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Recent attempts to treat cancer with immunotherapy have offered some encouraging 
results. Although the use of adoptively transferred ex vivo activated lymphokine-
activated killer (LAK) cells has met with only limited success, tumour-infiltrating 
lymphocytes (TIL) have shown considerable promise as a treatment for malignant 

melanoma. This new treatment modality, known as adoptive immunotherapy, is the result of 
advances in our understanding of the mechanisms of activation and proliferation of cytolytic 
effector cells such as natural killer (NK) cells and cytotoxic T-lymphocytes (CTL). Conven-
tional treatment of cancer typically involves a combination of surgery, chemotherapy and ra-
diotherapy. These modalities are quite effective at treating a number of different malignancies 
but each has its own limitations. Both malignant melanoma and adenocarcinoma are not very 
responsive to conventional therapeutic approaches, thus emphasizing the importance of devel-
oping new treatment options. Recently, clinical trials have demonstrated the efficacy of com-
bining chemotherapy with immunotherapy in treating cancer. In addition, a number of in vitro 
and in vivo studies have shown that chemotherapeutic agents are able to sensitize tumour cells 
to lysis by activated lymphocytes. The mechanisms of drug-induced sensitivity of tumour cells 
are currently being explored. It appears that combined therapy regimens using anti-cancer 
drugs and adoptive immunotherapy may offer a more effective treatment option for cancer 
patients in the future . 
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Conventional treatment of cancer 
has focused on surgical resection, chemo-
therapy and radiotherapy. However, 
some cancers, such as colorectal 
adenocarcinoma and metastatic 
melanoma, do not respond well to these 
standard approaches (1). Surgical proce-
dures are useful in removing large tumour 
masses but are not effective in dealing 
with micrometastases (2). Chemotherapy 
and radiotherapy treatments are often 
given to eliminate micrometastases fol-
lowing surgical resection (3), but in many 
cases are ineffective and can be traumatic, 
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leaving the patient in an immunocompro-
mised condition (4) . 

Immunotherapy is a relatively new 
treatment option which involves harness-
ing the body's own immune system to de-
stroy cancer cells. The theoretical advan-
tages of this new approach to cancer treat-
ment are quite substantial. A hallmark of 
many immune responses is specificity. 
Many of the toxicities related to chemo-
therapy are due to poor specificity because 
many anti-cancer drugs target rapidly 
proliferating cells such as stem cells, in ad-
dition to tumour cells (5). 

Immunotherapeutic treatments 
that have been used in clinical trials in-
clude the use of activated lymphocytes 
termed lymphokine-activated killer 
(LAK) cells or tumour-infiltrating 
lymphocytes (TIL) (1,6). This involves 
removing lymphocytes from the patient, 
stimulating them ex vivo with cytokines 



and then reintroducing highly activated killer cells into 
the patient. Further clinical trials have explored the use 
of immunotherapy in conjunction with chemotherapy 
with encouraging results (7-9). The mechanisms by 
which immunotherapy synergizes with chemotherapy 
are currently being elucidated. This review focuses on 
the basic mechanisms of lymphocyte-mediated tumour 
cell cytolysis and recent attempts at combined 
immunotherapeutic and chemotherapeutic approaches 
to the treatment of cancer. 

