.3087. This moderate correlation indicates that PCA is

useful in capturing the primary variance in the power consumption data, albeit with

some loss of finer details.

The correlation between the synthetic traces and Independent component analy-

sis(ICA) -transformed real traces is shown in Fig. 3.12. The ICA technique aimed

to maximize the statistical independence of the components, resulting in a negative

correlation coefficient of -0.3087. This indicates a divergence in the patterns captured

54

Figure 3.10: Comparison using Fast-fourier transform

Figure 3.11: Comparison using Principal component analysis

by ICA, suggesting that while it can isolate components, the synthetic traces may

not perfectly align with the independent components of the real traces.

The cross-correlation between synthetic and real traces, depicted in Fig. 3.13

revealed a maximum correlation value of 7404.856 at a lag of 2. This high value

55

Figure 3.12: Comparison using independent component analysis

indicates a significant degree of similarity between the traces, with a slight time shift

required for optimal alignment. The Dynamic time warping analysis, shown in the

Figure 3.13: Comparison using cross-correlation analysis

Fig. 3.14, measured the alignment between the real and synthetic traces with a DTW

56

distance of 192.935. Post-alignment, the correlation improved to 0.281 as shown in

Fig. 3.15 indicating that DTW effectively aligns the traces for better comparison,

although some discrepancies remain.

Figure 3.14: DTW Alignment path between synthetic and real traces

The wavelet transform results, depicted in Fig. 3.16 show varying levels of corre-

lation at different decomposition levels. While the correlation for Level 0 and Level 1

coefficients is -1.0, indicating perfect inverse correlation, Levels 2 and 3 show positive

correlations of 0.9969 and 0.7555, respectively. The overall correlation between the

reconstructed synthetic and real signals is 0.3223, suggesting that the wavelet trans-

form captures the multi-resolution aspects of the traces effectively as shown in Fig.

3.17.

The comparison between actual and predicted real traces using linear regression

shows a moderate positive correlation of 0.281 as indicated in Fig. 3.18. This indi-

cates that the predicted traces follow the general trend of the actual traces but with

significant deviations. The R-squared score of 0.079 suggests that the linear model

explains only 7.9% of the variance in the real power consumption data.

The comparison between actual and predicted real traces using a Random Forest

57

Figure 3.15: Comparison of real and synthetic power trace using DTW

Figure 3.16: Correlation for various wavelength coefficients from level 0 to level 3

model demonstrates a high correlation of 0.986, indicating that the predicted traces

closely follow the actual traces as shown in Fig. 3.19. The R-squared score of 0.767

suggests that the Random Forest model explains 76.7% of the variance in the real

58

Figure 3.17: Comparison of reconstructed synthetic and real aes power traces using se-
lected wavelength coefficients

Figure 3.18: Comparison using linear regression

59

power consumption data. This high R-squared value and correlation indicate that

the Random Forest model is effective in capturing the complexities of the power trace

data, making it a suitable method for analyzing the relationship between synthetic

and real traces.

Figure 3.19: Comparison using random forest

60

3.3 Summary

The first module of our research emphasized on the collection and analysis of

power traces for masked AES implementation from both real and synthetic sources.

The successful collection of real power traces using the Syscomp CGR-101 oscilloscope

provided us an in-depth understanding of how power consumption patterns correlate

with cryptographic operations.

In parallel, synthetic power traces were generated using a Python script based

on the Hamming Weight model. These traces aimed to mimic the real power traces

collected, allowing for a comparative analysis. By applying filtering and smoothing

techniques, the quality of synthetic power traces was enhanced, reducing noise and

increasing the fidelity of the data.

A detailed timing analysis was conducted to align the real and synthetic traces,

exploring the temporal aspects of power consumption patterns. This alignment was

crucial in achieving a high level of correlation between the two types of traces. Various

techniques, including Fast-Fourier Transform, were employed to compare the traces,

with results indicating varying degrees of similarity.

Among the analysis techniques, the Random Forest method showed the most

promising results, achieving a correlation coefficient of 0.9857 and an R-squared score

of 0.7666. This high degree of similarity between the synthetic and real power traces

validates the effectiveness of the synthetic generation method and highlights the po-

tential of using synthetic data to augment real training data in side-channel attacks

analysis.

To conclude, this module showed that side-channel attacks analysis could benefit

from the addition of artificial power traces to actual training data. The results demon-

strate the utility of synthetic data in situations when real power trace collection is

difficult or not feasible. This work also prompts us to strengthen the defences of cryp-

tographic systems against side-channel attacks by verifying the validity of synthetic

traces.

Chapter 4

Module 2 : Feature extraction, classification and retracing of

power traces

Module 2 explores various feature extraction and classification methods to analyze

the collected electromagnetic emissions or power traces of different AES implementa-

tions. We focus particularly on the AES PTv2 dataset, which contains power traces

from three types of AES implementations: unprotected, Masked1, and Masked2, all

executed on the Piñata board. The primary objective of this module is to extract

significant features from the dataset, classify the traces according to their correspond-

ing AES implementations, and then investigate the potential of retracing the original

power traces from the derived feature set. Our goal is to enhance the understanding

of different AES implementations, identify their vulnerabilities, and ultimately im-

prove the security of the AES algorithm. Figure 4.1 provides an overview highlighting

Module 1 of the research contributions.

Figure 4.1: Research Overview: Highlighted Module 2

61

62

4.1 Dataset

The AES PTv2 is a comprehensive dataset featuring power and EM collected

from several devices executing various AES implementations—both unprotected and

protected. The primary objective of this dataset is to provide realistic power and EM

emissions from real devices, reflecting actual cryptographic operations. This dataset

addresses the absence of an open dataset for conducting side-channel analysis using

different devices and implementations [97].

4.1.1 Dataset overview

The dataset consists of power traces collected from the Piñata board, an embedded

device based on a microcontroller from the ARM Cortex-M4 family. The dataset

follows the HDF5 hierarchical structure but has been converted into CSV files for

easier usage. All traces are gathered during the encryption process, focusing on three

different types of AES software implementations:

• Unprotected AES Implementation: A traditional software implementation

(AES-128 in ECB mode) without any masking techniques.

• Masked Scheme 1 (MS1): A weak implementation that uses a masked

lookup table for the SBox operation, wherein the output mask is removed after

every 1-byte lookup, resulting in a clear correlation between the mask and the

SBox time window.

• Masked Scheme 2 (MS2): A robust implementation where the output mask

is discarded after the ShiftRows operation, ensuring that the mask isn’t leaked

during the SBox computation, thus providing a deeper layer of security against

attacks.

4.1.2 Piñata Board

The Piñata board, created by Riscure, is based on an ARM Cortex-M4F core

operating at a 168 MHz clock speed. It has been modified and programmed to serve

as a training target for side-channel analysis (SCA) and fault injection.

63

4.1.3 Data Organization

The dataset follows a hierarchical structure and is organized into the following

subgroups:

• Based on Device: Each device has three subgroups corresponding to each

AES implementation.

• Based on Operation: Each subgroup is further divided into profiling (random

keys) and attack (fixed keys) phases.

• Based on Trace: Each subgroup contains traces, labels, and metadata.

Fig 4.2 and 4.3 shows the dataset structure based on the device, operation and trace.

Figure 4.2: AES PT dataset in hierarchical structure(based on the device and operation)

4.1.4 Number of traces

• Unprotected AES: 150,000 power traces (100,000 with random keys and

50,000 with a fixed key).

64

Figure 4.3: AES PT dataset in hierarchical structure (based on the metadata)

• MS1: 200,000 power traces (150,000 with random keys and 50,000 with a fixed

key).

• MS2: 300,000 power traces (200,000 with random keys and 100,000 with a

fixed key).

4.1.5 Trace Collection

• Measurement Setup: The board’s power consumption during AES encryp-

tion is measured using a Tektronix CT1 current probe connected to a 20 GS/s

digital oscilloscope (LeCroy Waverunner 9104). The oscilloscope is triggered by

a GPIO signal from the microcontroller when internal computation starts.

• Sample Details: Each power trace consists of 1,260 samples (1,500 and 1,800

for the masked implementations 1 and 2, respectively) taken at 1 GHz with

8-bit resolution, corresponding to the first SBox operation.

• Trace Acquisition: Devices encrypt 16-byte random plaintexts using the three

AES implementations. Power consumption is measured with a Langer EM probe

attached to the oscilloscope, which is triggered by the microcontroller’s GPIO

signal. The high-sensitivity probe is placed over a decoupling capacitor on the

power line of the device.

65

• Preprocessing: Traces are preprocessed by applying zero mean, standardiza-

tion, waveform realignment, and a lightweight software low-pass filter.

Applications

The AES PTv2 dataset is widely used in the research community for:

• Developing and Testing Attack Techniques: Researchers use the dataset to de-

velop and validate side-channel attack techniques, such as Differential Power

Analysis (DPA) and Correlation Power Analysis (CPA). These techniques aim

to exploit the information leaked through power consumption to recover secret

keys.

• Evaluating Countermeasures: The dataset is also used to evaluate the effective-

ness of countermeasures, such as masking and noise addition, that are designed

to protect cryptographic implementations from side-channel attacks.

• Machine Learning and Deep Learning Research: The dataset serves as a bench-

mark for testing machine learning and deep learning models that are trained

to predict cryptographic keys based on power traces. Researchers explore var-

ious models, including Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs), to improve attack accuracy.

Challenges and Considerations

• High Dimensionality and Noise: The power traces can be high-dimensional and

noisy, presenting challenges for analysis. Researchers must preprocess the data,

reduce dimensionality, and handle noise to extract meaningful features.

• Realistic Scenarios: The dataset may include traces with intentional desynchro-

nization or added noise to simulate real-world conditions, where measurements

may not be perfectly aligned or clean. This adds complexity to the analysis and

requires robust methods to handle these challenges.

• Ethical and Security Concerns: While the dataset is valuable for advancing

the understanding of side-channel attacks, it also raises ethical and security

66

concerns. Researchers must consider the implications of their work and ensure

that it is used to improve security rather than exploit vulnerabilities.

4.2 Methodology

4.2.1 Classification of Power Traces

In this section, feature extraction techniques are applied to the statistical prop-

erties of the power traces, and a Support Vector Machine (SVM) classifier is utilized

to identify significant features and classify the traces into their respective AES im-

plementations.

Initial Feature Extraction and Classification

Major statistical properties were identified and then used in feature extraction to

select the best features that contribute the most to the model’s predictive power in

classifying the traces. Initially, statistical properties are extracted from the power

traces, including mean, standard deviation (std), minimum (min), maximum (max),

median, first quartile (Q1), third quartile (Q3), interquartile range (IQR), delta75-25

(difference between the 75th and 25th percentiles), and coefficient of variation (cv).

Using these features, an SVM classifier is employed to identify significant features and

classify the power traces into two implementations: unprotected and masked1. An

SVM classifier is a supervised machine learning model that is optimal for classification

tasks, finding the hyperplane that best separates different classes in the available

feature set [98].

A short description of each statistical property used is provided below:

• Mean: The average value of the dataset, providing a central value around

which the data points are distributed [99].

• Standard deviation: A measure of the amount of variation or dispersion in

the dataset, indicating how spread out the data points are from the mean [99].

• Minimum (min): The smallest value in the dataset, helping to identify the

lower bound of the data range [99].

67

• Maximum (max): The largest value in the dataset, helping to identify the

upper bound of the data range [99].

• Median: The middle value of the dataset when sorted in ascending order,

provides a measure of central tendency that is less affected by outliers compared

to the mean [99].

• First Quartile (Q1): The value below which 25% of the data points fall,

helping to understand the lower part of the data distribution [99].

• Third Quartile (Q3): The value below which 75% of the data points fall,

helping to understand the upper part of the data distribution [99].

• Interquartile Range (IQR):The range between the first quartile (Q1) and

the third quartile (Q3), measuring the spread of the middle 50% of the data

points, providing insight into the variability within the central portion of the

dataset [99].

• Delta75-25: The difference between the 75th percentile and the 25th per-

centile, another measure of spread [99].

• Coefficient of Variation (cv): The ratio of the standard deviation to the

mean, provides a normalized measure of dispersion [99].

The focus is on the multiple feature extraction techniques used to analyze the

collected power traces and EM emissions from the AES PTv2 dataset. The aim

is to recognize and identify which features contribute the most to the predictive

power of the model, thereby enhancing the classification process and analysis of the

various AES implementations, namely unprotected and masked1, using a support

vector machine (SVM) classifier. The techniques used for feature extraction are listed

below:

• Permutation importance: This method analyses the importance of each

feature by computing the decrease in the performance of the model when the

values are shuffled randomly. It aids us in understanding the contribution of

each feature towards making predictions [100].

68

• Recursive feature elimination: This technique as the name suggests re-

cursively removes the least important feature and builds the model with the

remaining features helping us identify features that are integral for the perfor-

mance of the model thus improving accuracy [100].

• Mutual information: This method measures the dependency between every

feature and the target variable ie the amount of information one variable holds

about another variable. It quantifies the quantity of knowledge that is obtained

about the output variable with the help of each feature, thus finding features

that has the most predictive power [101].

• Principal component analysis: This is a dimensionality reduction technique

that converts the original set of variables into a smaller set of variables called

principal component and these components would have the highest variance

,thus enabling in simplification of the dataset [101].

• L1 Regularization: Lasso (Least Absolute Shrinkage and Selection Operator)

is a regression technique that can do both selection of features and regulariza-

tion. It adds a penalty value that is equal to the absolute value of the magnitude

of coefficients. If the coefficient value I closer to zero, the feature selection per-

formed would be precise and lead to a simple model [101].

• SHapley Additive exPlanations (SHAP): SHAP works on the concept of

cooperative game theory and provides a unified measure of feature importance.

It explores the impact each feature has on the output of the model by taking into

account the contribution of every feature towards the prediction thus offering a

detailed approach to feature selection [101].

4.2.2 Focus on PCA for improved classification

To further improve classification accuracy, Principal Component Analysis (PCA)

is employed to identify the most important features from the set of extracted sta-

tistical properties. PCA reduces the dimensionality of the data while retaining the

69

most significant variance-contributing features, streamlining the classification pro-

cess. After determining the optimal features using PCA, a Support Vector Machine

(SVM) classifier is applied to classify the power traces into the respective AES imple-

mentations: unprotected, masked1, and masked2. The SVM classifier leverages the

principal components identified by PCA to make accurate classifications. To validate

the classification results, a confusion matrix, classification report, and distribution

of features are utilized. These metrics provide a comprehensive assessment of model

performance, highlighting the accuracy and reliability of the classification process

based on the features extracted using PCA. The confusion matrix shows the true

positives, false positives, true negatives, and false negatives, while the classification

report includes precision, recall, and F1 scores for each class. The distribution of

features offers insights into how the features are spread across different classes, en-

suring that the most relevant features effectively contribute to the classification of

power traces into their corresponding AES implementations. As shown in Algorithm

2, the PCA-based feature selection process involves computing statistical properties,

performing PCA, and selecting top features based on their contribution ranks.

4.2.3 Optimal Threshold Calculation and Retracing the Power Traces

After classifying the power traces into their respective AES implementations, the

next crucial step involves calculating the optimal threshold and retracing the original

power traces from the derived dataset, which includes selected statistical properties.

This process employs techniques such as hashing and metadata analysis. Fig 4.4

shows the feature extraction, classification, and optimal threshold calculation.

