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Abstract

This dissertation centers around the robust asset-liability management (ALM) prob-

lem, comprising four interconnected articles. The first article conducts a comprehen-

sive review of robust portfolio selection problems, categorizing and analyzing decades

of work. The subsequent articles delve into ALM issues confronted by pension funds

when uncertain parameters like asset returns and interest rates arise.

The second article introduces a novel mathematical model featuring a Worst-case

Conditional Value-at-Risk (WCVaR) constraint, ensuring a high-probability funding

ratio above regulatory thresholds. A tractable reformulation is devised, employing

Worst-case Lower Partial Moment (WLPM) and a data-driven moment-based ambi-

guity set. Tested using real-world Canada Pension Plan data, the model excels in

handling correlated uncertainties.

Conversely, the third article employs distributionally-robust optimization with

various ambiguity sets: mixture-distribution, box, and Wasserstein-distance. These

sets encapsulate asset return and liability uncertainty, offering tractable reformula-

tions for the ALM problem. Numerical experiments, including the CPP dataset,

showcase improved funding ratios and asset allocation.

The fourth article explores the K-adaptability problem, proposing a solution

method through logic-based Benders decomposition, addressing min-max-min robust

combinatorial optimization. An iterative algorithm handles solutions and adverse

scenarios. Extensions encompass uncertain constraints and nonlinear functions, out-

performing existing methods on benchmark instances.

In summary, this dissertation navigates the robust ALM problem with four inter-

related articles. It surveys robust portfolio selection literature, introduces innovative

models for ALM under uncertainty, employs distributionally-robust optimization with

various ambiguity sets, and proposes solutions for the K-adaptability problem. Em-

pirical validation through real-world and benchmark data consistently highlights the

advantages of these methodologies.
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Chapter 1

Introduction

Financial institutions such as pension funds and insurance companies bear the crucial

responsibility of prudently managing substantial amounts of assets. With the aim of

ensuring long-term financial sustainability, decision-makers in these institutions face

the complex task of striking a delicate balance between assets and liabilities. This

challenge is addressed through the practice of ALM, which involves the optimal al-

location of available funds to different assets to cover existing and future liabilities.

The primary objective of the ALM problem is to minimize the contribution of em-

ployees while effectively managing the financial obligations of the institution (Zenios,

1995). This entails covering current and future liabilities, such as pension payments

to retirees or insurance claims, while also adhering to regulatory requirements (Bodie

et al., 1988). ALM strategies take into account various factors, including the in-

vestment horizon, risk tolerance, market conditions, and regulatory constraints. By

strategically aligning assets and liabilities, financial institutions can mitigate risks

associated with market fluctuations, interest rate changes, and unexpected events,

thereby safeguarding the interests of their stakeholders (Holzmann, 2013).

For pension funds, in particular, ALM assumes heightened significance due to

the nature of their obligations. Pension funds typically operate under a plan called

defined-benefit plan, which guarantees specific paybacks to retirees based on prede-

termined formulas (Bodie et al., 1988). Meeting these obligations requires careful

management of investment portfolios to generate returns that are sufficient to cover

future pension liabilities. Failure to effectively manage the asset-liability relationship

can lead to funding gaps, potential insolvency, and the inability to fulfill promised

retirement benefits (Blake, 2003). Therefore, pension funds must employ sophisti-

cated ALM techniques to optimize asset allocation, considering factors such as return

expectations, risk tolerance, and the duration and magnitude of pension liabilities.

Pension funds play a significant role in the global financial landscape, managing

1
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a substantial portion of global assets. As of the end of 2021, pension funds world-

wide controlled assets worth over $60.6 trillion, accounting for approximately 33% of

global assets 1. Remarkably, the assets held by pension funds in nine out of the 38 Or-

ganisation for Economic Co-operation and Development (OECD) countries exceeded

their respective Gross Domestic Products (GDPs) 2. This highlights the substantial

financial influence and economic significance of pension funds in these nations.

Over the past decade, pension assets have witnessed considerable growth, increas-

ing by an average of 5.7% from 2010 to 2020 3. This growth rate outpaced the

global GDP growth rate of 2.6% during the same period 4. This upward trajectory

underscores the growing importance of retirement savings globally. With an aging

population and individuals reaching retirement age, the outflows from pension funds

to fulfill benefit obligations are accelerating. The ratio of total benefits paid from

retirement savings plans to GDP varies across OECD countries, ranging from 0.5%

to 8% 5. These statistics illustrate the substantial financial commitment required

to meet the retirement needs of individuals and the impact this has on the overall

economy.

Given the magnitude of pension assets and their crucial role in securing retirees’

financial well-being, ALM practices are of paramount importance. However, pension

funds face the critical challenge of strategically investing the contributions they receive

in order to generate sufficient returns and meet their future obligations (Gülpinar &

Pachamanova, 2013). These funds typically construct diversified portfolios comprising

various asset classes, including fixed-income securities, public and private equities,

commodities, real estate, and infrastructure. However, such investments are not

without risks, as they are susceptible to fluctuations in asset prices driven by market

dynamics, sector-specific factors, and company-specific risks (Bogentoft et al., 2001).

The solvency of funded pension plans is greatly influenced by the assumptions

made regarding expected returns and interest rates. These factors play a critical role

in determining the funding status of pension plans and their ability to meet future

1https://www.thinkingaheadinstitute.org/research-papers/global-pension-assets-study-2022/
2https://www.statista.com/statistics/721151/average-growth-largest-pension-markets-

worldwide/
3https://www.statista.com/statistics/721151/average-growth-largest-pension-markets-

worldwide/
4https://www.macrotrends.net/countries/WLD/world/gdp-growth-rate
5https://www.oecd.org/finance/private-pensions/globalpensionstatistics.htm
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obligations (Konstantin, 2018). This variability in factors of the ALM problem intro-

duces challenges for pension managers when determining the optimal asset allocation

strategy to adequately cover future liabilities (Gülpinar & Pachamanova, 2013). It

highlights the importance of carefully assessing and incorporating the specific risk-

return characteristics of different asset classes to mitigate the potential impact of

investment performance on the fund’s overall financial health. D’Addio et al. (2009)

emphasized the substantial impact of uncertainty in asset returns on pension funds.

This uncertainty underscores the need for a conservative approach to investment de-

cisions, taking into account the potential variability and unpredictability of asset

returns. Pension managers must carefully consider the level of uncertainty in asset

returns and adopt risk management strategies that align with the long-term objectives

and obligations of the pension fund.

Effectively managing uncertainty within the context of ALM is of utmost im-

portance for institutions to make informed investment decisions and mitigate risk.

Extensive research has been dedicated to developing models and methods that can

quantify and address the various sources of uncertainty associated with the ALM

problem. Notably, stochastic programming (SP) and robust optimization (RO) have

emerged as the primary approaches in this domain. SP is a widely used approach in

ALM, aiming to find an optimal solution that maximizes the expected value of the

objective function while accounting for uncertainty. Several studies, such as those

conducted in (Klaassen, 1997; Kouwenberg, 2001; Consigli, 2008; Duarte et al., 2017;

Kopa et al., 2018; Barro et al., 2022), have successfully applied SP to ALM prob-

lems. However, it is important to note that SP requires knowledge of the distribution

function of the random variables, which may not always be readily available. Further-

more, SP is a risk-neutral approach, meaning it does not provide protection against

scenarios that turn out to be worse than expected. In some cases, SP solutions may

also be infeasible for certain scenarios, posing practical challenges.

On the other hand, RO has emerged as an appealing method for addressing uncer-

tainty in the context of ALM problems. Many references, including (Iyengar & Ma,

2016; Platanakis & Sutcliffe, 2017; Gülpinar & Pachamanova, 2013; Gülpınar et al.,

2016), have proposed ALM models that incorporate RO to handle uncertainty. Com-

pared to SP models, RO offers several advantages. It is a risk-averse approach that
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does not rely on explicit knowledge of the distribution function of uncertain param-

eters. By considering a range of possible scenarios and optimizing for the worst-case

outcome, RO models aim to minimize the potential downside risk. However, a draw-

back of RO solutions is that they tend to be overly conservative. This conservatism

can lead to decisions based on the worst-case scenario, resulting in higher opportu-

nity costs for ALM problems. Researchers have recognized this trade-off and have

been actively exploring methods to strike a balance between robustness and decision

optimality. For those interested in delving further into the topic, references such as

(Ben-Tal et al., 2009; Bertsimas et al., 2011; Gabrel et al., 2014; Ghahtarani et al.,

2022) provide more comprehensive insights into the theory and applications of RO

methods. These resources offer a deeper understanding of the techniques used to

model uncertainty.

The existing literature on ALM optimization has explored RO and SP separately,

but there are currently gaps in the literature that we address in this research. First:

the existing literature overlooked the possibility of combining risk measures within

the framework employed to handle uncertainty in ALM optimization, e.g., SP or RO.

This combination offers several advantages. Firstly, it allows for more comprehensive

and accurate modeling of risks in pension fund management. The combination of

risk measures and ambiguity of distribution functions of random variables enhances

the decision-making process for asset allocation, considering both the uncertainty of

returns and the associated risks. Secondly, it provides a more precise representation

of the underlying probability distribution by utilizing an ambiguity set, which encom-

passes a range of possible distribution functions for random variables. This improved

representation leads to better risk management and enhances the long-term financial

stability of pension funds. Additionally, the integration of risk measures with uncer-

tainty in ALM optimization yields more robust and reliable solutions, which are vital

for ensuring the sustained financial health of pension funds.

Second: Despite the extensive availability of financial data, there is a notable

research gap when it comes to applying distributionally robust optimization (DRO)

approaches in ALM. While other ALM methods like SP and RO have been extensively

explored, DRO has only recently gained attention in the literature. One reason for this

is the inherent complexity of DRO models and their relatively recent development.
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Nevertheless, DRO offers the potential to address certain limitations present in other

ALM methods. For instance, it can mitigate the “optimizer’s curse” associated with

SP, where reliance on a single distribution estimate may lead to suboptimal outcomes

(Smith &Winkler, 2006). Additionally, DRO provides means to explicitly incorporate

uncertainty in the distribution of financial variables, which is particularly valuable in

ALM problems where returns and interest rates are subject to significant uncertainty.

By considering a range of possible distributions, DRO enables more robust decision-

making and a more nuanced assessment of risk in ALM than deterministic and SP

formulation of the ALM problem. This research direction holds promise for advancing

the field and improving the management of assets and liabilities in various financial

institutions.

Third: Additionally, in our research, we address the K-adaptability problem,

which falls within the realm of adaptive robust optimization. This problem involves

making preparations for K potential solutions under uncertain conditions and select-

ing the most suitable one once the uncertainty is resolved. An important application

of this problem is the ALM model with binary decision variables. To tackle this

problem, we propose a new approach specifically designed for cases with a linear ob-

jective and constraints, binary first-stage decision variables, second-stage objective

uncertainty, and a polyhedral uncertainty set. To solve the K-adaptability problem,

we employ a logic-based Benders decomposition technique. This approach allows us

to handle the first-stage decisions in a master problem while transforming the Ben-

ders subproblem into a min-max-min robust combinatorial optimization problem. To

solve the subproblem, we develop a double-oracle algorithm that iteratively generates

adverse scenarios, determines recourse decisions, and assigns scenarios to K-subsets

of the decisions by solving p-center problems.

1.1 Research themes

This dissertation explores four themes dealing with the ALM problem under un-

certainty. Each theme is developed in a dedicated chapter. Theme 1 introduces a

comprehensive critical review of the literature on the application of robust optimiza-

tion in portfolio selection problems. Theme 2 develops the worst-case Conditional

Value at Risk (WCVaR) for the ALM problem by using a moment-based ambiguity
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set. Theme 3 explores DRO formulations of the ALM problem. Theme 4 presents an

algorithm for solving K-adaptability problem that can be used in the ALM problem

with binary decision variables. In the remainder of this section, brief descriptions of

the 4 themes are provided.

1.1.1 Robust Portfolio Selection Problems: A Comprehensive Review

In the past two decades, there has been a growing interest in robust portfolio se-

lection problems (PSPs), leading to several attempts to review the literature in this

field. One of the earliest reviews, conducted by Fabozzi et al. (2010), focused on

the application of RO to basic mean-variance, mean-Value at Risk (mean-VaR), and

mean-Conditional Value at Risk (mean-CVaR) problems. However, this review did

not encompass newer variants of the problem such as robust index tracking, robust

lower partial moment (LPM), robust mean absolute deviation (MAD), robust Omega

ratio, and robust multi-objective PSPs. Scutellà & Recchia (2010) and Scutellà &

Recchia (2013) also conducted reviews on robust mean-variance, robust VaR, and

robust CVaR problems. However, similar to the previous review, they did not cover

other types of robust PSPs such as ALM problems or risk-hedging PSPs. Likewise,

Kim et al. (2014a) concentrated on worst-case formulations while neglecting other

important classes, including relative robust models, robust regularization, net-zero

alpha adjustment, and asymmetric uncertainty sets. Another review by Kim et al.

(2018a) specifically focused on worst-case frameworks in bond portfolio construction,

currency hedging, and option pricing. Although it briefly touched upon robust asset-

liability management problems, log-robust models, and robust multi-period problems,

it had a limited coverage of references in those areas. More recently, Xidonas et al.

(2020) provided a comprehensive bibliographic review that categorized the literature

and broadly covered the area of robust PSPs.

In this theme of research, our main focus is to provide a comprehensive classi-

fication of robust PSPs in multiple dimensions. The review methodology involves

a systematic approach to gather and compile a comprehensive list of references for

reviewing the literature on PSPs. The main steps of the review methodology are as

follows. Compilation of keyword sets: Two sets of keywords were compiled. The

first set included keywords related to financial problems. The second set comprised
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keywords related to RO. We conducted searches on prominent academic databases

such as Scopus and Web of Science, as well as using the Google Scholar search engine.

We explored all possible combinations of the first and second keyword sets to retrieve

relevant references. Each retrieved reference was carefully examined to ensure its

relevance to robust financial problems. We evaluated the alignment of each paper

with the scope of the review. Whenever a relevant paper was identified, we extended

our search by exploring the references cited within that paper and the papers that

cited it, called backward search. The search process continued until no new references

could be found, ensuring a thorough inclusion of relevant literature in the review.

Ultimately, we implemented a two-tier classification system for the papers. Ini-

tially, we classified them according to their relevance to specific financial problems.

Within each class of PSPs, we further categorized the papers based on RO approaches,

methods, uncertainty sets, uncertain parameters, and formulation choices. The main

contribution of this review paper is the unique classification methodology, which sets

it apart from other literature reviews. Notably, our review encompasses the most

comprehensive range of financial problems compared to existing review papers. The

main focus of this review paper is to identify the gaps present in the existing litera-

ture. The paper extensively discusses and analyzes multiple gaps, but it specifically

highlights three significant gaps in the ALM problem. These gaps include the incor-

poration of risk measures and DRO formulation in ALM problems, the utilization of

DRO in the context of ALM, and the creation of solution methods for ALM problems

involving binary decision variables. This thesis thoroughly examines and tackles these

gaps in a comprehensive manner. We address the following research questions in the

first theme of the dissertation.

1. What are the main approaches and methodologies used in the literature to

address robust PSPs?

2. What are the different types of risk measures and optimization objectives con-

sidered in robust PSPs?

3. What are the key factors and sources of uncertainty commonly incorporated in

robust PSPs?
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4. What are the recent advancements and developments in robust PSPs, including

new variants, extensions, and applications?

5. What are the existing gaps and limitations in the literature on robust PSPs,

and what are the potential areas for future research?

1.1.2 Worst-Case Conditional Value at Risk for Asset Liability

Management: A Novel Framework for General Loss Functions

In this research theme, we address the ALM problem faced by financial institutions,

specifically pension funds. Our goal is to prudently manage large amounts of assets

and liabilities while striking a balance between minimizing contribution to the fund

and controlling risk for long-term financial sustainability.

Our methodology involves integrating CVaR as a risk measure and leveraging

DRO to handle distributional ambiguity in the ALM optimization process. We de-

velop a theoretical framework that extends the concept of Worst-Case CVaR (WC-

VaR) to handle general loss functions encountered in the ALM problem. By incor-

porating WCVaR and considering the ambiguity of distribution functions, we aim

to provide more realistic and robust solutions that enhance risk management and

decision-making for pension funds.

To validate our methodology, we conduct empirical tests using real data from

the Canada Pension Plan (CPP). This allows us to evaluate the effectiveness of our

approach in managing risk and optimizing asset allocation in a practical setting.

By leveraging the power of CVaR and DRO, we demonstrate the potential of our

methodology to improve the long-term financial outcomes of pension funds.

Our contributions to the existing literature are twofold. Firstly, our study tackles

the research gap by integrating risk measures with distributional ambiguity within the

realm of ALM optimization. It is worth noting that WCVaR, being a risk measure,

allows us to effectively address both risk and distributional ambiguity aspects. This

integration enables a more comprehensive approach to risk management in pension

fund management. Secondly, we extend the theoretical framework of WCVaR to

handle general loss functions specific to the ALM problem. This extension opens up

new possibilities for decision-making under uncertainty, not only in the ALM domain

but also in other areas such as supply chain management and engineering design.
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The findings of our study highlight the benefits of integrating risk measures and

distributional ambiguity in ALM optimization. By considering both risk and distri-

butional ambiguity, we can make more informed decisions on asset allocation, meet

regulatory requirements, and improve long-term financial stability. Empirical tests

using CPP data support the effectiveness of our methodology in managing risk and

optimizing asset allocation for pension funds.

For practitioners in financial institutions, particularly pension funds, our method-

ology offers practical implications. By adopting our approach, they can enhance their

risk management practices, optimize asset allocation strategies, and ensure compli-

ance with regulatory requirements. The integration of risk measures and uncertainty

modeling provides a more comprehensive framework for decision-making, leading to

improved long-term financial outcomes. The following questions are considered:

1. How can risk measures and probability distribution ambiguity be incorporated

into ALM to improve pension fund outcomes?

2. What are the computational challenges and techniques for implementing DRO

with WCVaR in ALM?

3. How can the theoretical framework of WCVaR be extended for general loss

functions in ALM, enabling realistic and robust decision-making under uncer-

tainty?

4. How can DRO with WCVaR as a risk measure be applied to manage uncertainty

in ALM with th Canada Pension Plan?

1.1.3 Distributionally Robust Asset Liability Management Problem

DRO is a relatively new approach that aims to minimize the impact of distribution

ambiguity in ALM problems. Unlike other ALM methods like SP and RO, DRO

considers a wider range of possible probability distributions, making the resulting in-

vestment strategy more robust to market changes. Despite the availability of financial

data, the literature lacks sufficient exploration of DRO in ALM due to the complexity

of DRO models and their recent development. However, DRO has the potential to
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overcome the limitations of SP and RO, offering explicit consideration of uncertainty

in financial variables subject to significant fluctuations.

This theme proposes DRO formulations for ALM problems, which is the main

mathematical modeling contribution in this chapter, exploring three approaches: mix-

ture ambiguity sets with discrete scenarios, box ambiguity sets for discrete distribu-

tion functions, and Wasserstein metric ambiguity sets. The first approach, commonly

used in PSPs, requires a large number of scenarios to represent complex distribu-

tions adequately. The second approach, employing box uncertain discrete distribution

functions, offers a more flexible representation of uncertainty but may not capture a

significant proportion of distribution functions. To address this limitation, the paper

incorporates the Wasserstein metric into the ALM problem. We address the following

research questions in this research theme.

1. How can mixture ambiguity sets effectively represent complex distributions in

ALM?

2. What are the advantages and limitations of using box ambiguity sets for dis-

crete distribution functions in ALM? How to address the limitation of capturing

distribution functions?

3. How does incorporating the Wasserstein metric ambiguity sets enhance ALM’s

representation of uncertainty? What are the advantages of that?

4. How can applying DRO with real-world data contribute to a flexible and robust

ALM framework?

1.1.4 A double-oracle, logic-based Benders decomposition approach to

solve the K-adaptability problem

Recently, a new modeling approach called K-adaptability has been proposed as a

conservative approximation for adaptive/adjustable robust optimization (ARO) with

discrete recourse decisions. Rather than selecting any feasible recourse, K solutions

are prepared in advance, and the best solution is chosen based on the realized param-

eter values. K-adaptability solutions are generally better than static RO solutions
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and are more acceptable to human users as they come from a small set of candi-

date solutions. This approach has been primarily explored for linear problems with

polyhedral uncertainty sets, but it can be extended to other problem variants.

This theme of our research presents a new algorithm to solve the K-adaptability

problem with binary or integer first-stage decisions. It employs a logic-based Benders

algorithm to handle the first-stage decisions and an iterative double-oracle algorithm

to generate worst-case scenarios and determine the optimal subset of solutions. The

proposed approach demonstrates finite convergence when the uncertainty set is poly-

hedral. The algorithm is further extended to handle ARO problems with uncertainty

in both stages and nonlinear functions. Extensive numerical experiments on bench-

mark problems highlight the computational superiority of the proposed approach

compared to existing methods.

The contributions of this chapter include the development of an efficient solution

method for the K-adaptability problem with binary or integer first-stage decisions.

The proposed algorithm is capable of handling both affine and nonlinear functions

and can be extended to handle uncertainty in both stages. The approach enjoys finite

convergence and achieves computational superiority compared to existing solution

methods. The findings of this study are supported by extensive numerical experiments

on benchmark instances of various optimization problems.

The proposed algorithm for K-adaptability, which handles binary or integer first-

stage decisions, has the potential to be applied to the ALM problem with binary

decision variables, which involves making decisions regarding the allocation of assets

and liabilities to ensure the long-term financial stability of an organization. By em-

ploying the logic-based Benders algorithm, the algorithm can effectively handle the

complex decision-making process involved in ALM, specifically in determining the

optimal allocation of assets under uncertainty.

For practitioners, the proposed methodology has several managerial implications.

By employing the new approach, practitioners can effectively address optimization

problems with discrete recourse decisions under parameter uncertainty. The ability

to prepare multiple candidate solutions and select the best one based on realized val-

ues provides more flexibility and robustness in decision-making. The computational

efficiency of the proposed algorithm allows practitioners to solve large-scale instances
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of the K-adaptability problem, enabling them to make more informed and optimized

decisions in real-world applications. We address the following research questions in

this research theme.

1. What is the computational efficiency of the logic-based Benders algorithm for

handling first-stage decisions in K-adaptability problems?

2. Can the iterative double-oracle algorithm effectively handle uncertainty in both

stages in K-adaptability problems?

3. How does the proposed algorithm compare to existing methods in terms of com-

putational superiority and solution quality for benchmark problems, especially

ALM problems?

Figure 1.1 depicts the interconnection among the proposed themes within the dis-

sertation. As illustrated in the figure, the ALM problem under uncertainty can be bi-

furcated into two primary classes based on the nature of decision variables—continuous

and discrete. Each class of the ALM problem can be effectively addressed through ei-

ther a single-stage or two-stage RO/DRO methodology, the latter being referred to as

the adaptive RO method. For the realm of continuous decision variables, the single-

stage DRO approach can be employed, utilizing either moment-based or metric-based

ambiguity sets. Notably, the single-stage RO ALM problems concerning continuous

variables have already been explored in existing literature.

Conversely, the ARO formulation of the ALM problem incorporating discrete de-

cision variables poses a challenging computational task. Consequently, we propose an

innovative algorithm aimed at tackling the K-adaptability and MMMRCO versions

of the ALM problem specifically in scenarios involving binary decision variables.

1.1.5 Dissertation outline

This dissertation follows a thesis-by-article format, consisting of four manuscripts.

Two manuscripts have already been published, another two have been submitted

for publication. Chapter 2 provides an extensive critical review of the literature on

the subject of robust portfolio selection problems following the introductory Chapter
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Figure 1.1: Connection between research themes
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1. The content of Chapter 2 has been published in journal of Operational Research

(Ghahtarani et al., 2022).

Chapter 3 introduces Worst-case Conditional Value at Risk for asset liability man-

agement: a novel framework for general loss functions. A preliminary version of this

chapter was presented at the Canadian Operations Research Society (CORS) 2023.

An extended version was submitted for publication in a peer-reviewed journal.

Chapter 4 introduces the distributionally robust asset-liability management prob-

lem. A manuscript resulting from this chapter has been submitted for publication in

a peer-reviewed journal.

Chapter 5 presents a double-oracle, logic-based Benders decomposition approach

to solve the K-adaptability problem. A manuscript resulting from this chapter has

been published in the journal of Computers & Operations Research (Ghahtarani et al.,

2023b).

In Chapter 6, the conclusions of this work are presented, highlighting significant

observations and outlining future directions for further research based on the research

outcomes.



Chapter 2

Robust Portfolio Selection Problems: A Comprehensive

Review

2.1 Introduction

The PSP is a fundamental problem in finance that aims at optimally allocating funds

among financial assets to maximize return and/or minimize risk. Different variants

of the problem arise in reality due to the different risk attitudes of investors (risk-

neutral vs. risk-averse), investment strategies, measures used to quantify risk (e.g.,

variance, VaR), methods used to calculate return (e.g., log-return) and planning

horizon (single-period vs. multi-period), among other factors. Consequently, the

PSP literature has grown considerably in terms of both size and diversity, allowing

for several classification schemes to be employed.

An obvious classification is based on the risk measure to be optimized. Generally

speaking, two broad classes of risk measures have been proposed: volatility-based and

quantile-based. While variance, as the most popular volatility-based risk measure,

has been the most widely-used risk measure in both theory and practice since the

seminal work of Markowitz (1952), it has its deficiencies. First, it equally considers

both positive and negative deviations around the expected return as undesirable risk,

despite the desirability of the positive deviations for investors. Alternatively, downside

risk measures that consider only the negative deviations of returns, like the lower

partial moment (LPM), can be used. Furthermore, given that variance is a nonlinear

risk measure, it leads to more complex formulations than those corresponding to

linear risk measures like the mean absolute deviation (MAD) proposed by Konno &

Yamazaki (1991). Related to volatility risk measures, Sharpe (1966) and Bernardo &

Ledoit (2000), introduced Sharpe ratio and Omega ratio, respectively, to evaluate the

performance of portfolios based on risk and return simultaneously. The most famous

quantile-based risk measures are VaR and CVaR. The former quantifies the maximum

15
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loss at a specific confidence level, whereas the latter represents the expected value of

losses greater than VaR at a confidence level. For details about quantile-based risk

measures, interested readers are referred to Rockafellar et al. (2000).

Besides risk measures, PSPs can be classified based on investment strategies. For

example, index tracking, first studied by Dembo & King (1992), is a passive in-

vestment strategy that tries to follow a market index. On the other hand, active

investment strategies that involve ongoing buying and selling of assets are optimized

by solving multi-period PSPs (see Dantzig & Infanger (1993) for an early example).

Furthermore, hedging gives rise to a popular PSP in which an investment position

is intended to offset potential losses or gains that may be incurred by a companion

investment. Interested readers are referred to Lutgens et al. (2006) for a detailed ac-

count of financial hedging strategies. PSPs can be classified also according to return

calculation methods. Goldfarb & Iyengar (2003) incorporated factors (macroeco-

nomic, fundamental, and statistical) to determine market equilibrium and calculate

the required rate of return, whereas Hull (2003) defined the Log-return as the equiv-

alent, continuously-compounded rate of return of asset returns over a period of time.

Despite being a well-studied problem, a common feature of most PSPs addressed

in the literature is that the problem parameters are assumed to be known with cer-

tainty. Ignoring the inherent uncertainty in parameters and instead using their point

estimates often leads to suboptimal solutions. Two widely-used frameworks for deal-

ing with uncertainty are stochastic programming (SP) and robust optimization (RO).

SP focuses on the long-run performance of the portfolio by finding a solution that

optimizes the expected value of the loss function. Despite its intuitive appeal and fa-

vorable convergence properties, SP requires the distribution function of the uncertain

parameters to be known. Moreover, its risk-neutral nature does not provide pro-

tection from unfavorable scenarios, rendering it unsuitable for, typically, risk-averse

investors. On the other hand, RO is a conservative approach that minimizes the loss

function under the worst-case scenario (within an uncertainty set) and does not use

information about the probability distribution of the uncertain parameters, making

it an attractive alternative.

Given the rising interest in robust PSPs in the last two decades, several attempts
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have been made to review the growing robust PSP literature. Among the earliest re-

views is that of Fabozzi et al. (2010), which concentrates on the application of RO on

basic mean-variance, mean-VaR, and mean-CVaR problems, but does not cover more

recent variants of the problem like robust index tracking, robust LPM, robust MAD,

robust Omega ratio, and robust multi-objective PSPs. Scutellà & Recchia (2010) and

Scutellà & Recchia (2013) also review robust mean-variance, robust VaR, and robust

CVaR problems, but similarly, do not survey other robust PSPs. Likewise, Kim

et al. (2014a) concentrate on worst-case formulations, while ignoring other important

classes, including relative robust models, robust regularization, net-zero alpha adjust-

ment and asymmetric uncertainty sets. Another review by Kim et al. (2018a) focuses

on worst-case frameworks in bond portfolio construction, currency hedging, and op-

tion pricing, while covering a small number of references on robust asset-liability man-

agement problems, log-robust models, and robust multi-period problems. Recently,

Xidonas et al. (2020) provided a categorized bibliographic review which broadly covers

the area; their aim is to provide a rapid access to the topic for finance practitioners,

and in general for those interested, but maybe not yet in the area.

The main contribution of this review paper is a multi-dimensional classification

of robust PSPs. A dual-tier classification framework was established for this chapter.

Initially, we organized papers based on their pertinence to distinct financial prob-

lems. Within each category of financial issues, a finer categorization was applied,

taking into account various aspects such as robust optimization (RO) approaches,

methods, uncertainty sets, uncertain parameters, and formulation. The principal in-

novation of this review paper lies in its distinct classification methodology, setting

it apart from other literature reviews. Particularly noteworthy is our inclusion of

an extensive spectrum of financial problems, making our review considerably more

comprehensive than existing counterparts. The classification scheme of robust PSPs

utilized in this review is illustrated in Figure 2.2. To search the literature, we first

compiled two sets of keywords in both abbreviation and extension forms. The first set

includes the following keywords related to financial problems: “portfolio selection”,

“risk measures”, “VaR”, “CVaR”, “mean-variance”, “semi-variance”, “mean abso-

lute deviation (MAD)”, “index tracking”, “factor-based portfolio”. The second set

includes the robust optimization keywords: “robust optimization”, “distributionally
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robust optimization”, “data-driven”, and “uncertainty set”. We then searched all

pairs/combinations of the first and second keyword sets on both Scopus and Web of

Science databases, and also using the Google Scholar search engine. The references

retrieved from these searches were carefully screened to make sure that they are re-

lated to the robust financial problems. If a paper was deemed related to the scope

of this review, we also conducted the backward references search. This process was

repeated multiple times until no new references could be found. In addition to the

primary sources, a selection of articles was also compiled from various supplementary

sources, including pre-prints. Initially, a total of 369 papers were collected. Subse-

quently, after a thorough evaluation, 227 papers were excluded due to their lack of

relevance to either robust optimization methods or financial issues. As a result of this

screening process, a final count of 142 papers remained for the comprehensive review.

Figure 2.1 shows the PRISMA flowchart of the review process.

Figure 2.3 portrays a breakdown of the reviewed articles by publication year, span-

ning between the years 2000 and 2021. We note that out of the 142 articles reviewed,

14 appeared in 2021, thus were not included in any of the previous reviews. Our re-

view focuses on articles published in peer-reviewed journals. These articles appeared

in a large number (n = 54) of finance and operations research (OR) journals. Figure

2.4 shows a breakdown of the reviewed papers by journal (sorted alphabetically). We

note that most robust PSP articles were published in OR journals.

A major challenge when reviewing the robust PSP literature is the absence of a

unified set of nomenclatures and notations for describing and formulating the prob-

lems. To be able to link and contrast different variants of the problem, we use,

throughout our review, a unified set of most used notations, shown in Table 2.1.

The notations that are used once are defined in the text. Our strategy for including

mathematical formulas was to begin with the simplest and most general ones, then

incrementally add new or alternative items (e.g., terms in the objective function, con-

straints, risk measures, levels of optimization) at their first use in the robust PSPs

literature. We also chose to include formulas that are commonly used and that con-

stitute significant contributions, leaving behind some outliers and minor changes for

brevity.
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Figure 2.1: PRISMA flowchart of the review process
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Figure 2.2: A schematic diagram of the classification scheme of robust PSPs review

Figure 2.3: A breakdown of the reviewed article by publication year
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Figure 2.4: A breakdown of the reviewed articles by journal

Table 2.1: Notations and symbols

Symbol/NotationDefinition

x ∈ Rn Decision variable, xj the proportion of the available budget

invested in asset j

r ∈ Rn Asset return vector

rL ∈ Rn Minimum asset return vector

rU ∈ Rn Maximum asset return vector

rf ∈ R Risk-free asset return

Q ∈ Rn×n Variance-covariance matrix of the assets

QL ∈ Rn×n Minimum variance-covariance matrix of the assets

QU ∈ Rn×n Maximum variance-covariance matrix of the assets

E ∈ R Portfolio expected return

v ∈ R Portfolio variance

e Vector of size n whose components are ones

λ ∈ R Risk aversion coefficient

UQ Uncertainty set of Q, which has the same dimensions of the

uncertain parameter
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Table 2.1: Notations and symbols

Symbol/NotationDefinition

Ur Uncertainty set of r, which has the same dimensions of the

uncertain parameter

Γ ∈ R+ Non-negative scalar that controls the size of uncertainty set

Prj ∈ R Price of asset j

Ei ∈ R Exchange rate of currency i

Σ ∈ Rn×n Covariance matrix of the estimated expected returns

π Nominal distribution function

p True distribution function

ζ A random variable

A ∈ Rn×n A positive semi-definit matrix

ηi A positive scalar

t Indices of scenarios

kmin ∈ Rn Lower bound of decision variables

kmax ∈ Rn Upper bound of decision variables

cj Binary variable, if the asset j is selected it takes one, oth-

erwise zero

L ∈ Z, H ∈ Z Integer scalars that show the minimum and maximum num-

ber of assets in the portfolio

s Indices of period

W0 ∈ R Initial wealth of the investors

β ∈ R Confidence level

VaR Value at Risk

CVaR Conditional Value at Risk

f(x, r) Loss function

∆ ∈ R, ν ∈ R Transaction costs (buying and selling)

The remainder of this chapter is organized as follows. The next section provides
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a brief introduction to RO for non-specialists. Section 2.3 surveys robust PSP formu-

lations based on volatility measures. Section 2.4 reviews quantile-based PSPs, which

include Value at Risk (VaR), Conditional Value at Risk (CVaR), and their extensions

with worst-case RO methods, relative RO and distributionally robust optimization

(DRO). Furthermore, the relationship between uncertainty sets and risk measures,

application of soft robust formulation with risk measures, worst-case CVaR and its

relationship with uniform investment strategy, and robust arbitrage pricing theory

with worst-case CVaR are also discussed in Section 2.4. Section 2.5 provides a review

of RO in multi-period PSPs and asset-liability management (ALM) problems. Be-

sides these two main problems, robust control formulations of investment problems

are reviewed in this section. Section 2.6 reviews other financial problems that are

not covered in the above-mentioned categories like robust log-return, index-tracking,

hedging problem, risk-adjusted Sharpe ratio, robust scenario-based formulation, and

robust data envelopment analysis. The last section provides conclusions and open

issues in this context.