Lymphocyte activation and anti-tumour responses 

The relationship between the immune system and 
the control of tumour metastasis is not clearly under-
stood. It has been well documented that cytotoxic T-
1 ymphocytes (CTL) can recognize and destroy 
autologous tumour cells in a major histocompatibility 
complex (MHC)-restricted manner (10-13) . This pro-
vides evidence that T-cells mediate immune surveillance 
against malignant cells (14). However, other lymphoid 
cells such as natural killer (NK) cells can kill tumour 
targets in a non-MHC-restricted manner and do not re-
quire prior exposure to the target cell antigens to medi-
ate killing (15). It has further been shown that NK cells 
have a greater cytolytic effect against tumour targets 
which have reduced expression of class I MHC mol-
ecules (16). Since many tumour cells exhibit reduced 
levels of surface class I MHC (17), the NK cell appears 
to have an important role in immune surveillance 
against cancer. NK cells stimulated with appropriate 
cytokines such as interleukin (IL)-2 can differentiate into 
LAK cells which have potent MHC-unrestricted 
cytotoxic effects on a variety of tumour cell lines (18) . 
T-cells can be also be activated using IL-2 and anti-CD3 
antibodies, which bind a portion of the T cell receptor 
mimicking antigen stimulation and leading to T-cell 
activation (19,20). These anti-CD3-activated T-cells are 
also MHC-unrestricted with respect to tumour killing 
activity and are able to lyse a wide variety of tumour 
cell lines (21). 

Granule exocytosis from cytolytic effectors - the 
lethal hit 

Following recognition and binding to a target cell, 
cytotoxic lymphocytes such as NK cells or CTL can me-
diate tumour cell killing through the exocytosis of 
cytotoxic granule contents. Although NK cells differ 
from cytotoxic T-cells in that they do not need antigen 
presented in association with class I MHC for activa-
tion, they do possess similar cytotoxic mechanisms to 
those of CTL (22). After a T-cell binds to a target cell, its 
granules are reoriented toward the region of the cell 
membrane contacting the target cell and the cytolytic 
granule contents are released into the region between 
the cells (23) . The granules of CTL contain 

proteoglycans (24), serine proteases (granzymes) (25) 
and perforin (26). Perforin can form pores in the target 
cell membrane consisting of 12-18 monomeric perforin 
subunits (27). Disruption of the cell membrane in this 
manner has been demonstrated to induce cell death in 
vitro by osmotic means (28) but also facilitates the entry 
of granzymes into the target cell (29,30). Granzymes 
are a group of proteases that cause target cell death by 
triggering apoptosis, which is characterized by DNA 
fragmentation, chromatin condensation, extensive mem-
brane blebbing and nuclear degradation (31,32). 
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Many cancers such as metastatic melanoma are 

poorly responsive to conventional therapy, indicating a 
need for alternative treatments. Adoptive 
immunotherapy is a relatively new treatment modality 
for cancer that shows much promise. It involves remov-
ing lymphocytes from a patient, activating them ex vivo 
and reintroducing the activated killer cells back into the 
patient with the hope of reducing the tumour burden. 
It has been demonstrated that adoptive immunotherapy 
in murine models using LAK cells plus IL-2 can result 
in the regression of cancer (33-36). Clinical trials using 
IL-2 and LAK cells have also been effective in mediat-
ing cancer regression in patients with advanced 
colorectal carcinoma (37). 

In vitro techniques have been developed to iso-
late and expand T-lymphocyte populations that have 
infiltrated into solid tumor masses (38). These TIL have 
been shown to be 50-100 times more effective than LAK 
cells in mediating tumour regression of metastatic 
melanoma in mice (39). TIL therapy has also been ef-
fective in treating human cancer. For example, regres-
sion of melanoma in 11 of 20 patients was observed in 
patients treated with TIL therapy (1). 

Challenges for adoptive immunotherapy 

Although adoptive immunotherapy offers prom-
ise in treating some cancers, it is not without technical 
problems. It is often a challenge to facilitate the prolif-
eration of sufficient numbers of effector cells from a 
small population of tumour-reactive lymphocytes. In 
fact, it can take as long as 4-8 weeks to culture sufficient 
TIL for adoptive transfer (40). Toxicity is also a concern 
in that the high doses of IL-2 used to maintain 
tumouricidal activity of either LAK cells or TIL can re-
sult in toxity that can lead to chills, nausea and a gener-
alized capillary permeability leak syndrome (41,42). 