Threshold Calculation

Identifying the optimal threshold during classification is critical for achieving ac-

curate and reliable outputs. The optimal threshold is the point that best segregates

the various classes (unprotected, masked1, and masked2), indicating the classifier’s

performance. This involves computing the Receiver Operating Characteristic (ROC)

curve and the Area Under the Curve (AUC) for each class. The optimal threshold

calculation process involves:

70

Algorithm 2 PCA-Based Feature Selection for choosing optimal statistical proper-

ties
Input: TD: Dataset with traces from Unprotected, Masked1, and Masked2 imple-

mentations, labeled 0, 1, and 2 respectively

SP: Array of statistical properties [Mean, Std, Min, Max, Median, Q1, Q3, IQR,

Skewness, Kurtosis, Delta 75-25, CV]

n comp: Number of principal components to choose (default:10)

Best features: Best features collected using PCA

Output: Best Features: List of selected features based on PCA

9 Function Compute Statistical Properties(TD, SP):

10 return Computes the specified statistical properties for each sample and returns

a new dataset with the computed properties

11 Function PCA contribution(Input Features):

12 Performs PCA on the input features and returns a ranked list of features based

on their contribution to the principal components

13 Function Select Top Features(Rank Features):

14 Selects the top features based on their contribution ranks

15 Algorithm PCA Based Feature Selection(TD, SP, n comp):

16 Current Dataset ← TD Current Features ← SP X PCA ← [] Best Features ←
[]

// Compute Statistical Properties

17 Current Dataset ← Compute Statistical Properties(Current Dataset, SP)

Reduced Features ← [Mean, Std, Min, Max, Median, Q1, Q3, Skew-

ness, IQR, Kurtosis] X PCA ← PCA(Current Dataset[Reduced Features],

n comp=n comp)

18 for component in range(n comp) do

19 Rank Features ← PCA contribution(X PCA[component]) Best Features ←
Select Top Features(Rank Features)

20 end

21 return Best Features

22 return

71

Figure 4.4: Feature extraction, classification and optimal threshold calculation

• Generating the ROC Curve and AUC: For each class, the ROC curve is

plotted, and the AUC is calculated, serving as a single metric to evaluate the

model’s performance.

• Determining the Optimal Threshold: The optimal threshold is found by

identifying the point on the ROC curve that maximizes the difference between

the True Positive Rate (TPR) and the False Positive Rate (FPR). This point,

known as Youden’s index, is where the value of TPR - FPR is the highest.

• Storing Threshold Values: The calculated threshold values for each class

are stored for future classification tasks.

The optimal threshold helps the classifier make accurate decisions by setting the best

decision boundary for each class. As shown in Algorithm 3, the process of classification

72

and obtaining optimal threshold and AUC involves computing statistical properties,

training an SVM classifier, computing decision scores, and finding optimal thresholds

based on the ROC curve.

Retracing the Power Traces from the Derived Dataset Using Hashing

and ID Methods

Both the hashing and ID methods require extensive preprocessing, feature extrac-

tion, and classification to accurately classify and retrace the power traces. While the

hashing technique offers greater security and traceability, the ID method provides a

simpler yet effective approach to manage data points and tracing them back to the

original raw power traces.

Hashing Method

This method involves generating a unique identifier for each row in the dataset by

applying a cryptographic hash function. This enhances data integrity and traceability

throughout the data transformation process. The create hash function converts each

row of the dataset into a JSON string, then applies the SHA-256 hash function to

create a unique ID for that row. This ensures the identifier is unique, which is crucial

for data retracing and integrity. Performance is evaluated using confusion matrices

and classification reports.

ID Method

The ID method assigns a unique identifier to each row based on its corresponding

index in the data frame. This approach, while simpler than the hashing method,

provides a straightforward way to track data points throughout the entire process.

Confusion matrices and classification reports are also generated to assess classifier

performance.

Both methods play a pivotal role in ensuring the accuracy and integrity of the

classification process, facilitating the reliable retracing of power traces to their original

form. As shown in Algorithm 4, the process of retrieving the original dataset from

the derived dataset involves creating unique hash values for each row and using these

hashes to match and retrieve the original traces.

73

Algorithm 3 Classification and obtaining optimal threshold and AUC

Input: Dataset: Power traces for Unprotected AES (label 0), Masked1 AES (label

1), and Masked2 AES (label 2)

X train and X test: The training data features and The test data features

Y train: The training data labels

Decision score: Decision score from classifier

Fpr, Tpr: False positive rate and True positive rate

Threshold: Values used to convert decision score into 0 or 1

Output: Optimal Thresholds: Dictionary containing optimal thresholds

AUC Scores: Dictionary containing AUC scores for each class

23 Function Compute Statistical Properties(Dataset):

24 Computes Mean, Std, Min, Max for each trace and returns a new dataset

25 Function Train SVM(X train, Y train):

26 Trains an SVM classifier on the given training data

27 Function Compute Decision Scores(Classifier, X test):

28 Computes the decision scores and returns decision scores

29 Function Compute ROC AUC(y true, decision scores):

30 Computes the ROC curve and AUC score for true labels and decision scores

31 Function Find Optimal Threshold(fpr, tpr, thresholds):

32 Finds the optimal threshold and returns the optimal threshold

33 Algorithm Classification and Optimal Threshold AUC(Dataset):

34 Optimal Thresholds ← {}
35 AUC Scores ← {}
36 Dataset ← Compute Statistical Properties(Dataset)

37 classifier ← Train SVM(X train, Y train)

38 decision scores ← Compute Decision Scores(classifier, X test)

39 for class index in range(decision scores.shape[1]) do

40 fpr, tpr, thresholds, auc score← Compute ROC AUC(y test == class index, de-

cision scores[:, class index])

41 optimal threshold ← Find Optimal Threshold(fpr, tpr, thresholds)

42 Optimal Thresholds[class index] ← optimal threshold

43 AUC Scores[class index] ← auc score

44 end

45 return Optimal Thresholds, AUC Scores

46 return

74

Algorithm 4 Retrieving the original dataset from the derived dataset using Hashing

Input: Derived Dataset: Derived dataset

Original Datasets: List of original datasets (unprotected df, ms1 df, masked2 df)

SVM Classifier: Trained SVM classifier on the derived dataset

Output: Org traces: Original traces retrieved from the original datasets

47 Function create hash(row):

48 Hashing function to create a unique hash value

49 Algorithm Retrieve original(Derived Dataset, Original Datasets, SVM Classifier):

50 for label in [0, 1, 2] do

51 unprotected df[’hash id’] ← unprotected df.apply(create hash, axis=1)

52 ms1 df[’hash id’] ← ms1 df.apply(create hash, axis=1)

53 masked2 df[’hash id’] ← masked2 df.apply(create hash, axis=1)

54 original traces ← original df[original df[’hash id’].isin(test df[y pred == la-

bel][’hash id’])]

55 Org traces ← pd.concat([Org traces, original traces], ignore index=True)

56 end

57 return Org traces

58 return

75

4.3 Results and discussion

In this section, we present the results after applying feature extraction techniques

to the statistical properties of the power traces. We then evaluate the performance

of the classifier using a Support Vector Machine (SVM) and calculate the optimal

threshold for each AES implementation.

Feature Extraction and Importance

Several feature extraction techniques were used to identify the most important

statistical properties. The techniques employed include permutation importance, re-

cursive feature elimination, L1 regularization, mutual information, and SHapley Addi-

tive exPlanations (SHAP). The figures 4.5,4.64.7,4.8,4.9 and 4.10 depict these various

feature extraction techniques: permutation importance, recursive feature elimination

(RFE), L1 regularization, mutual Information, SHAP, principal component analysis

(PCA). The confusion matrix, shown in the 4.11, remains consistent across all fea-

ture extraction techniques, highlighting the classification performance of the SVM

classifier. The findings from the visualizations are listed below:

• Permutation Importance: Median and Q1 were found to be the most important

features.

Figure 4.5: Feature extraction using permutation importance

• Recursive Feature Elimination (RFE): The optimal set of features was identified

76

through iterative removal and model evaluation.

Figure 4.6: Feature extraction using recursive feature elimination

• L1 Regularization: Features such as min, mean, and cv were highly influential.

Figure 4.7: Feature extraction using L1

• PCA: Feature combinations such as mean,median,min, max are selected.

• Mutual Information: Key features like mean, min, max, median, and Q1 showed

significant mutual information scores.

• SHapley Additive exPlanations (SHAP): Features such as mean, min, and max

had a notable impact on the model output.

77

Figure 4.8: Feature extraction using principal component analysis

Figure 4.9: Feature extraction using mutual information

PCA and SVM Classification Results

After applying PCA, we identified the following combinations of features: me-

dian and Q1, IQR and kurtosis, Q3 and skewness, mean and Q3, IQR and standard

deviation, mean, standard deviation, minimum and maximum, and mean, median,

minimum, and maximum. We then applied the SVM classifier and tested these fea-

tures using the attack traces for unprotected and masked AES implementations.

Fig. 4.12- 4.17 shows the confusion matrix for the obtained feature combinations

after PCA. Additionally, we calculated the feature distribution by predicted labels,

which are depicted in the corresponding figures.

Fig. 4.19 - 4.25 shows the feature distribution graphs. Key observations from

78

Figure 4.10: Feature extraction using SHAP

Figure 4.11: Confusion matrix of SVM for all the feature extraction techniques

the feature distribution graphs

Median vs Q1 plot

The orange dots appear to be clustered, indicating that the median and Q1 values

of most anticipated Label 1 traces are comparable. Label 0 is represented by blue

dots that are also closely clustered. However, some misclassifications or regions where

the characteristics do not significantly separate the classes are indicated by a few blue

points inside the orange cloud. This is shown in Fig. 4.19.

79

Figure 4.12: Confusion matrix of the model with statistical properties Median and Q1

Figure 4.13: Confusion matrix of the model with statistical properties IQR and kurtosis

IQR vs Kurtosis plot

The tightly clustered orange dots in projected Label 1 indicate a high concentra-

tion of identical values for IQR and Kurtosis. The blue dots indicate some overlap

and difficulties differentiating the groups based alone on these two traits. They also

exhibit a larger spread in the IQR values but are still quite close in terms of kurtosis.

80

Figure 4.14: Confusion matrix of the model with statistical properties for Q3 and skewness

Figure 4.15: Confusion matrix of the model with statistical properties for mean and Q3

Q3 vs Skewness plot

81

Figure 4.16: Confusion matrix of the model with statistical properties for IQR and std

Figure 4.17: Confusion matrix of the model with statistical properties for mean,min,max
and std

The scatter plot displays data categorized into two groups based on ”Predicted

Label” (0 or 1) across two variables: ”Q3” on the x-axis and ”Skewness” on the y-

axis. The plot primarily shows a dense concentration of data points (label 0) with

a narrow range of ”Skewness” values and a broad range of ”Q3” values. There is a

82

Figure 4.18: Confusion matrix of the model with statistical properties for
mean,median,min and max

notable outlier marked as label 1, surrounded by the dense cluster of label 0 points,

suggesting a potential anomaly or exceptional case within the dataset.

Mean vs Q3 plot

Label 0 points overlaying label 1 indicates that there could not be a significant

difference between the two classes based just on the mean and Q3. If the model

predominantly uses these traits, then successfully identifying new samples may be-

come difficult. The dataset’s variability is indicated by the dense clustering and wide

distribution of the data points. This variability might be advantageous for model

training, but it may also call for more intricate modeling strategies or extra features

to get acceptable classification results.

IQR vs STD plot

This plot shows a dense cluster where the majority of data points (label 1) show

a wide range of skewness across different values of Q3, mainly between -10 and 0. A

few anomalies are dispersed. The sparse blue spots (label 0) indicate that there is

little difference between the classes.

STD vs Mean

There is a noticeable difference between the two clusters: label 0 represents a

83

cluster with a relatively low mean and standard deviation, whereas label 1 represents

a cluster with a wider range of means and greater standard deviations. This suggests

that the two anticipated labels may be distinguished from one another using the mean

and standard deviation attributes.

STD vs Mean

The same result is obtained as above.

Figure 4.19: Feature distribution graph for statistical properties median and q1

Figure 4.20: Feature distribution graph for statistical properties IQR and kurtosis

As the confusion matrix and feature distribution graphs suggest, the best accuracy

84

Figure 4.21: Feature distribution graph for statistical properties Q3 and skewness

Figure 4.22: Feature distribution graph for statistical properties mean and Q3

was achieved with the combination of mean, standard deviation, minimum, and max-

imum. Using these optimal statistical properties, we applied the SVM classifier to

all three AES implementation trace sets—unprotected, masked1, and masked2—and

successfully classified them with high accuracy.

We applied the SVM classifier on the dataset using the statistical properties

mean,std,min and max to classify the power traces into 3 AES implementation namely

unprotected(0),masked1(1) and masked2(2). Fig 4.26 and 4.27 shows the feature dis-

tribution by class and confusion matrix. The findings are as follows:

85

Figure 4.23: Feature distribution graph for statistical properties IQR and std

Figure 4.24: Feature distribution graph for statistical properties mean,std,min and max

Class-Based Feature Distributions

The distribution of the chosen statistical attributes (mean, standard deviation

(std), minimum (min), and maximum (max)) across the three AES implementations

(unprotected, masked1, and masked2) is depicted in the scatter plot matrix. Different

colours are used to represent each class: Purple (0): Unprotected Teal (1): Masked1

Yellow (2): Masked2 These statistical characteristics are useful in differentiating be-

tween the various AES implementations, as the plots show clear grouping of data

points for every class. The distinct distinction between clusters indicates that the

chosen features have a high potential for classification.

86

Figure 4.25: Feature distribution graph for statistical properties mean,median,min and
max

Confusion Matrix

True Label 0 (Unprotected): Every one of the 20,000 real cases was correctly

categorised as class 0. True Label 1 (Masked1): Of the 30,104 real cases, 30,083

were appropriately categorised, and there were only 21 cases that were incorrectly

assigned to class 2. True Label 2 (Masked2): 35,083 real cases were all appropriately

categorised as class 2.

Optimal Threshold Calculation and Retracing the Power Traces

ROC Curve and Optimal Thresholds

The ROC curve (Receiver Operating Characteristic curve) and AUC (Area Under

the Curve) are used to evaluate the classifier’s performance across all classes. The

ROC curves for all classes are shown, and the AUC values are:

• Class 0 (Unprotected): AUC = 1.0

• Class 1 (Masked1): AUC = 0.9999

• Class 2 (Masked2): AUC = 0.9999

The optimal thresholds calculated for each class are:

• Class 0: 2.2238

87

Figure 4.26: Feature distribution graph for statistical properties mean,median,min and
max in classifying all implementations

• Class 1: 1.0061

• Class 2: 2.2222

The ROC curve and AUC values indicate that the classifier performs exceptionally

well, with near-perfect separation between the classes. The optimal thresholds further

refine the decision boundaries, ensuring precise classification. The ROC curve is

shown in the Fig. 4.28

Analysis after hashing and ID method Fig 4.29 and 4.30 shows the box plot

and density plots of feature distributions for train and test sets for hashing and ID

method respectively. Box plot analysis Train Set:

• Mean: Centered around zero with minimal variation.

88

Figure 4.27: Confusion matrix for classifying AES implementations

Figure 4.28: The ROC curve

• Standard Deviation: Slight dispersion with some outliers.