2.2 A Brief Introduction to Robust Optimization

This section provides a brief introduction to RO for readers who are not familiar

with the topic. RO is a framework for dealing with the uncertainty of parameters in

optimization problems by assuming that the parameters belong to an uncertainty set

and optimizing over the worst realization in this set. The first RO formulation was

developed by Soyster (1973) and used a box (hypercubic) uncertainty set that speci-

fies an interval for each individual uncertain parameter. Even though this approach

usually leads to tractable formulations, it is too conservative since it is based on the

assumption that all parameters will take their worst possible values simultaneously,

which rarely happens in reality. To overcome this issue, Ben-Tal & Nemirovski (1998)

proposed an ellipsoidal uncertainty set that is centered at some nominal value and

has a size (radius) that controls the conservatism of the solution based on the de-

cision maker’s aversion to uncertainty. Nevertheless, tractable reformulations of RO

problems with ellipsoidal uncertainty sets give rise to nonlinear formulations that,

generally, have a higher complexity than the nominal problem. Later, Bertsimas &

Sim (2004) developed a special class of polyhedral uncertainty set, referred to as



24

budget, that enables the level of conservatism to be controlled while preserving the

tractability of the reformulated problems. All of the aforementioned uncertainty sets

are symmetric, meaning that they are based on the assumption that forward and back-

ward deviations around the nominal value are equal. Chen et al. (2007) argued that

this assumption is not valid in many practical settings and proposed an asymmetric

uncertainty set that is particularly suitable for financial applications.

Despite the protection it provides against adverse scenarios, classical RO is still

considered overly conservative and pessimistic by many practitioners. To alleviate this

concern, several RO variants have been developed. Scherer (2007) proposed adding

a net-zero alpha adjustment constraint to any uncertainty set to guarantee that for

any downward adjustment in the uncertain parameter, there is an offsetting upward

adjustment, thus reducing the level of conservatism. Kouvelis & Yu (1997) proposed

a relative RO approach that uses a regret function under the least desirable scenario.

Although this approach provides solutions that perform better, on average, than

classical RO, it suffers from intractability since it results in a three-level optimization

problem.

Another way to achieve less conservative solutions is to use available partial in-

formation about the distribution function of the uncertain parameters rather than

completely overlook them. A framework referred to as distributionally robust op-

timization (DRO), that dates back to the seminal work of Scarf (1958), has gained

considerable attention recently. It assumes that the unknown probability distribution

of the uncertain parameters belongs to a set of distributions called the ambiguity set,

and optimizes the expected value of the objective function, where the expectation

is taken with respect to the worst distribution in this set. Clearly, the tractability,

convergence and out-of-sample performance guarantee offered by the DRO solution

obtained depends on the ambiguity set used. Generally speaking, there are two main

types of ambiguity sets: moment-based and discrepancy-based. The former includes

distributions that enjoy some parametric properties, e.g., mean or variance, whereas

the latter include distributions that are within a certain “distance” (e.g., the Kull-

back–Leibler divergence or the Wasserstein metric) from a reference distribution. The

interested reader is referred to Rahimian &Mehrotra (2019); Esfahani & Kuhn (2018);

Delage & Ye (2010) and the references therein for more information about DRO.
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2.3 Robust PSPs with Volatility-based Risk Measures

In this section, we review the application of RO in PSPs with volatility-based risk

measures, which include mean-variance, mean absolute deviation, lower partial mo-

ment, systematic risk, Omega ratio, and factor-based portfolio models.

2.3.1 Mean-Variance PSP

The mean-variance PSP was proposed by Markowitz (1952). In its general form, it

assumes n risky assets, each has an expected rate of return denoted by the vector

r, whereas v is the portfolio variance and Q is the variance-covariance matrix of the

assets. In Markowitz’s model, the variance of the portfolio is the risk measure to

be optimized. The decision variable of this mathematical formulation is [xj]j=1,...,n,

which represents the proportion of the available budget invested in asset j. When

xj ≥ 0, it means that short selling is not allowed.

Moreover, E = x⊺r is the portfolio expected return, v = x⊺Qx is the portfolio

variance, and E0 is the minimum required expected rate of return. Then, the mini-

mum variance PSP is min
x∈X

(v = x⊺Qx) s.t. x⊺r ≥ E0 where X = {x : e⊺x = 1, xj ≥
0, j = 1, ..., n}, and e is a vector of size n whose components are ones. Another

version of the mean-variance PSP, called the risk-adjusted expected return, takes the

form max
x∈X

(x⊺r − λx⊺Qx). This formulation has the dual objectives of maximizing

the portfolio return and minimizing its variance, where λ is a risk aversion coefficient

set by the investor. In reality, however, the true values of the expected rate of re-

turn and the covariance matrix are not known with certainty. The general robust

counterparts of the aforementioned PSPs are min
x∈X

max
Q∈UQ

(x⊺Qx) s.t. min
r∈Ur

x⊺r ≥ E0, and

max
x∈X

min
r∈Ur, Q∈UQ

(x⊺r− λx⊺Qx), respectively, where UQ and Ur are the uncertainty sets

for the covariance matrix and the return vector, respectively. Tütüncü & Koenig

(2004) used symmetric box uncertainty sets defined as Ur := {r : rL ≤ r ≤ rU} and
UQ =: {Q : QL ≤ Q ≤ QU , Q ⪰ 0}, where rL and rU are, respectively, the lower

and upper bounds of the asset returns and QL and QU are the lower and the upper

bounds of the covariance matrix elements while stipulating also that Q must remain

positive semi-definite (PSD). It has been shown that, with these uncertainty sets, the

robust counterparts could be tractably formulated as min
x∈X

(x⊺QUx) s.t. x⊺rL ≥ E0,
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and max
x∈X

(x⊺rL − λx⊺QUx), respectively. Khodamoradi et al. (2020) used similar

uncertainty sets for a cardinality-constrained mean-variance PSP that allows short

selling. Swain & Ojha (2021) also analyzed the robust mean-variance, and mean-

semi-variance PSPs with box uncertainty sets, where both the expected return vector

and the covariance matrix are uncertain parameters. However, Chen & Tan (2009)

argued that deviations of the expected asset returns from their nominal values are

not symmetric, meaning that the upside deviation is different from the downside

deviation, thus are not accurately captured by classical symmetric uncertainty sets.

Instead, they used non-symmetric interval uncertainty sets for the expected vector

and covariance matrix of asset returns. The element-wise uncertainty interval was

defined as Uri = [r̄i − θ1i , r̄i + θ2i ] and Uqij = [q̄ij − τ 1ij, q̄ij + τ 2ij], where r̄i and q̄ij are

elements of r and Q, respectively, that represent the nominal values of mean and

covariance, whereas θ1i and θ2i are the downside and the upside deviations for the

mean and τ 1ij and τ
2
ij are the downside and the upside deviations for the covariance,

respectively. To propose a robust counterpart, optimistic fopt and pessimistic gpes val-

ues are defined as fopt = minri∈Uri (x
⊺r), and gpes = maxqij∈Uqij (x

⊺Qx), respectively.

Alternatively, Fabozzi et al. (2007) defined an ellipsoidal uncertainty set for asset

returns as Ur := {r : (r − r̄)Q−1(r − r̄)⊺ ≤ Γ2}, where r̂ is the nominal return and

Γ2 is a non-negative scalar that controls the size of the uncertainty set. Hence, the

robust counterpart can be tractably formulated as {min
x∈X
−r̄⊺x+ Γ

√
x⊺Qx+ λx⊺Qx}.

However, the uncertainty of the covariance matrix was not considered, making the so-

lution robust only against perturbations in the return vector. Pınar (2016) developed

a robust mean-variance PSP with the same ellipsoidal uncertainty set while allowing

short selling, which was also extended to the multi-period case.

Even though RO accounts for uncertainty in the problem parameters, Zymler

et al. (2011) argued that if the uncertainty set is not set large enough, the solution

might maintain its robustness only under normal market conditions, but not when

the market crashes. Instead, they proposed using European-style options to hedge

the mean-variance portfolios against abnormal market conditions. Two guarantee

types were provided: weak, and strong. The weak guarantee applies under normal

market conditions when the rate of the return is varying in an ellipsoid uncertainty

set, whereas the strong guarantee applies to all possible asset returns by using the
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European-style options in the form of constraints in the optimization problem. Hence,

the strong guarantee is not based on RO formulation but on the mechanism of options

to protect the portfolio in market crashes. Ashrafi & Thiele (2021) also used the idea

of strong and weak guarantees. For the strong guarantee, an option is used in PSP,

whereas for the weak guarantee, a budget uncertainty set for asset returns is used.

Hence, the problem can be reformulation as a linear program (LP).

According to Lu et al. (2019), an important drawback of the mean-variance PSP

is that its inputs are computed using only historical market returns, thus specific

earnings announcements cannot be used to support the portfolio selection process.

To overcome this issue, Black & Litterman (1990) proposed the BL method, which

consists of both a market model and a view model. Lu et al. (2019) improved the view

model of the BL method by using fuzzy logic to make it quantitative. Moreover, they

incorporated multiple expert views instead of just one individual expert view in their

formulation. To handle the heterogeneity of data collected from disparate sources,

they applied RO with an ellipsoidal uncertainty set for the mean return vector and

the return covariance matrix.

Fonseca & Rustem (2012) asserted that an important strategy in the PSP is di-

versification, which may eliminate some degree of risk since financial assets are less

than perfectly correlated. One way to make a portfolio more diversified, investors

can invest in foreign assets. However, foreign exchange rates’ fluctuations may erode

the investment’s return. Moreover, both the asset returns and the currency rates

are uncertain. Hence, Fonseca & Rustem (2012) and Fonseca et al. (2012) proposed

a robust formulation for the international PSP with an ellipsoidal uncertainty set,

which leads to a non-convex bilinear optimization problem. The problem considers

n assets from m foreign currencies, where Pr0j and Prj are, respectively, the current

and future prices of asset j, and E0
i and Ei, respectively, are the current and future

exchange rates of currency i. Therefore, the local return of asset j is raj = Prj/Pr
0
j

and the exchange rate return of currency i is rei = Ei/E
0
i . Using the auxiliary binary

matrix O = [oji], where oji equals 1 if asset j is traded in currency i and 0 other-

wise, the international PSP is formulated as maxx∈X min(ra,re)∈Ura,re [diag(r
aOre)]⊺x,

where the objective of this formulation is to maximize the worst-case return within all
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realizations in the uncertainty set Ura,re . A semi-definite programming (SDP) approx-

imation is proposed to handle the non-linearity of the robust international PSP. Even

though a robust international portfolio provides some level of guarantee against the

uncertainty, investors might alternatively use forward contracts and quanto options

(an exotic type of options translated at a fixed rate into another currency) to hedge

risk. To make the formulation more practical, Fonseca & Rustem (2012) extended

the robust international PSP with forward contracts and quanto options to reach a

less conservative formulation.

Another classical uncertainty set used for robust PSPs is the budget uncertainty

set proposed by Bertsimas & Sim (2004), which has the advantage of leading to

tractable reformulations with the same complexity of the nominal problems. Sadjadi

et al. (2012) considered a robust cardinality constrained mean-variance PSP with

ellipsoidal, budget, and general-norm uncertainty sets and proposed a genetic algo-

rithm to solve them. It was shown that using a budget uncertainty set has led to

better rates of return compared to other uncertainty set types. Gregory et al. (2011)

also tested a budget uncertainty set for the uncertain returns in a PSP to show the

impact of the uncertainty set size on the portfolio return. The uncertainty set in this

formulation is defined as Ur = {r : r = r̄ + r̂ζ, ||ζ||1 ≤ Γ, |ζ| ≤ 1}, where r̄ is

nominal value, r̂ is the deviation of return, ζ is the random variable, and Γ is the

price of robustness that control the size of uncertainty set. The final formulation is

maxx∈X, z≥0, q≥0 r̄
⊺x− Γz − e⊺q s.t. z+qi ≥ r̂ixi, ∀i. It has been shown that using the

mean or the median of the asset returns as nominal values leads to the most robust

portfolios.

Bienstock (2007) postulates that the solution methodology of RO is often chosen at

the expense of the accuracy of the uncertainty model. Moreover, classical uncertainty

sets might lead to overly conservative solutions. Alternatively, Bienstock (2007) pro-

posed a data-driven approach to construct the uncertainty set by using uncertainty

bands, each showing a different level of the return shortfall, which is an amount by

which a financial obligation or liability exceeds the required amount of cash that is

available. Hence, it is possible to specify rough frequencies of return shortfalls to

approximate the return shortfall distribution. The robust models are formulated by

allowing the uncertain parameter (asset returns) to deviate from the distribution by
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incorporating constraints related to the frequency of the return shortfall in different

bands, an approach referred to as robust histogram mean-variance PSP. Although this

formulation provides more flexibility than classical RO, the robust counterpart is an

intractable mixed-integer program (MIP); thus, a cutting plane algorithm is proposed

to solve it.

Fliege & Werner (2014) studied a robust multi-objective optimization (MOO)

version of the mean-variance PSP while considering minimizing the variance and

maximizing the mean return of the portfolio as the two objectives. Two MOO meth-

ods were applied: the ε-constraint scalarization (ECS) method, which pushes one

of the objective functions, namely return maximization, to the constraints, and the

weighted-sum scalarization (WSS) method, which combines the two objectives into

a single one by assigning proper weights to them. Both methods lead to the same

efficient frontier in the nominal case, but not for the robust problem. Fliege & Werner

(2014) defined the location characteristics of the robust Pareto frontier with respect

to the non-robust Pareto frontier, and demonstrated that standard techniques (ECS

and WSS) from MOO can be used to construct the robust efficient frontier.

Alternatively, robustness in multi-objective PSPs can be achieved by a resampling

method without classical uncertainty sets, which provides a wider range for uncer-

tain parameters and solutions instead of the worst-case scenario RO with a specific

uncertainty set. This approach requires replacing the parameters in the fitness func-

tions at every generation. Hence, the evolution process would favor the solutions

that show good performance in terms of risk and return over different scenarios (see

e.g., Shiraishi (2008), Ruppert (2014)). Garćıa et al. (2012) argued that one of the

main problems portfolio managers face is uncertainty regarding the expected frontier

derived from forecasts of future returns. Very often, expected frontiers lie far from

the actual return, resulting in inaccurate forecasts of the portfolio risk/return pro-

file. Garćıa et al. (2012) demonstrated that robustness of results can be achieved by

avoiding optimization based on a single expected scenario that may produce solutions

that are hyper-specialized and might be extremely sensitive to likely deviations. They

tackle the problem of achieving robust or stable portfolios by using a multi-objective

evolutionary algorithm that replaces the traditional fitness function with an extended

one that uses a resampling mechanism and an implicit third objective to control the
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robustness of the solutions.

The formulations of Fliege & Werner (2014) and Garćıa et al. (2012) are based on

differentiable functions. However, classical RO methods cannot be used on nonsmooth

and non-differentiable functions. To address this issue, Fakhar et al. (2018) developed

the necessary and sufficient optimality condition for a MOO problem with nonsmooth,

e.g., non-differentiable or discontinuous, functions, and proved that strong duality

holds when these functions are convex. Moreover, they introduced the concept of

saddle-point for MOO under uncertainty.

Ceria & Stubbs (2006) demonstrated that the mean-variance PSP is very sensi-

tive to small variations in expected returns. They, instead, proposed a formulation

for the robust PSP based on estimation errors. In this formulation, three distinc-

tive Markowitz efficient frontiers were introduced: the true frontier calculated based

on the true, yet unobservable, expected returns, the estimated frontier calculated

based on the estimated return, and the actual frontier calculated based on the true

expected returns of the portfolios on the estimated frontier. To have a portfolio as

close as possible to its true frontier, the maximum difference between the estimated

frontier and the actual frontier was minimized. Ceria & Stubbs (2006) modified the

maximum difference between the estimated frontier and the actual frontier by adding

a linear constraint. They assumed that the true returns lie inside the confidence

region (r− r̄)′Σ−1(r− r̄) ≤ k2, where k2 ∼ χ2
n, and χ

2
n is the inverse cumulative distri-

bution function of the chi-squared distribution with n degrees of freedom. Points on

the efficient frontier are calculated by solving max r̄⊺x s.t. x⊺Qx ≤ v, where v is the

maximum acceptable variance. The optimal solution of this optimization problem

is x =
√

ν
r⊺Q−1r

Q−1r. By considering r∗ as the true, but unknown, expected return

vector and r̄ as an expected return, the true expected return of a portfolio on the

estimated frontier is computed as
√

ν
r̄⊺Q−1r̄

r∗⊺Q−1r̄. Ceria & Stubbs (2006) assumed

that x̃ is the optimal portfolio on the estimated frontier for a given target risk level.

Then, the difference between the estimated expected return and the actual expected

return of x̃ is r̄⊺x̃−r∗⊺x̃. Consequently, the maximum difference between the expected

returns on the estimated efficient frontier and the actual efficient frontier is computed

by solving max (r̄⊺x̃ − r⊺x̃) s.t. (r − r̄)⊺Σ−1(r − r̄) ≤ k2. In this formulation x̃ is

fixed and optimization is over r. Hence, the optimal solution is r = r̄ −
√

k2

x̃⊺Σx̃
Σx̃.
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Moreover, the lowest value of the actual expected return is r̄⊺x̃ = r̄⊺x̃ − k||Σ1/2x̃||.
Finally, the maximum difference between the estimated frontier and the actual fron-

tier is r̄⊺x̃ − (r̄⊺x̃ − k||Σ1/2x̃||) = k||Σ1/2x̃||. Effectively, minimizing the maximum

difference between the actual and the true frontiers leads to a robust mean-variance

PSP with an ellipsoidal uncertainty set, while the covariance matrix of estimation

error is also captured using an ellipsoidal uncertainty set. Garlappi et al. (2007) also

claimed that the estimation error is ignored in mean-variance PSPs. They propose

a robust mean-variance PSP that is a special case of the PSP in Ceria & Stubbs

(2006) since asset returns are assumed to be normally distributed. Multiple historical

data sets are used to estimate the random variable of asset returns. The problem is

formulated as maxx∈X minr x
⊺r − λx⊺Qx s.t. f(r, r̄, Q) ≤ ε, where r̄ is the estimated

return, f(.) is a vector-valued function, ε is a vector of constants that captures the in-

vestor’s uncertainty- and ambiguity-aversion. The additional constraint, representing

the confidence interval of the normal assets return, shows that the decision maker ac-

cepts the possibility of estimation error. Garlappi et al. (2007) compared their results

for different f(.) selections with the results of the traditional Bayesian models and

showed that their models are risk-averse while the Bayesian models are risk-neutral

towards the uncertainty in parameters.

Scherer (2007) analyzed the results and models of robust estimation error by Ceria

& Stubbs (2006) and robust mean-variance with box uncertainty set by Tütüncü

& Koenig (2004) and showed that the results of the robust mean-variance PSP are

equivalent to the results of the mean-variance PSP with Bayesian shrinkage estimators

for the uncertain parameters (for more details about Bayesian shrinkage estimators ,

see e.g., Lemmer (1981)). The RO framework is criticized because it merely increases

the complexity of the PSP while the solutions of the robust optimization, which

depends on the choice of uncertainty set, are usually over-conservative. A method,

referred to as net-zero alpha adjustment, is developed, by which adding a constraint to

the uncertainty set ensures that for any downward adjustment in the uncertain vector,

there is an offsetting upward adjustment. For example, with the uncertainty set

U = {r = r̄+ζ : ζ⊺Ση ≤ 1}, where Σ is the covariance matrix of estimation errors and

ζ is a deviation vector, the constraint e⊺ζ = 0 is added. Gülpınar et al. (2011) applied

this method for a cardinality-constrained mean-variance PSP and found that adding
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a net-zero alpha adjustment to the ellipsoidal uncertainty set led to less conservative

solutions than traditional robust mean-variance PSPs.

RO is a worst-case approach which assumes that the distribution function of un-

certain parameters is unknown. However, partial information about the distribution

function is often available, enabling less conservative distributionally robust optimiza-

tion (DRO) formulations to be used. Several DRO models have been proposed for

the mean-variance PSP.

Calafiore (2007) developed distributionally robust PSPs where two types of prob-

lems with different risk measures were addressed: the mean-variance PSP, which uses

the mean and variance, and the mean absolute deviation PSP, which replaces the

variance with the absolute deviation. Let us assume r(1), ..., r(T ) are T possible sce-

narios for the outcome of random return vector r, and pt is the probability associated

to the scenario r(t), where {pt ≥ 0, t = 1, ..., T,
∑T

t=1 pt = 1}. Then, the expected

value is defined as µ(x, p) = E[r⊺x] =
∑T

t=1 ptr
⊺(t)x = (

∑T
t=1 ptr

⊺(t))x = r̄⊺(p)x,

where r̄(p) = E[r] =
∑T

t=1 ptr(t). A risk measure can be quantified as the variance:

v(x, p) = E[(r⊺x − E[r⊺x])2] = x⊺Q(p)x, where Q(p) is the covariance matrix of r,

and Q(p) = E[(r − r̄(p))(r − r̄(p))⊺] =
∑T

t=1 pt(r(t) − r̄(p))(r(t) − r̄(p))⊺. Another

risk measure in this concept is the expected absolute deviation (EAD) EDA(x, p) =

E[|r⊺x − E{r⊺x}|] =
∑T

t=1 pt|r⊺(t)x − µ(x, p)|. By defining λ ≥ 0 as a risk aversion

ratio, then the mean-variance PSP is minx∈X v(x, p) − λµ(x, p), and the PSP based

on the absolute deviation measure is minx∈X EDA(x, p)− λµ(x, p). A discrepancy-

based ambiguity set based on the well-known Kullback-Leibler (KL) divergence, which

measures the “distance” between a nominal distribution vector (π) and the unknown

“true” distribution vector (p) is used, defined as KL(p, π) =
∑T

t=1 ptlog
pt
πt
. Then p is

only known to lie within KL distance d ≥ 0 from π, K(π, d) = {p : KL(p, π) ≤ d},
where K(π, d) is the ambiguity set for the return distribution. This ambiguity set

leads to a SDP formulation for the mean-variance PSP that is solvable using interior-

point methods. The distributionally robust absolute deviation PSP is convex in the

decision variable for any given distribution function. Consequently, a sub-gradient

method combined with a proposed cutting plane scheme was used to solve the worst-

case mean absolute deviation PSP in polynomial-time. Baviera & Bianchi (2021) also

applied KL divergence in the mean-variance PSP. However, unlike Calafiore (2007),
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they considered continuous distribution functions for the asset returns.

A limitation of Calafiore (2007) is that, while the probabilities of scenarios are

uncertain, the scenarios themselves are assumed to be known with certainty, which is

not always the case in reality. Pınar & Paç (2014) formulated a semi-deviation PSP

while considering uncertainty in both asset returns (through an ellipsoidal uncertainty

sets) and in the distribution function of returns (through a moment-based ambiguity

set). Both single and multi-period cases were considered.

As Ding et al. (2018) argued, the Kullback–Leibler (KL) divergence used in

Calafiore (2007) is a special case of Rényi divergence with order one, hence they

used it in a more general DRO formulation of the mean-variance PSP. Besides the

risky assets having a multivariate normal distribution, they considered a risk-free

asset with a fixed rate of return rf in their formulation. By allowing short selling

and using E as a target average return of the portfolio, the problem is formulated

as minx∈X x
⊺Qx s.t. x⊺(r − rf ) ≥ E − rf . In the nominal case, the empirical dis-

tribution, obtained from historical data, is used, assuming that p ∼ N(r,Q). Since

there is ambiguity about the true distribution of returns, an ambiguity set is con-

structed that contains all distributions within a certain distance, measured using

Rényi divergence, from the empirical distribution. Renyi divergence is defined as

Dr(p, π) =
1

r(r−1)
ln
∫
pr(ξ)πr−1(ξ)dξ, r ̸= 0, 1, where π(ξ) and p(ξ) are the probabil-

ity density function under measures π and p, respectively. Hence, the final formulation

of the distributionally robust PSP is maxx∈X minr,Q x⊺r−λx⊺Qx+λ⊺Dr(p, π). Their

model was solved in three cases: only the mean return vector is uncertain, only the

covariance matrix is uncertain, and both are uncertain. It is worth mentioning that

even though the ambiguity set used in Ding et al. (2018) is more general than the

KL-divergence, their formulations are special cases from the distribution function

perspective since both the empirical and the true distribution function of the asset

returns are assumed to be multivariate normal.

Hauser et al. (2013) suggested that some professionals such as investment man-

agers are frequently evaluated against their competitors and not on the absolute

terms (worst-case solutions). The relative RO is the best possible approach to han-

dle this situation where a regret function (the distance to the “winner” under the

least desirable scenario) is used to propose an intractable three-level optimization
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problem. Hauser et al. (2013) incorporated a relative robust formulation into the

mean-variance PSP where the regret function is RgrtU,B(x) = maxQ∈U lB(x,Q) =

maxQ∈U(
√
x⊺Qx − minb∈B

√
b⊺Qb), x is the decision variable, Q is the variance-

covariance matrix, U is an uncertainty set, and B = b1, ..., bm ⊆ Rn is the set of

benchmarks. To solve the proposed model, a polynomial-time solvable approxima-

tion for the inner problem was developed. The formulation of Hauser et al. (2013)

does not provide any control over regret value since the objective function is a regret

function. Hence, Simões et al. (2018) extended a relative robust mean-variance PSP

when a regret function is a constraint that provides more control over the regret value.

Moreover, they defined proportional regret as an objective function, which is more

perceivable by investors. Results show that the regret minimization seems to provide

a greater degree of protection when it is compared to absolute robust optimization.

Caçador et al. (2021) proposed a new methodology for computing relative-robust so-

lutions for mean-variance and minimum variance PSPs. This solution methodology

is based on a genetic algorithm (GA), allowing the transformation of the three-level

optimization problem into a bi-level problem.

In the mean-variance PSP, it is assumed that there is a positive correlation be-

tween the expected return and the variance, which means more/less risk (variance)

results in more/less profit (return). However, Baker et al. (2010) showed that in

a long-term investment strategy, low-volatility portfolios outperform high-volatility

portfolios. Consequently, a PSP that minimizes just the variance of the portfolio

(i.e., global minimum variance portfolio) might have a better performance than the

mean-variance PSP. Maillet et al. (2015) showed that the optimal solution of the

global minimum variance portfolio can be calculated by solving a least-square regres-

sion while the covariance matrix of assets is uncertain. Hence, a robust least-square

regression is proposed where the uncertainty set is based on the Frobenius norm,

leading to a second-order cone program (SOCP). Maillet et al. (2015) formulated the

nominal global minimum variance PSP as minx∈X x
⊺Q̄Sx, where Q̄S is an estimate of

the covariance matrix, leading to the closed-form optimal solution x∗ =
Q̄−1
S e

e⊺Q̄−1
S e

. They

also showed that the optimal solution of this PSP can be computed as x∗ = e
n
−Mζ̄∗,

where n is the number of stocks,M is an n×(n−1) matrix having the following prop-

erties: M ′e = 0 andM⊺M = In−1, where In−1 is the (n−1) identity matrix. ζ̄∗ can be
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calculated based on the least square regression formulation ζ̄∗ = argminζ ||y −Xζ||2,
whereX = Q̄

1/2
S M , and y = Q̄

1/2
S

e
n
. Moreover, Q̄

1/2
S is calculated from Q̄S = Q̄

1/2
S Q̄

1/2
S .

For the robust PSP, Maillet et al. (2015) assumed that the pair (X, y) is uncertain

and belongs to a family of matrices (X + ∆X, y + ∆y), where ∆ = [∆X,∆y] is a

perturbation matrix while ||∆||F = ||[∆X ∆y]||F ≤ ρ is the uncertainty set, ||.||F
is the Frobenius norm and ρ ≥ 0. Consequently, the robust counterpart of the

least square regression is ζ̄(ρ) = argminζ max||∆X,∆y||F≤ρ ||(y +∆y)− (X +∆X)ζ||2.
Monte Carlo simulation was used to test the robust formulation, showing that it

dominates the non-robust one with respect to weight stability, portfolio variance, and

risk-adjusted returns. To make the formulation of Maillet et al. (2015) more practical,

Xidonas et al. (2017a) augmented it into the cardinality-constrained global minimum

variance PSP using the approach proposed by Cornuejols & Tütüncü (2006), which

uses scenarios instead of uncertainty sets to capture parameter uncertainty, making

the formulation easier to handle. The problem is formulated as minx∈X x
⊺Qx s.t. L ≤∑n

j=1 cj ≤ H, cjkmin ≤ xj ≤ cjkmax, ∀j = 1, ..., n. Xidonas et al. (2017a) defined

a set of scenarios, indexed by t ∈ T , that describe the assets’ performance, each has

an expected return vector rt and a covariance matrix Qt. They also defined v2t
∗
as

the minimum variance of a portfolio under scenario t, which is calculated by solving

the classical mean-variance PSP for Q = Qt. The final formulation tries to find the

optimal solution in the worst-case situation as minx∈X,s s.t. x⊺Qtx ≤ (1+s)v2t
∗
, ∀t ∈

T, L ≤
∑n

j=1 cj ≤ H, cjkmin ≤ xj ≤ cjkmax, ∀j = 1, ..., n, where s is the relative

worst variance aggravation based on the robust solution.

The risk parity or the equal risk contribution is a new asset allocation strategy in

which all of the underlying assets in the portfolio contribute equally to the risk. It

has been argued that risk parity results in a superior Sharpe ratio than the mean-

variance PSP (see, e.g., DeMiguel et al. (2009)). However, inputs of the risk parity

formulations are often subject to uncertainty, which leads to sub-optimal solutions.

DeMiguel et al. (2009) assumed that ρ(.) is a continuously differentiable convex risk

measure, and bj are the risk budgets assigned by the investor. The risk budgeting

problem becomes x∗ = xj
∂ρ(x)
∂xj

= bj ∀j, x ∈ X, where ∂ρ(x)
∂xj

is the marginal risk

contribution and xj
∂ρ(x)
∂xj

is the risk contribution of asset j, which has the optimal so-

lution x∗ = w∗

e⊺w∗ , where w
∗ = argminw≥0{ρ(w)−

∑n
j=1 bj lnwj}. Kapsos et al. (2018)
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used the variance of the portfolio, which is uncertain and belongs to an uncertainty

set UQ, to quantify risk. With that, the robust counterpart of the risk budgeting

problem becomes minx∈X maxQ∈UQ (x⊺Qx−
∑n

j=1 ln bjxj), which is equivalent to

minw≥0 maxQ∈UQ (w⊺Qw −
∑n

j=1 ln bjwj), where x∗ = w∗

e⊺w∗ is a normalization of

decision variables. Kapsos et al. (2018) proposed three robust risk budgeting formu-

lations, for which the covariance matrix of assets belongs to; a discrete uncertainty

set, a box uncertainty set while the upper bound is a PSD matrix, or a box uncer-

tainty set without restrictions on its bounds. In the last case, the formulation is

transformed to a semi-infinite problem that is solvable using an iterative procedure

proposed by the authors.

Worst-case RO is an extreme case, which finds the optimal solution of an opti-

mization problem for the worst possible situation. However, this approach is over-

conservative. The goal of reducing the conservatism of RO solutions can be achieved

by using other extreme cases than worst-case. Chen &Wei (2019) incorporated set or-

der relations of solutions into a multi-objective mean-variance PSP with an ellipsoidal

uncertainty set to show the relationship between optimization solutions and their effi-

ciency by comparing multiple objective function values. These relations can be inter-

preted as extreme cases. The first relation, called “upper set less ordered relation”, is

the best solution for the worst-case situation, which is equivalent to the robust formu-

lation. The second case is “lower set less ordered relation” which practically means the

best-case solution. Third, “alternative set less ordered relation”, is the intersection of

the best-case and the worst-case solutions, i.e., Xalternative = Xbest−case ∩Xworst−case.

This study assumed that the distributions of asset returns are normal. Chen & Zhou

(2018), however, argued that practical and theoretical evidence shows that the dis-

tribution function of asset returns has a fat-tail. Hence, they applied the relation

structure of Chen & Wei (2019) and the idea of other extreme cases in PSP without

the normality assumption by using the higher moments (skewness and kurtosis) in

their formulation. Both Chen & Wei (2019) and Chen & Zhou (2018) used a multi-

objective particle swarm optimization algorithm to solve other extreme cases of the

mean-variance PSP.

Extreme cases (worst-case, best-case, and the intersection of the best-case and

the worst-case solutions, can be implemented in different market conditions. Bai
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et al. (2019) considered different realizations of the uncertain parameters in different

market conditions by dividing the market situation into bull market, bear market,

and steady market. In the bull market condition, it is assumed that the best-case

scenario will happen, hence a best-case formulation (i.e., min-min or max-max) is

used. Conversely, in the bear market condition, it is assumed that the worst-case

scenario will happen, leading to a typical worst-case RO. In the steady market, an

alternative scenario, namely the intersection of solutions of the best-case and the

worst-case scenarios is assumed to happen. In contrast to Chen & Zhou (2018) and

Chen & Wei (2019), Bai et al. (2019) used a single objective mean-variance PSP.

An important criticism of the classical mean-variance PSP is its weak performance

in out-of-sample data due to overfitting. It also has been shown that, for a large

number of periods, the classical formulation of the mean-variance PSP amplifies the

effects of noise, leading to an unstable and unreliable estimate of decision vectors. To

reduce these effects, Dai & Wang (2019) proposed a sparse robust formulation for the

mean-variance PSP, which places controls on the asset weights in the portfolio. The

process of adding information to solve an ill-posed problem is called regularization.

Dai & Wang (2019) defined rs = (r1s, r2s, ..., rns) ∈ Rn as a vector of asset returns

at time s, (s = 1, ..., S). Moreover, E[rs] = r̄ and Q = E[(rs − r̄)(rs − r̄)⊺] are

mean vector and covariance matrix, respectively. The portfolio variance is x⊺Qx =

E[|x⊺r̄ − x⊺rs|2] = 1
S
||x⊺r̄e−Rx||22, where R is a matrix whose sth row equal to rs. If

the expectations are replaced by the sample average, then the model can be expressed

as a statistical regression, which takes the form minx∈X
1
S
||x⊺r̄e − Rx||22, where ||.||2

is the l2 norm. If the size of R is large, then it amplifies the effects of noise, leading

to an unstable and unreliable estimate of the vector x. To overcome this issue, a

regularization is applied in the formulation as minx∈X(
1
S
||x⊺r̄e−Rx||22+τ ||x||11), where

τ is the parameter for adjusting the relative importance of the l1 norm penalty in

the objective function. However, this sparse formulation does not consider return as

an uncertain parameter. Consequently, two robust formulations of the mean-variance

PSP with box and ellipsoidal uncertainty sets are proposed. The results showed that

the sparse robust mean-variance PSP has better out-of-sample performance than

other mean-variance formulations. Lee et al. (2020) extended the same concept to a

robust sparse cardinality-constrained mean-variance PSP with ellipsoidal uncertainty



38

set and l2 norm regularization to achieve a better control over decision variables. This

formulation results in a non-convex NP-hard problem. Hence, a relaxation to a SDP

problem is proposed to make it more tractable.

Alternatively, it is possible to prevent the negative impact of noisy inputs by

adding restrictions on the estimated parameters instead of restricting the decision

variables. Plachel (2019) used the restricted estimators method with a box uncer-

tainty set to derive a robust regularized minimum variance PSP based on the de-

composition of covariance matrix proposed by Laloux et al. (1999). The proposed

formulation was tested with the three major turmoils of the financial market (Black

Monday, the Dotcom Bubble, and the Financial Crisis) and the results showed that

the joint problem regularization and robustification outperforms the classical non-

robust minimum variance and the non-regularized minimum variance PSP.

