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Abstract 

This thesis describes the development of a hexapod simulator built in the MATLAB Simscape 

environment, with the goal of testing the potential for a designed experiment to be use in the 

selection of observations for a reinforcement learning controlled hexapod design. The hexapod is 

controlled using a novel combination of a central pattern generator consisting of six coupled 

Hopf oscillators, and mapping functions with parameters updated via a reinforcement learning 

agent. The reinforcement learning agent is trained to control the hexapod using the Deep 

Deterministic Policy Gradient (DDPG) algorithm on a trajectory following task. Through 

implementation of a designed experiment testing different combinations of observations, a model 

is formulated to estimate the observations required to maximize the hexapod training reward. 

The model is validated in the simulator and the capabilities of the hexapod are further 

demonstrated on more complex path following tasks. 
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Chapter 1: Introduction 

Mobile robotics play an important role in the substitution of humans to complete 

dangerous tasks in the fields of surveillance, demining, inspection, rescue operations, and 

exploratory missions [1]. Such robots must be capable of overcoming difficult terrain in 

challenging environments without the need for human intervention. Walking hexapod robots are 

an ideal candidate for these roles as they offer significant advantages over wheeled robots in 

terms of both maneuverability and capabilities on rugged and unforeseen terrain.  

Walking robots are often controlled via a central pattern generator – a system which 

generates rhythmic signals without requiring any rhythmic or changing inputs. Central patten 

generators are able to produce smooth oscillating signals to drive robot motion using a limited 

number of input variables. One of the most common types of central pattern generator applied to 

walking mobile robots is the Hopf oscillator, which consists of two coupled differential equations 

producing a stable cyclic pattern. The Hopf oscillator based central pattern generator used in this 

work is described in Chapter 3. 

The current direction of the literature is for mobile robots to become increasingly 

independent of human operators through the use of machine learning. Recent works have 

demonstrated the application of reinforcement learning to train and control hexapod robots in 

complex environments for both path-planning navigation and complex locomotion tasks. 

Reinforcement learning allows a mobile robot to modify its behaviour and walking gait 

automatically in real time in response to changes in terrain, external stimulus, and other inputs. 

Reinforcement learning agents are trained through a repetitive process where the hexapod must 

repeat a similar task many times in order to iteratively modify its behaviour to obtain a maximum 

reward for the given task. One such reinforcement learning algorithm that will be used in this 

work is the Deep Deterministic Policy Gradient (DDPG). Combining reinforcement learning 

with a central pattern generator improves learning speed as the central pattern generator provides 

a base gait signal allowing the robot to be much more successful at the start of training.  

There are numerous factors and parameters that influence the success of a reinforcement 

learning agent, with one of the most important being the selection of the observations, meaning 
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the measurements of the robot state and environment provided to the reinforcement learning 

agent. In many machine learning problems the maximum amount of data available is provided to 

the learning algorithm, however in this application the observations needed to successfully learn 

a particular locomotion task will affect the physical hardware required and the design of the 

robot itself. There may be limitations in hardware cost, physical size constraints or power 

requirements that necessitate the selection of a limited number of observations for a hexapod 

robot. The optimal combination of observations for a given reinforcement learning task must be 

determined through testing; however, this process can lead to issues with constraints caused by 

the length of agent training time. Ibarz et al. [2] discuss the importance of sample efficiency as 

many widely-used reinforcement learning algorithms require millions of interactions over the 

course of training. Training can take a considerable amount of time even in a simulation 

environment.  The reinforcement learning agent used in this work was trained in simulation using 

15 second episodes which were repeated 1000 times – which took roughly 8 hours of actual 

training time. It is clear that, for the complex task of hexapod locomotion, a systematic method 

for determining the optimal observations is required in order to gain maximal insight into their 

effects in the most time efficient manner.  

In the field of machine learning there exists several methods of feature selection whose 

purpose is to detect the relevant features of a set of training data and discard those which are 

irrelevant. Feature selection techniques can be grouped into three main categories: filter methods, 

wrapper methods, and embedded methods [3]. Filter methods of feature selection are used for 

supervised machine learning where a model is trained on a large existing dataset, and thus cannot 

be used for a reinforcement learning problem where no data exists before the training begins. 

Wrapper methods can be used for reinforcement learning but are computationally expensive. 

Embedded methods such as the technique presented by Whiteson [4] incorporate feature 

selection into the learning algorithm itself, updating the number of observations automatically to 

optimize performance. In the context of applying reinforcement learning to physical robot 

hardware, both wrapper and embedded feature selection methods have the limitation that, 

although they result in a selection of observations to maximize performance, they do not provide 

a model of how each observation affects the robot performance. The selection of observations 

can impact not only the hexapod performance, but additional constraints such as hardware cost, 

form factor, and both power and computational requirements. It would be beneficial to use a 
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method of observation (or feature) selection that can provide a model of how different 

observations affect hexapod performance to better evaluate these potential engineering trade-

offs. The use of a designed experiment as a method of feature selection to select observations for 

a hexapod reinforcement learning problem will be explored in this thesis. 

Originally developed for use in the fields of agriculture and industrial manufacturing, 

design of experiments is a statistical methodology used to produce experiments able to provide 

insight into the effects of various factors on a process result in the most efficient way possible 

[5].  If the reinforcement learning training routine is considered to be the process, the 

observations treated as process factors, and the final reward taken as measurable process result, 

then a designed experiment could potentially be used to optimize the combination of 

observations for maximum final reward. With the overall goal of maximizing the performance of 

a mobile robot, this thesis will explore the potential application of a fractional factorial designed 

experiment in the selection of observations for a hexapod locomotion task. 

With these considerations in mind, the objectives for this thesis are as follows: 

1. Develop a hexapod robot simulation platform which is built upon a central pattern 

generator-based control approach.  

2. Apply Deep Deterministic Policy Gradient (DDPG) reinforcement learning to the 

central pattern generator of the simulated hexapod to enable the hexapod to learn a 

robust behaviour that allows the robot to follow a desired path. 

3. Investigate the effect on hexapod performance of using different combinations of 

observations (sensor measurements) to train the reinforcement learning agent. 

4. Determine the ability of a fractional factorial designed experiment to predict the best 

possible combination of observations to use for the hexapod path-following 

locomotion task.  

5. Demonstrate in simulation that the complex behaviour of path following can be 

achieved through training where the hexapod is rewarded for traveling along a 

straight trajectory. 

The remainder of this thesis is structured as follows. Chapter 2 presents a literature 

review of the field of hexapod robot control with a specific focus on central pattern generators 

and reinforcement learning. An extensive survey of relevant works is presented to explore the 
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different combinations of observations used to train reinforcement learning agents for walking 

robot tasks in the current literature. Chapter 3 details the development of the hexapod simulation 

environment, the Hopf oscillator-based central pattern generator used in this work, as well as the 

setup of the reinforcement learning agent and its integration into the hexapod control 

architecture. The setup of the designed experiment used in this work is presented in Chapter 4. 

Presentation and discussion of the results from the designed experiment along with 

corresponding analysis to produce the final mathematical model are detailed in Chapter 5. 

Predictions generated using the model are also validated in this chapter. Finally, Chapter 6 

includes recommendations for future work and potential improvements, as well as conclusions 

about the main contributions of this work. 
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Chapter 2: Literature Review 

Mobile robots will play an increasingly important role in the replacement of humans in 

remote, hazardous, and extreme environments. Hexapod robots offer several advantages over 

other mobile robotics platforms including excellent maneuverability, versatility over complex 

terrain, better stability, redundancy to limb faults or failures, and adaptability to specific tasks or 

environments [6]. Research in the control of hexapod robots has progressed from traditional 

kinematics- and dynamics-based controllers, to biologically-inspired controllers using central 

pattern generators, optimization of gaits using genetic algorithms, and finally to the current 

cutting edge of control which incorporates machine learning – specifically reinforcement 

learning [1].  

 

2.1. Central Pattern Generators 

An important aspect of control for walking mobile robots is the use of central pattern 

generators (CPG) to drive the rhythmic gait patterns. A CPG is a system which generates a stable 

oscillating cycle without requiring any changing inputs. Central pattern generators have been 

observed in the field of neurobiology as a driving force for rhythmic behaviours in both 

vertebrae and invertebrates [7]. Central pattern generators are well suited to walking robot 

control as they produce smooth control signals, generate stable rhythmic patterns by exhibiting a 

stable limit-cycle behaviour, and the output signals can be collectively modified by adjusting a 

few key parameters [8]. Central pattern generators typically consist of an oscillator created using 

a set of differential equations which generates a stable limit cycle, with the most prevalent 

example from the literature being the Hopf-type oscillator. Recently, central pattern generators 

have proven an effective control method when applied to hexapod and quadruped robots 

performing complex locomotion tasks.  

The works of both Ma et al. [9] and Wang et al. [10] apply coupled Hopf oscillators as 

central pattern generators to a quadruped robot and produce trot-type gaits in a simulation 

environment. Zhong et al. [11] utilizes a central pattern generator to control a novel 24 degree of 

freedom hexapod, with successful application to  real-world hardware. Work by Wang et al. [12] 
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uses Hopf oscillators to generate control signals for the joints of a hexapod and demonstrates the 

stability of the resulting motion while walking on flat ground and up a slope.   

Central pattern generators have been shown to produce smooth transitions between 

different gait types. Chen et al. [13] employ a Hopf oscillator as central pattern generator in the 

control of a hexapod robot and demonstrate the ability to smoothly transition between different 

gaits including a wave gait, tetrapod gait, and tripod gait. Smooth gait transitions for a hexapod 

were also demonstrated by Campos et al. [14]. The proposed control method was proven in both 

simulation and experimentally on a hexapod robot with the switch between gaits achieved by 

changing the phase lag in the Hopf oscillator. Work by Bal [15] also utilizes Hopf oscillators as 

central pattern generators, using six coupled oscillators to produce smooth gait transitions for a 

hexapod robot while exploring how the coupling relationships between the six oscillators affects 

the hexapod’s performance. 

The performance of a centrally-controlled hexapod or quadruped has been further 

improved in the literature through the addition of reactionary mechanisms to the robot control. 

Tran et al. [16] utilize a recurrent neural network as a central pattern generator which was 

applied to a quadruped robot with added reflexive pitch adaptation modules. The quadruped is 

able to react to changes in pitch of the robot body caused by either stepping on uneven ground or 

on inclines by feeding reflex signals calculated based on sensor measurements back to the central 

pattern generator to modify its output. Chung et al. [17] also demonstrated the ability for a 

hexapod controlled using a central pattern generator to use body tilt measurements to modify its 

walking gait while stepping over obstacles. A dual oscillator is employed to generate the joint 

signals for the robot, while a Proportional Integral (PI) controller is used to modify the robot’s 

gait in response to changes in measured body tilt. Sartoretti et al. [18] incorporate inertial 

feedback into central pattern generator control for stable locomotion and climbing in 

unstructured terrain. Their results are experimentally validated on a hexapod robot in challenging 

natural terrain. Liu et al. [19] utilize coupled Hopf oscillators to control a quadruped robot and 

demonstrate the ability to transition between walking and trotting gait as well as using sensory 

feedback of body attitude to modify the gaits for walking on a slope. Yu et al. [20] increased the 

capabilities of a hexapod controlled with a central pattern generator by adding reactionary 

mechanisms to each leg independently. Force feedback from the tip of each leg allows the 
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hexapod to trigger a reactionary movement if the leg does not contact the ground in the expected 

location. The addition of these reactions to feedback about the environment allows the hexapod 

to traverse terrain with raised obstacles and lowered ditches [20]. 

 The use of a central pattern generator is a proven foundation of control for a hexapod 

robot, and for that reason a Hopf oscillator was selected as the driving force of the central pattern 

generator in this work with full details found in Chapter 3. 

 

2.2. Genetic Algorithms for Hexapod Optimization 

While central pattern generators are an improvement on simple parameterized gaits, they 

have traditionally been optimized using manual hand tuning for each specific scenario or 

environment. Genetic algorithms were introduced to robotic control to automate the optimization 

process and have been applied in the literature to walking mobile robots. A genetic algorithm, 

inspired by the process of natural selection, is an iterative process where a set of gait parameters 

can be optimized to maximize a given goal. Trivun et al. [21] utilised a genetic algorithm to 

optimise a parameterized gait for a hexapod robot, so the hexapod is able to reach an optimal gait 

without manual tuning. The genetic algorithm was also tested as a method to deal with faults in 

the hexapod robot, and the demonstrated case was adaptation to a broken leg. Kon and Sahin 

[22] implemented a genetic algorithm to generate gaits for a hexapod robot where the genetic 

algorithm optimizes parameters of sinusoidal functions which drive the motion of each joint. The 

genetic algorithm was shown to be able to cope with motor faults (locked joints) much more 

effectively than maintaining a standard tripod gait. 

Genetic algorithms have been successfully applied in combination with a central pattern 

generator. The work of Wang et al. [23] combines a central pattern generator and a genetic 

algorithm with application to a hexapod robot. A central pattern generator based on coupled Hopf 

oscillators generates output signals which are converted into joint-angle signals through a set of 

mapping functions. A genetic algorithm is used to optimize the parameters of the mapping 

functions with the goal of producing a fast gait while limiting the vertical oscillation. Borrett and 

Beckerleg [24] demonstrated a genetic algorithm for evolving two types of controllers: a novel 

evolvable hardware controller based on a virtual field programmable gate array, and an artificial 
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neural network. The genetic algorithm was shown to be able to optimize the hexapod gait in both 

simulation and real-world testing. 

 The main drawback of optimization using a genetic algorithm is that, once the gait 

parameters have been optimized, they remain fixed during deployment to the hexapod. The 

hexapod is still limited in its reactivity to external disturbances. As before, any reactions must be 

programmed into the underlying gait ahead of deployment, limiting the performance of the 

hexapod when new unseen disturbances are applied.  

 

2.3. Reinforcement Learning in Hexapod Control 

As noted by Coehlo et al. [1], the recent trend in controlling hexapod robots shows the 

emergence and increasing use of reinforcement learning in the literature over the last half-dozen 

years. Reinforcement learning has significant advantages over the other aforementioned control 

methods in terms of reactions to external disturbances and changes to the environment. A central 

pattern generator can successfully produce smooth walking gaits for a hexapod, select reflexive 

responses can be added to modify the gait based on sensor feedback, and further tuning and 

optimization of the gait can be performed using a genetic algorithm. However, these methods are 

limited in that, once the gait has been determined, it remains fixed throughout deployment and 

cannot react to disturbances or environmental changes outside of those set in the predetermined 

reflexes. Reinforcement learning agents, however, are able to react in real time to external 

stimuli and, through varied and extensive training, have been shown to be able to generalize their 

behaviours to previously-unseen circumstances. Heess et al. [25] demonstrated the emergence of 

complex locomotion behaviours for both a quadruped and a humanoid if provided sufficient 

sensory data during training in a complex and diverse simulation environment.  

Reinforcement learning has been applied to hexapod and quadruped robots both as a 

standalone control method and in tandem with a central pattern generator-based control 

architecture. Hexapod and quadruped robots controlled using reinforcement learning have been 

proven to accomplish complex locomotion tasks in the literature. The following section details in 

table form many examples of reinforcement learning applied to hexapod robots. 



9 

 

2.4. Survey of Observations in Reinforcement Learning Research Applied 

to Hexapods in Combination with Central Pattern Generators 

The work described in this thesis focusses on the observations used for reinforcement 

learning when applied to a hexapod robot walking problem. To demonstrate the variation in 

observations used in the current literature, a systematic review of the observations used by 

different authors in the literature is conducted and the results are presented in Tables 1 and 2. 

Note that, while these tables present an extensive overview of the state of the art in this field, 

they do not contain all possible relevant articles. To narrow the scope of the literature search, 

these tables only include work which uses a hexapod or quadruped robot platform as these robot 

configurations are similar in both performance and control requirements (bipedal robots are 

excluded from this review as they are not statically stable and thus may require different 

observations/measurements). Of key interest for this thesis work is to keep the sensor and 

processing power requirements of the robot platform to a minimum, so no complex exteroceptive 

sensors such as cameras or LiDAR are included. An exteroceptive sensor, such as an ultrasonic 

distance sensor, takes measurements and/or readings of the surroundings external to the robot 

body. On the other hand, a proprioceptive sensor takes measurements internal to the robot, such 

as the torque applied at a given joint. The review of the current literature focusses solely on work 

that utilises only proprioceptive sensors and exteroceptive sensors requiring little processing 

power as observations. The hexapod can also be provided with observations which are not 

measurements but commands to the reinforcement learning agent – such as a desired walking 

speed or direction. The scope of this thesis focusses on the use of reinforcement leaning for 

walking and gait modification in reaction to the environment or control commands such as 

walking speed or direction. In cases where a multi-level reinforcement learning control scheme is 

implemented, this review focuses on the lower-level leg control network rather than any higher-

level path-planning networks.  

To present the data extracted from the reviewed papers more clearly, the data is split into 

two tables. Table 1 is used to list how the reinforcement learning agent controls the robot and the 

performance goal of the robot in the context of the work, while Table 2 focusses on comparing 

the types of observations used between works. Table 1 lists the papers which fit the search 

criteria of reinforcement learning applied to a hexapod or quadruped robot using only sensors 
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which measure aspects of the hexapod’s dynamics for the observations. Each entry in the table 

refers to the work of separate authors and they are listed in descending order of the date of 

publication with the most recent works at the top of the table, and with the first column providing 

the reference numbers. The third column lists the type of robot used in the study, be it a hexapod 

or quadruped platform. Column four describes how the reinforcement learning agent provides 

control to the robot, including if the work uses some form of central pattern generator and if the 

control signals are provided to the robot joints as input positions or torques. The fifth column in 

Table 1 describes the main goal of the reinforcement learning in the given paper, taken either 

from a statement in the paper and/or determined through analysis of the reward function used to 

train the RL agent. The final column indicates whether the described method was implemented 

on a real-world robot, if the work was simulation based, or both. 