• Minimum: Broad range, including significant negative values.

• Maximum: Positively skewed values.

Test Set: Similar patterns to the train set, indicating consistency in data split.

89

• Mean: Centered around zero.

• Standard Deviation: Similar spread to the training set.

• Minimum: Broad range, similar to the train set.

• Maximum: Positively skewed.

Figure 4.29: Box plot of feature distributions for train and test sets for hashing

Density peak analysis

Train Set:

• Density Peaks: Distinct peaks for each class, indicating good differentiation.

• Class Overlap: Minimal overlap, suggesting effective feature separation.

Test Set: Similar distinct peaks and minimal overlap as the train set, confirm con-

sistent feature distributions. Overall, the features (mean, std, min, max) effectively

differentiate between classes with consistent distributions in both train and test sets,

supporting reliable model performance.

90

Figure 4.30: Density plots of feature distributions for train and test sets for ID method

91

4.4 Comparitive analysis with existing state of the art

A comparative analysis of our proposed work in module 2 with the existing tech-

niques in the classification of power traces, feature extraction, and retracing the power

traces using AES implementation is shown in Table 6.1.

• Papers [102],[103], and [104]: These papers leveraged the AESPT dataset

and employed Estimation of distribution algorithms(EDA) power analysis mod-

els for profiling. However, they did not implement feature extraction or classi-

fication and retracing techniques.

• Proposed Work: Our analysis also utilized the AESPT dataset but incorpo-

rated deep learning models such as ResNet and GRUTrace. Unlike previous

studies, we implemented efficient feature extraction and classification methods,

along with retracing techniques like hashing and the ID method.

In conclusion, our work integrates comprehensive analytical methods and advanced

deep learning models to achieve better accuracy and performance for both classifica-

tion and retracing of power traces.

Table 4.1: Comparative analysis of Module 2 with existing work

Paper Dataset Attack type Model Feature

Extraction

Classification

and Retracing

[102] AESPT Profiling EDA-Based

PA

No No

[103] AESPT Profiling EDA-Based

PA

No No

[104] AESPT Profiling EDA-Based

PA

No No

Proposed

work

AESPT Profiling ResTraceNet,

GRUTrace

Yes Yes

92

4.5 Summary

In this module, we applied various feature extraction techniques to the statistical

properties of power traces to improve the classification accuracy of AES implementa-

tions. Initially, we explored several feature extraction methods including permutation

importance, recursive feature elimination, L1 regularization, mutual information, and

Shapley additive explanation (SHAP). These techniques allowed us to identify the

most significant features contributing to the classification performance.

To further enhance the accuracy, we employed Principal Component Analysis

(PCA). Through PCA, we selected the optimal combination of features: minimum,

maximum, standard deviation, and median. Using these features, we classified the

power traces into three categories: unprotected, masked1, and masked2. The appli-

cation of PCA was instrumental in reducing dimensionality while retaining the most

informative features, which significantly improved the classification results.

The Support Vector Machine (SVM) classifier was utilized to categorize the power

traces based on the extracted features. The classifier’s performance was evaluated

using confusion matrices and ROC curves, confirming high accuracy in distinguishing

between the different AES implementations. The optimal threshold for each class was

determined using ROC and AUC metrics, which ensured the classifier’s reliability and

precision.

Finally, we retraced the original power traces from the derived dataset using two

techniques: hashing and the ID method. The hashing technique provided robust data

integrity and traceability by generating unique identifiers for each data point. The

ID method, on the other hand, offered a straightforward approach to tracking data

points throughout the process. Both methods proved effective in ensuring accurate

classification and retracing of the power traces.

Overall, our approach combining feature extraction techniques, PCA, and robust

classification methods demonstrated a comprehensive strategy for accurately classi-

fying and retracing power traces in AES implementations. The results highlight the

importance of selecting optimal features and employing advanced analytical tech-

niques to achieve high classification performance and data integrity.

Chapter 5

Module 3: Key deduction using ResTraceNet and GRUTrace

This module explores various deep learning (DL) techniques to deduce crypto-

graphic keys from power traces in an AES implementation. We chose the ASCAD

dataset, which contains power traces from an ATMEGA boolean masked AES imple-

mentation. We employed and evaluated the performance of two major DL models:

ResTraceNet and GRUTrace. Additionally, we investigated the use of only 100 power

traces to evaluate if sensitive information could still be deduced. Figure 5.1 provides

an overview highlighting Module 3 of the research contributions.

Figure 5.1: Research Contributions: Highlighted Module 3

5.1 Dataset

5.1.1 Problem with AES PTV2 dataset

When we performed the initial analysis on the AES PTv2 dataset, we encountered

several issues. The major problem was the absence of the ciphertext field, which is

crucial for key deduction. Although the dataset’s file structure listed a ciphertext

93

94

data, no such file was present, hindering our analysis. Without the ciphertext, it

is impossible to perform the necessary cryptographic computations and validate the

model’s effectiveness in deducing the key. Consequently, we decided to choose the

ASCAD dataset as an alternative, which is ideal for key deduction.

5.1.2 ASCAD Dataset

The ASCAD (ANSSI SCA Database) dataset is a comprehensive data collection

designed to act as a benchmark for the side-channel attacks community, similar to

the role that the MNIST dataset plays in evaluating classification algorithms. This

dataset contains EM and power traces collected from an ATMEGA microcontroller

executing a boolean masked AES implementation using a fixed key. The dataset

structure is divided into two major sections: profiling and attack phases, as shown in

Fig. 5.2.

Figure 5.2: The ASCAD dataset hierarchical structure

Data Structure

The dataset is structured into two main phases:

• Profiling Phase: This phase provides a large number of traces along with the

corresponding secret key, which allows researchers to build and train their mod-

els. This phase is analogous to a training dataset in machine learning.

95

• Attack Phase: In this phase, traces are provided without the secret key, chal-

lenging the models to predict the key. This phase serves as the test set for

evaluating the effectiveness of the trained models.

Profiling Phase

• Labels: Target labels output used for training the model, which are S-Box

outputs.

• Metadata: Contains integral data such as plaintext, ciphertext, key, masks,

and desynchronization (intentional misalignment of power traces to simulate

real-world traces).

• Power Traces: Actual raw power traces collected while running the AES imple-

mentation.

Attack Phase

• Labels: Used to evaluate the performance of the profiling phase model during

the attack phase.

• Metadata: Contains integral data such as plaintext, ciphertext, key, masks, and

desynchronization, similar to the profiling phase.

• Power Traces: Actual raw power traces collected to attack the AES implemen-

tation.

Data Formats

The dataset is often provided in CSV or HDF5 formats, making it accessible

for data processing and analysis using various programming languages and tools.

Applications

The ASCAD dataset is widely used in research to:

• Develop and evaluate side-channel attack techniques, such as Differential Power

Analysis (DPA), Correlation Power Analysis (CPA), and template attacks.

96

• Test the effectiveness of various machine learning and deep learning models,

including CNNs,RNNs and others, in predicting cryptographic keys from side-

channel traces.

• Study the effectiveness of countermeasures, like masking and noise addition, in

protecting cryptographic implementations.

Challenges and Considerations

• Desynchronization and Noise: Real-world traces often include desynchroniza-

tion and noise, which complicates the analysis. The ASCAD dataset sometimes

includes such factors to better simulate realistic scenarios.

• High Dimensionality: The traces are often high-dimensional, presenting chal-

lenges in terms of data processing and model training, especially when using

deep learning techniques.

• Ethical Considerations: While the dataset is invaluable for advancing the field,

it also underscores the need for ethical considerations in cybersecurity research,

particularly in the responsible disclosure and mitigation of vulnerabilities.

This dataset is built to facilitate the training and evaluation of machine learning

and deep learning models in side-channel analysis, providing essential information for

both model building and the attack phase.

5.2 Methodology

In this section, we leverage powerful deep learning models, specifically ResTraceNet

and GRUTrace, to predict the S-Box output and subsequently deduce the crypto-

graphic key of a masked AES implementation using the ASCAD dataset. We use

the profiling phase data to train the model and then apply the trained model to the

attack phase data for key deduction. The overall methodology workflow is depicted

in Figure 5.3. This diagram illustrates the complete process from data preparation

and feature engineering to model training and key deduction as explained below:

97

• Data Preparation and Feature Engineering This initial phase involves

converting the hierarchical HDF5 file into csv files, loading the power traces,

associated metadata, and labels from the ASCAD dataset. Pre-processing steps

include decoding the cipher text from hexadecimal to a numeric format suit-

able for analysis, scaling the power traces to standardize the data, and applying

Principal Component Analysis (PCA) to reduce dimensionality and focus on

the most informative features. These processed components are then concate-

nated with additional metadata to shape and categorize the data effectively for

subsequent modeling.

• Model Training with ResTraceNet and GRUTrace In this section, the

architecture of both ResTraceNet and GRUTrace models is set up to handle the

characteristics of the time-series data provided by the power traces. The models

are trained on the prepared dataset, utilizing techniques such as “early stop-

ping” to prevent overfitting and “ReduceLROnPlateau” to adjust the learning

rate dynamically based on performance metrics. This systematic training helps

in optimizing the models’ ability to predict the correct S-box outputs from the

AES implementation.

• Model Evaluation and Prediction Once models are trained, they utilize

a “softmax” output layer to transform the logits into a probability distribu-

tion across 256 possible classes, each corresponding to a potential key byte.

The model’s performance is rigorously evaluated through accuracy assessments

and the generation of confusion matrices. These tools help in quantifying the

effectiveness of the models in predicting the correct cryptographic keys.

• Key Deduction from S-Box Output The final phase involves applying the

trained models to new, unseen test data to predict the S-box outputs. These

predictions undergo inverse S-box mapping to deduce the possible key values.

The results from multiple models and predictions are aggregated to ascertain

the most likely cryptographic key, providing a robust conclusion to the key

deduction process. We also use 100 power traces and apply the most optimal

98

models to demonstrate their power in predicting S-box output and key.

Figure 5.3: Overall Methodology Workflow

5.2.1 ResTraceNet: ResNet-Inspired Architecture for Power Trace

Analysis

In this research, we propose ResTraceNet, an adaptation of the ResNet archi-

tecture tailored for power trace data analysis. ResTraceNet employs 1-dimensional

convolutions organized into blocks inspired by the ResNet framework. Each block is

designed to capture temporal dependencies within the data, similar to how ResNet

blocks capture spatial features in images. We explore the effectiveness of ResTraceNet

on ASCAD dataset, demonstrating its ability to deduce the AES key.

1. Resnet Adaptation for Power Trace Data: ResTraceNet is a specialized ver-

sion of the traditional ResNet model, redesigned to handle the requirements of

analyzing one-dimensional power trace data, which is commonly used in time-

series analysis. Unlike the original ResNet that is tailored for images and uses

99

2D convolutional layers, ResTraceNet uses 1D convolutional layers. These layers

are effective at detecting patterns over time, making them ideal for analyzing

sequences of data recorded during cryptographic operations.

The core of ResTraceNet consists of several blocks, each containing 1D convolu-

tional layers followed by normalization and activation functions. These blocks

are designed to extract features progressively from the power traces, enhancing

the model’s ability to understand complex data patterns essential for predicting

cryptographic keys.

Each block in the architecture builds on the previous one, starting with sim-

ple feature detection and advancing to more complex analyses. This layering

helps in refining the model’s predictions. The design includes shortcut connec-

tions that help maintain the flow of information across the network, preventing

common issues like gradient vanishing and enabling deeper analysis.

Overall, the structure of ResTraceNet allows it to effectively handle the com-

plexities of encrypted power trace data, optimizing it for tasks such as predicting

S-box outputs and deducing cryptographic keys.

2. 1-Dimensional Convolutions: The ResNet architecture, initially designed for

2D image processing, has been tailored to analyze one-dimensional time-series

data such as power traces. This adaptation involves replacing traditional 2D

convolutional layers with 1D layers that are better suited for handling sequential

data. These 1D layers effectively capture temporal patterns and features crucial

for cryptographic analysis by sliding filters over the data sequence.

The structure of the ResTraceNet, now focused on 1D convolutions, incorporates

blocks of these layers followed by normalization and activation functions. These

blocks are designed to progressively deepen the analysis without information

loss, supported by shortcut connections that prevent gradient vanishing. This

design is repeated several times within the architecture to handle increasing

complexity and extract more abstract features.

100

The implementation of this architecture involves multiple blocks of varying com-

plexity. Training employs the Adam optimizer with dynamic learning rate ad-

justments and early stopping mechanisms to ensure optimal generalization on

unseen data, crucial for tasks like S-Box output prediction and key deduction.

An overview of the ResTraceNet architecture with each component’s function

and purpose is shown in Table 5.1.

Table 5.1: Overview of ResTraceNet Architecture Components

Component Function Purpose
1D Convolutional
Layers

Utilizes filters to capture
temporal patterns in
one-dimensional power
trace data.

Essential for detecting
time-dependent features
and patterns within the
power traces.

Batch Normalization Standardizes outputs of
convolutional layers to
improve network stability
and speed.

Enhances the consistency
and efficiency of the
model by normalizing
layer inputs.

Activation Function Uses LeakyReLU to
introduce non-linearity.

Helps the model to learn
complex and non-linear
patterns from the data.

Shortcut Connections Allows gradients to flow
directly through the
network, preventing the
vanishing gradient
problem.

Supports deeper network
architectures by enabling
effective training of
numerous layers.

Block Design Each block contains a
series of convolutional,
normalization, and
activation layers.

Facilitates progressive
refinement of features,
enhancing the network’s
learning capability.

Significance of Blocks Designed to
incrementally extract and
refine features, from
basic to complex.

Critical for building a
deep understanding of
the data, leading to more
accurate predictions.

Repetition Pattern Blocks are repeated
based on the complexity
required by the task.

Allows the network to
progressively enhance its
feature extraction
capabilities and accuracy.

101

5.2.2 ResTraceNet model

We employed and evaluated three variants of the ResTraceNet model to determine

the most effective architecture for predicting the S-box output and then deducing the

key. Initially, the models were trained using the profiling phase data, and based on

their performance, we identified the most optimal model. Once the best-performing

variant was determined, we used it on the attack dataset to glean sensitive informa-

tion.

ResTraceNet Variant 1

We started by loading the dataset containing power traces, metadata, and labels

from the CSV files. The power traces were scaled using the StandardScaler, and

the dimensionality was reduced to 50 PCA components. This pre-processing phase

ensures that the features fed into the model are well-normalized and less complex,

which facilitates more efficient training.

Architecture

The architecture consists of an input layer that receives the preprocessed power

trace data. This input data is then passed through a series of convolutional and

residual blocks designed to capture intricate relationships and features in the power

trace.

The first layer is a 1D convolutional layer with 128 filters and a kernel size of 7,

followed by multiple residual blocks. Each residual block contains two convolutional

layers with batch normalization and Leaky ReLU activation functions. Identity short-

cut connections connect each block’s input directly to the output, facilitating gradient

flow during backpropagation and enabling deeper networks without vanishing gradi-

ent issues. Some residual blocks include downsampling, achieved by using a stride

of 2 in the convolutional layers, to reduce dimensionality and capture hierarchical

features.

A global average pooling layer is added to condense the feature maps into a single

vector, and a dropout layer with a rate of 0.5 is included to prevent overfitting. The

final dense layer uses a softmax activation function to output the probabilities for

each of the 256 possible S-box values, enabling the model to deduce the key.