The classical mean-variance PSP is based on the Gaussian distribution assump-

tion of asset returns. Based on historical evidence, Lauprete et al. (2003) showed

that the returns of assets follow a heavy-tail distribution. Given that the uncer-

tainty associated with the deviation of actual distribution functions from theoretical

distribution functions might lead to sub-optimal solutions, they proposed a robust

estimation that immunizes the estimators against uncertainty. DeMiguel & Nogales

(2009) used two types of robust estimators (M-estimator and S-estimator) in the

mean-variance PSP. M-estimator and S-estimator are based on convex symmetric

and Tukey’s bi-weight loss functions, respectively. The S-estimator has the advan-

tage of not being sensitive to data scaling. DeMiguel & Nogales (2009) analyzed

the sensitivity of M-portfolios and S-portfolios’ (corresponding to M-estimator and

S-estimator, respectively) weights with respect to the changes in the distribution of

the asset returns. Results showed that these formulations are more robust than the

traditional mean-variance PSP.

Kim et al. (2013b) identified a gap in the literature about the experimental evi-

dence of the robust PSP. They analyzed the robust mean-variance PSP with box and

ellipsoidal uncertainty sets. Results showed that weights in the robust mean-variance

PSP align with assets having a higher correlation with the Fama-French three factors

model which bets on fundamental factors of assets. Interested readers are refereed to

Fama & French (2021) for more detail about Fama-French three factors model. Kim
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et al. (2014b) also concluded that robust solutions of the mean-variance PSP depend

on fundamental factors movements. In another analysis, Kim et al. (2013a) showed

that robust equity mean-variance portfolios have four advantageous characteristics

compared to non-robust mean-variance PSPs: (1) fewer stocks, (2) less exposure to

each stock (the amount of money that the investor could lose on an investment), (3)

higher portfolio beta, and (4) large negative correlation between weight and stock

beta. Kim et al. (2018b) concluded that the robust mean-variance PSP leads to the

most efficient investment strategies that allocate risk efficiently. Kim et al. (2015) also

illustrated that the robust approach is the best method for formulating the mean-

variance PSP while the market switches between multiple states.

Similarly, Schöttle & Werner (2009) analyzed the Markowitz efficient frontier of

robust mean-variance PSP with ellipsoidal and joint ellipsoidal uncertainty sets. They

showed that the efficient frontiers of both robust formulations are exactly matched

with the efficient frontier of the classical mean-variance PSP up to some level of risk.

This means that the classical mean-variance PSP is already robust without applying

RO methods. However, the robust mean-variance formulation identifies the unreliable

upper part of the efficient frontier.

Recently, Yin et al. (2021) proposed a practical guide to robust portfolio opti-

mization based on mean-variance formulations. They assumed that asset returns are

uncertain and belong to either box or an ellipsoidal uncertainty sets. By using prac-

tical examples, they showed that the robust mean-variance PSP with an ellipsoidal

uncertainty set provides a more robust formulation than its corresponding problem

with a box uncertainty set.

2.3.2 Robust Mean Absolute Deviation

Konno & Yamazaki (1991) argued that calculating the covariance matrix in large

mean-variance PSPs is a challenging task. Hence, they proposed the mean abso-

lute deviation as an alternative volatility-based risk measure that reduces the com-

putational complexity of the covariance matrix. The MAD PSP is formulated as

minx∈X
1
S

∑S
s=1 |

∑n
j=1(rjs − rj)xj| s.t.

∑n
j=1 rjxj ≥ EW0. This formulation can

be transformed to an LP as minx∈X,y
1
S

∑S
s=1 ys s.t. ys +

∑n
j=1(rjs − rj)xj ≥

0, ∀s, ys −
∑n

j=1(rjs − rj)xj ≥ 0, ∀s,
∑n

j=1 rjxj ≥ EW0. Besides being reformable
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as an LP, the MAD PSP has another advantage over the mean-variance PSP of not

requiring the normality assumption for asset returns. However, MAD penalizes both

positive and negative deviations equally, though positive deviations are desirable by

investors. Moreover, in the classical MAD PSP, future asset returns are assumed to

be known with certainty.

To handle the uncertainty of asset returns in the MAD PSP, Moon & Yao (2011)

proposed a robust MAD PSP with a budget uncertainty set. However, Li et al.

(2016) suggested that classical uncertainty sets do not capture the asymmetry in asset

returns and, instead, proposed a robust MAD PSP with the asymmetric uncertainty

set first introduced by Chen et al. (2007). Ghahtarani & Najafi (2018) developed

a robust PSP based on m-MAD, a downside risk measure proposed by Michalowski

& Ogryczak (2001) that penalizes only negative deviations. Chen et al. (2011a)

proposed an alternative robust downside risk measure, referred to as lower partial

moment (LPM), and used it, along with a moment-based ambiguity set, for single and

multi-stage robust PSP that uses an S-shape value function. An important advantage

of robust LPM over robust m-MAD is that the former can be used also to develop

robust VaR/CVaR formulations with moment-based ambiguity sets. To avoid the

over-conservatism of worst-case approaches, Xidonas et al. (2017b) employed a robust

min-max regret approach in a multi-objective PSP. The objectives to be optimized

are expected asset returns and MAD. The proposed approach results in solutions that

do not have to be safe according to the worst realization of the parameters, but to

the relevant optimum of each scenario.

2.3.3 Factor-Based Portfolio Models

Factor-based models are financial models that incorporate factors (macroeconomic,

fundamental, and statistical) to determine the market equilibrium and calculate the

required rate of return. Goldfarb & Iyengar (2003) developed a robust factor-based

model for a PSP where uncertainty is considered by its sources, namely fundamental

factors. The basic formulation of a factor-based model is r = µ + V ⊺f + ϵ, where

µ ∈ Rn is the mean returns vector, f ∼ N(0, F ) is the vector of the factors that

drive the market, V ∈ Rm×n is the matrix of the factor loading of n assets, and

ϵ ∼ N(0, D) is the vector of the residual returns. Uncertain parameters are the mean
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return, the factor loading, and the covariance of residuals that belong to uncertainty

sets with upper and lower bounds. Goldfarb & Iyengar (2003) defined uncertainty

sets for these parameters as Ud = {D : D = diag(d), dj ∈ [ dj, d̄j], ∀j}, Uν = {V :

V = V0 + W, ||Wj||g ≤ ρj, ∀j}, and Um = {µ : µ = µ0 + ξ, |ξj| ≤ γj, ∀j},
where Wj is the jth column of W and ||w||g =

√
w⊺Gw is an elliptic norm of w

with respect to G. The return on a portfolio x is given by rx = r⊺x = µ⊺x +

f⊺V x+ ϵ⊺x ∼ N(x⊺µ, x⊺(V ⊺FV +D)x). Both f and ϵ are assumed to follow normal

distributions, thus rx also follows a normal distribution. The robust factor-based

model is developed based on two alternative assumptions. First, uncertainty in the

mean is independent of the uncertainty in the covariance matrix of returns, which

leads to a SOCP. Second, uncertainty in the mean depends on the uncertainty in

the covariance matrix of the returns, which results in a SDP formulation for the

worst-case VaR. It should be noted that the uncertainty sets in the robust factor-

based models of Goldfarb & Iyengar (2003) are separable, leading to two important

drawbacks: the results are conservative, and the robust portfolio constructed is not

well diversified. Alternatively, Lu (2006) and Lu (2011) proposed robust factor-based

models with a joint ellipsoidal uncertainty set that can be reformulated as a tractable

cone programming problem. Additionally, Ling & Xu (2012) developed a robust

factor-based model with joint marginal ellipsoidal uncertainty sets and options to

hedge risks that generates robust portfolios with good wealth growth rates even if an

extreme event occurs.

An important input to factor-based models is the “factor exposure”, which mea-

sures the reaction of factor-based models to risk factors. Kim et al. (2014c) argued

that factor-based models are not robust against the uncertainty of risk factors such

as macroeconomic factors. They proposed a robust factor-based model with an el-

lipsoidal uncertainty set that is robust against uncertainty and has the desired level

of dependency on factor movements. This model manages the total portfolio risk by

defining a robustness measure and a constraint that restricts the factor exposure of

robust portfolios. Another evidence to support the use of robust factor-based models

comes from Lutgens & Schotman (2010). They compared the Capital Asset Pricing

Model (CAPM), the international CAPM, the international Fama, and the French

factor-based models and showed that robust portfolios of factor models lead to better



42

diversified portfolios.

2.3.4 Robust Utility Function PSP

Most PSPs are based on the return-risk trade-off concept. However, financial decisions

might be made based on a utility function. Popescu (2007) developed a robust PSP

for the expected utility function (the utility that an entity or aggregate economy is

expected to reach under any number of circumstances) where the distribution function

of asset returns is partially known and belongs to an ambiguity set with predetermined

mean vector and covariance matrix. Natarajan et al. (2010) also proposed a less-

complex robust formulation of the expected utility function PSP that uses a piecewise-

linear concave function to model the investor’s utility. Besides the ambiguity set

of Popescu (2007), Natarajan et al. (2010) considered the case in which the mean

vector and covariance matrix of uncertain parameters belong to box uncertainty sets.

Ma et al. (2008) incorporated a robust factor model with a concave-convex utility

function to seize the advantages of both approaches. They assumed that the mean

returns vector, the factor loading covariance, and the residual covariance matrix are

uncertain and belong to uncertainty intervals. The robust counterpart turned out to

be a parametric quadratic programming problem that can be solved explicitly. Biagini

& Pınar (2017) proposed a min-max robust utility function for Merton problem.

Merton’s portfolio problem is a well-known PSP problem where the investor must

choose how much to consume and how allocate the remaining wealth between risky

assets and a risk-free asset to maximize expected utility. An ellipsoidal uncertainty

set is assumed to contain the drift from a compact values volatility realization.

2.4 Robust PSPs with Quantile-based Risk Measures

This section reviews robust quantile-based PSPs, which include PSPs based on the

Value at Risk (VaR), Conditional Value at Risk (CVaR), and their extensions with

worst-case RO, relative RO and distributionally robust optimization (DRO) methods.

Furthermore, the relationship between uncertainty sets and risk measures, application

of soft robust formulation with risk measures, worst-case CVaR and its relationship

with the uniform investment strategy, and robust arbitrage pricing theory with worst-

case CVaR are also discussed.
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VaR is the maximum loss at a specific confidence level. In other words, VaR

is the quantile of a loss distribution function, which is neither a convex nor coher-

ent risk measure. A coherent risk measure is a function that satisfies the proper-

ties of monotonicity, sub-additivity, homogeneity, and translational invariance which

provide computational advantages for a risk measure (see Artzner et al. (1999) for

details about coherent risk measures). CVaR is a coherent risk measure that de-

notes expected loss greater than VaR for a specific confidence level. Let f(x, r)

be a loss function. For a given confidence level β, the Value at Risk is defined as

V aRβ(x) = min{α ∈ R : Ψ(x, α) ≥ β}, where Ψ(x, α) =
∫
f(x,r)≤α p(r)dr. Conditional

Value at Risk is the expected loss that exceeds V aRβ(x), mathematically defined

as CV aRβ(x) = 1
1−β

∫
f(x,r)≥V aRβ(x)

f(x, r)p(r)dr. Rockafellar et al. (2000) proved

that CVaR can be formulated as an optimization problem by defining an auxiliary

function Fβ(x, α) = α + 1
1−β

∫
y∈Rm [f(x, r) − α]

+p(r)dr, where [.]+ = max{., 0} and

CV aRβ(x) = minα∈R Fβ(x, α). They also proved that CVaR can be reformulated as

an LP when using discrete scenarios for asset returns. An important input to these

formulations is p(.), which is often not known or only partially known. Considering

the ambiguity of p(.) leads to worst-case VaR and CVaR formulations.

2.4.1 Worst-Case VaR and CVaR

Ghaoui et al. (2003) were the first to propose a tractable reformulation for the

worst-case VaR, defined as V aRp(x) = minα s.t. sup{ProbΨ(x, α) ≥ β} ≤ ϵ, where

V aRoptimum
p = minV aRp(x) s.t. x ∈ X. The distribution function of asset returns is

assumed to be partially known and belongs to one of the four moment-based ambi-

guity sets: 1) the first two moments (mean vector (r̂) and covariance matrix (Σ)) of

the loss distribution function are known and fixed. 2) the moments (Σ, r̂) of the loss

distribution function are known to belong to the convex set, , assuming that there is a

point in U such that Σ ≻ 0. By introducing U+ := {(Σ, r̂) ∈ U |Γ ≻ 0}, the worst-case
VaR for this case is formulated as V aRp(x) = sup−r⊺x s.t. (Σ, r̂) ∈ U+. 3) poly-

topic uncertainty set defined as the convex hull of the vertices (r̂1,Σ1), ..., (r̂l,Σl).

The polytope uncertainty set U is then constructed as U = Ur × UΣ, where Ur =

Co{r̂1, ...r̂l} and UΣ = Co{Σ1, ...,Σl}. By assuming that Σi ≻ 0, i = 1, ..., l, the

worst-case VaR is formulated as V aRp(x) = k(ε)
√
maxΣ∈UΣ

x⊺Σx − minr̂∈Ur r̂
⊺x =
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max1≤i≤l k(ε)||Σ1/2
i ||2 −min1≤i≤l r̂

⊺
i x, where k(ε) =

√
1−ε
ε
. Ghaoui et al. (2003)

showed that this formulation can be transformed to a SOCP model. 4) component-

wise bounds for moments. Ghaoui et al. (2003) also considered the worst-case VaR

when the return of assets in the loss function is based on the factor model r = V f+ϵ,

where f is an m-vector of random factors, ϵ is the residual (unexplained) return, and

V is an n×m matrix of sensitivities of the returns. The covariance matrix of returns

is stated as Σ = D + V SV ⊺, where D is the diagonal covariance matrix of residuals

and S is the covariance matrix of factors. Two cases of parameter certainty are con-

sidered: uncertainty in the factor’s mean and covariance matrix, and uncertainty in

the sensitivity matirx. In contrast to Ghaoui et al. (2003), the factor model of Gold-

farb & Iyengar (2003) assumed that uncertainty in the mean is independent from

that of the covariance matrix, leading the expected value of error term of the factor

model to be equal to zero. This uncertainty structure leads to a SOCP reformulation,

compared to the SDP reformulation of Ghaoui et al. (2003).

It is argued that the worst-case VaR is unrealistic and conservative. Therefore,

a way to enforce the worst-case probability distribution to some level of smoothness

was proposed by adding a relative entropy constraint (i.e., KL divergence) with re-

spect to a given “reference” probability distribution. Whereas Ghaoui et al. (2003)

assumed that the return of assets follows a Gaussian distribution, Belhajjam et al.

(2017) argued that the distribution function of return is asymmetric. Hence, extreme

returns occur more frequently than would be under the normal distribution. Hence,

they proposed a multivariate extreme Value at Risk (MEVaR) formula based on a

multivariate minimum return that considers extremums of returns, i.e., the lowest

and highest daily returns. Since there is no guarantee that uncertain parameters

belong to a symmetric uncertainty set, Natarajan et al. (2008) applied the asym-

metric uncertainty set introduced by Chen et al. (2007) to develop a worst-case VaR

measure. Results show that Asymmetry-Robust VaR (ARVaR) is an approximation

of CVaR. Similar to Ghaoui et al. (2003), Natarajan et al. (2008) assumed that as-

set returns follow a factor model. Moreover, an asymmetric uncertainty set for the

worst-case VaR leads to a tractable second-order cone program. Another less complex

method to consider asymmetric uncertainty is to use interval random uncertainty sets.

Chen et al. (2011b) developed a worst-case VaR assuming that the expected vector
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and covariance matrix of the returns are uncertain and belong to interval random

uncertainty sets.

Huang et al. (2007) demonstrated that the exit time of investment (or the in-

vestment horizon) which is traditionally assumed to be deterministic, can, in reality,

depend on market conditions. Consequently, they considered a conditional distri-

bution function of the rate of return based on different exit times instead of the

unconditional distribution function previously used in Ghaoui et al. (2003). Three

robust portfolio formulations were proposed: 1) a portfolio formulation with com-

ponentwise uncertainty on moments of the conditional distribution function of exit

time. 2) a portfolio formulation with semi-ellipsoidal uncertainty set on exit time. 3)

moments of the conditional distribution function of exit time belonging to a polytope

uncertainty set for each exit time. Huang et al. (2008) also assumed that the density

function of exit time is only known to belong to an ambiguity set that covers all

possible exit scenarios. They developed two formulations: a worst-case VaR with no

information about exit time, and a formulation with partial information about exit

time.

Kelly Jr (1956) proposed an investment strategy in the financial market (known

as Kelly Strategy), which maximizes an expected portfolio growth rate. From a

mathematical perspective, implementing the Kelly strategy is synonymous with solv-

ing a multi-period investment strategy, making it amenable to robust approaches

for handling uncertainty. Rujeerapaiboon et al. (2016) considered Kelly’s strategy

under return uncertainty and proposed a formulation that includes the constraint

P(total portfolio return ≥ γ) ≥ 1− ϵ, where γ is an expected total portfolio return,

and 1 − ϵ is the confidence level. This chance constraint is, simply, the definition

of VaR. In this formulation, the distribution function of asset returns is assumed to

be uncertain and belongs to the class of moment-based ambiguity set introduced in

Delage & Ye (2010). This ambiguity set leads to a SDP formulation for the worst-case

VaR.

As mentioned earlier, VaR has a high computational complexity since it is not

convex. Zhu & Fukushima (2009) proposed a PSP that maximizes the worst-case

CVaR, defined as supπ∈P CV aRβ(x), with three cases of uncertainty set for the prob-

abilities of discrete return scenarios: a mixture distribution, a box uncertainty set,
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and an ellipsoidal uncertainty set. The last case led to a SOCP, whereas the first

two cases resulted in LPs. A mixture distribution (PM) is defined as π ∈ PM =

{
∑I

i=1 ηip
i(.) :

∑I
i=1 ηi = 1, ηi ≥ 0, i = 1, ..., I}, which leads to: WCV aRβ(x) =

minα∈R maxi∈l F
i
β(x, α), where l = [1, ..., I]. The box uncertainty set for probability

distribution is defined as π ∈ P β
π = {π : π = π0 + ζ, e⊺ζ = 0, ζ ≤ ζ ≤ ζ̄},

whereas the ellipsoidal uncertainty set for probability distribution function is defiend

as π ∈ Pπ = {π : π = π0 + Aζ, e⊺Aζ = 0, π0 + Aζ ≥ 0 ||ζ|| ≤ 1}, where ||ζ|| =
√
ζ⊺ζ

and π0 is the nominal distribution. Doan et al. (2015) extended the worst-case CVaR

formulation of Zhu & Fukushima (2009) by proposing a data-driven approach to con-

struct a class of distributions for asset returns, known as Fréchet distributions, that

leads to less conservative solutions than the worst-case CVaR. Moreover, Hasuike &

Mehlawat (2018) incorporated the arbitrage pricing theory (APT) model, which is

a multi-factor model, in a bi-objective PSP that aims at maximizing the expected

return and minimizing the worst-case CVaR of a portfolio. Ghahtarani et al. (2018)

proposed a robust CVaR formulation by considering the uncertainty of the return

distribution’s parameters. They proposed a robust mean-CVaR PSP with a chance

constraint when asset returns follow a Gaussian distribution with uncertain moments.

Hellmich & Kassberger (2011), in contrast, developed a worst-case CVaR model with

asset returns that follows a heavy-tail multivariate generalized hyperbolic distribu-

tion. Their formulation can also capture the asymmetrical nature of asset returns.

One way to alleviate the over-conservatism of the worst-case VaR/CVaR solutions

is to use a data-driven joint ellipsoidal uncertainty set in which the first two moments

of the distribution function of asset returns are in an ellipsoid norm. Lotfi & Zenios

(2018) proposed an algorithm for constructing data-driven ambiguity sets based on

an optimization model to find the centers of joint ellipsoidal uncertainty sets. In

another attempt, Liu et al. (2019) used the data-driven moment-based ambiguity set

introduced in Delage & Ye (2010) to propose a worst-case CVaR in both single and

multi-period PSPs. In this formulation, for each period there is a separate ambiguity

set. They demonstrated that a robust counterpart of the multi-period mean-CVaR

PSP can be solved as a sequence of optimization problems based on an adaptive robust

formulation. Kang et al. (2019) argued that the ambiguity set of Delage & Ye (2010)

leads to solutions that are too conservative. Therefore, they altered it by adding
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a zero-net adjustment constraint. Huang et al. (2021) proposed a distributionally

robust mean-CVaR PSP with a moment-based ambiguity set. Besides DRO, they

used an l1 norm to limit the weights (decision variables) of the, so called, sparse

PSP to limit the impact of noisy data. Results provide evidence that a sparce mean-

CVaR PSP has better performance than a non-sparce formulation with respect to net

portfolio return, Sharpe ratio, and cumulative return. Moreover, Zhao et al. (2021)

formulated a cardinality-constrained rebalancing worst-case CVaR with a moment-

based ambiguity set. The proposed formulation enhances the portfolio diversification.

Huang et al. (2010) claimed that investors usually do not want to pay the price

of full robustness to protect their portfolios against the worst possible scenario. In

an uncertain environment, investors may rather choose a strategy that avoids falling

behind their competitors. According to this point of view, for each choice of decision

variables and each scenario, the decision-maker compares the resulted objective value

to the optimal value obtained under model uncertainty described by the scenario.

The difference or the ratio of these two values is a regret measure. To minimize these

regrets measures, Huang et al. (2010) developed a relative CVaR formulation, math-

ematically described as RCV aRα(x) = supπ∈P{CV aRα(x, π) − CV aRα(z
∗(π), π)},

where z∗(π) = argminz∈X CV aRα(z, π). However, since the true distribution (π) is

not known, decision-makers try to make the relative CVaR as small as possible by

considering all possible π values. Consequently, a finite number of forecasts for the

distribution function of asset returns is considered. Results showed that the relative

CVaR is less conservative than the worst-case CVaR for optimal portfolio return.

Alternatively, Yu et al. (2017) proposed a relative CVaR and a worst-case CVaR by

adjusting the required return from a fixed rate to a floating rate that changes ac-

cording to market dynamics. Moreover, the formulation was extended by allowing

short sale and adding a transaction cost constraint. Results showed that a relative

CVaR yields slightly higher realized returns, lower trading costs, and better portfolio

diversification than its corresponding worst-case CVaR model when the required re-

turn is fixed. Additionally, the out-of-sample performance of floating-return models

compared to fixed-rate models is significantly better during periods when a market

recovers from a financial crisis. Finally, robust floating-return models have a better

asset allocation, save transaction costs, and attribute to superior profitability. Benati
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& Conde (2021) proposed a model that minimizes the maximum regret on the ex-

pected returns while the conditional value-at-risk is bounded under different scenario

settings. To solve this problem, a cutting plane approach was proposed.

An investment strategy that is widely used in financial markets is the uniform

investment strategy or 1/N rule, which divides the budget among assets equally. Pflug

et al. (2012) demonstrated that the uniform investment strategy is the best strategy

for investment under uncertainty. They proposed robust mean-CVaR and mean-

variance PSPs where the distribution function of asset returns is uncertain and belongs

to a Kantorovich or Wasserstein metric-based ambiguity set. Results showed that

when the size of the Wasserstein ambiguity set is infinity, solutions of the robust PSPs

are equal to the uniform investment strategy. Hence, the optimal investment strategy

in a high ambiguity situation is the uniform investment or 1/N rule. However, Pflug

et al. (2012) assumed that all assets are subject to uncertainty though it is possible to

use fixed-income assets with no ambiguity or uncertainty in the portfolio. Therefore,

Paç & Pınar (2018) extended the robust uniform strategy of Pflug et al. (2012) by

considering both ambiguous and unambiguous assets. They showed that by increasing

the ambiguity level, measured by the radius of the ambiguity set, the optimal portfolio

tends to use equal weights for all assets. Also, high levels of ambiguity result in

portfolios that avoid ambiguous assets and favor unambiguous assets.

Finally, Natarajan et al. (2009) established the relationship between risk measures

and uncertainty sets. They showed that using an ellipsoidal uncertainty set for asset

returns corresponds to the classical mean-variance PSP, whereas the CVaR formula-

tion results from using a special polyhedral uncertainty set. As discussed by Ben-Tal

et al. (2010), in soft robust formulations, a penalty function is introduced such that

if uncertain parameters fluctuate in the uncertainty set, the penalty function equals

zero. Otherwise, the penalty function takes a positive value. Recchia & Scutellà

(2014) proved that the definition of a convex risk measure is also based on a penalty

function that is called norm-portfolio models, where using l∞, l1, and D-norm result

in an LP for a norm-portfolio model. On the other hand, using a euclidean norm re-

sults in a SOCP, whereas applying a D-norm, proposed by Bertsimas et al. (2004b),

for a penalty function with specific parameters leads to the CVaR formulation.
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Worst-Case CVaR with Copula

Classical multivariate distribution functions make the worst-case CVaR computation-

ally complex. One way to address this issue is to use copulas instead of multivariate

distribution functions for asset returns. Copulas are multivariate distribution func-

tions whose one-dimensional margins are uniformly distributed on a closed interval

[0, 1]. One-dimensional margins of copulas can be replaced by univariate cumulative

distributions of random variables. Hence, copulas consider the dependency between

marginal distributions of random variables instead of focusing directly on dependency

between random variables themselves. This characteristic makes them more flexible

than standard distributions, and also an interesting candidate for the distribution

function of the rate of return in the worst-case CVaR.

Kakouris & Rustem (2014) used Archimedean copulas to propose worst-case CVaR

PSPs that avoids the shortcomings of worst-case CVaR PSPs based on a Gaussian

distribution, which is a symmetric distribution for asset returns. There are three

Archimedean copulas: the Clayton copula, the Gumbel copula, and the Frank copula.

Kakouris & Rustem (2014) used a heuristic method to estimate copulas’ parameters

in the context of a multi-asset PSP. However, simulating data from three Archime-

dian copulas has computational challenges. On the other hand, Han et al. (2017)

claimed that the formulation of Kakouris & Rustem (2014) is static, making it un-

able to deal with the dynamic nature of the financial market. They, instead, proposed

a dynamic robust PSP with Archimedean copulas by using dynamic conditional cor-

relation (DCC) copulas and copula-GARCH model to forecast the worst-case CVaR

of bi-variate portfolios. Results show that dynamic worst-case CVaR models can put

more weight on assets with lower volatility, which leads to a less aggressive trading

strategy.

CVaR calculates the expected loss based on just one confidence level. However,

decision-makers might prefer different confidence levels based on their risk attitude.

One way to increase the flexibility of CVaR related to decision-makers’ risk atti-

tude is to use Mixed-CVaR and Mixed Deviation-CVaR. These mixed risk measures

combine CVaRs with different confidence levels. Goel et al. (2019) proposed ro-

bust Mixed-CVaR and Mixed Deviation-CVaR Stable Tail-Adjusted Return Ratio

(STARR), which is the portfolio return minus the risk-free rate of return divided by
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the expected tail loss (at a specific confidence level). Finally, a mixture copula set

was used to consider distribution ambiguity, which resulted in an LP.

2.4.2 Robust Mean-CVaR/Shortfall PSP

Besides the worst-case VaR and CVaR, some researchers developed robust mean-

CVaR PSPs where the distribution function of the loss function is assumed to be

deterministic while returns of assets or weights of the mixture distribution function of

the rate of return are uncertain. Thus, classical uncertainty sets are used to develop

robust mean-CVaR PSPs. Quaranta & Zaffaroni (2008) proposed a robust mean-

CVaR with a box uncertainty set that leads to an LP. Kara et al. (2019) also proposed

a robust mean-CVaR PSP with a parallelepiped uncertainty set, developed by Özmen

et al. (2011). The parallelepiped uncertainty set is practically a box uncertainty set

while its elements are a convex hull of canonical vertices of an uncertain matrix.

Elements of this uncertainty set are founded by the Cartesian product of uncertain

intervals. An advantage of a parallelepiped uncertainty set over a box uncertainty

set is that the lengths of intervals may vary among each other. Moreover, instead of

a single price, it is possible to consider multiple and flexible varying prices of assets

and also take into account likewise flexible returns. To reduce the conservatism of

solutions of a robust mean-CVaR with a box uncertainty set, Guastaroba et al. (2011)

developed a robust mean-CVaR with ellipsoidal and budget uncertainty sets, which

lead to a SOCP and an LP, respectively. Besides the uncertainty of parameters, a

mean-CVaR PSP has a multi-objective characteristic as it maximizes the expected

return while minimizing the risk (CVaR). Then, a multi-objective formulation can

capture the multiple-criteria nature of this problem. Rezaie et al. (2015) developed a

robust bi-objective mean-CVaR PSP with a budget uncertainty set. An ideal and anti-

ideal compromise programming approach was used to solve the proposed problem.

This method seeks an answer as close as possible to the ideal value and as far as

possible from the anti-ideal value of each objective. Ideal and anti-ideal values reflect

investors’ perspectives of the real world.

Another development of a robust mean-CVaR is based on mixture distribution

functions. There are three reasons for using a mixture distribution function for asset

returns. First, it is a combination of multiple distribution functions, thus enabling
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different market conditions with different distribution functions to be considered.

Moreover, it replaces the estimation of the distribution function by a calculation

of the distribution weights in a mixture distribution function. Finally, since any

distribution function can be simulated by using a mixture of Gaussian distribution

functions, a mixture distribution function has high flexibility. Zhu et al. (2014) used a

mixture distribution function for asset returns to propose a robust mean-CVaR PSP.

The uncertainty in their formulation is about the weights of distribution functions.

For considering the uncertainty, ellipsoidal and box uncertainty sets were used. The

former leads to a SOCP and the latter results in an LP.

Shortfall is also a quantile risk measure from the family of VaR and CVaR, in-

troduced by Bertsimas et al. (2004a). Shortfall measures how great an expected loss

will be if a portfolio return drops below the α-quantile of its distribution. Mathemat-

ically, it is defined as Sα = E[r⊺x] − E[r⊺x | r⊺x ≤ qα(r
⊺x)], α ∈ (0, 1), where qα is

the α-quantile of the distribution of random portfolio return. Like CVaR, shortfall

can be reformulated as an LP while asset returns are subject to uncertainty. Later,

Pachamanova (2006) developed a robust shortfall with an ellipsoidal uncertainty set,

which can be reformulated as a SOCP. Their results showed that a robust short-

fall PSP outperforms its nominal problem in the presence of uncertainty in terms of

both return and risk. Another quantile-based measure is the conditional expectation

type reward–risk performance measure developed by Ortobelli et al. (2019). This

performance measure captures the portfolio’s distributional behaviour on the tails.

Kouaissah (2021) proposed a robust conditional expectation formulation where the

asset returns are uncertain and belong to an ellipsoidal uncertainty set. Results of this

robust formulation demonstrated better out-of-sample performance than its nominal

counterpart.

2.5 Multi-Period PSP

Active strategies which involve ongoing buying and selling of assets are preferred

by many investors. With an active strategy, investors continuously re-balance their

portfolios by solving multi-period PSPs. In this section, we review applications of

RO in this class of problems.
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2.5.1 Robust Multi-Period PSP

Dantzig & Infanger (1993) proposed one of the most popular multi-period PSPs.

Three types of decision variables are used in their formulation: xsj , y
s
j and zsj , de-

noting, respectively, the amounts of asset j at period s the investors hold, buy and

sell. There are n risky assets and one risk-free asset. The problem is formulated as

max
∑n+1

j=1 r
S
j x

S
j s.t. xsj = rs−1

j xs−1
j − ysj + zsj , ∀j, s, xsn+1 = rs−1

n+1x
s−1
n+1 +

∑n
j=1(1 −

∆s
j)y

s
j −

∑n
j=1(1 + νsj )z

s
j , y

s
j ⩾ 0, zsj ⩾ 0, ∀j, s, xsj ⩾ 0, where the objective func-

tion maximizes the total wealth at the final period. The first constraint is for risky

assets balancing, ensuring that the amount of risky assets held at period s equals

the amount of assets carried forward from the previous period in addition to the net

effect of transactions in the current period. The second constraint is for risk-free asset

balancing, where (1−∆s
j)y

s
j is the amount of cash investors receive from selling asset

j at the beginning of the period s, whereas (1− νsj )zsj is the cash investors use to buy

asset j at the beginning of period s. The uncertain parameters in this formulation

are asset returns at each period. Ben-Tal et al. (2000) reformulated this multi-period

PSP by defining cumulative asset returns Rs
j = r0j r

s
j ...r

s−1
j , which become the new

uncertain parameters. By considering these cumulative returns, Ben-Tal et al. (2000)

defined new variables for their formulation as ξsj =
xsj
Rsj
, ηsj =

ysj
Rsj
, and ζsj =

zsj
Rsj
. The

final formulation becomes max
∑n+1

j=1 R
S+1
j ξSj s.t. ξsj = ξs−1

j − ηsj + ζsj , ∀j, s, ξsn+1 =

ξs−1
n+1 +

∑n
j=1A

s
jη
s
j −

∑n
j=1B

s
j ζ
s
j , ∀s, ηsj ⩾ 0, ζsj ⩾ 0, ∀j, s, ξsj ⩾ 0, ∀j, s, where

Asj = (1−∆s
j)

Rsj
Rsn+1

, and Bs
j = (1− νsj )

Rsj
Rsn+1

. Both SP and RO were applied with the

last nominal formulation. Interestingly, the RO problem was shown to be less complex

than the SP one. An ellipsoidal uncertainty set was used in the robust problem, lead-

ing to a SOCP. Alternatively, Bertsimas & Pachamanova (2008) used a D-norm to

define the uncertainty set for cumulative asset returns, thus leading to a tractable LP

reformulation. To make the problem more appealing for practitioners and to increase

its robustness against market volatility, Marzban et al. (2015) included American op-

tions in the robust formulation of Bertsimas & Pachamanova (2008). However, this

change led to more conservative solutions in comparison to those of Ben-Tal et al.

(2000) and Bertsimas & Pachamanova (2008).

Fernandes et al. (2016) added a loss function with a predetermined threshold as

a constraint to the formulation of Dantzig & Infanger (1993), leading to a problem
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with a terminal wealth objective that requires a one-step-ahead asset return forecast

as an input. A linear combination of chosen predictors is employed as a mixed-signals

model that uses the last specific number of trading periods to forecast one-step ahead

returns. A polyhedral set, constructed as the convex hull of the observed returns,

is used as a data-driven uncertainty set. The proposed loss constraints adaptively

generate different polyhedral feasible regions for investors’ asset allocation decisions.

Results showed that the data-driven problem led to less conservative solutions than

classical RO.

To control the downside of losses, the lower partial moment (LPM) can also be

used, which is more perceivable by investors than other risk measures. Ling et al.

(2019) proposed a multi-period PSP similar to that of Dantzig & Infanger (1993)

based on a downside risk measure with an asymmetrically distributed uncertainty

set. The objective function combines the expected terminal wealth of the portfolio

with its LPM. At each period s = 0, . . . , S, returns are denoted as rs0, r
s
1, ..., r

s
n, where

rs0 is the deterministic risk-free return and rsj is the uncertain return of risky asset

j. The decision variable xsj , j = 0, . . . , n denotes the dollar amount invested in

asset j in period s. With that, the terminal value of the portfolio is given by wS =

xS0 (1+r
S
0 )+(e+rS)⊺xS, and the objective function is min−E[W T ] + λ.E[(α−W T )+].

Rebalancing constraints, similar to those used in Dantzig & Infanger (1993), are

included.