 

Table 1: Comprehensive literature review of recent works involving hexapod mobile robots and 
reinforcement learning 
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Main Goal of Learning 
(from Reward Function) 

Ex
p 

/ S
im

 

[26] 2023 hexapod 
Hopf oscillator CPG with sinusoidal 
mapping functions whose parameters 
are adjusted by the RL agent 

Track linear velocity 
commands for motion in x 
and y directions as well as 
yaw rate over different 
terrain 

sim 

[27] 2023 hexapod RL agent outputs directly correlated 
to motion trajectories for robot joints 

Walk straight at constant 
speed over rough terrain sim 

[28] 2023 hexapod 

Cycloidal function defines robot feet 
trajectories, the RL agent outputs 
parameters of this function to modify 
the gait 

Track commanded 
velocity while maintaining 
balance (level robot body) 

both 

[29] 2023 hexapod 

Hopf oscillator CPG outputs are 
converted to leg tip trajectories using 
mapping functions, the RL agent then 
provides adjustments to these 
trajectories 

Walk forward while 
keeping the robot body 
level across uneven 
terrain 

sim 

[30] 2022 quadruped 
Leg trajectories generated by 
interpolating between set points, RL 
agent modifies TG parameters 

Walk forward at a target 
velocity both 
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[31] 2022 quadruped RL agent actions are scaled to input 
joint torques for the robot 

Walk forward as quickly 
as possible sim 

[32] 2021 hexapod 
(damaged) 

RL agent actions are scaled to input 
joint torques for the robot 

Robot with damage 
(missing leg(s)) walks 
along straight line 

sim 

[33] 2021 quadruped Joint position commands are the 
outputs from the RL agent 

Maintain balance (level 
robot body) on moving 
ground/platform 

both 

[34] 2021 hexapod 

RL agent outputs coupling parameters 
for a Hopf oscillator-based CPG 
which provides positions control for 
the robot joints 

Fastest forward velocity 
with low energy 
consumption 

both 

[35] 2021 hexapod RL agent actions are scaled to input 
joint torques for the robot 

Fastest forward velocity 
with emphasis on 
efficiency (low energy 
consumption) 

sim 

[36] 2021 quadruped 
RL agent outputs desired joint 
positions which are converted to input 
torques using a PD controller 

Move forward in a straight 
line smoothly at set 
speed 

both 

[37] 2021 quadruped 

Sinusoidal CPG with parameters 
adjusted by RL agent, with outputs 
converted to robot joint torques using 
a PD controller  

Walk at commanded 
velocity using different 
base gaits 

sim 

[38] 2021 hexapod RL agent actions are scaled to input 
joint angles of the robot 

Walk in specified 
direction at target velocity 
over flat or stairs terrain 

sim 

[39] 2021 quadruped 
RL agent outputs desired joint 
positions which are converted to input 
torques using a PD controller 

Walk forward while 
dealing with changing 
environment conditions 

sim 

[40] 2020 hexapod (+ 
quadruped) 

RL agent actions are scaled to input 
joint angles of the robot (or torques 
for quadruped) 

Walk forward as fast as 
possible with known 
categorized damage 

sim 

[41] 2020 hexapod 

Decentralized lower-level RL agents 
for each leg output actions which are 
scaled to joint angles controlling the 
robot’s legs 

Walk with maximum 
forward velocity sim 

[42], 
[43] 

2020, 
2019 quadruped RL network outputs parameters for a 

sinusoidal TG and adjustments which 

Follow direction provided 
by higher level path 
planning RL network 

sim 
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are added to the TG signals to control 
the robot joints 

[44] 2020 hexapod 
RL agent actions are desired joint 
angles which are tracked using a 
servo mimicking feedback loop 

Follow a breadcrumb 
trajectory in a complex 
terrain environment 

sim 

[45] 2019 quadruped 
RL agent actions are modification 
parameters of independent sinusoidal 
TGs for each leg 

Walk forward following 
desired speed profile 

exp 

[46] 2019 quadruped 

Actions from RL agent are swing angle 
and extension of legs which are 
mapped to joint angles using a PD 
controller 

Most forward progress in 
an episode (maximum 
speed) 

both 

[47] 2018 quadruped 
RL agent actions are parameters and 
correction factors for sinusoidal TGs 
which produce the robot joint angles  

Track 
desired/commanded 
speed forward 

both 

 

A few observations and major trends in the control of hexapod robots using 

reinforcement learning can be extracted from Table 1. The two options for controlling the 

actuators of a robot are through commanded positions or commanded torques. Actuating the 

robot using commanded joint angles is the more popular of the two options, with 15 of the 

surveyed works implementing position control and only 6 utilizing torque-controlled actuators. 

Position control will be used in the work of thesis, following the majority of current research. Of 

the 21 surveyed works, 9 of them utilize some form of central pattern generator (or variants with 

other names such as trajectory generator or oscillator). The other 12 directly control the robot 

joints with the reinforcement learning agent actions, although scaling and filtering on the agent 

outputs is commonly required. However, just three of the direct-control cases were implemented 

on a physical robot platform (25 %) while over half of the papers using a central pattern 

generator had a real-world implementation (5 of 9, 55.6 %). The objective of this work is to 

allow for potential deployment on a hexapod robot platform, so for this reason a central pattern 

generator is chosen to be implemented. In terms of the learning objectives in the papers found in 

Table 1, 76.2 % (16 of 21) of the papers have, as the main goal for the robot to walk straight 

forward at either a specified speed or the maximum possible speed. In training a multi-legged 
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robot for a forward walking task, small deviations and perturbations provide the variation 

required to achieve a robust final gait. The work in this thesis will have, during training, a goal to 

have the robot follow a specified straight line as quickly as possible while starting each episode 

with the hexapod position initialized at a random offset from the specified line. By training the 

robot to move towards and follow a straight line it is hypothesized that the robot will be able 

achieve more complex path-following behaviour as outlined in the thesis objectives.  

Table 2 is a continuation of Table 1 and provides a visual representation of the types of 

observations used in the selected papers. The observations listed as columns in the table are, the 

joint angles, joint angular velocities, body angles, body angular velocities, joint torques, body 

displacements, body velocities, body height, and ground contact. The table indicates (with a dot 

and green fill) if the particular observation is used in the given paper. There are also two 

additional columns which list any other unique observations used, and if the work also provides 

the previous time step’s actions back to the reinforcement learning agent as observations. The 

body height is the distance between the robot’s body and the ground and, although technically 

this is one of the robot’s three displacements, it is separated from the body displacements 

category which refers to if the robot is provided with knowledge about its location in the 

environment according to a reference point. The column for ground contact also provides 

additional notes as to whether the contact information is provided as a measurement of forces or 

as a binary contact signal (contact or no contact).  

 

 

 

 

 

Table 2: Survey of observations used for reinforcement learning in recent works with hexapod 
mobile robots (next page) 

 



14 

 

Re
fe

re
nc

e 

Jo
in

t A
ng

le
s 

Jo
in

t A
ng

ul
ar

 
Ve

lo
ci

tie
s 

Bo
dy

 A
ng

le
s 

Bo
dy

 A
ng

ul
ar

 
Ve

lo
ci

tie
s 

Jo
in

t T
or

qu
es

 

Bo
dy

 
D

is
pl

ac
em

en
ts

 

Bo
dy

 V
el

oc
iti

es
 

Bo
dy

 H
ei

gh
t 

G
ro

un
d 

C
on

ta
ct

 

O
th

er
 

Pr
ev

io
us

 A
ct

io
ns

 

[26] ● ●  ●   ●   projected 
gravity vector ● 

[27] ● ● ● ●  ● ●     

[28]    ●   ● ●  target velocity ● 
[29]  ● ● ● ●  ●  binary contact   

[30]    ●   ● ●  target velocity, 
states of TGs 

 

[31] ●  ●   ● ●  contact force  ● 
[32] ● ● ● ●  ● ● ●    

[33] ● ● ●  ●       

[34] ● ● ●  ● ● ●    ● 

[35] ● ● ● ● ●  ●  force and 
torque at toes 

 ● 

[36] ● ● ●      binary contact  ● 
[37] ● ● ● ●    ●    

[38] ● ● ● ●   ●  binary contact 
relative angle 
between robot 
and goal 

 

[39] ● ● ● ●   ●     

[40] ● ●    ● ●  binary contact 
one hot 
encoding of 
damage type 

 

[41] ●  ●   ●   binary contact  ● 

[42], 
[43] 

  ● ●      

command 
vector from 
higher level 
network, TG 
state vector 

 

[44] ● ● ●      binary contact terrain 
classification 

 

[45] ●  ●    ●   

phase of each 
TG, previous 4 
time steps 
observations 

 

[46] ●  ● ●      
previous 5 time 
steps 
observations 

● 

[47]   ● ●      phase of TGs, 
desired velocity  
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Table 2 shows the various combinations of observations used in the literature. The papers 

are listed in order of date of publication with the most recent entries at the top of the table (the 

same order as Table 1). Table 2 clearly shows that, while some observations may be more 

common than others, there is no consensus within the literature on which set of observations to 

use for reinforcement learning locomotion of a hexapod or quadruped robot.  

The most common proprioceptive observation within the surveyed papers is the 

measurement of body angles or tilt, as might be measured using an inertial measurement unit 

(IMU) onboard the robot body. An IMU is both inexpensive and relatively easy to include in the 

chassis of a robot build, making it a good candidate for widespread adoption. The body angles 

are also relatively easy to obtain in simulation during training. The inclusion of an IMU also 

allows for the measurement of the body velocities and angular velocities without the addition of 

any sensors – which perhaps explains their popularity as a choice of observation. The second 

most popular observation amongst the surveyed papers are the joint angles themselves. The state-

of-the-art in the literature is for the robot joints to be controlled using some form of central 

pattern generator, so even if the robot is controlled via position control, the outputs of the 

reinforcement learning agent are typically not directly the joint positions. The joint positions are 

provided back to the reinforcement learning agent to provide context as to how the agent’s 

outputted actions affect the robot’s movement. Robotic joints are often actuated with servo 

motors, whose internal positions sensors allow the joint positions to be obtained without 

additional hardware.  

Studying the data displayed in Table 2, there appears to be a trend in the literature of the 

use of an increasing number of observations, with more complex measurements such as the joint 

torques, body displacements, and body heights used more in recent research. The ground contact 

as an observation is used in 8 of the 22 surveyed works, and 6 of those 8 implemented the 

contact measurement as a binary signal (contact or no contact) as opposed to a measurement of 

force. Intuitively it seems that providing the reinforcement learning agent with information about 

the contact of each foot would improve performance; however, only about one third of the works 

listed utilized these signals. More investigation is needed to determine if ground contact 

observations are not used because they are not effective, or if they are not used due to the 

increased difficulty in obtaining a contact measurement from physical hardware on an actual 
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robot. The present work hopes to produce results that could help make objective data-driven 

decisions on the benefits of various observations including ground contact measurements. 

While each of the reviewed papers presents a unique hexapod reinforcement learning 

scenario, none provide an in-depth explanation or reasoning as to why the observations used 

were selected for the particular case. The work in the present thesis explores the use of a 

designed experiment to provide an objective method for selecting the combination of 

observations that maximize the desired performance objective.  
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Chapter 3: Simulator Development 

The following chapter details the development of the hexapod robot simulation platform, 

and how both a central pattern generator and reinforcement learning were applied to the 

simulator to meet the first two thesis objectives. 

 

3.1. Hexapod Learning Task 

One of the goals of this work is to determine if a fractional factorial designed experiment 

can be used to aid in the selection of sensors/measurements to use when designing a hexapod 

robot for a particular reinforcement learning-based locomotion task. Therefore, this thesis will 

carry out a study to determine if a factorial designed experiment can select the optimal 

observations to use for a path following locomotion task.  

The path following task is illustrated in Figure 1. The hexapod will start at a random 

offset perpendicular from a desired trajectory line as shown in the figure. The goal of the 

reinforcement learning is for the hexapod to correct its initial offset by tracking towards and then 

following along the goal trajectory line. Since the hexapod will be controlled using a central 

pattern generator, the robot will initially be able to make forward progress but must learn to 

adjust its gait to steer and follow the desired path as quickly as possible.  
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Figure 1: Desired Hexapod Trajectory Tracking Behaviour 

 

3.2. Overall Simulator Approach 

The work in this thesis is carried out with the application of an autonomous or remotely-

controlled hexapod robot in mind. Figure 2 illustrates the scope of the autonomous hexapod 

control covered in this thesis. The control of a hexapod robot can be broken down into two levels 

of control: a high-level which includes some form of navigation or path planning, and a low-

level which is reactive to the environment in order to follow the desired path. The higher-level 

control could consist of a neural network, a human operator using a remote control, or any other 

suitable methods. The high-level system determines the desired robot path through the 

environment, and also selects the base gait type that will be used in the locomotion (such as 

tripod or wave gaits). The lower-level control system consists of a central pattern generator and a 

reinforcement learning agent which follows the desired path using the provided base gait while 

adding the ability of the hexapod to react to disturbances and inputs from the environment. As 

shown in Figure 2, the higher-level control is not included in the scope of this work. It is 

assumed that both a path and base gait have been predetermined and are provided to the lower-

level control system as inputs. The specific focus of this thesis is to study the effect of 

measurements/feedback provided to the reinforcement learning agent in a lower-level control 

system on the ability of the hexapod to follow the desired trajectory provided by a higher-level 

control system. 
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Figure 2: High level hexapod control flowchart 

 

3.3. Structure of Simulator and Flow of Data 

To meet the first thesis objective, a hexapod simulator was developed using MATLAB’s 

Simulink environment using the Simscape Toolbox to simulate the rigid multibody dynamics and 

ground contact dynamics. The overall structure of the hexapod simulator developed in this thesis 

is illustrated in the flowchart shown in Figure 3, which follows a similar structure to [32] and 

[48]. The simulator can be broken down into three key sections that govern the various aspects of 

the hexapod control: the reinforcement learning section, the central pattern generator, and the 

hexapod simulation environment itself. The Simulink model is called by a driving routine which 

defines the parameters used in the simulator. Referring to Figure 3, the simulator operates in a 

loop with the flow of data as follows: 
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• The reinforcement learning (RL) section takes in measurements from the simulation 

environment and outputs the RL Agent’s actions which will be used to control the 

hexapod. 

• The RL Agent’s actions are converted into joint signals by the central pattern generator 

and then sent to the hexapod simulation environment. 

• The simulation environment applies these joint signals to the hexapod and records the 

measured response to be sent back to the reinforcement learning agent to start the cycle 

over again.  

 

 

Figure 3: Hexapod Reinforcement learning simulation block diagram 

 

3.4. The Hexapod Model and Simulation Environment 

The hexapod robot is modelled after the Fire Ant robotics platform shown in Figure 4 

sourced from Orion Robotics Inc. [49]. The Fire Ant is an Arduino-based platform which utilizes 

digital servo motors to control each of its joints. The hexapod has 18 degrees of freedom 

dedicated to walking. The robot has additional degrees of freedom in the form of a movable tail 

and head with independently-controllable pincer jaws; however, the hexapod robot to be studied 

in this work consists of the Fire Ant platform with the head and tail removed.  
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Figure 4: Fire Ant Robot and Simulated Robot with head and tail removed 

 

The hexapod robot is modelled in SolidWorks by measuring the physical robot. The 

important aspects to include in the model are the key geometric features such as limb lengths and 

component masses. The SolidWorks model is then imported into SimScape Multibody using the 

SolidWorks to Simscape converter software. The modelling of the Fire Ant hexapod in 

SolidWorks was completed by Jeffrey Woodacre, a previous Dalhousie University graduate 

student [50]. Note that no electrical components other than the servo motors are modelled, as 

they do not contribute significantly to the total mass when compared to the servo motors and 

aluminum frame components.  

To provide an idea of the overall scale of the Fire Ant hexapod, the following statistics 

are presented. The size of the hexapod body panels is 227 mm x 170 mm (length x width). The 

total length of each leg when fully straightened is 385 mm. The mass of the hexapod (with head 

and tail removed) is 1.49 kg. 

The simulator is built using MATLAB R2021a and Simscape. This software was selected 

as the MATLAB package has the ability to handle both the hexapod simulation environment and 

it has built-in toolboxes to support DDPG reinforcement learning. This work could be 

accomplished using many different software packages, so the selection of MATLAB R2021a is 

not critical to the results.  

The hexapod simulation environment consists of a flat ground plane with which the 

hexapod can interact. The hexapod can contact the ground plane through 6 points located at the 

tips of the legs. The dynamics of these interactions are modelled using the Spatial Contact Force 
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block in Simscape [51]. The hexapod’s legs have rubber tips for improved grip on hard surfaces, 

so the parameters of the contact interaction are set to model this interaction as listed in Table 3. 

The coefficient of static friction was measured using a tilt test, while the coefficient of dynamic 

friction was estimated based on comparing the distance traveled per step in simulation to real-life 

testing using a robot. The remaining parameters are taken from [48] as it features a similar 

walking environment.  

 

Table 3: Spatial Contact Force Block Parameters 

Spatial Contact Force Block Parameters for Hexapod 

Leg to Gound Plane Contact 

Coefficient of static friction 0.5 

Coefficient of dynamic friction 0.3 

Critical velocity (m/s) 0.001 

Ground stiffness (N/m) 1000 

Ground damping (N/(m/s)) 100 

Ground transition width 0.0001 

 

Each leg of the hexapod has three degrees-of-freedom: one hip joint which allows the leg 

to swing laterally about the central body, and two joints (knee and ankle) in the plane of the leg 

for bending and extension. Figure 5 shows the range of motion of the hip angles for each of the 

six legs. Each hip angle is limited to 0.3 rad of motion which is the maximum allowable 

movement without any overlap of the ranges of motion from the other legs. If the range of 

motion of the legs were allowed to overlap, then there would be potential for self-collision – a 

complication that is not dealt with in this work.  
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Figure 5: Top view of hexapod showing range of motion of hip angles 

 

The two degrees-of-freedom in the plane of the leg are designated the knee and ankle 

joints and have ranges of motion of 0.5 rad and 0.275 rad, respectively. The full in-plane range of 

motion of a leg assembly is illustrated in Figure 6. This range of motion is sufficient for the task 

of walking/navigating on a flat terrain as is the case for the study conducted in this work. In the 

case of more extreme terrain that may include significant and abrupt changes in elevation, the 

range of motion of the legs could be increased to improve the hexapods performance. Limiting 

the range of motion of each leg simplifies the simulation by ensuring that only the tip of each leg 

can come into contact with the ground. 
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Figure 6: Range of motion of hexapod leg 

 

3.5. Joint Position Command Filtering 

The Fire Ant robot’s 18 joints are actuated using position-based control with digital servo 

motors. The hexapod control system uses a central pattern generator which outputs relatively 

smooth joint angle signals; however, due to adjustments to these signals by the reinforcement 

learning agent operating in discrete time at a fixed sample rate, there will be small discontinuities 

in the resulting joint signals. These discontinuities are illustrated in Figure 7 which shows a 

sample joint angle signal taken from the first episode of a reinforcement learning training 

routine. In order to simulate a servo motor’s response to the commanded joint angle signal, 

filtering is used to smooth out any small discontinuities. The corresponding filtered joint position 

signal is also shown in Figure 7.  
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Figure 7: Commanded and filtered joint angles 

 

The filtering is achieved within the Simulink to Physical Signal converter block in 

Simscape [52] before the signals are sent to the revolute joint blocks within the hexapod model. 

This block is necessary as a link between the reinforcement learning portion of the Simulink 

model and the Simscape hexapod and environment model. Second order filtering must be 

selected in order to provide the first- and second-order derivatives (velocity and acceleration) of 

the joint position signal to the revolute joint blocks in the hexapod model. Each time the 

converter block calculates a derivative it uses a first order low pass filter – the transfer of 

function of which is shown in the following equation: 

𝐻(𝑠) =
1

𝜏𝑠 + 1
 (1) 

where the time constant τ is set to 0.05 seconds. This value was determined through hand tuning 

and is a balance between filtering capability and minimization of lag. The time constant should 

be large enough that the filtering removes any large jumps in position signal that the real servo 

motors would not be able to track due to speed limitations. It is also important to minimize the 



26 

 

lag induced by the filtering so that the reinforcement learning can better correlate its action 

commands with how they affect the hexapod’s joint positions.  

 

3.6. Central Pattern Generator 

The hexapod control system uses a central pattern generator in combination with a set of 

mapping functions to produce smooth joint angle signals while offering precise control over the 

motion. The oscillators and mapping functions described by Wang et al. [23] for use with a 

genetic optimization algorithm are built upon and modified in this work to function with a 

reinforcement learning agent.  

The central pattern generator consists of six coupled Hopf oscillators which, through the 

adjustment of various parameters, offers control over the amplitude, frequency, and phase angle 

between the hexapod’s six legs. The Hopf oscillator is a proven basis for central pattern 

generation applied to hexapod robots [23], [29], [34], [53]. The single Hopf oscillator is described 

by the following mathematical model [23]: 

𝑥̇ = 𝛼(𝜇 − 𝑥2 − 𝑦2)𝑥 − 𝜔𝑦 (2) 

𝑦̇ = 𝛽(𝜇 − 𝑥2 − 𝑦2)𝑦 + 𝜔𝑥 (3) 

 

where the sinusoidal output of the Hopf oscillator state variables 𝑥 and 𝑦 can be controlled by a 

number of parameters, ω is the oscillator frequency, √𝜇 is the amplitude, and α and β are the 

convergence velocities (where 𝛼 > 0 and 𝛽 > 0). The Hopf oscillator allows for fine control of 

the behaviour of the state variable outputs which are then used to drive the rhythmic walking 

motion of the hexapod. The following figures are based on those from Wang et al. [23] and 

demonstrate the effects of the different parameters on the Hopf oscillator outputs.  

