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Abstract

With the rapid advancement of the Internet of Vehicles (IoV), there arises an in-

creasing demand for e�cient connectivity and communication mechanisms between

vehicles and infrastructures, wherein resource allocation assumes paramount impor-

tance. The primary objective of a resource allocation algorithm is to distribute limited

resources, including power and spectrum, to mobile devices within the network while

catering to the diverse requirements of users. In this thesis, we introduce a novel ap-

proach called the Intrinsic Curiosity Module (ICM) based Double Q Learning (DQL)

for resource allocation, denoted as ICM-DQRA, aimed at addressing resource alloca-

tion challenges in IoV network. We integrate the ICM into the DQL algorithm to

incorporate an intrinsic reward to the agent. This intrinsic reward, absent in most

reinforcement learning algorithms, serves to incentivize the agent to explore the envi-

ronment further and make decisions conducive to better rewards. Through compre-

hensive simulations, our proposed method outperforms other approaches, such as the

greedy method and DQL method. Specifically, the ICM-DQRA algorithm achieves a

more e�cient resource allocation among vehicles, leading to a substantial reduction

in energy consumption across the network, ranging from 20% to 27%.
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Chapter 1

Introduction

1.1 Background

Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications are

key parts in the context of Internet of Vehicles (IoV), which falls under the umbrella

of Internet of Things (IoT). Due to the rapid development of communication tech-

nologies and the IoT, there has been an increase in the need for network resources

to accommodate for e�cient and reliable communication among vehicles for various

purposes such as safety, tra�c management, and navigation services. Therefore, it is

important to be able to e↵ectively manage the limited resources available for commu-

nication. Current V2V resource allocation research primarily focuses on optimizing

the allocation of resources such as bandwidth, power, and spectrum in vehicular com-

munication networks [24]. And this field of research has gained increasing attention

around the world with the emergence of connected and autonomous vehicles.

IoV represents a paradigm where vehicles are interconnected with each other and

with infrastructure elements to enable advanced communication and collaboration.

V2V communication allows vehicles to exchange information directly with neighbor-

ing vehicles, facilitating cooperative driving, collision avoidance, and tra�c controls.

Real-time data exchange is a key component to making informed decisions and en-

hancing overall road safety and e�ciency. In addition to V2V communication, IoV

also relies on V2I communication, which involves interactions between vehicles and

roadside infrastructure such as tra�c lights, road signs, and base stations, etc. V2I

communication enables vehicles to access information about tra�c patterns and in-

frastructure updates, thus enabling enhanced tra�c management. As IoV technolo-

gies continue to evolve, the integration of V2V and V2I communication can greatly

improve transportation systems, making them safer, more e�cient, and more envi-

ronmentally friendly.
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One bottleneck for the fifth-generation (5G) cellular technology and beyond re-

search is the high energy consumption caused by a large number of devices with high

transmission rates [10]. In response to the challenge, various reinforcement learning

(RL) based algorithms were proposed.

1.2 Research Objective

The objective of this thesis is to develop a novel resource allocation scheme that

better suits the needs of 5G networks. Specifically, we propose to use an Intrinsic

Curiosity Module (ICM) and build it onto double Q-learning algorithm, to create

a new RL-based resource allocation mechanism. This ICM agent consists of three

primary components: a feature extractor model, a forward model, and an inverse

model.

In the feature extractor module, we utilize a Recurrent Neural Network (RNN)

model to obtain a feature representation for the states of my agent. The motivation

for this feature extractor is, we observed that the states of the agent, though very

descriptive and relevant to the agent itself, have the tendency to be identical between

two consecutive time steps. One reason is that to better simulate 5G scenario, we

set the time step to be 0.01 second (10 milliseconds), which can be too short for

channel information to change. This is one aspect that gives rise to an exploration

challenge to our agent. The goal of this RNN-based feature extractor is to obtain a

feature representation of the states that can better motivate the agent to explore the

environment.

In the forward model, we employ a Multilayer Perceptron (MLP) based architec-

ture to predict the feature representation of next state, and calculate the intrinsic

reward based on the di↵erence between this predicted and the actual feature repre-

sentation from the feature extractor model.

The inverse model is also MLP-based, and it provides a way to train the ICM

agent. Specifically, this model predicts the action the agent would take with feature

representations as input, and the objective for training is to minimize the Mean

Squared Error (MSE) between this predicted action and the actual action the agent

takes. As long as this MSE error is small enough, we are able to tell that the ICM

agent learned a meaningful feature representation of the states.
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To conclude, we propose a new strategy for V2V resource allocation with the goal

of reducing the energy consumption for the entire vehicular network. This proposed

strategy involves the application of an ICM agent. The ICM agent motivates the

agent to explore the environment through an intrinsic reward so that the agent would

take actions it wouldn’t have taken without it. The new actions the agent takes has

the potential to lead to better results.

Firstly, we use Double-Q learning method in 4G and 5G settings to solve the

resource allocation problem and compare their performance. Additionally, we apply

deep Q learning algorithm as a baseline performance. Following that, we sample data

from the memory bu↵er to train the ICM agent. With the trained ICM agent, we are

able to calculate the intrinsic reward for any action the agent takes, and this intrinsic

reward is usually absent in most reinforcement learning algorithms. In the next

phase, we apply ICM-DQRA method that takes into account the intrinsic reward

of the agent, and train the new network with all other parameters stay the same

under 5G setting. Finally, we evaluate the performance of the proposed ICM-DQRA

resource allocation scheme and compare its performance with existing solutions under

identical simulation scenarios.

The main contributions of this thesis can be summarized as follows:

• We propose ICM-DQRA, an ICM-based resource allocation scheme to optimize

the energy consumption in a vehicular network while satisfying the latency

constraints. Our approach incorporates an intrinsic reward, which is usually

absent in most reinforcement learning algorithms.

• We further tailor the architecture of the ICM agent for our problem. It can

be treated as a built-on module to the double Q-learning algorithm and have

the flexibility to fit into di↵erent simulation settings. This means that we do

not need to re-train the agent when we change parameters such as number of

vehicles during simulation.

• The proposed ICM-DQRA algorithm motivates the agent to explore a larger ac-

tion space and after comprehensive evaluations, we observe that this mechanism

gives a less aggressive power selection result, and significantly reduce the energy

consumption for the entire network while satisfying the latency constraints at



4

the same time.

1.3 Thesis Outline

The rest of the thesis is organized in the following manner:

In chapter two, we present a brief overview on resource allocation problems and

argue that reinforcement learning based algorithms are by far one of the most promis-

ing solutions to modern resource allocation problems. Then we give a brief overview

of reinforcement learning, including its components and categories. We also com-

pare the major di↵erence between the fourth-generation (4G) research versus 5G and

beyond research.

Chapter three introduces the details of ICM-DQRA learning approach for V2V

communications, including the motivation for the Intrinsic Curiosity Module (ICM),

the fundamental framework, and the detail of the proposed algorithm. In addition,

this chapter formally formulate the problem we are solving.

Chapter four first provides detailed information on the training and testing pro-

cedures of the proposed algorithm, along with the evaluation metrics. After the nec-

essary information is provided, the simulation results for ICM-DQRA are provided

with comparison and analysis.

In the last chapter, the thesis is concluded with current achievements, and poten-

tial future research directions are discussed.



Chapter 2

Related Work

In this chapter, we first discuss selected work related to resource allocation in vehicular

networks. Then we introduce the background knowledge for Reinforcement Learning

(RL) as well as Deep Reinforcement Learning (DRL) and analyze why these methods

become a promising solution to resource allocation problems. Lastly, we compare

the major di↵erence between the fourth generation (4G) cellular technology and 5G

beyond research. The research work done in this thesis focuses primarily on 5G and

beyond research, but given the fact that there are still many mobile devices around

the world that use the 4G Long Term Evolution (LTE) technologies, we include 4G

scenario for comparison purposes.

2.1 Resource Allocation

In recent years, there has been a growing body of research dedicated to addressing

resource allocation problems aimed at enabling reliable, e�cient, and safe communi-

cation among vehicles and infrastructures. The objectives of research can be broadly

categorized into four categories: e�ciency optimization [26], safety enhancement [12],

tra�c management [3], and cooperative driving [17] [22]. Each of these aspects fo-

cuses on specific challenges in resource allocation for vehicular networks, but share

the same goal to satisfy the Quality of Service (QoS) requirements.

E�ciency optimization strives to maximize the utilization of available resources

in the vehicular network. The majority of existing algorithms and technologies in this

field are geared towards maximizing throughput, minimizing packet loss, or reducing

energy consumption. The ultimate goal is to improve network e�ciency that would

lead to better overall performance. Additionally, these strategies also facilitate the

integration of advanced applications and services that adds to the e↵ectiveness of

modern transportation systems.

