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Abstract

Positive Airway Pressure (PAP) therapy is the most common and efficacious treat-
ment for Obstructive Sleep Apnea (OSA). However, it suffers from poor patient
adherence due to discomfort and may not fully alleviate all adverse consequences of
OSA. Identifying abnormal respiratory events before they have occurred may allow
for improved management of PAP levels, leading to improved adherence and better
patient outcomes. Our previous work has resulted in the successful development of
an Artificial Intelligence (AI) algorithm for the prediction of future apneic events
using existing airflow and air pressure sensors available internally to PAP devices.
Although researchers have studied the use of AI for the prediction of apneas, research
to date has focused primarily on using external polysomnography sensors that add
to patient discomfort and has not investigated the use of internal-to-PAP sensors
such as air pressure and airflow to predict and prevent respiratory events. We hy-
pothesized that by using our predictive software, OSA events could be proactively
prevented while maintaining patients’ sleep quality. An intervention protocol was
developed and applied to all patients to prevent OSA events. Although the pro-
tocol’s cool-down period limited the number of prevention attempts, analysis of 11
participants revealed that our system improved many sleep parameters, which in-
cluded a statistically significant 31.6% reduction in Apnea-Hypopnea Index, while
maintaining sleep quality. Most importantly, our findings indicate the feasibility of
unobtrusive identification and unique prevention of each respiratory event as well as
paving the path to future truly personalized PAP therapy by further training of AI
models on individual patients.
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1 Introduction

Artificial Intelligence (AI) has revolutionized many health technologies, and the treat-

ment of Obstructive Sleep Apnea (OSA) is no different. OSA is a common sleep

disorder which causes frequent cessations in respiration, or apneas, throughout the

night. This causes poor sleep quality which results daytime sleepiness, mood issues,

and is linked to serious cardiovascular disease [1].

One cause of apneas is an obstruction of the airway due to the collapse of the

pharyngeal muscles [2]. To treat OSA and prevent this collapse, a Positive Airway

Pressure (PAP) device is most often prescribed, which applies pressure to the pa-

tient’s airway through a mask worn during the night. This pressure on the airway

prevents collapse and is effective in reducing the number of obstructive apneas [3].

However, PAP therapy’s effectiveness is limited by low adherence as many find sleep-

ing with such a device uncomfortable [4].

In some PAP devices, the amount of pressure applied automatically varies through-

out the night. As the machine detects respiratory events, it responds by increasing

pressure to prevent future events from occurring [5]. The motivation for doing so

is to attempt to apply the lowest pressure needed throughout the night to give the

wearer the most comfortable therapy possible. While this therapy is an improvement

on a constant pressure therapy device, adherence to therapy remains low [5].

Alternatively, if abnormal breathing and apneic events could be anticipated be-

fore they occur, APAP pressure levels could be more personalized to the patient’s

needs, preventing upcoming apneas and likely improving treatment adherence and

effectiveness. Rather than responding after an event has already occurred to prevent
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future events, the pressure could be adjusted pre-emptively and possibly stop the

imminent event from occurring altogether. Further, increasing pressure only for the

exact time period that it is required would allow the pressure to remain lower over

the majority of the night, and therefore possibly increase patient comfort and subse-

quently improve adherence. This would lead to better treatment of the patient and

further reduce the debilitating impact of OSA on quality of life. Overall, the goal

of predicting the occurrence of harmful respiratory events is to establish a prophetic

system that can be used to adjust the air pressure in PAP therapy targeted to the

individual patient.

Some work towards predicting apneic events in advance has been previously ex-

plored in literature. Waxman et al. has shown that apnea and hypopnea events can

be predicted in patients with OSA by looking at specific polysomnographic (PSG)

measurements [6]. This study used Large Memory Storage And Retrieval (LAM-

STAR) artificial neural networks and their method examined various physiological

signals based on their potential association with apneas, as well as those commonly

used in polysomnographic recordings [6]. They concluded that apnea prediction

was possible with submental electromyography, which is commonly used in the in-

vestigation of swallowing disorders, whereas hypopnea prediction was possible with

submental electromyography and heart rate variability [6]. Other studies have val-

idated a framework for predicting apneas from single-lead electrocardiogram based

on deep recurrent neural networks [7, 8].

Although the predictive performance demonstrated in recent studies [6–8] proves

to be promising for enhancing the detection of OSA and for the prediction of apneas
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using artificial intelligence (AI) models input with PSG signals, integrating PSG

equipment into modern PAP devices without compromising patient comfort and

adherence will prove to be challenging. To seamlessly integrate a predictive model

with home therapy PAP machines, the model input data would need to consist solely

of patient signals which are currently measured during the night on these machines.

This idea was explored in our previous work which resulted in successful development

of a patent-pending proprietary Convolutional Neural Network (CNN). This model

proved the concept of prediction and prevention of future apneic events using only

pressure and airflow signals as recorded on conventional PAP machines [9].

Here, we develop a methodology to test the use of our AI-informed software

that can monitor real-time air pressure and airflow data to anticipate future OSA

events and intervene to prevent them from occurring. The intervention will involve

directing the PAP device to gently ramp up the pressure to stabilize the patient’s

airway and treat the apnea before it occurs. The goal of the study is to determine

if proactive airway management through prediction and intervention can be done to

reduce occurrence of OSA events, and to investigate the changes in patients’ sleep

quality with use of the system.
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2 Literature Review

2.1 Obstructive Sleep Apnea

2.1.1 Mechanism of Obstructive Sleep Apnea

Obstructive Sleep Apnea (OSA) is a sleep-related respiratory disorder characterized

by repetitive bouts of complete cessation or transient reduction in breathing with

maintained or increasing respiratory effort [2]. OSA occurs when there is recurrent

collapse of the pharyngeal airway during sleep as a result of excessive pharyngeal

muscle relaxation leading to pharyngeal collapse, subsequent blockage of the upper

airway, and a pause in airflow [2]. These respiratory events are obstructive apneas.

Obstructive hypopneas are another type of respiratory event seen in OSA patients,

characterized by periods of shallow breathing which occur due to a partial airway

blockage. These differ from apneas which are complete pauses in breathing due to

full blockage of the airway [2, 10]. An even less severe blockage of the airway can

result in a flow limitation or a snoring event [2, 10]. Central apneas, another type

of respiratory event, are caused by a cessation in respiratory effort while the airway

remains open [2]. A person afflicted with OSA can experience any of these event

types multiple times throughout the night.

2.1.2 Impact on Quality of Life

The subsequent symptoms caused by OSA are wide ranging and can severely impact

the quality of life for the person suffering from OSA. Snoring is one of the most

common symptoms and is often reported by bed partners. This symptom can affect
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the sleep of the loved ones as well as the sufferer themselves [1]. Daytime sleepiness is

reported in most OSA patients as their sleep is disrupted and adequate rest is difficult

to obtain. Obstruction of the airway causes repetitive nighttime awakenings which

causes the patient to awake feeling unrested. [1]. This results in lack of energy, poor

mood, memory impairment, difficulty concentrating, and early morning headaches.