 Figures 8 and 9 illustrate how the frequency of the oscillator outputs (both x and y) can 

be controlled by changing just the oscillator frequency parameter ω. This parameter directly 

controls the frequency independently from the other key oscillator characteristics.  
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Figure 8: Hopf oscillator state variables with ω=π 

 

Figure 9: Hopf oscillator state variables with ω=2π 

  

Changing the oscillator parameter μ directly controls the amplitude of the output signals x 

and y a shown in Figures 10 and 11. 



28 

 

 

Figure 10: Hopf oscillator state variables with μ=1 

 

Figure 11: Hopf oscillator state variables with μ=4 

  

Finally, Figures 12, 13 and 14 demonstrate how the convergence velocity β affects the 

behaviour of the Hopf oscillator. The higher the value of β, the faster the oscillator outputs 

converge to their final steady state sinusoidal oscillations.  
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Figure 12: Hopf oscillator state variables with β=1 

 

Figure 13: Hopf oscillator state variables with β=5 
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Figure 14: Hopf oscillator state variables with β=10 

  

 In order to produce the complete set of oscillatory signals that are used to drive the 

motion of the hexapod, the central pattern generator uses six coupled Hopf oscillators. Each leg 

of the robot is controlled by an individual oscillator and the inter-oscillator coupling determines 

the phase differences between the hexapod’s legs. The previously-described Hopf oscillator is 

modified to include an additional coupling term to govern the interactions between the six legs of 

the hexapod robot. Each of the coupled Hopf oscillators are described by the following equations 

[23], [29]. 

𝑥̇𝑖 = 𝛼(𝜇 − 𝑟𝑖
2)𝑥𝑖 − 𝜔𝑖𝑦𝑖 (4) 

𝑦̇𝑖 = 𝛽(𝜇 − 𝑟𝑖
2)𝑦𝑖 + 𝜔𝑖𝑥𝑖 + 𝛿 ∑ ∆𝑗𝑖

𝑗
 (5) 

∆𝑗𝑖= 𝑦𝑗 cos(𝜃𝑗
𝑖) − 𝑥𝑗 sin(𝜃𝑗

𝑖) (6) 

 

where once again, x and y are the oscillator state variables, ω is the frequency, √𝜇 is the 

amplitude, and β is the convergence velocity. The subscripts 𝑖 and 𝑗 indicate the oscillator/leg 

numbers (between 1 and 6). The new parameters dealing with the oscillator coupling are the 
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coupling strength between oscillators δ, the coupling value ∆𝑗𝑖, and the phase angle 𝜃𝑗
𝑖 between 

oscillator 𝑖 and oscillator 𝑗.  

The phase angles between the oscillators 𝜃 is a matrix representing the coupling 

connections between oscillators and, therefore, hexapod legs. Wang et al. [23] implements fully-

symmetric bidirectional coupling between the six oscillators; however, it was found that using a 

simpler method of leader oscillators and followers also produces the desired result. In this work 

one of the oscillators is selected as the leader, and the phase angles for the remaining five 

oscillators are all based on the phase angle of the leader. Using this leader-follower method 

simplifies the phase difference matrix 𝜃 without compromising the ability of the hexapod to 

achieve various base gaits. Two of the most common hexapod gaits, derived from the study of 

insects in nature, are the tripod and wave gaits. The tripod gait is the fastest hexapod gait which 

can be achieved while maintaining dynamic stability through three points of contact with the 

ground at all times. On the other hand, the wave gait is a slow and stable gait where each leg 

moves independently – all equally spaced with a phase difference of 𝜋 3⁄ . The phase difference 

matrix used to obtain the tripod and wave gaits are as follows:  

𝜃𝑡𝑟𝑖𝑝𝑜𝑑 =

[
 
 
 
 
 

1 0 0 0 0 0
−𝜋 2⁄ 0 0 0 0 0

1 0 0 0 0 0
−𝜋 2⁄ 0 0 0 0 0

1 0 0 0 0 0
−𝜋 2⁄ 0 0 0 0 0]

 
 
 
 
 

 

 

(7) 

𝜃𝑤𝑎𝑣𝑒 =

[
 
 
 
 
 

1 0 0 0 0 0
−𝜋 3⁄ 0 0 0 0 0
−2𝜋 3⁄ 0 0 0 0 0

−𝜋 0 0 0 0 0
−4𝜋 3⁄ 0 0 0 0 0
−5𝜋 3⁄ 0 0 0 0 0]

 
 
 
 
 

 (8) 

 

The coupled Hopf oscillators generate a continuous output irrespective of the initial 

conditions which means that the central pattern generator is able to switch between hexapod base 

gaits while still providing a continuous output. Figure 15 shows the central pattern generator 
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switching from a tripod gait to a wave gait and back to tripod gait. The figure shows the first 

state variable, 𝑥, for each of the six oscillators and demonstrates the phase difference between 

oscillators (and therefore legs). The oscillators signals are initially separated in two groups of 

three with a phase difference of 𝜋 2⁄  for the tripod gait, then at 5 seconds transition to each have 

their own unique phase angle in a wave gait arrangement before returning to the tripod gait at 10 

seconds. 

 

Figure 15: Transition from tripod gait to wave gait and back to tripod gait 

 

During a gait transition the leader leg (leg 1 in this case) keeps the same sinusoidal 

motion while the remaining legs adjust their phases accordingly. In the case of bidirectional 

coupling between all six oscillators, all legs would adjust their phases in a distributed manner to 

achieve the new gait. There are potential advantages to each gait; however, for the purposes of 

this work the tripod gait is used exclusively so the leader-followers method is sufficient.  

The coupling strength δ can be tuned to control how quickly the oscillator outputs adjust 

to a change in the phase angles in a similar fashion to how the convergence velocity affects each 

individual oscillator. Figure 16 shows a switch from wave gait to tripod gait with a coupling 

strength of 10 leading to a rapid and more abrupt change in base gait.  
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Figure 16: Gait transition with δ=10 

 

If the coupling strength is reduced the change in oscillator output due to the abrupt change in 

phase angles is a more smooth and more blended (albeit slower) transition. This output is shown 

in Figure 17.  

 

Figure 17: Gait transition with δ=2 
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Mapping functions are used to transform the Hopf oscillator x and y signals into joint 

angle signals for each of the hexapod’s 18 degrees of freedom. There are six coupled oscillators, 

each corresponding to a leg on the hexapod, so there are also six sets of mapping functions (one 

for each individual leg). The mapping functions take the state variables x and y from the Hopf 

oscillator and convert them into three angle signals for the hip, knee and ankle joints of the 

corresponding leg. The mapping functions used in this work are based on those presented by 

Wang et al. [23] but are modified to better suit reinforcement learning (as opposed to the genetic 

optimization algorithm for which they were originally proposed). The mapping functions 

presented by [23] utilise piecewise functions for both the knee and ankle angles to differentiate 

between the swing and stance phases of the leg motion. In the present work, these piecewise 

functions are replaced with a single function for all conditions as the reinforcement learning 

agent is able to infer when each leg is in a swing or stance phase from the provided observations, 

and the agent can also adjust the mapping function parameters in reaction to external stimuli. The 

mapping functions corresponding to each oscillator are as follows (where the subscript i 

indicates the oscillator/leg number): 

𝜃1,𝑖 = 𝑘0,𝑖𝑦𝑖 (9) 

𝜃2,𝑖 = 𝑘1,𝑖𝑥𝑖 + 𝑏1,𝑖 (10) 

𝜃3,𝑖 = 𝑘2,𝑖𝜃2,𝑖 + 𝑏2,𝑖 (11) 

 

where 𝜃1,𝑖 indicates the hip angle for leg 𝑖, 𝜃2,𝑖 is the knee angle for leg 𝑖 and 𝜃3,𝑖 is the ankle 

angle also for leg 𝑖. 𝑘0, 𝑘1 and 𝑘2 are proportionality factors, and 𝑏1 and 𝑏2 are bias values in the 

mapping functions which can be tuned to modify the base gait. The proportionality factors can 

therefore be expressed as a matrix of size 6×3, with three parameters for each of the six legs. The 

biases can be similarly written as a single matrix of size 6×2. These parameters are the means 

through which the reinforcement learning agent controls the motion of the hexapod. The agent is 

able to adjust all of the proportionality factors and biases in real time in order to modify the 

underlying base gait set by the coupled Hopf oscillators. The total number of adjustable 

parameters is 30 corresponding to three proportionality factors and two biases for each of the 

hexapod’s six legs.  
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The ranges for which the mapping function parameters can be adjusted by the 

reinforcement learning agent are shown in Table 4. These values were determined through 

manual tuning in order to provide a balance between exploration capabilities of the potential 

action space and learning speed.  

 

Table 4: Mapping function parameter ranges 

Parameter Minimum Value Maximum Value 

𝑘0 0 0.3 

𝑘1 0 0.3 

𝑘2 0 0.3 

𝑏1 -0.1 0.1 

𝑏2 -0.1 0.1 

 

 

3.7. The Reinforcement Learning 

To meet the second thesis objective, DDPG reinforcement learning for the hexapod robot 

is implemented in the hexapod robot simulator through the use of the Simscape Reinforcement 

Learning Agent block [54]. This agent block requires three inputs: the set of observations 

provided to the agent, the calculated reward signal, and a “check if done” signal to indicate the 

end of each episode. The reinforcement learning parameters are provided to the Agent Block in 

the simulation driving routine. The following sections discuss each aspect of the reinforcement 

learning and how they are related to the hexapod simulation environment.  
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3.7.1. The “Check If Done” Function 

The “check if done” function receives as input the measured body tilt angles from the 

simulation environment and produces a binary signal based on the orientation of the hexapod. 

This signal indicates when to abandon a training episode early due to the robot becoming 

inverted.  If any of the three body angles exceed the limits shown in Table 5, then the training 

episode will be immediately terminated.  

 

Table 5: Maximum body angles for termination conditions 

Max Pitch ± 90° 

Max Roll ± 90° 

Max Yaw ± 360° 

 

The pitch and roll are limited to 90° to terminate the episode if the hexapod becomes 

inverted. Since the hexapod is not permitted to experience being inverted, the result is that the 

robot can never learn to invert itself and will never be able to reorient itself if it becomes inverted 

during deployment. This work focusses on training the hexapod to steer and the issue of dealing 

with inversion is out of the scope of this thesis. Smaller roll and pitch limits were initially used in 

an effort to limit the amount of body tilt present in the final gait; however, this resulted in the 

hexapod learning to flip itself over right at the start of each episode to quickly terminate the 

episode, rather than incur negative reward penalties throughout the course of the entire 15 second 

episode. The large roll and pitch limits are required to allow the hexapod to explore its entire 

range of motions without triggering a premature episode termination.  

The maximum yaw angle is set to be 360° to allow for the hexapod to steer and follow 

the goal path, but also stops the training if the hexapod ends up in a situation where it has entered 

a repeating pattern such as walking in a circular path or spinning on the spot; however, this 

problem was not encountered during the training regime used in this work.  
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3.7.2. The Reward Function 

The reward function is used to guide the learning of the RL agent towards the desired 

behaviour. In this case, the reward function is designed to train the hexapod to follow the desired 

trajectory line both rapidly and smoothly. The reward function contains both positive and 

negative reward terms to encourage positive actions and discourage undesired actions, 

respectively. The reward terms are calculated using measurements from the simulation 

environment. The total reward is calculated as shown in Equation 12 with the individual reward 

terms detailed in Table 6. 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 − 𝑅𝑡𝑖𝑙𝑡 − 𝑅𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑅𝑏𝑜𝑑𝑦ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑅𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (12) 

 

Table 6: Detailed breakdown of reward function terms 

Reward Term Reward Type Equation 

Forward velocity Positive reward 𝑅𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝐶1𝑣𝑥 

where: 

- 𝑣𝑥 is the component of the velocity of the 

hexapod (measured at the body center) 

along the stationary global frame’s +x axis 

(which also aligns with the desired straight-

line trajectory) 

- 𝐶1 is the reward term scale factor 

Body tilt Negative penalty 𝑅𝑡𝑖𝑙𝑡 = 𝐶2(𝜃𝑝𝑖𝑡𝑐ℎ
2 + 𝜃𝑟𝑜𝑙𝑙

2 + 𝜃𝑦𝑎𝑤
2) 

where: 

- 𝜃𝑝𝑖𝑡𝑐ℎ is the pitch angle of the hexapod body 

in radians 

- 𝜃𝑟𝑜𝑙𝑙 is the roll angle of the hexapod body in 

radians 



38 

 

Reward Term Reward Type Equation 

- 𝜃𝑦𝑎𝑤 is the yaw angle of the hexapod body 

in radians 

- 𝐶2 is the reward term scale factor 

Offset from goal 

trajectory 

Negative penalty 𝑅𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐶3|∆𝑧| 

where: 

- ∆𝑧 is the offset of the hexapod body center 

from the desired trajectory line taking the 

shortest distance perpendicular to the 

desired trajectory line 

- 𝐶3 is the reward term scale factor 

Body height Negative penalty 𝑅𝑏𝑜𝑑𝑦ℎ𝑒𝑖𝑔ℎ𝑡 = 𝐶4(ℎ − ℎ𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2 

where: 

- ℎ is the height of the hexapod body from the 

ground plane, measured from the bottom of 

the hexapod 

- ℎ𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the desired body height set for 

the hexapod 

- 𝐶4 is the reward term scale factor 

Constant term Positive reward 
𝑅𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐶5

𝑡𝑠
𝑡𝑓

 

where: 

- 𝑡𝑠 is the sample time of the reinforcement 

learning 

- 𝑡𝑓 is the training episode length (final time) 

- 𝐶5 is the reward term scale factor 
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The most important reward terms are the forward velocity term and the offset term as 

these provide the driving force for the RL agent to learn the desired path-following behaviour. 

The forward velocity term is a positive reward given to encourage forward movement of the 

hexapod in a direction parallel to the goal path. This reward term uses the component of the 

hexapod’s absolute velocity in the global x direction (parallel to the goal trajectory). This term 

becomes negative if the hexapod moves in the opposite direction. There is no goal velocity or 

speed of movement. The forward velocity reward simply encourages the hexapod to move as 

quickly as possible. The top speed of the hexapod is limited by the frequency of the base gait 

built into the central pattern generator and the range of motion of the legs, so rewarding the 

maximum possible speed will theoretically lead to a tripod gait optimized for speed.   

The offset reward term is a penalty term calculated by taking the absolute value of the 

perpendicular distance from the hexapods body center to the goal trajectory line. The offset 

reward term produces an increasing negative reward the further the hexapod is from the goal line 

on either side. The offset reward is the driving force behind the reinforcement learning agent 

being able to steer the hexapod.  

There are two additional penalty terms in the reward function which, while not crucial to 

the overall goal of path following, are used to provide further control over the characteristics of 

the learned gait. The body tilt reward term penalizes rotation of the hexapod body in any of the 

three axes (pitch, roll and yaw) with the goal of limiting oscillation of the hexapod body and 

increasing the smoothness of the learned gait. This reward term could be especially important in 

a case where the hexapod is transporting a delicate payload or a payload which must be kept 

level during motion. To make the smoothness of the gait a greater priority of the learning, the 

reward term factor for the tilt penalty could be increased. The tilt penalty does include the yaw 

angle which might seem counterproductive when the hexapod is required to turn to follow the 

goal trajectory; however, including the yaw angle ensures that the hexapod will walk straight 

along the trajectory line in the desired orientation without crab walking, and the benefit gained 

by turning towards the goal trajectory line to reduce the offset penalty outweighs the additional 

yaw tilt penalty.  

The body height reward term is used to set the desired height of the hexapod’s body for 

the learned gait, ranging from a low crouch to a tall stance with legs fully extended. This reward 
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term would become more important if the hexapod was trained on uneven terrain where ground 

clearance might become an issue.  

The final term of the reward function is a small constant reward given each time step to 

encourage the hexapod to make it to the end of each training episode without triggering the early 

termination conditions. During initial testing, one peculiar case emerged where the behaviour 

learned by the hexapod was to immediately flip itself over at the beginning of each episode to 

trigger the termination condition. As mentioned previously, the RL agent learned that, by 

terminating each episode as quickly as possible, it could avoid collecting negative reward 

penalties that it would incur during exploration of further behaviour. The reinforcement learning 

agent had become caught in a local maximum. The addition of the constant reward term helps to 

remedy this problem by giving the RL agent some positive reward just for completing each 

training episode in full, even if it is not yet achieving the desired behaviour. Increasing the tilt 

tolerance for the termination condition was also used to increase the hexapod’s exploration 

ability and allow it to escape local maxima during training.  

Each term of the reward function has a corresponding scale factor which is used to tune 

the importance/weight of the individual reward terms. These scale factors allow the user to 

decide which of the reward terms to prioritize during training of the hexapod gait. In this case, 

priority was given to the forward reward term and the offset penalty which have the largest 

impact on the ability of the RL agent to achieve the goal of learning to follow a desired 

trajectory. The final scale factors used in this thesis, which were obtained through a hand-tuning 

process, are shown in Table 7. Note that the relative values of the scale factors do not directly 

correspond to the relative weight/importance given to each reward term as the reward terms are 

not normalized and their scales differ.  
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Table 7: Reward function scale factor values 

Reward Term Scale Factor Value 

𝐶1 50 

𝐶2 5 

𝐶3 50 

𝐶4 50 

𝐶5 1000 

 

3.7.3. Observations 

The following sections outline the set of observations available to the reinforcement 

learning agent. All selected observations utilize sensors internal to the hexapod robot, meaning 

that the hexapod could be operated in an unstructured environment. These observations do not 

consist of an exhaustive list of all potential sensors/observations for a hexapod but are the chosen 

set which could be used on a hardware platform such as the Orion Robotics Fire Ant. The 

selected observations are prevalent observations used in the literature for hexapod and quadruped 

robots as identified in Table 2 of Section 2.4. There are some observations which are always used 

and are, therefore, not included as factors in the designed experiment. These observations are 

either deemed critical for the desired performance of the hexapod and/or are readily available 

without the use of additional sensors. All observations are normalized to between −1 and +1 

before being passed to the neural network.  

 

3.7.4. Observations Included in All Designed Experiments 

The following observations were included in all the designed experiment runs: 
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Joint Angles 

In this work the joint angles are considered a critical observation for the success of the 

learning and are always provided to the reinforcement learning agent. Preliminary tests showed 

that the learning ability is significantly negatively impacted if the joint angles are not included in 

the set of observations. The hexapod is controlled by providing joint angle commands to the 18 

servo motors, which track the commanded angles using built-in rotary potentiometers. No 

additional sensors are required to monitor the current joint angles. For these reasons the 18 joint 

angles are always provided as observations and do not change throughout the designed 

experiment. The joint angles obtained directly from the hexapod simulation environment are first 

converted back into the nominal angle space in which the center of travel of each joint is 

designated as the origin. They are then normalized by dividing the nominal measured angle by 

the maximum possible angle for the given joint. The maximum possible (nominal) joint angles 

are listed in Table 8.  