5
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Safety enhancement aims to prioritize communication for safety-critical applica-

tions such as navigation services, alarms, etc. to facilitate collision avoidance. By

allocating resources dynamically based on the time sensitiveness of messages and the

availability of spectrum resources, the likelihood of tra�c accidents can be reduced.

Numerous algorithms, along with their variations, have been proposed to cater to the

requirements of high reliability and low latency communication in vehicular networks.

These solutions aim to ensure that time-sensitive alarm information can be promptly

broadcast to incoming vehicles.

Tra�c management centers around facilitating real-time tra�c monitoring and

congestion control by allocating resources intelligently. This aspect involves optimiz-

ing the use of road infrastructure. By leveraging data from sensors, cameras, and

connected vehicles, tra�c management authorities can gain insights into tra�c pat-

terns, so as to adjust tra�c signals timings to reroute tra�c. This allows for more

e�cient resource allocation. Furthermore, it not only reduces congestion but also

enhances safety, and contributes to the general improvements in urban mobility.

Cooperative driving focuses on facilitating the exchange of vital information such

as speed, position, and intentions among vehicles, allowing them to make collective

decisions. This aspect involves many applications such as coordinated merging that

allows for vehicles merging into a tra�c flow without disrupting it, and intersection

management where vehicles pass through intersections safely and e�ciently with in-

formation sharing. With the support of V2V and V2I communications, cooperative

driving is able to enable low latency in the transmission of messages and contribute

to autonomous driving systems in the future.

Traditional resource allocation algorithms include greedy algorithms [2], priority

scheduling algorithms [19], etc. They were widely used in resource allocation prob-

lems due to their simplicity and ease of implementation. However, they have several

limitations. For example, greedy algorithms is likely to reach an local optimal choice

at each step and converge to a sub-optimal solution. This locally optimal solution is

unlikely to be the best global solution for a given problem. For priority scheduling

algorithms, their complexity is likely to become unmanageable as the number of tasks

or priority levels increase. This could lead to overhead in terms of system resources
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and processing time, particularly in a dynamic vehicular environment where prior-

ity levels are adjusted frequently. In fact, most traditional algorithms would su↵er

from the dynamic environments and the algorithms themselves would need frequent

adjustment to remain e↵ective in such scenarios.

With the development of communication technologies, researchers have been ac-

tively seeking for modern algorithms that can handle the challenges in resource allo-

cations problems. RL-based algorithms [11] have been proposed and proved to have

promising results.

2.2 Reinforcement Learning

Reinforcement learning is a sub-field of machine learning. In each iteration, the agent

learns to make decisions by interacting with the environment. The agent takes actions

based on its current state and receives feedback in the form of rewards or penalties

from the environment [4]. This iterative process goes on with the goal to learn a

policy that maximizes cumulative reward over time. Though it might happen that in

certain cases, the environment is fully known, such as a well-defined grid environment,

and it becomes unnecessary for the agent to explore the environment any more. But

in most real-world reinforcement learning environments, this is unrealistic.

Key components in reinforcement learning [4] include:

• Agent: The agent would interact with the environment in an reinforcement

learning algorithm, and is usually varies in di↵erent scenarios. It also depends

on the problem formulation that we have. In resource allocation problems for

IoV, one common practice is to treat a V2V link as an agent [25]. We adopt

this tradition in this thesis. The agent is usually equipped with decision-making

capabilities and can learn to take actions based on its rewards from previous

interactions.

• Environment: The environment represents the external domain in which the

agent learns and takes actions. It can also vary widely, and in resource allocation

problems, one common practice is to treat everything beyond the particular V2V

link as the environment [25]. This environment contains collective information

that is related to the agent’s decision making.
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• State: The state represents the current configuration of the environment at a

specific point in time. It captures all relevant information that the agent needs

to make decisions, and in resource allocation problems, one common practice is

to concatenate information such as channel information, interference, selected

sub-channels from previous time slots into a unified state representation [25].

Additionally, states can be discrete or continuous, depending on the nature of

the problem domain. The states considered in this thesis are continuous.

• Action: The action is a decision made by the agent within a given state of

the environment, and it directly impacts the environment. The action space

contains the set of possible choices available to the agent. Actions can also be

discrete or continuous that represents any form of the agent’s interaction with

the environment. The actions in this thesis are considered to be discrete.

• Reward: Reward serves as feedback from the environment to the agent and

guides the learning process by reinforcing or discouraging certain behaviors. The

agent’s goal is to maximize its cumulative reward over time by taking actions

based on its learned policy. Rewards can also be in the form of penalties, which

would discourage the agent from taking certain actions. The reward in this

thesis is jointly determined by the capacities of V2V and V2I links as well as

the latency constraint of the considered V2V link.

Generally, we can categorize RL algorithms into two broad types: model based and

model free algorithms [9], as shown in figure 2.1. The agents learn an explicit model of

the environment’s dynamics and take actions based on it in a model based algorithm,

whereas in model free algorithms, the agents learn directly through interactions with

the environment without the need to model its dynamics. The model free algorithms

can be further divided as value based methods and policy based methods.

The value based methods aim to estimate the value of state-action pairs and select

actions based on these estimates. Examples include Q-learning, Deep Q-Learning

(DQL), and its variants. In Q-learning, the Q-values are updated using the Bellman

equation:

Q(s, a) (1� ↵) ·Q(s, a) + ↵ · (r + � ·max
a0

Q(s0, a0)) (2.1)
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Figure 2.1: Categories of Reinforcement Learning Algorithms

that combines the immediate reward with discounted maximum Q-value for the sub-

sequent state [8]. Here Q(s, a) is the Q-value for state-action pair (s, a), ↵ is the

learning rate between 0 and 1, r is the immediate reward after taking action a, �

is the discount factor and Q(s0, a0) represents the estimate of Q-value for next state-

action pair. This approach has become the basis of many reinforcement learning

algorithms.

However, this method faces challenges in that the Q-table for rewards will grow

considerably large in a multi-agent environment with two or more agents [13], there-

fore it would require a large memory space for storage. This makes e↵ective learning

challenging. To handle this, Google Deep Mind developed deep Q-learning, which

combines Convolution Neural Networks (CNN) with Q-learning that instead of ex-

pressing the value function for each state, it employs an approximation function using

CNN [7]. For an n-dimensional state space and an action space with m possible ac-

tions, the neural network is essentially a function from Rn to Rm. Two main parts

of a DQN network are experience replay that randomizes over the data and an iter-

ative update that adjusts the action-values (Q) towards target values [15], which is

a second Q-network called target Q-network. The target used by the Q-network and

target Q-network are defined by equation (2.2) and equation (2.3) respectively:

Y Q
t = Rt+1 + �max

a
Q(St+1, a; ✓t) (2.2)

Y DQN
t = Rt+1 + �max

a
Q(St+1, a; ✓

�
t ) (2.3)

Here Rt+1 represents the reward obtained after taking action a in state St, ✓ and ✓�

represent the parameters for the main network and the target network, Q(St+1, a; ✓t)
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and Q(St+1, a; ✓
�
t ) represent the estimated Q value for the next state St+1 with all

possible actions a in the main and target networks respectively, we take action that

leads to the maximum value.

However, one problem that might occur is during action selection, the deep Q-

learning algorithm chooses the action with the highest Q-value. Whereas during

action evaluation, it uses the same Q-value to estimate the long-term return, this

makes it more likely to select overestimated values, resulting in overoptimistic value

estimates. To avoid such problem, double Q-learning [23] is proposed to decouple

the selection from the evaluation. With double Q-learning, we can rewrite the targets

in equations (2.2) and (2.3) as:

Y Q
t = Rt+1 + �Q(St+1,max

a
Q(St+1, a; ✓t); ✓t) (2.4)

and

Y DoubleQ
t = Rt+1 + �Q(St+1,max

a
Q(St+1, a; ✓t); ✓

0
t) (2.5)

respectively. This indicates that in double Q-learning, although we still use the main

network’s parameters ✓t to select actions, we use a second set of parameters ✓0t to

fairly evaluate the value of the selected action. This second set of weights can be

updated symmetrically by switching the roles of ✓t and ✓0t [23]. This will give us the

following update rules for the Q-functions:

Q(s, a) (1� ↵) ·Q(s, a) + ↵(s, a) (r + �Q0(s0, a0)) (2.6)

Q0(s, a) (1� ↵) ·Q0(s, a) + ↵(s, a) (r + �Q(s0, a0)) (2.7)

Here Q(s, a) represent the Q–function for the main networks and Q0(s, a) represent

the Q-function for the target network. Each Q-function is updated with the value of

another Q-function, and the update is performed alternatively between them. This

approach helps mitigate the overestimation bias in deep Q-learning.

The policy based methods directly parameterize the policy, which is a mapping

from states to actions, and optimize it to maximize expected rewards. Examples

include Actor-Critic methods and its variants.

Another topic related to RL that worth mentioning is the exploration-exploitation

dilemma. Exploration refers to the agent’s strategy of trying out di↵erent actions to
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discover potentially better outcomes. Whereas exploitation refers to the agent’s strat-

egy of selecting actions that are known to yield high rewards based on past experience.