These negative effects on the patient’s mental capacity put the patient at an increased

risk of a motor vehicle crash by two to three times [1]. These factors combined lead

to a poorer quality of life for the typical OSA patient.

2.1.3 Impact on Health

OSA is linked to severe chronic health conditions such as obesity, diabetes, and an

increased risk of cardiovascular disease, resulting in hypertension, coronary artery

disease, stroke, heart failure, metabolic syndrome, and atrial fibrillation. [11, 12].

OSA can also cause a negative feedback loop with other conditions, where OSA

worsens a coexisting condition, which then in turn worsens the OSA [12]. Multiple

studies have shown that severe OSA is associated with increased all-cause mortality

[12].

2.1.4 Epidemiology

OSA affects 12% of adults in the United States and is considered a serious illness

with low rates of diagnosis [1]. A study by Young et al. (1993), showed an estimated

9% of women and 24% of men suffer from OSA, though the condition was only

symptomatic in 2% of women and 4% of men. However, due to the rate of obesity
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increasing since the publication of that study, the current rates of OSA are likely

higher [1].

Individuals who are at an increased risk of OSA include those with a body mass

index (BMI) greater than 30 kg/m2, which is the clinical criteria for obesity [13].

OSA is reported in around 70% of the morbidly obese [1]. Other characteristics

which make an individual more likely to develop sleep apnea are those over the age

of 35, males, and those with a neck circumference greater than 40 cm [13].

2.1.5 Diagnosis

OSA can be suspected based on noted symptoms, such as snoring, witnessed apneas,

and non-restorative sleep. Clinical testing is required for a diagnosis, usually per-

formed in an overnight laboratory setting or as a home test [12]. Respiration and

other physiological signals are monitored to determine the presence and frequency of

disordered breathing events. The data collected can be analyzed and metrics relating

to the severity of sleep disorder determined. The Apnea-Hypopnea Index (AHI) is

the primary clinical measure of the severity of OSA and considers the frequency of

hypopneas and apneas during each hour of sleep [1]. An AHI of at least 5 is required

for a mild sleep apnea diagnosis [12].

2.1.6 Treatment

As the most common sleep-related respiratory disorder, it is imperative that tolerable

and effective treatments are available for those diagnosed with OSA [14]. Treatment

is aimed to reduce these adverse health consequences and reduce healthcare costs
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caused by untreated OSA. The most often prescribed and efficacious treatment for

OSA is positive airway pressure therapy. This requires the patient to wear a mask

connected to a PAP device via tubing while sleeping. The device delivers constant

air pressure to the patient to support the airway and prevent collapse [3]. Other

non-surgical treatments include the use of oral appliances, such as tongue-retaining

devices and orthodontic or mandibular advancing appliances [15]. These devices

work by adjusting the position of the airway structures to improve the airway of the

patient. These devices are well-tolerated by patients, however they are associated

with long term dental structure changes, such as a significant decrease in overbite [15].

Surgical options also are available for the treatment of OSA. These include the

removal of tonsils, uvula, and posterior velum or the creation of a tracheostomy.

These treatments are generally not recommended by physicians other than as a last

resort when other treatment options have failed [15].

Finally, a neurostimulation treatment is also available to those suffering from

OSA. Nerve stimulation can be utilized to stimulate tissue and prevent airway col-

lapse via an implanted device in the airway muscles. This treatment can be effective

in reducing AHI, though are associated with high costs, technical malfunctions, and

moderate to sometimes severe negative health side effects [16].

2.2 Polysomnography in Observational Sleep Studies

2.2.1 Polysomnography Signals

To diagnose OSA, a patient will often attend a polysomnographic study in a labo-

ratory setting. During this study, the patient will sleep as normal while physiologic
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data is collected and observed by a technologist [17]. The data is streamed real-time

to a control room and also collected for post-analysis.

Data collected includes the airflow of the patient, monitored using a nasal pres-

sure transducer and an oronasal thermal sensor, which tracks the breathing by the

temperature changes of the breath. If a PAP device is used during the study, the pres-

sure applied and leak of the device is also collected. Respiratory effort is monitored

using respiratory inductance plethysmography belts on the thorax and abdomen of

the patient [17]. Respiratory effort data is needed to determine between different

types of respiratory events, especially distinguishing between central and obstructive

events [2].

Electroencephalogram (EEG), electro-oculogram (EOG), and electromyogram

(EMG) are performed using surface electrodes. These provide data on the elec-

trical activity in the frontal, central, and occipital brain regions, as well as the eye

and chin movements of the subject [17]. From this data, a trained technologist can

determine the sleep stage the subject is in throughout the night. Any arousals from

sleep are also determined with this data. Limb EMG is collected on the legs to

monitor their movement [17].

Electrocardiogram is used to monitor the heart rate and rhythm. Pulse oximetry

is used to report oxygen saturation, which is vital to determine the effect of possi-

ble disordered breathing. Finally, body position is recorded with either a position

monitor on the patient or by visual monitoring via video [17].
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2.2.2 Sleep Study Analysis and Metrics

A technologist can then take the recorded PSG data and provide a comprehensive

evaluation of the patient’s sleep. A diagnosis of sleep apnea can be obtained following

the evaluation.

The AHI is determined along with statistics on quality of sleep, physiologic

markers, and disordered breathing events. Other metrics reported include Respi-

ratory Distress Index (RDI), which is the sum of apneas, hypopneas, and respiratory

event related arousals per hour. Obstructive Apnea Index (OAI), Central Apnea

Index (CAI), and Hypopnea Index (HYI) are determined by the average number

of obstructive apneas, central apneas, and hyponpneas per hour, respectively. The

arousal index is calculated by the average number of arousals per hour [18]. Oxygen

Desaturation Index (ODI) is the average number of desaturation episodes per hour.

Desaturation episodes are generally described as a decrease in the mean oxygen sat-

uration of >=4% (over the last 120 seconds) that lasts for at least 10 seconds [17,18].

The oxygen saturation data is also analyzed to determine metrics such as the pro-

portion of sleep time with oxygen saturation above 90% and the minimum oxygen

saturation that was recorded.

Sleep study reports also can include proportion of time in each sleep stage (Stage

1, Stage 2, Stage 3, REM, Wake), proportion of time in each body position (supine,

right side, left side, prone), time taken to fall asleep, proportion of night snoring,

number of movements, total time in apnea, PAP pressure analysis, proportion of time

in each range of heart rate, maximum and minimum heart rate, and other cardiac

events.
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2.3 Positive Airway Pressure Therapy

2.3.1 Continuous Positive Airway Pressure Therapy

Positive Airway Pressure (PAP) therapy is the most common and efficacious treat-

ment for OSA [4]. Two main modes of PAP therapy are fixed Continuous Posi-

tive Airway Pressure (CPAP) and Auto-adjusting Positive Airway Pressure (APAP).

CPAP therapy attempts to maintain airway patency by blowing air into the airway

to maintain a fixed positive pressure that stents the airway open thereby preventing

collapse [3].