 

Table 8: Maximum joint angles 

Angles (6 each) Maximum Range of Nominal Joint Angle 

(±) 

Hip 𝜃1 0.15 rad 

Knee 𝜃2 0.25 rad 

Ankle 𝜃3 0.1375 rad 

  

Joint Angular Velocities 

The joint angular velocities are also always included in the set of observations. The joint 

angles are already being measured; therefore, it takes no additional sensors and minimal effort to 

also include the angular velocities. In order to determine the maximum possible value that could 

be expected for normalization of the measured angular velocities, three cases were considered 

with the aim of encompassing the full range of potential angular velocities. The maximum 

angular velocity was recorded during the first episode of training, after the agent has been fully 
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trained for 1000 episodes, and for the nominal gait case with the reinforcement learning removed 

from the loop. The maximum recorded angular velocities for each case were 1.72 rad/s, 3.14 

rad/s and 0.86 rad/s, respectively. The largest value (from the fully trained case) was taken and 

an additional safety factor of 1.2 was added to obtain the angular velocity normalization factor of 

3.77 rad/s – the value by which each measured angular velocity is divided before being passed to 

the reinforcement learning network.  

 

Hopf Oscillator Parameters 

The Hopf oscillator parameters are the internally-calculated x and y values that are 

produced by the Hopf oscillator central pattern generator before they are transformed into joint 

angle signals via the mapping functions (refer to Section 3.6). The six x parameters of the Hopf 

oscillators are provided as observations to the neural network to provide context into the current 

phase of the oscillators. These observations provide information to the reinforcement learning 

agent about the phase and frequency as well as the type of base gait (e.g. tripod or wave gaits) 

for the hexapod motion. There is no normalization necessary as the Hopf oscillator x parameters 

are, by nature, confined to be between −1 and +1.  

 

Previous Time Step Actions 

The previous time step’s actions are fed back to the neural network as observations. The 

outputted actions are already between −1 and +1 so no normalization is required.  

 

Offset Observation 

The final unchanging observation that was included in all designed experiments is the 

offset from the goal trajectory line. This observation is not measured using sensors but provided 

to the neural network from a higher-level control system for path planning. This offset 

observation is the novel method to enable the hexapod to know its position relative to a desired 

path. The hypothesis is that, by training using a straight goal trajectory in combination with the 

offset observation, the hexapod will develop a robust behaviour able to follow more complex 
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paths. When normalizing the offset to between −1 and +1 it is desired to maintain a continuous 

function. The normalization should also prioritize the region closest to the goal trajectory (where 

offset ∆𝑧 = 0) as this region is where the hexapod is most likely to be operating. In this work it 

is highly unlikely that the hexapod will be more than a few meters from the goal trajectory, but 

the normalization should be able to deal with large deviations without producing any results that 

could lead to errors when fed to the neural network. The hyperbolic tan function was selected as 

the normalization method to comply with these requirements. The measured offset (in meters) is 

divided by two before the hyperbolic tan is taken to produce a function which is approximately 

linear between −2 and +2 (shown in Figure 18 – which is the expected working region of the 

hexapod for this research. Unlike simply saturating the offset value when the hexapod is far 

away from the goal trajectory, the hyperbolic function will still produce a different normalized 

value for each unique position, while remaining bounded between −1 and +1.  

offset observation = tanh (
offset ∆𝑧 in meters

2
) (13) 

 

Figure 18: Offset observation value with respect to the perpendicular offset from goal trajectory line 

 

Having defined the critical observations which were used in all of the designed 

experiment runs, the following section details the set of observations used as factors in the 
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designed experiment. The following observations are turned on and off according to the designed 

experiment run plan to produce unique combinations of observations. 

 

3.7.5. Observations to Vary for the Designed Experiments 

The following observations were studied as factors in the designed experiment, where 

they were systematically turned on or off (present or not present) according to the experimental 

run plan described in Chapter 4: 

 

Joint Torques 

The joint torques can be measured in the simulation directly from the joint blocks, but 

need to be normalized according to a maximum expected value. This maximum torque value is 

calculated for a worst-case scenario where the entire mass of the robot is being lifted by a single 

ankle joint with the leg at full extension to maximize the moment arm. This scenario could occur 

if one of the hexapod’s legs becomes stuck/fixed in the ground terrain (although no such terrain 

is used in this study the normalization method is still useful). The full leg extension which 

provides the worst-case moment arm for the mass of the robot is illustrated in Figure 19. This 

distance of 254.5 mm is used to calculate the maximum expected torque.  

 

 

Figure 19: Maximum hexapod leg moment arm 
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The torque normalization value is calculated by assuming the entire mass of the hexapod 

is placed at the distance shown above from the pivot. The motor torque required to counteract 

this moment is determined to be 3.71 N·m or 37.85 kg·cm and is calculated as follows. 

𝑇𝑚𝑎𝑥 = 𝑚𝑡𝑜𝑡𝑎𝑙𝑔𝐿𝑒𝑥𝑡𝑒𝑛𝑑 

𝑇𝑚𝑎𝑥 = 1.486 𝑘𝑔 × 9.81 𝑚 𝑠2 × 0.2545 𝑚⁄  

𝑇𝑚𝑎𝑥 = 3.71 𝑁 ∙ 𝑚 = 37.85 𝑘𝑔 ∙ 𝑐𝑚 

(14) 

 

The 18 joint torques are normalized by dividing by the maximum expected torque. The 

torque signals are saturated to eliminate any large spikes. Spikes can occur due to the nature of 

the simulation leg tip to ground contacts, and always occur at the start of the simulation when the 

hexapod first descends onto the ground plane.  

 

Body Velocities 

The three hexapod body velocities are measured at the center of the hexapod body as 

would be done using some form of inertial measurement unit (IMU). To determine the value to 

be used to normalize the body velocities, three test cases were used: the hexapod behaviour after 

training for one episode, after training for the full 1000 episodes, and the nominal gait case with 

no reinforcement learning. The maximum recorded velocity (ignoring large initial spikes) from 

these three cases was 0.64 m/s in the x direction from the fully trained hexapod. An additional 

safety factor of 20 % was added to obtain the velocity normalization value of 0.77 m/s. As with 

the joint torques, the normalized velocities are saturated between −1 and +1 to eliminate large 

spikes that can occur at the start of a training episode.  

 

Body Angles/Tilt 

The body angles, orientation, or tilt of the hexapod are the roll, pitch, and yaw angles of 

the hexapod’s body relative to the world reference frame as would be measured with an 
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accelerometer or IMU. These observations are provided to the reinforcement learning agent in 

the form of a quaternion; therefore, no normalization is required.  

 

Body Angular Velocities 

The body angular velocities about the three axes of roll, pitch, and yaw can also be 

provided as observations. As with the body tilt, these observations are based on the center of the 

hexapod body relative to the world reference frame, as would be measured by an accelerometer 

or IMU. To normalize the angular velocities, the same method used for the body velocities is 

employed to determine the maximum expected value. The maximum recorded angular velocity 

during testing was 3.14 rad/s for the case of a fully trained agent controlling the hexapod. 

Multiplying by a safety factor of 1.2 results in the normalization value of 3.77 rad/s.  

 

Body Height 

The body height observation measures the distance between the underside of the hexapod 

body and the ground plane. The point of measurement on the hexapod body is the center of the 

body underside, so the body height measurement is minimally affected by the body tilt of the 

hexapod. The height is measured by taking the shortest distance between the center of the 

hexapod underside and the ground plane, so when the body is tilted the measurement line will no 

longer be perpendicular to the robot body. Measurement of the body height could be obtained 

using a downward facing infrared sensor, or even could be estimated based on knowledge of the 

leg’s positions and ground contacts. The use of this observation becomes more difficult when the 

terrain is not a flat plane, but it would still be possible to obtain a useful measurement. Even a 

series of distance measurements could be obtained to provide some information on the terrain 

profile to the reinforcement learning agent. The body height observation is normalized by 

dividing the measured body height by the maximum obtainable body height on flat ground with 

the legs fully extended as shown in Figure 20. Full leg extension produces a maximum body 

height of 209.7 mm, and the observation is saturated at this value to ignore the initial body height 

when the hexapod drops onto the ground when each episode is initialized.  
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Figure 20: Maximum body height under full leg extension 

 

Leg Tip Ground Contacts 

The final observation that was varied for the designed experiments are the ground 

contacts between the hexapod leg tips and the ground plane. The contacts are modelled in the 

simulation as point contacts located at the very tip of the hexapod’s legs. The Spatial Contact 

Force block used in the simulation provides the magnitude of both the normal and frictional 

forces at the point of contact. The maximum possible force is taken as the full weight of the 

hexapod supported by a single leg. The contact observations are normalized by dividing the 

measured force by 14.58 N, which corresponds to the total weight of the hexapod. This 

normalization uses only the static weight of the hexapod and, therefore, does not account for an 

increase in contact force magnitudes due to the dynamics of locomotion. It is therefore possible 

for the contact force at a given leg tip to exceed the static weight of the hexapod, but it is 

extremely rare for the hexapod to place all of its weight on a single leg as a minimum of three 

legs must be in contact with the ground for the robot to be statically stable. The contact 

observations are saturated at the total weight of the hexapod to eliminate any unwanted spikes in 

the signals.  

Another simplified representation of the contact forces seen in the literature can be used 

as observations by converting the contact normal forces into binary signals: +1 if contact 

between leg tip and ground is detected, and 0 otherwise. The measured forces and binary 
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representations lead to 3 sets of 6 possible observations: the binary contacts, the contact normal 

forces, and the contact frictional force magnitudes.  

 

3.7.6. Additional Notes Regarding the Observations 

There was an extensive testing and exploration period that focussed on the various 

measurements available as potential observations before the completion of the final study. This 

section consists of a few notes and lessons learned that were observed for the simulation 

conditions used in this research which may be useful for future research.  

 

1. The use of the body accelerations as observations had a negative impact on performance. 

This result seems counterintuitive since one would think that giving the reinforcement 

learning agent more information would be beneficial. Through analysis of the observation 

signals one can see why this might not always be the case. Figures 21a-21c are generated 

by extracting the position, velocity, and acceleration signals of the hexapod body center-

point in the vertical direction from a randomly-selected reinforcement learning training 

episode. The measurement signals are then converted into observations by normalizing 

them so that each signal has a range of 0 to +1. At a glance, one can see that the 

acceleration observation differs from its position and velocity counterparts even though 

they are all describing the same cyclic walking movement.  Figure 21a shows how the 

vertical position of the hexapod body follows cycling motion resembling a sinusoid 

during walking. The velocity profile also has a similar sinusoidal appearance as shown in 

Figure 21b. The lower troughs of the velocity profile are more pointed as the velocity 

changes abruptly when the hexapod steps switching the legs that are in contact with the 

ground. The effect of the stepping is magnified in the acceleration signal which shows 

large spikes when legs of the hexapod contact the ground plane during walking. The 

acceleration spikes are so severe that they dominate the normalized signal, rendering the 

observation less useful to a reinforcement learning agent. This issue could potentially be 

avoided with the use of a filter or saturation on the acceleration signal, but for the scope 

of this research it was not considered as the position and velocity signals had already 
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shown to provide sufficient information to obtain the desired performance. It might be 

interesting to study the acceleration spikes on a variety of terrain, as a soft sand surface 

for example should result in lower spikes than the hard ground considered in this work.  

 

 

Figure 21: Position (a), velocity (b) and acceleration (c) of hexapod body in the vertical direction 

 

2. Any observation that cannot experience the full range of its expected values over the 

course of a training episode was found to be detrimental to the performance of the 

reinforcement learning. The negative impact of such observations was observed during 

testing with the inclusion of the hexapod body displacement relative to the initial position 

as a potential observation. During training, the episode length is fixed so the hexapod is 

only able to travel a certain distance before its position is reset – with the maximum 

travel over a fixed time limited by the frequency selected in the central pattern generator. 

Using the displacement from initial position as observation, the hexapod appeared to 
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learn a satisfactory gait during the training episodes, but the learned behaviour was not 

suitable for deployment. If the learned agent was deployed and the simulation was left to 

run for a long period of time, the learned gait completely broke down when the hexapod 

surpassed the maximum displacement from the training episodes. It should be noted that 

the joint angles are also a position-based observation, but since they are of a cyclic 

nature, the reinforcement learning agent is able to experience the entire range of possible 

joint position values during the short training episodes.  

 

3. Measuring the actual joint angles using a sensor may not be necessary, although including 

joint angles as an observation is crucial. The joint positions are an important observation 

for the reinforcement learning agent to infer how the outputted actions affect the hexapod 

through the central pattern generator. However, it is not actually necessary to use a sensor 

to measure the joint angles as the position command signals produced by the central 

pattern generator were found to be sufficient. As discussed in Section 3.5, these signals 

differ only by the filtering applied to simulate a servo motor response time. The actual 

servo position does lag behind the commanded position but, for the simulation conditions 

used in this research, it did not appear to affect the learning performance. The use of 

commanded positions as measured joint positions is well suited to the use of a central 

pattern generator where the maximum commanded motor speed can be limited so the 

servo can closely track the commanded position. Note, however, that this approach fails 

when the commanded motor speed far exceeds the servo motor’s maximum speed or if 

the servo reaches stall torque and is unable to track the commanded position.  

 

3.8. The Reinforcement Learning Agent 

The hexapod is controlled by a reinforcement learning agent trained using the Deep 

Deterministic Policy Gradient (DDPG) [55], which has been proven effective for legged robotics 

locomotion applications [28], [32], [34], [35]. In this work, DDPG reinforcement learning is 

applied to the central pattern generator-based control presented by Wang et al. [23], which had 

previously been combined with a genetic algorithm for optimization.  
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DDPG is an actor-critic reinforcement learning method, meaning that two neural 

networks are required. The actor network contains the learned policy that will ultimately control 

the hexapod when deployed after training, while the critic network is utilized solely during the 

training phase. The actor and critic networks applied in this work utilize the same structure and 

size as those found in [48], which applies reinforcement learning to a quadruped robot with the 

same magnitude of observations and actions.  

The actor network takes as input the observations from the hexapod simulation and 

outputs the next time step actions with the goal of maximizing hexapod performance. The actor 

network consists of an input layer for the observations, two fully-connected hidden layers, and a 

fully-connected output layer as shown in Figure 22. The input layer size changes based on the 

number of observations used in the trial, but the remaining layers maintain a fixed number of 

nodes. The two hidden layers and output layer have 400, 300 and 30 nodes, respectively. The 

hidden layers utilize a ReLU (rectified linear unit) activation function while the output layer uses 

a hyperbolic tangent activation function to produce the 30 actions with values constrained 

between −1 and +1.  

 

Figure 22: Actor network flowchart representation 
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The optimizer parameters set in the MATLAB simulation driving script for the actor 

network are listed in Table 9. It was found that the parameters used for the quadruped in [48] 

provided satisfactory results without needing additional time spent tuning these parameters. The 

actor network uses the Adam (adaptive movement estimation) gradient descent method [56] with 

a learning rate of 1e−3. The gradient threshold is set to 1 and the L2 regularization factor is set to 

2e−4.  

 

Table 9: Actor network optimizer parameters 

Actor Network Optimizer Parameters 

Optimizer Adam 

Learning Rate 1e−3 

Gradient Threshold 1 

L2 Regularization Factor 2e−4 

 

The critic network takes as input the observations from the hexapod simulation and the 

action signals produced by the actor network, and outputs the expected reward that will be 

obtained using the given actions. As shown in Figure 23, the critic network consists of two 

initially-separate branches that merge to produce a single output. The first branch has an input 

layer of the observations (changing layer size) followed by two fully-connected hidden layers of 

400 and 300 nodes. The second branch takes as input layer the 30 actions from the actor network 

and then has a fully-connected hidden layer of 300 nodes. Both branches of the network are 

connected with an addition layer that appends the two branches into a single layer of 600 nodes. 

Then follows a final fully-connected layer of a single node which produces the critic output. All 

hidden layers use ReLU activation functions while the final output layer does not have any 

activation function to generate the critic output.  
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Figure 23: Critic network flowchart representation 

 

As with the actor network, the optimizer parameters set in the MATLAB simulation 

driving script for the critic network are listed in Table 10. The critic network also uses the Adam 

(adaptive movement estimation) gradient descent method but with a learning rate of 1e−4. In the 

case of the critic network gradient threshold is set to 1 and the L2 regularization factor is set to 

1e−5.  
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Table 10: Critic network optimizer parameters 

Critic Network Optimizer Parameters 

Optimizer Adam 

Learning Rate 1e−4 

Gradient Threshold 1 

L2 Regularization Factor 1e−5 

 

3.9. Reinforcement Learning Training Routine 

The following section outlines the reinforcement learning training procedure that is used 

to train the DDPG agent for a given set of parameters in the designed experiment.  

Each training routine consists of 1000 individual episodes lasting 15 seconds each. The 

training hyperparameters set for the reinforcement learning using the available MATLAB 

training options are shown in Table 11. These values were determined by starting with values 

used in [48], and then fine tuning them by hand before completing the designed experiment 

study. The parameters in Table 11 remain fixed throughout the designed experiment.  

 

Table 11: DDPG learning hyperparameters set in driving routine 

Reinforcement Learning Training Hyperparameters 

Number of Episodes 1000 

Sample Time (s) 0.03 

Discount Factor 0.99 

Mini Batch Size 250 

Experience Buffer Length 1e6 

Target Smoothing Factor 1e−3 

Noise Mean Attraction Constant 0.15 

Noise Standard Deviation 0.1 
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Before each training episode a reset function is executed which is used to improve the 

robustness of the learning policy by randomizing the hexapod starting position for each training 

episode and, therefore, increasing the variety of the hexapod’s experiences. In this research, the 

starting position of the hexapod is randomized according to a random uniform distribution 

between an offset of −1 to +1 meters from the goal trajectory line (in a direction perpendicular to 

the goal trajectory line). An example distribution of the starting points for 1000 trials is shown 

graphically in Figure 24.  

 

Figure 24: Visual representation of the random starting offset during training 

 

Each episode during training runs for the full 15 seconds unless the hexapod becomes 

inverted, in which case the angle of tilt exceeds the stopping condition and the episode is 

terminated early. It is important to note that the simulation does not run at real time when 

training. A single training routine of 1000 episodes takes roughly 8-10 hours to simulate, 

demonstrating the importance of minimizing the number of trials used to select observations via 

a designed experiment approach. The simulations are carried out on a PC with an Intel Core i7-

10700K processor, Nvidia GeForce RTX 3070 GPU, and 16 GB of ram. Although up to four 

separate instances can be run at once, it is still a considerable time commitment just for the 

training of all trials. 
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Chapter 4: The Designed Experiment 

To meet the third and fourth thesis objectives, this section explores the use a fractional 

factorial designed experiment to gain insight into the relative importance of a set of possible 

observations for the reinforcement learning agent. A factorial experiment refers to the systematic 

study of different factors affecting a given response variable. The goal of this study is to 

determine whether a factorial designed experiment could be used as a tool to select the most 

important observations from a set of potential measurements for a specific hexapod trajectory-

following case study.  

 

4.1. Design of Experiments Background Information 

Originally developed for use in the fields of agriculture and industrial manufacturing, 

design of experiments is a statistical methodology used to plan experiments that can provide 

insight into the effects of various factors or parameters on a process result in the most efficient 

way possible. The results of a designed experiment can be used to build a mathematical model of 

the process which can then be used to make informed decisions about the process and its factors.  