Risk in a multi-period PSP can also be captured by the volatility of terminal

wealth using mean-variance multi-period PSPs. Cong & Oosterlee (2017) consid-

ered discrete periods, indexed by s ∈ {0,∆s, ..., S − ∆s} for investment and de-

note by S the terminal period. Their formulation is based on maximizing the ex-

pected terminal wealth and minimizing the investment risk, quantified as v̂0(W0) =

max{x̂s}S−∆s
s=0
{E[WS|W0] − λ.Q[Ws|W0]}, where v̂ is the value function. In this for-

mulation, W is the wealth, which is calculated as Ws+∆s = Ws.(x̂
⊺
sr
e
t + rf ), s =

0, ∆s, ..., S−∆s, whereas rf is the return of the risk-free asset and res = [res(1), ..., r
e
s(n)]

is the vector of returns of the risky assets during [s, s+∆s]. Cong & Oosterlee (2017)

argued that solving this problem using dynamic programming is difficult because of

the non-linearity of conditional variance, so they replaced the dynamic mean-variance

problem with a dynamic quadratic optimization problem. The new formulation is a
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target-based optimization since the risk aversion coefficient acts similar to an in-

vestment target in the problem. Moreover, solving the dynamic mean-variance PSP

based on target-based optimization ensures time-inconsistency or “pre-commitment

strategy”, which means that the investor has committed to an initial investment strat-

egy. However, in many cases, investors do not want to commit to an initial invest-

ment strategy. Therefore, Basak & Chabakauri (2010) suggested a time-consistency

restriction in the formulation that can be solved in a backward recursive manner.

Nevertheless, in both cases of pre-commitment and time-consistency strategies, the

mean vector and the covariance matrix of returns of risky assets are subject to un-

certainty. Hence, Cong & Oosterlee (2017) proposed robust pre-commitment and

time-consistency strategies where stationary and non-stationary formulations gener-

ate portfolios with the same Sharpe ratio given the risk-free asset as a benchmark.

Jiang & Wang (2021) proposed a multi-period, multi-objective PSP where the ob-

jectives are the expected value and variance of the portfolio returns. To consider

parameter uncertainty, an ellipsoidal uncertainty set is used for asset returns, leading

to a SOCP. Moreover, a weighted-sum approach is used to obtain the Pareto frontier

of the solutions.

Volatility measures can be used to define an arbitrage opportunity, which is a

portfolio that can be formed with a negative investment while its profit is positive.

Pinar & Tütüncü (2005) considered n risky assets, where νj is the period-end value

of $1 invested in asset j at the beginning of the period. They used ν = (ν1, ..., νn)

as the vector of the end-of-period values, which ν̄ is its expected value and Q is its

covariance matrix. The vector of return is defiend as r = ν − e. If ν is known in

advance, a portfolio x that satisfies ν̄⊺x ≥ 0, x⊺Qx = 0, e⊺x ≤ 0 corresponds to

an arbitrage opportunity. Since x⊺Qx = 0 then there is not any deviation in the

return of assets form their expected values. These conditions mean that there is a

portfolio that can be formed with a negative investment while its profit is positive.

In practice x⊺Qx cannot be equal to zero. An investor can assume that a random

number is ”rarely” less than its mean minus θ times of its standard deviation as

ν̄⊺x − θ
√
x⊺Qx ≥ 0, e⊺x ≤ 0. Pinar & Tütüncü (2005) demonstrated that these

conditions are related to an RO approach with an ellipsoidal uncertainty set. They

also developed a multi-period PSP formulation by defining a self-financing constraint,
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in which the investment amount in the second period is based on the income of the

first period. The end-of-period value of $1 invested in an asset at each period is

uncertain and belong to an ellipsoidal uncertainty set. An adjustable RO approach

was used to handle uncertainty.

While most robust PSPs are modelled under the assumption that investors are

perfectly rational beings, Liu et al. (2015) argued that the rationality assumption does

not always hold. Studies of behavioral finance have found that the axioms of rational-

ity are violated across a range of financial decision-making situations. The prospect

theory delineates the behavior of investors and asserts that investors value gains and

losses differently. Liu et al. (2015) proposed a robust multi-period PSP based on the

premises of the prospect theory. Instead of classical utility or disutility functions,

an S-shape value function, originally introduced by Kahneman & Tversky (2013), is

used to model the investor perception towards return. To account for uncertainty in

cumulative asset returns, a budget uncertainty set whose level of conservatism can be

controlled is utilized. However, applying the prospect theory value function leads to

a complex nonlinear programming model that is intractable. Therefore, an improved

particle swarm optimization (PSO) algorithm was used to solve the problem.

Besides the uncertainty of individual asset returns at each period, macroeconomic

conditions represent another source of uncertainty. Desmettre et al. (2015) proposed

a formulation for a multi-period investment problem under uncertainty introduced by

uncertain market crash sizes in an interval. The objective is to maximize the terminal

wealth. This problem uses a min-max worst-case scenario formulation that can be

solved analytically. However, an interval uncertainty set results in over-conservative

solutions.

Another way to represent the uncertainty of parameters is by using discrete sce-

narios, which often lead to less complex formulations compared to those based on

continuous uncertainty sets. The next section focuses on the use of discrete scenarios

in robust multi-period PSPs.

2.5.2 Robust Discrete Scenarios and Decision Tree Models

Mulvey et al. (1995) developed a robust framework based on discrete scenarios in

which infeasibility is allowed under some scenarios but is penalized in the objective
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function. Application of this approach to robust multi-period PSPs usually leads

to less complex formulations than for robust problems that use continuous uncer-

tainty sets. Pınar (2007) considered a two-period PSP in which the returns of risky

assets are uncertain, and used a discrete scenario tree to model uncertainty. In an-

other attempt, Oguzsoy & Güven (2007) proposed a robust multi-period PSP with

rebalancing and transaction costs. The problem is formulated as an MIP since its

decision variables are the number of shares. They also developed a scenario-based,

multi-period, mean-variance PSP, in which a decision tree with different levels is used.

Portfolio rebalancing can happen at any level of the decision tree, and each tree node

shows different rival scenarios for returns and risk (variance). A min-max formula-

tion is used to find the worst-case robust solution. The robust counterpart considers

risk scenarios at each node, time period and return realization . Since it is very un-

likely that the worst scenario across all dimensions is realized, this approach leads to

overly conservative solutions. Conversely, Shen & Zhang (2008) used semi-variance

as a disutility function (i.e., risk measure), which penalizes only negative deviations.

Both asset returns in each scenario and the conditional probabilities of scenarios are

treated as uncertain parameters. Ellipsoidal uncertainty sets are for returns of assets

at each scenario, which leads to a SOCP.

Two-stage stochastic programming is a practical framework for modeling un-

certainty in optimization problems. In this approach, decision variables are di-

vided into “here-and-now” and “wait-and-see” variables. The mathematical formu-

lation of a two-stage stochastic programming is minx∈X c
⊺x + E[F (x, ξ(w))], where

F (x, ξ(w)) = min f(w)⊺y, s.t. A(w)x + Dy = b(w), y ≥ 0, where x is a “here

and now” decision variable, y is a “wait and see” decision variable, E(.) is the

expected value, ξ(w) = (f(w), A(w), b(w)) is the uncertain vectors, and D is the

fixed recourse matrix. Ling et al. (2017) argued that because two-stage stochas-

tic programming is a risk-neutral approach, it is not suitable for a certain setting,

and developed a two-stage stochastic program with a mean-risk aversion concept as

minx∈X c
⊺x+E[F (x, ξ(w))]+λρ(F (x, ξ(w))), where ρ is a risk measure and λ ≥ 0 is a

trade-off coefficient that captures the risk-aversion attitude of the decision maker. To

tackle the same problem, Ahmed (2006) used variance as a risk measure, while Ling

et al. (2017) used CVaR as a risk measure leading to the less complex formulation
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minx∈X c
⊺x+ E[F (x, ξ(w))] + λCV aRα(F (x, ξ(w))). Ling et al. (2017) assumed that

asset returns in the first stage belong to a set of scenarios with known probabilities,

whereas the distribution function of asset returns in the second stage belongs to an

ambiguity set with uncertainty about the first two moments. This approach results

in a SDP formulation. Even though using discrete scenarios and a decision tree for

a multi-period PSPs lead to tractable formulations, identifying all possible scenarios

might be challenging.

2.5.3 Robust Regime Dependent Models

Liu & Chen (2014) argued that stock prices are affected by market conditions, which

are assumed to follow a Markov regime-switching process. Specifically, in each mar-

ket regime, financial parameters have different distribution functions. An approach

to deal with parameter uncertainty in different market conditions is by using regime-

dependent robust formulations. Liu & Chen (2014) described the time-varying prop-

erties of random returns by using a nonlinear dynamic model between periods. They

assumed different uncertainty sets for each market situation. VaR is used as the basic

risk measure in the formulation, where the distribution function of asset returns is

uncertain and belongs to a moment-based ambiguity set. A restrictive assumption

made in this study is that uncertainty sets of adjacent periods are independent and

static, whereas in reality they usually are dynamic and dependent. Liu & Chen (2018)

considered dependency of dynamic uncertainty sets between adjacent periods in their

formulation. Moreover, instead of VaR, they used CVaR as the risk measure. Similar

to the formulation of Liu & Chen (2014), it is assumed that moments of the loss

function distribution are known and fixed, which leads to a SOCP formulation.

Yu (2016) also applied the regime-switching uncertainty set approach on a mean-

CVaR PSP where the loss function is assumed to be the difference in wealth between

times s− 1 and s. This practically means that at each period, there is a different loss

function which results in a different CVaR constraint. Because at each market state

the risk-free rate of return can also change, risky asset returns, risk-free asset returns,

and the distribution function of the loss function (probability of each scenario) are

assumed to be uncertain and belong to ellipsoidal uncertainty sets. A three-step

algorithm is used to find optimal solutions of the multi-period PSP based on different
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market states. An important advantage of this multi-period PSP is that it captures

both regime-switching and parameter uncertainty simultaneously, leading to a more

practical formulation than classical robust multi-period PSPs.

2.5.4 Asset-Liability Management Problem

Asset Liability Management (ALM) entails the allocation and management of assets,

equity, interest rate, and credit risk (including risk overlays) to cover the commitments

(i.e., debts). In this section, we survey applications of RO in ALM problems.

Van Hest & De Waegenaere (2007) demonstrated that there are two types of in-

vestment strategies in an ALM problem: passive risk management, and active risk

management. In the passive strategy, allocation of budget among different bench-

marks such as equity, bonds, real estate etc. is the main decision. In active risk

management, decisions are about tactical and operational investment activities that

involve a number of investment managers, each is assigned a specific benchmark cat-

egory. A formulation that calculates the total return of each manager by solving a

mean-variance PSP based on the calculated expected value and variance of invest-

ment returns is proposed. These parameters are assumed to belong to ellipsoidal

uncertainty sets. Practically, this robust ALM problem is a mean-variance PSP while

the expected return and variance of asset returns belong to uncertainty sets.

Iyengar & Ma (2010) assumed that the source of uncertainty of asset returns are

fundamental factors. Then, a factor model can capture the true uncertainty of asset

returns instead of predefined nominal asset returns. Using robust factor models in

ALM problems can enable the true sources of uncertainty to be captured, leading

to more realistic formulations with better out-of-sample performance. Iyengar & Ma

(2010) developed a RO formulation for pension fund management, which is an ALM

problem with a constraint on funding ratio. This ratio indicates the value of assets

to the present value of liabilities that are used in a chance constraint, where the

probability that funding ratio is greater than a threshold should be greater than a

confidence level. The present value of liabilities depends on the interest rate, whereas

asset values depend on their rate of return. In the proposed formulation, the funding

ratio is assumed to be an uncertain parameter that follows a factor model by a func-

tion that defines stochastic parameters. A Gaussian process for factors of uncertain
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parameters is considered. Parameters of factor models are assumed to belong to an

ellipsoidal uncertainty set, which results in a SOCP. Platanakis & Sutcliffe (2017) pro-

posed a factor model for asset returns and liabilities in which factor loading belongs to

an ellipsoidal uncertainty set, asset returns and liabilities belong to box uncertainty

sets, and the covariance matrix of disturbances has upper and lower bounds on its

elements. It has been shown that this problem can be reformulated into a SOCP.

Gülpinar & Pachamanova (2013) used time-varying investment opportunities to

propose a robust ALM. This method assumes that a future rate of return of an

asset depends on its rate of return in a former period. They augmented the multi-

period PSP formulation of Dantzig & Infanger (1993) by adding liabilities and a

funding ratio constraints. The transformation of Ben-Tal et al. (2000) was also used

to simplify the formulation, by which the cumulative rates of return of assets are

the uncertain parameters that belong to an ellipsoidal uncertainty set. Asset returns

and interest rates are assumed to follow a vector-autoregressive (VAR) process that

captures the time-varying aspect of investment. Unlike the symmetric uncertainty sets

assumption in other robust ALM problems, Gülpınar et al. (2016) developed a robust

ALM problem using asymmetric uncertainty set, which captures the structure of

uncertainty more accurately. Recently, Gajek & Krajewska (2021) proposed a robust

ALM formulation where the interest rate is uncertain and the distribution function

of the uncertain parameters belongs to a nonempty ambiguity set. This formulation

bounds from above VaR of the change in the portfolio value due to interest rate model

violation.

2.5.5 Robust Control Formulation

Robust control methods are designed to function properly provided that the uncertain

parameters or disturbances are contained within some bounded/compact sets. Flor

& Larsen (2014) developed a robust control formulation for an investment PSP. They

assumed that an investor has access to stocks, bonds, and cash while interest rates

are uncertain. In this formulation, a robust control, time-continuous formulation

for the uncertainty of interest rate is developed. Results showed that the proposed

model is more sensitive to the ambiguity about stocks than bonds. This problem is

time-continuous, thus is formulated using differential equations.
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Glasserman & Xu (2013) developed a robust control formulation for a multi-

period PSP based on a factor model that is used to calculate the return of assets

at the next period. They assumed that the factors are mean reverting and evolving

and that their value at any time is a function of their previous time value and its

residual. Two regression models were used. In the first model, a factor model cal-

culates the return of assets at the next period. The second factor model calculates

factor values at the next period. Sources of uncertainty in this PSP are the residuals

of the two factor-models. Based on this formulation, the goal is to maximize the

net present value of risk-adjusted excess gains by considering restricted transaction

costs. Moreover, models are developed in two cases; finite-horizon investment, and

infinite-horizon investment. A robust formulation based on the Bellman equation,

leading to a dynamic programming model, is used. Results showed that the robust

control formulation of Glasserman & Xu (2013) is more robust than deterministic

formulations against perturbations of uncertain parameters.

Bo & Capponi (2017) applied a robust control approach for the credit portfolio,

where the impact of credit risk model misspecification on the optimal investment

strategies is measured. They proposed a formulation for a dynamic credit portfolio

that accounts for robust decision rules against misspecifications of a model for the

actual default intensity. Default intensity is defined as the probability of default

for a certain time period conditional on no earlier default. In this formulation, an

investor can invest in the money market and bonds by a pricing model of bonds that

considers credit intensity. This portfolio formulation tries to maximize wealth while

default intensity is uncertain.

2.6 Other Financial Problems

In this section, special PSP formulations are reviewed, including Log-robust portfo-

lio selection, robust index tracking, hedging formulation, risk-adjusted Sharpe ratio,

scenario-based formulation, and robust data envelopment analysis (DEA) for PSPs.
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2.6.1 Log-Robust Portfolio Selection

Hull (2003) defined the Log-return as the equivalent, continuously-compounded rate

of return of asset returns over a period of time. Log-return is calculated by tak-

ing the natural log of the ending stock price divided by the beginning value. It

is based on a Levy process that represents the movements of a stock price whose

successive displacements are random, independent, and statistically identical over

different time intervals of the same length. Assume that Log-return of stock j at

time S can be described as Ln
Prj(S)

Prj(0)
= (µj −

σ2
j

2
)S + σj

√
Szj, where S is the length

of the time horizon, Prj(0) is the initial price of stock j, Prj(S) is the stock price

at time S, µj is the drift of the Levy process for stock j, and σj is the standard

deviation of the Levy process for stock j. Kawas & Thiele (2011a) proposed a Log-

robust PSP where the scaled deviation belongs to a budget uncertainty set in two

cases: correlated and uncorrelated assets. Let the uncertainty be represented as∑n
j=1 |z̃j| ≤ Γ, |z̃j| ≤ 1, ∀j. Then, the robust problem can be formulated as

maxx̃minz̃
∑n

j=1 x̃jPrj(0)exp[(µj −
σ2
j

2
)S + σj

√
Sxz̃j], s.t.

∑n
j=1 |z̃j| ≤ Γ, |z̃j| ≤

1 ∀j,
∑n

j=1 x̃jPrj(0) = B0, x̃j ≥ 0 ∀j, where B0 is available budget. Kawas &

Thiele (2011a) transformed this formulation into an LP. They also considered a PSP

with correlated assets, where Ln
Prj(S)

Prj(0)
= (µj −

σ2
j

2
)T +

√
SZj, where Z has normal

distribution with mean 0 and covariance matrix Q. They defined Y = Q
−1
2 Z, where

Y ∼ N(0, I). Kawas & Thiele (2011a) proposed a tracktable robust counterpart in

the case correlated assets. Kawas & Thiele (2011b) extended the Log-robust PSP

by allowing short selling, whereas Pae & Sabbaghi (2014) added a transaction cost

constraint to make the formulation more realistic. Instead of using predefined un-

certainty sets, Kawas & Thiele (2017) proposed a data-driven Log-robust PSPs for

two cases, correlated and uncorrelated assets. In both cases, they optimized the

worst-case PSP over the worst of finitely many polyhedral uncertainties sets using

different estimation methods. Consequently, both the uncertainty of parameters and

the ambiguity of uncertainty sets are considered. However, the robust formulations

are based on the worst-case perspective and the solutions are still over-conservative.

In contrast, Lim et al. (2012) proposed a relative robust log-return PSP which is less

conservative than the worst-case Log-robust PSP, yet harder to solve.
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Gülpinar et al. (2014) studied the robust PSP under supply disruption in the

petroleum markets based on Log-return. They proposed a framework for portfolio

management with a combination of commodities and stocks when the supply of com-

modities is uncertain. A geometric mean-reverting jump process is considered for

prices to model the jumps (i.e., large discrete movements). Both symmetric (ellip-

soidal, and D-norm uncertainty sets) and asymmetric uncertainty sets for uncertain

parameters are used. Results show that the D-norm uncertainty set leads to more

extreme portfolio allocations with less diversification than the ellipsoidal and asym-

metric uncertainty sets. Moreover, the asymmetric uncertainty set with a high price

of robustness results in a high level of diversification.

2.6.2 Index-Tracking Portfolio Selection

Index tracking is a passive investment strategy where a portfolio is formed to follow an

index benchmark. Hence, a logical index-tracking portfolio includes all stocks under

an index based on their value weights. However, the need for frequent re-balancing

transactions to closely track the index might lead to high transaction costs. Therefore,

decision-makers might try to find the best possible combination of assets that follows

a benchmark index with the lowest possible transaction cost, while also accounting

for parameter uncertainty. Costa & Paiva (2002) developed two robust index-tracking

PSPs where the return vector and the covariance matrix of risky assets are uncertain

and belong to polytope uncertainty sets. Practically, the variance of tracking error

(i.e., the difference in actual performance between a portfolio and its corresponding

benchmark) is used to capture the volatility of tracking error, leading to a quadratic

programming (QP) formulation. In this formulation, the return of a given portfolio

x is calculated as x⊺r + (1 − x⊺)rf , whereas the return of the benchmark portfolio

(index), denoted by xB, is calculated as x⊺Br + (1 − x⊺B)rf . With that, the tracking

error is calculated as tr(x) = (x−xB)⊺r+(xB−x)⊺rf , and the expected value and the

variance of tracking error are ρφ(x) = (x− xB)⊺r + (xB − x)⊺rf = (x− xB)⊺(r̂ − rf ),
and σ2

Q(x) = (x − xB)
⊺Q(x − xB), respectively. Hence, the problem is formulated

as minx∈X σ2
Q(x) s.t. ρφ(x) ≥ E, where E is the minimum acceptable target for

the expected value of tracking error. Costa & Paiva (2002) assumed that r, rf ,

and Q are not exactly known. Thus, they defined a set of all possible matrices
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Φ ∈ Con[Φ1, ...,Φn] where Φ =

(
Q r

0 rf

)
and showed that the robust index tracking

formulation can be transformed to a tractable formulation by using a linear matrix

inequality. However, estimating the covariance matrix is computationally expensive in

large problems. Hence, instead of the variance of tracking error, Chen & Kwon (2012)

proposed a robust similarity measure that measures pairwise similarities between the

assets and the targeted index, with a budget uncertainty set. Moreover, a cardinality

constraint is used to limit the number of assets in the optimal portfolio, leading to a

MIP.

The aforementioned robust index-tracking PSPs ignore the distribution function of

asset returns. Alternatively, one can use partial information about the distribution of

asset returns based on historical data. Ling et al. (2014) developed a distributionally

robust downside risk measure formulation for index-tracking PSPs with a moment-

based ambiguity set in two cases: 1) the first two moments (mean and covariance)

are known and fixed, 2) the first two moments belong to ellipsoidal and polyhedral

uncertainty sets, respectively. Results demonstrate that the distributionally robust

index-tracking PSP provides less conservative solutions than classical robust index-

tracking PSPs.

2.6.3 Robust Hedging

Hedging means an investment position intended to offset potential losses or gains

that may be incurred by a companion investment. Options are important financial

tools used for Hedging risk. An option is the opportunity, but not the obligation,

for buying or selling underlying assets. Lutgens et al. (2006) used options to propose

a RO formulation for hedging risk in two cases: a single stock and an option, and

multiple assets and options. In the former case, they optimized the expected return

while assuming that asset returns belongs to a discrete (scenario-based) uncertainty

set. This formulation led to a max-min problem with a nonlinear inner optimization

problem. In the second case, they assumed that the return vector belongs to an

N -dimensional ellipsoidal uncertainty set, which results in a SOCP.

Gülpınar & Çanakoḡlu (2017) used weather derivatives in a PSP in which CVaR

is the risk measure. Weather derivatives are traded as financial instruments between
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two parties. The seller agrees to bear the risk for a premium and makes a profit if

nothing happens. However, if the weather turns out to be bad, then the buyer claims

the agreed amount. The price of this specific derivative is a function of the weather.

Gülpınar & Çanakoḡlu (2017) suggested a spatial temperature modeling where the

correlation between the locations of weather derivatives under consideration are ex-

plicitly taken into account. Both symmetric (ellipsoidal) and asymmetric uncertainty

sets are used to develop robust counterparts. Experimental results showed that a

robust model with weather derivatives has better performance in the worst-case anal-

ysis.

2.6.4 Robust Sharpe and Omega Ratio

The Sharpe ratio (SR) is defined as a ratio of the expected excess return over the risk-

free rate to the standard deviation of the excess return. However, parameters of the

Sharpe ratio are subject to uncertainty. In practice, an estimate of the Sharpe ratio is

used in optimization problems. To mitigate the estimations error, Deng et al. (2013)

proposed a robust risk-adjusted Sharpe ratio and a robust VaR-adjusted Sharpe ratio

(VaRSR), defined as the lowest Sharpe ratio consistent with the data in the observa-

tion period for a given confidence level. Based on the normality assumption of asset

returns, Zymler et al. (2011) argued that an uncertainty set for a Sharpe ratio can

take the form of an ellipse with exogenous parameters. They then showed that in

one dimension, the uncertainty set is an interval where the inner-optimization solu-

tion in the robust formulation of a Sharpe ratio is exactly equal to a risk-adjusted

Sharpe ratio. Results showed that VaRSR is more robust than SR when the return

distribution is non-normal.

Maximizing Sharpe ratio is an important performance measures in PSPs. How-

ever, PSPs are prone to estimation errors and optimization amplifies estimation errors,

resulting in portfolios with poor out-of-sample performance. One way to deal with

this drawback is combination portfolios. Here, the portfolio is a linear combination of

two or more prespecified portfolios. A proper combination can improve Sharpe ratio

of the portfolio. Chakrabarti (2021) proposed a combination of robust minimum-

variance and maximum Sharpe ratio based on a robust regret-minimizing portfolio.
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They used box uncertainty sets for the asset returns and the covariance matrix. Fi-

nally, each portfolio is scored based on its worst-case regret and the optimal portfolio

is the one with the smallest worst-case regret. Results showed that this portfolio is

relatively close to the optimal combination portfolio for the actual parameter values.

Omega, an important ratio in finance proposed by Keating & Shadwick (2002), is

the ratio of risk to return, assuming there is a predetermined threshold that partitions

the returns into losses and gains. This ratio is an alternative to the Sharpe ratio and

is based on information the Sharpe ratio discards. In practice, Sharpe ratio considers

only the first two moments of the return distribution while Omega ratio considers all

moments. Kapsos et al. (2014b) showed that the Omega ratio can be represented as

an LP model. Kapsos et al. (2014a) introduced the worst-case Omega ratio (WCOR)

when distribution functions of asset returns are partially known and belong to three

different ambiguity sets. First, the underlying distribution is a mixture distribution

with known continuous mixture components but unknown mixture weights. The sec-

ond ambiguity set encompasses all possible distributions supported on a discrete set

of scenarios. The third one uses box and ellipsoidal uncertainty sets for the proba-

bilities of scenarios. Even though the Omega ratio considers both losses and gains,

Sharma et al. (2017) argued that this approach is too sensitive to threshold used.

Moreover, there is not any systematic way to specify this threshold. The formulation

in Ghahtarani et al. (2019) uses the fundamental value of an asset as a threshold of the

Omega ratio, which protects the portfolio against bubble conditions in the market.

Sharma et al. (2017) redefined the Omega ratio by using a loss function instead of

the return. Hence, it minimizes losses greater than a threshold and maximizes losses

less than the same threshold when CVaR is used as the threshold. Furthermore,

they developed a distributionally robust Omega-CVaR optimization formulation in

which the probability of each scenario of the loss function is uncertain and belongs

to three uncertainty sets: a mixed uncertainty set, a box uncertainty set, and an

ellipsoidal uncertainty set. The first two uncertainty sets lead to LPs, whereas the

last one results in a SOCP. Yu et al. (2019) compared results of the worst-case Omega

ratio to those of the worst-case CVaR and relative CVaR formulations while adding

transaction costs constraint and allowing short selling. Results show that the worst-

case Omega portfolio yields lower loss values and higher market values compared to
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CVaR-based models under various confidence levels. Georgantas et al. (2021) also

compared the robust Omega ratio PSP proposed by Kapsos et al. (2014a) to the

robust mean-variance PSP with box and ellipsoidal uncertainty sets and the robust

CVaR PSP proposed by Zhu & Fukushima (2009). Results showed that robust PSPs

are less diversified than their nominal counterparts. However, improvements were

observed in the portfolio performance. Another comparison in this context has been

done by Sehgal & Mehra (2021). They compared PSPs based on robust Omega ratio,

semi-mean absolute deviation ratio, and weighted stable tail adjusted return ratio

(STARR) with their non-robust counterparts. In these formulations, a budgeted un-

certainty set is used for asset returns. Results showed that the robust formulations

outperform the nominal problems with respect to standard deviation, value at risk

(VaR), conditional value at risk (CVaR), Sharpe ratio, and stable tail adjusted return

ratio (STARR).

Sharpe and Omega ratios are based on the absolute volatility of assets. However,

some investors make decisions based on the volatility of an asset compared to the

market and not on the absolute volatility itself. Beta is a measure of volatility that

indicates whether an asset is more or less volatile compared to the market. Hence,

Beta can be used as a decision criteria to capture the volatility of an asset compared to

the market. A asset’s Beta is calculated by dividing the product of the covariance of

the asset returns and the market returns by the variance of the market returns over a

specified period. However, this measure is subject to uncertainty since all components

of the Beta formula are uncertain parameters. Ghahtarani & Najafi (2013) proposed

a robust multi-objective PSP where the objectives are the portfolio rate of return and

its systematic risk (Beta). A budget uncertainty set to model the uncertainty of Beta

is used. The problem is reformulated as a tractable goal program. Results show that

portfolios selected based on the robust Beta outperform non-robust Beta portfolios

in terms of weight stability and return volatility.

2.6.5 Robust Scenario-Based Formulation

Unlike Section 2.5 which reviews scenario-based formulations of multi-period PSPs,

this section focuses on the use of discrete scenarios to represent uncertainty in single-

period PSPs. Kouvelis & Yu (1997) proposed a robust formulation for a discrete



67

scenario-based uncertainty set. It optimizes an objective function based on the worst

possible scenario, which leads to the worst-case conservative results. Roy (2010)

proposed a new definition for robust scenario-based solutions in which a solution is

robust if it exhibits good performance in most scenarios without ever exhibiting very

poor performance in any scenario. Then, they developed bw-robustness, by taking

into consideration minimum acceptable objective value and a target objective value to

achieve, or exceed if possible. Gabrel et al. (2018) developed a robust scenario-based

PSP by using both worst-case scenario and bw-robustness to maximize a portfolio’s

return while returns of assets belong to a discrete scenario-based uncertainty set.

Moreover, they introduced a new robustness criterion called pw-robustness, in which

instead of maximizing a proportion of scenarios that their values are greater than or

equal to a threshold, the decision-maker specifies a fixed proportion of scenarios, and

maximizes the value of the soft bound. The pw-robustness formulation is a MIP. To

circumvent the computational time issue, Gabrel et al. (2018) proposed two heuristic

methods that can be used to obtain quick solutions for problems of large sizes.

Some investors might invest based on their preferences of assets, where ranking

information of assets are uncertain. Nguyen & Lo (2012) proposed a robust ranking

mean-variance, which is similar to the classical mean-variance. However, the ranking

of assets is used instead of the return of assets. Formulations were developed in two

cases: the maximum ranking with and without risk (variance). The ranking of assets

belongs to a discrete uncertainty set, which leads to a MIP solved by a constraint

generation method.

2.6.6 Robust Data Envelopment Analysis and Portfolio Selection

One way for evaluating stocks or assets in the financial markets is data envelopment

analysis (DEA), in which the efficiency of stocks or assets is evaluated based on a

set of inputs and outputs (criteria). Based on this method, units (assets or stocks)

are divided into two parts: efficient, and inefficient. Consequently, DEA calculates

the efficacy rate of units. Peykani et al. (2016) demonstrated that the efficiency of

stocks in DEA depends on inputs and outputs, which are uncertain. Consequently,

they proposed robust DEA with a budget uncertainty set. Results of robust DEA

are more robust than a non-robust DEA formulation with respect to the efficiency of
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stocks. However, their formulations can be used only for continuous uncertainty sets.

Peykani et al. (2019) developed a robust DEA for a discrete scenario formulation with

uncertainty, which expands the application of robust DEA to financial problems in

the real-world. However, these robust DEA formulations provide the efficiency ratio

without any detail about the amount of money invested in each asset while an investor

needs to know the proportion of investment of funds invested in each asset. Peykani

et al. (2020) proposed a two-phase portfolio selection process. At the first stage, the

efficiency of candidate stocks is evaluated by robust DEA. In the second stage, the

optimal portfolio is formed by using robust mean-semi variance-liquidity and robust

mean-absolute deviation-liquidity models. In both phases, budget uncertainty sets are

used for the uncertain parameters. This two-phase formulation provides two filters

(robust DEA, and robust PSP) to find the optimal portfolio.

Table 2.2 lists all the reviewed articles (n=142) in chronological order and classifies

them based on the problem type (PSP), uncertain parameters (UP), the structure of

uncertainty or ambiguity sets used in the robust formulation (U/A set), the robust

optimization method employed to deal with uncertainty (RO method) and the class

of the tractably reformulated problem (Model).
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45 Guastaroba et al.

(2011)

* * * * * *

46 Kawas & Thiele

(2011a)

* * * * *

47 Kawas & Thiele

(2011b)

* * * * *

48 Zymler et al. (2011) * * * * * *

49 Fonseca & Rustem

(2012)

* * * * * *

50 Fonseca et al.

(2012)

* * * * * *

51 Sadjadi et al.

(2012)

* * * * *

52 Garćıa et al. (2012) * * * *

53 Ling & Xu (2012) * * * * *

54 Pflug et al. (2012) * * * * * * *

55 Lim et al. (2012) * * * *

56 Chen & Kwon

(2012)

* * * * *

57 Nguyen & Lo

(2012)

* * * * *

58 Hauser et al. (2013) * * * * * *

59 Kim et al. (2013b) * * * * * *

60 Kim et al. (2013a) * * * * * *
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61 Gülpinar &

Pachamanova

(2013)

* * * * *

62 Glasserman & Xu

(2013)

* * * *

63 Deng et al. (2013) * * * * * *

64 Ghahtarani & Na-

jafi (2013)

* * * * *

65 Fliege & Werner

(2014)

* * * * * *

66 Pınar & Paç (2014) * * * * * * * *

67 Kim et al. (2014b) * * * * *

68 Kim et al. (2014c) * * * * *

69 Recchia & Scutellà

(2014)

* * * * *

70 Kakouris & Rustem

(2014)

* * * * *

71 Han et al. (2017) * * * * *

72 Zhu et al. (2014) * * * * * * * *

73 Liu & Chen (2014) * * * * * *

74 Flor & Larsen

(2014)

* * *

75 Pae & Sabbaghi

(2014)

* * * * *

Continued on Next Page
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76 Gülpinar et al.

(2014)

* * * * * * *

77 Ling et al. (2014) * * * * * *

78 Kapsos et al.

(2014a)

* * * * * * *

79 Maillet et al. (2015) * * * * *

80 Kim et al. (2015) * * * * * *

81 Doan et al. (2015) * * * * *

82 Rezaie et al. (2015) * * * * *

83 Marzban et al.

(2015)

* * * * *

84 Liu et al. (2015) * * * * * *

85 Desmettre et al.

(2015)

* * * * *

86 Pınar (2016) * * * * *

87 Li et al. (2016) * * * * *

88 Rujeerapaiboon

et al. (2016)

* * * * *

89 Fernandes et al.

(2016)

* * * * *

90 Yu (2016) * * * * * *

91 Gülpınar et al.

(2016)

* * * * * *

Continued on Next Page
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92 Peykani et al.

(2016)

* * * * *

93 Xidonas et al.

(2017a)

* * * * *

94 Xidonas et al.

(2017b)

* * * * *

95 Belhajjam et al.

(2017)

* * * * * * *

96 Yu et al. (2017) * * * * *

97 Cong & Oosterlee

(2017)

* * * * * * *

98 Ling et al. (2017) * * * * * *

99 Platanakis & Sut-

cliffe (2017)

* * * * * * *

100 Bo & Capponi

(2017)

* *

101 Kawas & Thiele

(2017)

* * * * * *

102 Gülpınar &

Çanakoḡlu (2017)

* * * * * *

103 Sharma et al.

(2017)

* * * * * * * *

104 Ding et al. (2018) * * * * * *

105 Simões et al. (2018) * * * * * *

Continued on Next Page
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106 Kapsos et al. (2018) * * * * * *

107 Chen & Zhou

(2018)

* * * * * * *

108 Ghahtarani & Na-

jafi (2018)

* * * * *

109 Hasuike &

Mehlawat (2018)

* * * * * *

110 Ghahtarani et al.

(2018)

* * * * *

111 Paç & Pınar (2018) * * * * * * *

112 Liu & Chen (2018) * * * * * *

113 Gabrel et al. (2018) * * * * *

114 Lu et al. (2019) * * * * * *

115 Chen & Wei (2019) * * * * * * *

116 Bai et al. (2019) * * * * * * *

117 Dai & Wang (2019) * * * * * *

118 Plachel (2019) * * * * *

119 Liu et al. (2019) * * * * * * *

120 Kang et al. (2019) * * * * *

121 Goel et al. (2019) * * * * *

122 Kara et al. (2019) * * * * *

123 Ling et al. (2019) * * * * * * *

124 Yu et al. (2019) * * * * * * *

Continued on Next Page
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125 Peykani et al.

