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Abstract

For highly repetitive texts such as pangenomic databases, indexes based on grammars

(or Lempel-Ziv parses, string attractors, etc.) are usually significantly smaller than

indexes based on the Burrows-Wheeler Transform (BWT). Nevertheless, they are not

widely used in practice, probably because research on grammar-based indexes has

focused almost exclusively on exact pattern matching.

In the first main part of this thesis, we describe a new tool, KATKA, that stores

a phylogenetic tree such that later, given a sequence pattern P [1..m] and an integer

k, it can quickly return the root of the smallest subtree of the tree containing all of

the leaves corresponding to the genomes in which the k-mer P [i..i+k− 1] occurs, for

1 ≤ i ≤ m − k + 1. The phylogenetic tree is any tree representing the relationships

between the genomes/sequence sets. Note that this tree is not necessarily built from

the whole genomes/sequence sets represented in it. The approach taken in KATKA

is similar to the functionality of the popular metagenomic-classification tool Kraken

but with k given at query time instead of at database construction time.

In the second main part, we show how, given positive constants ϵ and δ, and

an α-balanced straight-line program with g rules for a text T [1..n], we can build an

O(g)-space index that, given a pattern P [1..m], in O(m logδ g) time finds with high

probability a substring of P that occurs in T and whose length is at least a (1 − ϵ)

fraction of the longest common substring of P and T . The correctness can be ensured

within the same query time in expectation.

KATKA is currently based on an LZ77-index, but we discuss how we may be able

to implement it on top of a grammar-based index, taking advantage of our results in

the second part.

We close with a brief discussion of future work.
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Chapter 1

Introduction

The seeds of this thesis were planted during conversations between my supervisor,

Travis Gagie, and Ben Langmead at Johns Hopkins University, Gonzalo Navarro at

the University of Chile, and Finlay Maguire at Dalhousie University.

Ben explained to Travis how Kraken [53] performs metagenomic classification —

by storing, for each k-mer in a phylogenetic tree, a pointer to the lowest common

ancestor (LCA) of all the genomes containing that k-mer — and told him that Nasko

et al. [39] found that as datasets grow, the LCAs tend to get higher in the tree and less

informative, unless we increase k. Increasing k requires re-indexing all the genomes

in the phylogenetic tree and, if the coverage varies, no single value of k may work well

for all parts of the tree anyway. We can index the genomes for several values of k

simultaneously, but that increases both the space and query time by a factor roughly

equal to the number of values of k that we use.

Ben had his PhD student, Omar Ahmed, supervise a summer intern, Marie Cheng,

while she investigated whether maximal exact matches (MEMs) give better results

than k-mers [14]. Her results indicate they do, but that leaves the problem of finding

the LCAs for MEMs. Ben suggested extending the r-index [24] or MONI [50] with

range-minimum and range-maximum data structures over the document array [38],

to find the leftmost and rightmost occurrences of MEMs. Travis remembered that

indexes based on Lempel-Ziv (LZ) compression find the leftmost occurrence of pat-

terns as part of their normal operation, so he suggested using an index based on two

LZ77 [35] parses, one for the concatenation of the genomes and the other for the

reverse of that concatenation.

Travis gave the problem to me and together with Ben we wrote a paper [22]

— the basis for chapter 3 in this thesis — for the 29th International Symposium

on String Processing and Information Retrieval (SPIRE ’22) in Concepción, Chile,

which I presented; the video is available at [1]. Although we were not able to find
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MEMs and their LCAs quickly, we described how an alternative to Kraken that we

call KATKA (Finnish for “shrimp”, to contrast with Kraken) can take k at query

time, rather than at construction time. We have not implemented KATKA yet, as

we are still trying to have it find MEMs’ LCAs efficiently.

As a joint work with Pawel Gawrychowski and Yakov Nekrich, Travis wrote the

first paper about finding maximum (rather than maximal) exact matches — that is,

longest common substrings (LCSs) — with LZ77-based indexes, for the 25th Canadian

Conference on Computational Geometry (CCCG ’13). There have been several follow-

up papers [2, 11], but none of the data structures seem easy to implement. A PhD

student in our faculty, Younan Gao, investigated finding MEMs with LZ77-based

indexes for a project in Travis’ course and published his results [25] at the IEEE

Data Compression Conference (DCC ’22) last year, and Gonzalo [44] very recently

gave stronger results at the 34th Symposium on Combinatorial Pattern Matching

(CPM ’23), but those solutions do not seem easy to implement either. As a result,

we started looking at practical ways to compute quickly approximate LCSs (ALCSs),

meaning exact matches guaranteed to be within a small factor of maximum.

At SPIRE, Gonzalo commented to Travis that it would be more efficient to use

a single grammar-based index rather than one based on two LZ77 parses. Travis

realized that, if we used an α-balanced grammar, then our index for ALCSs could use

space proportional to the number of rules in the grammar. This led to the paper [23]

— the basis for chapter 4 — that we have submitted to SPIRE ’23, to be held in

Pisa. Slowing the queries by a constant factor, we can find all approximately max-

imal exact matches (AMEMs) that are almost maximum, but finding their left and

right occurrences is problematic. Also, Travis has a summer student, Christian Si-

moneau, investigating whether the requirement that grammars be α-banaced is really

necessary. His preliminary results suggest there are not, and we can use grammars

produced by RePair [34] and BigRePair [21].

Back in 2021, before the first COVID recombinations were detected, Fin asked

Travis about detecting such recombinations automatically. Travis suggested using

Kraken, hoping that the LCAs from the part of a recombined genome from one strain

would lie along one path descending from the root, and the LCAs from the other

strain would lie along another path descending from the root. Since we were already
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working on KATKA, we decided to test this idea with MEMs instead of k-mers. Fin

gave us a dataset of 10, 000 COVID genomes together with some manually recombined

COVID genomes.