102

ResTraceNet Variant 2

In ResTraceNet Variant 2, we aimed to improve the efficiency of Variant 1 by

making changes in the model architecture and hyperparameters. The architecture

began with an input layer that received the processed power traces and metadata,

followed by convolutional and residual blocks designed to capture hidden patterns.

The initial convolutional layer used 128 filters with a kernel size of 7 and a stride of

2.

This variant used numerous residual blocks, each consisting of two convolutional

layers, batch normalization, and ReLU activation functions. Identity shortcut connec-

tions were employed to counter the vanishing gradient problem and enable gradient

flow in each residual block. Some residual blocks included downsampling, which uti-

lized a stride of 2 in the convolutional layers, reducing dimensionality and capturing

hierarchical features.

The architecture also included a global average pooling layer, which condensed the

feature maps into a single vector, making it appropriate for the dense output layer.

This was followed by a dropout layer with a rate of 0.2 to prevent overfitting. The

final dense layer employed a softmax activation function to output probabilities for

each of the 256 possible S-box values, enabling the model to accurately predict the

S-box output and deduce the cryptographic key from the power traces. Additionally,

a learning rate scheduler was implemented to adjust the learning rate dynamically,

improving the training phase.

ResTraceNet Variant 3

This ResTraceNet architecture consists of a total of 12 convolutional layers dis-

tributed across 6 residual blocks, along with other essential layers such as Batch-

Normalization, LeakyReLU, GlobalAveragePooling, and Dropout. This architecture

is designed to handle one-dimensional data, specifically power traces, which are se-

quences of power measurements taken over time. The use of 1D convolutional layers

allows the model to effectively capture temporal patterns and features from the power

trace data, facilitating accurate prediction of S-box outputs and key deduction.

103

The architecture starts with an input layer that is configured to receive one-

dimensional data of length input dim. This input data represents power traces col-

lected over time during AES cryptographic operations.

The first layer is a 1D convolutional layer with 128 filters and a kernel size of 7. It

uses a stride of 2, which helps in downsampling the input data and capturing broader

features. This layer is crucial for extracting initial patterns from the raw power trace

data.

Following the initial convolutional layer, the architecture includes a series of six

residual blocks. Each residual block is designed to improve feature learning through

shortcut connections. The blocks are structured as follows:

• Residual Block 1: Comprising two 1D convolutional layers, each with 128

filters and a kernel size of 3. Batch normalization and LeakyReLU activation

are applied after each convolution. This block maintains the same spatial di-

mensions as the input.

• Residual Block 2: Similar to the first block but includes downsampling. The

convolutional layers have a stride of 2, effectively reducing the spatial dimensions

and allowing the model to capture hierarchical features. The identity connection

is also adjusted to match the new dimensions.

• Residual Block 3: Comprising two 1D convolutional layers with 256 filters

and a kernel size of 3. Batch normalization and LeakyReLU activation are again

applied after each convolution. This block captures more detailed features.

• Residual Block 4: Similar to the third block but includes downsampling with

a stride of 2.

• Residual Block 5: Comprising two 1D convolutional layers with 512 filters

and a kernel size of 3. Batch normalization and LeakyReLU activation continue

to be used.

• Residual Block 6: Similar to the fifth block but includes downsampling with

a stride of 2.

104

After the series of residual blocks, a global average pooling layer is used. This layer

condenses each feature map into a single value by averaging all its elements. This

reduction simplifies the data while retaining the most important features learned by

the convolutional layers.

Following global average pooling, a dropout layer with a rate of 0.3 is included.

Dropout is a regularization technique that helps prevent overfitting by randomly

setting a fraction of the input units to zero during training.

The final layer is a dense layer with a softmax activation function. This layer out-

puts a probability distribution over the 256 possible classes (S-box values), enabling

the model to classify the input data accurately.

For training, the model uses the Adam optimizer, which adjusts the learning rate

dynamically to improve convergence. A learning rate scheduler is employed to adjust

the learning rate value dynamically during training, starting at 0.001 for the initial

10 epochs and then reducing it to 0.0001 for the remaining epochs. This method

helps stabilize the training process and achieve optimal convergence. Early stopping

is employed to monitor the validation loss and halt training if no improvement is

observed for 20 epochs, restoring the best model weights. Additionally, a learning

rate scheduler is used to decrease the learning rate over time, which helps in achieving

optimal convergence.

This architecture, with its deep residual learning framework and 1D convolutional

layers, is designed to handle the complexities of power trace data effectively, making

it suitable for tasks such as S-box output prediction and cryptographic key deduction

in AES implementations.

Fig. 5.4 shows the architecture of ResTraceNet variant 3.

The Table 5.2, summarizes the hyperparameters and performance metrics of the

three ResTraceNet variants. Each model has a unique configuration concerning

dropout rates, L2 regularization, learning rate schedules, batch sizes, activation func-

tions, and early stopping criteria.

105

Attribute Model 1 Model 2 Model 3
Dropout Rate 0.5 0.2 0.2
L2
Regularization

0.0005 0.0005 0.0005

Learning Rate
Schedule

Cosine
Annealing with
Warm Restarts

Step Decay:
0.001, 0.0005,
0.0001, 0.00005

Step Decay:
0.001, 0.0005,
0.0001

Batch Size 64 128 64
Activation
Function

LeakyReLU
(0.01)

ReLU
LeakyReLU
(0.01)

Epochs 200 150 200
Early Stopping
Patience

20 30 30

Additional
Layers

Standard
ResNet

Standard
ResNet

Standard
ResNet

Optimizer
Adam (initial
LR=0.001)

Adam (initial
LR=0.001)

Adam (initial
LR=0.001)

PCA
Components

50 50 50

Table 5.2: Comparison of different ResTraceNet variants in hyperparameters and perfor-
mance metrics

5.2.3 GRUTrace: Adaptation of GRU for Analyzing Power Trace Data

In adapting the traditional GRU architecture to analyze power trace data, the

developed model, termed GruTrace, retains the foundational structure of a Recur-

rent Neural Network (RNN). This adaptation leverages the inherent capabilities of

RNNs, particularly suited for sequential data analysis, by implementing Gated Re-

current Units (GRUs) in a bidirectional and layered configuration. Here’s how these

modifications were implemented:

1. Bidirectional GRU Layers: The GRU cells were configured in a bidirectional

setup, enabling the network to process data both forwards and backwards. This

dual-direction processing is essential for capturing dependencies that provide a

comprehensive view of the data’s context, which is crucial for accurate crypto-

graphic analysis.

106

2. Layer Normalization: To enhance the stability and efficiency of the train-

ing process, layer normalization was integrated within each GRU layer. This

normalization ensures that the outputs across different layers are on a similar

scale, which is vital given the variability and potential noise present in power

trace data.

3. Integration of Additional Features: Recognizing the value of contextual

information, the input layer was modified to include additional data dimensions

such as metadata. This adaptation allows the model to utilize a richer set of

inputs, significantly enhancing its ability to make informed predictions.

4. Dropout for Regularization: To prevent the model from overfitting to

the noisy training data, dropout regularization was strategically implemented

within the network. This technique involves randomly disabling a fraction of

the neurons during training, which encourages the development of more robust

features that generalize better to unseen data.

This adapted GRUTrace architecture demonstrates the flexibility of deep learning

techniques to meet the demands of highly specialized data analysis tasks, maximizing

both performance and applicability in complex domains like cryptographic analysis.

5.2.4 GRUTrace model

This architecture is designed to work efficiently with sequential data, making it

ideal for side-channel attacks where power traces are treated as time-series data. The

Fig. 5.5 shows the architectural diagram of the GRUTrace model.

• Data Loading and Preprocessing

The dataset, which contains power traces, metadata, and labels, is loaded from

CSV files. The ciphertext in the metadata is decoded from its hexadecimal

representation into numerical values. To prepare the data, the power traces

are standardized using the StandardScaler to normalize the values. Principal

Component Analysis (PCA) is then applied to reduce the dimensionality to 50

components, capturing the highest variance in the power traces. The power

107

traces are combined with the ciphertext and the third byte of the plaintext to

create the complete feature set, with any missing values filled with zero.

• Model Architecture

The model begins with an input layer designed to receive data shaped accord-

ing to the number of features, including the PCA components, plaintext, and

ciphertext. The core of this model consists of three bidirectional GRU layers.

The first bidirectional GRU layer has 128 units and processes input data in

both forward and reverse directions, capturing dependencies across the entire

sequence of data. After this layer, we apply layer normalization to stabilize the

output, followed by a dropout layer with a rate of 0.3 to prevent overfitting.

The second layer, also bidirectional, contains 256 units. Like the first layer, it

returns sequences and is followed by layer normalization and a dropout layer.

The third bidirectional GRU layer, with 128 units, summarizes the informa-

tion collected from the previous layers into a single output without returning

sequences.

The final output is passed through a dense layer with a softmax activation

function, producing a probability distribution over the possible 256 values. The

model is compiled using the Adam optimizer and categorical cross-entropy loss,

which is ideal for multiclassification tasks. Early stopping is implemented to halt

training if the validation loss does not improve for 20 epochs, and learning rate

reduction on plateau adjusts the learning rate if the validation loss stagnates.

The model is trained for 150 epochs with a batch size of 64.

This GRUTrace model architecture, with its bidirectional layers and regularization

techniques like layer normalization and dropout, is designed to leverage the sequential

nature of power traces effectively.

108

5.2.5 Testing on attack phase data and predicting Sbox output

During the testing phase, we utilize the trained ResTraceNet and GRUTrace mod-

els to predict the S-Box output from the AES implementation and subsequently de-

duce the cryptographic key. Initially, we load the trained models and the test data,

which includes power traces, labels, and metadata. The metadata is processed to

extract the ciphertext values. Consistency is ensured by applying the same scaling

and PCA transformations used during training.

Once the test data is preprocessed, it is reshaped to align with the input require-

ments of the chosen model. The model then predicts the S-Box output classes for

each trace in the dataset. The predicted classes are compared with the actual classes

to evaluate the model’s performance on the test set.

5.2.6 Key deduction

The key deduction process begins after predicting the S-Box output. This involves

using the predicted S-Box values and the plaintext to deduce the most likely key byte.

An inverse S-Box is used to identify possible key candidates. The frequency of each

candidate is recorded, and the candidate with the highest frequency is deemed the

most probable key byte. This method helps in accurately identifying the correct key

byte with high confidence. To visualize the results, histograms, line charts, and pie

charts are generated to display the distribution of key candidates and the confidence

level in the most likely key byte.

5.2.7 Key Deduction Using ResTraceNet and GRUTrace Models with

100 power traces

In this section, we leverage only 100 power traces and metadata to extract the

AES key byte. The ResTraceNet variant 3 and GRUTrace models used in the pre-

vious section are employed to predict the S-Box output from the power traces. The

architecture of the models remains consistent with the previously explained designs.

The most optimal versions of ResTraceNet are used for this prediction. By utiliz-

ing the capabilities of these deep learning models, we aim to accurately deduce the

109

cryptographic key from the 100 power traces.

5.3 Results and discussion

In this section, we present the output obtained from training the three variants of

ResTraceNet and GRUTrace models by plotting the PCA variance explained graph,

training vs. validation accuracy, and training vs. validation loss graph. Furthermore,

we extend this experiment to 100 power traces using the most optimal variant from

the ResTraceNet and GRUTrace models.

5.3.1 ResTracenet variant1

For ResTraceNet variant 1, the PCA variance explained graph (5.6) shows that

the initial few principal components contributed the most variance in the dataset,

demonstrating the effectiveness of PCA in capturing the most integral features. The

training vs. validation accuracy and loss graphs show a clear improvement in train-

ing accuracy but also exhibit significant variations in validation accuracy, indicating

overfitting. The validation loss graph displays some variance, indicating instability

during training. Fig.5.7 shows the training vs validation accuracy and training vs

validation loss for ResTraceNet variant 1.

5.3.2 ResTracenet variant2

For ResTraceNet variant 2, the PCA variance explained graph (5.8 similarly indi-

cates that the initial principal components capture a major percentage of the variance.

The training and validation accuracy graph shows an increase but with high fluctu-

ations in validation accuracy, suggesting instability. The training and validation loss

graphs show a steady decline in losses, but with recurrent spikes in validation loss,

reflecting overfitting and instability. Fig.5.9 shows the training vs validation accuracy

and training vs validation loss for ResTraceNet variant 2.

110

5.3.3 ResTracenet variant3

ResTraceNet variant 3 shows the most consistent performance across all three

models with high training accuracy and fewer fluctuations. The PCA variance ex-

plained graph for Variant 3 as shown in Fig. 5.10 is similar to the previous variants,

indicating that the first few principal components capture the majority of the vari-

ance in the data. This efficiency in extracting crucial features is vital for the model

to learn patterns clearly.

The training vs. validation accuracy graph for Variant 3 shows a gradual increase

in accuracy over the epochs. The validation accuracy remains consistently high,

suggesting that the model is not overfitting and can generalize well with new, unseen

data. The training vs. validation loss graph demonstrates the model’s stability, with a

steady decline in both training and validation loss values, indicating effective learning

and minimal error.

To conclude, Variant 3 is the most optimal choice for key deduction from the power

traces. Fig.5.11 shows the training vs validation accuracy and training vs validation

loss for ResTraceNet variant 3.

5.3.4 GRUTrace model

Using the GRUTrace model, the PCA variance explained as indicated by Fig. 5.12

is similar to all the previous models, showing that the first few components captured

a large proportion of the variance. The training vs. validation accuracy graph for

the GRU model indicates a steady increase, demonstrating that the model is learning

effectively. The training vs. validation loss graph exhibits a smooth decline, indicating

that the model is becoming better at reducing loss over epochs. This stability in both

graphs further proves the GRUTrace model’s effectiveness in learning from the AES

power traces and accurately predicting the S-box output. Fig.5.13 shows the training

vs validation accuracy and training vs validation loss for GRUTrace model.

111

5.3.5 Using 100 power traces with ResTraceNet and GRUTrace model

We experimented with using only 100 power traces, utilizing the ResTraceNet

variant 3, which yielded the most optimal model as indicated by the graphs and re-

sults. The training vs. validation accuracy and loss graphs show a clear increase in

accuracy and a steady decline in loss, even with a reduced number of traces as shown

in Fig. 5.14. This demonstrates the model’s capability to make accurate predictions

even with limited data. We also evaluated the GRUTrace model’s performance in

predicting the S-box output using 100 power traces. The accuracy graphs indicate

a steady increase in both training and validation accuracy, with some fluctuations

in validation accuracy, suggesting slight overfitting. The loss graph demonstrates a

gradual decline in both training and validation loss, showing the model’s ability to

minimize prediction errors over time. Although there are small variations, the over-

all performance suggests that the GRUTrace model successfully learns the patterns

necessary for predicting the S-box output and deducing the cryptographic key. Both

the accuracy and loss graph for GRUTrace are shown in Fig. 5.15

5.3.6 S-box prediction and key deduction

Using ResTraceNet variant 3, we achieved a training accuracy of 91.6% and a

validation accuracy of 99.4%. The highest testing accuracy recorded for this model

was 96.68%. For the GRUTrace model, the training accuracy reached 91%, with a

validation accuracy of 96.8% and a slightly lower testing accuracy of 96.28%.