2.3.2 Poor Adherence

Although efficacious, and the most common and conventional type of PAP therapy

for OSA, CPAP therapy suffers from poor patient adherence due to discomfort and

may not fully alleviate all adverse consequences of OSA [19], [20]. According to

available data, PAP devices, when used as prescribed for at least six hours each

night, can lead to reduced daytime drowsiness, improved daily functioning, and may

even reduce cognitive impairment [4]. However, research has determined that 29% to

83% of patients use their machines for fewer than four hours per night [4]. Poor rates

of adherence limit the effectiveness of the PAP therapy and OSA patients frequently

seek alternate, and less effective, treatments [21].

2.3.3 Auto-adjusting Positive Airway Pressure Therapy

APAP, a more advanced type of PAP therapy used for those with OSA and especially

for home titration [22], automatically adjusts the pressure with a goal of delivering
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the minimum necessary pressure to maintain airway patency over the night. It

attempts to do this by relying on detection of respiratory events to determine when

to react and apply the required positive pressures [5]. This technology allows for a

lower overall mean pressure to be delivered, since pressure requirements vary through

the night depending on factors such as body position and sleep stage. Although some

patients might find APAP to be more tolerable, adherence remains low and it has

only been shown to increase machine usage by about 13 minutes per night, which

most deem not clinically meaningful [5].

Most PAP devices will record data each night, such as the airflow and pressure

signals of the patient’s respiration and any detected respiratory events. This data is

stored on an SD card inserted into the PAP device.

2.4 Convolutional Neural Networks

Artificial neural networks are an AI structure which operates similar to the biological

neural networks [23]. These networks can be trained to recognize patterns in data

and classify samples based on known labels. Networks are trained by providing a set

of data with known class labels and allowing the network to make class predictions

for each sample, based on the input sample. Representative features are derived from

the data by the network, and a class prediction is determined [23]. As the predicted

and real class are compared, the network updates its internal parameters to reduce

error between predicted and real class labels. This learning process continues and is

stopped based on criteria for the accuracy for prediction [23]. The network is then

tested on a data set that was not provided during training, and the real accuracy of
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the network is calculated based on its predictions [23].

Neural networks are developed with different layer types and structures, suited

to each application. A Convolutional Neural Network (CNN) is a powerful artificial

neural network capable of diverse tasks. This feed-forward network uses convolu-

tional structures to derive features from the input data [24].

12



3 Methods

3.1 Subjects

Recruitment of patients for this study occurred at a commercial respiratory care

company, The Snore Shop Inc. (Dartmouth, Nova Scotia, Canada), and in the

community through study advertisements (Halifax, Nova Scotia, Canada). Recruited

patients were included in the study if they were:

1. diagnosed with OSA

2. between 18 and 70 years old

3. were a current user of a ResMed AirSenseTM 10 PAP device

4. had used the ResMed PAP device for more than 4 months

5. were able to comply with all study requirements as outlined in the consent

form

6. were able to follow directions of the study physician and research team

7. were able to understand English and provide written informed consent

8. were willing to provide their personal PAP device for all nights of the study

9. were willing to provide their PAP SD memory card for analysis of their his-

toric 30 day data by OSCAR (an open-source software used for reviewing and

exploring data produced by PAP machines)
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10. had an Obstructive Apnea Index (OAI) on PAP of at least 0.8 events per hour.

This OAI threshold was chosen to ensure at least one obstructive apnea every two

hours was observed so that researchers could adequately determine whether there

was a difference in OAI during the treatment night compared to the control night.

All participants were required to use the same model of PAP device so that the model

of PAP device was not an uncontrolled variable that could influence our results. We

chose the ResMed AirSenseTM 10 device, specifically, because the majority of patients

from The Snore Shop used this device. Exclusion criteria included:

1. actively using required oxygen therapy

2. history of severe cardiovascular or neurological issues

3. medically complicated or medically unstable

4. potential sleep apnea complications that may have affected the health and

safety of the participant

5. any flu-like or upper airway tract infection symptoms at the time of assessment;

6. unable or unwilling to give written informed consent

7. pregnancy or breastfeeding.

The study was carried out on 11 patients who were undergoing PSG along with

PAP titration due to obstructive sleep apnea. The protocol was approved by the

Nova Scotia Health Authority Research Ethics Board (NSHA REB ROMEO File

#1027088) and informed written consent was obtained from all subjects. Table 1

and Table 2 summarize subject demographics and baseline characteristics.
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Table 1: Subject Demographics and Baseline Characteristics

Number of
participants

Gender Female 7
Male 4

Highest education level Bachelors 4
College 5
High school 1
GED, technician 1

Lives independently Yes 10
No 1

Has a caregiver No 11

Wears hearing aids No 11

Wears glasses Yes 11

Medical considerations Apnea diagnosis 11
Anxiety 1
COPD/asthma 1
Diabetes mellitus 1
Head injury 1
High cholesterol 1
Insomnia 1
Drinks alcohol 7
Smokes 1
Vapes nicotine 1
Uses PAP machine 11

Severity of diagnosed OSA Mild 1
Moderate 2
Severe 5
Unknown 3

COPD: chronic obstructive pulmonary disorder; PAP: positive airway pressure.
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Table 2: Subject Demographics and Baseline Characteristics cont.

Mean ± Std. Dev.

Age (years) 54.2 ± 10.9
Height (cm) 169.7 ± 11.4
Weight (kg) 70.1 ± 6.8
Education (years) 14.7 ± 1.9
Duration of PAP therapy (days) 626 ± 238

PAP: positive airway pressure.

Based on the inclusion criteria from the most updated study protocol, 15 partic-

ipants met the criteria and were recruited, but four of them were excluded due to

insufficient data obtained as a result of the subject being unable to sleep. Subjects’

ages ranged from 34 to 69 years, with seven female and four male participants. The

average height of all participants was 169.7 cm, and the average weight was 70.1 kg.

At the time of OSA diagnosis, one was diagnosed with mild sleep apnea, two with

moderate sleep apnea, and five with severe sleep apnea. Three subjects were unable

to retrieve their original sleep apnea diagnoses. AHI values were obtained from the

analysis of each participant’s 30-day historical PAP data on OSCAR, resulting in an

average AHI of 3.6, and a range of 1.2 to 16.3. The average duration participants

were on PAP therapy was 626 days, with a range of 244 days to 962 days. Relevant

PAP device settings of the participants are summarized below in Table 3.
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Table 3: Summary of Participant PAP Device Data

Device option Setting Number of
participants

Therapy mode APAP 8
APAP for Her 2
CPAP 1

EPR level 1 cmH2O 1
2 cmH2O 2
3 cmH2O 6
Off 2

Ramp Time 5 mins 1
15 mins 1
Automatic 4
Off 5

Ramp start pressure 4 cmH2O 4
6 cmH2O 2
No ramp 5

Mask type Full face 1
Nasal 3
Nasal cushions 1
Nasal pillows 6

CPAP set pressure1 9 cmH2O 1

APAP response2 Standard 10

Mean ± Std. Dev.