With KATKA still in progress, Travis asked his post-doctoral researcher, Jarno

Alanko, to find the MEMs and their LCAs using Ben’s idea (but with a bi-directional

FM-index [33] instead of an r-index [24] or MONI [50]). Unfortunately, the results

were disappointing: there were no clearly visible paths. Rather than giving up,

however, we decided to try to find recombination sites directly, without using LCAs.

Our idea is to look for positions in an allegedly recombined genomes that do not have

any AMEMs extending far to both the left and the right, since this could indicate an

unfamiliar variation or a recombination site.

The rest of this thesis is organized as follows: we present some necessary technical

background in Chapter 2, present KATKA in Chapter 3, present our index for finding

AMEMs in Chapter 4, present our current work on using AMEMs in KATKA in

Chapter 5, and discuss in Chapter 6 the idea above (of finding areas not covered

by AMEMs extending far to either side) and another idea, as possible directions for

future work.

In addition to the work in this thesis, I co-authored “MONI can find k-MEMs” [51]

during my master’s and presented it at the 34th Symposium on Combinatorial Pattern

Matching (CPM 2023) in Paris in July 2023 [30].



Chapter 2

Preliminaries

2.1 Kraken

When it comes to finding species of a genomic sample, it is common to come across

similarities between the sample and the previously known species, and with the

help of alignment methods, we can find out the origin of that sample. Kraken 1 is

a useful bioinformatics tool that helps with classifying and labeling these samples

which are made of taxonomic short sequence reads. Prior to Kraken 1, the fastest

and most accurate program was BLAST [4]. Some machine learning techniques were

implemented to boost BLAST’s accuracy by working on larger data sets, and even

though they brought more precision in the classification of the short reads, they failed

to perform as quickly. Abundance estimation programs were also another attempt

to optimize BLAST in terms of speed by minimizing the data sets and storing only

a few sample genes of each genome, which did speed up the time but performed

poorly in terms of accuracy since it could classify less number of reads from each

metagenome compared to machine learning classifiers. However, Kraken 1 has been

able to deliver the most accurate results in the shortest time using an algorithm that

is comparable to machine learning methods in terms of accuracy. Kraken 1 uses a

database containing a great number of genomes increasing continuously, which is the

reason behind its high accuracy. It also uses the Lowest Common Ancestor (LCA)

data structure on the taxonomic tree, which finds the LCA among all genomes that

include the sequence’s k -mer. Based on the Taxa and its ancestors, a new smaller

tree is born from the taxonomic tree called the ”Classification Tree”. Each node

of this tree has a weight indicating the number of k -mers in the family that the

sequence belongs to. Each path in this tree has a ”Root to Leaf” (RTL) score which

equals sum of the weights of all nodes in that path. The path with the highest

RTL contains a leaf that is used for the classification of the sequence, and the path

itself is called the ”Classification Path”. [53] With the help of minimizers, Kraken

4
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1 indexes a sorted list of LCA and k -mer couples that will then help with mapping

k-mers to LCAs. [52] Minimizers were introduced by Roberts et al. [49] in 2004, with

the purpose of enhancing the binning algorithm applied in k -mers; After setting l as

a fixed size for the minimizers, in which l ≤ k, we sort the forward strand and the

reversed strand l -mers of a read, and the first l -mer appearing in the lexicographic

sorted list of XORed l -mers will represent the minimizer of that read. An updated

version of Kraken 1 however, takes another approach to searching and matching.

The new version, Kraken 2, uses a compressed hash table that takes 2/3 less memory

than the standard hash table. Instead of storing k -mers and making the comparison

between them and reads from the reference, which is the method used in Kraken 1,

Kraken 2 stores minimizers and compares them with the reads. All the mentioned

improvements lead Kraken 2 to take 85% less memory in total compared to Kraken 1.

Variable length methods have the potential to be as effective as k-mers. A re-

cent study at Johns Hopkins University [14], shows that MEMs have the potential

to outperform k-mers and can be a strong competitor to k-mers. MEMs are parts

between the read and the genome that are exactly the same and cannot be extended

from left or right. When dealing with genetically diverse groups, MEMs may be the

better choice over k-mers due to their superior performance.

2.2 Bidirectional FM-index

FM index, first proposed by Ferragina and Manzini in 2000 [18], is data structure

based on the first and the last columns of the Burrows-Wheeler Matrix (BWM) of

the text [9] that allows for sequence alignment with quick retrieval taking time linear

in the pattern length, as well as compressed memory. Lam et al. in 2009 suggested

bidirectional FM-index [33] which performs alignment from left to right in addition to

alignment from right to left, respectively known as forward searching and backward

searching. This ability permits to shift from one search to the other during the

pattern alignment by storing a new version of Burrows-Wheeler Transform (BWT)

called 2BWT. BWT is the rightmost column of the BWM and this updated version

of BWT enables insertion and deletion with the help of Hamming distance [27] and

edit distance [36].
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2.3 Position-only RMQ

Range Minimum Query (RMQ) is one of the data structures used to find the value

of the minimal value p in sub-array A[l..r] of array A[1..n] where 1 ≤ l ≤ p ≤ r ≤ n.

Position-only RMQ gives the position of p in the query array. [6] For example, in

array A[5, 4, 3, 2, 4, 8, 1, 4], the position-only RMQ of the sub-array A[3..6] will return

4 since A[4] = 2 is the smallest value in that sub-array. The same approach can be

taken to find the position of the maximal value in the query. The most time and

space efficient approach [19] takes constant time and linear space in bits by applying

a LCA query on the Cartesian tree [16] of the array.

2.4 LCA

One of the helpful data structures used in pattern matching is the Lowest Common

Ancestor (LCA). It allows finding the lowest common ancestor of two nodes n1 and

n2 in a tree. In this thesis we also consider its application to find the lowest node in a

phylogenetic tree whose subtree contains all the genomes in which a pattern occurs,

by finding the LCA of the leftmost and rightmost genomes in which the pattern

occurs. In section 3.1 of this thesis we see an example of how LCAs work. The time

complexity of finding LCAs is O(1) with linear space in bits.