When using 100 power traces, the results were as follows:

The ResTraceNet model achieved a training accuracy of 82.7%, a validation ac-

curacy of 92.13%, and a testing accuracy of 96.8%. The GRUTrace model achieved

a training accuracy of 87.6%, a validation accuracy of 98.7%, and a testing accuracy

of 98.53%. By leveraging ReTracesNet variant 3 and the GRUTrace model with only

100 power traces, we successfully predicted the S-box outputs and deduced the AES

key byte. The original key byte array was [77, 251, 224, 242, 114, 33, 254, 16, 167,

141, 74, 220, 142, 73, 4, 105], and the deduced key byte was 224. This demonstrates

the effectiveness of our proposed models in extracting sensitive information from the

112

power traces, validating their potential in countering side-channel attacks.

Visualization

For the ResTraceNet model, we performed the following visualizations. Fig. 5.16

shows a pie chart representing the confidence in the most likely key byte, where the

model predicted the key with 95.6% confidence. Fig. 5.17 indicates a histogram of key

candidate frequencies, highlighting the dominance of the most likely key candidate.

Fig. 5.18 shows a confusion matrix, illustrating the model’s high accuracy in pre-

dicting the correct S-box values. We also performed a temporal accuracy analysis for

ResTraceNet Variant 3 as shown in Fig. 5.21 This analysis demonstrates the model’s

consistent performance over different time steps, further validating its robustness.

For the GRUTrace model, Fig. 5.20 and 5.21 shows the line chart of key candidate

frequencies and confusion matrix confirming the GRUTrace model’s effectiveness in

pinpointing the correct key byte.

Using 100 traces for the GRUTrace model and ResTraceNet model, we visualized

the histogram of key candidate frequency and confusion matrix as indicated by Fig.

5.22

113

Figure 5.4: The architecture of ResTraceNet variant3

114

Figure 5.5: The architecture of GRUTrace model

Figure 5.6: The PCA variance explained graph for ResTraceNet Variant 1

115

(a) Training vs validation accuracy graph for Re-
sTraceNet variant 1

(b) Training vs validation loss graph for variant
1

Figure 5.7: training vs validation accuracy and training vs validation loss for ResTraceNet
variant 1

Figure 5.8: The PCA variance explained graph for ResTracenet Variant 2

116

(a) Training vs validation accuracy graph for
variant 2

(b) Training vs validation loss graph for variant
2

Figure 5.9: training vs validation accuracy and training vs validation loss for ResTraceNet
variant 2

Figure 5.10: The PCA variance explained graph for ResTracenet Variant 3

117

(a) Training vs validation accuracy graph for Re-
sTraceNet variant 3

(b) Training vs validation loss graph for Re-
sTraceNet variant 3

Figure 5.11: training vs validation accuracy and training vs validation loss for Re-
sTraceNet variant 3

Figure 5.12: The PCA variance explained graph for GRUTrace model

118

(a) Training vs validation accuracy graph for
GRUTrace

(b) training vs validation loss graph for GRU-
Trace

Figure 5.13: Training vs validation accuracy and training vs validation loss for GRUTrace

Figure 5.14: The training vs. validation accuracy and loss graph for ResTraceNet model
using 100 traces

119

(a) Training vs validation accuracy graph for
GRUTrace using 100 traces

(b) Training vs validation loss graph for GRU-
Trace using 100 traces

Figure 5.15: Training vs validation accuracy and training vs validation loss for GRUTrace
using 100 traces

120

Figure 5.16: Pie chart representing the confidence in the most likely key byte for Re-
sTraceNet model

121

Figure 5.17: Histogram of key candidate frequencies using ResTraceNet model

Figure 5.18: confusion matrix for ResTraceNet model using 100 traces

122

Figure 5.19: Temporal accuracy analysis for ResTraceNet model

Figure 5.20: Line chart for key candidate frequencies for GRUTrace model

123

Figure 5.21: Confusion matrix for GRUTrace model

124

(a) Histogram of key candidate frequency for Re-
sTraceNet and GRUTrace model using 100 power
traces

(b) Confusion matrix for ResTraceNet and GRU-
Trace model using 100 power traces

Figure 5.22: Histogram of key candidate frequency and confusion matrix for GRUTrace
and ResTraceNet using 100 power trace

125

5.4 Comparitive Analysis with existing state of art

Table 5.3: Summary of Experimental Results - Dataset: ASCAD, (Legend: Profiling:
Prof., Key Deduction: KD (In Bytes), Not Provided: NP, Accuracy: Acc)

Ref Prof. KD &
SBox
O/P

Model Traces Train
Acc

Val
Acc

Test
Acc

KD

[76] Yes Yes ResNet 240 NP NP NP 1
[74] Yes Yes CNN 141/121 NP NP NP 1
[79] Yes Yes CODLA 10000 NP NP NP 1
[81] Yes Yes Bilinear

CNN
8000 NP NP NP 1

[105] Yes Masked
S-box

MLP
CNN

NP NP NP 81.0%
75.4%

1

Our
work

Yes Yes ResTraceNet100 82.70% 92.13% 96.80% 1

Our
work

Yes Yes GRUTrace 100 87.60% 98.70% 98.53% 1

Table 5.3 provides a comparative analysis of key deduction models using the AS-

CAD dataset, highlighting the differences in methodology and results between our

proposed work and existing studies.

• Paper [76]: Utilized a ResTraceNet model with 240 traces for profiling, achiev-

ing key deduction with S-box output. Training, validation, and testing accura-

cies were not provided, and the key deduction was 1 byte.

• Paper [74]: Used a CNN model with 141/121 traces for profiling. Performed

key deduction with S-box output prediction, but specific accuracies were not

reported, and the key deduction was 1 byte.

• Paper [79]: Leveraged a CODLA model using 10,000 traces for profiling. Key

deduction was achieved, but no accuracies were provided, and only 1 byte of

the key was deduced.

• Paper [81]: Employed a bilinear CNN model with 8,000 traces for profiling.

Performed key deduction, but no accuracies were reported. The key deduction

was 1 byte.

126

• Paper [105]: Combined MLP/CNN models to profile masked S-box, but spe-

cific details about the number of traces, accuracies, and the extent of key de-

duction were not provided.

• Proposed Work (ResTraceNet): Used the ResTraceNet model with 100

traces and achieved a training accuracy of 82.7%, a validation accuracy of

92.13%, and a testing accuracy of 96.8%, successfully deducing 1 key byte.

• Proposed Work (GRUTrace): Employed 100 traces with the GRUTrace

model, achieving a training accuracy of 87.6%, a validation accuracy of 98.7%,

and a testing accuracy of 98.53%, also successfully deducing 1 key byte.

In summary, our proposed work utilized fewer power traces while achieving com-

parable or better results in key deduction compared to existing methods.

5.5 Summary

In this module, we examined various deep learning methods to enhance the se-

curity of the AES algorithm against side-channel attacks, focusing on leveraging Re-

sTraceNet and GRUTrace models to successfully predict the S-box output and deduce

the cryptographic key.

Initially, we chose the AES PTv2 dataset but encountered issues due to the ab-

sence of the ciphertext field, which is crucial for making S-box predictions. Conse-

quently, we opted for the ASCAD dataset, which provided robust profiling and attack

phase data.

We implemented and evaluated three variants of ResTraceNet. Among these,

ResTraceNet Variant 3 demonstrated the most consistent performance, achieving a

highest training accuracy of 91.6% and a validation accuracy of 99.4%. The highest

testing accuracy recorded for this variant was 96.68%. Additionally, we implemented

a GRUTrace model, which attained a training accuracy of 91%, a validation accuracy

of 96.8%, and a testing accuracy of 96.28%.

After identifying the most optimal model, we evaluated the models using a subset

of 100 power traces to test their efficiency under limited data conditions. The Re-

sTraceNet model achieved training and validation accuracies of 82.7% and 92.13%,

127

respectively, with a testing accuracy of 96.8%. The GRUTrace model, under the same

conditions, achieved training and validation accuracies of 87.6% and 98.7%, respec-

tively, and a testing accuracy of 98.53%. In all scenarios, both models successfully

deduced the key byte, with the original key byte being [77, 251, 224, 242, 114, 33,

254, 16, 167, 141, 74, 220, 142, 73, 4, 105] and the deduced key byte being 224.

We further validated the effectiveness of these models using various visualizations

such as detailed temporal analysis, key candidate distribution, and confidence levels.

To conclude, the performance of ResTraceNet Variant 3 and the GRUTrace model

in accurately predicting the S-box output and deducing the cryptographic key under-

scores their potential to enhance cryptographic security.

Chapter 6

Module 4: Mitigation strategies

In this module, we explore three mitigation strategies to protect AES implementa-

tions against side-channel attacks. The strategies implemented to conceal the power

traces include adding Gaussian noise to the power traces, masking the ciphertext us-

ing a random mask along with Gaussian noise, and applying masks to both plaintext

and ciphertext while also introducing Gaussian noise.

After implementing these countermeasures, we utilized the ResTraceNet model,

which demonstrated the highest accuracy in Module 3, to predict the S-Box output

and subsequently deduce the key. This approach will determine whether the imple-

mented mitigation strategies effectively obscure the relationship between the power

traces and the cryptographic operations, thereby protecting the AES cryptographic

implementation against side-channel attacks. Figure 6.1 provides an overview high-

lighting Module 1 of the research contributions.

Figure 6.1: Research Overview: Highlighted Module 4

128

129

6.1 Methodology

In this analysis, we employ three unique methods to enhance the security of the

AES algorithm by mitigating the effectiveness of side-channel attacks on obtained

power traces. Each technique is designed to obscure the power traces and mask

the transmitted message, making it difficult for attackers to deduce the relationship

between the power traces and cryptographic operations, ultimately preventing the

extraction of the cryptographic key. The implemented methods are as follows:

• Adding Gaussian Noise to the Power Traces:

This method involves adding controlled Gaussian noise to the power traces to

mask the cryptographic operations. The noise helps to obscure the actual power

consumption patterns, making it harder for an attacker to analyze the traces

and deduce key information.

• Masking Ciphertext and Adding Gaussian Noise:

In this approach, controlled Gaussian noise is added to the power traces, and

random masks are applied to the ciphertext. These masks are derived from

a shared key and nonce, ensuring that the information is protected during

transmission. This method combines noise addition with ciphertext masking

to increase security.

• Structured Masking and Controlled Noise Addition:

This comprehensive method integrates controlled Gaussian noise and structured

masking. The plaintext is first masked, then encrypted, and the resulting ci-

phertext is masked again. This layered approach provides additional security

by combining noise addition with both plaintext and ciphertext masking.

Fig. 6.2 shows all the three proposed mitigation strategies.

6.1.1 Importance of shared key and nonce

A shared key and nonce are agreed upon and exchanged between the legitimate

sender and receiver. This agreement is crucial as both the key and nonce are necessary

130

Figure 6.2: All the three proposed mitigation strategies

to derive the seed, ensuring that both parties can generate the same masks and noise

sequences independently. This synchronization is essential for correctly masking and

unmasking the data without transmitting the masks themselves, thereby enhancing

security.

6.1.2 Post-Implementation Analysis

After applying each mitigation strategy, the ResTraceNet model, which demon-

strated the highest accuracy in Module 3, is trained to predict the S-Box output

and subsequently deduce the cryptographic key. This process evaluates whether the

mitigation strategies effectively conceal the relationship between the power traces

and cryptographic operations, thereby protecting the AES implementation against

side-channel attacks.

6.1.3 Gaussian Noise

Gaussian noise is a statistical noise characterized by a probability distribution

function (PDF) that follows a Gaussian or normal distribution. This noise is defined

by its mean and variance, and it helps in obscuring the cryptographic operations by

altering the power traces [106].

The Gaussian noise formula can be expressed in terms of the PDF as:

131

f(x) =
1√
2πσ2

exp

(︃

−(x− µ)2

2σ2

)︃

(6.1)

where:

• x is the noise value.

• µ is the mean of the noise.

• σ2 is the variance of the noise.

• σ is the standard deviation of the noise.

6.1.4 Adding Gaussian Noise to the Power Trace

In this method, controlled Gaussian noise is added to the power traces. This

method aims to mitigate side-channel attacks by making the power traces noisy, thus

obscuring the cryptographic operations being performed. The flow of this strategy is

as follows:

• Load the Data: Power traces, metadata, and labels are loaded from CSV files.

• Agree on Shared Key and Nonce: The legitimate sender and receiver agree

on a shared key (e.g., ’1234567890abcdef’) and a nonce (’abcdef1234567890’).

This ensures both parties can derive the same seed value independently.

• Derive Seed: The seed is obtained by concatenating the shared key and nonce,

hashing them using SHA-256, and converting the hash back to an integer value.

• Generate Gaussian Noise: Gaussian noise with a mean of 0 and a standard

deviation given by the noise factor (0.02) is generated using the seed. This noise

is then added to the power traces, making them noisy.

• Train ResTraceNet Model: After adding noise to the power traces, the Re-

sTraceNet model is trained to predict the S-Box output and subsequently deduce

the cryptographic key. The results are analyzed to determine the effectiveness

of the mitigation strategy.

132

By adding controlled Gaussian noise, the power traces are modified to obscure the

cryptographic operations, making it more difficult for an attacker to analyze the traces

and extract sensitive information.

ŷ = ResTraceNet(P +N(0, σ2) using s = int(SHA-256(k ∥ n)); θ) (6.2)

Explanation of the Combined Equation

• SHA-256(k ∥ n): Generates a seed by hashing the concatenation of the key k

and nonce n.

• int(·): Converts the hash to an integer.

• s: Seed value used to generate Gaussian noise.

• N(0, σ2): Gaussian noise with mean 0 and variance σ2.

• P +N(0, σ2): Adds Gaussian noise to the power traces P .

• ResTraceNet(P+N(0, σ2); θ): Trains the ResTraceNet model on the noisy power

traces to predict the output ŷ.

• θ: Parameters of the ResTraceNet model.

6.1.5 Masking ciphertext and adding Gaussian noise

This method aims to enhance the security of cryptographic operations by masking

the ciphertext and adding controlled Gaussian noise to the power traces. The objec-

tive is to obscure the cryptographic operations, making it more difficult for attackers

to deduce sensitive information related to the AES algorithm. The phases for this

method are as follows:

• Load the Dataset: The dataset, which consists of power traces, metadata,

and labels, is loaded.

133

• Agree on Shared Key and Nonce: The legitimate sender and receiver agree

upon and share the same shared key and nonce. This ensures both parties can

independently derive the same seed value.

• Derive seed: The seed is derived using the same principles as in the first

strategy. This involves concatenating the shared key and nonce, hashing them

with SHA-256, and converting the hash to an integer value.

• Apply Random Masks to Ciphertext: Random masks for the ciphertext

are generated using the derived seed. The ciphertext is then masked by applying

an XOR operation with the generated masks, ensuring its protection and making

it harder for attackers to deduce any information.

• Add Controlled Gaussian Noise: Controlled Gaussian noise is added to the

power traces, further enhancing security.

• Train ResTraceNet Model: After masking the ciphertext and adding noise,

the ResTraceNet model is trained to predict the S-Box output and ultimately

deduce the cryptographic key. This step validates the effectiveness of the im-

plemented strategy in protecting against side-channel attacks (SCAs).

By combining ciphertext masking with the addition of Gaussian noise, this method

provides robust protection against SCAs, obscuring cryptographic operations and

safeguarding sensitive information. The below equation encapsulates the entire pro-

cess of masking the ciphertext, adding noise, and using a ResTraceNet model to train

and predict the cryptographic key.