APAP min pressure (cmH2O)2 5.4 ± 0.7
APAP max pressure (cmH2O)2 16.9 ± 1.2

APAP: auto-adjusting positive airway pressure; CPAP: continuous positive airway
pressure; EPR: expiratory pressure relief.
1n=1, 2n=10

Out of the 11 subjects, one used CPAP mode, two used AutoSet for Her, a

premium auto-adjusting pressure mode for female patients, and eight used AutoSet.
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The average minimum pressure was 5.4 cmH2O and the average maximum pressure

was 16.9 cmH2O. Regarding mask type, most participants used nasal pillows (n =

6), followed by nasal masks (n = 3) and full-face masks and nasal cushions (n = 1

each).

3.2 Study Protocol

This study was a double-blind, randomised crossover study with the objective of

comparing the efficacy of the intervention treatment. All subjects recruited under-

went at least two nights at the sleep clinic and received one of two sleep treatments

on each night:

1. The control treatment, in which the NovaResp cMAPTM Flow V2.0 system

delivered therapy solely as its commercial counterpart,

2. The intervention treatment, in which the NovaResp cMAPTM Flow V2.0 system

delivered therapy as its commercial counterpart, with the added intervention

protocol.

All participants were to receive both treatments at least once. For both treatments,

the NovaResp cMAPTM Flow V2.0 system’s therapy settings were configured to be

the same as the participant’s preferred settings. The study design is illustrated in

Fig. 1.
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Figure 1: Study design flow chart.

3.3 Sleep Lab Set Up

The patient study was carried out during the standard 8 hours of sleep during PAP

titration at the QEII health sciences centre sleep clinic. The NovaResp cMAPTM

Flow V2.0 system consists of a PAP device, that is interfaced by a laptop with
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company software. During the sleep study, the patient received PAP therapy during

sleep from the NovaResp cMAPTM Flow V2.0, which was monitored in the next

room by the sleep technologist using a laptop. The laptop was running the company’s

software throughout the sleep trial to acquire data from the NovaResp cMAPTM Flow

V2.0 system and run the predictive computational model. The NovaResp cMAPTM

Flow V2.0 system was concealed from the patient to blind the treatment.

In order to integrate the respiratory data (pressure, flow and leak) read from

the PAP machine onto the laptop to the PSG system for scoring and real time

monitoring, a simple digital to analog converter board was developed. Proper func-

tionality and calibration of the signals were validated. This board was attached to

the Polysomnography (PSG) headbox and the NovaResp cMAPTM Flow V2.0 system

by USB port on the laptop. Once the subject was setup in the sleep clinic room with

all standard PSG sensors, the NovaResp cMAPTM Flow V2.0 system was turned on

to ensure patient comfort. The subject then attempted to sleep throughout the night

while being continuously monitored through PSG measurements and the NovaResp

cMAPTM Flow V2.0 computer software. This set up can be seen in Fig. 2.
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Figure 2: Study set-up at the QEII Health Sciences Centre sleep lab.

3.4 NovaResp cMAPTM Flow V2.0

The NovaResp cMAPTM Flow V2.0 system is a medical PAP device to be used during

sleep therapy for patients who suffer from airway obstruction disorders, such as OSA.

A modified version of ResMed AirSenseTM 10 that was approved by Health Canada

for research (Investigational Testing Authorization #329649) was used for this study.

This device functions the same as a normal ResMed AirSenseTM 10, with the addition

of our NovaResp cMAPTM Flow V2.0 software. A communication interface has been

added to a PAP device to enable the streaming of data between the PAP system and

a computer running the company’s software. Specifically, to the medical device’s

circuit board, we have connected a compact debugging board that enables input and

output streams of data between the PAP system and a computer without alteration

of the PAP system’s hardware or firmware. Through this debugger, in conjunction
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with the software we developed, real-time measurements of airway pressure and flow

obtained by ResMed’s PAP device are fed into the deep learning model. The model

then determines probabilities for the prediction of onset of obstructive apneas which

informs the software’s intervention decisions. The intervention involves ramping up

the pressure to stabilize the patient’s airway and treat the apnea before it occurs.

Overall, this system was designed to be used in patients suffering from OSA during

sleep therapy to monitor the patient’s airway pressure and airflow, to predict the

onset of obstructive apneas, and to intervene if an obstructive apnea is predicted.

The system is depicted in Fig. 3.
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Figure 3: NovaResp cMAPTM Flow V2.0 System.

OA: obstructive apnea; APAP: auto-adjusting positive airway pressure.

During the cMAPTM intervention nights, model predictions are continuously gen-

erated and recorded, along with input pressure and flow data and any events tagged.

Intervention is initially disabled to allow the subject to fall asleep (either the length

of their normal device ramp up time, 5 minutes if no ramp used, or 30 minutes for

auto ramp feature). Intervention is also disabled when any input data issues are

detected (such as sampling frequency issues or when large leak is present) until the
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issue is resolved and the problematic data is cleared from the input data buffer.

If a central apnea or a hypopnea are predicted by the model, the predicted event

is recorded, and interventions are disabled for 2 minutes. If an obstructive apnea is

predicted and intervention is enabled, the following pressure increase protocol occurs:

a ramp up of 3 seconds to +3 cmH2O of pressure which is held for 6 minutes (i.e.,

hold time). The pressure then ramps over 2 minutes to the PAP’s desired target

pressure. Intervention is then disabled for 2 minutes, thus in total the minimum

time between intervention initiations is 10 minutes. Fig. 3 illustrates this pressure

protocol.

For APAP users, the normal APAP pressure upper limit is lowered by the inter-

vention pressure increase amount (3 cmH2O) to ensure that interventions can always

take place without exceeding the normal pressure range of the subject. For CPAP

users, their set pressure remains the same and the intervention increase is added on.

The maximum pressure is never able to exceed 20 cmH2O in either case.

3.5 cMAPTM Deep Learning Model

The software’s deep learning model, a convolutional neural network, was trained

on PAP respiratory data obtained from a previous study (NSHA REB ROMEO

File #1024635) [9]. The final processed dataset was derived from 32 subjects and

contained approximately 190 000 short temporal samples of air pressure and airflow,

with a sampling frequency of 25 Hz. Each sample’s class was labelled as baseline,

which was defined as normal breathing, breathing preceding an obstructive apnea,

breathing preceding a central apnea, or breathing preceding a hypopnea. The model
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output represents the predicted probabilities of each class. While central apneas and

hypopneas were predicted, only obstructive apnea predictions were acted on, as the

goal of the study was to predict and prevent obstructive apneas only. In future work,

hypopnea and central apnea predictions could be used to adjust pressure proactively

in addition to the obstructive apnea predictions.

70% of samples comprising the dataset were used for training, 15% were with-

held as a validation set, which were used for tuning model parameters, and 15% of

samples were withheld for testing. We report results on the testing set. The final

model achieved an overall accuracy of 85% at the peak of the last breath before the

event. The model achieves 81% accuracy 5 seconds before the peak of the last breath

and 76% accuracy 10 seconds before. The prediction threshold was determined by

processing full nights of patient data and selecting the ideal value to reduce false

predictions, but still allow correct obstructive apnea predictions with enough time

to intervene before the event begins. Two representative examples of obstructive

apnea prediction using real patient data are shown in Fig. 4 and Fig. 5. The in-

put flow and pressure signals and the corresponding output prediction probabilities

are shown for each example. The figures show baseline prediction during normal

breathing, followed by an increase in the prediction probability of obstructive apnea

leading up to the apnea. When the obstructive apnea probability exceeds the defined

threshold, such as illustrated by the dashed line at 80%, an upcoming obstructive

apnea is predicted. A pause in breathing, the obstructive apnea, is then seen in the

input data, thus, the event has been correctly predicted.
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Figure 4: Example 1 of input data and output model probabilities of respiration
leading up to and including an obstructive apnea.