2.5 LZ77

LZ77 was first mentioned by Lempel and Ziv in 1976 as a lossless compression and

indexing algorithm, which can be found as the basis of many popular compression

formats such as PNG and ZIP. Given text T as the concatenation of several genomes

separated by a special character $, LZ77 index parses T into phrases that are either

a character we have never seen before or the longest prefix of what is left that occurs

in what we have seen before and is followed by another character. We will go through

an example in section 3.2 of this thesis.
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2.6 α-balanced grammars

In chapter 4, our index uses grammar-based compression, which compresses a text

T [1..n] by building and storing a context-free grammar that generates only T [31].

We focus in particular on straight-line programs (SLPs), where each rule is of the form

X → Y Z, where Y and Z are terminals or nonterminals (called symbols). If T is

repetitive, then it can be represented with an SLP of g rules, with g ≪ n. Grammar-

based indices [15] aim to use space linear in the grammar size while offering indexed

searches for patterns P [1..m], that is, enumerating all the positions in T where P

occurs. Following Charikar et al. [12], we write ⟨X⟩ and [X] to denote the string

symbol X expands to and the length of that expansion, respectively. Our work builds

on α-balanced SLPs, defined next. There exist practical constructions of small α-

balanced grammars from repetitive texts [48].

Definition 2.6.1 ([12]). For a constant 0 < α ≤ 1/2, an SLP is said to be α-balanced

if, for every rule X → Y Z, it holds that

α

1− α
≤ [Y ]

[Z]
≤ 1− α

α
.



Chapter 3

KATKA: a Kraken-like tool with k given at query time

3.1 Introduction

Kraken [53] is a popular tool that addresses the basic problem of determining where

a fragment of DNA occurs in the Tree of Life, which arises for every sequencing read

in a metagenomic dataset. Kraken takes a phylogenetic tree T and an integer k and

stores T such that later, given a pattern P [1..m], it can quickly return the root of

the smallest subtree of T containing all the leaves representing genomes in which the

k-mer P [i..i + k − 1] occurs, for 1 ≤ i ≤ m − k + 1. For example, if T is the small

phylogenetic tree shown in Figure 3.1, k = 3, and P = TAGACA, then Kraken returns

• 8 for TAG (which occurs in GATTAGAT and GATTAGATA),

• 6 for AGA (which occurs in AGATACAT, GATTAGAT and GATTAGATA),

• NULL for GAC (which does not occur in T ),

• 2 for ACA (which occurs in GATTACAT, AGATACAT and GATACAT).

Notice that not all the genomes in the subtree returned for P [i..i+k] need to contain

it: AGA does not occur in GATTACAT or GATACAT.

Kraken is widely used in metagenomic analyses, especially taxonomic classifica-

tion, but there are some applications for which we would rather give k at query time

instead of at construction time. For example, Nasko et al. [39] showed that “the

[reference] database composition strongly influence[s] the performance”, with larger

k values generally working better as the database grows. When the representation

of strains or species in the database is skewed, therefore, it may be hard to choose

a single k that works well for all of them (although, unique k-mer counting modifi-

cations of Kraken 1 and Kraken 2 may help; however it is out of the scope of this

thesis, more details can be found here: . [13].). In this chapter we describe a new tool,

8
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Figure 3.1: A small phylogenetic tree.

KATKA, that allows k to be chosen at query time. We are still optimizing, testing

and extending KATKA and the experimental results will be reported in the future.

3.2 Design

To simplify our presentation, in this chapter we assume T is binary (although our

approach generalizes to higher-degree trees). KATKA consists of three main compo-

nents:

• a modified LZ77-index for the concatenation of the genomes in T , in the order

they appear from left to right in T and separated by copies of a special character

$;

• a modified LZ77-index for the reverse of that concatenation;

• a lowest common ancestor (LCA) data structure for T .

Given P [1..m] and k, we use the first and second indexes to find the leftmost

and rightmost genomes in T , respectively, that contain the k-mer P [i..i + k − 1], for

1 ≤ i ≤ m − k + 1; we then use the LCA data structure to find the lowest common

ancestor of those two genomes. Since the two indexes are symmetric and the LCA

data structure takes only about 2 bits per vertex in T and has constant query time,

we describe only the first index.
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To build the index for the concatenation, we compute its LZ77 parse and consider

the phrases and co-lexicographically sort the set of their maximal non-empty suffixes

not containing $, and consider the suffixes of the concatenation starting at phrase

boundaries, and lexicographically sort the set of their maximal prefixes not containing

$ (including the empty string ε after the last phrase boundary). We discard any of

those maximal prefixes that do not occur starting at a phrase boundary immediately

preceded by one of those maximal suffixes.

For our example, if the concatenation is

GATTACAT$AGATACAT$GATACAT$GATTAGAT$GATTAGATA ,

then its LZ77 parse is

G A T TA C AT$ AG ATA CAT$G ATACAT$GATT AGAT$ GATTAGATA ,

the co-lexicographically sorted set of maximal suffixes is

A, TA, ATA, GATTAGATA, C, G, AG, T, GATT ,

and the lexicographically sorted set of maximal prefixes is

ε, AGAT, AGATACAT, AT, ATACAT, ATTACAT, CAT,

GATTACAT, GATTAGATA, TACAT, TTACAT,

but we discard GATTACAT, AGATACAT and GATTAGATA because they do not occur start-

ing at a phrase boundary immediately preceded by one of the maximal suffixes.

We build a grid with the number ℓ at position (x, y) if the genome at the ℓth vertex

from the left in T is the first one in which there is a phrase boundary immediately

preceded by the co-lexicographically xth of the maximal suffixes and immediately

followed by the lexicographically yth of the maximal prefixes. Notice this grid will be

of size at most z× z with at most z numbers on it, where z is the number of phrases

in the LZ77 parse of the concatenation. Figure 3.2 shows the grid for our example.