Cmasked, Pnoisy, Kpred = ResTraceNet(P +N(0, σ2),M, L) (6.3)

where

Cmasked = C ⊕ PRNG(int(SHA-256(K ∥ N))) (6.4)

Explanation of the Combined Equation

• SHA-256(K ∥ N): Generates a seed by hashing the concatenation of the key K

and nonce N .

134

• int(·): Converts the hash to an integer.

• PRNG(·): Generates a pseudorandom mask R using the integer seed.

• C ⊕R: Masks the ciphertext C with the pseudorandom mask R.

• P +N(0, σ2): Adds Gaussian noise to the power traces P .

• ReTracesNet(Pnoisy,M, L): Trains the ResTraceNet model on the noisy power

traces, metadata M , and labels L to predict S-Box outputs and deduce the

cryptographic key Kpred.

6.1.6 Structured Masking and Controlled Noise Addition

This method presents a comprehensive approach by applying masking to both

plaintext and ciphertext and adding controlled Gaussian noise to the power traces.

The goal is to obscure all phases of the cryptographic operations in the AES im-

plementation, mitigating the risk of side-channel attacks. The steps involved are as

follows:

• Load the Data: The dataset, including metadata, power traces, and labels, is

loaded.

• Initialize Shared Key and Nonce: A shared key and nonce are initialized

and agreed upon by the legitimate sender and receiver, ensuring both parties

can independently derive the same seed value.

• Derive Seed: The seed value is derived by concatenating the shared key and

nonce, hashing them using SHA-256, and converting the resulting hash into an

integer.

• Generate Random Masks:Using the derived seed value, random masks are

generated for both plaintext and ciphertext. The plaintext and ciphertext are

then masked by applying an XOR operation with these masks. This step is

crucial as it ensures that both the input and output of the cryptographic process

are obscured, making it difficult for attackers to extract sensitive information.

135

• Add Controlled Gaussian Noise: Controlled Gaussian noise is added to the

power traces. The noise is generated using the shared key and nonce, ensuring

that the traces are consistently masked, which helps prevent attackers from

analyzing the power traces.

• Train ResTraceNet Model: After applying both the structured masking and

controlled noise addition, the ResTraceNet model is trained to predict the S-Box

output and subsequently deduce the cryptographic key. This step validates the

effectiveness of the comprehensive approach in protecting against side-channel

attacks. By combining structured masking with controlled noise addition, this

method offers robust protection against side-channel attacks, ensuring that the

cryptographic operations are well-protected and sensitive information is secure.

Fig 6.3 shows the sequence diagram for the structured masking and controlled Gaus-

sian noise. As shown in Algorithm 5, the process at the sender side involves using

(a) Sequence diagram for structured masking
and controlled Gaussian noise at sender side

(b) Sequence diagram for structured masking
and controlled Gaussian noise at receiver side

Figure 6.3: Sequence diagrams for structured masking and controlled Gaussian noise at
both sender and receiver sides

shared keys and nonces to generate masks, applying bitwise XOR for masking, and

adding Gaussian noise to power traces.

136

Algorithm 5 Structured Masking and Controlled Noise Addition at Sender Side

Require: Plaintext P , AES Key K, Power traces T , Noise factor nf , Shared key S,

Nonce N

Ensure: Noisy traces T ′, Masked plaintext P ′, Masked ciphertext C ′

1: Initialize: Set the noise factor = nf

2: Use the Shared Key S and Nonce N to derive the random seed: Seed = hash(S+

N)

3: Generate the random mask Mp for the plaintext using the seed:

4: np.random.seed(seed)

5: Mp = np.random.randint(0, 256, size = P.shape)

6: Apply bitwise XOR between plaintext P and masks Mp to get the masked plain-

text P ′:

7: P ′ = np.bitwise xor(P,Mp)

8: Encrypt the masked plaintext with the AES key K to get the ciphertext C:

9: C = AES encrypt(P ′, K)

10: Generate random mask Mc for the ciphertext using the same seed:

11: np.random.seed(seed)

12: Mc = np.random.randint(0, 256, size = P.shape)

13: Apply bitwise XOR between ciphertext C and masks Mc to get the masked ci-

phertext C ′:

14: C ′ = np.bitwise xor(C,Mc)

15: Add controlled (Gaussian) noise with shape as same as T with mean = 0 and

standard deviation = nf using the seed:

16: np.random.seed(seed)

17: N = np.random.normal(0, nf, T.shape)

18: Add the noise generated N to the traces:

19: T ′ = T +N

20: Return the noisy traces T ′, masked plaintext P ′, and masked ciphertext C ′

As shown in Algorithm 6, the process at the receiver side involves using the same

shared keys and nonces to unmask the ciphertext and plaintext, and removing the

Gaussian noise from the power traces.

137

Algorithm 6 Structured Masking and Controlled Noise Addition at Receiver Side

Require: Masked ciphertext C ′, Noisy traces T ′, Shared key S, Nonce N , AES Key

K, Noise factor nf

Ensure: Original plaintext P , Power traces T

1: Derive the seed using the agreed shared key S and nonce N

2: Seed = hash(S +N)

3: Set the seed for the purpose of reproducibility

4: np.random.seed(seed)

5: Unmask the ciphertext C by generating the same random mask Mc for the ci-

phertext

6: Mc = np.random.randint(0, 256, size = C ′.shape)

7: C = np.bitwise xor(C ′,Mc)

8: Decrypt the ciphertext with the AES key K to get the plaintext P

9: P ′ = AES decrypt(C,K)

10: Unmask the plaintext P by generating the same random maskMp for the plaintext

11: Mp = np.random.randint(0, 256, size = P ′.shape)

12: P = np.bitwise xor(P ′,Mp)

13: Generate the same Gaussian noise with shape as T with mean = 0 and standard

deviation = nf

14: N = np.random.normal(0, nf, T.shape)

15: Subtract the noise N from the received noisy power traces T ′

16: T = T ′ −N

17: Return the original plaintext P and power traces T

Mathematical Functions in Mitigation strategy

1. Structured Masking

P ′ = P ⊕Mp (6.5)

C ′ = C ⊕Mc (6.6)

• P : Original plaintext

138

• Mp: Random mask for PT

• P ′: Masked plaintext

• C: Original ciphertext

• Mc: Random mask for CT

• C ′: Masked ciphertext

2. Controlled Noise Addition

T ′ = T +N where N ∼ N (0, σ2) (6.7)

• T : Original power traces

• N : Gaussian noise with mean = 0 and variance σ2

• T ′: Noisy power traces

Reference to Mathematical Functions

As shown in the Mathematical Functions in Mitigation strategy section, the struc-

tured masking and controlled noise addition methods are used for securing data.

6.2 Results and discussion

We computed the training vs. validation accuracy and training vs. validation loss

graphs for the ResTraceNet model using all three proposed methods and evaluated

the output.

6.2.1 Graph Analyis

Adding Gaussian Noise to the Power Traces

Fig. 6.4 demonstrate the training and validation accuracy and loss for Method

1. The accuracy graph shows an increase in both training and validation accuracies

139

across the epochs. However, there is significant fluctuation in the validation accuracy,

indicating some instability and overfitting. The training vs. validation loss graph

shows a steady decline, but the validation loss remains higher and more variable than

the training loss.

In conclusion, Method 1 has failed to effectively protect the AES implementation

against side-channel attacks, as it does not sufficiently obscure the cryptographic

operations and patterns that could lead to the deduction of sensitive information.

Figure 6.4: Training vs validation accuracy and training vs validation loss graph for
method 1

Masking Ciphertext and Adding Gaussian Noise

Fig. 6.5 show the training vs. validation accuracy and training vs. validation loss

for Method 2. Similar to Method 1, there is an increasing trend in both training and

validation accuracy. However, the validation accuracy shows significant fluctuation,

and the validation loss is considerably high with some variations.

We can conclude that Method 2 has also failed to counter side-channel attacks

effectively, despite masking the ciphertext, which added a new layer of security. This

is evidenced by the unstable validation plot.

Structured Masking and Controlled Noise Addition

Figures 6.6 display the training vs. validation accuracy and loss for this compre-

hensive approach. Compared to the previous methods, Method 3 shows very poor

performance, with the model attaining low accuracy and high loss values. The graphs

clearly demonstrate that the model has failed to learn and generalize, indicated by

the high validation loss and poor validation accuracy.

140

Figure 6.5: Training vs validation accuracy and training vs validation loss graph for
method 2

This comprehensive approach of adding two layers of security, along with Gaussian

noise, successfully combats side-channel attacks. This is evidenced by the weak per-

formance of the ResTraceNet model, indicating that this approach effectively obscures

the latent relationships between the power traces and cryptographic operations. As

shown by the model’s inability to learn and predict the S-Box output and the cryp-

tographic key, this method has proven successful in mitigating side-channel attacks.

Figure 6.6: Training vs validation accuracy and training vs validation loss graph for
method 3

141

6.3 Comparitive analysis with existing state of art

The Table6.1 provides a comparative analysis of key deduction models and miti-

gation strategies for AES side-channel attacks using the ASCAD dataset, highlighting

the methodologies and results of our proposed work against existing studies.

Table 6.1: Comparative analysis of Module 4 with existing work

Paper Dataset Attack

type

Key

deduction

and S-box

output

Model Used Mitigation

[72] ASCAD

(publicly

available)

Profiling Yes Deep Learning, CNN,

MLP

No

[76] ASCAD

(publicly

available)

Profiling Yes Deep 2-D CNN,

CWT, Scalograms,

GoogLeNet,

InceptionV3, VGG16,

MobileNetV2

No

[77] ASCAD

(publicly

available)

Profiling Yes Multilabel

Classification, CNN,

MLP Ensemble

Learning

No

[87] ASCAD Profiling Yes Transfer Learning,

CNN, MLP, ResNet,

AutoEncoder,

Pre-training,

Freezing, Fine-tuning

No

[107] ASCAD Profiling Yes ResNet No

Proposed

work

ASCAD Profiling Yes ResTraceNet Yes

142

• Papers [72],[76],[77],[87] and [107]: These studies used the publicly avail-

able ASCAD dataset for both S-box prediction and key deduction. They em-

ployed deep learning models such as CNN, MLP, and more sophisticated meth-

ods like transfer learning and ensemble learning. However, none of these stud-

ies implemented mitigation strategies to combat side-channel attacks (SCAs) in

AES implementations.

• Proposed Work: Our study also utilized the ASCAD dataset and focused on

profiling for key deduction and S-box output prediction using advanced deep

learning models such as ResTraceNet and GRUTrace. Unlike previous works,

we incorporated mitigation strategies to obscure the power traces and protect

cryptographic implementations against SCAs, thereby enhancing overall secu-

rity.

This comparative analysis highlights the unique contributions of our work in inte-

grating both key deduction and effective mitigation techniques using advanced deep

learning models.

6.4 Summary

In this module, we examined and evaluated three mitigation techniques to protect

the AES algorithm from SCAs. Each method aimed to obscure the power traces and

cryptographic operations, making it difficult for the model to identify correlations

and deduce sensitive information. The methods explored were:

• Adding Gaussian Noise to the Power Traces

In this method, we introduced controlled Gaussian noise to the power traces

to mask the cryptographic operations. Although it provided some obfuscation,

it was unable to stabilize the model performance effectively against SCAs, as

demonstrated by the fluctuations in validation accuracy and higher validation

loss.

• Masking Ciphertext and Adding Gaussian Noise

This technique added another layer of security by masking the ciphertext, de-

rived from a seed value using a shared key and nonce, along with Gaussian

143

noise. Despite the extra security measure, this method resulted in an unstable

validation plot, indicating that it did not provide sufficient protection against

side-channel attacks.

• Structured Masking and Controlled Noise Addition

This comprehensive method combined Gaussian noise addition with structured

masking of both plaintext and ciphertext. It proved to be the most effective ap-

proach. By masking both the input and output and adding noise, it successfully

obscured the cryptographic operations. This effectiveness was indicated by the

poor performance of the ResTraceNet model, which showed high validation loss

and poor validation accuracy.

After implementing all three strategies, we used the ResTraceNet model, which

had previously shown excellent performance in predicting the S-Box and deriving the

key in Module 3, to evaluate our proposed methods. The results clearly show that

Method 3 was successful in countering side-channel attacks by effectively obscuring

the relationship between cryptographic operations and power traces in an AES im-

plementation.

In summary, structured masking and controlled noise addition emerged as the

most robust mitigation strategy, significantly enhancing the security of the AES al-

gorithm and its cryptographic operations.

Chapter 7

Conclusions

Fig. 7.1 provides a comprehensive overview of our methodology and results in

enhancing the security of the AES algorithm against SCAs using DL models. It

begins with the power trace generation phase, employing two methods, and proceeds

to the implementation of various deep learning techniques to deduce the cryptographic

key. It also highlights the mitigation strategies implemented to combat SCAs. The

diagram can be explained as follows:

Figure 7.1: The summary of contribution depicting methodology and results

144

145

7.1 Contributions

7.1.1 Generation of AES Power Traces

• M1 Emulation: This involves the collection of power traces using actual hard-

ware simulation.

• M2 Synthetic Generation: Utilizes the concept of Hamming weight to gen-

erate synthetic AES power traces.

• Validation: Ensures the quality and alignment of the collected power traces.

7.1.2 Classification of Power Traces Using AES Implementation:

• Dataset used: ASCAD Dataset which cntains EM and power traces.

• Feature Extraction: Extracts relevant features using various techniques to

curate a derived dataset.

• Classification: Uses these features to classify the power traces into various

AES implementations.

• ID Method and Hashing: Retraces the original power traces to validate data

integrity.

7.1.3 Deep Learning Based on ResTraceNet:

• Dataset Used: AES PT v2.

• Accuracy: Achieved a testing accuracy of 96.68%.

• 100 Traces: Using 100 power traces, achieved a testing accuracy of 96.8%.

7.1.4 Deep Learning Based on GRUTrace

• Dataset: ASCAD dataset.

• Accuracy: Achieved a testing accuracy of 96.28%.

146

• 100 Traces: Using only 100 power traces, the model achieved a testing accuracy

of 98.53%.

7.1.5 Mitigation Strategies

• Method 1: Adding noise to the power traces.

• Method 2: Adding noise to the power traces and masking ciphertext.

• Method 3: Adding noise to the power traces, masking plaintext, and ciphertext

to provide an enhanced level of security.

This summary encapsulates the detailed methodology, dataset choices, model imple-

mentations, and mitigation strategies employed to counter side-channel attacks.

7.1.6 Module summary

• Module 1:

In this module, we collected power traces for a masked AES implementation

from both real and synthetic sources. Actual power traces were gathered using

the Syscomp CGR-101 oscilloscope, while synthetic traces were programmati-

cally generated using the HW concept. We performed detailed timing analysis

and used various techniques to align and correlate both sets of power traces to

validate the synthetic traces. We achieved a high correlation of 0.986 between

the synthetic and real power traces using Random Forest regression analysis,

indicating that Random Forest provided the best alignment and correlation.

• Module 2:

We applied various feature extraction techniques to improve the classification

accuracy of three AES implementations. Methods such as permutation impor-

tance, recursive feature elimination, L1 regularization, mutual information, and

SHAP were utilized. We employed PCA to identify the most important sta-

tistical properties—mean, minimum, maximum, and standard deviation—and

147

leveraged a support vector machine to classify the power traces into unpro-

tected, masked1, and masked2 implementations, yielding high accuracy. We

also retraced the original power traces from the derived dataset using hashing

and the ID method, providing traceability.