Balancing exploration and exploitation is crucial for e↵ective learning. There are sev-

eral attempts that aim to address such dilemma in resource allocation problems, for

example, Ding et al. proposed the attention methods (AMARL) in [5] that satisfies

the requirements of a high rate for V2I links and low latency for V2V links. The pro-

posed AMARL-based approach also has an excellent adaptability to environmental

change. Apart from that, Shi et al. [21] proposed a sparse code multiple access-based

centralized resource allocation scheme to address the challenge of high-speed vehicles

across the coverage regions of multiple cells in 5G systems. These existing methods

focus primarily on helping the agent learn an exploration strategy that is robust to

the always changing environment. However, the cause of an exploration-exploitation

dilemma varies and the changing environment is just one among many. In this thesis,

we incorporate ICM with DQL that incentives the agent to explore a larger action

apace that can lead to better rewards. This is achieved by providing an intrinsic

reward to the agent, which is absent in most RL algorithms.

2.3 From 4G to 5G and Beyond

Both 4G and 5G networks are wireless communication technologies are used for mobile

telecommunications. They support data transmission, enable users to access the

internet, stream multimedia content, make voice calls, and use various applications

on their mobile devices. Additionally, 5G networks are designed to be backward

compatible with 4G networks, facilitating smoother transitions and coexistence with

existing 4G networks during the deployment phase.

They also di↵er in aspects such as throughput, latency, and more. 5G networks

promise significantly faster data rates compared to those o↵ered by 4G networks.

Moreover, 5G networks aim to achieve ultra-low latency, reducing the delay between

sending and receiving data packets. This is crucial for real-time applications such as

virtual reality, autonomous vehicles. Additionally, 4G networks primarily operate in

lower frequency bands (sub-6 GHz), 5G networks utilize a wider range of frequency

bands, including sub-6 GHz and millimeter-wave (mmWave) bands to achieve higher

data rates and capacity.
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Another important di↵erence between 4G and 5G lies in the physical layer where

dynamic power level assignment are supported [27]. This refers to the process of

dynamically adjusting the transmit power levels of communication devices. By con-

tinuously monitoring channel conditions, neighboring cell activity, and user tra�c

patterns, this technique provides advantages with respect to minimizing interfer-

ence and maximizing signal-to-interference-plus-noise ratio (SINR), and enhancing

the overall quality of services (QoS). However, considering the compatibility between

5G and 4G networks, we adopt discrete power level assignment technique to simplify

network planning and optimization process, but the general trend is expected to be

the same for continuous power adaptation, which we aim to double check as a future

work.

Currently, 5G networks are still being deployed with focus on deployments for

urban areas and densely populated regions. At the same time, 4G networks are still

widely used in many regions worldwide. Although 5G networks o↵er significant ben-

efits, there are challenges associated with their deployment, including infrastructure

costs, spectrum allocation, and energy consumption, etc.

Research on 5G and beyond is concentrated on several key areas to meet the

growing demand for energy-e�cient wireless networks and devices. One of these areas

is dynamic spectrum management [16]. This research area aims to optimize spectrum

utilization and minimize energy consumption. Strategies include spectrum sharing

strategies, dynamic spectrum access policies, etc. to e�ciently allocate spectrum

resources based on real-time demand and environmental conditions.



Chapter 3

Learning with Curiosity

A Markov Decision Process (MDP) o↵ers a formal approach to modeling decision-

making problems. It relies on the Markov property, which stipulates that the future

state depends solely on the current state and action, without consideration for the

entire history of previous states and actions. It is common practice to formulate

reinforcement learning algorithms as a MDP as the goal of a RL algorithm is for the

agent to learn optimal policies through interactions with the environment [9].

In this chapter, we delineate our methodology for resource allocation in vehicular

networks. We first give a brief overview of selected resource allocation schemes.

Then, we formulate the resource allocation problem as MDP. After that, we present

the detailed structure of the proposed ICM-DQRA framework, including the network

architecture, the workflow of the designed algorithm, as well as the training and

testing algorithms for the proposed methodology.

3.1 Schemes for Resource Allocation

The workflow typically involves the agent observing current state, taking certain

action based on this observation, and receiving feedback in the form of rewards or

penalties. Through iterative learning, the agent adjusts its behaviour, and in our

case, resource allocation strategy, to maximize its long-term objectives. This process

enables the agent to adapt to improve its resource allocation decisions over time and

eventually “learns” to allocate resource intelligently. Figure 3.1 shows the general

structure of reinforcement learning algorithms.

To handle the complexity and dynamics in modern resource allocation problems,

reinforcement learning based methods have been adopted by researchers for its abil-

ity to learn from experience, coupled with its adaptability to varying environments,

where traditional optimization techniques may fall short. We present the structure

of selected resource allocation schemes in this section.

13
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Figure 3.1: General Structure of Reinforcement Learning Algorithms

3.1.1 Q Learning

Q learning is a value-based model-free algorithm that learns to make optimal deci-

sions in an environment by iteratively updating its Q-table. The Q-table stores the

cumulative rewards for each state-action pair. During training process, Q-learning

algorithm gradually converges to an optimal policy that maximizes cumulative re-

wards over time. This approach has become the basis of many reinforcement learning

algorithms. Figure 3.2 shows the structure of Q-learning algorithm.

Figure 3.2: Q-learning Workflow

3.1.2 Deep Q Learning

Deep Q-learning (DQN) is also a value-based model-free algorithms, and is one of

the most widely used deep reinforcement learning algorithms for resource allocation

problems.

Figure 3.3 shows the structure of a Deep Q Network. Similar to the structure of

a Deep Neural Network (DNN), it consists of input, hidden, and output layers. The

input layer takes state as input. The hidden layers perform nonlinear transformations
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on the input data, enabling the network to capture relationships between states and

actions. The output layer gives a vector of Q-values for each action, which is the

expected cumulative rewards for taking di↵erent actions in this given state. It’s

worth notice that the Q-value of a state-action pair is an estimate of reward agent

can expect to receive from that state onward, assuming it follows the optimal policy

thereafter. The agent is then able to select the action with the highest Q-value to

maximize its expected cumulative reward.

Figure 3.3: Deep Q Network

The architecture of DQN used in this thesis is described in table 3.1. We adopted

a feedforward neural network with two fully connected layers as hidden layers. Both

hidden layers have 120 neurons. As the input state is not structured data, nor is it

grid-based, we used fully connected layer as input layer, so is the output layer. The

input and output layers have 240 and m ⇤n neurons respectively, where m is number

of power levels and n is number of resource blocks. The dimension of the output

layer is the same as the range of actions the agent can choose from, and the DQN

eventually outputs a Q-value for each possible action.

3.1.3 Double Q Learning

Double Q-learning (Double Q) adds a target Q network to DQN, it also falls in the

category of value-based model-free algorithm. It mitigates the overestimation bias
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Table 3.1: Description of DQN Architecture

Operation Input Dimension Output Dimension Activation

Linear Layer input dim 240 ReLU
Linear Layer 240 120 ReLU
Linear Layer 120 120 ReLU
Linear Layer 120 m ⇤ n ReLU

encountered in DQN, and provides a built-in mechanism to avoid sub-optimal deci-

sions in resource allocation tasks. With a main network and a target network, actions

are alternately selected based on the estimates from each function. Eventually this

could lead to a more robust and reliable resource allocation strategy that outperform

other algorithms.

The structures of the main Q-network and target Q-network in double Q are the

same as described in table 3.1. A diagram illustration on the architecture of double

Q learning is provided in figure 3.4.

Figure 3.4: Double Q Network
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3.2 System Model

In chapter four, we will compare the performance of three types of methods: Greedy

approach with deep Q-learning, this is referred to as baseline performance; 4G setting

with double Q-learning; 5G setting with double Q-learning with the proposed ICM-

DQRA algorithm.

Algorithm 1 Baseline DQN Algorithm

1: Initialize the Q-network with random weights and biases
2: Initialize a memory bu↵er
3: for each epoch e do

4: Initialize the environment with a random policy ⇡
5: Generate vehicles
6: for each time step t do
7: for each V2V link l do
8: Get state st from the environment
9: Take action a (selection of spectrum bands and transmission power) based

on policy ⇡
10: Calculate reward r and move to next state st+1

11: Append {st, a, r} to memory
12: end for

13: for each update step u do

14: Sample a mini-batch from memory
15: Update the policy ⇡ to maximize Q-value
16: end for

17: Update the weights and biases of the Q-network
18: end for

19: end for

20: return Trained deep Q-network

In this section, we outline the workflow of these mentioned algorithms. Algo-

rithm 1 outlines the baseline DQN algorithm.

In this baseline DQN algorithm, the agent chooses actions that maximizes Q-

values without exploration. Additionally, in each update step, the policy ⇡ is updated

to maximize Q-value, reinforcing the existing greedy behavior rather than exploring

new actions. Hence the algorithm is considered greedy.