The orange vertical line indicates where the OA prediction probability crosses the
threshold and an upcoming OA has been predicted. BL: baseline/normal breathing;
OA: obstructive apnea: CA: central apnea; HY: hypopnea; MA: moving averaged.
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Figure 5: Example 2 of input data and output model probabilities of respiration
leading up to and including an obstructive apnea.

The orange vertical line indicates where the OA prediction probability crosses the
threshold and an upcoming OA has been predicted. BL: baseline/normal breathing;
OA: obstructive apnea: CA: central apnea; HY: hypopnea; MA: moving averaged.

3.6 Polysomnography

During the study, standard polysomnography (PSG) data were collected using either

the SandmanTM (Embla N 7000) or SleepWorksTM (Natus Embla NDx) data collec-

tion software. The PSG included a recording of EEG (F3, F4, C3, C4, O1, and O2 for

SleepWorksTM and SandmanTM), EOG (LOC/E1 and ROC/E2 for SleepWorksTM

and LOC and ROC for SandmanTM), EMG (Chin 1, Chin 2, Chin z, RLEG-,

RLEG+, LLEG-, and LLEG+ for SleepWorksTM and X2, X3, X4, -2/+2 and -3/+3

for SandmanTM), and ECG (LA/ECGL and RA/ECGR for SleepWorksTM and -

1/+1 for SandmanTM) that were used for identifying sleep stages and sleep events.
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The PSG recordings were annotated by Registered Polysomnographic Technologists

with over 10 years of experience, indicating different sleep events (i.e., arousal, ob-

structive hypopnea, obstructive apnea, respiratory effort related arousal, and central

apnea) as well as different sleep stages (i.e., wake, stages 1-3, and REM). To score

respiratory events, CPAP flow, abdomen and chest respiratory inductance plethys-

mography for effort, and pulse oximetry (Nonin Medical) were used. The averaging

time for the pulse oximeter was 3 seconds or faster for pulse rates of 60 bpm or

greater. Scoring was done in accordance with the AASM Manual for the Scoring of

Sleep and Associated Events, version 2.6. An apnea was defined as cessation of air-

flow (>90% decrease in apnea sensor excursions compared to baseline) of a minimum

duration of 10 seconds; a hypopnea was defined as a 30% reduction in airflow from

baseline for a minimum duration of 10 seconds, and this must be accompanied by a

>3% desaturation or an arousal; oxygen desaturation index (ODI) was defined as the

number of oxygen desaturations of >3% multiplied by 60 divided by the total sleep

time; OAI was defined as the total number of obstructive apnea events per hour of

sleep; respiratory effort-related arousal (RERA) was defined as a sequence of breaths

characterized by increasing respiratory effort, or inspiratory flattening in the nasal

pressure or PAP device flow channel, for a minimum duration of >10 seconds; RDI

was defined as the total number of apneas, hypopneas, and RERAs per hour of sleep;

and arousal index was defined as the total number of arousals per hour of sleep [18].

Other relevant definitions can be found in the AASM Manual, version 2.6. After the

sleep clinic technologist scored each patient’s sleep study, sleep reports and analyses

were subsequently generated for each patient by the SandmanTM or SleepWorksTM
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softwares.

3.7 Statistical Analysis

The primary objective of this study was to evaluate the potential of using our software

to effectively predict, intervene, and prevent the occurrence of obstructive apneas

before they occur during sleep therapy, using existing pressure and flow sensors in

a conventional PAP machine. This experiment was carried out during both non-

REM and REM sleep and standard PSG measurements were obtained to assess

quality of sleep. This study was expected to assess the effectiveness of proactive

management and treatment of OSA using real-time monitoring of air pressure and

airflow and deep learning predictive models. Sleep metrics collected through PSG,

such as AHI, OAI, RDI and ODI and arousal indices were analyzed to determine

whether quality of sleep improved during the nights in which patients underwent

the interventional treatment as compared to the control treatment The treatment

was considered effective if patients’ quality of sleep, as indicated by AHI, OAI, RDI,

ODI and other sleep parameters, is improved compared to standard sleep therapies.

Accurate prediction and prevention of these events could improve clinical treatment

of people suffering from obstructive sleep apnea (OSA) syndrome.

Our secondary objective was to investigate whether proactive management and

treatment of OSA had an effect in patient’s overall sleep quality as determined by

an adherence/satisfaction questionnaire. This questionnaire was adapted with slight

changes from a questionnaire developed by McArdle and colleagues at the University

of Western Australia [25]. Participant’s subjective ratings to each therapy were
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compared to assess whether the use of our system had a greater positive effect on

their sleep. Participant satisfaction after each night of sleep was assessed in the

morning using a Likert scale to determine whether the use of our system had a

positive, negative, or neutral effect on their sleep.

Means, mean difference, and 95% confidence intervals are reported for each metric

of the study results. Paired two-tailed t-test was used for the statistical analysis on

the difference between control and treatment values. A t-test p-value of < 0.05 was

considered to indicate a statistically significant result. SciPy’s statistical functions

library was used for the analysis. AHI and mean mask pressure are also displayed in

box and whisker plot showing median, interquartile range, and full data range.
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4 Results

4.1 Polysomnography Results

Polysomnography and standard scoring criteria were used to determine AHI values,

resulting in an average AHI without cMAPTM (i.e., control nights) of 6.3 events

per hour, while it decreased to 4.3 events per hour when cMAPTM was used (i.e.,

intervention nights); this reduction of 2.0 events per hour was statistically significant

(p = 0.02). This can be visualized in Fig. 6.
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Figure 6: AHI box plot displaying the median, lower and upper quartile, and range
for the control nights and the intervention nights.

An asterisk is displayed to indicate significance.

Average total sleep time (TST) above 90% oxygen saturation (SpO2) without

cMAPTM was 98.2 minutes, while it increased to 99.4 minutes with cMAPTM; this

result approached statistical significance (p = 0.05). The average minimum SpO2

during REM sleep without cMAPTM was 88.5%, while it increased to 90.3% with

cMAPTM; this was a non-statistically significant increase in SpO2 of 1.8% (p =
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0.06). There was an issue with data collection for one subject, so the results refer to

the remaining 10 subjects for these metrics.

The number of arousals per hour during REM sleep and NREM sleep (arousal in-

dices) and the RDI were all non-significantly reduced during the cMAPTM treatment

nights compared to the control nights, with a 3.0 point reduction in the arousal index

during REM sleep, a 0.7 point reduction in the arousal index during NREM sleep,

and a 3.0 point reduction in RDI. Average arousals per hour on the control nights

was 19.9 while average arousals per hour over the intervention nights was 19.2. This

is an average mean difference of -0.7 arousals per hour of total sleep time without

statistical significance (p = 0.66). During the intervention nights, pressure increases

did not result in an increase in arousals.