• Module 3:

his module explored two powerful deep learning models, ResTraceNet and GRU-

Trace, to predict the S-box output and deduce the key. We opted for the AS-

CAD dataset due to the absence of an integral field, ciphertext, in the AES PT

dataset. Among the three ResTraceNet variants employed, Variant 3 exhib-

ited the highest training accuracy of 91.6%, validation accuracy of 99.4%, and

testing accuracy of 96.68%. The GRUTrace model achieved training and val-

idation accuracies of 91% and 96.8%, respectively, with a testing accuracy of

96.28%. Using 100 power traces, ResTraceNet achieved a testing accuracy of

96.8%, while GRUTrace achieved 98.53%, successfully deducing the key byte in

all scenarios. Since the relationship between the S-box output, plaintext, and

key byte was based on the third key byte, we were able to deduce the third key

byte, which was “224”.

• Module 4:

We focused on three mitigation strategies to protect AES implementation from

side-channel attacks: adding Gaussian noise to power traces, masking ciphertext

and adding Gaussian noise, and finally, structured masking and controlled noise

addition. The most effective method was the structured masking and controlled

noise addition, which showed poor performance of the best variant ResTraceNet

model, indicating that it efficiently obscured the relationship between the power

traces and cryptographic operations.

Chapter 8

Discussion

This section will discuss about the limitations and potential future work of our

research.

8.1 Limitations

Although we achieved significant and promising results, we encountered several

limitations during our study.

• Dataset Constraints: Initially, we used the AES PTv2 dataset, but it lacked

the ciphertext field, which is integral for S-box prediction and key deduction.

This constraint forced us to switch to the ASCAD dataset, highlighting our

dependency on the availability of comprehensive datasets for effective training

and validation.

• Synthetic Data Generation: Achieving high correlation and fidelity in the

generated synthetic traces remains challenging. The synthetic traces might not

fully capture all the complexities and inherent noise of real-world data, which

can affect the accuracy of the analysis.

• Model Overfitting: The initial variants of the ResTraceNet model exhibited

signs of overfitting, as indicated by fluctuations in validation accuracy and loss.

This underscores the need for more robust regularization techniques or advanced

methods to enhance model generalization.

• Computational Resources: Training deep learning models such as ResTraceNet

and GRUTrace requires substantial computational power and time, especially

when dealing with large datasets and multiple epochs. This resource-intensive

process can limit the feasibility of extensive experimentation and optimization

in environments with limited computational resources.

148

149

• Mitigation Strategies: While employing structured masking and controlled

noise addition, the complexity of implementation and potential performance

overhead must be considered. Ensuring practical applicability without signifi-

cantly disrupting the system’s performance remains a challenge.

Addressing these limitations in future research will be crucial for developing more ro-

bust and generalized solutions to enhance cryptographic security against side-channel

attacks.

8.2 Future work

• Improved Dataset Collection and Diversity: Future research should focus

on exploring a wider range of datasets for side-channel analysis, including vari-

ous encryption algorithms and their hardware implementations. This will help

create more generalized models capable of effectively countering side-channel

attacks across diverse environments.

• Enhanced Synthetic Data Generation: Advanced techniques need to be

developed to create synthetic data that accurately represents raw power traces.

This involves incorporating more sophisticated noise models and hardware-

specific properties to enhance the fidelity of the synthetic traces.

• Developing More Powerful Deep Learning Models: Exploring hybrid

models that combine CNNs, RNNs, and transformers could significantly im-

prove performance. Feature extraction methods like wavelet packet decompo-

sition and higher-order statistical features should be employed to identify more

latent patterns and relationships. Automating feature extraction using AI-based

selection methods can streamline and enhance model efficacy.

• Using Advanced Regularization Techniques: Implementing robust regu-

larization techniques such as dropout variations, weight decay, and data aug-

mentation can help resolve overfitting issues, leading to better model general-

ization.

150

• Hyperparameter Tuning: Greater emphasis should be placed on hyperpa-

rameter tuning to optimize the performance of deep learning models. Automat-

ing hyperparameter tuning and using exhaustive search techniques can help

identify the most optimal model configurations for the given datasets.

• Design and Develop Mitigation Strategies: There should be a stronger fo-

cus on designing and testing new mitigation strategies to protect cryptographic

implementations against a range of side-channel attacks.

• Efficient Computational Models: For real-world applications, it is imper-

ative to reduce the computational burden of training deep learning models.

Research should delve into more efficient algorithms and hardware accelera-

tions such as Graphical Processing Units (GPUs) and Tensor Processing Units

(TPUs) to speed up the training process.

Bibliography

[1] P. A. Chandrakasan, Series on Integrated Circuits and Systems. Springer.

[2] J. D. S. G. S. S. A. R. Anupam Golder, Debayan Das, “Practical approaches to-
ward deep-learning-based cross-device power side-channel attack,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. Issue Num-
ber, 2019.

[3] P. C. v. O. Frank Piessens, “Side-channel attacks: A short tour,” IEEE Security
Privacy, vol. Volume Number, 2024.

[4] P. J.-J. Quisquater, “Side channel attacks,” Tech. Rep. CRYPTREC EX-1047-
2002, Cryptographic Technology and Evaluation Committee, 2002.

[5] H. Gamaarachchi and H. Ganegoda, “Power analysis based side channel attack,”
arXiv preprint arXiv:1801.00932, 2018.

[6] M. Alioto, M. Poli, and S. Rocchi, “Power analysis attacks to cryptographic cir-
cuits: a comparative analysis of dpa and cpa,” in 2008 International Conference
on Microelectronics, pp. 333–336, 2008.

[7] N. Hanley, M. O’Neill, M. Tunstall, and W. P. Marnane, “Empirical evalua-
tion of multi-device profiling side-channel attacks,” in 2014 IEEE Workshop on
Signal Processing Systems (SiPS), pp. 1–6, 2014.

[8] X. Lu, C. Zhang, and D. Gu, “Attention - based non-profiled side-channel at-
tack,” in 2021 Asian Hardware Oriented Security and Trust Symposium (Asian-
HOST), pp. 1–6, 2021.

[9] F.-X. Standaert, “Introduction to side-channel attacks,” in Secure Integrated
Circuits and Systems, pp. 27–42, Springer, 2010.

[10] A. Rădulescu and M. O. Choudary, “Side-channel attacks on masked bitsliced
implementations of aes,” Cryptography, vol. 6, no. 3, p. 31, 2022.

[11] M. Yasin, B. Mazumdar, S. S. Ali, and O. Sinanoglu, “Security analysis of
logic encryption against the most effective side-channel attack: Dpa,” in 2015
IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFTS), pp. 97–102, Oct 2015.

[12] W. J. B. D. C. Owen Lo, “Power analysis attacks on the aes-128 s-box using
differential power analysis (dpa) and correlation power analysis (cpa),” Journal
of Cyber Security Technology, vol. 1, 2016.

151

152

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[14] H. Maghrebi, “Deep learning based side channel attacks in practice.” Cryptol-
ogy ePrint Archive, Paper 2019/578, 2019. https://eprint.iacr.org/2019/
578.

[15] B. K. Jefferson, MO, Convolutional Neural Networks with Swift for Tensorflow.
New York, NY: Springer, 2021.

[16] G. Shen, Q. Tan, H. Zhang, P. Zeng, and J. Xu, “Deep learning with gated
recurrent unit networks for financial sequence predictions,” Procedia Computer
Science, vol. 131, pp. 895–903, 2018. Recent Advancement in Information and
Communication Technology:.

[17] “Understanding the hamming weight metric.” https://math.stackexchange.
com/questions/2405535/understanding-the-hamming-weight-metric#:

~:text=Definition%3A%20Hamming%20weight&text=The%20hamming%

20weight%20of%20b,ni%3D0zi., 2024. Accessed: 2024-07-11.

[18] E. Bursztein, “Hacker guide to deep learning side-channel
attacks: The theory.” https://elie.net/blog/security/

hacker-guide-to-deep-learning-side-channel-attacks-the-theory,
2020. Accessed: 2024-07-11.

[19] H. Gupta, S. Mondal, R. Majumdar, N. S. Ghosh, S. Suvra Khan, N. E.
Kwanyu, and V. P. Mishra, “Impact of side channel attack in information se-
curity,” in 2019 International Conference on Computational Intelligence and
Knowledge Economy (ICCIKE), pp. 291–295, Dec 2019.

[20] M. Tehranipoor, N. N. Anandakumar, and F. Farahmandi, “Power analysis at-
tacks on aes,” in Hardware Security Training, Hands-on!, pp. 137–161, Springer,
2023.

[21] N. Tada, Y.-i. Hayashi, T. Mizuki, and H. Sone, “An efficient analysis method
of the electromagnetic emissions in the frequency domain,” in 2012 Proceedings
of SICE Annual Conference (SICE), pp. 68–72, Aug 2012.

[22] S. Sharma, H. Gupta, and S. K. Sharma, “An overview of acoustic side chan-
nel attack,” International Journal of Computer Science and Communication
Networks, vol. 3, no. 1, pp. 27–31, 2013.

[23] G. S. B. K. Puneet Vashisht, Munish Rattan, “A survey of defensive mechanisms
for cognitive radio networks,” ACM Computing Surveys, vol. 52, no. 4, pp. 1–35,
2019.

https://eprint.iacr.org/2019/578
https://eprint.iacr.org/2019/578
https://math.stackexchange.com/questions/2405535/understanding-the-hamming-weight-metric#:~:text=Definition%3A%20Hamming%20weight&text=The%20hamming%20weight%20of%20b,ni%3D0zi.
https://math.stackexchange.com/questions/2405535/understanding-the-hamming-weight-metric#:~:text=Definition%3A%20Hamming%20weight&text=The%20hamming%20weight%20of%20b,ni%3D0zi.
https://math.stackexchange.com/questions/2405535/understanding-the-hamming-weight-metric#:~:text=Definition%3A%20Hamming%20weight&text=The%20hamming%20weight%20of%20b,ni%3D0zi.
https://math.stackexchange.com/questions/2405535/understanding-the-hamming-weight-metric#:~:text=Definition%3A%20Hamming%20weight&text=The%20hamming%20weight%20of%20b,ni%3D0zi.
https://elie.net/blog/security/hacker-guide-to-deep-learning-side-channel-attacks-the-theory
https://elie.net/blog/security/hacker-guide-to-deep-learning-side-channel-attacks-the-theory

153

[24] T. Kim and Y. Shin, “Thermalbleed: A practical thermal side-channel attack,”
IEEE Access, vol. 10, pp. 25718–25731, 2022.

[25] N. Hanley, M. O’Neill, M. Tunstall, and W. P. Marnane, “Empirical evalua-
tion of multi-device profiling side-channel attacks,” in 2014 IEEE Workshop on
Signal Processing Systems (SiPS), pp. 1–6, 2014.

[26] L. Wu, L. Weissbart, M. Krček, H. Li, G. Perin, L. Batina, and S. Picek, “On
the attack evaluation and the generalization ability in profiling side-channel
analysis.” Cryptology ePrint Archive, Paper 2020/899.

[27] B. Timon, “Non-profiled deep learning-based side-channel attacks.” Cryptology
ePrint Archive, Paper 2018/196, 2018. https://eprint.iacr.org/2018/196.

[28] A. Ali, S. Khan, and S. Ullah, “Security and privacy challenges in iot-based
wireless sensor networks: A comprehensive survey,” IET Smart Cities, vol. 5,
no. 2, pp. 142–158, 2023.

[29] D. Kwon, S. Hong, and H. Kim, “Optimizing implementations of non-profiled
deep learning-based side-channel attacks,” IEEE Access, vol. 10, pp. 5957–5967,
2022.

[30] C. P. Pfleeger and S. L. Pfleeger, Security in Computing, pp. 433–451. Springer,
2007.

[31] S. Sicari, A. Rizzardi, L. A. Griepentrog, and A. Coen-Porisini, Security and
Privacy in Internet of Things (IoT): Models, Algorithms, and Implementations,
pp. 181–199. Springer, 2016.

[32] R. E. Smith and M. R. Patel, “Asynchronous cryptographic system: Side chan-
nel attacks through differential power analysis (dpa),” in Proceedings of the
9th Annual IEEE Symposium on Applications and the Internet (SAINT’08),
pp. 215–218, IEEE, 2008.

[33] S. Ali, J. Zhou, X. Zhang, and Z. Wang, Optimal Power Allocation and Outage
Analysis for Multi-Relay NOMA Systems Using Dinkelbach Method, pp. 173–
186. Springer, 2016.

[34] M. S. a. T. F. c. Takaya Kubota a, Kota Yoshida b, “Deep learning side-channel
attack against hardware implementations of aes,” in ScienceDirect, vol. 87, 2021.

[35] N. Sklavos and X. Zhang, Wireless Security and Cryptography: Specifications
and Implementations. Boca Raton, FL: CRC Press, 2007.

[36] A. Tripathy and B. Singh, “A study of aes software implementation for iot
systems,” in 2022 3rd International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT), pp. 1–4, 2022.

https://eprint.iacr.org/2018/196

154

[37] A. Abdullah, “Advanced encryption standard (aes) algorithm to en-
crypt and decrypt data.” https://www.researchgate.net/publication/

317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_

and_Decrypt_Data, 2017. Accessed: 2024-06-11.

[38] X. Z. Jian Zhou and S. Ali, “Optimal power allocation and outage analysis for
multi-relay noma systems using dinkelbach method,” in Advances in Commu-
nication, Signal Processing, and VLSI, pp. 81–99, Springer, 2016.

[39] A. A. Pammu, K.-S. Chong, W.-G. Ho, and B.-H. Gwee, “Interceptive side
channel attack on aes-128 wireless communications for iot applications,” in 2016
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 650–
653, 2016.

[40] A. Name, “The cost of power density: A quantitative model for power density
requirements and costs of data centers,” in Computer Science and its Applica-
tions, pp. 315–326, Springer, 2016.

[41] A. Name, “An overview of acoustic side channel attack,” International Journal
of Computer Network and Information Security, vol. 6, no. 1, pp. 62–67, 2014.

[42] M. M. Malikg, “A hierarchy of limitations in machine learning,”

[43] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,”
Electronic Markets, vol. 31, no. 3, pp. 685–695, 2021.

[44] M. A. Koosha Sharifani, “Machine learning and deep learning: A review of
methods and applications,” vol. 10, pp. 3897–3904, World Information Tech-
nology and Engineering Journal,, 2023.

[45] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A survey of deep
learning and its applications: A new paradigm to machine learning,” Archives
of Computational Methods in Engineering, vol. 27, no. 4, pp. 1071–1092, 2020.

[46] P. Z. . K. H. Christian Janiesch, “Machine learning and deep learning,” Elec-
tronic Markets, vol. 31, no. 3, pp. 663–677, 2021.

[47] R. Maheswari and M. Krishnamurthy, “Profiling and non-profiling key retrieval
attacks in programmable object interfaces using deep learning cryptanalytic
techniques: A survey,” in 2024 2nd International Conference on Device Intelli-
gence, Computing and Communication Technologies (DICCT), pp. 1–5, 2024.