Additionally, in DQN, the agent uses a single Q-network to estimate the Q-values
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for each action in a given state. Therefore, during training, the agent updates the Q-

values through temporal di↵erence learning where the Q-values are adjusted towards

the target Q-values. Because the same Q-network is used for selecting actions and

computing target Q-values, there is a risk that the Q-values may be overestimated.

Algorithm 2 Training Algorithm: Double Q-learning

1: Initialize a main and target Q-network Q and Q0 with random weights and bias
2: Initialize a memory bu↵er
3: for each epoch e do

4: Initialize the environment with random policy ⇡
5: Generate n vehicles
6: for each time step t do
7: for each V2V link l do
8: Get state st from the environment
9: Take action a based on policy ⇡
10: Calculate reward r and move to next state st+1

11: Append {st, a, r} to memory
12: end for

13: for each update step u do

14: Sample a mini-batch from memory
15: Calculate target Q-values through the target network with equation (2.5)
16: Update the main network using the sampled mini-batch and target Q-

values with equation (2.6)
17: end for

18: update the weights and biases of the Q0 with the weights and biases of Q
periodically

19: end for

20: end for

21: return Trained Q-network Q

To mitigate this, we apply double Q learning algorithm, outlined in algorithm 2,

that applies a second Q-network, referred to as target Q-network in the system model.

3.2.1 Motivation for Curiosity

The main idea behind general reinforcement learning problems is to maximize reward

associated with the environment. Such kind of reward is commonly known as extrinsic

reward. Given the fact that such reward function is usually hard coded, it might su↵er

from the problem of not being scalable [20]. Namely, hard coded reward functions
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are inherently inflexible. They may not capture the full complexity of the underlying

problem or provide su�cient guidance for the agent to learn robust and adaptive

behaviors. Consequently, relying solely on a hard-coded reward function can cause

scalability issues by constraining the agent’s ability to learn and generalize across

diverse environments. The idea of intrinsic motivation is a solution among others,

this gives rise to curiosity-driven learning.

The motivation for curiosity-driven learning is to build a reward function that is

intrinsic to the agent itself. That is, to use a reward function generated by the agent

itself. By doing this, the agent will become a self-learner. Such architecture assumes

that if the agent can accurately predict the action that led from one state to another,

it has implicitly learned a representation of the environment dynamics.

Another reason for adding the intrinsic reward to the agent is the exploration

challenge that the agent faces. This challenge is cause by the state inputs to the

double Q-learning algorithm.

To better visualise this problem, figure 3.5 shows a random state at time t, when

a new task is generated:

tensor([ 0.7624, 0.6296, 0.6680, 0.6917, 0.8191, 0.5713, 0.7205,
0.7438, 0.7279, 0.6736, 0.6660, 0.6411, 0.6516, 0.6966,
0.5961, 0.8587, 0.6292, 0.7973, 0.6779, 0.7245, -1.0000,
-1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000,
-1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000,
-1.0000, -1.0000, -1.0000, -1.0000, -1.0000, 0.9258, 1.0163,
0.9312, 1.0277, 0.9678, 0.9421, 0.8397, 0.9094, 0.8284,
0.9131, 0.8807, 0.9206, 0.9840, 0.8012, 0.9646, 0.9778,
0.9077, 0.8522, 1.1030, 0.9973, 1.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000,1.000, 1.0000], device=’cuda:0’)

Figure 3.5: Sample State of a V2V Link at Time t

Specifically, this sate is made up of 6 parts:

1. Channel information from the V2V transmitter to BS (V2I link) at current

time step t: It = {0.9258, 1.0163, 0.9312, 1.0277, 0.9678, 0.9421, 0.8397, 0.9094,
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0.8284, 0.9131, 0.8807, 0.9206, 0.9840, 0.8012, 0.9646, 0.9778, 0.9077, 0.8522,

1.1030, 0.9973}

2. V2V Communication Interference in previous time step t � 1: Ft-1 = {-1., -1.,
-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.}

3. The instantaneous channel information of this V2V link at current time step

t: Vt = {0.7624, 0.6296, 0.6680, 0.6917, 0.8191, 0.5713, 0.7205, 0.7438, 0.7279,
0.6736, 0.6660, 0.6411, 0.6516, 0.6966, 0.5961, 0.8587, 0.6292, 0.7973, 0.6779,

0.7245}

4. The selected sub-channels in previous time step t� 1: Nt-1 = {1., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}.

5. Remaining time until exceed the time constraint: Tt = 1.

6. Remaining load that the vehicle still needs to transmit: Lt = 1.

Additionally, Figure 3.6 shows the next state of this V2V link at time t+ 1.

tensor([0.7624, 0.6296, 0.6680, 0.6917, 0.8191, 0.5713, 0.7205,
0.7438, 0.7279, 0.6736, 0.6660, 0.6411, 0.6516, 0.6966,
0.5961, 0.8587, 0.6292, 0.7973, 0.6779, 0.7245, -1.0000,
-1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000,
-1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000,
-1.0000, -1.0000, -1.0000, -1.0000, -1.0000, 0.9258, 1.0163,
0.9312, 1.0277, 0.9678, 0.9421, 0.8397, 0.9094, 0.8284,
0.9131, 0.8807, 0.9206, 0.9840, 0.8012, 0.9646, 0.9778,
0.9077, 0.8522, 1.1030, 0.9973, 1.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.9000, 0.6870], device=’cuda:0’)

Figure 3.6: Sample State of the Same V2V Link at Time t+ 1

We can see that the channel selection information of previous state is not changing,

nor is the V2V communication interference. This is largely due to the nature of

the problem we are solving: the environment is updated every 0.1 second, which is

too short for any communication to finish, or for any vehicle information to change
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significantly. Therefore, it is not common to see the state of a specific V2V link

to change dramatically in any two consecutive time steps. As a matter of fact, we

observed from a lager sample of states that the agent has the incentive to select

same or identical channels for transmission, even though in this example, there are

NRB = 20 resource blocks available.

To make things worse, we also observed that the channel information of both the

V2I and V2V links remain unchanged during the two time steps. The natural question

we would ask is, should we model the agent’s state this way, or in other words, is there

a better way to model the state information, so that all fields of information are more

relevant? The short answer is no. And the reason is that all of the existing fields,

i.e., the V2V, V2I channel information, V2V communication interference, and the

selected sub-channels are the environmental features that are relevant to the agent

itself, and will have an impact on the agent’s interactions with the environment.

This eventually gives rise to the exploration challenge to our agent. Namely the

agent is less likely to explore alternative actions even if that might lead to a di↵erent,

potentially better outcome. This exploration challenge limits the ability of the agent

to find an optimal policy.

Most existing methods [5] [21] attempt to solve the problem from a data engi-

neering point of view. However, in our example, we already observed that the state

information is descriptive and relevant to the agent. This means that there isn’t much

to do about the state representation, and those methods are less likely to change the

outcome for the better. Therefore, we propose to use the intrinsic curiosity module

(ICM), which can be viewed as a built-on module to any given reinforcement learning

algorithm, to address the problem.

We use double-Q learning algorithm to visualize the improvements that intrinsic

rewards can bring.

3.2.2 The Intrinsic Curiosity Module (ICM)

Figure 3.7 shows the inner structure of an ICM agent.

The inputs to the ICM module are: agent’s action at current time step t, agent’s

state at current time step t and next time step t+1. At current time step t, the agent

would simulate the execution of the selected action in the environment, obtaining the
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Figure 3.7: ICM Structure

actual next state.

Then, ICM encodes st and st+1 into feature representations �t and �t+1 via the

feature extractor model. These feature representations are trained to predict agent’s

action at current time step ât via the inverse dynamics model. The forward model

of ICM takes agent’s actual action at current time step at as input, along with the

feature representation �t to predict the feature representation �̂t+1 of st+1, the state

representation at next time step.

The prediction error of the feature representations is used as the curiosity based

intrinsic reward. Namely, the intrinsic reward r0 is calculated as:

r0 = ⌘ ⇤ 0.5 ⇤ (�̂t+1 � �t+1)
2, (3.1)

where ⌘ is a scaling factor. Generally, a higher value of ⌘ encourages the agent

to prioritize exploration, as more emphasize is given to intrinsic reward. During

simulation, we set ⌘ = 2 after parameter tuning.

The training procedure of the ICM agent is outlined in algorithm 3.

