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Abstract. In brain-computer interface (BCI) research, electroencephalograms 

(EEGs) such as the Unicorn Hybrid Black (UHB) have entered the market as low-

cost alternatives to other EEG devices. This study has two aims: the first is to 

assess the suitability of the UHB for BCI research, and the second is to assess the 

feasibility of a meditation BCI designed to provide users with feedback about 

mind wandering episodes. A BCI was created using the UHB and corresponding 

Python API to assess various machine learning algorithms’ classification accu-

racy of a meditation paradigm that uses self-caught experience sampling to cap-

ture mind wandering. Key findings suggest that while the UHB is sufficient to 

capture relevant brain signals associated with mind wandering, though more re-

search is required on appropriate intervention techniques.  
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Introduction 

Electroencephalography (EEG)-based brain-computer interfaces (BCIs) are infor-

mation technologies that use brain signals to enable a user to control an interface using 

their brain alone. Though there has been significant progress towards integrating BCIs 

into everyday life, the utility and usability of such systems remain an ongoing explora-

tion. Since one of the goals of a BCI is to provide a method to access and interact with 

information, BCIs can be understood as an information technology artifact and thus a 

subject of study in Information Systems (IS).  

One of the most disruptive developments in the field of BCI is the recent prolifera-

tion of lower-cost devices such as the OpenBCI device or Unicorn Hybrid Black (UHB; 

g.tec medical engineering GmbH, Austria). These developments are an order of mag-

nitude less expensive than many other common BCI systems which promise to make 

the technology accessible to researchers and consumers on a limited budget. As such, 

it is valuable to evaluate not only the feasibility and efficacy of such lower cost systems 

but also new research applications. In this paper, we describe a pilot study to evaluate 

the suitability of the UHB for IS research related to the real-time detection of mind 

wandering and associated BCIs. We developed a simple experiment based on a 
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meditation paradigm and sought to extend this to validate the design of a mind wander-

ing feedback system.  

Mind wandering was selected as a paradigm of interest due to past discussions in the 

IS and human-computer interaction communities. Mind wandering is defined as the 

disengagement from active attention due to spontaneous thought. It is characterized by 

the absence of strong constraints on both the contents of and transitions between mental 

states and is often defined by its absence of explicit intent [1, 2, 3, 4]. Though there are 

two primary types of mind wandering—intentional and unintentional—the present 

study will focus on the latter concept and hereafter be referred to plainly as mind wan-

dering. 

Insofar as neurological markers of mind wandering, research has shown mixed re-

sults. Some claim that increased alpha band activity is the strongest indicator of mind 

wandering [2, 5], whereas conversely, others posit that only theta band activity shows 

consistently increased power [6]. A meta-analysis on spectral band activity during mind 

wandering reports that only eight of 13 studies reported increased theta activity [7]. 

Less importance has been placed on delta, beta, and gamma bands but research shows 

mixed results [7]. In sum, there is little agreement within past literature on the oscilla-

tory activity associated with mind wandering, though alpha and theta bands seem to be 

most implicated. 

It can be difficult to measure mind wandering without disrupting the user. One ap-

proach, known as probe-caught sampling, measures mind wandering using a probe that 

prompts participants intermittently to collect information on whether they are experi-

encing mind wandering. While this has been shown to effectively capture mind wan-

dering, it comes at the cost of disrupting the cognitive processes of the participants [8]. 

Another approach to measuring mind wandering is with self-caught experience sam-

pling in which participants self-report whether they are experiencing mind wandering 

using a button press, for example [9]. Since this is not as disruptive as a probe, it would 

be a preferable method in a BCI designed with the purpose of improving attention. 

Thus, determining whether self-caught experience sampling is a sufficient measure of 

mind wandering could assist in creating more accurate BCIs in the future. 

We selected a meditation task in part because meditation by nature involves the dy-

namic fluctuation between attention and mind wandering, but also because it is more 

likely to have minimal muscular artifacts and can be measured using few electrodes 

[10] which are both possible confounds with the UHB system. Mind wandering is also 

a useful phenomenon to investigate because it is known to negatively impact the per-

formance of learning and sustained attention tasks [11, 12, 13], so a system that can 

detect and correct mind wandering may prove to be a helpful device for the design of 

new information systems. We were further motivated by past approaches by Demazure 

et al. [14] which applied classifiers created with a controlled paradigm which were then 

later applied to solve a general cognitive load information technology use problem. 

Before pursuing the development of a new technology artifact, it is essential to validate 

the design and feasibility of the tool. The purpose of the present study is thus to inves-

tigate the following questions: 

1. Can the UHB be used to detect brain signals associated with mind wandering? 
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2. Is it feasible to create a meditation-based mind wandering BCI using the UHB?  