Take, for example, a case where a designed experiment is used to study the effect of three 

factors (𝑋1, 𝑋2 and 𝑋3) on a given process result 𝑌. The process is assumed to be approximated 

by a linear regression model as shown in Equation 15 [57]. 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽12𝑋1𝑋2 + 𝛽13𝑋1𝑋3 + 𝛽23𝑋2𝑋3 + 𝛽123𝑋1𝑋2𝑋3 + 𝜖 (15) 

 

where 𝑌 is the process result, 𝑋1, 𝑋2, and 𝑋3 are the three main factors to be studied, the first-

order interaction terms are 𝑋1𝑋2, 𝑋1𝑋3, and 𝑋2𝑋3,  and finally 𝑋1𝑋2𝑋3 is the single second-order 

interaction term present in this model. Interactions occur when the effect of one factor on the 

response is dependent on the level of another factor(s) [57]. The constant term and coefficients 
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𝛽0-𝛽123 can be estimated from the results of a designed experiment. Finally, 𝜖 represents the 

experimental error. 

The coefficients for each term in the model can be estimated using a 2-level full-factorial 

designed experiment. The two levels of each factor could be high/low settings for a continuous 

factor, or on/off for a categorical or binary factor. To test all possible combinations of factors, a 

full factorial design can be used which, when there is 3 factors, has 8 runs as shown in Table 12, 

with a −1 indicating the factor is set to its low setting and +1 indicating the high setting [5].  

 

Table 12: Example three factor designed experiment run plan 

Run 
Factor Level 

𝑋1 𝑋2 𝑋3 

1 −1 −1 −1 

2 +1 −1 −1 

3 −1 +1 −1 

4 +1 +1 −1 

5 −1 −1 +1 

6 +1 −1 +1 

7 −1 +1 +1 

8 +1 +1 +1 

 

The model is fit to the experimental data by calculating the coefficients for each of the 

model terms. Each coefficient (𝛽) in the model can be estimated by calculating the effect of the 

model term on the response variable Y. Equation 16 illustrates how the coefficient for each factor 

is calculated using the average responses from runs that have the given factor at its high and low 

levels. 

𝛽𝑖 =
Factor Effect

2
= ∑

𝑌𝑖
1

𝑛

𝑛

𝑖=1

− ∑
𝑌𝑖

0

𝑛

𝑛

𝑖=1

 (16) 



59 

 

where 𝑌𝑖
1 represents the experimental response for a run which includes the factor in question at 

its high level, and 𝑌𝑖
0 represents a run with the factor set to the low level. The effect of each 

factor is the difference in response between the high and low factor settings averaged over the 𝑛 

runs for each setting. The calculated factor effects are then converted into the model coefficients 

by dividing by two as the model is centered around the overall measured average final reward 

which becomes the constant term in the model. 

The accuracy of the estimations can be improved by performing multiple trials, or 

replicants, of each unique experiment run. The method of least squares regression is used to 

estimate the effect of factors based on all data gathered during the designed experiment [5], [57]. 

Analysis of variance in the experimental results can be completed to obtain confidence intervals 

for the effect of each factor as detailed in [5], [57], [58]. The analysis of variance can also be 

used to eliminate insignificant terms from the chosen mathematical model.  

The example given for 3 factors has 8 possible unique combinations that can be tested; 

however, the number of runs needed to test all possible combinations increases exponentially 

with increasing number of factors.  The present thesis explores 7 observations as factors which 

results in 128 unique possible combinations. To minimize the number of runs required, a 

fractional factorial experiment can be used. A fractional factorial designed experiment reduces 

the number of runs required by factors of 2, resulting in experiments with, for example, ½ or ¼ 

the number of runs of the full factorial experiment. The number of runs is reduced in such a way 

that orthogonality is maintained in the experiment. Orthogonality is important so that each factor 

has the same number of runs at its high and low levels to ensure no unnecessary bias is 

introduced to the results. Table 13 shows the required runs for a half fraction factorial experiment 

for the previous three factor example.  
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Table 13: Example run plan for half fraction factorial designed experiment with three factors 

Run 
Factor Level 

𝑋1 𝑋2 𝑋3 

1 −1 −1 +1 

2 +1 −1 −1 

3 −1 +1 −1 

4 +1 +1 +1 

 

The model coefficients can be calculated in the same way as for a full factorial 

experiment; however, the trade-off made with the fractional factorial designed experiment is that, 

with a reduced number of unique runs, one can no longer estimate all terms of the complete 

model independently. A half fraction factorial experiment can estimate half of the complete 

model terms from Equation 15. The model terms (main effects and interactions) remaining 

become aliased in pairs with those which have been removed. When two factors or interactions 

are aliased, this condition means one cannot distinguish between the effect of the two factors, 

and they are said to be confounded. The aliased (or confounded) pairs of factors for the half 

fraction factorial experiment detailed in Table 13 are listed in Table 14 (the constant term is 

represented by 𝐼) [57]. In this particular example, the 𝑋1 factor is aliased with the 𝑋2𝑋3 

interaction term, so the estimation for the effect of 𝑋1 that we can calculate from this experiment 

also includes the effect of 𝑋2𝑋3. Typically, a fractional factorial designed experiment is setup so 

that the main effects and key interactions are aliased with higher-order interactions, as higher-

order interactions are often assumed to be less significant. 
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Table 14: Aliased or confounded pairs for the half fraction factorial designed experiment in Table 13 

Aliased Pairs for Half Fraction 

Experiment with 3 Factors 

𝐼 ↔ 𝑋1𝑋2𝑋3 

𝑋1 ↔ 𝑋2𝑋3 

𝑋2 ↔ 𝑋1𝑋3 

𝑋3 ↔ 𝑋1𝑋2 

 

The assumptions which are made in order to proceed with the fractional factorial 

designed experiment are given in the Engineering Statistics Handbook [57]: 

1. The measurement system used to record data is assumed to have sufficient accuracy and 

sensitivity to measure changes in the process response caused by changing the factors. 

Since the study will be carried out in a simulation environment, this assumption is valid.  

2. The process is assumed to be stable and not to drift with time over the course of the 

study. Again, due to the controlled nature of the simulations in this research, this 

assumption is valid. The most significant random aspect of the simulations used in this 

work is the random initialization of the neural network weights and, to minimize the 

effect of this necessary randomness, each simulation is averaged over 10 independent 

runs.  

3. An assumption must be made that the process is likely to be approximated well by the 

selected model.  In this case a linear regression model is a good choice as each factor 

(observation) has only two discrete levels (on or off). There is no need to model any 

curvature between the two factor levels, as might be the case for continuous factors or 

those with more than two levels. 

4. The classic assumptions for regression analysis are made in that residuals between the 

observed and predicted responses should be normally distributed and the magnitude of 

these errors should be independent of the time of measurement, the magnitude of the 

predicted response or the factors settings used to obtain the measurement. These 
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assumptions will be verified during the analysis of the designed experiment results in 

Chapter 5. 

All work for this thesis related to the design of experiments was completed using the 

Minitab® Statistical Software package [59].  

 

4.2. The Designed Experiment Setup 

The set of potential observations listed in Table 15 below are as discussed in Chapter 3. 

This table also lists the number of individual signals that are associated with each observation. 

For example, if the joint torques are used as observations, then the torque is measured at all 18 

joints. Each of the seven possible observations used in the designed experiment is assigned an 

indicator letter for convenience as shown in Table 15.  

 

Table 15: Summary of the designed experiment factors 

Indicator 

Letter 
Observation 

Number of Measurement Signals 

Associated with the Observation 

A Joint torques 18 

B Body velocities 3 

C Body tilt 4 

D Body angular velocities 3 

E Body height 1 

F Ground contacts binary 6 

G Ground contact forces 12 

 

The seven possible observations each have the binary options of being on or off (used for 

learning or not); therefore, they are two-level factors. This factorial design leads to 128 possible 
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unique combinations from which an optimal set of observations for the given locomotion task 

could be selected. In addition, due to the inherently-random nature of reinforcement learning, 

multiple repetitions of each trial are needed to confidently distinguish between the performance 

of different combinations of observations. For this work 10 replicants were selected to be 

confident that there is a statistical significance when comparing learning results. This test plan 

leads to running 1,280 separate reinforcement learning routines to generate the data required to 

compare all possible combinations of the potential observations. Given that a single training 

routine takes roughly 10 hours, there is a need for a method which can provide information about 

the usefulness of the observation that uses less trials.  

A fractional factorial designed experiment was, therefore, applied to explore its potential 

use as a guiding tool in the selection of observations/measurements for a hexapod locomotion 

problem. A quarter fraction factorial designed experiment was selected which consists of 32 

separate cases to be run – reduced significantly from the 128 required for the full factorial 

designed experiment. With 32 cases and 10 replicants per case, a total of 320 separate 

reinforcement learning routines were needed. The quarter fraction factorial design was set up 

using the Minitab statistical software [59]. Table 16 shows the design table for the experiments 

generated using Minitab, where each case/run will be repeated for 10 replicants in order to 

account for the random nature of reinforcement learning. A plus sign indicates that the 

observation will be used for the specific run, while a negative sign shows when the observation 

is turned off (the observations are labelled using the indicating letters from Table 15).  
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Table 16: Quarter fraction factorial designed experiment run test plan (x10 replicants) 

Run 
Observations 

A B C D E F G 

1 - - - - - + + 
2 + - - - - - - 
3 - + - - - - - 
4 + + - - - + + 
5 - - + - - - + 
6 + - + - - + - 
7 - + + - - + - 
8 + + + - - - + 
9 - - - + - - - 

10 + - - + - + + 
11 - + - + - + + 
12 + + - + - - - 
13 - - + + - + - 
14 + - + + - - + 
15 - + + + - - + 
16 + + + + - + - 
17 - - - - + + - 
18 + - - - + - + 
19 - + - - + - + 
20 + + - - + + - 
21 - - + - + - - 
22 + - + - + + + 
23 - + + - + + + 
24 + + + - + - - 
25 - - - + + - + 
26 + - - + + + - 
27 - + - + + + - 
28 + + - + + - + 
29 - - + + + + + 
30 + - + + + - - 
31 - + + + + - - 
32 + + + + + + + 

 

The quarter fraction factorial design is of a resolution that allows for the main effects of 

each factor (observation) to be distinguish from one another and from any 2-way interactions. A 

sufficient resolution level is important as the goal of the designed experiment is to gain insight 

into the effect of the different observations (factors) and be able to objectively compare their 
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relative effects on performance. The alias structure for the quarter fraction factorial design can be 

found in Appendix A. The main effects are confounded with 3-way interactions and 2-way 

interactions could be confounded with one another; however, it is expected that these interactions 

will be minimal. If there is a significant interaction, additional runs could be added to further 

explore these interactions.  

The metric used to evaluate the performance of the reinforcement learning agent using 

different observations is the final average reward after training for 1000 episodes. The desired 

performance of the hexapod is accurate and efficient tracking of the goal trajectory line and, 

since the reward function was tuned to encourage this behaviour, it should be a good metric of 

success. The only changes to the hexapod simulation throughout this study is the set of 

observations used (according to Table 16) which, in turn, affects the number of nodes in the input 

layer of both the actor and critic networks. All other aspects of the simulation remain fixed.   

The quarter fraction designed experiment was carried out over a span of 6 weeks with 

each run simulated 10 times for a total of 320 complete training routines. The final average 

reward was recorded for each trial along with other potentially-useful data, and the results of the 

study are analyzed in the subsequent chapter. 
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Chapter 5: Results and Analysis 

This chapter presents and analyzes the results of the designed experiment. Using the 

gathered data, a regression model is formulated, then used to predict which combination of 

observations yields optimal reward during training. The model predictions and corresponding 

trained agent are then validated within the developed hexapod simulator. 

 

5.1. Sample Learning Results 

First consider the case of a single training routine and its resulting saved reinforcement 

learning agent. Figure 25 shows the resulting learning curve over 1000 episodes for a sample 

successful training routine taken from the designed experiment (run 5 replicant number 3). The 

blue curve is the final reward value for each episode. The black curve shows the running average 

final reward over the last 250 episodes as in [48]. Due to the random initialization in starting 

position of the robot for each episode, it can be seen in the figure that the final reward per 

episode varies significantly from the general learning trend. By taking the running average over a 

larger number of episodes, the goal is to produce a smooth curve and reduce the effect of the 

stochastic nature of the training routine. The final average reward is the value used to compare 

the performance of different trials. 

As can be seen in Figure 25, the learning curve shows an initial dip in performance, 

before it reaches a “point of discovery” and begins to steadily climb at around 100 episodes. At 

the beginning of each training routine, the reinforcement learning agent has randomly-initialized 

weights in its neural (actor) network, so the resulting random actions tend to offset one another 

and result in the hexapod closely following the underlying central pattern generator base gait. As 

the agent begins to explore new actions the hexapod’s performance decreases, until the agent 

discovers more rewarding actions at which point the hexapod’s episode-by-episode performance 

increases significantly and the average reward climbs steadily. The average reward levels off at 

around 800 episodes when the reinforcement learning agent has extracted the maximum 

performance from the given action space and learning conditions. Note that the individual 
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episode rewards are largely negative because there are more negative penalty terms than positive 

rewards in the reward function. Since the reward function is fixed throughout the designed 

experiment, the resulting learning curves throughout the designed experiment can be directly 

compared.  

 

Figure 25: Sample learning curve for successful training episode 

 

Once learning is complete, the final agent saved after the 1000th episode can be tested to 

help understand how the final average reward correlates to the actual walking performance of the 

hexapod. The final agent is tested by starting the hexapod at 7 different offsets from the goal 

trajectory line and allowing the simulation to run for 30 seconds resulting in hexapod paths as 

shown in Figure 26. Note that the two outermost positions at ± 1.5 m are outside of the (± 1 m) 

range of starting offsets used during training to test the robustness of the learned behaviour and 

the ability of the RL agent to adapt to previously-unseen scenarios. The path of the center of the 

hexapod body is illustrated in the figure and shows how the agent has learned to direct the 

hexapod toward and then follow along the goal trajectory line. In this particular case the hexapod 

is able to converge to the goal trajectory line from all starting positions after roughly 1.5 m of 
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forward travel. Figure 26 also shows that there is a small offset remaining for two of the seven 

test cases once they have reached a steady state where the robot travels parallel to the goal 

trajectory line.  

 

Figure 26: Example test paths for successfully trained agent 

 

Figure 27 shows another sample result taken from run 4 replicant 1 for comparison 

purposes. This figure shows a comparatively less successful learning routine where the final 

reward reached is lower, and thus the learned behaviour is less desirable. The slope of the 

average reward curve is shallower and has no obvious “point of discovery” (where the reward 

function begins to increase more significantly) as in the previous case. This particular case also 

illustrates the exploration of different behaviours during training between episodes 600 to 700 

where the episode reward curve takes a significant dip before recovering and rising further. This 

location indicates a situation where the hexapod attempted a new behaviour (initiated by the 

random exploration factor) which resulted in a decrease in reward so the new unsuccessful 
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behaviour was eventually discarded. Overall it is clear that, for the set of observations used in 

this run, the agent has more difficulty learning an optimized behaviour.  

 

Figure 27: Learning curve for a typical less successful case 

 

The learned behaviour for this less-successful case can again be illustrated by plotting a 

series of test paths, to show what this lesser final reward value corresponds to in terms of 

hexapod performance. Figure 28 shows the resulting hexapod paths when tested at the seven 

different starting offsets. The paths represent 30 seconds of movement of the hexapod body 

center. It is clear to see why this particular agent does not achieve the same final reward as the 

previous example. When the hexapod is started with zero offset it is able to follow along the goal 

trajectory line; however, for all other starting positions the resulting path demonstrates an 

oscillatory behaviour mimicking an underdamped system response. The agent has learned to 

direct the hexapod toward the goal trajectory but not to straighten out its path in time to prevent 

overshooting multiple times. By looking at the final positions of the hexapod after 30 seconds 

have elapsed (the end of the path lines), one can see that this particular learned gait is also slower 

than the previous example as it is not able to travel as far in the positive direction (to the right in 
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the figure). The reduced walking speed and inability to stay on the goal trajectory line account 

for the lesser final reward value achieved by this trial run. 

 

Figure 28: Test paths for the less successful case 

 

There are also cases where the combination of observations used in the run does not 

allow the reinforcement learning agent to gain sufficient information about the hexapod control 

system and simulation environment.  For these cases, the hexapod will typically either walk in a 

random direction or become trapped in a circular path, with no success at forward progress along 

the goal trajectory.  

Each of the ten replicants for a given run (corresponding to a particular combination of 

observations) can be plotted together on a single graph to visualize the repeatability of the 

learning process. Figure 29 shows the ten replicants for run 5 as an example. The moving 

average reward curves are plotted in black and an overall average reward curve is calculated and 

shown in red. Figure 29 shows that, for run 5, eight out of the ten trials (replicants) follow a very 
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similar learning curve, while two of the replicants failed to learn. The learning routine includes 

several randomized processes such as the initialization of neural network weights and biases, as 

well as the noise artificially introduced for exploration of the possible action space. The 

stochastic nature of reinforcement learning means that the results of a single trial cannot be fully 

repeatable.  

 

Figure 29: Learning curves for all 10 replicants of run 5 

 

Again, one can examine the hexapod paths for seven different starting locations to show the 

correlation between final reward and actual behaviour. Figure 30 shows all paths taken by the 

hexapod in 30 seconds when each of the ten replicants for run 5 are tested at the seven staring 

locations.  This plot clearly shows that the two outlier runs with significantly lower final rewards 

have not learned the desired behaviour. The remaining eight replicants all show successful 

learning and manage to track towards and follows the desired trajectory.  
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Figure 30: Test paths for all 10 replicants of run 5 

 

The complete set of results including plots for all 32 runs of the designed experiment are 

found in Appendix B. The set of observations used clearly influences not only the final overall 

average reward reached, but also the level of repeatability of the learning process – both of 

which are important for deploying reinforcement learning on an actual hexapod robot. There are 

many other factors which also affect the repeatability and performance of the learning routine 

including, but not limited to, the terms in the reward function, the neural network sizes, the 

learning routine hyperparameters such as the noise, and many more. It would be a significant 

undertaking to explore all combinations of every parameter in an attempt to optimize the 

reinforcement learning process. For the purposes of this work the main focus for optimization is 

the observations, while all other parameters are tuned by hand to achieve a satisfactory level of 

performance and held constant throughout the designed experiment. Future research could 

examine how optimization of the other parameters influences the results obtained in the designed 

experiment.  
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5.2. Designed Experiment Results 

The results of all 320 trials (10 replicants of 32 different runs) are compiled in Table 17 

which lists the mean average final reward obtained across all 10 replicants of each run. The time 

spent running all trials for the quarter factorial designed experiment on a single PC was about 6 

weeks – a substantial amount of time which would have been 4 times longer if a full factorial 

experiment was run. Comparing the different rows of Table 17 to the last row, it can be seen that 

using the maximum number of observations does not achieve the highest learning performance. 

Run 32 (which contains all seven observations) yielded an average final reward over 10 

replicants of −1776.19 which is lower than Runs 6, 8, 14, 16, 21, 22, 28, 30, and 31 (which 

contain different combinations of fewer than seven observations). 

 

Table 17: Designed experiment summary of results, runs with rewards in bold font have average 
final rewards that are higher than Run 32 (which contains all seven observations) 

Run 
Observations Average Final Reward 

over 10 Replicants A B C D E F G 

1 - - - - - + + -8048 

2 + - - - - - - -7384 

3 - + - - - - - -3500 

4 + + - - - + + -6764 

5 - - + - - - + -2433 

6 + - + - - + - -1752 

7 - + + - - + - -2489 

8 + + + - - - + -1392 

9 - - - + - - - -6198 

10 + - - + - + + -10328 

11 - + - + - + + -4704 

12 + + - + - - - -5369 

13 - - + + - + - -2226 

14 + - + + - - + -1265 

15 - + + + - - + -2002 

16 + + + + - + - -1692 

17 - - - - + + - -7664 

18 + - - - + - + -5956 

19 - + - - + - + -6855 

20 + + - - + + - -1957 
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Run 
Observations Average Final Reward 

over 10 Replicants A B C D E F G 

21 - - + - + - - -630 

22 + - + - + + + -773 

23 - + + - + + + -2364 

24 + + + - + - - -2014 

25 - - - + + - + -7748 

26 + - - + + + - -4675 

27 - + - + + + - -4982 

28 + + - + + - + -1224 

29 - - + + + + + -2658 

30 + - + + + - - -1414 

31 - + + + + - - -579 

32 + + + + + + + -1776 

 

Figure 31 illustrates a histogram of the final average reward for all 320 learning routines. 