Figure 3.8 shows how the ICM agent can fit into the double Q-learning algo-

rithm [18]: at time step t, the agent interacts with the environment by taking action

at based on the policy ⇡, and transition to state st+1. The policy ⇡ is trained to

maximize the sum of extrinsic reward rt and the intrinsic reward r0t generated by the

ICM agent. Now that the agent is at time step t+1, it will repeat the same process at
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Algorithm 3 Training the ICM Agent with Mini-Batch

1: for each epoch e do

2: Shu✏e the memory
3: for each mini-batch m from memory do

4: for each entry i in the mini-batch do

5: Extract feature representations �i
t and �i

t+1 for states sit and sit+1

6: Predict the action âit from feature representations through the inverse
model

7: Extract the predicted feature representation of next state �̂i
t+1

8: end for

9: Calculate the MSE loss between ait and âit
10: Update network parameters to minimize the error
11: end for

12: end for

13: return Trained ICM agent

it did in time step t. This iterative process will move on with the training algorithm,

providing intrinsic reward to the double Q-learning algorithm at each time step.

Figure 3.8: ICM Workflow
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3.2.3 Proposed ICM-DQRA Method

The ICM-DQRA algorithm we proposed for this thesis is an ICM-based learning

approach. The ICM agent is composed of three parts: the forward model, the feature

extractor, and the inverse model. Algorithm 4 outlines the training algorithm for

ICM-DQRA.

Algorithm 4 Training Algorithm: ICM-DQRA

1: Initialize main and target Q-networks Q and Q0 with random weights and biases
2: Initialize a memory bu↵er
3: for each epoch e do

4: Initialize the environment with random policy ⇡
5: Generate n vehicles
6: for each time step t do
7: for each V2V link l do
8: Get state st from the environment
9: Take action a based on policy ⇡
10: Calculate reward r and move to next state st+1

11: Load ICM agent and calculate intrinsic reward r0

12: Update reward r = r + r0

13: Append { st, a, r, st+1} to memory
14: end for

15: for each update step u do

16: Sample a mini-batch from memory
17: Calculate target Q-values through the target network with equation (2.5)
18: Update the main network using the sampled mini-batch and target Q-

values with equation (2.6)
19: end for

20: update the weights and biases of the Q0 with the weights and biases of Q
periodically

21: end for

22: end for

23: return Trained Q-network Q

Though the information of next state is not required for the double Q-learning

algorithm, it needs to be included in the replay memory to facilitate the training and

execution of the ICM agent.

The nature of the ICM agent is a built-on module to any given existing reinforce-

ment learning algorithm. Therefore once trained, it can be adapted to the changing
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environment and the only thing we need to change is the input dimension, which

should always be equal to the dimension of the state space.

Finally, the testing algorithm that generates simulation results is provided in

algorithm 5.

Algorithm 5 Testing Algorithm

1: Load the Q-network model
2: for each epoch e do

3: Generate vehicles
4: for each time step t do
5: Create an action bu↵er A
6: for each V2V link l do
7: Get state st from the environment
8: Choose action at with maximum Q-value with st as input from the Q-

network model
9: Append at to A
10: end for

11: Interact with the environment based on A
12: end for

13: end for

14: Calculate the sum rate of V2I links
15: Calculate the probability of satisfied V2V links
16: Calculate the average transmit power of V2V links
17: return Simulation results

With these, we will be able to deploy the ICM-DQRA algorithm into participating

vehicles. Those vehicles are typically equipped with onboard sensors, processors, and

communication modules, and are capable of making decisions as well as interacting

with the environment in real-time. The vehicle that acts as the sender of a packet will

create the V2V transmission link and execute the algorithm, make the decision with

respect to which power level to choose for transmission. This distributed approach

can help reduce latency, enhance privacy, and increase scalability when compared to

centralized approaches where the algorithms are implemented in base stations instead.

However, the bases stations will serve the purpose of policy distribution and updates.

This allows for coordinated learning across the vehicles and ensures that all vehicles

have access to the latest policies.

Before proceeding with our evaluations, we need to have a well-defined ICM agent.
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After conducting various tests with 40 vehicles in the simulation area, we present the

final structure of the ICM agent from table 3.2 to table 3.4. Two types of deep

learning models: RNN and MLP are adopted.

The feature extractor is a RNN-based model. It takes states as input, therefore

the size of input is the same as the length of the state vector. We used four recurrent

layers with each layer processing input data sequentially. The value of the parameter

hidden size is the same as the size of the feature representation vector � in figure 3.7.

Table 3.2: Structure of RNN Based Feature Extractor

Operation Input Dimension Output Dimension Activation

Recurrent Layer input dim hidden size ReLU
Recurrent Layer hidden size hidden size ReLU
Recurrent Layer hidden size hidden size ReLU
Recurrent Layer hidden size hidden size ReLU

Within each recurrent layer, the activation function employed is Rectified Linear

Unit (ReLU), defined as follows:

ReLU(x) = max(0, x). (3.2)

The motivation for choosing ReLU activation function is to introduce non-linearity

to the network, allowing it to e↵ectively learn feature representations from the input

states.

The inverse model is MLP based, designed to predict actions based on feature

representations. The first linear layer takes as input a concatenation of two feature

representations, each of size hidden size, therefore the input size is hidden size ⇤ 2.
This layer maps the concatenated input to a new representation with a dimension

of hidden size. Subsequently, another linear layer processes this intermediate repre-

sentation. Finally, the output layer produces an action prediction, with the output

dimension equal to the number of actions. In this case, this value equals to 1 because

the action is one numerical number indicating the agent’s choice of spectrum and

power level.

We only apply a Sigmoid activation function to the output layer that maps any
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Table 3.3: Structure of MLP Based Inverse Model

Operation Input Dimension Output Dimension Activation

Linear Layer hidden size * 2 hidden size None
Linear Layer hidden size hidden size None
Linear Layer hidden size n actions Sigmoid

number to a value between 0 and 1:

�(x) =
1

1 + e�x
. (3.3)

The Sigmoid activation function will e↵ectively normalize the agent’s action, and this

will make sure that in case the available resource blocks or power levels to the agent

changes, the agent’s action space will change, but the values of a and â will still be

in the same range from 0 to 1.

The MLP-based forward model aims to predict future representation for next

state with current state representation and action. It consists of three linear layers.

The inputs to the first layer are action at and state representation �t, therefore the

input size is hidden size + 1. The output dimension of the first layer, input and

output dimension of the second layer, and the input dimension of the third layer are

all set to hidden size/2. The task of this model is to predict feature representation

�̂t+1, therefore the output dimension of the third layer is the same as |�t+1|, which is

hidden size. We only apply ReLU activation function to the last layer.

Table 3.4: Structure of MLP Based Forward Model

Operation Input Dimension Output Dimension Activation

Linear Layer hidden size + 1 hidden size/2 None
Linear Layer hidden size/2 hidden size/2 None
Linear Layer hidden size/2 hidden size ReLU

3.3 Problem Formulation

In the V2V communication scenario, an agent is essentially a V2V link. Even though

there are multiple agents (multiple V2V links) in a communication network, they

operate independently. Therefore the whole system is considered to be a single-agent

setting from the perspective of reinforcement learning. In each iteration, the agent
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selects an action that maximizes the Q-value calculated from the target Q-network.

The equations we use to update the Q-values are the same as described in equations

(2.6) and (2.7).

The relationship between Q-values and reward is that Q-values represent the ex-

pected cumulative reward for taking some action a in state s, whereas the reward

itself, obtained from the reward function, provides the immediate feedback to the

agent for taking some action a in state s. They jointly guide the agent’s decision-

making process and finding the optimal policy ⇡⇤.
In this section, we formally define the resource allocation problem as MDP.

3.3.1 Action

The action space (A) contains a collection of all possible actions that the agent can

take. An action (a) for an agent is a selection of transmission power and spectrum

resource with a 2 A. Let m be the number of power levels and n be the number of

resource blocks. In our case the resource block is considered as a portion of the spec-

trum allocated for data transmission during a specific time interval. Consequently,

we use an integer within the range 0 to mn to represent the action a taken at any

time t:

{at | 0  at < mn, at 2 N}. (3.4)

Specifically, if we have 20 resource blocks and three power levels for transmission, we

would use an integer between 0 and 59, inclusive to represent any possible action that

the agent can take.

3.3.2 State

The state space (S) provides relevant information needed for the agent’s decision-

making. We represent the state of an agent in six parts:

1. It: Channel information from the vehicle to BS (V2I link) at current time step

t. Specifically, for a given V2I channel, its channel information is modeled from

the pass loss and shadowing:

It = Pt + St, (3.5)
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where It represents V2I channel information, Pt denotes path loss, which mea-

sures signal attenuation that captures the di↵erence between transmitted and

received power levels.

Previous research [14] indicates that path loss can be e↵ectively modeled using

a logarithmic function of distance between the transmitter and receiver:

Pt = A+ 10 · n · log10

 p
d21 + d22 + (hbs � hms)2

1000

!
, (3.6)

where d1 and d2 represents the di↵erence between the x- and y-coordinate of

the vehicle to the base station (BS), respectively, hbs and hms are the heights

of the base station and mobile station (the vehicle in this case), respectively. A

and n represent intercept and path loss exponent, respectively.