Methods 

Participants and Study Procedure 

The experimental task consisted of two phases: a self-caught phase and a task disruption 

phase. The self-caught phase was designed to simulate the training phase of a BCI 

where user feedback is recorded to train the machine learning algorithm that drives the 

interface. The task-disruption phase was designed to simulate an interruption which 

could be used by a BCI to return participants to a state of task awareness. The procedure 

was approved by the Dalhousie University Research Ethics Board and participants (n 

= 5) were recruited to participate in the pilot study. The study was inspired by a well-

cited investigation into the EEG biomarkers of mind wandering during meditation [14] 

and followed many of the methods described in that paper, though with some notable 

differences.  

In the self-caught phase, participants were fitted with the UHB and then asked to 

meditate for 20 minutes while repeatedly counting backwards from 10. A 30-second 

repeated soundtrack of birdsong was also played from the computer. Mind wandering 

was measured using self-caught experience sampling using a button press. Participants 

would press a button when they noticed losing count during the counting task. EEG 

markers from 10 seconds before and after a button press were compared.  

In the task-disruption phase, participants were again asked to meditate for 20 

minutes but to not press a button when they detected their mind wandering. Instead, the 

experimental paradigm was programmed to interrupt the birdsong audio to play traffic 

noises, a disruptive sound, at the 7-, 12-, and 17-minute marks for a duration of 20, 30, 

and 10 seconds, respectively. EEG markers from 10 seconds before and after the dis-

ruptive auditory onset were compared.  

Data Processing and Analysis 

The UHB was used as the primary neural measurement device. It is an eight-channel 

EEG with electrodes situated at the international 10-20 system electrode positions Fz, 

C3, Cz, C4, Pz, P7, Oz, and P8 [15]. It is sampled with 24 bits and 250 Hz per channel.  

The raw EEG data were processed by applying a bandpass filter, sectioning the data 

into 10 second epochs, then subjected to rejection criteria. Power spectral density was 

calculated for each epoch using the multitaper method with the Python MNE library. 

Using scikit-learn, common machine learning classifiers were prepared for each indi-

vidual and assessed using 5-fold cross-validation. In total, seven classifiers were inves-

tigated, as follows: linear discriminant analysis (LDA), ridge classifier, k-nearest neigh-

bours, support vector machine (SVM), decision tree, multi-layer perceptron, and Naïve 

Bayes. These classifiers were trained using the processed data collected from the self-

caught phase and then were applied to the data collected during the task disruption stage 

of the task. An accuracy score and a mean k-fold cross-validation score (k = 5) were 

computed for each classifier. Evoked objects were then created for each condition. 
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Results 

During the self-caught phase, a total of 105 mind wandering button press events were 

captured with an average of 21 events per participant (min = 10; max = 50). During this 

phase, most power spectral variation was observed in the theta and alpha bands. Though 

there was considerable individual variation, the grand average of the participants re-

veals a pattern of elevated general theta when on task (Fig. 1).  

 

Average PSD across all electrodes before button press (mind wandering) 

 
Average PSD across all electrodes after button press (on task) 

 
Fig. 1. The average topographic power spectral densities of the mind wandering condition and 

the on-task condition during the self-caught phase. Data at the theta and alpha bands appear to be 

elevated at the theta and  

 

On average, the overall classification accuracy for the data generated in the self-

caught phase was 52%. In Table 1, we report three select classifiers which are often 

reported in BCI literature. The ridge classifier consistently performed better than other 

methods at this classification task which suggests that this method may be capable of 

reliably detecting the mind-wandering state in this context. However, it should be qual-

ified that, given the limited number of trials, it is still possible that this was due to 

random chance. Results of the application of the classifiers to the data generated during 

the task-disruption phase did not reveal any classifier which performed with greater 

than 50% accuracy at that task. 
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Table 1. Selected classifier accuracy and results from each participant’s self-caught data. 

Classifier  P1 P2 P3 P4 P5 Median 

LDA  56% 42% 51% 55% 74% 56% 

Ridge Classifier 69% 73% 43% 58% 68% 68% 

SVM 49% 47% 51% 53% 68% 51% 

Discussion 

These results suggest that it may be possible to detect EEG signals related to mind 

wandering using the UHB, but that there are major challenges in applying those signals 

to the development of a useful BCI. The data from the self-caught phase suggests that 

mind wandering was found to be primarily associated with differentiations in theta ac-

tivity at frontocentral areas. Our observed theta observations during the self-caught 

phase are consistent with past research which posits that theta activity in frontocentral 

areas are markers of mind wandering [16], [7, 8], though there is not enough data to 

infer whether these results replicate past studies. Importantly, our findings found that 

theta may have been elevated following button presses, which could be inconsistent 

with some findings in the mind wandering literature. Further investigations would need 

to be conducted to determine whether this was indeed a reliable measure of mind wan-

dering or a more general reflection of a different cognitive state, such as task load.  