(2019)

* * * *

126 Khodamoradi et al.

(2020)

* * * * * *

127 Lee et al. (2020) * * * * *

128 Peykani et al.

(2020)

* * * * * *

129 Georgantas et al.

(2021)

* * * * * * * * *

130 Kouaissah (2021) * * * * *

131 Chakrabarti (2021) * * * * * * * * *

132 Benati & Conde

(2021)

* * * * *

133 Ashrafi & Thiele

(2021)

* * * * *

134 Jiang & Wang

(2021)

* * * * * *

135 Yin et al. (2021) * * * * * *

136 Baviera & Bianchi

(2021)

* * * * *

137 Huang et al. (2021) * * * * *

138 Sehgal & Mehra

(2021)

* * * * * * *

Continued on Next Page



78

Table 2.2: Summary of the reviewed articles

# Article PSP type UP 1 U/A 2 set RO Methods Model

M
ean

-V
arian

ce
M
in
im

u
m

V
arian

ce
M
A
D

L
P
M

F
actor-B

ased
U
tility

fu
n
ction

V
aR

/C
V
aR

M
u
lti-P

erio
d

A
L
M

L
og-retu

rn
In
d
ex

track
in
g

R
atios

O
th
ers

A
sset

retu
rn

V
arian

ce-C
ov arian

ce
m
atrix

F
actor-b

ased
p
aram

eters
D
istrib

u
tion

fu
n
ction

S
cale

p
aram

eter
(L

og-R
etu

rn
)

O
th
ers

C
lassical

A
sy
m
m
etrical

M
om

en
t-b

ased
M
etric-b

ased
D
iscrete

O
th
ers

R
O

D
R
O

R
elative

rob
u
st

A
d
ap

tiv e
rob

u
st

O
th
ers

L
P

N
L
P

S
O
C
P

S
D
P

M
ix
ed

in
te ger

O
th
er

C
on

vex
N
on

-con
v
ex

139 Caçador et al.

(2021)

* * * * * *

140 Gajek & Krajewska

(2021)

* * * * * *

141 Zhao et al. (2021) * * * * *

142 Swain & Ojha

(2021)

* * * * * * *

Moreover, Figures 2.5, 2.6, 2.7, 2.8, and 2.9 provide some statistics about the

reviewed papers.

Figures 2.5, 2.6 show that %26 of published articles used mean-variance and %23

of published articles proposed robust VaR/CVaR formulations. Moreover, majority

of robust PSPs leads to SOCP, and LP. The third robust counterpart type is NLP

with %19. Figures 2.7, 2.8 show that %46 of published articles consider asset return

as uncertain parameters. Another important classification of articles is based on

type of uncertainty set. This figure also shows the distribution of uncertainty sets in

published articles. It demonstrates that about %55 of articles use classical uncertainty

sets include box, ellipsoidal, budgeted, and polyhedral. Figure 2.9 illustrates the

distribution of RO methods in published articles. This figure shows that mostly

classical RO and DRO are used in articles.
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Figure 2.5: Distribution of articles based on PSP type

Figure 2.6: Distribution of articles based on optimization problem types
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Figure 2.7: Distribution of articles based on uncertain parameters

Figure 2.8: Distribution of articles based on uncertainty sets
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Figure 2.9: Distribution of articles based on RO methods

2.7 Conclusions and Future Research Directions

Portfolio selection has been a fertile area for applying modern RO techniques as

evident by the large number of robust PSP articles published in the last two decades.

The inherent uncertainty about future asset returns, the abundance of public data

available and the risk-averse nature of most investors make RO an appealing approach

in this area. As shown in this review paper, a wide range of robust PSP variants

was studied, from a “plain vanilla” single-period, mean-variance PSP with a simple

box uncertainty set (e.g., Tütüncü & Koenig (2004)) to formulations that consider

advanced risk measures (e.g., Ghahtarani et al. (2018), Huang et al. (2010)), adaptive

uncertainty sets (e.g., Yu (2016)), real-life investment strategies (e.g., Pflug et al.

(2012), Paç & Pınar (2018)) and dynamic portfolio balancing (e.g., Ling et al. (2019),

Cong & Oosterlee (2017)). This variety of modeling assumptions and approaches and

the overlaps among them make it difficult to develop a unifying framework for robust

PSPs, yet we adopted a multi-dimensional classification scheme that depends on the

risk measure to be optimized, the type of uncertain parameters, the approach used

to capture uncertainty and the the planning horizon (i.e., single- vs. multi-period).

Despite the surge of interest about robust PSPs in the research community, this
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area has received little attention from practitioners. A possible reason for such a

rift between theory and practice is that research in this area was often driven by

advancements in operations research methods rather than being in response to the

real needs of the financial industry. Moreover, the value of using robust approaches

might not be readily apparent to practitioners who are accustomed to classical PSP

models. Therefore, experimental studies, like those presented in Kim et al. (2013b),

Kim et al. (2014b), Kim et al. (2013a), Kim et al. (2018b), Kim et al. (2015), Schöttle

& Werner (2009), are crucial for bridging this gap. The fact that tractable reformu-

lations of most robust counterparts are more complex, both conceptually and com-

putationally, than their corresponding deterministic formulations might make robust

reformulations less attractive for practitioners (e.g., Kouvelis & Yu (1997), Hauser

et al. (2013), Simões et al. (2018), Lim et al. (2012), Huang et al. (2010)).

Nevertheless, the perception of robust optimization as an overly conservative port-

folio selection approach is probably the major obstacle to its wide adoption by invest-

ment professionals. The reader can easily notice that this issue has received a lot of

attention in the robust PSP research. Approaches proposed in the literature to atten-

uate the conservatism of robust formulations include: using controllable uncertainty

sets (e.g., ellipsoid (Fabozzi et al., 2007) or budget (Liu et al., 2015)), data-driven ap-

proaches (e.g., Doan et al. (2015), Bienstock (2007)), alternative risk measures (e.g.,

relative log-return (Lim et al., 2012) or (Huang et al., 2010)), distributionally robust

optimization (e.g., Ling et al. (2014)) and regime-dependent robust models (e.g., Liu

& Chen (2014), Yu (2016)). While these approaches can be effective in controlling

conservatism and providing well-balanced solutions, they often lead to models that

are challenging to handle since they increase the complexity of the problems.

Given that asset returns do not generally behave like independent random vari-

ables, but are instead dependent on common factors and have significant temporal

correlations, trying to capture the variability of returns directly often leads to large

uncertainty sets and hence conservative solutions. Instead, robust factor models deals

with the uncertainty in the independent factors themselves, thus lead less conserva-

tive formulations. However, as Lu (2006) noted, selecting the suitable factors for the

model and adjusting their weights are still worthy of further investigation. Another

promising direction is to use dynamic uncertainty sets, that incorporate time-series
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models to capture auto-correlations in asset returns. Dynamic sets have been shown

to result in less pessimistic solutions compared to static ones in other applications

(Lorca & Sun, 2014, 2016).

An important advantage of financial markets is the abundance of historical data

that can be used to build uncertainty and ambiguity sets for uncertain parameters.

Although data-driven robust formulations for a few variants of the PSP have been

proposed in the literature (e.g., Bienstock (2007), Kawas & Thiele (2017), Rujeera-

paiboon et al. (2016), Doan et al. (2015), Lotfi & Zenios (2018), Liu et al. (2019),

Kang et al. (2019)), this is still a promising area for future research given the recently-

proposed techniques for constructing and sizing uncertainty sets to achieve desirable

properties (see e.g., Bertsimas & Brown (2009), Bertsimas et al. (2018)). In a re-

lated matter, and as noted by Kang et al. (2019) in the context of robust CVaR

optimization, it is still unclear which ambiguity sets should be used for DRO PSPs

and how they should be sized to provide the best out-of-sample performance. With

the plethora of ambiguity set structures proposed in recent year, investigating new

variants of the distributionally robust PSPs is a plausible research direction.

Another promising research direction is the application of “soft” robust optimiza-

tion methods to financial problems. A drawback of classical robust optimization is

that it tries to capture most possible realizations of the parameters within the uncer-

tainty set, which usually results in large sets and conservative solutions. Alternatively,

one can construct smaller uncertainty sets that include only a subset of these possible

realization and allow robust constraints to be violated, yet with penalties. Examples

of these approaches include Globalized Robust Optimization (Ben-Tal et al., 2017),

Robustness Optimization (Long et al., 2019) and Almost Robust Optimization (Baron

et al., 2019). Soft robust optimization methods are still scarcely applied in the PSP

literature (see Recchia & Scutellà (2014)), but have the potential for providing a

trade-off between robustness and the quality of solutions.

Finally, in the context of the ALM problem, there are 3 main gaps in the literature.

First and foremost, the integration of risk measures and DRO formulation in ALM

problems is a crucial gap that requires thorough examination. Risk measures provide

valuable insights into the uncertainty and potential losses associated with investment

decisions. However, incorporating these risk measures effectively into ALM models
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and decision-making frameworks is a challenging task. The application of DRO in

the context of ALM is another area that demands attention. DRO offers a pow-

erful framework to address uncertainties and model ambiguity within optimization

problems. However, its application and adaptation to ALM problems have not been

extensively explored. Furthermore, the development of solution methods tailored

specifically to ALM problems involving binary decision variables under uncertainty

is an area that has received limited attention. Binary decision variables play a cru-

cial role in ALM models, enabling the inclusion of strategic decisions such as asset

allocation and liability hedging. However, finding efficient and effective solution tech-

niques to optimize ALM problems with binary decision variables under uncertainty

is a complex task.



Chapter 3

Worst-Case Conditional Value at Risk for Asset Liability

Management: A Novel Framework for General Loss

Functions

3.1 Introduction

Financial institutions like pension funds and insurance companies are mandated to

prudently manage large amounts of assets and liabilities. Decision-makers in these

institutions have to maintain a delicate balance between maximizing return and con-

trolling risk to ensure their long-term financial sustainability. The Asset-liability

Management (ALM) problem aims to achieve this goal by optimally allocating avail-

able funds to different assets such that profit is maximized while current and future

liabilities are covered and any regulatory requirements are satisfied (Zenios, 1995).

This problem is of particular concern for pension funds that must guarantee pre-

defined payback to retirees (i.e., defined benefit pension plans) (Bodie et al., 1988).

Pension funds control a sizable portion of global financial assets, in excess of

$60.6 trillion by the end of 2021, which represents 33% of the global assets 1. At that

time, the pension funds in 9 out of the 38 Organisation for Economic Co-operation

and Development (OECD) countries had assets exceeding their respective GDPs.

Furthermore, pension assets have grown by 5.7% in the last decade (2010-2020) 2

which exceeds the GDP growth rate of 2.6% over the same period 3, signifying the

increasing importance of retirement savings globally. However, as large segments

of the population have been reaching their retirement ages, outflows from pension

funds to pay their benefits are also accelerating. The ratio of total benefits paid from

retirement savings plans to GDP varies across OECD countries, ranging from 0.5%

1https://www.thinkingaheadinstitute.org/research-papers/global-pension-assets-study-2022/
2https://www.statista.com/statistics/721151/average-growth-largest-pension-markets-

worldwide/
3https://www.macrotrends.net/countries/WLD/world/gdp-growth-rate

85
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to 8% 4.

To meet their future obligations, pension funds need to invest collected contribu-

tions in diversified portfolios of assets (i.e., fixed-income, public/private equities, real

estate, and infrastructures) to generate sufficient returns. However, these investments

come with inherent risks that can affect the portfolio’s value and the fund’s ability to

meet its commitments. Like other investment portfolios, pension funds are exposed to

asset price variations over time due to market, sector-specific, and company-specific

risks. In contrast to classical investment portfolios, pension funds have defined fu-

ture obligations and are subject to additional regulatory requirements that stipulate

a minimum acceptable ratio between current assets and the present value of future

liabilities (i.e., the funding ratio). Hence, pension funds are also exposed to interest

rate risks that severely affect the liabilities’ present value, rendering classical portfo-

lio selection problem (PSP) techniques unsuitable to manage them. Instead, ALM

models that jointly consider asset returns and interest rate risks are used.

Several risk measures have been proposed in the literature to quantify this risk

(Chen et al., 2008; Chiu & Li, 2006; Chiu & Wong, 2012; Leippold et al., 2004; Shen

et al., 2020; Ferstl & Weissensteiner, 2011), among which is the Conditional Value at

Risk (CVaR), which was first used in the context of ALM by Bogentoft et al. (2001).

CVaR combines the risk level and the probability of an asset or portfolio’s return

falling below a specified threshold. In order to develop CVaR as a risk measure in

the ALM problem, a loss function that considers the losses resulting from mismatches

between asset returns and liabilities is required. The use of CVaR enables pension

funds to control their risk exposure by managing the tail risk of their investments.

Despite its usefulness, the ALM formulation proposed by Bogentoft et al. (2001) uses a

sample-average-approximation (SAA) approach to model the uncertainty about asset

returns, thus not capturing the full extent of variability of returns and interest rates

and resulting in intractable formulations.

The solvency of funded pension plans is highly sensitive to the assumptions em-

bedded in the expected returns and interest/discount rates (parameters of CVaR),

as emphasized by Konstantin (2018). The discount rate is crucial in determining the

funding status of pension plans. As bond yields have fallen over the past few decades,

4https://www.oecd.org/finance/private-pensions/globalpensionstatistics.htm
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the discount rate should be adjusted downwards, while it remains highly aggressive in

US public pension plans, the major holder of pension plans globally. Additionally, the

expected fund performance varies significantly among different entities, even without

necessarily different allocations. This variability in returns makes it challenging for

pension managers to determine the optimal asset allocation to cover future liabilities.

Furthermore, D’Addio et al. (2009) highlighted the significant impact of uncertainty

in asset returns on pension funds, indicating the need for a conservative approach to

investment based on asset returns uncertainty.

Managing the uncertainty associated with the ALM problem is critical for insti-

tutions to make better investment decisions and manage risk effectively. Therefore,

research on ALM problems under uncertainty has focused on developing models and

methods that can quantify and manage the various sources of uncertainty. As high-

lighted by Gülpinar & Pachamanova (2013), the most common approaches to this

problem are stochastic programming (SP) and robust optimization (RO). SP is a

risk-neutral approach that aims to find a solution that optimizes the expected value

of the loss function. Various studies, such as (Klaassen, 1997; Kouwenberg, 2001;

Consigli, 2008; Duarte et al., 2017; Kopa et al., 2018; Barro et al., 2022), have ap-

plied SP to ALM problems. However, SP requires that the distribution function of

the random variables be known. Furthermore, the market environment is subject to

continuous shifts, rendering historical data potentially inadequate for capturing the

current market conditions necessary to construct the distribution function of asset

returns. On top of that, the method is risk-neutral, meaning there is no immunity

against scenarios that are worse than expected. Additionally, SP solutions may be in-

feasible for some scenarios. Despite its limitations, SP remains an intuitive approach

with favorable convergence properties.

Another appealing method proposed for addressing uncertainty in ALM prob-

lems is RO. Researchers such as Iyengar & Ma (2016); Platanakis & Sutcliffe (2017);

Gülpinar & Pachamanova (2013); Gülpınar et al. (2016) have used RO to develop

ALM models under uncertainty. Despite the advantages of RO over SP models,

such as being a risk-averse method and not requiring knowledge of the distribution

function of uncertain parameters, the solutions produced by RO are usually overly

conservative. This can increase the opportunity cost of ALM problems by basing the
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decisions on the worst-case scenario. Interested readers can refer to (Ben-Tal et al.,

2009; Bertsimas et al., 2011; Gabrel et al., 2014; Ghahtarani et al., 2022) for more

information about RO methods.

While RO and SP have been proposed for the ALM problem, there is currently

no research in the literature that considers the combination of risk measures with the

ambiguity of probability distribution in ALM optimization. This combination has

several advantages. First, it allows for a more comprehensive risk modeling in pen-

sion fund management by considering a risk measure. Second, it enables pension fund

managers to make more informed decisions on asset allocation, taking into account

the uncertainty of returns and the associated risk. Third, it provides a more accurate

representation of the underlying probability distribution by using a set of possible

distribution functions for random variables (asset return) called the ambiguity set,

which can lead to better risk management and improved long-term financial stabil-

ity. Finally, the combination of risk measures with uncertainty in ALM optimization

can lead to more robust and reliable solutions, which are essential for ensuring the

long-term financial health of pension funds. This gap in the literature and the bene-

fits of the combination of a risk measure and the ambiguity of distribution function

motivates us to adopt distributionally robust optimization (DRO) approaches for the

ALM problem. DRO considers the worst-case distribution within a set of candidate

distributions that are compatible with available data. By using a risk measure (e.g.,

CVaR) and accounting for ambiguity in the probability distribution through a DRO

approach, more realistic solutions leading to better long-term financial outcomes for

pension funds can be achieved. Combining CVaR with DRO leads to the worst-case

CVaR (WCVaR) risk measure.

Although the literature suggests WCVaR as a valuable tool for PSPs, there is a

gap in the theoretical framework that limits its applicability to more complex loss

functions like that of the ALM problem. The loss function in the ALM problem is

more intricate than that of the regular PSP due to the uncertainty of both asset

returns and the present value of liabilities. On the other hand, the majority of re-

search on CVaR in portfolio selection problems (PSP) assumes the availability of full

knowledge of the distribution function of portfolio losses. However, the distribution

functions of uncertain asset returns and the present value of liabilities in the ALM
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problem are not fully known due to the changing parameters based on market con-

ditions. To address this issue, we have developed a novel theoretical framework that

proposes the use of WCVaR for linear and nonlinear loss functions of random vari-

ables. Our theoretical development not only addresses the gap in the literature but

also offers promising possibilities for extending WCVaR to other problem domains

such as supply chain management and engineering design. With its enhanced versa-

tility and applicability, WCVaR has the potential to become a go-to tool for a wider

range of decision-making scenarios.

The remaining sections of this chapter are structured as follows. Section 3.2

provides a review related to the optimization formulation of the ALM problem using

CVaR. In Section 3.3, we present an extension for the worst-case lower partial moment

(WLPM) for functions of random variables. This extension is crucial in developing the

WCVaR for more complex loss functions. Furthermore, in Section 3.3, we propose

a formulation for WCVaR that is applicable to general loss functions. Section 3.4

delves into how to develop WCVaR for the ALM problem, along with an explanation

of how to extend the data-driven moment-based ambiguity set. To test the proposed

formulation on real data of the Canada Pension Plan (CPP), numerical experiments

are conducted, and the results are presented in Section 3.5. Finally, Section 3.6 offers

some conclusions and suggests potential areas for future research.

3.2 The ALM Problem with CVaR Constraints

In pension funds, premiums are collected from sponsors or currently active employees,

and pensions are paid to retired employees. Moreover, available funds are invested

in assets, which should be managed so that at each decision moment, the total value

of all assets exceeds the fund’s liabilities. The goal is to minimize the contribution

rate by the sponsor and active employees of the fund (see Bogentoft et al. (2001)).

Hence, the ALM problem for a pension fund tries to find the optimal contribution

rate and allocation of funds in assets during an investment horizon of length T , which

is divided into a set of decision moments t = 0, . . . , T . At each decision moment t,

decisions are made on the value of contributions to the fund and portfolio allocation.

Let yt be the contribution rate at decision moment t, which is a fraction of the sponsor

and/or active employee’s wage wt at decision moment t. Besides, xn,t are decision
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variables of money invested in asset n in the tth decision moment. The value of assets

held by the fund at decision moment t is denoted by At. Payments made by the fund

to retirees at decision moment t are liabilities and denoted by lt. The present value of

liabilities at decision moment t is calculated by Lt =
∑T

t
lt

(1+γ)t
, ∀t = 0, . . . , T , where

γ is the discount rate. We consider a case in which benefit payments, i.e., liabilities,

are fixed and predefined. These kinds of pension funds are called defined-benefit plans.

The present value of liabilities, Lt, is a random variable since the discount rate used

to calculate it is, itself, a random variable. The funding ratio is defined as the ratio of

the value of assets at decision moment t to the present value of liabilities at decision

moment t. Finally, ψ is the minimum threshold of the funding ratio and is normally

imposed by regulations. Model (3.1) shows the mathematical formulation of the ALM

problem introduced by Bogentoft et al. (2001):

min
yt,xn,t

h(y1, . . . , yT ), (3.1a)

s.t.
N∑
n=0

xn,t = At + wtyt − lt, t = 0, . . . , T − 1, (3.1b)

At ≥ ψLt, t = 0, . . . , T, (3.1c)

At =
N∑
n=0

xn,t−1(1 + ξn,t), t = 0, . . . , T, (3.1d)

xn,t ∈ X , yt ∈ Y , t = 0, . . . , T, n = 0, . . . , N. (3.1e)

In their paper, Bogentoft et al. (2001) introduced a function denoted by h(y0, . . . , yT ),

which serves as the objective function for the ALM problem expressed in (3.1). The

function is defined in terms of the contribution rate and plays a crucial role in deter-

mining the optimal ALM strategy. The objective function (3.1a) can be the average

contribution rate or the present value of all contributions. In this formulation, we

consider the present value of contributions as the objective function, expressed as

h(y0, . . . , yT ) =
∑T

t=0
wtyt

(1+γ)t
. Constraint (3.1b), called the balance constraint, ensures

that the sum of all investments at decision moment t is equal to the assets held by

the fund plus the contributions gathered at decision moment t minus liabilities in this

decision moment. Constraint (3.1c), called the funding ratio, guarantees that the ra-

tio of assets owned by the fund to the present value of liabilities at decision moment
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t is greater than a minimum threshold ψ. Constraint (3.1d) calculates the value of

assets owned by the fund at time t. In this formulation, the asset returns ξn,t and the

discount rate γ are uncertain parameters. Uncertainty of the discount rate γ leads

to uncertainty in the present values of liabilities and future contributions. Finally, X
and Y in (3.1e) are sets of regulatory constraints for the investment allocation and

the contribution rate.

To make the formulation easier, we define Wt =
wt

(1+γ)t
, representing the present

value of the sponsor and/or active employee’s wages, which is also uncertain because

it depends on the uncertain discount rate γ. The objective function of model (3.1) can

be transformed into W⊺y, where W = {W0, . . . ,WT} ∈ RT+1 and y = {y0, . . . , yT} ∈
RT+1 are the vectors of the present value of the active employee’s wages and decision

variables related to the contribution rates, respectively. We also define the vector

rt = e + ξt, t = 0, . . . , T , where e is an all-ones vector of size N + 1. Additionally,

the investment decision variable is defined as a vector in each decision moment, xt =

{x0,t, . . . , xn,t}. Using these notations, the ALM problem (3.1) can be transformed

into a vector representation as follows:

min
y,xt

W⊺y, (3.2a)

s.t. e⊺xt = r⊺t xt−1 + wtyt − lt, t = 0, . . . , T − 1, (3.2b)

r⊺t xt−1 ≥ ψLt, t = 0, . . . , T, (3.2c)

xt ∈ X , y ∈ Y t = 0, . . . , T. (3.2d)

In order to quantify the risk associated with an investment portfolio using the

CVaR measure, it is essential to establish a loss function that captures the poten-

tial losses. Based on (Bogentoft et al., 2001), the loss function for problem (3.2)

for each decision moment, t, is defined as fψ(xt; rt, Lt) = ψLt − r⊺t xt−1 as per con-

straint (3.2c). Note that the loss function and the CVaR are defined for each de-

cision moment t. However, to simplify the formulations, we suppress the t sub-

script. The probability that fψ(x; r, L) is not exceeding a threshold α is calculated

as Ψ(x, α) =
∫
fψ(x;r,L)≤α

p(r, L)d(r, L), where p(r, L) is the joint distribution function

of the present value of liabilities and asset returns as random variables. It is worth

noting that p(r) is the marginal distribution function of asset returns and p(L) is the
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marginal distribution of the present value of liabilities.

Value-at-Risk (VaR) is a measure of financial losses over a given time horizon

under normal market conditions and a specified level of confidence. It provides

an estimate of the maximum loss that an investor could expect to suffer over a

given time horizon assuming that the portfolio is held to maturity and that mar-

ket conditions remain stable. For a confidence level β and a fixed x, the VaR is

formally represented as V aRβ(x) = min {α ∈ R : Ψ(x, α) ≥ β}. CVaR is then de-

fined as the expected loss that exceeds VaR, and is calculated as CV aRβ(x) =

1
1−β

∫
fψ(x;r,L)≥V aRβ(x)

fψ(x; r, L)p(r, L)d(r, L).

Borrowing the approach proposed by Rockafellar et al. (2000), we introduce an

auxiliary function Gβ(x, α) = α+ 1
1−β

∫
r∈Rn+1,L∈R[fψ(x; r, L)−α]

+p(r, L)d(r, L), where

[.]+ = max{., 0}, and then CV aRβ(x) = minα∈RGβ(x, α). To calculate Gβ(x, α), a

function to capture expected value of losses greater than α, it is necessary to have full

knowledge about the joint distribution function of asset returns and the present value

of liabilities, p(r, L). However, in reality, full knowledge about this joint distribution

function may not be available. Therefore, we apply a DRO approach that considers

the ambiguity about the distribution function of these random variables. DRO offers a

powerful framework for dealing with uncertainty in ALM by avoiding the assumption

of a single distribution for randomly distributed variables. In this context, we have

two key random variables: the present value of wages of active employees, W, and

random variables in the loss function fΨ(x; r, L) of the ALM problem. These variables

have distinct distribution functions, namely q, the distribution function of the present

value of the active employee’s wages, and p(r, L), the joint distribution function of

asset returns and the present value of liabilities, respectively.

To account for the investor’s ambiguity regarding the true distribution of the loss

function and the present value of pension active employee wages, we introduce ambi-

guity sets of distributions. More specifically, we define Q as the ambiguity set of the

distribution function of the present value of active employees’ wages and P (r, L) as

the ambiguity set of the joint distribution function of asset returns and the present

value of liabilities. Finally, P (r) and P (L) are the ambiguity sets of marginal dis-

tribution functions of asset returns and the present value of liabilities, respectively.

Using these ambiguity sets, we can formulate the DRO version of the ALM problem
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(3.2) as follows:

min
y,xt

sup
q∈Q

Eq[W]⊺y, (3.3a)

s.t. e⊺xt = inf
p(r)∈P (r)

Ep(r)[rt]⊺xt−1 + wtyt − lt, t = 0, . . . , T − 1, (3.3b)

sup
p(r,L)∈P (r,L)

min
α∈R

Gβ(xt, α) ≤ 0, t = 0, . . . , T, (3.3c)

xt ∈ X , y ∈ Y t = 0, . . . , T. (3.3d)

The goal is to minimize the worst-case expected present value of future contribu-

tions to the fund, represented by the objective function (3.3a), subject to the balance

constraint (3.3b), the WCVaR constraint (3.3c), and the regulatory constraint (3.3d).

In the objective function (3.3a), the minimization is over the contribution rate y and

the investment allocation in each decision moment xt, while the maximization is over

all probability distributions in the ambiguity set Q. The expected value is taken with

respect to the probability distribution q ∈ Q. In the balance constraint (3.3b), the

worst-case expected value is over the marginal distribution function of asset returns.

The maximization of WCVaR is over the joint distribution function of asset returns

and the present value of liabilities, and the minimization is over α, which is VaR

here. By doing so, we obtain more robust results that are less sensitive to specific

assumptions about the underlying probability distributions, making it particularly

well-suited for managing financial risks in uncertain environments.

The subsequent task is to introduce WCVaR for ALM. However, the loss function

for the ALM problem is more intricate than that of PSPs since the loss function

of ALM has two random variables, asset returns and the present value of liabilities,

while the loss function of PSP has just one random variable, asset returns. Therefore,

an extension of the theoretical framework for the Worst-case Lower Partial Moment

(WLPM) and WCVaR is necessary to apply them to more extensive loss functions.

3.3 WLPM and WCVaR for Linear Loss Functions

Chen et al. (2011a) proposed WLPM as a risk measure that has a close connection

with WCVaR. Let ξ be a univariate random variable, with µ and σ being the first

and second moments of ξ, and α is a fixed target. Chen et al. (2011a) proved that
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supξ∼(µ,σ2) E
[
(α− ξ)+

]
=

α−µ+
√
σ2+(α−µ)2

2
and showed that WCVaR can be defined

based on WLPM. In particular, for a regular PSP with the loss function −r⊺x, where
r ∈ Rn is the asset returns vector, x ∈ Rn is the vector of decision variables which

is the proportion of investment in each asset, and P (r) is an ambiguity set of the

distribution function of asset returns, the WCVaR is defined as:

WCV aRβ (x) = sup
p(r)∈P (r)

min
α∈R

α +
1

1− β
E
[
(−r⊺x− α)+

]
, (3.4)

where supp(r)∈P (r) E
[
(−r⊺x− α)+

]
is the WLPM. Here, the vector of asset returns,

r ∈ Rn, is a random variable with mean µ̂ and covariance Σ̂ ≻ 0 that belongs to a

family of distributions

P (r) =
{
p ∈M+|P (r ∈ Ω) = 1,Ep (r) = µ̂, Covp (r) = Σ̂

}
,

whereM+ is the set of all probability measures on the measurable space (Rn, B) with

the Borel σ-algebra B on Rn and Ω ⊆ Rn is a closed convex set known to contain

the support of the random vector r. By using this ambiguity set, as proven by Chen

et al. (2011a), the WCVaR evaluates to:

max
p(r)∈P (r)

CV aRβ (x, p) = −µ̂⊺x +

√
β

1− β

√
x⊺Σ̂x. (3.5)

The WCVaR formulation (3.5) is based on the assumption that the first two

moments of the uncertain distribution function are known. However, there might be

uncertainty about the moments when they are estimated using limited data samples.

Kang et al. (2019) proposed the WCVaR with uncertain moments based on a data-

driven moment-based ambiguity set defined as follows:

DP (r) (γ1, γ2) = {p ∈M+|P (r ∈ Ω) = 1, (Ep (r)− µ̂)⊺ Σ̂−1 (Ep (r)− µ̂) ≤ γ1,

||Covp (r)− Σ̂||F ≤ γ2, Covp (r) ≻ 0},

which is originally introduced by Delage & Ye (2010). In this ambiguity set, µ̂ and Σ̂

are estimates of the mean vector and the covariance matrix of the random variable r,
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respectively. Kang et al. (2019) proved that WCVaR under moment uncertainty (as

defined in DP (r) (γ1, γ2)) is as follows:

max
p(r)∈DP (r)(γ1,γ2)

CV aRβ (x, p) = −µ̂⊺x +
√
γ1

√
x⊺Σ̂x + k

√
x⊺
(
Σ̂ + γ2In

)
x, (3.6)

where In is the identity matrix of size n, and k =
√

β
1−β .

TheWCVaR reformulations (3.5) and (3.6) use the facts that the PSP loss function

is a linear function of x and that r is the only random variable. However, the loss

function can be more complex. As shown in Section 3.2, the loss function of the

ALM problem includes a linear function of asset returns and the present value of

future liabilities as random variables. To propose a tractable reformulation of the

WCVaR constraint in the ALM problem, we are extending the WLPM and WCVaR

formulations for the linear loss function of multiple random variables. For more clarity,

we start with a linear loss function of a univariate random variable, then extend it to

a linear function of multivariate random variables.

Lemma 1. Let ξ be a univariate random variable, where E [ξ] = µ, V ar (ξ) = σ2,

and f (.) is a linear function of the random variable ξ that f : R→ R. Then, WLPM

is as follows:

sup
ξ∼(µ,σ2)

E
[
(α− f (ξ))+

]
=
α− f (µ) +

√
f ′ (µ)2 σ2 + (α− f (µ))2

2
.

Proof. The exact second-order Taylor expansion of f (ξ) around µ = E [ξ] for a linear

function is as follows:

E[f(ξ)] = E
[
f (µ) + f ′ (µ) (ξ − µ) + 1

2
f ′′ (µ) (ξ − µ)2

]
.

It is known that E(a+ b) = E(a) + E(b). Then:

E [f (ξ)] = E [f (µ)] + f ′ (µ)E [ξ − µ)] + 1

2
f ′′ (µ)E [ξ − µ]2 ,
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where E [f (µ)] = f (µ), and E [ξ − µ] = E [ξ]− µ = µ− µ = 0. Then:

E [f (ξ)] = f (µ) +
1

2
f ′′ (µ)E [ξ − µ]2 .

Since E [ξ − µ]2 = V ar (ξ) = σ2, then:

E [f (ξ)] = f (µ) +
1

2
f ′′ (µ) σ2

Because f(.) is a linear function then f ′′ (.) = 0, consequently E [f(ξ)] = f (µ).

Next, we need to find V ar (f (ξ)). The first order Taylor expansion of f (ξ) around

µ = E [ξ] is f (µ) + f ′ (µ) (ξ − µ). Then, V ar (f (ξ)) is as follows:

V ar [f (ξ)] = V ar [f (µ) + f ′ (µ) (ξ − µ)] = V ar [f (µ) + f ′ (µ) ξ − f ′ (µ)µ] .

The first term, f(µ), is constant; then V ar (f (µ)) = 0. The third term, V ar (f ′ (µ)µ),

is also a constant with a variance equal to zero. Consequently, the variance of f (.) is

as follows:

V ar [f (ξ)] = V ar [f ′ (µ) ξ] = (f ′ (µ))
2
V ar [ξ] = f ′ (µ)2 σ2.

By substituting E [f (ξ)] and V ar (f (ξ)) into
α−E[f(ξ)]+

√
V ar(f(ξ))+(α−E[f(ξ)])2

2
, the

WLPM is as follows:

Eξ∼(µ,σ2)

[
(α− f (ξ))+

]
=
α− f (µ) +

√
f ′ (µ)2 σ2 + (α− f (µ))2

2
.

Theorem 2. Let ξ be a univariate random variable with mean µ and variance σ2,

and define the ambiguty set P = {p ∈ M+|P (ξ ∈ Ω) = 1, ξ ∼ (µ, σ2)}. Moreover,

f(ξ) is a linear loss function, where f : R → R. Then WCVaR can be calculated as

follows :

WCV aRβ = sup
p(.)∈P

min
α∈R

α +
1

1− β
E
[
(f (ξ)− α)+

]
= f (µ) +

√
β

1− β

√
f ′ (µ)2 σ2.
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Proof. Based on its definition,WCV aRβ = supp(.)∈P minα∈R α + 1
1−βE

[
(f (ξ)− α)+

]
.

To reformulate the WCVaR, we need to calculate the WLPM term in the WCVaR

definition. In Lemma 1, the LPM is in the form supp(.)∈P E
[
(α− f (ξ))+

]
. Hence,

rearrange the WLPM term in CVaR as follows:

sup
p(.)∈P

E
[
(f (ξ)− α)+

]
= sup

p(.)∈P
E
[
(−α− (−f (ξ)))+

]
.

By substituting the WLPM from Lemma 1 into WCVaR, we have:

WCV aRβ = min
α∈R

α +
1

1− β
−α + f (µ) +

√
f ′ (µ)2 σ2 + (−α + f (µ))2

2
.

The optimal value of α (α∗) can be calculated using the first-order optimality condi-

tion
∂WCV aRβ

∂α
= 0. With that, we have:

α∗ = f (µ) +
2β − 1

2
√
β (β − 1)

√
f ′ (µ)2 σ2.

By substituting α∗ back, the WCVaR reduces to:

WCV aRβ = f (µ) +

√
β

1− β

√
f ′ (µ)2 σ2.

Now let us consider the case when the loss function is a linear function of multi-

variate random variables, which is applicable in the context of the ALM problem.