Shadowing, on the other hand, is usually caused by any obstacles between

the transmitter and receiver, and previous research [14] has shown that the

shadowing e↵ect can be e↵ectively modeled with an exponential decay function:

St = exp

✓
�dij
d0

◆
· St�1 +

s

1� exp

✓
�2 · dij

d0

◆
·N0. (3.7)

Here dij represents the Euclidean distance between the receiver and the trans-

mitter, and d0 is the decorrelation distance represents a threshold over which

the V2V channels become decorrelated and independent from each other.

Apart from that, N0 represents a random sample from a normal distribution:

N0 ⇠ N (0, �2), (3.8)

where �2 is the standard deviation of shadow fading.

2. Ft-1: V2V communication interference in previous time step t� 1. The formula

used to calculate the overall interference for all V2V links sharing the same

resource block is:

Ft-1 = 10
PV�Pt-1+G

10 + 10
PN
10 , (3.9)

where PV is the transmit power level in dBm, Pt�1 denoted the pass loss between

the transmitter and the receiver, measure in decibels. PN is the noise power,
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and is converted to its linear scale in milliwatts, G is the combined antenna

gain and receiver noise figure that captures the overall performance in terms of

signal reception and noise handling, calculated through:

G = 2⇥ VG � VN , (3.10)

where VG is the vehicle antenna gain, VN is the vehicle noise figure.

The obtained interference value is e↵ectively scaled within the range of -1 and

1, and the goal of the proposed resource allocation method is to minimize the

interference while satisfying the latency constraints.

3. Vt: The instantaneous channel information of this V2V link at current time

step t. Similar to the V2I channel, the channel information of a given V2V

channel is also modeled using log-distance model as follows:

Vt = Pt + St, (3.11)

where Vt is V2V channel information, Pt denotes path loss, St represents shad-

owing.

The pass loss and shadowing are calculated through equations (3.12) and (3.13),

respectively:

Pt = L0 + 10 · n · log10
✓
dij
d0

◆
, (3.12)

St = exp

✓
�dij
d0

◆
· St�1 +

s

1� exp

✓
�dij
d0

◆2

·N0, (3.13)

where L0 is the path loss at the reference distance d = d0.

4. Nt-1: The selected sub-channels in previous time step t � 1. For any value

⇢k 2 Nt-1, if ⇢k[m] = 1, this is an indicator that means the kth channel is

selected to carry out the communication and ⇢k[m] = 0 means otherwise.

5. Tt: Remaining time until exceed the time constraint. In the simulation, we

aim to deal with time-sensitive tasks such as navigation services, emergency

information sharing, etc. The time constraints (denoted by T0, and represents

the total time allocated for a task to finish) for every task is the same during the
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simulation. In the simulation, we tested each task with their individual time

constraint T ranging from 100 milliseconds (ms) to 1 second (1000ms), with

an interval of 100ms. Additionally, the entire tra�c network is updated every

100ms, this includes vehicle information, task load, remaining time, etc.

6. Lt: Remaining load that the vehicle still needs to transmit. This value is also

used to sort the tasks so that we are able to prioritize tasks with higher load.

Initially, all newly created tasks have a remaining workload value 1 (100%), this

value would gradually decrease for the same task until fulfilled or eventually

exceed the time constraint, resulting in a failure. During each network update,

this value is updated to be the proportion of bits still need to be transmitted

using the equation below:

Lt =
Ti

T0
, (3.14)

where Ti is the remaining time needed to complete the transmission.

The final state St of a given V2V link is thereafter the concatenation of the above

six components:

St = {It,Ft-1,Vt,Nt-1, Tt, Lt}. (3.15)

The state transition from st to st+1 with reward rt after taking action at is governed

by the conditional transitional probability:

p(st+1, rt | st, at) (3.16)

that encapsulates the stochastic nature of the environment, which refers to the un-

certainties in the outcomes of state transitions and rewards within the environment.

The agent, on the other hand, has no prior knowledge of the transition probabilities

and must learn from its interactions with the environment.

3.3.3 Reward

The reward function (R) calculates the immediate benefit or cost while taking action a

in state s. The reward function in this thesis is jointly determined by the capacities of

the V2V and V2I links, as well as the time spent for transmission (latency constraints).

Equation (3.17) gives the mathematical definition of the reward function:

rt = �1

X

i

Cc[i] + �2

X

j

Cv[j]� �3(T0 � Tt). (3.17)
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In this equation,
P

i C
c[i] represent the sum capacity of V2I links where Cc[i]

represent the capacity of the ith V2I link. And
P

j C
v[j] denote the sum capacity

of V2V users with Cv[j] representing the capacity of jth V2V user. The term T0 �
Tt, which is the time constraint minus remaining time until exceed the constraint,

represents the time spent for transmission; �1, �2, and �3 represent the weights of

the three components in the reward function with �1 + �2 = 1, and �3 to be a value

close to �1. After conducting some sets of testings to the parameters, we set �1 = 0.1

for simulation, so that the reward function is mostly dominated by the capacity of

V2V links, while at the same time take into account of the other two factors.

To calculate the capacity of cellular users, we use the following equation:

Cc[i] = W · log(1 + �c[i]), (3.18)

where W is the bandwidth, and �c[i] is the signal-to-noise ratio (SNR) of the ith

V2I link. We assume that the communication channels are orthogonal to each other,

which implies that the signals transmitted by di↵erent vehicles do not interfere with

each other significantly. Specifically, �c[i] is calculated through the equation below:

�c[i] =
P c
i hi

�2
, (3.19)

where P c
i represents the transmission power of the ith V2I link, hi is the antenna gain

of for this link, �2 is the noise power, P v
j represents the transmission power of the jth

V2V link, hj is the antenna gain of the this link.

To calculate the capacity of V2V users, we use the following equation:

Cv[j] = W · log(1 + �v[j]), (3.20)

where �v[j] is the SNR of the jth vehicle, and is calculated through the equation

below:

�v[j] =
P v
j hj

�2
, (3.21)

where P v
j represents the transmission power of the jth V2V link, gj is the antenna

gain of this link.

The objective of the reinforcement learning algorithm is to maximize the dis-

counted cumulative reward. Specific values of transmit power levels, noise powers,

noise figures, and antenna gains used for simulation are given in the parameter ta-

ble 4.1 in chapter 4.



Chapter 4

Performance Analysis

In this chapter, we first introduce the simulation environment we used, which is an

urban simulation area defined by the 3rd Generation Partnership Project (3GPP).

Additional information related to vehicle generation, the agent, and training of the

ICM agent are provided. Before showing our results, we depict the experiment setup

and the evaluation metric used to evaluate our results. Finally, we present our testing

results for both non-ICM and ICM-Based schemes with a thorough discussion.

4.1 Simulation Environment

The simulation environment is an urban case defined following the 3GPP TR36.885

V2.0.0 standard [1]. Figure 4.1 provides an illustration of the experiment scenario for

this thesis.

The height and width of the simulation area are 1299 meters and 750 meters re-

spectively. The original point is located at the button-left corner with coordinate (0,0)

and the base station is placed at the center of the simulation area, whose coordinate

is (649.5, 375), and the transmission power is 36dBm [6]. Additionally, each street is

made up of four lanes (two lanes in each direction), and the width of each lane is 3.5

meters. Both sparse and dense tra�c scenarios are taken into consideration during

simulation.

Table 4.1 provides the parameters used in simulation.

In the simulation environment, vehicles are added randomly to emulate realistic

vehicular movement patterns. Specifically, three parameters are given while adding

a vehicle: starting position, direction, and speed. The starting positions for each

vehicle along predefined lanes are randomly chosen, the direction of a vehicle includes

down, up, left, and right, this direction represents a vehicle’s initial movement tra-

jectory. Then, each vehicle is assigned a random velocity in the range 10 to 15 with

equal probability to reflect varying speeds among vehicles. The number of vehicles

33
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Figure 4.1: Experiment Scenario
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Table 4.1: Parameter Table

Parameter Value

Resource Blocks 20
Intercept 128.1
Pass Loss Exponent 3.76
Standard Deviation of Shadow Fading �2 8 dB
Decorrelation Distance d0 50 m
Vehicle Transmit Power Levels [5, 10, 23] dBm
Base Station Power Level 36 dBm
Noise Power -114 dBm
Carrier Frequency 2 GHz
Bandwidth 4 GHz
Height of Vehicles 1.5 m
Vehicle Antenna Gain 6 dBi
Vehicle Noise Figure 9 dB
Vehicle Speed 10 - 15 m/s
Height of Base Stations 25 m
Base Station Antenna Gain 10 dBi
Base Station Noise Figure 4 dB

to be added into the environment is a parameter specified before the start of each

simulation.