This histogram provides some insight into the challenges faced by the DDPG learning agent to 

learn the actions required to control the hexapod so that it follows the desired trajectory. The 

histogram illustrates the spread of final rewards achieved over the course of the designed 

experiment, and the extent of outliers compared to the most commonly-obtained results. As the 

final average reward is a direct measure of hexapod performance, this histogram demonstrates 

the rate of success of learning across all tested combinations of observations. Figure 31 shows 

that a large portion of the trials resulted in a final reward between −1000 and 0. There are many 

outliers on the lower end of the spectrum, resulting in a negative skew in the distribution of the 

results – as can be seen by the long tail on the left side of the distribution. These are trials where 

the hexapod has not been able to learn to walk towards the goal trajectory line, or perhaps not 

even been able to learn to walk at all. Above a final average reward of approximately −4000, the 

hexapod gait starts to become much more successful – a subjective transition between failing to 

learn and approaching the desired behaviour. The shape of the histogram plot seems to indicate 

that there is a critical factor (number or potential inclusion of a certain combination) of 

observations for which the performance of the hexapod reaches a satisfactory level, as can be 

seen by the large peak centered around the –500 to 0 bin. Figure 31 demonstrates that the 

combination of using a central pattern generator in tandem with a DDPG agent is successful over 

a wide range of the different combinations of observations used in the trials. There appears to be 
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limited potential performance gains above this peak (around zero final reward) with the 

maximum reward reached throughout all trials of the designed experiment not exceeding 2000. 

The upper limit to the final average reward is limited by the frequency and maximum amplitudes 

of the central pattern generator which, in turn, are determined by the maximum possible speed of 

the hexapod servo motors. Optimization of the hexapod gait using reinforcement learning should 

allow the hexapod to approach its maximum potential speed (and, therefore, reward) as set by the 

terms of the Hopf oscillator.  

 

Figure 31: Histogram of all final average rewards obtained during the designed experiment 

 

To begin the analysis of the results of the designed experiment, one can examine the 

overall average effect of each factor of the designed experiment (observation) on the final 

average reward across all trials. Figure 32 illustrates the mean effect of each observation in a 

side-by-side comparison. The overall mean effect of each observation is determined by taking 

the mean final average reward of all trials where the observation was excluded, and directly 

comparing this reward to the mean of final average rewards for all trials for which the 

observation was present. The error bars indicate the standard error of the mean final reward 

estimates based on the 10 replicant samples. The horizontal x-axis in Figure 32 indicates the 

absence or presence of each observation as indicated with a 0 or 1, respectively, and the vertical 



76 

 

y-axis shows the corresponding mean values of the final average reward. The observations are 

listed using the indicator letters introduced in Table 15.  

 

Figure 32: Mean effect of the seven main factors (observations) on the final average reward 

 

From Figure 32 one can see that observation C, the body tilt, has the greatest positive effect on 

the final average reward – significantly more than the other six observations. The body tilt is the 

only observation whose error bars do not overlap, so we can be certain that there is statistical 

significance in its effect. The remaining observations appear to have varying effects on the mean 

final average reward, but further analysis is needed to investigate their significance. The 

inclusion of observations A (joint torques), B (body velocities) and E (body height) have a mean 

positive impact on the hexapod performance. The body angular velocities (observation D) do not 

seem to be as critical to the final reward obtained since the mean values do not differ 

significantly when these measurements are included or excluded. Interestingly, both of the 

ground contact observations F (binary contact) and G (contact forces) appear to have an overall 

negative effect on the mean final average reward. While Figure 32 provides a good indication of 

which observations to choose to maximize performance, it does not take into account any 

interactions between the factors. Interactions may occur because many of the observations 

provide information to the reinforcement learning agent or can be related through the kinematics 

of the hexapod motion. For example, although Figure 32 would indicate that the inclusion of the 

ground contact F has a negative effect on reward, an interaction may be present that warrants its 

inclusion. For example, if the body tilt C has an interaction with the ground contact F, then the 
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inclusion of ground contact could increase the reward benefit obtained over just including just 

the body tilt. Such an interaction could be explained physically due to the connected nature of 

the hexapod ground contact states and body tilt during the walking gait; therefore, Figure 32 

cannot directly be used to determine the best possible combination of observations since it does 

not consider any interactions. 

 To fully explore the relationship between different observations and the final average 

reward, a regression model is fit to the experimental data. The model is evaluated according to 

the following R-squared statistics. 

5.2.1. R-Squared Statistics Used to Evaluate Model Fit 

The analysis of the designed experiment was carried out using the Minitab statistical 

software package [59]. The following equations detail the various R-squared statistics that are 

used to quantify and improve the fit of the model to the data from the designed experiment 

analysis.  

The R-squared value quantifies the fit of the determined model and produces a value 

between 0 and 1 which indicates the percentage of variability in the data which is accounted for 

by the model. An R-squared value of 100 % indicates that the model accounts for and explains 

100 % of the variability in the dataset. The R-squared statistic is calculated as follows [60]: 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂𝑖)

2

∑(𝑦𝑖 − 𝑦̅)2
 (17) 

 

where 𝑦𝑖 represents the final average reward obtained for the ith test run during the designed 

experiment, while 𝑦̂𝑖 is the final average reward predicted by the model for the given trial i. 

Finally, 𝑦̅ is the mean of all final average rewards in the designed experiment dataset. The 

numerator in Equation 17 is the sum of the squared errors (or residuals) between the actual final 

average rewards and those predicted by the model for the given combination of observations. 

The sum of squared errors is a measure of the variation in the data which is not explained by the 

model. The denominator is a measure of the total variation in the final average rewards obtained 

in the designed experiment which is used to normalize the results.  
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The R-squared statistic does not account for model size/complexity in quantifying the 

performance of the model [61]. The R-squared value will continue to increase with the addition 

of terms to the model even if they provide relatively little improvement to the model fit. An 

improvement to the R-squared statistic is the R-squared adjusted value [62] which considers the 

number of variables used in the model. The adjusted R-squared statistic encourages a simple 

model, and its value is calculated according to the following formula:  

𝑅𝑎𝑑𝑗
2 = 1 −

(1 − 𝑅2)(𝑛 − 1)

(𝑛 − 𝑘 − 1)
 (18) 

where 𝑅2 is the R-squared statistic as calculated in Equation 17, 𝑛 is the number of datapoints in 

the experiment dataset (in this specific case 320 total trials), and 𝑘 represents the number of 

independent variables (coefficients) in the regression model.  

The final statistical value that will be used to evaluate model’s fit is the predicted R-

squared value 𝑅𝑝𝑟𝑒𝑑
2  as shown in Equation 19 [62]. The predicted R-squared statistic is 

calculated by systematically removing a single value from the experimental dataset, fitting the 

desired model to the remaining data, and then determining how well the model predicts the 

missing datapoint. This procedure is repeated for all values of the dataset and then the predicted 

R-squared is calculated similarly to the standard R-squared value. The only difference between 

Equations 17 and 19 is that, for the predicted R-squared value, the residuals in the sum of 

squared errors (numerator) use a different model for each residual as opposed to a single model 

for the entire dataset.   

𝑅𝑝𝑟𝑒𝑑
2 = 1 −

∑(𝑦𝑖 − 𝑦̂𝑖
∗)2

∑(𝑦𝑖 − 𝑦̅)2
 (19) 

 

In Equation 19, as in the case of the standard R-squared value, 𝑦𝑖 is the final average reward 

from the ith experiment and 𝑦̅ is the mean of all final average rewards obtained during the 

designed experiment. 𝑦̂𝑖
∗ represent the predicted final average reward for the ith experiment, 

obtained using a model fit to the dataset with the result from the experiment run to be predicted 

removed. The predicted R-squared value is an important statistic to compare the fit of different 

models as it helps to detect overfitting of the model [62]. The predicted R-squared value will 
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always be less than the standard R-squared because of the removal of each data point during 

calculation, and the random noise in each experimental data point is by definition impossible to 

predict. In contrast the standard R-squared value has all of the data available to fit at once − there 

are no unknowns leading to a higher R-squared value. A large difference between the predicted 

R-squared value the standard R-squared indicates that the model is overfitting the experimental 

dataset. 

 

5.3. Designed Experiment Analysis 

The following section details the step-by-step procedure that was taken (using the 

Minitab statistical software) to produce and refine the final model fit to the data generated using 

the design experiment. The model is then used to make a prediction about the optimal 

combination of observations required to maximize the final average reward.  

Equation 20 shows the complete linear regression model which was fitted to the experimental 

data.  

𝑌𝑝𝑟𝑒𝑑 = 𝛽0𝑋0 + 𝛽1𝑋1 + 𝛽3𝑋3 + ⋯+ 𝛽31𝑋31 (20) 

 

where 𝑌𝑝𝑟𝑒𝑑 is the final average reward predicted by the model, 𝑋𝑖 and 𝛽𝑖 are the model terms 

and associated coefficients, respectively, as listed in Table 18. The model contains all terms 

which may be separately calculated from the designed experiment. The designed experiment is a 

quarter fraction factorial experiment so not all possible combinations of observations have been 

run, which means that not all higher-order interactions can be estimated from the data. The 

higher-order interactions that are confounded with the model terms are listed in Appendix A.  
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Table 18: List of all terms in complete linear regression model from the designed experiment 

Label Term Term Type Coefficient 

𝑋0 1 constant 𝛽0 

𝑋1 A Main effect 𝛽1 

𝑋2 B Main effect 𝛽2 

𝑋3 C Main effect 𝛽3 

𝑋4 D Main effect 𝛽4 

𝑋5 E Main effect 𝛽5 

𝑋6 F Main effect 𝛽6 

𝑋7 G Main effect 𝛽7 

𝑋8 AB First-order interaction 𝛽8 

𝑋9 AC First-order interaction 𝛽9 

𝑋10 AD First-order interaction 𝛽10 

𝑋11 AE First-order interaction 𝛽11 

𝑋12 AF First-order interaction 𝛽12 

𝑋13 AG First-order interaction 𝛽13 

𝑋14 BC First-order interaction 𝛽14 

𝑋15 BD First-order interaction 𝛽15 

𝑋16 BE First-order interaction 𝛽16 

𝑋17 BF First-order interaction 𝛽17 

𝑋18 BG First-order interaction 𝛽18 

𝑋19 CD First-order interaction 𝛽19 

𝑋20 CE First-order interaction 𝛽20 

𝑋21 CF First-order interaction 𝛽21 

𝑋22 CG First-order interaction 𝛽22 

𝑋23 DE First-order interaction 𝛽23 

𝑋24 DF First-order interaction 𝛽24 

𝑋25 DG First-order interaction 𝛽25 

𝑋26 ACE Second-order interaction 𝛽26 

𝑋27 ACG Second-order interaction 𝛽27 

𝑋28 BCE Second-order interaction 𝛽28 

𝑋29 BCG Second-order interaction 𝛽29 

𝑋30 CDE Second-order interaction 𝛽30 

𝑋31 CDG Second-order interaction 𝛽31 

 

The model is fit to the experimental data by calculating the coefficients for each of the 

model terms. Coefficients are determined by calculating the effect of the model term on the 

response variable (final average reward). Equation 21 illustrates how the effect of each term 



81 

 

(Term Effect) is calculated using the average responses from runs that included and excluded the 

observations described in the model term [57]. 

Term Effect = ∑
𝑌𝑖

1

𝑛

𝑛

𝑖=1

− ∑
𝑌𝑖

0

𝑛

𝑛

𝑖=1

 (21) 

 

In this equation, 𝑌𝑖
1 represents the experimental response for a run which includes the model 

term in question, and 𝑌𝑖
0 represents a run without the model term. The fractional factorial used in 

this study is orthogonal, meaning it is designed in such a way that there are the same number of 

runs with each model term included and excluded; hence, for this study 𝑛 = 16. The calculated 

Term Effects are then converted into the model coefficients by dividing by two as the model is 

centered around the overall measured average final reward which becomes the constant term in 

the model. 

The analysis was carried out using Minitab to produce the following regression equation 

model. Model reduction was not completed at this stage so this equation contains the maximum 

32 terms which could be estimated based on the 32 runs of the designed experiment.  

𝑌𝑝𝑟𝑒𝑑 = −3775 +  292 𝐴 +  671 𝐵 +  2059 𝐶 +  98 𝐷 +  446 𝐸 −  278 𝐹 −  368 𝐺 +  38 𝐴𝐵 −  86 𝐴𝐶 

−  82 𝐴𝐷 +  564 𝐴𝐸 +  47 𝐴𝐹 +  166 𝐴𝐺 −  744 𝐵𝐶 +  215 𝐵𝐷 −  61 𝐵𝐸 +  41 𝐵𝐹 

+  86 𝐵𝐺 −  83 𝐶𝐷 −  256 𝐶𝐸 +  28 𝐶𝐹 +  251 𝐶𝐺 +  99 𝐷𝐸 −  175 𝐷𝐹 +  82 𝐷𝐺 

−  738 𝐴𝐶𝐸 +  159 𝐴𝐶𝐺 −  24 𝐵𝐶𝐸 −  65 𝐵𝐶𝐺 −  195 𝐶𝐷𝐸 −  189 𝐶𝐷𝐺 

(22) 

 

In this equation, letters A through G are the observation indicating letters, and correspond to the 

presence (+1) or absence (−1) of the corresponding observation. 

The fit of this initial model is described by the three different R-squared values described 

previously. The R-squared value is only 35 %, the adjusted R-squared is 28 %, and the predicted 

R-squared is even lower at 20 %. Based on these metrics, the initial model is not a good fit to the 

designed experiment results.   

To investigate why the initial model is a poor fit, the residuals can be plotted.  The 

residuals are determined by taking the difference between the final average reward predicted by 
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the model with each of the sets of observations tested during the designed experiment, and the 

actual values measured during the experiment. A well-fitting model that is able to describe all 

trends of the experimental data should result in residuals that consist only of the experimental 

error and noise of the system [60]. The residuals should display the characteristics of a random 

normal distribution and there should be no discernible trends in the spread of residuals [57]. 

Figure 33 shows the residuals for all 320 trials plotted as a function of the run number. 

The residuals are unitless and relate to the value of the final average reward. The residuals should 

be completely independent of the run number, as is confirmed visually by Figure 33. The desired 

distribution of the residuals in the vertical y-direction is for them to be symmetrical about the 

horizontal x-axis to create a normal distribution centered on a residual of zero. In Figure 33, it 

can be seen that the distribution of the residuals is skewed in the negative direction by a 

significant number of large negative outliers. These outliers are the most likely cause for the poor 

model fit.  

 

Figure 33: Residuals plotted against run number for the initial model fit 
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The model residuals can also be illustrated using a histogram plot as shown in Figure 34. 

The residuals are grouped into 20 bins of equal width over the total range, with the frequency in 

each bin shown on the vertical y-axis. Figure 34 clearly shows the long left-sided tail of the 

residual distribution and, by consequence, how the peak of the distribution is shifted to the right 

of zero. The outliers need to be eliminated in order to obtain the desired normal distribution of 

residuals. 

 

Figure 34: Histogram of residuals for the initial model fit 

 

Closer examination of the compiled learning curves (see Appendix B) from the replicants 

of each of the 32 different runs reveals the source of the negative skew in the residual 

distribution. There appears to be a general trend that the runs lack repeatability within the ten 

replicates. Take run 23 as an example. Figure 35 shows the learning curves for each of the 

replicates for run 23 (black lines) as well as the average learning curve across all ten replicates 

(red line). The x-axis is the training episode and the y-axis shows the current average reward at 

the given episode. Run 23 illustrates a generally successful combination of observations as the 

hexapod is able to learn the desired trajectory-following behaviour with some level of 
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repeatability. The majority of the learning curves in Figure 35 end in a tight grouping around 

zero final average reward; however, there are three replicates which are outliers that resulted in 

little learning success and bring the average learning curve down significantly. Similar outliers 

can be seen throughout all runs of the designed experiment, regardless of how successful the 

majority of replicates are for the given run.  

 

Figure 35: Learning curves for run 23 

 

A similar spread of learning curves as shown in Figure 35, as well as the few lower-case 

outliers obtained for multiple repetitions of the same DDPG learning process, were observed in 

the literature for hexapod applications in the works of Schilling et al. [41] and Naya et al. [35]. 

The main two potential reasons for this spread of results are as follows: the stochastic nature of 

the reinforcement learning process, and the selection of RL learning parameters used. The 

reinforcement learning process, by definition, introduces a level of randomness to the results. 

This randomness is required in order for the reinforcement learning agent to explore the action 

space and escape local maximums in the reward surface. By its nature, the reinforcement 

learning process is not repeatable; however, tuning various parameters in both the reinforcement 
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learning agent and the learning routine can improve the repeatability of the final average reward 

for a given run. For the scope of this research, the final learning parameters used in the designed 

experiment were manually tuned and held constant throughout all of the designed experiments. 

Future work could carry out a more exhaustive parameters optimization method such as a grid 

search to try to further improve the repeatability of the learning results and reduce the number of 

outliers. 

Since the spread of the final average rewards for a given run cannot be completely 

eliminated, and it is inevitable that there will be some outliers in the data, the three worst outlier 

replicants from each of the 32 runs were removed from the data. Given that the goal of this 

research is to explore the potential for the application of a designed experiment in the selection 

of observations for deployment on a physical robot hexapod, it is justifiable to remove these the 

outlying replicants because, in a deployment scenario, only the best reinforcement learning 

agents would be considered for the hexapod from multiple learning routines.  

The same analysis as before is carried out using Minitab on the seven best replicants from 

each run of 10 to obtain a new model. With the outliers removed, the model now achieves a 

much better fit – with the R-squared, adjusted R-squared, and predicted R-squared values more 

than doubled. The model determined from the best seven analysis has an R-squared value of 73 

%, an adjusted R-squared of 68 % and a predicted R-squared of 63 %. The improvements in R-

squared values obtained by removing the three worst replicants are summarized in Table 19. 

 

Table 19: Improvement in R-squared statistics by dropping three worst replicants 

Model Description R-Squared Adjusted R-Squared Predicted R-Squared 

Initial Model 35 % 28 % 20 % 

Best Seven Replicants Model 73 % 68 % 63 % 

Improvement in R-Squared 38 % 40 % 43 % 

 

The residuals can again be plotted as a function of the run number to ensure that 

eliminating the worst three replicants has removed the outliers and improved the distribution of 

residuals. Figure 36 shows the plot of residuals versus run number. Comparing Figure 36 to 
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Figure 33, it can be observed that the residuals are still independent of run number but now 

appear more normally distributed about zero along the vertical y-axis as desired.  