Lemma 3. Let ξ = {ξ1, . . . , ξn} be a multivariate random variable, where E[ξi] = µi,

V ar(ξi) = σ2
i , Cov(ξi, ξj) = σij, and f(.) is a linear function of the random variable

ξ that f : Rn → R. Then, WLPM is as follows:

sup
ξ∼(µ,Σξ)

E
[
(α− f (ξ))+

]
=
α− f (µ) +

√∑
i d

2
iσ

2
i + 2

∑
i

∑
j>i didjσij + (α− f(µ))2

2
,

where µ = {µ1, . . . , µn} is the mean vector, and di =
∂f(ξ)
∂ξi
|ξ=µ, in which |ξ=µ means

to evaluate the expression with µi replacing ξi.
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Proof. Based on the second-order Taylor series expansion of f (.) around µ = {µ1, . . . , µn},
the expected value of f (ξ) is as follows:

E [f (ξ)] = E [f (µ)] + E [∇f (µ) (ξ− µ)] + E
[
1

2
(ξ− µ)⊺Hf (µ) (ξ− µ)

]
,

where Hf =
∂2f(ξ)
∂ξi∂ξj

is the Hessian matrix of f , and ∇f is the gradient of f . Since f (.)

is a linear function, then its second derivation is zero. Moreover, the second term

of Taylor approximation is zero since E [ξ− µ] = E [ξ] − µ = µ − µ = 0. Hence,

E [f (ξ)] = f (µ). Moreover, the variance of f (.) has to be calculated. Based on the

first-order Taylor expression, the variance of (f (ξ)) is as follows:

V ar (f (ξ)) = V ar (f (µ) +∇f (µ)⊺ (ξ− µ)) = V ar (f(µ) +∇f (µ)′ ξ−∇f (µ)′ µ).

Since f (µ), and∇f (µ)µ are constants, their variances are zero. Hence, V ar (f (ξ)) =

V ar
(
∇f (µ)′ ξ

)
which is equivalent to∇f ′ (µ)2 Σξ, where Σξ is the covariance matrix.

This formulation can be expanded as follows:

V ar (f( ξ )) =
∑
i

d2iσ
2
i + 2

∑
i

∑
j>i

didjσij,

where di =
∂f(ξ)
∂ξi
|ξ=µ.

By substituting E [f (ξ)] and V ar (f (ξ)) into
α−E[f(ξ)]+

√
V ar(f(ξ))+(α−E[f(ξ)])2

2
, then

supξ∼(µ,Σξ)
E
[
(α− f (ξ))+

]
is calculated as follows:

α− f (µ) +
√∑

i d
2
iσ

2
i + 2

∑
i

∑
j>i didjσij + (α− f (µ))2

2
.

Theorem 4. Let ξ ∈ Rn be a multivariate random variable with mean vector µ and

covariance matrix Σξ, where the ambiguity set is P = {p ∈ M+|P (ξ ∈ Ω) = 1, ξ ∼
(µ,Σξ)}. Moreover, f (ξ) is a linear loss function, where f : Rn → R. Then WCVaR

is defined as WCV aRβ = supp(.)∈P minα∈R α + 1
1−βE [(f(ξ)− α)+] which is calculated
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by:

WCV aRβ = sup
p(.)∈P

α +
1

1− β
E
[
(f (ξ)− α)+

]
= f (µ) +

√
β

1− β

√∑
i

d2iσ
2
i + 2

∑
i

∑
j>i

didjσij.

Proof. WCVaR is defined as WCV aRβ = supp(.)∈P minα∈R α + 1
1−βE

[
(f (ξ)− α)+

]
.

In Lemma 3, we showed how to calculate the WLPM of a linear function of multivari-

ate random variables as: supp(.)∈P E
[
(f (ξ)− α)+

]
= supp(.)∈P E

[
(−α− (−f (ξ)))+

]
,

which is calculated by:

−α + f (µ) +
√∑

i d
2
iσ

2
i + 2

∑
i

∑
j>i didjσij + (−α + f (µ))2

2
, (3.7)

to be substituted in WCVaR formulation. Then, the optimal value of α (α∗) is

calculated using the first-order optimality condition
∂WCV aRβ

∂α
= 0. With that, we

have:

f (µ) +
2β − 1

2
√
β (β − 1)

√∑
i

d2iσ
2
i + 2

∑
i

∑
j>i

didjσij.

By substituting α∗ back in (3.7), we get:

WCV aRβ = f (µ) +

√
β

1− β

√∑
i

d2iσ
2
i + 2

∑
i

∑
j>i

didjσij.

The theorems presented in this chapter, namely Theorems 2 and 4, offer a means of

computing WCVaR for linear loss functions. However, WCVaR is not only applicable

to financial problems but also to a variety of other fields where it is used as a risk

measure for more general nonlinear loss functions. This chapter also extends the

theorems to accommodate nonlinear loss functions and provides lemmas and proofs

in the Appendix.

The extended WCVaR presented in this chapter has a wide range of potential

applications, such as in supply chain and engineering problems, safety analysis, and
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healthcare. For readers interested in further exploring these applications, we recom-

mend the following references: (Tao et al., 2021; Chaudhuri et al., 2022; Zhu et al.,

2020; Chaudhuri et al., 2020; Chapman et al., 2021; von Schantz et al., 2020; Dehlen-

dorff et al., 2010).

In the next section, we develop the WCVaR formulation for the ALM problem,

in which a linear function of random variables is used as a loss function. We are

using the theoretical results derived in this section to tractably reformulate the ALM

problem with a WCVaR constraint.

3.4 WCVaR for ALM Problem

In this section, we use Theorem 4 to derive a tractable reformulation of the ALM

problem with the WCVaR constraint (3.3c). This constraint ensures that the asset-

liability mismatch is controlled in each decision moment, in the sense that the funding

ratio remains above ψ with high probability, while accounting for the ambiguity

surrounding the joint probability distribution of the asset returns and the present

values of liabilities. Since the loss function fψ (x; r, L) = ψLt − r⊺t xt−1 in this set

of constraints is linear in the random variables r and L, Theorem 4 applies and the

reformulation is exact. Recall that the random variables are defined as L ∼
(
L̄, Σ̄L

)
,

r ∼
(
r̂, Σ̄r

)
, and Cov (L, r) = σ̄L,r, where L̄ ∈ R, Σ̄L ∈ R, r̄ ∈ Rn+1, Σ̄r ∈ Rn+1×n+1,

and σ̄L,r ∈ Rn+1. With that, we prove the following proposition.

Proposition 5. For a given t ∈ {0, . . . , T}, and using the ambiguity set P (r, L) =

{p (r, L) ∈ M+|P (r, L ∈ Ω) = 1, r ∼
(
r̄, Σ̄r

)
, L ∼

(
L̄, Σ̄L

)
, Cov (L, r) = σ̄L,r}, the left

hand side (LHS) of the WCVaR constraint (3.3c) can be tractably reformulated as

follows:

sup
p(r,L)∈P (r,L)

min
α∈R

α +
1

1− β
E
[
(−α− (x⊺r− ψL))+

]
=

−r̄⊺x + ψL̄+

√
β

1− β

√
ψ2Σ̄L + x⊺Σ̄rx− 2x⊺σ̄(L,r)

Proof. Using the basic properties of mean and variance, it is easy to show that r⊺x−
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ψL ∼ (r̄⊺x− ψL̄, ψ2Σ̄L + x⊺Σ̄rx− 2x⊺σ̄L,r). Then WCVaR is defined as:

WCV aRβ = sup
p(r,L)∈P (r,L)

min
α∈R

α +
1

1− β
E
[
(−α− (x⊺r− ψL))+

]
(3.8)

Based on Lemma 3, the WLPM is calculated as follows:

sup
p(r,L)∈P (r,L)

E
[
(−α− (r⊺x− ψL))+

]
=

[
1

2

√
ψ2Σ̄L + x⊺Σ̄rx− 2x⊺σ̄L,r +

(
r̄⊺x− ψL̄− α

)2
+
−α−

(
r̄⊺x− ψL̄

)
2

]
. (3.9)

By substituting (3.9) into the WCVaR formula (3.8), we obtain:

WCV aRβ (x) = α +
1

1− β

[
1

2

√
ψ2Σ̄L + x⊺Σ̄rx− 2x⊺σ̄L,r +

(
r̄⊺x− ψL̄− α

)2
+
−α−

(
r̄⊺x− ψL̄

)
2

]
.

In Theorem 4, we showed that α∗
x =

2β−1

2
√
β(1−β)

√
ψ2Σ̄L + x⊺Σ̄rx− 2x⊺σ̄L,r−r̄⊺x+ψL̄.

By substituting it back, the LHS of the WCVaR constraint (3.3c) can be written as

follows:

WCV aRβ (x) = −r̄⊺x + ψL̄+

√
β

1− β

√
ψ2Σ̄L + x⊺Σ̄rx− 2x⊺σ̄(L,r). (3.10)

It should be noted that the WCVaR reformulation (3.10) is based on the assump-

tion that the moments of random variables, asset returns, and the present value of

future liabilities, are fixed and known. With W̄ = Ep[W] and r̄t = Ep(r)[rt], model

(3.3) is transformed into model (3.11) by substituting the WCVaR formula (3.10) in
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constraint (3.3c) to obtain:

min
y,xt

W̄⊺y, (3.11a)

s.t. e⊺xt = r̄⊺t xt−1 + wtyt − lt, t = 0, . . . , T − 1,

(3.11b)

r̄⊺t xt−1 + ψL̄t +

√
β

1− β

√
ψ2Σ̄Lt + x⊺t−1Σ̄rtxt−1 − 2x⊺t−1σ̄(Lt,rt) ≤ 0, t = 0, . . . , T,

(3.11c)

xt ∈ X , y ∈ Y t = 0, . . . , T,

(3.11d)

which is a nonlinear program.

Even though we assumed that the moments of the uncertain distribution functions

are known, the moments themselves might be uncertain. Moments of asset returns

are uncertain because they depend on a variety of factors, such as market conditions,

economic trends, and company performance. Moreover, moments of liabilities are

also uncertain because they are affected by a variety of factors, such as interest rates,

inflation, and changes in demographics. To address this case, we extend the moment-

based ambiguity set, Dt
P (r,L) (γ

t
1, γ

t
2, γ

t
3, γ

t
4,γ

t
5) of Delage & Ye (2010) as follows:



Urt = (rt − r̂t)
⊺Σ̂−1

rt (rt − r̂t) ≤ γt1,

UΣrt
= ∥CovP (rt)− Σ̂rt∥F ≤ γt2, CovP (rt) ⪰ 0

p ∈M+|P (rt,Lt ∈ Ω) = 1, ULt = (Lt − L̂t)
⊺Σ̂−1

Lt
(Lt − L̂t) ≤ γt3,

UΣLt
= ∥CovP (Lt)− Σ̂Lt∥F ≤ γ4, CovP (Lt) ⪰ 0

Uσ(Lt,rt) = ∥σ̄(Lt,xt)∥∞ ≤ γt5,


,

where γt1, γ
t
2, γ

t
3, γ

t
4 ∈ R, and γt5 ∈ Rn+1. Moreover, r̂t and L̂t are estimates of the

mean of asset returns and the present value of future liabilities at decision moment

t, respectively. Similarly, Σ̂rt and Σ̂Lt are estimates of the variance-covariance matrix

of asset returns, and the present value of liabilities, respectively.

The proposed ambiguity set is designed to capture the uncertainty of moments in

a data-driven manner. It consists of two ellipsoidal uncertainty sets for each decision

moment t: Urt and ULt . The former represents the uncertainty set of the mean of
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asset returns, while the latter characterizes the uncertainty set of the mean of present

values of future liabilities. To quantify the size of these sets, we use the parameters

γt1 and γt3. To capture the uncertainty of the second moments, the Frobenius norm

is used to define two uncertainty sets: UΣrt
and UΣLt

. These sets represent possible

variations in the real variance-covariance matrices of asset returns and the present

value of future liabilities, respectively. Intuitively, the Frobenius norm measures the

“size” of the matrices, and the uncertainty sets ensure that the real matrices are

close to their estimates, up to a certain radius. The sizes of the uncertainty sets

are determined by γt2 and γt4, which represent the second and fourth moments of

the estimation errors, respectively. Additionally, Uσ(L,rt) denotes the box uncertainty

set for the covariance of asset returns and the present value of future liabilities in

each decision moment t. γt5 is the size of this uncertainty set. Finally, CovP (rt) and

CovP (Lt) represent the actual variance-covariance matrices of asset returns and the

present value of future liabilities that should be positive semi-definite.

The present value of active employee wages is also a random variable. Conse-

quently, the data-driven moment-based ambiguity set for the present value of active

employee wages is defined as follows:

Q(γ6, γ7) =

p ∈M+|P (W ∈ Ω) = 1, UW =
(
W − Ŵ

)⊺
Σ̂−1

W (W − Ŵ) ≤ γ6,

UΣW
= ∥CovP (W)− Σ̂W∥F ≤ γ7

 ,

where an ellipsoidal uncertainty set UW is used to represent the possible variations

in the mean of the present value of active employee wages. Similarly, the uncertainty

set UΣW
captures the variations in the variance-covariance matrix of the present value

of active employee wages. To specify the sizes of these uncertainty sets, we use the

parameters γ6 and γ7, where these parameters determine the radius of the uncertainty

sets. Finally, W̄ and Σ̂W denote estimates of the mean and the variance-covariance

matrices of the present value of active employee wages, respectively.

A tractable reformulation of the LHS of the WCVaR constraint (3.3c) with the

proposed data-driven ambiguity set Dt
P (r,L) (γ

t
1, γ

t
2, γ

t
3, γ

t
4,γ

t
5) is developed in proposi-

tion 6.

Proposition 6. Considering that p (r, L) ∈ Dt
P (r,L) (γ

t
1, γ

t
2, γ

t
3, γ

t
4,γ

t
5), the LHS of the
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WCVaR constraint (3.3c) with uncertain moments can be reformulated as follows:

sup
p(r,L)∈Dt

P (r,L)(γt1,γt2,γt3,γt4,γt5)
CV aRβ (xt−1) = −

[
r̂⊺t xt−1 −

√
γt1

√
x⊺t−1Σ̂rtxt−1

]
+

ψ

[
L̂t +

√
γt3

√
ψ2Σ̂Lt

]
+ k

√
x⊺t−1

(
Σ̂rt + γt2In+1

)
xt−1 + ψ2

(
Σ̂Lt + γt4

)
+ 2x⊺t−1γ

t
5,

where k =
√

β
1−β .

Proof. In proposition (5), by fixing xt, it was shown that:

sup
p(r,L)∈P (r,L)

CV aRβ (x) = −r̄t⊺xt−1 + ψL̄t +

√
β

1− β

√
ψ2Σ̄Lt + x⊺t−1Σ̄rxt−1 − 2x⊺t−1σ̄(Lt,rt).

Now, let us consider the case p (r, L) ∈ Dt
P (r,L), then theWCVaR supp(r,L)∈Dt

P (r,L)
CV aRβ (xt)

evaluates to:

max
r̄t∈Urt

−r̄⊺t xt−1 + max
L̄t∈ULt

ψL̄t + k max
Σ̄rt∈UΣrt

,Σ̄Lt∈UΣLt
,σ̄(Lt,rt)∈Uσ(Lt,rt)

√
ψ2Σ̄Lt + x⊺t−1Σ̄rtxt−1 − 2x⊺t−1σ̄(rt,Lt).

The first term can be written as follows:

max
r̄t∈Urt

−r̄⊺t xt−1 = − min
r̄t∈Urt

r̄⊺t xt−1,

which is a classical robust optimization problem when an ellipsoidal uncertainty set

is used for the uncertain parameter r̄t. Consequently, its tractable reformulation is:

min
r̄t∈Urt

r̄⊺t xt−1 = r̂t
⊺xt−1 −

√
γt1

√
x⊺t Σ̂rtxt−1. (3.12)

Likewise, the second term, related to the present value of future liabilities, can be

tractably reformulated as follows:

max
L̄t]∈ULt

ψL̄t = ψ

[
L̂t +

√
γt3

√
ψ2Σ̂Lt

]
. (3.13)

Since the square root is a monotonically increasing function, then maxz∈Z
√
f(z) =
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maxz∈Z f(z). Hence:

max
Σ̄rt∈UΣrt

,Σ̄Lt∈UΣLt
,σ̄(Lt,rt)∈Uσ(Lt,rt)

√
ψ2Σ̄Lt + x⊺t−1Σ̄rtxt−1 − 2x⊺t−1σ̄(rt,Lt) =

√
max

Σ̄rt∈UΣrt
,Σ̄Lt∈UΣLt

,Σ̄Lt∈UΣLt
,σ̄(Lt,rt)∈Uσ(Lt,rt)

ψ2Σ̄Lt + x⊺t−1Σ̄rtxt−1 − 2x⊺t−1σ̄(rt,Lt). (3.14)

Also, because the terms under the square root depend on different uncertainty sets,

they are separable. Then, the expression (3.14) is equivalent to:

√
max

Σ̄Lt∈UΣLt

ψ2Σ̄Lt + max
Σ̄rt∈UΣrt

x⊺t−1Σ̄rtxt−1 − min
σ̄(Lt,rt)∈Uσ(Lt,rt)

2x⊺t−1σ̄(rt,Lt).

Kang et al. (2019) showed that maxΣ̄rt∈UΣrt
x⊺t−1Σ̄rtxt−1 = x⊺t−1

(
Σ̂rt + γt2In+1

)
xt−1,

i.e., the worst-case is obtained by perturbing the nominal variance-covariance ma-

trix by the radius of the ambiguity set. By using the same proof developed in

(Kang et al., 2019, Proposition 2.2), maxΣ̄Lt∈UΣLt
ψ2Σ̄Lt = ψ2

(
Σ̂Lt + γt4

)
. Finally,

minσ̄(Lt,rt)∈Uσ(Lt,rt)
2x⊺t−1σ̄(rt,Lt) is a robust optimization problem with a box uncertainty

set, which evaluates to −2x′t−1γ
t
5. With that, the third term can be tractably refor-

mulated as follows:

√
max

Σ̄Lt∈UΣLt

ψ2Σ̄Lt + max
Σ̄rt∈UΣrt

x⊺t−1Σ̄rtxt−1 − min
σ̄(Lt,rt)∈Uσ(Lt,rt)

2x⊺t−1σ̄(rt,Lt) =

√
x⊺t−1

(
Σ̂rt + γt2In+1

)
xt−1 + ψ2

(
Σ̂Lt + γt4

)
+ 2x⊺t−1γ

t
5 (3.15)

Now, by combining (3.12), (3.13), and (3.15), the LHS of constraint (3.3c) is

equivalent to:

sup
p(r,L)∈Dt

P (r,L)(γt1,γt2,γt3,γt4,γt5)
CV aRβ (xt−1) = −

[
r̂⊺t xt−1 −

√
γt1

√
x⊺t−1Σ̂rtxt−1

]
+
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ψ

[
L̂t +

√
γt3

√
ψ2Σ̂Lt

]
+ k

√
x⊺t−1

(
Σ̂rt + γt2In+1

)
xt−1 + ψ2

(
Σ̂Lt + γt4

)
+ 2x⊺t−1γ

t
5,

where k =
√

β
1−β .

Since p(r, L) ∈ Dt
P (r,L) (γ

t
1, γ

t
2, γ

t
3, γ

t
4,γ

t
5), q ∈ Q (γ6, γ7), and based on proposition

6, the robust counterpart of model (3.3) is as follows:

miny∈Y,xt∈X Ŵ⊺y +
√
γ6

√
y⊺Σ̂Wy, (3.16a)

s.t. e⊺xt = r̂⊺t xt−1 −
√
γt1

√
x⊺t−1Σ̂rtxt−1 + wtyt − lt, t = 0, . . . , T − 1,

(3.16b)

− r̂⊺t xt−1 +
√
γt1

√
x⊺t−1Σ̂rtxt−1 + ψL̂t + ψ2

√
γt3

√
Σ̂Lt+

k

√
x⊺t−1(Σ̂rt + γt2In+1)xt−1 + ψ2(Σ̂Lt + γt4) + 2x⊺t−1γ

t
5 ≤ 0, t = 0, . . . , T. (3.16c)

Model (3.16) represents a DRO version of the ALM model that accounts for mo-

ment uncertainty. This model is more complex than the original ALM problem, which

was a linear programming model. The nonlinear nature of the model and the incor-

poration of moment-based ambiguity sets allow for a more accurate representation of

the uncertainty inherent in the ALM problem. In the next section, we will evaluate

the proposed model using real-world data, through which we can assess its effective-

ness in providing robust solutions that improve the long-term financial outcomes of

pension funds.

3.5 Numerical Results

In this research, we use data from the Canada pension plan (CPP) to conduct numer-

ical experiments/tests. Contributions to CPP are compulsory for all working Cana-

dians aged 18-70, based on CPP information 5. Also, around 5.8 million individuals

are receiving retirement benefits from CPP each month. On average $811.21 are paid

5https://open.canada.ca/data/en/dataset/1fab2afd-4f3c-4922-a07e-58d7bed9dcfc
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in month January 2023 to retired Canadians 6. Moreover, 14, 371, 853 individuals are

contributing to CPP based on CPP investments report 7.

CPP is investing in 5 asset classes 8: fixed income, private equity, public equity,

infrastructure, and real estate. Moreover, CPP investments are geographically di-

versified in North America, Europe, and Asia. In our analysis, we use data from 10

major indexes from 2012 to 2022: S&P500 index is used for public equities, Private

Equity Index (PRIVEXD) is used for private equities, SP/TSX Capped Real Estate

Index (GSPRTRE) is used for the real estate sector, Treasury Yield 10 Years (TNX)

is used for fixed-income assets, and finally, S&P Global Infrastructure TR (SPGT-

INTR) is used for infrastructure investment. S&P TSX Composite is the index of the

Canadian market. For public equities in Europe, FTSEurofirst 300 is used. STOXX

Europe 20 is used for the private equity index in Europe. Shanghai Stock Exchange

(SSE) and Nikkei-225 indexes are used as representatives of investment in Asia. The

value of the total asset in CPP is $539 B in 2022. Based on the most recent report of

CPP, the projected earnings of contributors for 2022 have been $585, 498 M, where

about %9.9 of that, $57, 964 M, is the contribution to CPP 9.

In order to apply model (3.16), individual WCVaR constraints are required for

each decision moment. As a result, it is necessary to determine the moments of

the uncertain distribution function of random variables for each decision moment.

However, it is possible for asset returns to follow the same distribution in each period

and for the mean/variance differences among periods to lack statistical significance.

Consequently, the uncertain parameters in each decision moment may exhibit the

same moments. Statistical analysis is conducted to find the distribution function

and the first two moments of asset returns in each decision moment. The Individual

Distribution Identification (IDI) feature in Minitab was used to conduct goodness-of-

fit tests to identify the distribution function of returns with the maximum likelihood

among a standard set of distribution functions. Table 3.1 shows the results of the

goodness of fit for testing the distribution function of asset returns in each period.

Based on the results illustrated in Table 3.1, we can conclude that the is not evidence

6https://www.canada.ca/en/services/benefits/publicpensions/cpp/cpp-benefit/amount.html
7https://www.cppinvestments.com/the-fund/our-performance/financial-results/f2022-annual-

results
8https://ca.investing.com/
9https://www.osfi-bsif.gc.ca/Eng/oca-bac/ar-ra/cpp-rpc/Pages/cpp30.aspx
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to reject the normality assumption of asset return since the p-values of the goodness-

of-fit tests are greater than the significant level, α = 0.05, in most periods.

We next test whether there are significant differences between the mean/variance

values among different periods (months). Consequently, we test the equality of the

mean/variance of asset returns in each period for all assets by using a one-way ANOVA

test. Table 3.2 shows the results of this test. The null hypothesis for equality of vari-

ance is “All variances of an asset class in each period are equal”, while its alternative

is “At least one variance is different”. Similarly, the null hypothesis for equality of the

mean is “All means of an asset class in each period are equal” and the alternative one

is “At least one mean is different”. The Significance level for this test is 0.05. Based

on the p-values illustrated in Table 3.2, we fail to reject the null hypotheses. Hence,

we do not have any evidence to support the assumption of different means/variances

across periods for the return of assets.

For solving the ALM problem, we consider a set of regulatory constraints. The

contribution rate in each period is required to be between 5% to 10%. The investment

in the US market cannot be greater than 60% of the whole fund. Investment in Canada

must be at least 20% of the fund. At least 10% of the fund must be invested in fixed-

income assets. Investment in Asia cannot be greater than 15% of the fund. Finally,

the funding ratio should be at least 1.05. We provide in-sample and out-of-sample

performance analyses to compare the results of the proposed DRO formulation in

two cases, WCVaR of ALM problem where moments are uncertain (UM) (3.16) and

WCVaR of ALM where moments are assumed to be known and fixed (FM) (3.11),

in addition to the stochastic programming (SP) reformulation of the ALM problem

with CvaR constraints (SP). In-sample performance analysis refers to evaluating the

performance of a model on the same data that it was trained on. We are using

historical data of CPP for in-sample analysis. On the other hand, out-of-sample

performance analysis refers to evaluating the performance of a model on data that it

has not seen during the training phase. We are using the simulation to generate data

for out-of-sample analysis. Both in-sample and out-of-sample comparisons are based

on the funding ratio and the fund return in each period.

Table 3.3 displays the in-sample performance of the funding ratio and fund return

of the ALM problem under two different proposed approaches: UM and the FM, as
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Table 3.1: p-value of the goodness of fit for testing the distribution function of asset
returns in each period

Index Distribution Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PRIVEXD

Normal 0.688 0.343 <0.005 0.117 0.868 0.367 0.835 0.206 0.504 0.771 <0.005 0.127
2-Parameter Exponential 0.053 0.035 <0.010<0.010 0.035 <0.010 0.024 <0.010 0.011 0.05 0.146 <0.010
3-Parameter Weibull >0.500 0.298 0.072 >0.500>0.500>0.500>0.500 0.182 >0.500>0.500 0.093 0.466

Smallest Extreme Value >0.250>0.250 0.124 >0.250>0.250>0.250>0.250 0.089 >0.250>0.250<0.010>0.250
Largest Extreme Value >0.250 0.208 <0.010<0.010>0.250 0.048 >0.250 0.094 0.231 >0.250 0.086 0.024

Logistic >0.250>0.250 0.032 >0.250>0.250>0.250>0.250>0.250>0.250>0.250 0.012 0.202

S&P500

Normal 0.69 0.341 <0.005 0.118 0.869 0.367 0.835 0.206 0.504 0.77 <0.005 0.185
2-Parameter Exponential 0.053 0.035 <0.010<0.010 0.035 <0.010 0.024 <0.010 0.011 0.05 0.124 <0.010
3-Parameter Weibull >0.500 0.295 0.072 >0.500>0.500>0.500>0.500 0.181 >0.500>0.500 0.071 >0.500

Smallest Extreme Value >0.250>0.250 0.124 >0.250>0.250>0.250>0.250 0.088 >0.250>0.250<0.010>0.250
Largest Extreme Value >0.250 0.208 <0.010<0.010>0.250 0.048 >0.250 0.094 0.231 >0.250 0.062 0.033

Logistic >0.250>0.250 0.032 >0.250>0.250>0.250>0.250>0.250>0.250>0.250 0.008 >0.250

GSPRTRE

Normal 0.11 0.137 <0.005 0.552 0.513 0.105 0.378 0.119 0.464 0.727 <0.005 0.124
2-Parameter Exponential 0.041 <0.010<0.010 0.03 0.023 <0.010 0.048 0.025 0.12 >0.250 0.159 >0.250
3-Parameter Weibull 0.206 0.124 0.01 >0.500>0.500>0.500>0.500 0.308 0.332 >0.500 0.115 0.389

Smallest Extreme Value 0.05 0.2 0.024 >0.250>0.250>0.250 0.053 >0.250>0.250>0.250<0.010 0.092
Largest Extreme Value 0.208 0.078 <0.010 0.229 0.244 <0.010>0.250 0.042 >0.250>0.250 0.143 0.107

Logistic 0.085 0.139 <0.005>0.250>0.250>0.250>0.250 0.12 >0.250>0.250 0.022 0.098

S&P/TSX Composite

Normal 0.008 0.197 <0.005 0.088 0.698 0.168 0.207 0.269 0.337 0.791 0.078 0.253
2-Parameter Exponential>0.250<0.010<0.010<0.010 0.033 <0.010>0.250<0.010>0.250 0.021 >0.250<0.010
3-Parameter Weibull >0.500 0.244 0.072 0.093 >0.500 0.4 0.38 >0.500 0.367 >0.500>0.500>0.500

Smallest Extreme Value <0.010>0.250 0.123 0.017 >0.250>0.250 0.106 >0.250>0.250>0.250<0.010>0.250
Largest Extreme Value >0.250 0.054 <0.010 0.08 >0.250 0.04 >0.250 0.049 >0.250>0.250>0.250 0.081

Logistic 0.083 0.238 0.021 0.149 >0.250 0.235 0.169 >0.250>0.250>0.250 0.211 >0.250

TNX

Normal 0.29 0.366 0.073 0.169 0.011 0.725 0.131 0.835 0.858 0.077 0.022 0.237
2-Parameter Exponential 0.148 0.021 <0.010>0.250 0.017 <0.010 0.023 0.017 0.13 0.097 >0.250<0.010
3-Parameter Weibull 0.226 0.479 0.054 >0.500 0.062 >0.500 0.181 >0.500>0.500 0.408 >0.500 0.295

Smallest Extreme Value 0.212 0.087 0.059 0.018 <0.010>0.250>0.250>0.250>0.250<0.010<0.010>0.250
Largest Extreme Value 0.244 >0.250 0.016 >0.250 0.108 0.173 0.063 >0.250>0.250>0.250>0.250 0.035

Logistic 0.23 >0.250 0.098 >0.250 0.056 >0.250 0.118 >0.250>0.250 0.21 0.13 >0.250

SPGTINTR

Normal 0.005 0.026 <0.005 0.163 0.638 0.907 0.179 0.262 0.253 0.495 0.163 0.794
2-Parameter Exponential 0.202 <0.010<0.010<0.010 0.024 0.017 0.018 0.012 <0.010 0.034 >0.250>0.250
3-Parameter Weibull 0.201 0.18 0.04 0.136 >0.500>0.500 0.44 0.111 0.306 >0.500>0.500>0.500

Smallest Extreme Value <0.010>0.250 0.075 0.04 >0.250>0.250>0.250 0.187 >0.250>0.250 0.034 >0.250
Largest Extreme Value >0.250<0.010<0.010 0.077 >0.250>0.250 0.043 0.201 0.037 0.228 >0.250>0.250

Logistic 0.052 0.042 0.009 >0.250>0.250>0.250 0.223 0.213 >0.250>0.250 0.247 >0.250

FTSEurofirst 300

Normal 0.407 0.662 0.006 0.422 0.038 0.794 0.752 0.337 0.734 0.922 0.113 0.623
2-Parameter Exponential 0.033 0.015 <0.010 0.101 <0.010 0.099 >0.250<0.010 0.045 0.144 >0.250 0.063
3-Parameter Weibull >0.500>0.500 0.099 0.485 0.299 >0.500>0.500>0.500>0.500>0.500>0.500>0.500

Smallest Extreme Value 0.095 >0.250 0.174 0.159 >0.250>0.250>0.250>0.250>0.250>0.250 0.013 >0.250
Largest Extreme Value >0.250>0.250<0.010>0.250<0.010>0.250>0.250 0.064 >0.250>0.250>0.250>0.250

Logistic >0.250>0.250 0.046 >0.250 0.101 >0.250>0.250>0.250>0.250>0.250>0.250>0.250

STOXX Europe 20

Normal 0.262 0.511 <0.005 0.731 0.892 0.393 0.79 0.467 0.05 0.901 <0.005 0.613
2-Parameter Exponential 0.114 0.012 <0.010 0.021 0.057 <0.010 0.058 0.015 <0.010 0.031 0.246 0.046
3-Parameter Weibull >0.500>0.500 0.038 >0.500>0.500>0.500>0.500 0.439 0.203 >0.500 0.188 >0.500

Smallest Extreme Value 0.046 0.138 0.071 >0.250>0.250>0.250>0.250 0.227 >0.250>0.250<0.010>0.250
Largest Extreme Value >0.250>0.250<0.010>0.250>0.250 0.061 >0.250 0.23 0.014 >0.250 0.178 >0.250

Logistic >0.250>0.250 0.017 >0.250>0.250>0.250>0.250>0.250 0.07 >0.250 0.023 >0.250

SSE

Normal 0.045 0.146 0.048 <0.005 0.33 0.213 0.607 0.115 0.554 0.373 0.706 0.029
2-Parameter Exponential<0.010 0.043 >0.250 0.07 <0.010<0.010<0.010<0.010>0.250 0.016 >0.250>0.250
3-Parameter Weibull >0.500 0.403 >0.500 0.049 0.174 >0.500>0.500 0.476 0.482 0.413 >0.500 0.417

Smallest Extreme Value >0.250 0.011 0.016 <0.010 0.246 >0.250>0.250>0.250>0.250 0.062 >0.250<0.010
Largest Extreme Value <0.010>0.250 0.205 0.082 0.167 0.069 0.169 0.019 >0.250>0.250>0.250>0.250

Logistic 0.226 >0.250 0.049 0.015 >0.250 0.221 >0.250 0.232 >0.250>0.250>0.250 0.136

Nikkei 225

Normal 0.487 0.57 0.435 0.676 0.544 0.152 0.892 0.78 0.055 0.451 0.35 0.102
2-Parameter Exponential 0.09 0.057 <0.010>0.250<0.010<0.010 0.018 <0.010 0.018 <0.010 0.023 <0.010
3-Parameter Weibull 0.37 >0.500>0.500>0.500>0.500>0.500>0.500>0.500 0.083 >0.500 0.495 0.278

Smallest Extreme Value >0.250>0.250>0.250>0.250>0.250>0.250>0.250>0.250 0.145 >0.250 0.067 >0.250
Largest Extreme Value 0.194 0.224 0.054 >0.250 0.097 0.014 >0.250 0.249 0.022 0.17 >0.250 0.015

Logistic >0.250>0.250>0.250>0.250>0.250>0.250>0.250>0.250 0.046 >0.250>0.250 0.226
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Table 3.2: p-values related to hypothesis test for equality of the mean/variance of
asset returns in each period

Test Equality of variances Equality of means

PRIVEXD 0.971 0.407
S&P500 0.974 0.422

GSPRTRE 0.831 0.965
S&P/TSX Composite 0.813 0.496

TNX 0.275 0.868
SPGTINTR 0.797 0.733

FTSEurofirst 300 0.644 0.401
STOXX Europe 20 0.755 0.632

SSE 0.978 0.861
Nikkei 225 0.925 0.407

Table 3.3: In-sample performance of the ALM models

UM FM SP

Decision moments Funding ratio Fund return Funding ratio Fund return Funding ratio Fund return

1 1.092 0.020 1.090 0.019 1.094 0.024
2 1.10 0.004 1.11 0.006 1.13 0.032
3 1.10 0.004 1.12 0.006 1.16 0.032
4 1.10 0.003 1.11 0.007 1.19 0.019
5 1.11 0.003 1.12 0.008 1.22 0.031
6 1.11 0.003 1.12 0.008 1.26 0.031
7 1.12 0.003 1.13 0.008 1.29 0.018
8 1.12 0.003 1.13 0.008 1.32 0.029
9 1.12 0.003 1.14 0.008 1.36 0.030
10 1.12 0.003 1.12 0.008 1.40 0.030
11 1.13 0.002 1.13 0.008 1.43 0.017
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well as the risk-neutral approach of SP. It consists of 11 periods, each representing a

specific time point. For the UM model, the highest funding ratio is 1.13 in the final

period, while the lowest funding ratio is 1.09 in the first period. The corresponding

fund return ranges from 0.002 to 0.02. The overall return in this investment horizon

is 5.1%. For the FM model, the funding ratio ranges from 1.09 to 1.14, and the

fund return ranges from 0.007 to 0.019 with an overall return of 9.9%. The funding

ratios are slightly different in WCVaR models, which suggests that the uncertainty

of moments affects the funding ratio and fund return.

For the SP model, the funding ratio ranges from 1.09 in the first period to 1.43

in the 11th period, and the fund return ranges from 0.017 to 0.032 overall return of

33%. The funding ratio and fund return of the SP model are higher than the UM and

FM models, which indicates that the risk-neutral approach of SP is more optimistic

than the WCVaR of ALM with fixed and uncertain moments.