To better reflect real-world settings, shadowing e↵ects are simulated to model

wireless communication scenarios. Specifically, Gaussian noise with specific standard

deviations is applied to represent shadowing e↵ects for both vehicle-to-vehicle (V2V)

and vehicle-to-infrastructure (V2I) communication links. This ensures the creation

of a more realistic environment that is suitable for evaluating the performance of

vehicular communication systems. Moreover, we apply dynamic resource allocation

techniques where resource blocks are allocated based on demand and network con-

ditions. In this case, V2V and V2I links can temporarily share resource blocks and

we employ interference management techniques such as power control to mitigate

interference and ensure reliable communication.

4.2 Training the Intrinsic Curiosity Module

Following algorithm 3, we perform training on our ICM agent. Figure 4.2 shows the

Mean Squared Error (MSE) between the predicted action ât and actual action at.
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Figure 4.2: MSE Error Between Predicted and Actual Action

It is observed from the diagram that the MSE error between at and ât has a

decreasing trend from around 8.0 ⇥ 10�3 to less than 2.5 ⇥ 10�3. The MSE error

becomes stable after roughly 70,000 epochs, and remains stable thereafter. Therefore

we conclude from the diagram that the ICM agent is able to learn a meaningful

feature representation for input states. The trained ICM agent is then built into

double Q-learning to provide an intrinsic reward to the agent.

The general idea behind the ICM agent is that, as long as the output of the inverse

model, that is, predicted action at time step t, is “similar” to the actual action at time

step t, given as the input to the forward model, we know that the ICM agent learns

a meaningful feature representation of the input states. We measure this “similarity”

using the MSE error between ât and at. Once we have finished training this ICM

agent, it can be viewed as a built-on module to any given reinforcement learning

algorithm, whether it is double Q-learning, or deep Q-learning, etc. We only need

to set a flag for ICM and load it to calculate the intrinsic reward for us. Another

advantage of this approach is that during simulation, we verified that this agent does

not need to be re-trained if we were to change certain parameters, such as number of

vehicles during simulation. Though it might take a relatively long time to train the

ICM agent, this advantage would save time for us in future simulations.
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4.3 Experimental Setup and Evaluation Criteria

We use PyTorch, an open source machine learning framework to build the proposed

architectures. In the simulation, both sparse and dense tra�c scenarios in urban

areas are considered. Specifically, we examined the simulation area with 20, 40, 60,

80, and 100 vehicles. Unless otherwise specified, all other parameters in Table 4.1

remain the same across all simulations.

We employed the following metrics to evaluate the performance of our proposed

ICM-based resource allocation scheme:

1. Probability of Satisfaction: This metric measures the probability that V2V links

in the simulation area satisfy a predefined latency constraint. A higher prob-

ability of satisfaction indicates a greater proportion of V2V links successfully

meeting the latency requirements, as well as the e↵ectiveness of the proposed

resource allocation scheme.

2. V2I Sum Rate: This metric evaluates the aggregate data rate achieved by V2I

links in the simulation area. It represents the total throughput or capacity of

V2I communication within the network. Though a higher V2I sum rate indicates

greater data transmission capacity, it is usually di�cult to achieve because the

interference between V2V links and V2I links will grow as more vehicles are

added during simulation.

3. Power Level Selection: This metric assesses the distribution of power levels

selected by vehicles for communication, which is the choices made by vehicles

with respect to which transmission power levels to use for communication. This

selection of power level will have a direct impact on interference and energy

consumption.

These metrics collectively provide insights into the performance and e↵ective-

ness of the proposed resource allocation scheme. They also provide insights into the

proposed scheme’s ability to meet communication requirements, utilizing various re-

sources, and enhancing overall network performance for the vehicular communication

system.



38

4.4 Experimental Results and Discussions

The proposed ICM-DQRA resource allocation scheme is compared with the following

resource allocation schemes:

1. Greedy (baseline) solution: described in algorithm 1, this method uses DQN

for resource allocation. It is considered greedy due to the update rules to the

policy ⇡. The policy is updated to maximize Q-value, reinforcing the greedy

behavior rather than exploring new actions.

2. Double Q solution in 4G setting: Given the fact that a significant number of

mobile devices still use LTE technology, we perform simulation on 4G setting.

Table 4.2 illustrates the updated parameters used in 4G simulation compared

with Table 4.1.

Table 4.2: Updated Parameters in 4G Setting

Parameter Value

Carrier Frequency 850 MHz
Bandwidth 20 MHz
Base Station Antenna Gain 5 dBi
Base Station Noise Figure 2.5 dB

3. Double Q solution in 5G setting: This method is described in algorithm 2,

same as the method used in 4G setting. The improvements that an intrinsic

reward brings is visualized by its simulation results and the simulation results

for ICM-DQRA.

4.4.1 Probability of Satisfaction

Figure 4.3 shows the probability of V2V link failure rate versus the number of vehicles.

A failed transmission indicates that the V2V link is not able to satisfy the pre-defined

latency constraint.

In general, the failure rate shows an increasing trend. The reason is with the

increase of vehicles, the number of V2V links in the communication system also

increases. As a result, the communication will become more competitive, making it

harder to satisfy the latency constraints for all vehicles.
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Figure 4.3: V2V Link Failure Rate Versus Number of Vehicles

An interesting observation is that the failure rate is identical between 4G and 5G

settings when there are fewer vehicles, but the rate increases significantly when the

tra�c becomes dense. This is mainly caused by the nature of 4G versus 5G, and the

di↵erent sets of parameters used during simulation. The lower carrier frequency and

narrower bandwidth in the 4G setting result in an increase in interference compared

to the 5G setting. Higher interference levels eventually degrade signal quality and

cause likelihood of communication failures to increase, particularly in environments

with a high density of vehicles.

Another observation is that the failure rate of double Q solution, whether in 4G

or 5G, is identical to the failure rate of ICM-DQRA solution. But the failure rate of

the baseline performance is significantly higher. This is mainly due to the advantage

of double Q-learning.

In the reward function described in equation (3.17), the weight of the penalty term

�3(T0 � Tt) is small so that more emphasis lies on the capacity of V2V links. The

choice of weight parameters � worked well in the reward function during simulation,

but for DQN algorithm, it more or less facilitate the greedy choice of the agent due

to the relatively small weight on the penalty term. Additionally, instead of greedily
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choosing higher power levels for transmission and allocating more resource for all

V2V links possible, double Q learning is able to dynamically adjust the power and

spectrum for transmission so that the V2V links that are more likely to violate the

latency constraints are allocated to more resources. This e↵ectively separate the V2V

links into di↵erent groups with di↵erent priority levels, and only those with higher

priority are allocated to more resources.

We can also observe from the diagram that the failure rate of proposed ICM-

DQRA algorithm is identical to the double Q-learning method. This indicates that

with intrinsic reward, though the agent explored a larger action space and took action

it wouldn’t have taken in double Q-learning, it did not take actions randomly. Rather,

the agent selects di↵erent power levels for transmission while satisfying the latency

constraint at the same time.

4.4.2 V2I Sum Rate

V2I sum rate, also known as V2I capacity, is measured in megabits per second. It

quantifies data transmitted from vehicles to infrastructure over a given period of

time and reflects the combined capacity for data transmission from vehicles to nearby

infrastructures, which in our case is a base station. Figure 4.4 shows the summation

of V2I rate versus the number of vehicles.

From the figure, we can observe that with an increasing number of vehicles, the

V2I capacity shows a decreasing trend, regardless of which algorithm we use, or which

simulation setting it is.

This phenomenon is caused by several reasons. The main reason is because the

number of V2V links grow when the number of vehicles increase, this causes the

interference for V2I links to increase, thereby the V2I capacity drops. Collisions can

also occur when multiple vehicles attempt to transmit data simultaneously, leading

to packet loss, re-transmissions, etc. However, the proposed ICM-DQRA method

still outperforms traditional double Q learning method, indicating that with intrinsic

reward, it better mitigates the interference between V2V and V2I links.

Additionally, more vehicles indicate more data is transmitted simultaneously, lead-

ing to the communication channels being congested. This can not only lead to in-

creased interference but also reduced signal quality, thereby impact the achievable
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Figure 4.4: V2I Sum Rate Versus Number of Vehicles

data rates. Apart from congestion, more “competition” for accessing resources also

occurs in dense tra�c scenarios. The available bandwidth for V2I communication

is finite and shared among vehicles, therefore vehicles will compete frequency bands

and time slots provided by the base station, leading to increased contention and re-

duced throughput. Di↵erent resource allocation algorithms will have an impact on

this criteria, and the ICM-DQRA algorithm mitigates this situation well.

One interesting observation is that the V2I sum rate in 5G setting only outper-

forms 4G setting by a little bit, the numerical values do not di↵er by a lot when the

tra�c becomes dense. This is in contrast with the failure rate in figure 4.3.

To conclude, the reverse relationship between V2I sum rate and the number of

vehicles highlights the challenges associated with managing communication for dense

tra�c as well as the importance of e�cient resource allocation algorithms for vehicular

networks.