There was no statistical significance of cMAPTM for the total sleep time and

proportions of total sleep time in each sleep stage, and sleep efficiency metrics. Pro-

portion of sleep time in each sleep position (prone, supine, left side, right side) was

also not significantly affected by the intervention protocol.

During cMAPTM treatment nights, non-REM sleep heart rate ranges trended

more in the 40-60 bpm range than the 60-80 bpm range when compared to non-

cMAPTM nights with findings which were not statistically significant. Other metrics

derived from PSG data and scoring are shown below in Table 4 and Table 5.
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Table 4: Participant Sleep Metrics From PSG Data and Scoring

Metric Mean 95% CI P-value

Control 6.26 (4.59, 7.94)
AHI (events/h) Intervention 4.28 (2.97, 5.59)

Difference -1.98 (-3.53, -0.44) 0.02

Control 0.70 (-0.05, 1.46)
OAI (events/h) Intervention 0.49 (0.00, 0.98)

Difference -0.21 (-0.64, 0.22) 0.30

Control 0.82 (0.18, 1.45)
CAI (events/h) Intervention 0.55 (0.19, 0.92)

Difference -0.26 (-0.65, 0.12) 0.15

Control 4.58 (3.22, 5.94)
HYI (events/h) Intervention 3.15 (2.18, 4.11)

Difference -1.44 (-2.98, 0.11) 0.07

Control 0.17 (0.00, 0.35)
Mixed apnea index (events/h) Intervention 0.15 (0.02, 0.27)

Difference -0.03 (-0.21, 0.16) 0.75

Control 8.51 (4.43, 12.58)
RDI (events/h) Intervention 5.51 (3.69, 7.33)

Difference -3.00 (-7.00, 1.00) 0.13

Control 10.97 (5.14, 16.81)
Arousal index REM (events/h) Intervention 8.01 (5.61, 10.41)

Difference -2.96 (-8.98, 3.05) 0.30

Control 5.10 (2.80, 7.40)
ODI (events/h) Intervention 4.33 (1.24, 7.41)

Difference -0.77 (-2.88, 1.34) 0.43

PSG: polysomnography; CI: confidence interval; AHI: apnea-hypopnea index; OAI:
obstructive apnea index; CAI: central apnea index; HYI: hypopnea index; RDI:
respiratory disturbance index; ODI: oxygen desaturation index; REM: rapid eye
movement;
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Table 5: Participant Sleep Metrics From PSG Data and Scoring cont.

Metric Mean 95% CI P-value

Control 98.2 (97.2, 99.3)
SaO2 above 90% TST (%)1 Intervention 99.4 (98.6, 100.3)

Difference 1.2 (0.0, 2.4) 0.05

Control 86.5 (84.1, 88.9)
Min SaO2 TST (%)1 Intervention 88.2 (86.5, 89.9)

Difference 1.7 (-0.5, 3.9) 0.11

Control 88.5 (86.0, 91.0)
Min SaO2 REM (%)1 Intervention 90.3 (88.2, 92.4)

Difference 1.8 (-0.1, 3.4) 0.06

Control 372.2 (330.2, 414.2)
Total sleep time (mins) Intervention 357.4 (322.4, 392.4)

Difference -14.8 (-39.8, 10.2) 0.22

PSG: polysomnography; CI: confidence interval; TST: total sleep time; REM: rapid
eye movement; NREM: non-rapid eye movement; SaO2: oxygen saturation.
1n=10

4.2 cMAPTM Results

The average number of interventions per treatment night was 14.1 with a range of 6

to 26. The average number of interventions per hour of sleep was 2.4 with a range

of 1.1 to 4.2.

4.3 PAP Tagging Results

Analysis of the PAP data for the intervention and control nights on the computer

software OSCAR yielded an average OAI without cMAPTM of 1.9, while it decreased

to 1.3 with cMAPTM; this reduction of 0.6 was statistically significant (p = 0.03).
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Total AHI was reduced from 3.2 events per hour to 2.5, with a non-significant p-

value of 0.19. Central apnea and hypopnea indices were slightly decreased and not

statistically significant.

4.4 Pressure Level Results

Pressure comparison of nine APAP users’ data show mean mask pressure was raised

from 8.6 cmH2O to 9.1 cmH2O on average with intervention (p = 0.32), which can

be seen in Fig. 7. Note that one APAP user was excluded from this comparison as

their APAP range was limited by the intervention protocol to essentially operate as

CPAP.
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Figure 7: Box plot displaying the median, lower and upper quartile, and range for
the mean mask pressure on the control nights and the intervention nights of the
APAP users.

4.5 Subjective Ratings

The subjective ratings gathered from the post-study questionnaire show no statis-

tically significant changes in the comfort, ease of falling asleep, disturbances, and

feeling refreshed of the subjects when comparing the control nights to the interven-

37



tion nights. Results are displayed in Table 6.

Table 6: Post-Study Questionnaire

Metric Mean 95% CI P-value

Control 8.09 (6.18, 10.00)
Comfort Intervention 9.00 (7.96, 10.04)

Difference 0.91 (-1.45, 3.26) 0.41

Control 6.09 (4.07, 8.12)
Ease of falling asleep Intervention 7.82 (6.23, 9.40)

Difference 1.73 (-0.38, 3.83) 0.10

Control 8.91 (7.31, 10.50)
Disturbances Intervention 7.82 (5.97, 9.67)

Difference -1.09 (-3.52, 1.34) 0.34

Control 6.91 (5.85, 7.97)
Feeling refreshed Intervention 7.00 (5.59, 8.41)

Difference 0.09 (-0.88, 1.06) 0.84

CI: confidence interval.
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5 Discussion

In this first-in-human study, we have tested the feasibility of preventing apneas and

hypopneas by utilizing our previously developed deep learning model [9]. By inter-

vening and increasing air pressure when an obstructive apnea is predicted, we were

able to improve patients’ objective sleep parameters. The findings of this study over-

all support the hypothesis that our software can proactively prevent OSA events and

maintain patients’ sleep quality.

Our findings show that our cMAPTM system can decrease AHI in OSA patients,

with a statistically significant reduction based on PSG scoring, and a non-significant

reduction by PAP tagging. Since AHI is used to assess the severity of sleep apnea,

and a reduction of AHI is a primary indicator of success with PAP therapy, the

difference in AHI reduction between that from the PAP device tagging and that

from professional sleep technologist standard scoring is concerning and points to

a need for better developments in this area, including better algorithms to detect

sleep-related events (i.e., AHI, OAI, etc.). As AHI tends to differ depending on

the method of collection and sleep scoring, our results also indicate the importance

of considering patient sleep quality when evaluating the performance and success

of PAP therapy, rather than solely focusing on keeping the airway open, which is

currently measured by AHI and oftentimes the only metric used in the evaluation of

sleep apnea severity. This idea is consistent with Tam and colleagues, concluding that

measures of therapy outcomes should go beyond the sole use of AHI and rather should

also include general measurements around quality of life, OSA-specific quality of life,

sleepiness, performance, and those that are physiological such as blood pressure,
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and our current results also concluded that these additional outcome measures don’t

often correlate with AHI [26]. Therefore, although AHI can be beneficial as a basic

measure of PAP therapy success, it is not always reliable and often differs depending

on the method of collection, so ultimately should be supplemented with additional

measures, specifically those that are more patient-centred.