Figure 3.1 shows the in-sample performance of the funding ratio of the SP, UM,

and FM models. It illustrates that the SP has better performance than the FM and

UM models based on funding ratio, which is predictable since the FM and UM models

are more conservative than SP. Figure 3.2 demonstrates the fund return in each

period. Although the SP has a higher return in each period than the two other

models, it also has higher volatility. The UM and FM models show slightly different

trends in the funding ratio and fund returns, which indicates that the uncertainty of

moments has an impact on the performance of the ALM problem. Meanwhile, the

SP model provides an optimistic scenario for the system’s future performance with

higher volatility of fund return in each period.

Asset allocation is a crucial decision in the ALM problem. It involves deciding

how to distribute investments across different asset classes to achieve the desired level

of return while minimizing risk. Figure 3.3 compares the optimal asset allocation of

three models. As shown in Figure 3.3, the WCVaR models provide more diversified

portfolios than the SP model, which leads to a less risky portfolio. The WCVaR

models consider the probability distribution of returns and estimate the risk of the

portfolio based on the worst-case scenario. As a result, the WCVaR models provide

more robust and stable asset allocation over time. In contrast, the SP model does not

account for the uncertainty of the distribution function and can lead to more volatile
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Figure 3.1: In-sample performance of funding ratio

asset allocation over the investment horizon. The comparison of the optimal asset

allocation of the different models in Figure 3.3 highlights the advantages of using the

WCVaR models, which provide more diversified and less risky portfolios compared to

the SP model.

Another point of comparison is the contribution rate, which changes based on

the funding ratio (FR) threshold. Table 3.4, shows the comparison of the optimal

contribution rates of three models (UM, FM, and SP). As shown in Table 3.4, the

optimal contribution rates of the three models differ depending on the FR parameter.

Table 3.4: Optimal contribution rates of three models based on funding ratio
Models FR=1.02 FR=1.05 FR=1.07 FR=1.1 FR=1.15
UM 3.7% 5.7% 6.6% 7.7% 10.2%
FM 0.9% 2.4% 3.3% 4.8% 7.1%
SP 0.1% 2.3% 3.2% 4.6% 7.1%
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Figure 3.2: In-sample performance of fund return

For instance, when FR=1.02, the optimal contribution rates for the UM, FM, and SP

models are 3.7%, 0.9%, and 0.1%, respectively. However, as FR is increased, the

optimal contribution rates of all three models also increase. Furthermore, the UM

model has the highest optimal contribution rates among the three models for all FR

values. This suggests that this model may be the most conservative in managing

risk under different FR scenarios. In contrast, the SP model has the lowest optimal

contribution rates for FR values up to 1.1. However, when FR=1.15, the optimal

contribution rates of the SP model become equal to that of the FM model.

Besides in-sample analysis, we are comparing the out-of-sample performance of

the above-mentioned models using simulation. 1000 scenarios of asset returns are

generated based on distribution functions of asset returns in Table 3.1. Then, the

optimal investment strategies of the UM, FM, and SP models are used to compare the

funding ratio and value of assets in each period. Table 3.5 presents the out-of-sample
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Table 3.5: Out-of-sample performance of the ALM models

UM FM SP

Decision moments Funding ratio Fund return Funding ratio Fund return Funding ratio Fund return

1 0.96 0.017 0.95 0.007 0.80 -0.157
2 0.97 0.006 0.94 -0.01 0.90 0.134
3 0.98 0.013 0.94 -0.004 0.93 0.028
4 1.02 0.038 0.94 0.004 0.85 -0.079
5 1.02 0.006 0.95 0.004 0.94 0.098
6 1.03 0.011 0.93 -0.013 0.94 0.00
7 1.04 0.011 0.96 0.026 0.92 -0.02
8 1.05 0.008 0.95 -0.01 0.91 -0.015
9 1.09 0.038 0.94 -0.003 0.85 -0.063
10 1.10 0.004 0.95 0.009 0.94 0.103
11 1.13 0.031 0.97 0.012 1.02 0.094

performance of three ALM models. In the first two columns, we have the results

of the UM model, showing that the funding ratio ranges from 0.96 to 1.13 and the

fund return ranges from 0.004 to 0.038 with an overall return of 9% in the investment

horizon. The next two columns present the results of the FM model, where the funding

ratio ranges from 0.93 to 0.97 and the fund return ranges from -0.013 to 0.026 with

an overall return of −5%. Finally, the last two columns present the results of the SP

model, where the funding ratio ranges from 0.8 to 1.02 and the fund return ranges

from -0.157 to 0.134 with an overall return of −2% with very high volatility.

Figure 3.4 compares the out-of-sample performance of the UM, FM, and SP models

based on the fund return in each period. When comparing the fund return, we

can observe that the FM and SP models have 5 periods with a negative return rate.

Moreover, the funding return of the SP model shows high volatility in comparison to

other two models. The overall return of these two models, SP and FM, are negative:

−2% and −5%, respectively. On the other hand, the UM model has a positive return

in all periods with an overall average return of 9% which is very similar to the actual

fund return of CPP last year which was 10% 10. This indicates that the UM model is

more effective in generating return compared to the FM and the SP models.

Figure 3.5 demonstrates the out-of-sample performance of models based on the

10https://www.cppinvestments.com/the-fund/our-performance/financial-results/f2022-annual-
results
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funding ratio. Comparing the three models based on the funding ratio, we can see

that the UM model has higher funding ratios compared to the FM and SP models.

Moreover, the FM model has better performance than the SP model except in the 6th

period. This suggests that the UM model is more stable and has a better ability to

meet its obligations than the two other models. On the other hand, the SP model has

a lower funding ratio, indicating a higher risk of not being able to meet its obligations.

In conclusion, based on the results presented in Table 3.5, it appears that the UM

model outperforms the FM and SP models in terms of funding ratio and fund return,

implying better stability and asset management performance.

3.6 Conclusions

In this chapter, we proposed a theoretical foundation for developing the WCVaR

formulation for the ALM problem. The proposed theoretical development can be

used in any problem with general loss functions. Based on the proposed theoretical

foundation of WCVaR, we introduced the DRO reformulation of the ALM problem

where the loss function is a linear function of asset returns and the present value of

liabilities. The DRO reformulation of the ALM problem is proposed in two cases.

First, the moments of the uncertain distribution function are fully known and fixed.

Second, the moments of the distribution function of random variables are uncertain

and belong to the uncertainty set.

Real data of CPP are used to test and analyze the performance of optimal invest-

ment strategies obtained by solving the DRO reformulations. The analysis was based

on the in-sample and out-of-sample performance of the models. The results showed

that the SP reformulation of the ALM has better in-sample performance than the

DRO reformulation of the ALM models with respect to the fund return and funding

ratio in each period. However, out-of-sample performance analysis revealed that the

investment strategy of the DRO formulation of the ALM problem with uncertain

moments has a better funding ratio and higher overall average fund return than the

DRO with fixed moments and SP models. Consequently, we can conclude that the

investment strategy achieved from the DRO reformulation of the ALM problem with

uncertain moments can handle the asset and liability balance of pension funds better

than the investment strategies of the DRO with fixed moments and SP models.
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Numerous avenues for future research exist to expand upon the contributions

made by this work. To begin, while the effectiveness of the DRO reformulation

of the ALM problem has been demonstrated using moment-based ambiguity sets,

it is imperative to explore the performance of investment strategies derived from

the DRO formulation of ALM utilizing ambiguity sets based on distances. Such

an investigation can yield insights into how metric-based ambiguity sets influence the

model’s performance. In addition, while this study has evaluated the proposed models

using authentic CPP data, subjecting them to further testing across a wider array

of pension funds could enhance our understanding of the models’ generalizability.

Lastly, an avenue for extension involves incorporating other pivotal considerations

into pension fund management within the proposed models. These considerations

encompass taxes, transaction costs, and regulatory constraints. By integrating these

elements, the models can establish a more comprehensive framework for pension fund

management, capable of accommodating a broader spectrum of real-world constraints.

3.7 Appendix

Lemma 7. Let ξ be a univariate random variable, where E [ξ] = µ, V ar (ξ) = σ2,

and f (.) is a nonlinear function of random variabnle ξ that f : R→ R. Then:

sup
ξ∼(µ,σ2)

E
[
(α− f(ξ))+

]
≊
α−

(
f (µ) + 1

2
f ′′ (µ) σ2

)
+
√
f ′ (µ)2 σ2 +

(
α−

(
f (µ) + 1

2
f ′′ (µ) σ2

))2
2

,

where f ′ (.) and f ′′ (.) are first and second derivation of f (.), respectively.

Proof. First, we need to find the expected value of f (ξ). The second-order Taylor

approximation of f(ξ) around µ is:

E [f (ξ)] ≊ E
[
f (µ) + f ′ (µ) (ξ − µ) + 1

2
f ′′ (µ) (ξ − µ)2

]
.

It is known that E (a+ b) = E (a) + E (b). Then we can expand the proposed

second-order Taylor approximation as:

E [f (ξ)] ≊ E [f (µ)] + f ′ (µ)E [ξ − µ] + 1

2
f ′′ (µ)E [ξ − µ]2 ,
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where E [f (µ)] = f (µ), and E [ξ − µ] = µ− µ = 0. Then:

E[f(ξ)] ≊ f(µ) +
1

2
f ′′(µ)E[ξ − µ]2.

Since E [ξ − µ]2 = V ar (ξ) = σ2, then:

E [f (ξ)] ≊ f(µ) +
1

2
f ′′ (µ) σ2.

Now, we need to approximate V ar (f (ξ)). The first order Taylor approximation

of f(ξ) around µ is:

f (µ) + f ′ (µ) (ξ − µ) .

Then V ar (f (ξ)) can be approximated as:

V ar [f (ξ)] ≊ V ar [f (µ) + f ′ (µ) (ξ − µ)] = V ar [f (µ) + f ′ (µ) ξ − f ′ (µ)µ] .

The first term, f (µ), is constant then V ar (f (µ)) = 0. The third term V ar (f ′ (µ)µ)

is also constant with a variance of zero. Consequently:

V ar [f (ξ)] ≊ V ar [f ′ (µ) ξ] = (f ′ (µ))
2
V ar [ξ] = f ′ (µ)2 σ2.

By substituting E [f (ξ)] and V ar (f (ξ)) into the WLPM reformulation by Chen

et al. (2011a),

sup
ξ∼(µ,σ2)

E
[
(α− f (ξ))+

]
=
α− E [f (ξ)] +

√
V ar (f (ξ)) + (α− E [f (ξ)])2

2
,

we obtained the desired result.

Theorem 8. Let ξ be a univariate random variable with mean µ and variance σ2,

and define the ambiguty set P = {p ∈ M+|P (ξ ∈ Ω) = 1, ξ ∼ (µ, σ2)}. Moreover,

f(ξ) is a loss function, where f : R → R. Then WCVaR can be approximated as
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follows:

WCV aRβ ≊ f (µ) +
1

2
f ′′ (µ) σ2 +

√
β

1− β

√
f ′ (µ)2 σ2

Proof. Based on the definition,WCV aRβ = supp(.)∈P minα∈R α + 1
1−βE

[
(f (ξ)− α)+

]
.

To reformulate the WCVaR, we need to calculate the WLPM term in the WCVaR

definition. In Lemma 7, the LPM is in the form supp(.)∈P E
[
(α− f (ξ))+

]
. Hence we

need to rearrange the LPM in CVaR as:

sup
p(.)∈P

E
[
(f (ξ)− α)+

]
= sup

p(.)∈P
E
[
(−α− (−f (ξ)))+

]
.

based on Lemma 7:

sup
p(.)∈P

E
[
(−α− (−f (ξ)))+

]

≊
−α +

(
f (µ) + 1

2
f ′′ (µ) σ2

)
+
√
f ′ (µ)2 σ2 +

(
−α +

(
f (µ) + 1

2
f ′′ (µ) σ2

))2
2

.

Now, we can substitute this WLPM into the WCVaR formulation. Consequently:

WCV aRβ ≊ min
α∈R

α

+
1

1− β
−α +

(
f (µ) + 1

2
f ′′ (µ) σ2

)
+
√
f ′ (µ)2 σ2 +

(
−α +

(
f (µ) + 1

2
f ′′ (µ) σ2

))2
2

.

To evaluate the minimization over α in the WCVaR definition we use the first-

order optimality condition
∂WCV aRβ

∂α
= 0, resulting in:

α∗ = f (µ) +
1

2
f ′′ (µ) σ2 +

2β − 1

2
√
β (β − 1)

√
f ′ (µ)2 σ2.

By substituting α∗ back in the definition of WCAR, we obtain the desired result.
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Lemma 7 and Theorem 8 are based on a function of a univariate random variable,

while in many cases, loss functions are functions of multivariate random variables

such as engineering design problems. Consequently, we extend this lemma/theorem

to multivariate random variables.

Lemma 9. Let ξ = {ξ1, . . . , ξn} be a multivariate random variable, where E [ξi] = µi,

V ar (ξi) = σ2
i , Cov (ξi, ξj) = σij, and f (.) is a nonlinear function of random variable

ξ that f : Rn → R. Then supξ∼(µ,Σξ)
E
[
(α− f (ξ))+

]
can be approximated by:

1

2
(α−

f (µ) +
∑
i

ei
σ2
i

2
+
∑
i

∑
j>i

eijσij



+

√√√√√∑
i

d2iσ
2
i + 2

∑
i

∑
j>i

didjσij +

α−

f (µ) +
∑
i

ei
σ2
i

2
+
∑
i

∑
j>i

eijσij

2

),

where µ = {µ1, . . . , µn} is the mean vector, ei = ∂2f(ξ)
∂2ξi

|ξ=µ, eij = ∂2f(ξ)
∂ξi∂ξj

|ξ=µ, di =
∂f(ξ)
∂ξi
|ξ=µ and |ξ=µ means to evaluate the expression with µi replacing ξi.

Proof. Based on the second-order Taylor series expansion of f (.) around µ = {µ1, . . . , µn},
the expected value of f(.) is approximated by:

E [f (ξ)] ≊ E [f (µ)] + E [∇f (µ) (ξ− µ)] + E
[
1

2
(ξ− µ)⊺Hf (µ) (ξ− µ)

]
,

where Hf is the Hessian matrix of f . The second term is zero since E [ξ− µ] =

E [ξ]− µ = µ− µ = 0. In the last term, E
[
(ξ− µ)2

]
= Σξ is the variance-covariance

matrix of ξ, then E [f (ξ)] ≊ f (µ) + 1
2
Hf (µ) Σξ. Expansion of this formulation is:

E [f (ξ)] ≊ f (µ) +
∑
i

ei
σ2
i

2
+
∑
i

∑
j>i

eijσij.

Moreover, based on the first-order Taylor approximation, the variance of f (.) is:

V ar (f (ξ)) ≊ V ar (f (µ) +∇f (µ)⊺ (ξ− µ)) = V ar (f (µ) +∇f (µ)⊺ ξ−∇f (µ)⊺ µ) .

Since f (µ), and∇f (µ)µ are constants, their variances are zero. Hence, V ar (f (ξ)) ≊
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V ar (∇f (µ)⊺ ξ) which is equivalent to ∇f (µ)2 Σξ. This formulation can be ex-

panded as V ar (f (ξ)) ≊
∑

i d
2
iσ

2
i + 2

∑
i

∑
j>i didjσij. By substituting E [f (ξ)] and

V ar (f (ξ)) into
α−E[f(ξ)]+

√
V ar(f(ξ))+(α−E[f(ξ)])2

2
, we obtain the desired result.

Theorem 10. Let ξ ∈ Rn be a multivariate random variable with mean vector µ

and covariance matrix Σξ, where the ambiguity set is P = {p ∈ M+|P (ξ ∈ Ω) =

1, ξ ∼ (µ,Σξ)}. Moreover, f (ξ) is a loss function, where f : Rn → R. Then

WCVaR is defined as WCV aRβ = supp(.)∈P minα∈R α + 1
1−βE [(f(ξ)− α)+] which is

approximated by:

f (µ) +
∑
i

ei
σ2
i

2
+
∑
i

∑
j>i

eijσij +

√
β

1− β

√∑
i

d2iσ
2
i + 2

∑
i

∑
j>i

didjσij.

Proof. WCVaR is defined as WCV aRβ = supp(.)∈P minα∈R α + 1
1−βE

[
(f (ξ)− α)+

]
.

In Lemma 9, we showed how to approximate the WLPM of a function of multivari-

ate random variables as supp(.)∈P E
[
(f (ξ)− α)+

]
= supp(.)∈P E

[
(−α− (−f (ξ)))+

]
which is approximated by:

1

2
(−α+

f (µ) +
∑
i

ei
σ2
i

2
+
∑
i

∑
j>i

eijσij



+

√√√√√∑
i

d2iσ
2
i + 2

∑
i

∑
j>i

didjσij +

−α+

f (µ) +
∑
i

ei
σ2
i

2
+
∑
i

∑
j>i

eijσij

2

),

which can be substituted in WCVaR formulation instead of WLPM.

Minimization of WCVaR is over α. Then its optimal value α∗ is needed. Optimal α∗

can be calculated by using the first-order optimality condition
∂WCV aRβ

∂α = 0. The α∗ is as

follows:

α∗ = f (µ) +
∑
i

ei
σ2
i

2
+
∑
i

∑
j>i

eijσij +
2β − 1

2
√
β (β − 1)

√∑
i

d2iσ
2
i + 2

∑
i

∑
j>i

didjσij .

Finally, α∗ can be used in the formulation of WCVaR instead of α which leads to the

desired result.
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A quadratic function is a special case of a nonlinear function. A loss function can

be defined based on a quadratic function of a random variable. For example, tracking

errors in index-tracking PSPs is an example of a quadratic function that can be used

as a loss function. In Lemma 7 and theorem 8, both the mean and variance of the

loss function are approximated by the Taylor approximation method. However, by

using a quadratic function of a random variable as a loss function, the variance of the

loss function should be approximated while the expected value of the loss function

can be calculated based on exact formulation. Remark 1 shows how to calculate the

WLPM for a quadratic function of a random variable.

Remark 1. Let ξ be an univariate random variable, where E[ξ] = µ, and V ar(ξ) =

σ2. Then, WLPM is approximated as follows:

sup
ξ∼(µ,σ2)

E
[(
α− ξ2

)+] ≊ α− (σ2 − µ2) +
√

4µ2σ2 + (α− [σ2 − µ2])2

2
.

Proof. Based on definition of the first two moments of ξ, V ar (ξ) = E [ξ2]−E [ξ]2 = σ2.

Then, E [ξ2] = σ2 − µ2. The first-order Taylor approximation of ξ2, around E [ξ], is

E [ξ]2 + 2E [ξ] (ξ − E [ξ]). Consequently, variance of ξ2 is approximated as follows:

V ar
(
ξ2
)
≊ V ar

(
E [ξ]2 + 2E [ξ] (ξ − E [ξ])

)

= V ar
(
E [ξ]2 + 2E [ξ] ξ − 2E [ξ]E [ξ]

)
= V ar

(
µ2 + 2µξ − 2µ2

)
.

The first and third terms are constants, then their variances are zero. Hence,

V ar
(
ξ2
)
≊ V ar (2µξ) = 4µ2V ar (ξ) .

By using E [ξ2] and V ar (ξ2), WLPM is as follows:

sup
ξ∼(µ,σ2)

E
[(
α− ξ2

)+] ≊ α− (σ2 − µ2) +
√

4µ2σ2 + (α− [σ2 − µ2])2

2
.
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The WCVaR for quadratic loss function is defined based on remark 2.

Remark 2. Let ξ be a univariate random variable with mean µ and variance σ2,

where the ambiguity set is P = {p ∈M+|P (ξ ∈ Ω) = 1, ξ ∼ (µ, σ2)}. Moreover, ξ2 is

a loss function. Then WCVaR is defined as:

WCV aRβ ≊ σ2 − µ2 + 2µσ

√
β

1− β

Proof. Based on definition, WCV aRβ = supp(.)∈P minα∈R α + 1
1−βE

[
(ξ2 − α)+

]
. The

WLPM of ξ2 is defined based on remark 1. Hence:

sup
p(.)∈P

E
[(
ξ2 − α

)+]
= sup

p(.)∈P
E
[
(−α− (−ξ2))+

]
≊
−α + (σ2 − µ2) +

√
4µ2σ2 + (−α + [σ2 − µ2])2

2
.

By using the approximation of WLPM in WCVaR formulation, WCVaR of the

quadratic loss function is as follows:

WCV aRβ ≊ min
α∈R

α +
1

1− β
−α + (σ2 − µ2) +

√
4µ2σ2 + (−α + [σ2 − µ2])2

2
.

Minimization of WCVaR is over α, hence its optimal value is needed which can be

calculated by solving the first-order optimality condition,
∂WCV aRβ

∂α
= 0. The optimal

α∗ is as follows:

α∗ = σ2 − µ2 +
2β − 1

2
√
β(β − 1)

√
4µ2V ar(ξ).

By using α∗ in WCV aR instead of α, WCVaR is approximated as desired result.
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Figure 3.3: Comparision of optimal asset allocation
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Figure 3.4: Out-of-sample performance of fund return
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Figure 3.5: Out-of-sample performance of funding ratio



Chapter 4

Distributionally Robust Asset Liability Management

Problem

4.1 Introduction

Asset-liability management (ALM) refers to the challenge of managing the assets and

liabilities of an entity in a way that ensures the entity can meet its financial obli-

gations in the future (Zenios, 1995). The ALM problem typically arises in financial

institutions such as banks, insurance companies, and pension funds, which have sig-

nificant liabilities that must be met over a long period of time. In particular, ALM is

a critical concern for pension funds that must ensure they meet specific obligations

to individuals who have contributed to their funds while also generating investment

returns (Bodie et al., 1988).

Pension funds play a crucial role in the global financial landscape as evidenced by

their substantial assets which exceeded $60.6 trillion by the end of 2021, accounting

for 33% of global assets 1. This magnitude is exemplified by the fact that in nine

out of the 38 Organisation for Economic Co-operation and Development (OECD)

countries, pension fund assets surpassed their respective GDPs. In the last decade

(2010-2020), pension assets have grown by 5.7% 2, outpacing the 2.6% GDP growth

rate over the same period 3 and underscoring the increasing importance of retirement

savings worldwide. However, as the aging population grows, outflows from pension

funds to cover benefits are also accelerating. The ratio of benefits paid from retirement

savings plans to GDP varies across OECD countries, ranging from 0.5% to 8% 4. This

growth in both assets and payouts highlights the need for prudent and sustainable

management of pension funds to ensure that retirees receive their benefits without

1https://www.thinkingaheadinstitute.org/research-papers/global-pension-assets-study-2022/
2https://www.statista.com/statistics/721151/average-growth-largest-pension-markets-

worldwide/
3https://www.macrotrends.net/countries/WLD/world/gdp-growth-rate
4https://www.oecd.org/finance/private-pensions/globalpensionstatistics.htm
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putting undue stress on the funds’ assets.

Pension funds are essential for ensuring retirement income security; however, they

encounter challenges arising from demographic changes, low-interest rates, and in-

creasing life expectancy. To address these challenges, reforms have been implemented,

including raising the retirement age and promoting private pension plans (Holzmann,

2013). However, one of the major challenges for pension fund managers is the un-

certainty surrounding future asset returns and liabilities. The asset returns and the

value of liabilities can fluctuate due to factors like inflation, interest rates, and mar-

ket conditions. To mitigate this risk, effective ALM strategies are necessary. These

strategies involve monitoring and managing investment portfolios to ensure they are

well-aligned with future obligations. By optimizing the ALM problem under uncer-

tainty, pension funds can enhance long-term sustainability and avoid financial distress

(Gülpınar et al., 2016).

Among the powerful techniques for managing uncertainty in ALM problems is

stochastic programming (SP), which explicitly models uncertainty through probabil-

ity distributions of asset return and liability values and finds optimal asset allocation

strategies of the portfolio under different scenarios. This approach allows investors to

better hedge against unexpected changes in asset returns and liability values, while

still maintaining a desirable level of return (Kouwenberg, 2001). SP can also be

used to optimize dynamic asset allocation strategies, where the asset allocation is

periodically adjusted in response to changing market conditions and liability values

(Consigli & Dempster, 1998; Dempster & Consigli, 1996; Hibiki, 2006). By modeling

the stochastic behavior of asset returns and liability values, investors can make more

informed decisions about the optimal timing and size of asset allocation adjustments,

and better manage the risk of underfunding future liabilities. For more details on the

application of SP in ALM problems, we refer to (Klaassen, 1997; Kouwenberg, 2001;

Consigli, 2008; Duarte et al., 2017; Kopa et al., 2018; Barro et al., 2022). Despite

its intuitive appeal and favorable convergence properties, SP requires large amounts

of data on asset returns and liability values to construct their probability distribu-

tions, which may be difficult to obtain or may not be available. Furthermore, SP is a

risk-neutral approach and thus does not provide sufficient protection against adverse

scenarios.
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Another popular framework for dealing with uncertainty is robust optimization

(RO), which seeks to find solutions that perform optimally under worst-case scenarios,

in contrast to SP that aims to optimize the expected performance (Ben-Tal et al.,

2009; Gabrel et al., 2014; Ghahtarani et al., 2022). In the context of ALM, RO can

be used to find an asset allocation strategy that is most robust to uncertainty in asset

returns and liability values.

A few recent attempts have been made to apply RO to mitigate uncertainty in

the ALM problem. Iyengar & Ma (2016) introduced a robust factor model to capture

the true uncertainty of asset returns in pension fund management. By incorporat-

ing a factor model with stochastic parameters, they developed an ALM formulation

with a constraint on the funding ratio. The funding ratio, representing the assets’

value relative to the present value of liabilities, is subject to uncertainty. The pro-

posed formulation assumes the funding ratio as an uncertain parameter and utilizes

a Gaussian process for factors. Platanakis & Sutcliffe (2017) extended this approach

by considering ellipsoidal uncertainty sets for factor loading, box ambiguity sets for

asset returns and liabilities, and upper and lower bounds for the covariance matrix of

disturbances, which enabled the problem to be reformulated as a second-order cone

programming (SOCP) model. Based on the results, these robust factor models and

formulations enhance the out-of-sample performance of ALM problems. Alongside

robust factor models for ALM problems, Gülpinar & Pachamanova (2013) proposed

a robust ALM using time-varying investment opportunities. They extended the mul-

tiperiod PSP formulation of Dantzig & Infanger (1993) by including liabilities and

funding ratio constraints. In this formulation, cumulative rates of return of assets

are treated as uncertain parameters within an ellipsoidal uncertainty set. Moreover,

asset returns and interest rates are modeled by using the vector-autoregressive pro-

cess to capture the dynamic nature of investments. In contrast to other robust ALM

approaches, Gülpınar et al. (2016) developed an asymmetric uncertainty set to better

reflect the actual uncertainty structure. Gajek & Krajewska (2022) proposed a ro-

bust ALM formulation with uncertain interest rates, where the distribution function

of the uncertain parameters belongs to a nonempty ambiguity set. This formulation

provides an upper bound on VaR (Value at Risk) for portfolio value changes caused

by violations of the interest rate model. Finally, the ALM problem with discrete
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recourse decision and parameter uncertainty has been addressed by Ghahtarani et al.

(2023b) using the K-adaptability approach in Chapter 5. However, despite being a

risk-averse and distribution-free approach, RO usually results in overly conservative

investment strategies, which can lead to missed opportunities for higher returns, thus

negatively impacting the long-term performance of pension funds.

Disadvantages of the application of either SP or RO in ALM problems provide

motivation for the application of a relatively new approach to ALM problems called

distributionally robust optimization (DRO) (Rahimian & Mehrotra, 2019). Like RO,

DRO aims to minimize the impact of uncertain scenarios on investment decisions.

However, DRO goes one step further by enabling the available information about the

probability distribution of random variables, albeit limited and imperfect, to be incor-

porated into the decision-making process, thus leading to less conservative and more

stable investment strategies (Lin et al., 2022). Unlike SP and RO, which have been

applied to the ALM problem, DRO is yet to be leveraged in this context. One reason

for this is the inherent complexity of DRO models and their comparatively recent de-

velopment. Notably, a study by Ghahtarani et al. (2023a) focused on moment-based

ambiguity sets for the ALM problem and introduced worst-case Conditional Value at

Risk (CVaR) as a risk measure to deal with parameter uncertainty in the problem.

DRO has the potential to address some of the limitations of other methods, includ-

ing the optimizer’s curse in SP and the over-conservatism in RO. Moreover, DRO

provides a way to explicitly consider the ambiguity in the distribution of financial

variables.

In this chapter, we aim to fill this gap in the literature by proposing DRO formu-

lations for the ALM problem. We explore scenarios-based approaches to address the

uncertainty of parameters in the ALM problem. Numerous studies have suggested

that scenario-based analysis is superior to prediction-based analysis in financial prob-

lems. Boender (1997) argues that scenarios explicitly record assumptions about the

future and provide a common framework for discussion. By utilizing scenarios, we

can create a better understanding between managers and stakeholders, which can

ultimately contribute to more effective decision-making. The main goal of this chap-

ter is to develop DRO scenario-based formulations and compare them against each

other. The first formulation uses mixture ambiguity sets, each representing a convex
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combination of multiple distributions, each having multiple scenarios, which is com-

monly used in portfolio selection problems (Zhu & Fukushima, 2009). In the second

formulation, we investigate the case that the probabilities of scenarios are interval-

bounded, but also there is a requirement that they add up to 1, which basically means

that we are using a polyhedral set to represent the uncertain probabilities. Lastly, we

incorporate the Wasserstein ambiguity set into the ALM problem, which is a metric-

based ambiguity set. These ambiguity sets have been specifically chosen due to their

suitability for utilization in scenario-based DRO formulation.

We demonstrate, through the application of DRO in an ALM context using real-

world data, the potential advantages of this approach. Specifically, we develop DRO

models for an ALM problem that accounts for the ambiguity about the distribution

of asset returns and interest rates. We also compare the performance of our DRO

models to the traditional SP formulation of the ALM problem to demonstrate the

advantages and limitations of each approach. By doing so, we hope to contribute to

the development of a more robust and flexible framework for ALM that can better

account for the uncertainty and variability in financial markets.

The set of most used notations is shown in Table 4.1, whereas the notations that

are used once are defined in the text.

Table 4.1: Notations and symbols

Symbol/Notation Definition

t ∈ {0, . . . , T} Indices of decision moments

T Investment horizon

s ∈ {1, . . . , S} Indices of discount rate scenarios

k ∈ {1, ..., K} Indices of asset return scenarios

yt Contribution rate at the moment t, the fraction of sponsor

and/or active employees’ wages

yt,s Contribution rate at the moment t based on scenario s

n ∈ {0, . . . , N} Indices of assets, where n = 0 represents risk-free asset or

cash

xn,t Money invested in asset n at the moment t
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Table 4.1: Notations and symbols

Symbol/Notation Definition

xn,t,k Money invested in asset n at the moment t based on scenario

k

At Value of assets owned by the fund at the moment t

Wt Wages earned by active members at the moment t

lt Payments made by the fund to retirees at the moment t

Lt Net present value of liabilities of the fund at the moment t

Lt,s Net present value of liabilities of the fund at the moment t

based on scenario s

ξn,t Return on investment in asset n at the moment t

ξn,t,k Return on investment in asset n at the moment t based on

scenario k

ψ Minimum threshold of funding ratio

γ Discount rate for calculating the present value

Wt Net present value of wages at the moment t

p Discrete distribution function of discount rate

q Discrete distribution function of asset returns

P Ambiguity set of the distribution function of discount rate

Q Ambiguity set of the distribution function of asset returns

The remaining sections of this chapter are structured as follows. Section 4.2

introduces the mathematical formulation of the ALM problem. In Section 4.3, we

present DRO formulations of the ALM problem based on the mixture distribution,

the box, and the Wasserstein ambiguity sets. To test the proposed formulation,

numerical experiments using real data from the Canada Pension Plan (CPP) are

conducted, and the results are presented in Section 4.4. Finally, Section 4.5 offers

some conclusions and suggests potential areas for future research.
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4.2 ALM Model for Pension Funds

The ALM problem under consideration aims to find an optimal investment strategy

that achieves a trade-off between augmenting investment returns and reducing the

risk of insolvency. The objective of the ALM for a pension fund is to minimize the

contribution rate by both the sponsor and active employees of the fund (i.e., the

contributors), as defined in previous studies (Bogentoft et al., 2001). The financial

burden is reduced by reducing the contribution rate, while the efficient investment

strategy balances risk and returns over the investment horizon. The optimization

process involves selecting the optimal mix of asset classes, such as stocks, bonds, and

alternative investments, and the corresponding contribution rate for each period of

the investment horizon. By finding the optimal solution to the ALM problem, the

pension fund can ensure that it meets its future obligations while minimizing the

financial burden on its stakeholders.

The investment horizon for the ALM problem under consideration, denoted as

T , encompasses a series of decision moments represented by t = 0, . . . , T . Several

variables and decision-making components are at play in the ALM problem for pension

funds. At moment t, the contribution rate is denoted by yt, which is the fraction of

the contributor’s wage wt collected. Additionally, the decision variables xn,t represent

the amount of money invested in asset n at moment t, while ξn,t is the return of asset

n in tth moment. The value of assets held by the fund at moment t is represented

by At, while the liabilities at that moment, which are payments made by the fund to

retirees, are denoted by lt. The present value of liabilities at moment t is given by Lt,

which is calculated by
∑T

t=0
lt

(1+γ)t
, ∀t = 0, . . . , T . It is worth noting that in this case,

benefit payments and liabilities are fixed and predefined, which classifies this type

of pension fund as a defined-benefit plan. The discount rate, γ, for the calculation

of the present value of liabilities is a random variable. The funding ratio, a crucial

parameter in the ALM problem, ensures that the ratio of assets owned by the fund to

the present value of liabilities at moment t is maintained above a minimum threshold

ψ. This means that the fund has sufficient resources to meet its future obligations.
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Model (4.1) shows the mathematical formulation of the ALM problem:

min
yt,xn,t

h(y1, . . . , yT ), (4.1a)

s.t.
N∑
n=0

xn,t = At + wtyt − lt, t = 0, . . . , T − 1, (4.1b)

At ≥ ψLt, t = 0, . . . , T, (4.1c)

At =
N∑
n=0

xn,t−1(1 + ξn,t), t = 0, . . . , T, (4.1d)

xn,t ∈ X , yt ∈ Y , t = 0, . . . , T, n = 0, . . . , N. (4.1e)

The objective function of the ALM problem (4.1), introduced by Bogentoft et al.

(2001), is denoted by h(y0, . . . , yT ), which is a function defined in terms of the con-

tribution rate and plays a crucial role in determining the optimal ALM strategy. In

particular, the objective function (4.1a) can be defined as the present value of all

contributions, i.e., h(y0, . . . , yT ) =
∑T

t=0Wtyt, where Wt =
wt

(1+γ)t
. The balance con-

straint (4.1b) ensures that the sum of all investments in period t is equal to the assets

held by the fund plus the contributions gathered in period t minus liabilities in this

period. The funding ratio constraint (4.1c) guarantees that the ratio of assets owned

by the fund to the present value of liabilities at period t is greater than a minimum

threshold ψ. Constraint (4.1d) describes how to calculate the value of assets owned

by the fund at moment t as a function of their values at the moment (t − 1) and

the return rates. Any regulatory or practical (e.g., nonnegativity) restrictions on the

investment strategy and the contribution rates are encapsulated in the sets X and Y ,
respectively, and are enforced by constraint (4.1e). In formulation (4.1), the uncer-

tain parameters are the discount rate, γ, and the asset returns, ξn,t. The uncertainty

of the discount rate makes the present value of future liabilities, Lt, and the present

value of wages, Wt, uncertain, since they both depend on γ.