4.4.3 Power Level Selection

To mitigate interference and maintain communication reliability, vehicles may need

to increase their transmit power levels. However, higher transmit powers indicate



42

higher energy consumption. And one bottleneck for 5G cellular technology is high

energy consumption. Therefore it is crucial to find a balance between them.

In this sub-section, we study the agent’s power selection behaviours at di↵erent

time of transmission, and in di↵erent tra�c densities, under 5G setting. The power

selection results apply only to V2V links as the power level the base station operates

is fixed.

In order to better visualize the e↵ect of the ICM agent, we show two sets of results:

one for double Q learning with out intrinsic reward, and another for the proposed

ICM-DQRA method, which introduces intrinsic reward. Figure 4.5 shows the power

selection behaviour when there are 20 vehicles in the simulation area. The diagram

on the left is the power selection result for Double Q learning, and the diagram on

the right is the power selection result for the proposed ICM-DQRA method.

Figure 4.5: Power Selection without (Left) and with (Right) ICM (20 Vehicles)

We can observe from both diagrams that in general, the probability for an agent

to choose high power level for transmission is low when there are su�cient time for

transmission. As remaining time decreases, the agents have a tendency to choose

higher power levels for transmission to ensure that the latency constraint is met.

The only exception to this pattern is when there is only 10ms left. At this point,

the probability of the agent selecting the maximum power level dropped significantly

because through training, the agent learned that either a task can be fulfilled with
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a lower power level because it’s been some time since the task is generated, or the

agent realized that even if it occupies the maximum power level, the task cannot be

fulfilled anyhow. Therefore through interactions with the environment, it learned to

choose lower power levels to reduce interference between V2V and V2I links, this can

also increase the reward the agent receives.

This power selection decision indicates that the double Q learning algorithm and

the ICM-DQRA approach is able to capture the implicit relationship between the

agent’s state and the reward function.

When we compare both results, we notice that in ICM-DQRA method, the agent

has a relatively low probability to choose the maximum power level at all times.

Additionally, we notice a higher probability for the agent to choose the medium

power level for transmission. This give a less aggressive resource allocation result,

and is achieved by the intrinsic reward, which is absent in double Q learning.

As a next step, we add more vehicles to the simulation area, and study the perfor-

mance of both algorithms under medium and dense tra�c scenarios. Figures 4.6, 4.7,

and 4.8 show the power selection result when there are 40, 60, and 80 vehicles in the

simulation area respectively.

We can observe from these three sets of diagrams that as more vehicles enter

the simulation area, the resource allocation task becomes more competitive. Both

algorithms show an increasing trend with respect to the probability for the agent to

choose the highest power level.

For double Q learning, its probability to choose the highest power level is already

high, therefore apart from some minor di↵erence, we do not see any significant change

in the agents’ behaviour when there are more vehicles.

Whereas for ICM-DQRA method, the probability for the agent to choose the

highest power level also increases when more vehicles exist in the simulation area.

But it still outperforms double Q learning with respect to energy consumption.

We also observed that in ICM-DQRA, the probability for the agent to choose the

lowest power level increases as well, and becomes closer to the probability for the agent

to choose medium power level. However in double Q learning, their probabilities are

always identical. This shows that with intrinsic reward, the algorithm can e↵ectively

distinguish the needs of agents and assign the most appropriate power level for their
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Figure 4.6: Power Selection without (Left) and with (Right) ICM (40 Vehicles)

Figure 4.7: Power Selection without (Left) and with (Right) ICM (60 Vehicles)

Figure 4.8: Power Selection without (Left) and with (Right) ICM (80 Vehicles)
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transmission, eventually utilizing limited network resources.

Figure 4.9 shows the power selection results in dense tra�c scenario where 100

vehicles enter the simulation area.

Figure 4.9: Power Selection without (Left) and with (Right) ICM (100 Vehicles)

From this pair of diagrams, we can observe that in double Q learning, the agent has

a very high probability to choose maximum power level for transmission, particularly

when there are 20 to 40 milliseconds left. At 20ms, the probability almost goes to

100%, whereas the probability of choosing the lowest power level is close to 0%.

With intrinsic reward where the agent is motivated to explore di↵erent actions,

the probability of choosing the highest power level is significantly lower, although its

ability to distinguish between medium and low power levels decrease in dense tra�c

scenario, the proposed ICM-DQRA method still outperforms double Q learning.

To better summarize the power selection results that ICM brings, Table 4.3 shows

the average transmit power selection results of the two algorithm versus number of

vehicles.

Table 4.3: Average Power Level (dBm)

No. Vehicles 20 40 60 80 100

Double Q 19.454 19.593 19.624 19.727 19.853
ICM-DQRA 18.077 18.445 18.622 18.850 18.915
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Following equation (4.1), we calculate the average transmit power of a V2V link

in milliwatts(mW):

P = 10(
P0
10 ) (4.1)

where P0 is the average power level.

The the average power consumption of an individual V2V link in shown in fig-

ure 4.10

Figure 4.10: Average Energy Consumption of V2V Links

It is observed that a decrease in energy consumption is achieved by the ICM-

DQRA algorithm during transmission. The decrease level ranges from roughly 20%

in dense tra�c scenario to 27% in sparse tra�c scenario. This improvement follows

naturally from the agent’s power selection decisions.

To conclude, the proposed algorithm is able to decrease the energy consumption

by dynamically adjusting the agents’ resource assignment while at the same time,

satisfy the latency constraint and maintain high V2I capacities.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Over the past years, reinforcement learning algorithms have been employed to re-

source allocation problems in vehicular networks. In this thesis, we propose the

ICM-DQRA method to provide an e�cient way for resource allocation. The main

objective is to reduce the energy consumption while satisfying the latency constraints.

To achieve this, and to handle potential drawbacks that traditional reinforcement

learning algorithms face, such as scalability issue and exploration challenge to the

agent, we introduced an ICM-based framework to capture a meaningful feature rep-

resentation from the agent’s state representation, and introduce an intrinsic reward

to double Q learning. The proposed ICM-DQRA enables the agent to explore a larger

action space, and solves the exploration challenge the agent might face. In addition,

we studied the resource allocation problem in both 4G and 5G settings, and compared

the failure rate and V2I capacity with a greedy DQN algorithm.

Our results indicate that both double Q learning and ICM-DQRA have higher V2I

capacity and lower failure rate than the greedy solution. The main di↵erence between

4G and 5G settings lie in the failure rate in dense tra�c scenario. With intrinsic

reward, the agents will choose power levels for transmission in a less aggressive way

than double Q learning. Though this finding is promising with respect to reducing

energy consumption and overcome the bottleneck 5G and beyond research faces, we

also noticed that the percentage of energy reduction decreases by up to 7% in dense

tra�c scenario.

5.2 Future Work

The outcomes of this thesis provides several directions for future research:

• Variants to The ICM Agent: The ICM agent consists of three parts with the

47
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feature extractor model extracting feature representations of states. In this

thesis we used RNN architecture for this model. However, there might be other

variants to this architecture that might lead to better performance in dense

tra�c scenario. Specifically, we can extract the time-series information from

the agent’s state information. Table 5.1 shows the structure of replay memory.

Assume we have 60 V2V links in the communication system, the replay memory

can be split into groups of 60 entries. The first 60 entries stores the state

information of the 60 links at time step t=0. They are followed by another

group of 60 entries with state information for all links at time step t+ 1. With

this we will be able to either pre-process the memory, or provide additional

inputs to the ICM agent to capture the time-series information in the states.

This will give us a wider range of machine learning models to choose from for

the feature extractor model.

Table 5.1: Replay Memory Structure

Entry Content
0 (s1t , a

1
t , r

1
t , s

1
t+1)

1 (s2t , a
2
t , r

2
t , s

2
t+1)

... ...
59 (s60t , a60t , r60t , s60t+1)
60 (s1t+1, a

1
t+1, r

1
t+1, s

1
t+2)

... ...
119 (s60t+1, a

60
t+1, r

60
t+1, s

60
t+2)

120 (s1t+2, a
1
t+2, r

1
t+2, s

1
t+3)

... ...

• Exploration of Multi-agent Learning: Since each V2V link in the communication

network operates independently, we treat the whole system as single-agent from

the perspective of reinforcement learning. It’s worthwhile to dive into the realm

of multi-agent reinforcement learning to see what intrinsic reward can bring.

• Exploration of more state-of-the-art algorithms: The focus of this thesis has

been to configure ICM into double Q learning. We focused the Q-learning family

algorithms and mainly tested the performance of double Q-learning with and

without intrinsic reward. Though in theory, the ICM agent has the flexibility to
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be built onto any existing reinforcement learning algorithms [18]. Therefore it is

worthwhile to attempt to configure ICM into more state-of-the-art algorithms,

such as Proximal Policy Optimization (PPO) algorithm and its variants to see

what intrinsic reward can bring.

These prospects for future work illustrate the vast potential for further exploration

in this field, potentially leading to more sophisticated and promising results.
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