We store data structures such that given strings α and β, we can quickly find

the minimum number in the box [x1, x2] × [y1, y2] on the grid, where [x1, x2] is the

co-lexicographic range of the maximal suffixes ending with α and [y1, y2] is the lexico-

graphic range of the maximal prefixes starting with β. (For the index for the reversed
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Figure 3.2: The grid we build for the concatenation in our example.

concatenation, we find the maximum in the query box.) In our example, if α = G and

β = AT, then we should find 1.

For example, we can store Patricia trees for the compact tries for the reversed

maximal suffixes and the maximal prefixes, together with a data structure supporting

fast sequential access to the concatenation starting at any phrase boundary. In the

literature (see [40] and references therein), the latter is usually an augmented straight-

line program (SLP) for the concatenation; if the genomes in T are similar enough,

however, then in practice it could probably be simply a VCF file. (We note that

we can reuse the access data structure for the index for the reversed concatenation,

augmented to support fast sequential access also at phrase boundaries in the reverse

of the concatenation.) Figure 3.3 shows the compact tries for our example, with each

black leaf indicating that one of the strings in the set ended at the parent of that leaf.

Nekrich [47] recently showed how to store the grid in O(z) space and support

2-dimensional range-minimum queries in O(logϵ z) time, for any constant ϵ > 0. For

simplicity, we consider his data structure in our analysis even though we are not aware

of any implementation yet.

3.3 Queries

Given a pattern P [1..m] and an integer k, for every substring P [i..j] of P with length

at most k, we find and verify the locus for the reverse of P [i..j] in the compact trie
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Figure 3.3: The compact tries for the concatenation in our example.

for the reversed maximal suffixes, and the locus for P [i..j] in the compact trie for the

maximal prefixes. (Patricia trees can return false positives when the sought pattern

does not occur, so we must verify the loci by, for example, extracting their path labels

from the SLP.)

By combining the searches for P [i], P [i..i+ 1], . . . , P [i..i+ k− 1], we make a total

of O(m) descents in the Patricia trees, each to a string-depth of at most k; we extract

O(m) substrings from the concatenation, each of length at most k and starting at a

phrase boundary, to verify the loci. With care, this takes a total of O(km) time in

the worst case. When searching standard LZ77-indexes in practice, however, “queries

often die in the Patricia trees” [43] — because of mismatches between characters in

the pattern and the first characters in edge labels — which speeds up queries.

For each k-mer P [i..i + k − 1] in P and each way to split P [i..i + k − 1] into

a non-empty prefix P [i..j] and a suffix P [j + 1..i + k − 1], we use a 2-dimensional

range-minimum query to find the minimum number in the box for α = P [i..j] and

β = P [j + 1..i + k − 1] in O(logϵ z) time.

By the definition of the LZ77 parse, the first occurrence of P [i..i + k − 1] in the

concatenation crosses or ends at a phrase boundary. It follows that, by taking the

minimum of the minima, in O(k logϵ z) time we find the leftmost genome in T that

contains P [i..i + k − 1]. Repeating this for every value of i takes O(km logϵ z) time.

By storing symmetric data structures for the reverse of the concatenation and
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querying them, we can find the rightmost genome in T that contains P [i..i + k − 1],

for 1 ≤ i ≤ m − k + 1. With the LCA data structure for T , we can find the lowest

common ancestor of the two genomes, which is the root of the smallest subtree of T

containing all the genomes in which the k-mer P [i..i + k − 1] occurs.

For our example, if P = TAGACA and k = 3, then we find and verify the loci for

T, A, AT, G, GA, GAT, A, AG, AGA, C, CA, CAG, A, AC, ACA

in the compact trie for the reversed maximal suffixes, and the loci for

A, AG, AGA, G, GA, GAC, A, AC, ACA, C, CA, A

in the compact trie for the maximal prefixes.

For P [1..3] = TAG, we look up the minimum number 7 in the box for α = T and

the locus β = AGAT for AG; since G has no locus in the compact trie for the maximal

prefixes and GAT has no locus in the compact trie for the maximal reversed suffixes,

we correctly conclude that the leftmost genome in T containing TAG is at vertex 7. A

symmetric process with the index for the reversed concatenation tells us the rightmost

genome in T containing TAG is at vertex 9, and then an LCA query tells us that vertex

8 is the root of the smallest subtree containing all the genomes in which TAG occurs.

Theorem 3.3.1. Given a phylogenetic tree T whose g genomes have total length

n, we can store T in O(z log n + g/ log n) space, where z is the number of phrases

in the LZ77 parse of the concatenation of the genomes in T (separated by copies of

a special character), such that when given a pattern P [1..m] and an integer k, for

1 ≤ i ≤ m − k + 1 we can find the root of the smallest subtree of T containing all

genomes in which the k-mer P [i..i + k − 1] of P occurs, in O(km logϵ z) total time.

Proof. The LCA data structure takes 2g + o(g) bits, which is O(g/ log n) words (as-

suming Ω(log n)-bit words). An SLP for the concatenation with bookmarks permit-

ting sequential access with constant overhead from the phrase boundaries in the parses

of the concatenation and its reverse, takes O(z log n) space. For the concatenation,

the Patricia trees and the instance of Nekrich’s 2-dimensional range-minimum data

structure take O(z) space; for the reverse of the concatenation, they take space pro-

portional to the number of phrases in its LZ77 parse, which is O(z log n). In total, we
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use O(z log n+ g/ log n) space. As we have described, we make O(m) descents in the

Patricia trees, each to string-depth at most k, and extract only O(m) substrings, each

of length at most k, from the concatenation and its reverse. The time is dominated

by the O(km) range-minimum queries, which take O(logϵ z) time each.