 

Figure 36: Residuals plotted against run number for the best seven model 

 

Next a histogram is plotted in Figure 37 to check if the residuals follow the desired 

normal distribution. Comparing Figure 37 to Figure 34, it can be seen that the residuals now 

appear to be more normally distributed, as the distribution center is closer to zero and more 

symmetrical.  
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Figure 37: Histogram of residuals for the best seven model 

 

The degree to which the residuals are normally distributed can be further confirmed using 

a normal probability plot. The normal probability plot shows the experimental data plotted 

against the theoretical values for the normal distribution fit to the data. Figure 38 shows such a 

plot for the residuals of the best seven models. The x-axis shows the values of the residuals, 

which are displayed in the plot in ascending order. The y-axis shows the corresponding 

theoretical probability that a random value taken from a normal distribution with the same mean 

and variance as the experimental data falls below the given experimental value. The probability 

plot shows how the experimental data differs from the normal distribution by illustrating 

deviations from the diagonal red line (where the red line represents a true random normal 

distribution). The blue experimental data exhibits an S-shaped curve, which indicates skewness 

in the distribution of the residuals.  
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Figure 38: Normal probability plot for the best seven model 

 

The skewness indicated by the normal probability plot was not prominent in the 

previously-used residual plots, so a new scatter plot is needed. Figure 39 is obtained by plotting 

the residuals against the corresponding final average reward predicted by the best seven model 

from which the residual originates. Since there are seven experimental data points but only one 

model prediction for each run, the residuals are displayed in vertical bands of seven points. The 

distribution shown in Figure 39 demonstrates a horn shape or skewness with respect to the final 

average reward as illustrated by the dashed magenta lines. From Figure 39, it appears that the 

model is better at predicting higher values of final average reward, as the residuals are tightly 

grouped on the right-hand side of the graph. Ideally this plot would not show such a trend as the 

model should be equally proficient at predicting values anywhere in the experimental range.  
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Figure 39: Plot of residuals vs predicted final average reward for the best seven model showing a 
skewed or horn shaped distribution 

 

There is a potential argument for leaving the model with this bias towards better 

predictions at higher final average rewards, as this higher average reward region is of most 

interest in an optimization problem. However, in the interest of final reward optimization, an 

extrapolation may be needed to predict a final average reward that is higher than all those 

obtained during the designed experiment, which may fall outside of the accurate range of the 

skewed model. A more generalized model would be better suited to ensure the model has not 

been fit to only a portion of the data. In addition, a generalized model could be used to make 

predictions or help answer other questions over the entire range of possible final average 

rewards.  

A transformation is, therefore, applied to the final average reward (designed experiment 

response) in order to correct the skewness of the residual distribution [5], [57], [60]. A new 

model is then fit to the transformed response data. To correct the S shape of the normal 

probability plot an exponential transformation is applied. The designed experiment response 
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(final average reward) is first scaled to reduce the effect of the transformation before applying 

the exponential. The resulting transformation function is shown in Equation 23:  

𝑌′ = 𝑒
𝑌

7500 (23) 

 

where Y is the final average reward (response variable), and Y’ is the resulting transformed 

response. The scaling factor was determined empirically using an iterative approach to maximize 

the R-squared value of the model fit to the transformed data, similar to the approach used by 

Pardoe et al. [60]. 

Once the transformation has been applied, Minitab is then used as before to fit a linear 

model to the now transformed response data. Without changing any parameters in the Minitab 

analysis process the model fit to the transformed data now achieves a fit with R-squared value of 

77 %, adjusted R-squared value of 74 %, and predicted R-squared value of 69 %. Transforming 

the data results in an improved fit of about 5 % to 7 % as shown in Table 20.  

 

Table 20: Improvement in R-squared by applying transformation to response data 

Model Description R-Squared Adjusted R-Squared Predicted R-Squared 

Best Seven Replicants Model 73 % 68 % 63 % 

Model using Transformed Data 77 % 74 % 69 % 

Improvement in R-Squared 4 % 6 % 6 % 

 

A new normal probability plot is generated to ensure that transforming the response data 

has further increased the normality of the model residuals. Figure 40 shows this plot where, once 

again, the residuals are plotted in ascending order on the x-axis with the corresponding percent of 

random normal values that would be expected under their value on the y-axis. The normality of 

the residuals is much improved from the non-transformed result shown previously in Figure 38 

since the residuals fall closer to the true normal distribution indicated by the red line. Note that 
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the values along the x-axis have changed due to the transformation; therefore, direct numerical 

comparisons between Figures 38 and 40 cannot be made. 

 

Figure 40: Normal probability plot for model fit to transformed response data 

 

To view the effect of the transformation on the individual residuals with respect to the 

response value, Figure 41 is generated. The x-axis shows the response (transformed final average 

reward) predicted by the model and the y-axis shows the seven corresponding experimental 

residuals. When compared to Figure 39, the transformed response model produces a residual 

distribution which is more uniform (once again the units of the x-axis have changed due to the 

transformation). The tendency for the model to result in lower residuals only at higher response 

values has been removed, as the distribution has similar spread in the y-direction on both ends of 

the response range. A jump in the residuals near the center of the chart at roughly 0.65 

transformed reward remains. This outlier was not removed by the transformation applied to the 

response data. One potential theory for this outlier is that this level of reward exists at the 

crossover point where the hexapod begins to have highly-successful learning routines, but the 

hexapod still experiences learning routines that result in a complete failure to learn the desired 
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behaviour.  The learning in the middle of the range of rewards would be, therefore, inconsistent 

leading to larger residuals in this area.  

 

Figure 41: Plot of residuals vs predicted response for the transformed response model 

 

The linear regression model produced using Minitab for the transformed response data is 

shown in Equation 24. The equation is in uncoded units and produces an estimate for the 

transformed final average reward Y’. All five decimal places shown by Minitab are retained to 

ensure the maximum possible accuracy is maintained, as a small change in the transformed 

response can lead to a much larger change in final average reward when the data transformation 

is reversed. 
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𝑌′ = 0.82132 +  0.01430 𝐴 +  0.08893 𝐵 +  0.18580 𝐶 +  0.00557 𝐷 +  0.01102 𝐸 −  0.02781 𝐹

−  0.00955 𝐺 −  0.00088 𝐴𝐵 −  0.00642 𝐴𝐶 +  0.00926 𝐴 ∗  + 0.03372 𝐴𝐸 

+  0.00449 𝐴𝐹 +  0.00658 𝐴𝐺 −  0.04969 𝐵𝐶 +  0.00185 𝐵𝐷 −  0.00020 𝐵𝐸 

−  0.00629 𝐵𝐹 +  0.00857 𝐵𝐺 −  0.00903 𝐶𝐷 −  0.00715 𝐶𝐸 +  0.01014 𝐶𝐹 

+  0.01170 𝐶𝐺 +  0.00465 𝐷𝐸 −  0.01724 𝐷𝐹 +  0.01377 𝐷𝐺 −  0.03979 𝐴𝐶𝐸 

−  0.01615 𝐴𝐶𝐺 +  0.00175 𝐵𝐶𝐸 −  0.01124 𝐵𝐶𝐺 −  0.00889 𝐶𝐷𝐸 

−  0.00954 𝐶𝐷𝐺 

(24) 

 

In Equation 25, the letters A through G are the observation-indicating letters and correspond to 

the presence (+1) or absence (−1) of the corresponding observation. The model contains all 

possible interaction terms that could be estimated using the 32 runs from the designed 

experiment. The quarter fraction designed experiment with 32 unique runs is able to estimate 32 

parameters for the regression equation, including the constant term, the coefficients for all seven 

main factors, 18 of the 21 possible first order interactions, and 6 second order interaction terms.  

As can be seen in Equation 24, the coefficients range from 0.18580 for the main effect C 

to three orders of magnitude smaller at 0.00020 for the B*E interaction term. It is clear that not 

all terms are significant and model reduction should therefore be applied to arrive at the final 

model. As well as simplifying the model/equation, eliminating the insignificant terms will reduce 

overfitting to the experimental data. Overfitting occurs when a model contains too many 

parameters for the complexity of the data, and results in the model being fit to noise within the 

dataset and not just to the underlying trends, leading to a reduction in model accuracy for new 

data and predictions. Model reduction will help generalize the model in order to make better 

predictions about untested combinations of observations.  

A P-value criteria is used to determine which terms should remain in the model [57], 

[60]. The P-values are calculated by Minitab based on the distribution of the replicants’ results 

for different factor levels and are related to a null hypothesis about the effect of the model terms. 

The null hypothesis taken in this case is that the effect of each term on the response is zero, 

meaning the responses with a given factor turned on or off are the same and any difference is 

indistinguishable from random noise. The null hypothesis needs to be rejected for each factor to 

confirm their significance. The P-value represents the probability that the measured change in 
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response (effect) could be explained by random noise and not the change in factor. The smaller a 

P-value, the more likely it is that the model term has a significant effect on the response. Table 

21 shows the 32 model terms along with their corresponding effects on the model prediction, 

coefficient, and associated P-value. The indicating letter representing each observation is either 

set to 1 or −1 in the model if the given observation is turned on or off, respectively. Switching an 

observation from off to on results in a change in the associated model term by a factor of two, as 

the indicating letters switches from a value of –1 to +1, hence the associated coefficient must be 

half of the term’s effect. 

Table 21: Effect, coefficient value and P-value for each term of the complete model 

Term Effect Coefficient P-Value 

Constant   0.82132 0.000 

A 0.02861 0.01430 0.105 

B 0.17786 0.08893 0.000 

C 0.37161 0.18580 0.000 

D 0.01115 0.00557 0.526 

E 0.02205 0.01102 0.211 

F -0.05562 -0.02781 0.002 

G -0.01911 -0.00955 0.278 

A*B -0.00176 -0.00088 0.920 

A*C -0.01285 -0.00642 0.465 

A*D 0.01851 0.00926 0.293 

A*E 0.06745 0.03372 0.000 

A*F 0.00897 0.00449 0.610 

A*G 0.01315 0.00658 0.455 

B*C -0.09938 -0.04969 0.000 

B*D 0.00369 0.00185 0.834 

B*E -0.00040 -0.00020 0.982 

B*F -0.01257 -0.00629 0.475 

B*G 0.01714 0.00857 0.330 

C*D -0.01805 -0.00903 0.305 

C*E -0.01430 -0.00715 0.416 

C*F 0.02028 0.01014 0.249 

C*G 0.02339 0.01170 0.184 

D*E 0.00929 0.00465 0.597 

D*F -0.03449 -0.01724 0.051 

D*G 0.02754 0.01377 0.118 

A*C*E -0.07958 -0.03979 0.000 

A*C*G -0.03231 -0.01615 0.067 
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Term Effect Coefficient P-Value 

B*C*E 0.00350 0.00175 0.842 

B*C*G -0.02249 -0.01124 0.202 

C*D*E -0.01778 -0.00889 0.312 

C*D*G -0.01908 -0.00954 0.278 

 

A statistical significance level is selected to filter those model terms which will be 

dropped. A significance level of 0.05 is used as it is the most common threshold for level of 

significance [58]. 

To remove insignificant terms and reduce the model to a simpler form, a procedural 

backward elimination is used in Minitab. In each iteration, the model term with the highest P-

value is removed and the model is refit to the experimental data using the remaining terms. The 

process is repeated until only terms with a P-value less than or equal to the chosen statistical 

significance of 0.05 remain. There are two exceptions. First, all first-order factors (the seven 

observations) are kept in the model regardless of significance in order to be able to predict the 

best possible combination of observations. Second, since one of the second-order interactions 

was found to be significant, the first order interactions which make up the second order term 

were retained to maintain model hierarchy. The principle of effect heredity dictates that an 

interaction term is much more likely to be significant if one or more of the terms which make up 

the interaction are significant themselves [63]. For example, the significance of the A*C*E 

second-order interaction term indicates that one or more of the factors or interactions that make 

up the second order term may be significant. While further testing targeted to the A*C*E 

interaction term could provide more insight, for the purposes of this work model hierarchy is 

maintained by retaining the constituent terms of the second-order interaction: the A*C, A*E, and 

A*E terms regardless of their individual significance.   

Using a P-value significance level of 0.05, only the bold terms in Table 21 were kept to 

generate the final reduced model which is shown in Equation 25. The final model contains a 

constant term, the seven main effects, four first order interactions, and a single second order 

interaction.  
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Y’ = 0.82132 + 0.01430 A + 0.08893 B + 0.18580 C + 0.00557 D + 0.01102 E 
- 0.02781 F - 0.00955 G - 0.00642 A*C + 0.03372 A*E - 0.04969 B*C 
- 0.00715 C*E - 0.03979 A*C*E 

(25) 

 

The final model achieves a fit quantified by an R-squared value of 75 %, an adjusted R-

squared value of 73 %, and a predicted R-squared value of 72 %. Table 22 summarizes the 

changes in R-squared values due to model reduction. Reducing the model has brought the 

predicted R-squared value to within just over three percent of the R-squared value, indicating 

that the model is not overfitting to the designed experiment data. Both the R-squared value and 

the adjusted R-squared value have decreased slightly from the model reduction while the 

predicted R-squared has been increased as shown in Table 22. The R-squared and adjusted R-

squared values have decreased because the complexity of the model has been reduced limiting its 

ability to fit the noise in the dataset. However, the predicted R-squared value has increased 

indicating that the reduced model is better at capturing the underlying trends in the data while 

ignoring the residual noise; therefore, overfitting to the data as been reduced. 

 

Table 22: Change in R-Squared values from model reduction 

Model Description R-Squared Adjusted R-Squared Predicted R-Squared 

Model using Transformed Data 77 % 74 % 69 % 

Final Reduced Model 75 % 73 % 72 % 

Change in R-Squared –2 % –1 % +3 % 

 

The residuals of the final model are plotted with respect to the run order in Figure 42 to 

confirm that they appear to be independent and centered around zero.  
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Figure 42: Plot of residuals against run order for the final model 

 

The histogram of residuals shown in Figure 43 displays a wide peak centered around zero 

which shows that the model is highly accurate and well fit to many of the experimental data 

points. There are three residuals in a very small tail on the left-hand side of the distribution. 

These are remnants of the eliminated outliers and are to be expected from the runs with 

combinations of observations that result in inconsistent and poor learning. These three points can 

also be seen in the lower portion of the previous Figure 42.  
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Figure 43: Histogram of residuals for the final model 

 

The final residuals are also plotted on a normal probability plot shown in Figure 44. It 

can be seen in this figure that the residuals closely follow the red line for a true normal 

distribution, again confirming the successful fit of the final model.  
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Figure 44: Normal probability plot for the final model 

 

Figure 45 plots the residuals with respect to the predicted response (transformed final 

average reward). The range of the residuals is fairly uniform across the entire range of predicted 

responses, with only a few instances falling outside of ± 0.3.  
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Figure 45: Plot of the residuals vs predicted response for the final model 

 

Table 23 summarizes how the R-squared, adjusted R-squared and predicted R-squared 

values changed with each step in the model refinement. It can be seen from this table that the 

most significant improvement in model accuracy was obtained by eliminating the three worst 

replicants from each run as the R-squared values more than doubled. The original dataset would 

have been unusable without this important truncation. Applying the exponential transformation 

to the final average reward data further increased all three R-squared values by 5-7 %. Finally, 

reducing the model helped to reduce overfitting, as illustrated by the reduction in R-squared and 

the adjusted R-squared, while showing an increase in predicted R-squared. The reduced model is 

better generalized to make more accurate predictions of unseen circumstances as demonstrated 

by the increase in predicted R-squared. Achieving higher R-squared values would likely be 

difficult for this particular application because of the stochastic nature of the reinforcement 

learning process since the random noise introduced during the learning process is difficult to 

model.  
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Table 23: Improvement in model fit with each key step in the analysis 

Model Description R-Squared Adjusted R-Squared Predicted R-Squared 

Initial Model 35 % 28 % 20 % 

Best Seven Replicants Model 73 % 68 % 63 % 

Model using Transformed Data 77 % 74 % 69 % 

Final Reduced Model 75 % 73 % 72 % 

 

The final model contains four first-order interaction terms and a single second-order 

interaction. An interaction plot can be created to study these effects as shown in Figure 46. This 

figure shows all possible first-order interactions between the seven main effects studied in the 

designed experiment in a grid format, with each interaction represented in its own subplot. Each 

subplot contains two lines which show how the response (the transformed final average reward 

indicated on the vertical axis) changes with the four possible combinations of levels of the 

interacting factors. The horizontal axis indicates the level of the first of the interacting factors, 

while the colour of the line represents the level of the second factor in the interaction (see legend 

directly to the right of the plot). The blue line shows the effect that the first factor has on the 

response when the second factor is at its low level, while the red line shows the effect of the first 

factor when the second factor is at its high setting. The four points in each interaction subplot 

effectively show the four possible combinations for the two observations in question: off-off, off-

on, on-off and on-on. The blue and red lines are parallel if there is no interaction present between 

the factors. An interaction is indicated by non-parallel lines in one of the subplots and, the 

stronger the interaction, the further the lines will be from parallel.  
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Figure 46: Interaction plots for all possible first order interactions (those included in final model 
have subplots with white backgrounds) 

 

The four subplots with white backgrounds in Figure 46 are the first-order factors included in the 

final model, while those with grey backgrounds were eliminated during model reduction. Only 

two first-order interactions are significant with a P-value less than the 0.05 threshold: the B*C 

interaction between the body velocities (B) and body tilt (C) and the A*E interaction between 

joint torques (A) and body height (E). The other two first order interactions included in the 

model were retained to maintain model hierarchy as they are components of the significant 

A*C*E second-order interaction.  

The B*C interaction plot shows that the positive effect of adding observation B, the body 

linear velocities, is reduced when the body tilt (C) is used as an observation. The body velocities 

and body tilt are very closely related – being measured at the same point on the hexapod body. It 

makes sense that this interaction could be present, as both observations could provide similar 

information to a reinforcement learning agent about the cyclic motion of the hexapod body 
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throughout the walking gait. There could be some overlap in the benefit provided by these two 

observations so adding the body velocities is not as impactful to the learning when the body tilt 

is already present, and vice versa. However, the main effect of the body tilt is so significant that 

the maximum response is still achieved when both observations are present.  

The A*E first order interaction is an interesting case. The average response actually 

decreases with the addition of the joint torques (A) if the body height (E) is not present, but the 

response increases if the body height (E) is included. The A*E subplot in Figure 46 indicates that 

it is better to have either both observations turned on or both turned off than it is to use joint 

torques (A) or only body height (E) on their own. Note that a decision to include or exclude a 

certain observation(s) cannot be made based on a single interaction, as in this case both factors 

are also contained within the significant A*C*E second order interaction which must also be 

considered. 

The A*C and C*E interactions do not display any significance on their own, but, are 

included in the model as they may be components of the significant A*C*E interaction term. The 

nature of the A*C*E second order interaction is not readily apparent, but its significance is most 

like attributed to the body tilt (C) as it is the main factor with the largest effect on the response. It 

is hypothesized that the second-order interaction is between the body tilt (C) and the A*E first 

order interaction, but more data is needed to fully explore the A*C*E interaction. Future work 

could carry out additional simulation runs which might reveal more information about these 

higher-order interactions. However, for the scope of this research in which the focus is the 

observations as main factors, the next step is to generate the final regression model and validate 

its accuracy. 

 

5.4. Validation of the Designed Experiment Regression Model 

The fourth objective of this thesis is to demonstrate the potential for using a fractional 

factorial designed experiment to select the observations for a specific hexapod reinforcement 

learning case that will maximize hexapod performance. To be able to validate the model 

identified using the designed experiment, it must first be confirmed that the reward metric used 

to quantify performance corresponds to the desired hexapod behaviour. The two main 
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characteristics of the desired hexapod behaviour are: the ability for the hexapod to steer towards 

and track along the goal trajectory line, and for the hexapod to learn to walk as fast as possible 

along the aforementioned path. To quantify the success of each combination of observations 

during deployment, a set of performance metrics based on the desired hexapod behaviour are 

created to classify each trial as a success or failure (see Table 24). To be considered a successful 

trained agent, the hexapod must be able to walk 4 meters in the direction parallel to the goal 

trajectory and reduce its starting offset to within ± 0.25 meters of the goal trajectory line – both 

within 30 seconds of a random initialization. The 0.25 meter offset limit was determined to be an 

appropriate range based on experience with the hexapod learning results during testing. The 

combination of the 30 second time limit and minimum displacement in the x-direction of 4 m 

originates from the maximum speed of the hexapod using a nominal gait (parameterized gait 

with no reinforcement learning), with a roughly 20 % reduction in required speed to account for 

the starting offset. 