Our findings also show that cMAPTM can decrease OAI, with a statistically signif-

icant reduction by PAP tagging, and a non-statistically significant reduction by PSG

scoring. It is important to note that PAP devices use outdated criteria in tagging

hypopneas, so they tend to over-account for obstructive apneas and under account

for hypopneas. Since our model is based on PAP device tagging, we speculate that

some of the obstructive apneas that our model predicts and prevents are, by more

updated tagging criteria, considered hypopneas. Therefore, when looking deeper at

the PAP device tags, there was a reduction in OAI by using our system, with statisti-

cal significance, and when looking at PSG scoring, OAI was reduced, but hypopneas

were reduced even more. The non-statistically significant reduction of OAI by PSG

scoring could be explained by the cMAPTM model having been trained based on the

OA definitions from the device tagging, rather than PSG scoring, and therefore, the

model yielded a moderately better performance when analyzing the results from the

device tagging compared to those by PSG scoring. The non-significant reduction in

AHI by PAP tagging in the previous section can also potentially be explained by this

concept.

We have additionally shown that our cMAPTM system resulted in a significant

increase in the TST above 90% SaO2 and an increase in the minimum SpO2 during
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REM sleep. Hausler and colleagues found that those with a greater TST spent

under 90% oxygen saturation were significantly less likely to have intermediate and

ideal cardiovascular health (CVH) compared to poor CVH [27]. Oksenberg et al.

also concluded that sleepy patients have a lower minimum SpO2 during REM sleep

compared to nonsleepy patients, which suggests that this outcome measure may be

indicative of excessive daytime sleepiness [28]. Therefore, since our results show that

our system increased the TST above 90% SpO2 and the minimum SpO2 during REM

sleep, this indicates the potential to lead to better overall health of OSA patients

by improved CVH and decreased daytime sleepiness. Longer term studies will be

necessary to confirm these hypotheses.

While this paper demonstrated the feasibility of using machine learning to predict

and prevent individual apneic events, most importantly the outcome of our work may

pave the way for true personalized therapy. Given that a) individual patients have

their unique breathing pattern, and b) the breathing pattern of each individual could

alter each night, our work establishes the foundation to develop future individualized

PAP therapy that is adaptable to individual patients and the nightly variations in

their breathing patterns.

In order to demonstrate accurate prevention of true OSA events, it would have to

be proven that an apnea was predicted correctly in the first place, before intervening.

However, this is difficult to prove, as the prediction of false positives would yield the

same result as the prediction of true positives, being an intervention that attempts

to prevent a sleep event. Therefore, we decided that a reduction in AHI is the most

reasonable metric that would be able to demonstrate proof of our hypothesis. As a
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result, in this study, we repeated the same intervention protocol for every subject,

so we did not try to intervene and prevent every single apneic event. The average

number of interventions per treatment night was 14.1 with a range of 6 to 26. The

goal of future work will be to personalize the intervention protocol in order to deliver

tailored treatment to each individual, which should result in more interventions per

night and therefore more a significant reduction in apneic events.

Although our results show a slight increase in mean mask pressure of APAP users

with cMAPTM compared to without cMAPTM, this increase was non-significant. The

difference in mean mask pressure between the control and intervention night was

not measured for the one fixed CPAP user as an increase in pressure would be

expected in fixed CPAP users. This is because the intervention pressure increase

is added onto CPAP users’ normal set pressures, whereas for APAP users, their

set pressure upper limit is lowered by the intervention pressure increase amount to

ensure that we do not exceed their normal set upper limit during interventions. It

is also of note that one participant on APAP was considered a CPAP user, as their

APAP range was too small, and they spent most of their sleep time at their upper

limit. Therefore, this patient was also not accounted for in our calculations of the

mean mask pressure. Finally, while our study showed no statistically significant

changes in subjective ratings of participant sleep quality, this is still important to

report on. As we have revealed that our intervention can reduce AHI and OAI, with

no statistically significant increase in pressure levels, it is significant to note that

we have done so without worsening patient sleep quality. Somiah and colleagues

demonstrated that better sleep quality was related to better CPAP adherence [29],
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and Yang and colleagues concluded that CPAP treatment had beneficial effects on

sleep quality in subjects with high CPAP adherence [30]. Additionally, Salepci et

al. found that higher CPAP adherence led to an improvement in satisfactory sleep,

and decreased chest discomfort, difficulty falling asleep, and sleep disturbances [31].

Thus, as quality of sleep is one important metric that correlates strongly with PAP

device adherence, and vice versa, we suspect that there should not be any reduction

in PAP adherence with our device. Adherence is a critical marker of PAP therapy

success and proves to be the most challenging part of therapy to achieve [4].

Overall, the success of our prediction and prevention system is important and

has many benefits. First, the use of existing airflow and air pressure sensors already

built into conventional PAP devices makes the idea of prediction and prevention

more practical, rather than utilizing PSG sensors to predict sleep events, which is

what some other researchers have focused on to date. Integration of PSG equipment

into conventional PAP devices would be challenging without compromising patient

comfort and adherence, which is why we have focused on using the existing PAP

data, so that we would not have to add any additional components to PAP devices.

Furthermore, our software works by detecting a pre-apnea pattern of airflow and

pressure in order to make apnea event predictions and subsequently prevent their

occurrence. The original apnea definition originated from a study in 1975 where the

10-second rule for scoring respiratory events was based on the average amount of

time that would lapse if two regular breaths were skipped with the subject breathing

at their usual respiratory rate [32]. However, not all patients meet this criterion but

still experience multiple pauses in their breathing every hour of sleep. Even though
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this may not have substantial effects on their oxygen levels, it might still result in

sleep fragmentation and adverse cardiovascular consequences [33], [34]. Therefore, a

potential benefit of this software could be in the prevention of sleep-related breathing

events that don’t last 10 seconds, as it relies solely on the patient’s pre-apnea pattern

to predict when the patient’s airway is going to close, which is more personalized than

the standard definition for the requirement of all apneas being at least 10 seconds

long.

Much research has been conducted on inspiratory flow limitation, which is char-

acterized by the flattening of the flow-time curve on inhale and is caused by a partial

obstruction of the upper airway [35]. This prevents the full amplitude of inspira-

tory flow which should have been achieved based on the respiratory effort of the

patient [35]. Inspiratory flow limitation has been recognized as an important param-

eter for identifying sleep breathing disorders and current technology can identify flow

limitation [35]. However, since our machine learning algorithm takes many different

breathing patterns into account, with flow limitation being one of them, it is more

comprehensive, which is another advantage of our algorithm.

We believe our system has the potential to lead to the use of lower PAP device

pressures for patients, and consequently, increased comfort and therapy adherence.