[48] A. Aljuffri, C. Reinbrecht, S. Hamdioui, and M. Taouil, “Impact of data pre-
processing techniques on deep learning based power attacks,” in 2021 16th Inter-
national Conference on Design Technology of Integrated Systems in Nanoscale
Era (DTIS), pp. 1–6, 2021.

https://www.researchgate.net/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data
https://www.researchgate.net/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data
https://www.researchgate.net/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data

155

[49] J. M. Rodriguez, J. Garcia, and M. Lopez, “A dual approach for ensuring
privacy in public cloud storage,” in The Seventh International Conference on
Performance, Safety and Robustness in Complex Systems and Applications (PE-
SARO 2017), pp. 20–25, IARIA, 2017.

[50] Z. Wu, C. Shen, and A. van den Hengel, “Wider or deeper: Revisiting the resnet
model for visual recognition,” Pattern Recognition, vol. 90, pp. 119–133, 2019.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” arXiv preprint arXiv:1512.03385, 2015.

[52] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[53] “Dropout in neural networks.” https://towardsdatascience.com/

dropout-in-neural-networks-47a162d621d9?gi=65d63be57c65. Accessed:
2024-06-11.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[55] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm
restarts,” arXiv preprint arXiv:1608.03983, 2016.

[56] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[57] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light gated recurrent
units for speech recognition,” IEEE Transactions on Emerging Topics in Com-
putational Intelligence, vol. 2, no. 2, pp. 92–102, 2018.

[58] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[59] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[60] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[61] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

https://towardsdatascience.com/dropout-in-neural-networks-47a162d621d9?gi=65d63be57c65
https://towardsdatascience.com/dropout-in-neural-networks-47a162d621d9?gi=65d63be57c65

156

[62] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[63] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm
restarts,” arXiv preprint arXiv:1608.03983, 2016.

[64] P. Socha, J. Brejńık, and M. Bartik, “Attacking aes implementations using
correlation power analysis on zybo zynq-7000 soc board,” in 2018 7th Mediter-
ranean Conference on Embedded Computing (MECO), pp. 1–4, 2018.

[65] Q. Hu, X. Fan, and Q. Zhang, “An effective differential power attack method
for advanced encryption standard,” in 2019 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery (CyberC), pp. 58–61,
2019.

[66] A. T. Mozipo and J. M. Acken, “Power side channel attack of aes fpga implemen-
tation with experimental results using full keys,” in 2021 IEEE International
Conference on Design Test of Integrated Micro Nano-Systems (DTS), pp. 1–6,
2021.

[67] S. Darbar, M. J., and D. Selvakumar, “Side channel leakage assessment strategy
on attack resistant aes architectures,” in 2020 24th International Symposium
on VLSI Design and Test (VDAT), pp. 1–6, 2020.

[68] L. Lathrop, “Differential power analysis attacks on different implementations
of AES with the ChipWhisperer nano.” Cryptology ePrint Archive, Paper
2020/1008, 2020. https://eprint.iacr.org/2020/1008.

[69] S. D. Putra, A. D. W. Sumari, I. Asrowardi, E. Subyantoro, and L. M. Zagi,
“First-round and last-round power analysis attack against aes devices,” in 2020
International Conference on Information Technology Systems and Innovation
(ICITSI), pp. 410–415, 2020.

[70] M. Masoumi, “Novel hybrid cmos/memristor implementation of the aes algo-
rithm robust against differential power analysis attack,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67, no. 7, pp. 1314–1318, 2020.

[71] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make some noise.
unleashing the power of convolutional neural networks for profiled side-channel
analysis,” IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, vol. 2019, no. 3, pp. 148–179, 2019.

[72] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning for
side-channel analysis and introduction to ascad database,” Journal of Crypto-
graphic Engineering, vol. 10, pp. 163–188, 2020.

https://eprint.iacr.org/2020/1008

157

[73] J. Zhang, M. Zheng, J. Nan, H. Hu, and N. Yu, “A novel evaluation metric for
deep learning-based side channel analysis and its extended application to im-
balanced data,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2020, no. 3, pp. 73–96, 2020.

[74] J. Liu, S. Zheng, and L. Gu, “Effective deep learning-based side-channel analy-
ses against ascad,” in 2021 IEEE 20th International Conference on Trust, Secu-
rity and Privacy in Computing and Communications (TrustCom), pp. 514–523,
2021.

[75] Z. Luo, M. Zheng, P. Wang, M. Jin, J. Zhang, and H. Hu, “Towards strength-
ening deep learning-based side channel attacks with mixup,” arXiv preprint
arXiv:2103.05833, 2021.

[76] A. Garg and N. Karimian, “Leveraging deep cnn and transfer learning for side-
channel attack,” in 2021 22nd International Symposium on Quality Electronic
Design (ISQED), pp. 91–96, 2021.

[77] L. Zhang, X. Xing, J. Fan, Z. Wang, and S. Wang, “Multilabel deep learning-
based side-channel attack,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 6, pp. 1207–1216, 2021.

[78] X. Huang, M. M. Wong, A. T. Do, and W. L. Goh, “A backpropagation ex-
treme learning machine approach to fast training neural network-based side-
channel attack,” in 2021 Asian Hardware Oriented Security and Trust Sympo-
sium (AsianHOST), pp. 1–6, 2021.

[79] J. Chen, J.-S. Ng, N. A. Kyaw, N. K. Z. Lwin, K.-S. Chong, Z. Lin, J. S.
Chang, and B.-H. Gwee, “Non-profiling based correlation optimization deep
learning analysis,” in 2022 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pp. 2246–2250, 2022.

[80] D. Kwon, S. Hong, and H. Kim, “Optimizing implementations of non-profiled
deep learning-based side-channel attacks,” IEEE Access, vol. 10, pp. 5957–5967,
2022.

[81] P. Cao, C. Zhang, X. Lu, D. Gu, and S. Xu, “Improving deep learning based
second-order side-channel analysis with bilinear cnn,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 3863–3876, 2022.

[82] L. Wu, G. Perin, and S. Picek, “The best of two worlds: Deep learning-assisted
template attack.” Cryptology ePrint Archive, Paper 2021/959, 2021. https:

//eprint.iacr.org/2021/959.

https://eprint.iacr.org/2021/959
https://eprint.iacr.org/2021/959

158

[83] S. Paguada, L. Batina, I. Buhan, and I. Armendariz, “Playing with blocks:
Toward re-usable deep learning models for side-channel profiled attacks,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 2835–2847,
2022.

[84] Y. Li, W. Zhuang, L. Yu, and Z. Qin, “Study of cnn and lstm based on ascad
database with different kinds of noise,” in 2022 International Conference on
Image Processing, Computer Vision and Machine Learning (ICICML), pp. 375–
379, 2022.

[85] J. H. Daehyeon Bae, Jongbae Hwang, “Deep learning-based attacks on masked
aes implementation,” Journal of Internet Technology, vol. 23, pp. 897–902, 2022.

[86] G. Perin, L. Wu, and S. Picek, “AISY - deep learning-based framework for side-
channel analysis,” IACR Cryptology ePrint Archive, vol. 2021, p. 357, 2021.

[87] M. Fang, B. Mao, and W. Hu, “A transfer learning approach for electromagnetic
side-channel attack and evaluation,” in 2022 7th International Conference on
Integrated Circuits and Microsystems (ICICM), pp. 636–640, 2022.

[88] D. Bae, D. Park, G. Kim, M. Choi, N. Lee, H. Kim, and S. Hong, “Autoscaled-
wavelet convolutional layer for deep learning-based side-channel analysis,” IEEE
Access, vol. 11, pp. 95381–95395, 2023.

[89] B. Jocelyn and F. Clementine, “Power analysis attacks and countermeasures for
elliptic curve cryptosystems,” in Proceedings of the 2005 Cryptographic Hard-
ware and Embedded Systems Workshop (CHES 2005), pp. 1–15, Springer, 2005.

[90] Saelig, “Pspc019 - product.” https://www.saelig.com/product/PSPC019.

htm. Accessed: 2024-06-11.

[91] M. Nakanose, Y. Kodera, T. Kusaka, and Y. Nogami, “Consideration of the
side-channel attack to speck implemented on arduino uno,” in 2021 Ninth Inter-
national Symposium on Computing and Networking Workshops (CANDARW),
pp. 339–345, 2021.

[92] P. Duhamel and M. Vetterli, “Fast fourier transforms: A tutorial review and a
state of the art,” Signal Processing, vol. 19, no. 4, pp. 259–299, 1990.

[93] B. A. Draper, K. Baek, M. S. Bartlett, and J. Beveridge, “Recognizing faces
with pca and ica,” Computer Vision and Image Understanding, vol. 91, no. 1,
pp. 115–137, 2003. Special Issue on Face Recognition.

[94] Y. Chen, “A new methodology of spatial cross-correlation analysis,” PLOS
ONE, vol. 10, no. 5, p. e0126158, 2015.

https://www.saelig.com/product/PSPC019.htm
https://www.saelig.com/product/PSPC019.htm

159

[95] M. Gholizadeh, J.-P. Chiles, and J. P. M. Syvitski, “Geostatistical modelling
of palaeochannel sedimentology: a 3d approach,” Mathematical Geosciences,
2022.

[96] W. Yuchi, E. Gombojav, B. Boldbaatar, J. Galsuren, S. Enkhmaa, B. Beejin,
G. Naidan, C. Ochir, B. Legtseg, T. Byambaa, P. Barn, S. B. Henderson, C. R.
Janes, B. P. Lanphear, L. C. McCandless, T. K. Takaro, S. A. Venners, G. M.
Webster, and R. W. Allen, “Evaluation of random forest regression and multiple
linear regression for predicting indoor fine particulate matter concentrations in
a highly polluted city,” Environmental Pollution, vol. 245, pp. 746–753, 2019.

[97] Urioja, “Aesptv2.” https://github.com/urioja/AESPTv2, 2024. Accessed:
2024-06-11.

[98] Y. Yang, J. Li, and Y. Yang, “The research of the fast svm classifier method,” in
2015 12th International Computer Conference on Wavelet Active Media Tech-
nology and Information Processing (ICCWAMTIP), pp. 121–124, 2015.

[99] B. Lepri, N. Oliver, E. Letouze, A. S. Pentland, and P. Vinck, “Ai and big
data: The birth of a new intelligence,” in Privacy and Power in the Digital
Age, pp. 89–105, Springer, 2020.

[100] T. Schultz, S. Brady, and U. Mueller, “A mycophagous insect fungus mutualism:
Ants that cultivate yeasts of the genus escovopsis,” BMC Genetics, vol. 19, no. 1,
p. 33, 2018.

[101] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “Statistical mechanics
of complex networks,” Physical Review E, vol. 69, no. 6, p. 066138, 2004.

[102] U. Rioja, L. Batina, J. L. Flores, and I. Armendariz, “Auto-tune pois: Esti-
mation of distribution algorithms for efficient side-channel analysis,” Computer
Networks, vol. 198, p. 108405, 2021.

[103] U. Rioja, L. Batina, I. Armendariz, and J. L. Flores, “Towards human depen-
dency elimination: Ai approach to sca robustness assessment,” IEEE Transac-
tions on Information Forensics and Security, vol. 17, pp. 3906–3921, 2022.

[104] I. H. Sarker et al., “A review on artificial intelligence in cybersecurity: New
vulnerabilities and security intelligence,” Journal of Cryptographic Engineering,
vol. 13, no. 3, pp. 321–345, 2023.

[105] E. Cagli, C. Dumas, and E. Prouff, “Breaking a masked aes implementation
using a deep learning-based attack,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’21), pp. 15–27,
Association for Computing Machinery, 2021.

https://github.com/urioja/AESPTv2

160

[106] “Gaussian white noise.” https://www.sciencedirect.com/topics/

computer-science/gaussian-white-noise. Accessed: 2024-06-11.

[107] S. Sun, H. Yu, A. Wang, C. Wei, et al., “Dual-path hybrid residual network for
profiled side-channel analysis,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. PP, no. 99, pp. 1–1, 2024.

https://www.sciencedirect.com/topics/computer-science/gaussian-white-noise
https://www.sciencedirect.com/topics/computer-science/gaussian-white-noise

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Motivation
	Vulnerabilities in cryptographic algorithms
	Challenges in traditional methods
	Underutilization of advanced DL techniques
	Analyzing and classifying AES implementations from power traces
	Feature Extraction and Retracting to original power traces
	Synthetic Data to Augment Training Data
	Lack of Mitigation Strategies

	Contribution
	Module 1: Generation and analysis of power traces
	Module 2: Feature extraction, classification and retracing of power traces
	Module 3: Key deduction using ResTraceNet and GRUTrace
	Module 4: Mitigation strategies

	Organization of the Thesis

	Background Knowledge and Literature Review
	Background Knowledge
	Side-channel attacks
	History and implications
	Types of SCAs
	Profiling vs non-profiling attacks
	Electromagnetic emission analysis and power analysis
	Simple power analysis, differential power analysis and correlation power analysis
	DPA vs CPA
	Cryptographic algorithms vulnerable to SCAs
	AES algorithm
	AES against SCAs
	Drawbacks of traditional methods
	Limitations of Machine Learning(ML)
	Advantages of Deep Learning (DL) over traditional methods
	DL models

	Literature Review
	 Differential Power Analysis (DPA) and Correlation Power Analysis (CPA)
	Deep Learning (DL) based side-channel attacks
	Summary of Literature Survey
	Research gap
	Novelty

	Module 1: Generation And Analysis of Power Traces
	Methodology
	Power trace collection using an Emulator
	Generation of synthetic power traces
	Analysis of the power traces

	Results and Discussion
	Summary

	Module 2 : Feature extraction, classification and retracing of power traces
	Dataset
	Dataset overview
	Piñata Board
	Data Organization
	Number of traces
	Trace Collection

	Methodology
	Classification of Power Traces
	Focus on PCA for improved classification
	Optimal Threshold Calculation and Retracing the Power Traces

	Results and discussion
	Comparitive analysis with existing state of the art
	Summary

	Module 3: Key deduction using ResTraceNet and GRUTrace
	Dataset
	Problem with AES_PTV2 dataset
	ASCAD Dataset

	Methodology
	ResTraceNet: ResNet-Inspired Architecture for Power Trace Analysis
	ResTraceNet model
	GRUTrace: Adaptation of GRU for Analyzing Power Trace Data
	GRUTrace model
	Testing on attack phase data and predicting Sbox output
	Key deduction
	Key Deduction Using ResTraceNet and GRUTrace Models with 100 power traces

	Results and discussion
	ResTracenet variant1
	ResTracenet variant2
	ResTracenet variant3
	GRUTrace model
	Using 100 power traces with ResTraceNet and GRUTrace model
	S-box prediction and key deduction

	Comparitive Analysis with existing state of art
	Summary

	Module 4: Mitigation strategies
	Methodology
	Importance of shared key and nonce
	Post-Implementation Analysis
	Gaussian Noise
	Adding Gaussian Noise to the Power Trace
	Masking ciphertext and adding Gaussian noise
	Structured Masking and Controlled Noise Addition

	Results and discussion
	Graph Analyis

	Comparitive analysis with existing state of art
	Summary

	Conclusions
	Contributions
	Generation of AES Power Traces
	Classification of Power Traces Using AES Implementation:
	Deep Learning Based on ResTraceNet:
	Deep Learning Based on GRUTrace
	Mitigation Strategies
	Module summary

	Discussion
	Limitations
	Future work

	Bibliography