 

Table 24: Performance conditions to be deemed a "successful" learning run 

Performance Metric Condition for Success 

Time Limit 𝑡 ≤ 30 𝑠 

X Displacement 𝑋 ≥ 4 𝑚 

Y Offset −0.25 𝑚 ≤ 𝑌 ≤ 0.25 𝑚 

 

When the final learning agent of each training routine is tested, the performance metrics 

are used to determine if the hexapod was successful at each test point. Figure 47 shows, for 

example, the test paths for all 10 replicants of run 8 from the designed experiment. The final 

agent of each replicant is tested at the seven different starting offsets and the total number of 

paths that meet the performance metrics are recorded. The performance metrics lead to a 

“success area” as shown in Figure 47 that the hexapod should reach in the 30 second test length.  
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Figure 47: The "success area" set by the performance conditions shown over an example test paths 
plot 

 

The number of successful paths from all 70 tests for each run are recorded (7 starting 

offsets for each of 10 replicants). They can then be compared to the final average rewards 

obtained during training for the agents in each run. Figure 48 plots a comparison between the 

final average reward for all 10 replicants of a run, the final average reward for the best 7 

replicants of a run, and the number of successful paths from a run’s ten replicants all together on 

a single graph. The runs are plotted in ascending order of best 7 final average reward along the x-

axis. The final average reward for all 10 replicants, plotted in green, and the average reward for 

the best 7 replicants, plotted as a blue line, correspond to the y-axis located on the left of the plot. 

The number of successful paths from all ten replicants of each run is plotted using the orange 

line, corresponding to the secondary y-axis to the right side of Figure 48. The plotted path counts 

(orange curve) cannot be numerically compared to the reward data (green and blue curves), but 

the overall shape of the curves can be examined.  
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Figure 48: Comparison across all experimental runs of the mean final average reward, the mean 
reward of the best seven cases, and the number of successful test paths 

 

Both of the reward curves follow a similar logarithmic shape, with the blue best seven 

data resulting in both higher rewards and a smoother curve than the green curve which uses all 

ten replicants. This result is as to be expected from dropping the three lowest outliers in each run. 

The orange curve, which represents the number of successful paths for each run, follows a 

similar shape to the reward curves. Neither the path count nor the reward data using all 10 

replicants are smooth curves because no outliers have been dropped from both datasets. Given 

the increasing trends in the data, Figure 48 confirms that the reward function used during training 

quantifies the hexapod performance in such a way that it can directly be correlated with the 

desired hexapod behaviour. This correlation allows for more confidence in the results of the 

designed experiment – that the final model will be able to correctly provide numerical outputs 

with direct correlation to the hexapod performance. 



107 

 

The final model is validated by predicting the best possible combination of observations 

using the model and then testing the predicted case in simulation. The final linear regression 

model is shown again, for convenience, in Equation 26.  

Y’ = 0.82132 + 0.01430 A + 0.08893 B + 0.18580 C 
+ 0.00557 D + 0.01102 E - 0.02781 F - 0.00955 G 
- 0.00642 A*C + 0.03372 A*E - 0.04969 B*C - 0.00715 C*E 
- 0.03979 A*C*E 

 

(26) 

 

The optimal set of observations is selected to maximize the transformed response Y’ in 

Equation 26. Minitab is used to calculate the predicted transformed response for all combinations 

of observations and the three best solutions are listed in Table 25. Listed in the table for each 

solution are the levels for each of the seven main factors (observations) and the predicted 

transformed response Y’ from the model with a 90 % confidence interval calculated using the 

experimental data in Minitab. The transformed data is then converted back into a predicted final 

average reward again with a 90 % confidence interval. There is overlap in the confidence 

intervals for final average reward of the top few optimal solutions. The body velocities (B) and 

body tilt (C) were found to be the observations with the greatest effect on final average reward, 

so it can be seen that the three optimal solutions contain both these observations. The overlap in 

confidence intervals exists between these three solutions because they differ by observations that 

have a lesser effect on the final average reward. Note that solution 3 is the same combination of 

observations as run 31 of the designed experiment.  
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Table 25: Top three predicted solutions (combinations of observations) to maximize the final 
average reward 

Optimal 

Solutions 

Factors Transformed Response Final Average Reward 

A B C D E F G Prediction 

90% 

Confidence 

Interval 

Prediction 
90% Confidence 

Interval 

1 1 1 1 1 0 0 0 1.099 (1.047, 1.152) 711 (343, 1061) 

2 1 1 1 1 1 0 0 1.095 (1.042, 1.148) 681 (311, 1032) 

3 0 1 1 1 1 0 0 1.091 (1.039, 1.144) 656 (285, 1009) 

 

According to the model built using the designed experiment data, for the simulation 

conditions used in this research the optimal observations to include from the seven options to 

maximize the final average reward achieved by the hexapod agent are the joint torques (A), the 

body velocities (B), the body tilt (C) and the body angular velocities (D). The model predicts this 

combination of observations would result in a final average reward of 711, with a 90 % 

confidence interval of 343 to 1061. The confidence intervals are fairly wide as the experimental 

data had a lower level of precision due to the stochastic nature of reinforcement learning, and a 

similar variance in learning? results has been shown in the literature [35], [41]. Due to the 

overlap in confidence intervals of all three optimal solutions, during validation testing one could 

expect any of the three solutions to produce the highest final average reward and be well within 

the confidence intervals. The model will be considered a success if one of these three solutions 

produces a final average reward equal to or higher than all other combinations of observations 

tested during the designed experiment. 

The three optimal solutions are tested for the full ten replicants, and the lowest three 

results are removed (as done previously). The model was fit to the best seven replicants of the 

experimental runs so, for a fair comparison, the validation run must maintain the same format. 

Since solution 3 is the same as run 31 of the designed experiment, this case was not needed to be 

run again. The average final reward taken over the best 7 replicants for all 32 experimental runs 

as well as the predicted three optimal solutions are listed in Table 26. 



109 

 

Table 26: Summary and ranking of the mean best seven reward for all cases tested 

Run 

Observations Average Final 

Reward Over Best 7 

Replicants 

Ranking by 

Final Reward 
A B C D E F G 

1 - - - - - + + -6407 33 

2 + - - - - - - -5850 31 

3 - + - - - - - -858 19 

4 + + - - - + + -3572 25 

5 - - + - - - + -241 17 

6 + - + - - + - -80 13 

7 - + + - - + - 75 11 

8 + + + - - - + 196 8 

9 - - - + - - - -3764 26 

10 + - - + - + + -7793 34 

11 - + - + - + + -2498 22 

12 + + - + - - - -2638 23 

13 - - + + - + - -909 20 

14 + - + + - - + 71 12 

15 - + + + - - + 514 2 

16 + + + + - + - 232 7 

17 - - - - + + - -5716 30 

18 + - - - + - + -4577 29 

19 - + - - + - + -4265 28 

20 + + - - + + - -1471 21 

21 - - + - + - - -212 16 

22 + - + - + + + -211 15 

23 - + + - + + + 397 6 

24 + + + - + - - 435 5 

25 - - - + + - + -6096 32 

26 + - - + + + - -3900 27 

27 - + - + + + - -3469 24 

28 + + - + + - + 131 9 
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Run 

Observations Average Final 

Reward Over Best 7 

Replicants 

Ranking by 

Final Reward 
A B C D E F G 

29 - - + + + + + -520 18 

30 + - + + + - - -87 14 

31 - + + + + - - 488 3 

32 + + + + + + + 83 10 

Sol. 1 + + + + - - - 449 4 

Sol. 2 + + + + + - - 585 1 

Sol. 3 - + + + + - - 488 3 

 

The results from all three validation runs (last three rows of Table 26) fall within the 

confidence intervals listed in Table 25. The second solution resulted in the highest final average 

reward of the three at 585, followed by the third solution at 488, and finally the first solution 

with a reward of 449. The second solution was successful in producing the highest final average 

reward of any set of observations tested during this work. The second highest reward was 514 

from run 15 of the designed experiment, with the third and fourth highest rewards from Solutions 

3 and 1, respectively.  

The model determined using the designed experiment was able to predict the combination 

of observations that would result in the highest average final reward as well as three of the top 

four runs. Since the confidence intervals are relatively wide and the learning results will always 

contain some level of noise, any one of the three top solutions could have produced the highest 

average final reward – in this instance it was Solution 2. These results validate the use of a 

designed experiment as a potentially valuable tool to be used in the selection and optimization of 

observations for a hexapod locomotion problem. Based on these validation tests, the 

recommended observations to obtain maximum final average reward for a hexapod applied to the 

conditions simulated in this work are the joint torques (A), body velocities (B), body tilt (C), 

body angular velocities (D), and body height (E). 
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5.5. Demonstration of Hexapod Path Following Capabilities 

The final thesis objective is to demonstrate the potential of the trajectory following 

learning used in this work as a method for more complex hexapod directional control during 

deployment. The concept behind the goal trajectory line and offset observation is for the 

trajectory to be provided by a higher-level path-planning controller that the trained reinforcement 

learning agent then follows. The higher-level planning algorithm would discretize the desired 

path into a series of goal trajectories that do not need to be updated at as fast a sample rate as the 

reinforcement learning agent, reducing the processing required by the hexapod. The goal 

trajectory provided to the hexapod agent can then be updated only when a change in direction is 

required.  

A trained reinforcement learning agent is deployed within the simulator for the following 

example cases to demonstrate the ability of the hexapod to follow a moving goal trajectory line. 

Figure 49 shows a case where the goal trajectory line alternates at regular intervals between 𝑥 =

−1 and 𝑥 = 0 corresponding to Trajectory Line 1 and Trajectory Line 2, respectively. It can be 

seen in this figure that the hexapod is able to move between the two goal trajectory lines 

resulting in a sinusoidal path of motion. The red points along the hexapod’s path (blue curve) 

indicate the moment the goal trajectory line switches position. When the hexapod reached points 

A, C and E the goal was set to Trajectory Line 1, and points B and D indicate the moments the 

goal was switched to Trajectory Line 2. This scenario is analogous to the hexapod circumventing 

obstacles while still moving in the general x-direction. 
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Figure 49: Hexapod path demonstrating turning ability for the case of an alternating goal trajectory 

 

Figure 50 shows a second case where the path of the hexapod follows a sweeping turn 

which has been discretized using a series of goal trajectory lines. The hexapod starts at the origin 

and follows the sequence of trajectories in a counterclockwise manner. The hexapod follows the 

goal trajectories in alphabetical order, switching to the next trajectory at the points indicated 

along the blue hexapod path. The switch points are coloured to match the associated goal 

trajectory. From Figure 50 one can see that the first two switch points occurred near the 

crossover points of two goal trajectories so no major corrections in offset were required by the 

hexapod, just the resulting change in direction. The change in goal trajectory direction was 

achieved by moving the coordinate system from which the hexapod measures its heading to the 

reference frame of the current goal trajectory. The third and fourth trajectory changes, occurring 

at points d and e, take place after the hexapod has already crossed over and overshot the next 

goal trajectory, showcasing the hexapod’s ability to correct both an instantaneous angle and 

offset change during continuous movement.  
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Figure 50: Hexapod path for a sweeping turn generated by segmenting the desired path into a series 
of goal trajectories 

 

The switching between trajectories is set manually based on the simulation time for this 

validation test, but in a real deployment scenario the change in trajectory could be triggered 

automatically based on the hexapod’s current position along the path. The smoothness of curves 
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that can be achieved depends on the update frequency of the goal trajectory and/or resolution of 

the curve segmentation. These validation tests demonstrate the ability for a hexapod trained 

using a random offset from a straight-line goal to navigate more complex movement paths using 

a discretization technique.  
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Chapter 6: Conclusions and Recommendations 

A thorough examination and survey of the current literature in the area of reinforcement 

learning applied to hexapod robots revealed a wide range of selected observations, without a 

clear method of justification for these choices. The selection of observations is important to not 

only maximize the hexapod performance, but also to affect other considerations such as 

hardware cost, form factor, and both power and computational requirements. The objectives of 

this thesis listed in Chapter 1 were set in order to build up a hexapod simulator and study the 

effect of observations on hexapod performance.  

Building on the work of Wang et al. [23], a hexapod simulator was developed using a 

central pattern generator control scheme consisting of 6 coupled Hopf oscillators and associated 

mapping functions. The control scheme used in this work aligns with the cutting edge of central 

pattern generator control found in the literature, meeting the first thesis objective. The second 

thesis objective was met through the application of a reinforcement learning agent able to modify 

the hexapod gait in real-time by updating parameters of the CPG mapping functions. DDPG 

learning was used to train the hexapod to follow a goal trajectory line by giving the hexapod a 

random initial offset each training episode.  

A designed experiment was carried out using the hexapod simulator to explore the effect 

of seven potential observations on the hexapod’s walking performance: the joint torques, 

hexapod body linear velocities, body tilt, body angular velocities, body height from the ground 

plane, and two versions of ground contact at the hexapod leg tips (binary and force 

measurement). A quarter fraction factorial experiment was completed consisting of 32 unique 

runs with 10 replicants each in order to meet the third and fourth thesis objectives. The single 

observation (measurement) with the greatest effect on hexapod performance was found to be the 

body tilt. The factorial designed experiment was shown to have potential in this novel application 

and was able to generate a linear regression model providing insight about the seven studied 

observations. The optimal set of observations to use in order to maximize the final learning 

reward, for the specific simulation conditions outlined in this thesis, was found to include the 

joint torques, body velocities, body tilt, body angular velocities, and body height.  
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The designed experiment was shown for the hexapod case used in this thesis to a be a 

viable alternative to the existing methods of feature selection used in the field of machine 

learning. An advantage of the designed experiment method is the ability to fit a mathematical 

model to the resulting data which can provide more generalized insight into the relationships 

between the different observations and the hexapod performance. The resulting model could be 

used to estimate the hexapod’s performance using different combinations of observations without 

the need for additional testing. The designed experiment also provides a defined run plan for 

generating the experimental data, which is helpful for application to a reinforcement learning 

case where there is no existing dataset before training.  

Finally, to meet the fifth thesis objective, a trained reinforcement learning agent was 

deployed to the hexapod simulator with the additional complexity of a moving goal trajectory. 

The robustness and versatility of the learned behaviour was demonstrated as the hexapod was 

able to follow complex paths which had been discretized into a series of straight-line goal 

trajectories.  

 

6.1. Contributions 

The contributions of this work are as follows: 

• The development of a MATLAB Simscape simulator for studying reinforcement learning 

applied to a hexapod robot, which could be used in future work to train and test 

algorithms before deployment to the Fire Ant hexapod platform.  

• The successful application to a hexapod of a novel central pattern generator control 

architecture for reinforcement learning; the combination of DDPG reinforcement learning 

with the Hopf oscillator and mapping functions adapted from Wang et al. [23]. 

• A demonstration of the capability of a fractional factorial designed experiment as a tool to 

aid in the selection of observations in order to maximize performance for a particular 

reinforcement learning application. 

• The utilization of an offset observation normalized using a sigmoid function to train a 

hexapod to walk along a goal trajectory line, as well as a demonstration that the learned 
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behaviour is robust, allowing the hexapod to follow more complex paths during 

deployment. 

 

6.2. Future Work 

Working toward the deployment of reinforcement learning to the physical Fire Ant 

hexapod robot platform, it is recommended that realistic sensor noise be added to the 

observations in simulation to determine how sensor noise affects the learning process. The 

complexity of the training environment for the hexapod could also be increased with the addition 

of uneven terrain or slopes. The robustness of the learned behaviour could also potentially be 

improved by randomly initializing the hexapod’s orientation with respect to the goal trajectory as 

well as the staring offset. The scope of work in this thesis focused on lower-level path control of 

a hexapod; therefore, this work would need to be combined with a high-level planning algorithm 

which would make decisions on path planning and gait-type selection during deployment. 

Although in this work the potential of a fractional factorial designed experiment was 

demonstrated for the selection of observation to optimize hexapod performance in a specific 

learning scenario, further study could be conducted to explore this potential. A smaller fraction 

factorial design could be tested to see if the required number of runs can be further reduced from 

the 32 used in this study without compromising the accuracy of the final regression model. The 

use of a designed experiment for observation optimization could be further studied by modifying 

the simulator environment to test the hexapod in a variety of scenarios, with potential examples 

including traversing rough terrain, climbing stairs, transporting a payload, and walking with a 

damaged leg. The optimal observations may differ between tasks for the same hexapod, so a 

designed experiment could help improve many areas of a hexapod robot’s performance. 

A potential future application of the designed experiment methodology used in this work 

is as a tool to assist with the selection of sensors for an autonomous mobile robot design that will 

be controlled using reinforcement learning. A designed experiment could be used in helping to 

quantify and compare the effect of different sensors on reinforcement learning performance, and 

to identify observations critical to the robot’s performance for specific learning tasks. 
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Appendix A: Designed Experiment Alias Structure 

The following table lists the aliased or confounded terms of the fractional factorial designed 

experiment used in the thesis. Because it is a quarter fraction design, each of the 32 terms in the 

initial model is confounded with three other higher order interaction terms (aliased groups of 

four). 

I + CEFG + ABCDF + ABDEG 

A + BCDF + BDEG + ACEFG 

B + ACDF + ADEG + BCEFG 

C + EFG + ABDF + ABCDEG 

D + ABCF + ABEG + CDEFG 

E + CFG + ABDG + ABCDEF 

F + CEG + ABCD + ABDEFG 

G + CEF + ABDE + ABCDFG 

AB + CDF + DEG + ABCEFG 

AC + BDF + AEFG + BCDEG 

AD + BCF + BEG + ACDEFG 

AE + BDG + ACFG + BCDEF 

AF + BCD + ACEG + BDEFG 

AG + BDE + ACEF + BCDFG 

BC + ADF + BEFG + ACDEG 

BD + ACF + AEG + BCDEFG 

BE + ADG + BCFG + ACDEF 

BF + ACD + BCEG + ADEFG 

BG + ADE + BCEF + ACDFG 

CD + ABF + DEFG + ABCEG 

CE + FG + ABCDG + ABDEF 

CF + EG + ABD + ABCDEFG 

CG + EF + ABCDE + ABDFG 

DE + ABG + CDFG + ABCEF 

DF + ABC + CDEG + ABEFG 

DG + ABE + CDEF + ABCFG 

ACE + AFG + BCDG + BDEF 

ACG + AEF + BCDE + BDFG 

BCE + BFG + ACDG + ADEF 

BCG + BEF + ACDE + ADFG 

CDE + DFG + ABCG + ABEF 

CDG + DEF + ABCE + ABFG 

 

 

A = joint torques 

B = body velocities (linear) 

C = body tilt (orientation) 

D = body angular velocities 

E = body height 

F = ground contact binary 

G = ground contact forces 

I = constant term 
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Appendix B: Designed Experiment Result Plots 

 

• This appendix contains two plots for each of the 32 runs from the designed experiment.  

• The first plot for each run shows the learning curves for each of the ten replicants (black 

lines) as well as the average learning curve across all replicants shown in red. 

• The second plot shows the test paths for all ten replicants of the run at the seven different 

starting offsets, as well as illustrating the “success area” set by the performance 

conditions described in Section 5.4 (shaded in green). 

• The plots in this appendix demonstrate the variety of results obtained during the designed 

experiment.  
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