Chapter 4

An index for finding approximately longest common

substrings

4.1 Introduction

Recent years have witnessed a sustained effort for indexing highly repetitive text

collections within compressed space and supporting exact pattern matching [41, 42].

Exact pattern matching is however insufficient in some applications. In Bioinformat-

ics, for example when storing repetitive collections formed by genomes of the same

species, matching strings is rarely useful. Instead, one may be interested in finding

long substrings of a string that appear in the sequence collections, to find for example

conserved regions of a genome in a population.

The research on matching the longest possible substrings using these indices is

scarce, however. A recent result [44] finds all the maximal exact matches (MEMs)

of a pattern P [1..m] in a text T [1..n] that is indexed with a grammar. By building

on an arbitrary (run-length) context-free grammar of size g, the index is of size

O(g) and finds all the MEMs in time O(m2 logδ g), for any constant δ > 0 (see also

[25]). If the grammar is of a kind called locally consistent, the time improves to

O(m logm(logm + logδ n)). Other results (see [44]) require larger indices.

In this chapter we consider the simpler problem of finding one longest common

substring between P and T (i.e., a longest MEM). Further, we are satisfied with a

common substring whose length is at least 1− ϵ times the longest one, for some fixed

0 < ϵ < 1. We show that, on α-balanced grammars [12, 48], this can be solved with

high probability in time O(m logδ g) for any fixed constant δ > 0. The correctness of

the answer can be ensured if the time holds in expectation.

15
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4.2 Data structure

Our data structure is built from an α-balanced SLP G. For each nonterminal X in

this SLP, the structure stores a set of prefixes and suffixes of ⟨X⟩, of exponentially

increasing lengths. Those are called prefix and suffix blocks, respectively.

Definition 4.2.1. Let X be a symbol in G and fix a constant 0 < ϵ < 1. Then,

for each 0 ≤ k ≤ log1/(1−ϵ)[X], we call ⟨X⟩[1..⌈1/(1−ϵ)k⌉] a prefix block and

⟨X⟩[[X]−⌈1/(1−ϵ)k⌉+1..[X]] a suffix block.

Precisely, given ϵ, consider the following sets:

X = {⟨X⟩, X is a symbol in G},

Bpref = {B, B is a prefix block of a symbol X in G},

Bsuff = {B, B is a suffix block of a symbol X in G}.

For every prefix block B ∈ Bpref , we compute B’s Karp-Rabin [29] hash h(B)

and the lexicographic range [sB, eB] of the strings in X that are prefixed by B. We

store each pair (h(B), [sB, eB]) in a perfect hash table Hpref , with h(B) as the key

and [sB, eB] as the value. Symmetrically, for each suffix block B ∈ Bsuff , we compute

B’s Karp-Rabin hash h(B) and the co-lexicographic range [sB, eB] of the strings in

X that are suffixed by B, storing each pair (h(B), [sB, eB]) in a perfect hash table

Hsuff with h(B) as the key and [sB, eB] as the value. The Karp-Rabin hash function

h(B) is designed to have no collision between substrings of T , which can be built in

O(n log n) expected time [8]. With low probability, however, there may be collisions

between substrings of a pattern P and blocks of T .

We now show that |Bpref | and |Bsuff | are O(g), and therefore our hash tables are

of size O(g) as well.

Lemma 4.2.1. If X → Y Z is a rule in G, then only O(1) prefix blocks B ∈ Bpref
are prefixes of ⟨X⟩ but not of ⟨Y ⟩, and only O(1) suffix blocks B ∈ Bsuff are suffixes

of ⟨X⟩ but not of ⟨Z⟩.

Proof. By Def. 2.6.1, we have

[X] = [Y ] + [Z] ≤
(︃

1 +
1− α

α

)︃
· [Y ] =

[Y ]

α
,
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so the number of prefix blocks that are prefixes of ⟨X⟩ but not ⟨Y ⟩ is, by Def. 4.2.1,

log 1
1−ϵ

[X]− log 1
1−ϵ

[Y ] + O(1) = log 1
1−ϵ

[X]

[Y ]
+ O(1) ≤ log 1

1−ϵ

1

α
+ O(1) = O(1) .

Symmetrically, because [X] ≤ [Z]/α, the number of suffix blocks that are suffixes of

⟨X⟩ but not of ⟨Z⟩ is O(1).

Corollary 4.2.1.1. The number of prefix and suffix blocks is |Bpref |+ |Bsuf | = O(g).

Proof. By Lemma 4.2.1, each symbol X of G, of which there are g, contributes O(1)

prefix blocks to Bpref and O(1) suffix blocks to Bsuf .

The final component of our data structure is a discrete two-dimensional grid G,

with one row and one column per element of X . Let

• X → Y Z be a rule in G,

• ⟨Y ⟩ have co-lexicographic position i in X , and

• ⟨Z⟩ have lexicographic position j in X ,

then we set a point at position (i, j) in the grid. We label this point with the position

where ⟨Y ⟩ ends inside an occurrence of ⟨X⟩ in T (i.e., if we choose the occurrence

T [a..b] = ⟨X⟩, then the label of the point is a + [Y ]− 1). The grid has g points, thus

it can be represented in O(g) space and answer range emptiness queries in O(logδ g)

time, for any constant δ > 0 [10].

Our whole data structure then comprises Hpref , Hsuff , and G, which add up to

O(g) space. We note that the values [sB, eB] stored in Hpref are the lexicographic

ranges of grid columns corresponding to strings in X prefixed with B, and those

stored in Hsuff are the co-lexicographic ranges of grid rows corresponding to strings

in X suffixed with B.

4.3 Queries

Our searches build on a key result used in all grammar-based indices [15].

Lemma 4.3.1. Let string S, of length |S| > 1, appear in T . Then, there is an index

1 ≤ p < |S| and a point (i, j) in G such that
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• i is the co-lexicographic range of a string ⟨Y ⟩ ∈ X suffixed by S[1..p] and

• j is the lexicographic range of a string ⟨Z⟩ ∈ X prefixed by S[p + 1..|S|].