Although responses to immunotherapy have 
been seen in melanoma and renal cell carcinoma, com-
plete tumour regression is rare (1,43,44). This indicates 
a definite need to combine immunotherapy with other 
more conventional cancer treatments to improve cure 
rates. 
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Clinical trials involving combined 
immunotherapy and chemotherapy regimens have 
demonstrated improved cure rates for a variety of can-
cers (7,9,45). One mechanism by which chemotherapy 
regimens may synergize with immunotherapy is sim-
ply by reduction of tumour mass which facilitates 
lymphocyte infiltration into the tumour. In animal 
models, it has been noted that LAK cells accumulate 
four times more readily at the tumour site when admin-
istered in combination with cyclophosphamide or 
adriamycin (46). • It has also been hypothesized that en-
hancement of immunotherapy following administration 
of chemotherapeutic drugs may be due to elimination 
of a suppressor cell population (47). However, in vitro 
studies have demonstrated that these are not the only 
mechanisms by which anti-cancer drugs enhance 
immunotherapy. 

It has been shown in vitro that preliminary expo-
sure to chemotherapeutic agents can enhance the kill-
ing of some tumour cells by lymphocytic effector cells 
(48-50). One chemotherapeutic drug which has shown 
considerable promise in combined chemo-
immunotherapy regimens is cisplatin. A clinical trial 
comparing TIL therapy alone or in combination with 
cisplatin treatment of epithelial ovarian cancer showed 
complete response in 14% of patients with TIL therapy 
alone and 70% of patients treated with the combined 
therapy regimen (7). In vitro studies have also demon-
strated that cisplatin can sensitize a variety of human 
tumour cells such as ovarian carcinoma, lung squamous 
carcinoma and gastric carcinoma cells to lymphocyte-
mediated cytolysis (48-50). The molecular mechanisms 
by which cisplatin and other anti-cancer drugs facili-
tate lymphocyte-mediated killing of tumour cells are 
currently being investigated. 

Mechanisms of drug-induced sensitization of 
tumour cells to immunotherapy 

There are several mechanisms by which 
chemotherapeutic drugs can enhance cytolysis of tu-
mour cells. Lymphocyte-mediated cytotoxicity ulti-
mately leads to apoptosis which involves DNA frag-
mentation. Many chemotherapeutic drugs, such as 
cisplatin, have the capability to induce DNA lesions (51). 
Therefore, additive effects of chemoimmunotherapy 
may be due to cumulative DNA damage caused both 
by granzyme release by lymphocytes and 
chemotherapeutic drugs. However, more complex 
mechanisms of tumour cell sensitization which involve 
alterations in gene expression are becoming apparent. 

lmmunogenic surface proteins are thought to be 
induced by alkyl lysophospholipids, a group of anti-
cancer compounds that target the cell membrane as their 

site of action. ET-18-OCH3 is a potent alkyl 
lysophospholipid which is non-cytotoxic at 25 µg/ ml, 
but can sensitize K562 cells to killing by human LAK 
cells in vitro by inducing surface expression of heat shock 
protein, HSP72 (52). It addition, cisplatin can enhance 
LAK cell killing of Daudi and KATO-III cells by 
upregulating the expression of intercellular adhesion 
molecule-I (ICAM-1) and lymphocyte function antigen-
3 (LFA-3), both of which are important in LAK cell ad-
hesion to tumour targets (53). Therefore, it is clear that 
drug-induced sensitization of tumour cells involves a 
number of alterations in expression of cell-surface pro-
teins which facilitates lymphocyte-mediated killing. 

----- --,--•11§@ifi.it•1§-1------
It is apparent that immunotherapy for cancer is 

rapidly approaching the status of more conventional 
treatment protocols, such as surgery or radiotherapy. 
Continued research into the mechanisms of lymphocyte-
mediated anti-tumour responses will ultimately lead to 
more potent effector cells and improved cure rates. 
Combining immunotherapy with chemotherapy has 
already yielded promising results in clinical trials and 
the mechanisms of drug-induced tumour sensitivity to 
immune-mediated attack are rapidly being elucidated. 
As these mechanisms become clear they will provide 
the basis for new treatments of cancers that are currently 
intractable. 
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