By predicting apneas and hypopneas before they occur, we believe this could allow

for the application of lower pressures throughout the night until the system predicts

the occurrence of a sleep event, in which pressure will then be increased. Although

some studies have concluded that higher CPAP pressure is indicative of higher long-

term adherence [36], this likely primarily reflects greater symptom relief in those
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with more severe OSA, where higher pressures would be necessary and expected for

these patients. One study that indicated the relationship between higher pressures

and greater adherence analyzed results from a large international CPAP trial, where

they only included those with moderate-to-severe OSA, so it could be expected that

higher pressures would lead to higher adherence by achieving better apnea relief

in these more severe cases of OSA [36]. This likely does not reflect comfort of the

device nor less severe cases of OSA. On the contrary, many studies have reported that

CPAP nonadherence can be due to pressure intolerance, and one of the main reasons

for poor adherence reported by participants in a study by Barratta and colleagues

was pressure-related side effects [37]. Therefore, if we can achieve the same symptom

relief and reduction in AHI with lower pressures, we suspect this will improve patient

adherence.

While this study explored the important topic of improving PAP therapy, and

points to new avenues of future research, it is not without limitations. While our

results are promising, we only included a sample size of eleven patients. This is

primarily due to the difficulty of finding individuals who met the inclusion criteria,

including having a high enough AHI on PAP to determine the efficacy of our treat-

ment. Nonetheless, having a larger sample size would have added more value to our

results and potentially would have enabled us to see significant results in more of the

sleep parameters we measured. Furthermore, most of our patients had a low AHI,

due to the difficulty of finding participants with higher AHIs who were willing to

participate in this study. Including a subset of patients with higher degree of sleep

apnea burden would have also added more value to this study, as we could have
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tested the ability of our treatment to improve higher AHIs, in addition to improving

respiratory events that were already in the low to medium range upon enrolment.

Finally, based on our knowledge, we were the first to develop a method to predict

and prevent OSA during sleep therapy using existing pressure and flow sensors in

conventional PAP machines. Therefore, to keep everything standardized and to limit

the influence of any uncontrolled variables on our results, we used a protocol with a

long cool down period and hold time, and repeated the same intervention protocol

for everyone. However, the long cool down period for every participant meant that

our attempts to prevent obstructive apnea were limited to only a specific number of

times a night. In future work, we will be focused on developing a more personalized

intervention protocol for each individual subject, based on the data collected before

their night of therapy, which should result in further reductions of AHI and improved

sleep quality. We also used the same model of PAP device for every patient, being

the ResMed AirSenseTM 10, to also limit additional uncontrolled variables. Although

this may be considered a limitation, every CPAP machine has an air pressure and

airflow sensor, and our algorithm is sensitive to breathing patterns that should be

the same on every machine, so we expect the performance to be similar on other

commercial machines.
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6 Conclusion

6.1 Summary

In summary, the presented work provides evidence to the effectiveness of the use

of our previously developed AI network in the treatment of OSA. In the present

work, we utilized a deep learning software to monitor real-time air pressure and

airflow data to predict respiratory events during sleep therapy. The software was

used to monitor real-time sleep therapy data provided by the PAP device, generate

predictions of upcoming obstructive apneas, and intervene when predicted. The

intervention involved directing the PAP device to gently ramp up the pressure to

stabilize the patient’s airway and treat the apnea before it occurred. Our results

showed that our software can significantly decrease AHI, OAI, and minimum SpO2

during REM sleep.

Our findings are of clinical significance as, based on our knowledge, they were

the first to report the success of preventing the occurrence of obstructive apneas

during sleep therapy by using existing air pressure and airflow sensors in conventional

PAP machines in conjunction with a machine learning algorithm. Therefore, we

speculate that the integration of machine learning in next generation PAP machines

will help personalize PAP therapy and tailor prescriptions to each patient’s individual

breathing patterns, resulting in a more effective therapy and superior management

of their sleep apnea. This may result in numerous health benefits for patients with

sleep apnea. Furthermore, we believe that the prediction of apneic events has the

potential to lead to overall PAP pressure reductions throughout the night and the
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ability of only increasing pressure when an apnea is predicted. Although the ability

to reduce pressure was not directly evaluated in this study, this could lead to an

improvement in patient care.
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6.2 Future Work

The work presented provides a basis for future exploration in many exciting direc-

tions. First, further work should be done to develop the AI network used to predict

respiratory events in order to increase its practicality. As the current network was

trained on 30-50 different subjects, better data set diversity should be achieved by

gathering data from as many different subjects as possible. This would allow better

generalization and better performance on new subjects.

Further, networks which are trained to be focused on a specific person’s data may

result in better accuracy for that individual. This would give a personalized therapy

option to PAP device users. Considering the future deployment of the network and

intervention method in available PAP devices, the network could be set up to learn

continuously on a person’s nightly sleep, thus improving performance over time.

Although the current algorithm was focused on prediction and prevention of

obstructive apneas only, prediction of other types of events such as flow limitation

and snoring should also be explored in future work, as these events could possibly

also benefit from pressure intervention. The impact of pressure increase intervention

on a predicted hypopnea should be investigated as well as the effect of a pressure

decrease intervention on a central apnea. Additionally, a model could be developed

to classify both the current breathing state as well as the future breathing state.

This could lead to more intelligent decision making on the intervention protocol and

prevent interventions at inopportune times. As this work relied on the APAP mode

of the PAP device when not intervening, in the future a nowcasting algorithm could

also inform decisions for all pressure adjustments throughout the night. Overall,
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future work should include the development of a complete pressure control system

based on a predictive AI network.

Additionally, as the goal of the current work is to provide a better algorithm for

PAP devices, next steps should include the development of an embedded solution.

This could be implemented with the network and cMAP control logic on-board a

PAP device.

More trials should be performed with the cMAP protocol and more data collected

on the impact of the interventions on sleep and apnea occurrence. A long term study

where a subject would use the device at home for a period of time would provide

better information on the impact on AHI, as AHI varies night to night. Different

parameters for the pressure intervention could be further tested to determine the ideal

settings and how they may vary based on a person’s characteristics. The threshold

of parameters which can prevent an apnea effectively while not disturbing the user

would be beneficial to determine. The ideal intervention parameters including ramp

up rate, pressure increase, hold time, and ramp down time should be investigated

via extensive testing.

Finally, as a predictive algorithm can allow pressure intervention only when nec-

essary, it should be tested whether lowering the overall pressure of therapy is possible.

With a reduced baseline pressure and pressure increases only for the periods where

it is required, this could be achieved. Lower overall pressure would make therapy

more comfortable to users and likely improve adherence, reducing a major roadblock

in PAP therapy and improving the treatment outcomes for many patients. Further,

if lower pressure therapy was feasible, PAP devices could be developed to be smaller
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and possibly battery powered, as the size and power demand of the pressure blower

would be lower. This could lead to devices which are more portable, discrete, quiet,

and possibly wearable. This could eliminate the need for the patient to be tethered

to their bedside via tubing and further increase comfort and adherence, and reduce

the overall negative image of PAP therapy.
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