Proof. Note that S appears as a substring of the expansion of the initial symbol

and, possibly, of others. If we order the rules X → Y Z so that Y and Z are listed

before X, then the first time S appears as a substring of ⟨X⟩, it must appear as the

concatenation of a nonempty suffix of ⟨Y ⟩ and a nonempty prefix of ⟨Z⟩. The lemma

then follows from the definition of G.

Now let L be the longest common substring of P and T and assume |L| > 1. Per

Def. 4.2.1, let k = ⌊log1/(1−ϵ) |L|⌋. We note that

(︃
1

1− ϵ

)︃k

>
(︃

1

1− ϵ

)︃(︂log 1
1−ϵ

|L|
)︂
−1

= (1− ϵ) · |L|.

Thus, for our purposes, it suffices to find a substring of length ℓ = (1/(1 − ϵ))k of

L. By Lemma 4.3.1, there exists an index 1 ≤ p < |L| such that LY = L[1..p]

suffixes some ⟨Y ⟩ ∈ X , LZ = L[p + 1..|L|] prefixes some ⟨Z⟩ ∈ X , and there is a rule

X → Y Z in G. Further, let kY = ⌊log1/(1−ϵ) |LY |⌋ and kZ = ⌊log1/(1−ϵ) |LZ |⌋. By the

same argument above, it follows that

(︃
1

1− ϵ

)︃kY

> (1− ϵ) · |LY | and
(︃

1

1− ϵ

)︃kZ

> (1− ϵ) · |LZ |.

Therefore, it suffices to find a suffix of length ℓY = ⌈(1/(1 − ϵ))kY ⌉ of ⟨Y ⟩ and a

prefix of length ℓZ = ⌈(1/(1 − ϵ))kZ⌉ of ⟨Z⟩ to form a substring of L of length

ℓY + ℓZ > (1− ϵ) · (|LY |+ |LZ |) = (1− ϵ) · |L|, because L = LY · LZ .

Per Def. 4.2.1, those suffixes L′
Y = LY [|LY |−ℓY +1..ℓY ] are suffix blocks, and those

prefixes L′
Z = LZ [1..ℓZ ] are prefix blocks, and therefore they are stored in our hash

tables. Thus, if we search Hsuff for L′
Y and retrieve the associated range [sY , eY ], and

search Hpref for L′
Z and retrieve the associated range [sZ , eZ ], we will find a point in

the (row,column) range [sY , eY ]× [sZ , eY ] of G.

The correctness of Algorithm 1 stems from this discussion. A position of the

common substring found is obtained by noticing that, when we assign ℓ in line 12,

the string occurs at P [p− ℓY + 1..p+ ℓZ ] and T [t− ℓY + 1..t+ ℓZ ], where t is the label

of any point in the grid range.
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Algorithm 1 The simple algorithm returning an approximation to the length of the

longest common substring between T and P [1..m].

1: ℓ← 0

2: for p← 1 to m do

3: for kY ← 0 to ⌊log1/(1−ϵ) p⌋ do
4: ℓY ← ⌈(1/(1− ϵ))kY ⌉
5: [sY , eY ]← search Hsuff for P [p−ℓY +1..p]

6: if [sY , eY ] was found then

7: for kZ ← 0 to ⌊log1/(1−ϵ)(m− p)⌋ do
8: ℓZ ← ⌈(1/(1− ϵ))kZ⌉
9: [sZ , eZ ]← search Hpref for P [p + 1..p + ℓZ ]

10: if [sZ , eZ ] was found then

11: if G has a point in [sY , eY ]× [sZ , eZ ] then

12: ℓ← max(ℓ, ℓY + ℓZ)

13: end if

14: end if

15: end for

16: end if

17: end for

18: end for

19: return ℓ

Since we do not know |L| beforehand, the algorithm tries all the possible values

for kY and kZ , which yields a time complexity dominated by O(m log2m) range

emptiness queries, that is, O(m log2m logδ n) [10]. We note that, since the hashes

are of Karp-Rabin type, we can precompute in O(m) time the hash of every prefix,

h(P [1..p]), and then we can compute in constant time the hash of every substring of

P by operating with the modular inverses of the hashes [45]. If there is a collision we

may find a false positive.

Note that Algorithm 1 will find only the empty string if |L| = 1, as we assumed

|L| > 1. In case the algorithm returns zero, we must determine if |L| = 1 by checking

if some symbol of P appears as a terminal in G; this is easily done with additional

O(m) time and O(g) space.
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4.4 Faster queries

We can reduce the time complexity of Algorithm 1 by decreasing the number of

combinations (kY , kZ) we explore. The algorithm may try out Θ(log2m) combina-

tions per value of p, but several of those are redundant. For example, if the range

[sY , eY ] × [sZ , eZ ] corresponding to the pair (kY , kZ) is empty, then so is the range

[s′Y , e
′
Y ]× [sZ , eZ ] corresponding to (kY + 1, kZ), as well as the range [sY , eY ]× [s′Z , e

′
Z ]

corresponding to (kY , kZ + 1). It then suffices to explore maximal combinations

(kY , kZ). Further redundant work is done among values of p: we may be working

on maximal combinations (kY , kZ) that nevertheless yield shorter strings than one we

had already obtained with a previous value of p.

To avoid redundant work, we will visit only the combinations (kY , kZ) for which

ℓY + ℓZ > ℓ; recall that ℓ is the maximum length ℓY + ℓZ obtained so far. Therefore,

every time we find a nonempty range in G, the value of ℓ increases. We say those

combinations are useful. The other combinations, where either the searches in Hpref

or in Hsuff fail, or they succeed but the resulting range in G is empty, are useless.

We will count useful and useless combinations separately.