Past literature purports that alpha band activity is often reported to be attenuated 

during mind wandering and not on-task states, particularly across posterior, frontocen-

tral, and temporal sites [16], [7],  [9]. However, we have not observed any alpha power 

differentiations caused by mind wandering during the self-caught task phase. Further-

more, our task disruption phase data did not show any theta power effects which sug-

gests that mind wandering was perhaps not occurring during the task disruption. Since 

our BCI administered these disruptions at random time intervals rather than when the 

interface detected mind wandering, it follows that mind wandering was not guaranteed 

to occur. Overall, these results suggest that the UHB can successfully detect mind wan-

dering during a self-caught sampling meditation task, though care must be taken to 

control possible confounds.  

While some classifiers performed well at detecting mind wandering using the self-

caught data, all the classifiers performed very poorly at differentiating brain activity 

related to auditory disruption. We expected that the classifiers would have reliably de-

tected instances following the onset of the stimulus as “on task”, similar to the episodes 

following a self-caught probe. This suggests an issue with the assumption of our inter-

face design. The tasks for our two phases were fundamentally different; the training 

phase relied on self-caught experience sampling whereas the application phase made 

use of a disparate audio stimulus intended to return participants to attention. We chose 

self-caught over probe-caught experience sampling because the latter comes at the cost 

of disrupting the cognitive processes of the participants [8]. However, self-caught ex-

perience sampling relies on meta-awareness, defined as the explicit awareness of the 

contents of consciousness [18, 19, 20]. This is a different context than the prior example 

demonstrated by Demazure et al. [14], where working memory activation was funda-

mentally similar between their training paradigm and the application context. 
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A possible future direction for this work may be found in the distinction between 

varieties of mind wandering, which has recently been discussed in the context of infor-

mation technology use [21]. Past research has distinguished between two different 

states of unintentional mind wandering characterized by the presence or absence of 

meta-awareness; “tune-outs” are mind wandering with meta-awareness, and “zone 

outs” are mind wandering without [19, 20]. Using these definitions, we can characterize 

the present study’s self-caught phase as capturing “zone outs” whereas the task-disrup-

tion phase captures “tune outs”, or perhaps even general task disengagement or re-en-

gagement. This could explain why the classifiers did not perform as effectively on the 

application data as they did on the training data—the tasks may be reflective of different 

mental processes.  

There is little consensus in the literature on what is the best-performing classifier in 

an EEG-based BCI. One study found that a ridge classifier has superior accuracy after 

cross-validation in an EGG-based passive BCI [22], whereas others report that an LDA 

is the most accurate [23]. Though our results suggest that a ridge classifier is the best 

algorithm to use for our specific paradigm, our limited sample size does not allow us to 

make definitive conclusions.  

Finally, discussions can be raised about the viability of the task for BCI. Like past 

studies which used the self-caught method to measure the presence of mind wandering, 

there was considerable variability in user responses to mind wandering episodes [16, 

24]. Even with the counting task as a concrete measure of task loss, it is possible that 

users were not able to reliably detect mind wandering episodes or had a considerable 

variance in their subjective experience which led to a report. Alternative probe ap-

proaches might be able to more reliably identify mind wandering or an entirely task-

based approach like Demazure et al. [14] could help further refine the detectable vari-

ance in mindfulness during meditation. 

As a pilot project, the present study has a very limited scope. A major limitation of 

this study is the small sample size. Because of this, all results and conclusions drawn 

in this study are purely speculative in nature and must be further investigated before 

being reported as true findings. The overarching aim of this paper is twofold; to evalu-

ate one possible approach to designing a mind wandering BCI and to validate the 

UHB’s potential as a mind-wandering measurement device. The results of this study 

are thus intended to guide the design of future work that will aim to compare the UHB 

and a research-grade EEG with a denser electrode array in terms of their performance, 

usability, and feasibility in a mind wandering BCI. As such, one should view the results 

of this study through an exploratory lens.  

 

Conclusion 

Our results suggest that the UHB can be used to detect mind-wandering or related states 

during a meditation task, though future research should examine effects either resulting 

from differences in varieties of mind wandering. Similarly, we can cautiously claim 

that self-caught experience sampling is a promising approach to use in a mind wander-

ing BCI, though perhaps not in conjunction with the selected mind wandering 
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intervention described herein. Alternative approaches to the task design may prove 

fruitful in the further development of real-time measures of cognitive states using such 

low-cost systems. Lastly, results suggest that a ridge classifier is the most effective 

machine learning algorithm in terms of accuracy within the context of this specific par-

adigm. Future work can refine these results by either refining the probe-caught para-

digm or by focusing on a task-based baseline for creating machine learning classifiers 

that can be applied to the real-time detection of mind wandering states.  
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