Since there are only O(log2m) combinations (kY , kZ), there exist O(log2m) dif-

ferent values ℓY + ℓZ . Since the value of ℓ never decreases along the process, there

are only O(log2m) situations in which a new value of ℓY + ℓZ can increase ℓ. This

implies that the total number of useful combinations we visit is O(log2m).

To keep the number of useless combinations low, we will visit the space (kY , kZ) in

some suitable order. We first consider all the combinations where kY ≥ kZ , and then

where kZ > kY . We analyze the former case; the other is symmetric. We visit the

values of kY in increasing order, and the values of kZ in increasing order for each value

of kY . Each new visited value kY is first combined with the smallest kZ for which

ℓY + ℓZ > ℓ. If this leads to a nonempty range in G, then this is a useful combination,

for which we have already accounted. The successive values of kZ we try out from

there are all useful, until we finally fail to find a nonempty range—and this then a

useless combination— or until kZ > kY . We do not consider further values kZ ≤ kY

in the first case because they will also fail to produce a nonempty range in G.

Thus, each value of kY we visit leads to zero or more useful combinations possibly

followed by a single useless one. We say that kY succeeds if it produces at least one
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useful combination; otherwise it fails. If kY succeeds, then the cost of its last useless

combination, if any, can be charged to the useful ones it produced. Therefore we only

need to count the number of values of kY that fail. We will now show that a sequence

of consecutive values of kY that fail has O(1) combinations (all of them useless), and

therefore their cost can also be charged to the preceding or following value of kY that

succeeds. Only a sequence of all-failing values of kY cannot be accounted for in that

way, but this can only be one sequence per value of p, adding up to O(m) cost for

the useless combinations.

The value of ℓ does not change across a sequence of failing values of kY . We never

visit values ℓY ≤ ℓ/2: since ℓZ ≤ ℓY , they could not increase ℓ. A failing sequence

of visited values kY then starts with some ℓY > ℓ/2 and increments kY successively,

combining it with nonincreasing values of kZ . In this sequence, the first combination

(kY , kZ) we try for each kY , with the smallest kZ that yields ℓY + ℓZ > ℓ, is useless,

so we visit only that smallest value of kZ per value of kY . We proceed increasing

kY , always failing, until ℓY exceeds ℓ, at which point the smallest value of kZ that

makes ℓY + ℓZ > ℓ is 0. If such combination also fails, there is no point in continuing

with larger values of ℓY , because even combined with kZ = 0 will not yield a useful

combination. Since ℓY is exponential in kY , there are only O(1) values of kY that

yield values ℓ/2 < ℓY ≤ ℓ. Only O(1) combinations are then tried along a sequence

of failing values of kY .

Overall, we have O(log2m) steps charged to useful combinations and O(m) to use-

less ones. Multiplied by the range emptiness time complexity, this yields O(m logδ g)

total time. Note that we obtain a correct result only with high probability because we

check only that h(LY ) and h(LZ) match the hash values of the corresponding block

prefixes and suffixes. To ensure correctness, we can store the nonterminal X → Y Z

associated with the point connecting ⟨Y ⟩ and ⟨Z⟩ in G, so as to verify the correct-

ness our answer in O(m) time by extracting a suffix of ⟨Y ⟩ and a prefix of ⟨Z⟩ in

optimal time [26]. If our answer turns out to be incorrect (which happens with low

probability) we can re-run the algorithm, this time verifying every potentially useful

combination, in total time O(m2). We can thus ensure correct results by making our

time O(m logδ n+m+n−cm2) = O(m logδ n) in expectation (for any constant c > 2).

The construction time of our structure is dominated by the construction of the
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Karp-Rabin hash function with no collisions between blocks of T [45, Sec. 4].

Theorem 4.4.1. Given positive constants ϵ and δ, and an α-balanced straight-line

program with g rules for a text T [1..n], we can build in O(n log n) expected time an

O(g)-space index with which, given a pattern P [1..m], in O(m logδ g) time we can find

with high probability a substring of P that occurs in T and whose length is at least a

(1− ϵ) fraction of the longest common substring of P and T . The correctness can be

guaranteed with time still O(m logδ g), yet in expectation.



Chapter 5

Progress towards adapting KATKA for MEMs

In addition to optimizing and testing KATKA, we are also investigating adapting it

to work with maximal exact matches (MEMs) instead of k-mers. For example, if we

store O(z)-space z-fast tries [5] for the Patricia trees then, for each way to split P

into a non-empty prefix P [1..i] and a suffix P [i+ 1..m], we can find the loci of P [1..i]

reversed and P [i + 1..m] in O(logm) time. We can verify those loci in O(log n) time

by augmenting the SLP to return fingerprints, without changing its O(z log n) space

bound [7].

With an O(z)-space data structure supporting heaviest induced ancestor queries

in O
(︂

log2 z
log log z

)︂
time [3, 20, 25], in that time we can find the longest substring P [h..j]

with h ≤ i ≤ j that occurs in T with P [h..i] immediately to the left of a phrase

boundary and P [h + 1..j] immediately to its right. Note P [h..j] must be a MEM.

With 2-dimensional range-minimum and range-maximum queries, we can find the

indexes of the leftmost and rightmost genomes in which P [h..i] occurs immediately

to the left of a phrase boundary and P [h+ 1..j] immediately to its right. We still use

a total of O(z log n+g/ log n) space and now we use a total of O
(︂
m

(︂
log2 z

log logn
+ log n

)︂)︂
time.

Unfortunately, we may not find every MEM this way: it may be that, for some

MEM P [h..j] and every i between h and j, either P [h..j] is not split into P [h..i] and

P [i + 1..j] by any phrase boundary or some longer MEM is split into P [h′..i] and

P [i + 1..j′] by a phrase boundary. For any MEM we do not find, however, we do

find another MEM at least as long that overlaps it. A more serious drawback to this

scheme is that it is probably quite impractical (for example, we are not aware of any

implementation of a data structure supporting fast heaviest induced ancestor queries,

either).

We have been trying to take advantage of our results from Chapter 4 to speed up

KATKA working with something like MEMs. We say a list L of triples is an occurrence

23
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list for P with respect to T if every triple (s, ℓ, q) in L encodes an occurrence of a

substring of P in T ,

P [s..s + ℓ− 1] = T [q..q + ℓ− 1] .

We say L is left-bounding for a MEM P [i..j] if L contains a triple (s, ℓ, q) such that

• P [s..s + ℓ− 1] is a substring of P [i..j],

i ≤ s ≤ s + ℓ− 1 ≤ j ;

• P [s..s + ℓ− 1] covers all but an ϵ-fraction of P [i..j],

ℓ ≥ (1− ϵ)(j − i + 1) ;

• q is at most the starting position of the leftmost occurrence of P [i..j] in T .

We define a right-bounding occurrence list for P [i..j] symmetrically — with q now at

least the starting position of the rightmost occurrence of P [i..j] in T — and we just

say L is bounding for P [i..j] if it is both left- and right-bounding.

Theorem 5.0.1. We can add O(g) words to the index in Theorem 4.4.1 such that,

given β ≥ 2 together with P , in O(m logδ(g) log β) time we can build an occurrence

list of length O(m log β) that is bounding simultaneously for all MEMs whose lengths

are within a β factor of maximum.

Proof. We show only how we build such an occurrence list that is left-bounding for

all such MEMs simultaneously, since building one that is right bounding is symmetric

and their concatenation is bounding.

Recall that each point (x, y) on the grid indicates that the co-lexicographically xth

prefix ending at a boundary between symbols’ expansions, is immediately followed

by the lexicographically yth suffix starting at such a boundary. We assign each point

(x, y) weight equal to the position in T of the corresponding boundary, and replace the

data structure supporting range-emptiness queries on the grid with one supporting

range-minimum queries.

We first use the index in Theorem 4.4.1 to compute a (1− ϵ)-approximation ℓ∗ of

the length of the longest common substring of P and T , in O(m logδ g) time. We then

make a second pass over P and check every way to split P into a prefix and a suffix,
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and every combination of suffix- and prefix-block sizes that could result in matches

of length between (1− ϵ)ℓ/β and ℓ∗, which takes O(m logδ(g) log β) total time.

For each pair of suffix- and prefix-blocks we check, our query on the grid now

returns the position of the leftmost boundary between a symbol’s expansion ending

with that suffix-block and a symbol’s expansion starting with that prefix-block, if

there is one. For every query on the grid that returns a value, we store in the

occurrence list a triple consisting of the starting position s in P of the suffix-block,

the combined length ℓ of the two blocks, and the starting position q in T of the

suffix-block (which is the position of the leftmost boundary minus the length of the

suffix-block).

Consider the leftmost occurrence T [p..p + j − i + 1] in T of a MEM P [i..j] whose

length is within a β factor of maximum. Consider the lowest node v in the parse tree

whose subtree covers T [p..p + j − i + 1], and the boundary between v’s left and right

subtrees. If we take the largest suffix-block Bsuf to the left of that boundary that is

contained in T [p..p + j − i + 1] and the largest prefix-block Bpref to the right of that

boundary that is contained in T [p..p + j − i + 1] then their concatenation has length

at least (1− ϵ)ℓ/β — so we consider that combination of blocks — and covers all but

an ϵ-fraction of T [p..p + j − i + 1] = P [i..j].

When we query the grid for the combination of Bsuf and Bpref , it returns the

position of the leftmost boundary between occurrences of Bsuf and Bpref — which is

at most the position of the boundary between v’s left and right subtrees. It follows

that we store a triple that makes the occurrence list left-bounding for P [i..j].

We note that if we set β to a constant then our queries take O(m logδ g) time, as

in Theorem 4.4.1, and if we set it to m then they take O(m logδ(g) logm) time but

we build an occurrence list that is bounding for all MEMs simultaneously.



Chapter 6

Discussion

As we noted in Chapter 2, we are now considering looking for recombination sites

directly, without using LCA, by looking for positions that do not have any AMEMs

extending far in both directions. This way, we do not need to worry about finding the

leftmost and rightmost occurrences of the AMEMs. If we find a section of a genome

that is not contained in any AMEM then, by extending the length by a factor of

1/(1− ϵ) in either direction, we obtain a substring that is guaranteed not to occur in

the genomes in the phylogenetic tree. We leave testing this idea as future work.

Very recently, Ben Langmead mentioned another tool being developed at Johns

Hopkins, called Panagram [28], by Michael Schatz’s lab. Basically, Panagram stores

the k-mers in a collection of genomes such that, given a section of one of those

genomes, it can display in how many genomes of the collection each k-mer in that

section occurs. Ben and PhD student Stephen Hwang at Johns Hopkins have been

looking at making Panagram use MEMs instead of k-mers, but at the moment the

construction is not always practical.

Travis has suggested using an RLZ-index [17, 46] for document listing, as follows:

• we build and store an artificial reference for the collection of genomes [37] and

build an RLZ-index for the collection, computing the parse [32] relative to that

artificial reference;

• in the grid structure for locating primary occurrences, we colour the point for

each phrase boundary to indicate in which genome the boundary is located;

• in the grid structure for locating secondary occurrences (which are copied di-

rectly from occurrences in the artificial reference), we colour the point for each

phrase’s source to indicate in which genome the phrase is located (disallowing

phrases spanning more than one genome);
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• given a pattern, we used coloured range-reporting queries on the grids to list

the distinct genomes containing the pattern, in time bounded in terms of the

number of genomes we find (since the grids return each distinct genome at most

once for a primary occurrence and once for a secondary occurrence).

Assuming there are not too many genomes in the collection, document listing is a

reasonable substitute for document counting. Combining this idea with the ideas in

Chapters 4 and 5, we should be able to find the AMEMs in the given query section

and estimate in how many distinct genomes they each appear, in nearly linear time.
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