To simplify the formulation, we express the objective function of model (4.1) us-

ing the vectors W = [W0, . . . ,WT ]
⊺ ∈ RT+1 and y = [y0, . . . , yT ]

⊺ ∈ RT+1, which

represent the present value of the contributors’ wages and the contribution rate de-

cision variables, respectively. The objective function can then be written as W⊺y.

We also introduce the vector rt = e + ξt for t = 0, . . . , T , where e is an all-ones
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vector of size N + 1 and ξt is an uncertain vector that captures the variation in the

plan’s funding status. Additionally, we define the investment decision variable as a

vector xt = [x0,t, . . . , xn,t]
⊺ for each decision moment t. Using these notations, we can

transform the ALM problem (4.2) into a vector representation as follows:

min
y,xt

W⊺y, (4.2a)

s.t. e⊺xt = r⊺t xt−1 + wtyt − lt, t = 0, . . . , T − 1, (4.2b)

r⊺t xt−1 ≥ ψLt, t = 0, . . . , T, (4.2c)

xt ∈ X , y ∈ Y t = 0, . . . , T. (4.2d)

The linear programming model (4.2) incorporates three uncertain parameters: W,

rt, and Lt. To ensure the robustness of the model, it is important to account for the

uncertainty associated with these parameters. In the following section, we present a

DRO reformulation of (4.2) to address this issue.

4.3 Distributionally Robust ALM

Before providing the DRO formulation, we begin by presenting a scenario-based SP

formulation of the ALM problem. As previously discussed, the present value of wages,

W, and the present value of future liabilities, Lt, are both influenced by the uncertain

discount rate, while all other parameters affecting them are assumed deterministic.

As a result, they are perfectly correlated and thus can both be represented using a

single set of discrete scenarios {s}s=1,...,S having a given distribution function p(.).

Likewise, we use a finite set of scenarios {k}k=1,...,K , having the discrete distribution

function q(.), to capture the uncertainty of asset returns. With that, model (4.3)

presents an SP formulation of the ALM based on these scenario sets and distribution

functions. Note that the additional subscript (s or k) for the uncertain parameters



135

denotes the scenario.

min
y,xt

Ep(W⊺
sy), (4.3a)

s.t. e⊺xt = Eq(r⊺t,kxt−1) + wtyt − lt, t = 0, . . . , T − 1, (4.3b)

Eq(r⊺t,kxt−1) ≥ ψEp(Lt,s), t = 0, . . . , T, (4.3c)

xt ∈ X , y ∈ Y t = 0, . . . , T. (4.3d)

In model (4.3), it is essential to have knowledge of the distribution functions for

accurate analysis and decision-making. This requirement arises due to the significant

impact of uncertainty in the problem domain. Additionally, the tractability of this

problem is closely linked to the number of scenarios considered. As the number of

scenarios increases, the complexity of the problem grows exponentially. Consequently,

the computational burden and resource requirements for solving the problem also in-

crease. Therefore, carefully considering the number of scenarios is crucial to balance

accuracy and computational feasibility in tackling the model, which is a major lim-

itation of this SP formulation. However, in reality, these distribution functions may

not be fully known, and therefore, we propose DRO as an alternative to SP for the

ALM problem since the former does not require exact knowledge of the probability

distributions. Moreover, DRO provides a robust solution by accounting for a range of

possible different distributions, which enables decision-makers to hedge against var-

ious plausible distributional scenarios, leading to more reliable and stable solutions

that are less sensitive to uncertain input parameters. Consequently, we assume that

the distribution functions belong to the sets that represent a range of possible prob-

ability distributions, called ambiguity sets. Let P and Q be ambiguity sets for the

distribution functions of asset return and discount rate, respectively. Then, the DRO
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formulation of the ALM is presented in model (4.4):

min
y,xt

sup
p∈P

Ep(W⊺
sy), (4.4a)

s.t. e⊺xt = inf
q∈Q

Eq(r⊺t,kxt−1) + wtyt − lt, t = 0, . . . , T − 1, (4.4b)

inf
q∈Q

Eq(r⊺t,kxt−1) ≥ ψ sup
p∈P

Ep(Lt,s), t = 0, . . . , T, (4.4c)

xt ∈ X , y ∈ Y t = 0, . . . , T. (4.4d)

Model (4.4) is based on the worst-case expected value of random variables. For

the remainder of the paper, we will explore various ambiguity sets that can be applied

to the formulation presented in the model (4.4).

4.3.1 Mixture Distribution

We are dealing with ambiguous discrete distribution functions, Whereas the scenarios

themselves are deterministically defined. One approach to address this ambiguity of

the distribution function is to use a set to represent the possible discrete distribu-

tion function. It is common to consider uncertain discrete distributions in portfolio

selection problems (for more details, see Costa & Paiva (2002), Ghaoui et al. (2003),

Ghahtarani et al. (2022)). In this case, the ambiguity set is considered a mixture of

predetermined likelihood distributions. Based on Zhu & Fukushima (2009), these am-

biguity sets are defined as PM :=
{
p : p =

∑I
i=1 λip

i;
∑I

i=1 λi = 1;λi ≥ 0; i = 1, . . . , I
}
,

where pi is the ith likelihood distribution and I is the number of likelihood distri-

butions. Likewise, QM :=
{
q : q =

∑J
j=1 λjq

j;
∑J

j=1 λj = 1;λj ≥ 0, ; j = 1, . . . , J
}
,

where qj is the jth likelihood distribution and J is the number of likelihood distribu-

tions.

Although the ambiguity set PM includes all convex combinations of the I likelihood

distributions pi, i = 1, . . . , I, it is easy to show that the worst-case distribution for any

given values of the decision variables is one of I likelihood distributions themselves.

This maximal solution property is due to the fact that finding the worst-case distri-

bution is analogous to solving a binary knapsack problem with unit-sized items and

a knapsack capacity of 1, where only one item (having the highest value) is selected.

A similar argument can be made for the ambiguity set QM , though with the lowest
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value item selected. Thus, to reformulate model (4.4) with the mentioned ambiguity

sets, we introduce the auxiliary variables θ, µt, and ωt, where θ ≥
∑S

s=1(W
⊺
sy)p

i
s,

µt ≤
∑K

k=1(r
⊺
t,kxt−1)q

j
k, and ωt ≥

∑S
s=1 Lt,sp

i
s. Using these ambiguity sets and aux-

iliary variables, the DRO problem can be written in the epigraph form as follows:

min
y,xt,θ,µt,ωt

θ, (4.5a)

s.t. θ ≥
S∑
s=1

(W⊺
sy)p

i
s, i = 1, . . . , I, (4.5b)

e⊺xt = µt + wtyt − lt, t = 0, . . . , T − 1, (4.5c)

µt ≥ ψωt, t = 0, . . . , T, (4.5d)

µt ≤
K∑
k=1

(r⊺t,kxt−1)q
j
k t = 0, . . . , T, j = 1, . . . , J, (4.5e)

ωt ≥
S∑
s=1

Lt,sp
i
s, t = 0, . . . , T, i = 1, . . . , I, (4.5f)

xt ∈ X , y ∈ Y t = 0, . . . , T. (4.5g)

Model (4.5) is a linear programming model, which is a tractable model and cap-

tures the ambiguity of discrete distribution functions.

4.3.2 Discrete Distribution with Box Ambiguity

The mixture-distribution ambiguity set proposed in subsection 4.3.1 has two main

drawbacks. First, it confines the ambiguity about the discrete probability distribu-

tions to finite sets of elements (distribution functions) and their convex combinations

while ignoring the possibility that the true distribution functions can take other forms.

Although this issue can be partially alleviated by increasing the value of I, i.e., us-

ing a large number of distribution functions that cover a wider range of possibilities,

the problem size inevitably grows, thus reducing its tractability, which is the second

drawback. Alternatively, a box ambiguity set can be used for the discrete distribution

function, which provides does not need a large number of possible distribution func-

tions in a convex set. Note that for ambiguity sets of discrete distributions, model
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(4.4) can be expanded to:

min
y,xt

sup
p∈P

S∑
s=1

(W⊺
sy)ps, (4.6a)

s.t. e⊺xt = inf
q∈Q

K∑
k=1

(r⊺t,kxt−1)qk + wtyt − lt, t = 0, . . . , T − 1, (4.6b)

inf
q∈Q

K∑
k=1

(r⊺t,kxt−1)qk ≥ ψ sup
p∈P

S∑
s=1

(Lt,s)ps, t = 0, . . . , T, (4.6c)

xt ∈ X , y ∈ Y t = 0, . . . , T. (4.6d)

In model (4.6), we are dealing with two ambiguity sets P and Q that contain

probability distributions of the random variables. Specifically, p(·) ∈ P , which is

defined as P := {p : ps = p0s+ηs :
∑S

s=1 ηs = 0, η
s
≤ ηs ≤ ηs}, where p0s is the nominal

probability of scenario s, and ηs ∈ [η
s
, ηs] is a bounded perturbation from it. Likewise,

q(·) ∈ Q, which is defined as Q := {q(.) : qk = q0k + ξk :
∑K

k=1 ξk = 0, ξ
k
≤ ξk ≤ ξk},

where q0k is the nominal probability of scenario k, while ξk ∈ [ξ
k
, ξk].

To reformulate model (4.6), we apply LP duality to the inner problems. Specifi-

cally, the inner problem of the uncertain objective function (4.6a) can be expressed

as follows:

max
ηs

S∑
s=1

(W⊺
sy)(p

0
s + ηs), (4.7a)

s.t.
S∑
s=1

ηs = 0, (z), (4.7b)

ηs ≤ ηs, s = 1, . . . , S, (d+s ), (4.7c)

− ηs ≤ −ηs, s = 1, . . . , S, (d−s ), (4.7d)

where z, d+s , and d
−
s are the dual variables of their respective constraints. Problem

(4.7) aims to optimize over the perturbation parameters ηs. Thus, the dual form of
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model (4.7) can be written as follows:

S∑
s=1

(W⊺
sy)p

0
s + min

d+s ≥0,d−s ≥0,z

S∑
s=1

(d+s ηs − d−s ηs), (4.8a)

s.t. z + d+s − d−s ≥W⊺
sy, s = 1, . . . , S. (4.8b)

Likewise, constraints (4.6b) and (4.6c) involve the inner optimization of uncer-

tain parameters related to asset returns. Specifically, this inner optimization can be

expressed as follows:

min
ξk

K∑
k=1

(r⊺t,kxt−1)(q
0
k + ξk), (4.9a)

s.t.
K∑
k=1

ξk = 0, (Γ), (4.9b)

− ξk ≤ −ξk, k = 1, . . . , K, (ω+
k ), (4.9c)

ξ
k
≤ ξk, k = 1, . . . , K, (ω−

k ), (4.9d)

where Γ, ω+
k , and ω−

k are dual variables. The problem described in (4.9) optimizes

over the perturbation variables ξk. To achieve this goal, the objective function (4.9a)

is reformulated as
∑K

k=1(r
⊺
t,kxt−1)q

0+minξk
∑K

k=1(r
⊺
t,kxt−1)ξk, which expresses the min-

imum value of the linear combination
∑K

k=1(r
⊺
t,kxt−1)ξk over all possible values of ξk.

The dual form of the model presented in (4.9) can be expressed as follows:

K∑
k=1

(r⊺t,kxt−1)q
0 + max

ω+
k ≥0,ω−

k ≥0,Γ

K∑
k=1

(ω−
k ξk − ω

+
k ξk), (4.10a)

s.t. Γ + ω−
k − ω

+
k ≤ r⊺t,kxt−1, k = 1, . . . , K. (4.10b)

Finally, the inner optimization model related to uncertainty of Lt,s for each t in
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constraint (4.6c) is as follows:

max
ηs

S∑
s=1

Lts(p
0
s + ηs), (4.11a)

s.t.
S∑
s=1

ηs = 0, (z), (4.11b)

ηs ≤ ηs, s = 1, . . . , S, (d+s ), (4.11c)

− ηs ≤ −ηs, s = 1, . . . , S, (d−s ). (4.11d)

The optimization problem (4.11) is over ηs. Then the objective function (4.11a)

is transformed to
∑S

s=1 Ltsp
0
s +maxηs

∑S
s=1 Ltsηs. The dual form of model (4.11) for

each decision moment t is as follows:

S∑
s=1

Ltsp
0
s + min

d+s ≥0,d−s ≥0,z

S∑
s=1

(d+s ηs − d−s ηs), (4.12a)

s.t. z + d+s − d−s ≥ Lt,s, s = 1, . . . , S. (4.12b)

The DRO of the ALM model with box ambiguity set can be formulated by sub-

stituting the dual forms of the optimization problems (4.8), (4.10), and (4.12) into

the original optimization problem expressed in (4.6). The resulting final formulation

is as follows:

min
y,xt,d

+
s ≥0,d−s ,ω

+
k ,ω

−
k ≥0,Γ,z

S∑
s=1

(W⊺
sy) p

0
s +

S∑
s=1

(
d+s ηs − d−s ηs

)
, (4.13a)

s.t. e⊺xt =
K∑
k=1

(
r⊺t,kxt−1

)
q0k +

K∑
k=1

(
ω−
k ξk − ω

+
k ξk

)
+

wtyt − lt, t = 0, . . . , T − 1, (4.13b)
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K∑
k=1

(
r⊺t,kxt−1

)
q0k +

K∑
k=1

(
ω−
k ξk − ω

+
k ξk

)
≥

ψ

(
S∑
s=1

Lt,sp
0
s +

S∑
s=1

(
d+s ηs − d−s ηs

))
, t = 0, . . . , T, (4.13c)

z + d+s − d−s ≥W⊺
sy, s = 1, . . . , S, (4.13d)

Γ + ω−
k − ω

+
k ≤ r⊺t,kxt−1 t = 0, . . . , T, k = 1, . . . , K, (4.13e)

z + d+s − d−s ≥ Lt,s t = 0, . . . , T, s = 1, . . . , S. (4.13f)

Problem (4.13) is the tractable reformulation of (4.6) with box ambiguity sets.

4.3.3 Wasserstein Ambiguity Set

An ambiguity set that has drawn a lot of attention recently due to its favorable

properties (i.e., finite sample guarantee, asymptotic consistency, and tractability) is

that based on the Wasserstein metric (Mohajerin Esfahani & Kuhn, 2018). Unlike

the mixture-distribution and box ambiguity sets utilized earlier, which consider only

distributions that are supported on the same support set of the empirical distribu-

tion (i.e., use the same set of scenarios), the Wasserstein ambiguity set includes all

distributions, discrete or continuous, that are sufficiently close to the empirical dis-

tribution. Thus, it offers higher flexibility and a more realistic representation of the

uncertainty of the random problem parameters. In other words, we do not only con-

sider the “original” scenarios on which the empirical distribution is supported, but

also other scenarios not seen before.

The Wasserstein ambiguity set can be constructed using the discrete empirical

probability distribution p̂ = 1
S

∑
s∈S δŴs

, where δ is an indicator function that takes

the value 1 for elements of the discrete set of scenarios Ξ̂W := Ŵ1, ..., Ŵs ⊂ ΞW

and 0 elsewhere. Specifically, the ambiguity set is defined as D(p̂, ϵ1) = {p ∈ M |

P (Ŵ ∈ ΞW) = 1, dw(p̂, p) ≤ ϵ1}, where dw(p̂, p) is the Wasserstein distance between

the discrete empirical distribution p̂ and a probability distribution p, and ϵ1 is the

radius of the ambiguity set. This ambiguity set is designed to capture a range

of probability distributions within a certain distance of the empirical distribution.
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Similarly, the ambiguity set for the vector of asset returns random variables rt, de-

noted as D(q̂t, ϵ
2
t ), is constructed using the discrete empirical probability distribution

q̂t = 1
K

∑
k∈K δr̂t . Here, Ξ̂rt := r̂t,1, ..., r̂t,k ⊂ Ξrt ; ∀t is the set of empirical realiza-

tions of the vector of random variables rt. The ambiguity set D(q̂t, ϵ
2
t ) is defined

as D(q̂t, ϵ
2
t ) = {qt ∈ M | P (r̂t ∈ Ξrt) = 1, dw(q̂t, qt) ≤ ϵ2t}, where dw(q̂t, qt) is the

Wasserstein distance between the discrete empirical distribution q̂t and the proba-

bility distribution qt, and ϵ2t is the radius of the ambiguity set. To calculate the

Wasserstein distance between two probability metrics q1 and q2, we use the integral

representation dw(q1, q2) =
∫
Ξ2 ||ξ1, ξ2||Q(dξ1, dξ2), where Q is the joint distribution

of ξ1 and ξ2 with marginal probabilities q1 and q2, respectively. This distance mea-

sure is used to capture the similarity between two probability distributions, where a

smaller Wasserstein distance corresponds to a higher similarity between the distribu-

tions. Based on Mohajerin Esfahani & Kuhn (2018), under a convexity condition of

the support set ΞW := {CW ≤ d}, where C ∈ Rm×(t+1), d ∈ Rm, constraint (4.4a) is

transformed into:

inf
λ,νs,γs≥0

λϵ1 +
1

S

∑
s∈S

νs, (4.14a)

s.t. Ŵ⊺
sy + (d− CŴs)

⊺γs ≤ νs, s = 1, . . . , S, (4.14b)

∥C⊺γs − y∥∗ ≤ λ, s = 1, . . . , S, (4.14c)

where γs ∈ Rm, and ∥.∥∗ is the dual norm of ∥.∥, the norm used in the Wasserstein

metric definition. With that, the right-hand side of constraint (4.4c), which has the

p-distributed random parameter Lt with the support set ΞLt := {ftLt ≤ bt, ∀t ∈ T},
where ft ∈ Rm, bt ∈ Rm and Lt ∈ R, reduces to:

inf
θt,υs,t,δs,t≥0

θtϵ
1
t +

1

S

∑
s∈S

υs,t, (4.15a)

s.t. L̂s,t + (bt − ftL̂s,t)
⊺δs,t ≤ υs,t, s = 1, . . . , S, t = 0, . . . , T, (4.15b)

∥f⊺t δs,t − 1∥∗ ≤ θt, s = 1, . . . , S, t = 0, . . . , T, (4.15c)

where δs,t ∈ Rm.

In constraints (4.4b) and (4.4b), infq∈Q Eq(r⊺t,kxt−1) = − supq∈Q Eq(−r⊺t,kxt−1). Then,
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by assuming that Ξrt := {Mtrt ≤ ut, t ∈ T}, where Mt ∈ Rm×(n+1) and ut ∈ Rm,

constraints (4.4b) and (4.4b) are reformulated as:

inf
ϕt,φk,t,ζk,t≥0

ϕtϵ
2
t +

1

K

∑
k∈K

φk,t, (4.16a)

s.t. − r̂⊺k,txt−1 + (ut −Mtr̂k,t)
⊺ζk,t ≤ φk,t, k = 1, . . . , K, t = 0, . . . , T,

(4.16b)

∥M⊺
t ζk,t − xt−1∥∗ ≤ ϕt, k = 1, . . . , K, t = 0, . . . , T,

(4.16c)

where ζk,t ∈ Rm. By substituting (4.14), (4.15), and (4.16) in model (4.4), we have

the DRO counterpart of the ALM as follows:

inf
λ,νs,γs,ϕt,φk,t,ζk,t,θt,υs,t,δs,t≥0

λϵ1 +
1

S

∑
s∈S

νs, (4.17a)

s.t. e⊺xt = −ϕtϵ2t −
1

K

∑
k∈K

φk,t + wtyt,s − lt, t = 0, ..., T − 1, (4.17b)

− ϕtϵ2t −
1

K

∑
k∈K

φk,t ≥ θtϵ
1
t +

1

S

∑
s∈S

υs,t, t = 0, . . . , T, (4.17c)

Ŵ⊺
sy + (d− CŴs)

⊺γs ≤ νs, s = 1, . . . , S, (4.17d)

∥C⊺γs − y∥∗ ≤ λ, s = 1, . . . , S, (4.17e)

− r̂⊺k,txt−1 + (ut −Mtr̂k,t)
⊺ζk,t ≤ φk,t, k = 1, . . . , K, t = 0, . . . , T, (4.17f)

∥M⊺
t ζk,t − xt−1∥∗ ≤ ϕt, k = 1, . . . , K, t = 0, . . . , T, (4.17g)

L̂s,t + (bt − ftL̂s,t)
⊺δs,t ≤ υs,t, s = 1, . . . , S, t = 0, . . . , T, (4.17h)

∥f⊺t δs,t − 1∥∗ ≤ θt, s = 1, . . . , S, t = 0, . . . , T, (4.17i)

xt ∈ X , y ∈ Y . (4.17j)

The tractability of problem (4.17) depends on the dual norm ∥.∥∗. In this chapter,

we are using norm 2, ∥.∥2. Moreover, we use a box support set, where M = −I and
C = I, and I is the identity matrix that leads the box support sets for the uncertain

parameters.
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4.4 Numerical Results

For our study, we utilize data from the Canada Pension Plan (CPP) to conduct

a series of numerical experiments. As a mandatory requirement for all employed

Canadians aged 18-70, the CPP receives contributions from a vast majority of the

working population. According to CPP’s official website 5, approximately 5.8 million

individuals currently receive retirement benefits from CPP, with an average payout

of $811.21 in January 2023 6. Additionally, CPP’s investments report 7 indicates that

around 14,371,853 individuals are contributing to CPP.

CPP invests in a diverse portfolio of five asset classes, as per information from

investing.com 8. These asset classes include fixed income, private equity, public eq-

uity, infrastructure, and real estate, which are geographically diversified in North

America, Europe, and Asia. For our analysis, we have used data from ten major

indexes from 2012 to 2022. The S&P 500 index represents public equities, while the

Private Equity Index (PRIVEXD) represents private equities. In addition, we use the

SP/TSX Capped Real Estate Index (GSPRTRE) for the real estate sector, Treasury

Yield 10 Years (TNX) for fixed-income assets, and S&P Global Infrastructure TR

(SPGTINTR) for infrastructure investment. The S&P/TSX Composite is used as

the index for the Canadian market, while the FTSEurofirst 300 represents public eq-

uities in Europe. For the private equity index in Europe, we use the STOXX Europe

20. The Shanghai Stock Exchange (SSE) and Nikkei-225 indexes have been utilized

as representatives of investment in Asia. As of 2022, the total value of assets under

CPP management is estimated to be $539 billion. Based on the most recent report

from CPP 9, the projected earnings of contributors for 2022 have been calculated to

be $585,498 million, of which $57,964 million (approximately 9.9%) represents the

contribution to CPP.

The inputs of our proposed models are the value of liabilities in each decision mo-

ment, contributions of employees at each decision moment, scenarios of asset returns,

5https://open.canada.ca/data/en/dataset/1fab2afd-4f3c-4922-a07e-58d7bed9dcfc
6https://www.canada.ca/en/services/benefits/publicpensions/cpp/cpp-benefit/amount.html
7https://www.cppinvestments.com/the-fund/our-performance/financial-results/f2022-annual-

results
8https://ca.investing.com/
9https://www.osfi-bsif.gc.ca/Eng/oca-bac/ar-ra/cpp-rpc/Pages/cpp30.aspx
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benefit paid by pension, and scenarios of interest rates. To generate scenarios of asset

returns, we use Monte Carlo simulation based on the geometric Brownian motion

(GBM), which is a common approach to generate random data in financial problems

(McLeish, 2011). The formula for GBM is as follows:

∆Pr

Pr
= µ∆t+ σϵ

√
∆t, (4.18)

where Pr is the asset price, ∆Pr is the change in asset price, µ represents the expected

return, σ denotes the standard deviation of returns, ϵ is a normally-distributed ran-

dom variable, and ∆t is the elapsed time period. Our analysis is based on the monthly

returns of the ten mentioned indexes spanning from November 2012 to November

2022. During this period, we identified four distinct market regimes based on the

long-term mean and standard deviation of the last 30 years. The first period, from

November 2012 to February 2018, was characterized by steady growth with low volatil-

ity. The second period, from March 2018 to January 2020, experienced higher volatil-

ity than the previous period but still maintained a positive trend. The third period,

from January 2020 to December 2021, was marked by high volatility and significant

fluctuations. Finally, the post-pandemic period from January 2022 to November 2022

saw a return to high volatility, albeit with a different market trajectory. Using these

historical data, we constructed different scenarios for our simulation. Our analysis,

based on the k-mean clustering method of Horvath et al. (2021), reveals that dur-

ing the observed period, 51% of the time the market exhibited steady growth with

low volatility (LV), 22% of the time it had medium volatility (MV) but still showed

growth, 17% of the time it was characterized by increasing high volatility (IHV) with

positive returns and 10% of the time it was a decreasing high volatility (DHV) de-

creasing market with negative returns. We generated 1000 scenarios for each asset in

each period, corresponding to the 4 market regimes. The average return of these 1000

scenarios for each asset in each period, based on each market condition, is considered

as the asset’s return in that period for the 4 regimes.

The sets X and Y in model (4.4) are defined using regulatory constraints based on

the last decade’s real investment structure in CPP. These constraints ensure that the

contribution rate in each period falls within a range of 5% to 10%, and the investment

in the US market cannot exceed 60% of the total fund, while the allocation to Canada
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must be at least 20%. Additionally, we mandate that a minimum of 10% of the fund

be invested in fixed-income assets. The allocation to Asia must not exceed 15% of

the fund, and the funding ratio must be at least 1.05.

To evaluate the efficacy of our proposed DRO formulation, we conduct in-sample

and out-of-sample performance analyses for four models. The first model is the mix-

ture distribution ALM (MD) (4.5) that incorporates four market conditions: LV, MV,

IHV, and DHV. To determine the discrete probabilities associated with each market

condition, we leverage the trends observed in historical data spanning the last 30

years. For the period from 2012 to 2022, the distribution functions of the market

conditions are as follows: LV with a probability of 0.51, MV with a probability of

0.22, IHV with a probability of 0.17, and DHV with a probability of 0.1. Similarly, for

the period from 2002 to 2012, the distribution functions are: LV with a probability

of 0.35, MV with a probability of 0.39, IHV with a probability of 0.15, and DHV

with a probability of 0.11. Lastly, for the period from 1992 to 2002, the distribution

functions are: LV with a probability of 0.41, MV with a probability of 0.19, IHV with

a probability of 0.20, and DHV with a probability of 0.06. Additionally, we consider

a case where equal probabilities are assigned to each market condition, resulting in a

probability of 0.25 for each LV, MV, IHV, and DHV. The second model is the box

discrete distribution ALM (BD) (4.13), where half of the range of possible probabilities

in each market condition is considered as volatility range in the box ambiguity set.

The third mode is the Wasserstein metric ALM (WM) (4.17), where the radius of the

Wasserstein ball is half of the range of possible probabilities in each market condition

times to mean of asset return. The return on the market in the last 3 decades has

been almost 10%. Then we consider 10% volatility for parameters 10. Finally, the

stochastic programming of ALM (SP) is the last model for comparison to the proposed

models.

4.4.1 In-Sample Performance Analysis

In-sample performance analysis involves assessing the model’s performance using the

same data on which it was trained. For this analysis, we use historical data from

CPP. Table 4.2 presents the in-sample performance of four ALM models: MD, BD, WM,

10https://www.officialdata.org/us/stocks/s-p-500/2002
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and SP. The performance is measured by the funding ratio and fund return for each

model over 12 months, and zero is the current decision moment. The funding ratio

is a measure of solvency, which indicates the extent to which the value of the assets

exceeds the present value of the liabilities. A value greater than one is desirable,

indicating more assets than liabilities in the fund. Conversely, a value less than one

is undesirable, indicating more liabilities than assets. The fund return, on the other

hand, measures the rate of return earned on the fund’s assets. Table 4.2 is organized

as follows. The first column lists the periods for which the models’ performance is

reported. The second column reports the funding ratio and fund return for the MD

model. Similarly, the third and fourth columns report the funding ratio and fund

return for the BD model, respectively. The fifth and sixth columns report the funding

ratio and fund return for the WM model, respectively. The last two columns report

the funding ratio and fund return for the SP model, respectively. Overall, the table

indicates that all four models have generally good performance in terms of both

funding ratio and fund return. However, there are some differences in performance

across models and periods.

In terms of the funding ratio, the SP model has the highest funding ratio in most

of the periods, followed by the MD model, WM model, and BD model. The SP model

has a funding ratio of between 1.094 to 1.236, indicating that it has more assets than

liabilities. The MD model shows the second-best performance in terms of funding

ratio, with a range between 1.093 to 1.190. The WM model also has a funding ratio of

between 1.1 and 1.135, indicating that it is also solvent. Table 4.2 indicates that the

BD model has the most conservative approach, with a funding ratio range between

1.093 to 1.107. In terms of the fund return, the SP model has the highest fund return

in most periods, followed by the MDmodel, WMmodel, and BDmodel. The SPmodel has

a fund return range between 0.003 to 0.028, indicating that it is earning a relatively

high rate of return on its assets. The MD model has a fund return between 0.001 to

0.019, indicating that it is also earning a positive rate of return on its assets. The WM

and BD models exhibit fund returns within a range of -0.001 to 0.017 and -0.001 to

0.013, respectively, but they are slightly lower than those of the MD and SP models.

The average funding ratio and fund return provide insights into the average per-

formance of each ALM model which are mentioned in Table 4.2. Among the models,
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Table 4.2: In-sample performance of the ALM models

MD BD WM SP

Decision moments Funding ratio Fund return Funding ratio Fund return Funding ratio Fund return Funding ratio Fund return

0 1.093 0.002 1.093 -0.001 1.100 -0.001 1.094 0.003
1 1.101 0.001 1.093 0.000 1.102 0.001 1.102 0.005
2 1.110 0.012 1.093 0.001 1.102 0.002 1.104 0.015
3 1.126 0.007 1.095 0.002 1.102 0.007 1.155 0.005
4 1.138 0.016 1.097 0.003 1.112 0.008 1.157 0.025
5 1.141 0.013 1.099 0.004 1.116 0.008 1.164 0.016
6 1.141 0.015 1.099 0.004 1.122 0.009 1.170 0.018
7 1.142 0.013 1.100 0.005 1.122 0.010 1.183 0.018
8 1.158 0.016 1.103 0.006 1.126 0.011 1.194 0.021
9 1.167 0.013 1.103 0.007 1.131 0.012 1.195 0.028
10 1.187 0.014 1.106 0.013 1.132 0.012 1.219 0.015
11 1.190 0.019 1.107 0.013 1.135 0.017 1.236 0.022

Average 1.141 0.012 1.099 0.005 1.117 0.008 1.164 0.016
Std. Dev. 0.033 0.006 0.005 0.005 0.014 0.005 0.046 0.008

the mean funding ratio is highest for SP with a value of 1.164, indicating a higher ratio

of assets to liabilities on average. This is followed by WM with a mean funding ratio

of 1.117. MD and BD have lower mean funding ratios of 1.141 and 1.099, respectively.

In terms of the mean fund return, SP also has the highest value of 0.016, indicating

a higher average return compared to the other models. MD has the second highest

mean fund return at 0.012, followed by WM at 0.008, and BD with the lowest mean

fund return of 0.005.

The standard deviation values provide insights into the variability or dispersion of

the performance metrics. SP has the highest standard deviation for both the funding

ratio, 0.046, and fund return, 0.008, indicating a wider range of performance outcomes

compared to the other models. MD and WM have moderate standard deviations, with

MD having a standard deviation of 0.033 for the funding ratio and 0.006 for the fund

return, and WM having a standard deviation of 0.014 for the funding ratio and 0.005 for

the fund return. BD has the lowest standard deviation values among the models, with

a standard deviation of 0.005 for both the funding ratio and fund return, suggesting

relatively stable performance across different periods.

We can conclude that the SP model is the most optimistic and the BD model is

the most pessimistic. The SP model has the highest funding ratio and fund return in

most of the periods, indicating that it is performing better than the other models. On

the other hand, the BD model has the lowest funding ratio range among the models,
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indicating that it is the least solvent. Additionally, the BD model has the lowest fund

return range among the models, suggesting that it is earning the lowest rate of return

on its assets. The MD and WM models have intermediate levels of performance between

the SP and BD models, indicating that they are neither as optimistic as the SP model

nor as pessimistic as the BD model.

Asset allocation is a crucial component in addressing the ALM problem. It requires

determining how to distribute investments among different asset classes to achieve the

desired return while minimizing risk. To compare the optimal asset allocation of four

models, Figure 4.1 has been prepared.

As shown in Figure 4.1, the WM and BD models offer more diversified portfolios than

the SP and BD models, resulting in less risky portfolios. The WM and BD models take

into account the wider range of possible probability distributions in their ambiguity

set. Therefore, these models provide a more robust and stable asset allocation over

time. On the other hand, the MD model just considers a set of scenarios for their

ambiguous distribution, and SP assumes the discrete distribution function of uncertain

parameters, asset return, and the present value of future liabilities, are known.

The funding ratio (FR) threshold is another important factor that affects the

optimal contribution rate in asset liability management (ALM). Table 4.3 and Figure

4.2 present a comparison of the optimal contribution rates of four models (MD, BD, WM,

and SP) under different FR values. Figure 4.2 indicates that the optimal contribution

rates for all models increase as the FR threshold increases. This is expected because a

higher FR threshold implies a higher level of required funding, which in turn requires

higher contribution rates to meet the threshold. Moreover, the table indicates that

the optimal contribution rates for each model are different for different FR values.

For instance, the SP model has the lowest optimal contribution rates among the four

models for all FR values, while the BD model has the highest optimal contribution

rates for FR=1.15. Figure 4.2 shows that the WM and BD models have relatively higher

optimal contribution rates than the MD and SP models for all FR values. This suggests

that the former models may be less conservative in managing risk and require higher

contributions to ensure funding adequacy.
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Table 4.3: Optimal contribution rates of four models based on funding ratio
Models FR=1.02 FR=1.05 FR=1.07 FR=1.1 FR=1.15
MD 1.7% 5.4% 6.6% 8.7% 10.2%
BD 3.1% 6.4% 9.3% 11.8% 14.8%
WM 2.1% 6.1% 8.9% 9.5% 10.6%
SP 1.1% 3.4% 5.2% 8.1% 10.1%

4.4.2 Out-of-Sample Performance Analysis

In addition to the in-sample analysis, we evaluated the out-of-sample performance of

the aforementioned models using a simulation to generate the testing data. Out-of-

sample analysis refers to a method of evaluating the performance and robustness of

a statistical or predictive model using data that is separate from the data used to

develop or train the model. Specifically, we generated 1000 scenarios of asset returns

based on their distribution functions reported in (Ghahtarani et al., 2023a). We

then employed the optimal investment strategies of the MD, BD, WM, and SP models to

compare the funding ratio and asset value in each period. The results of this analysis

are presented in Table 4.4.

The out-of-sample analysis reveals that the DRO formulations employed in the

ALM, WM, and BD models exhibit superior performance compared to the MD and SP

models. Looking at the funding ratio for MD, the ratio starts at 1.0769 at the moment

zero, the current decision moment, and decreases to 0.820 in period nine. However,

the funding ratio then increases in decision moments 10 and 11, ending at 1.030. The

fund return for MD starts at 0.009 at the current decision moment, decreases to -0.002

at moment four, and then increases to 0.014 in period five. The fund return fluctuates

between positive and negative values for the remaining periods. For BD, the funding

ratio starts at 0.9570 and gradually increases to 1.067 in period 11. The fund return

for BD starts at 0.006 and steadily increases to 0.024 in period 11. WM starts with

a funding ratio of 0.963, which increases to 1.088 in period 10 and then decreases

slightly to 1.114 in period 11. The fund return for WM increases from 0.013 to 0.025

in period 10 and then remains constant at 0.025 in period 11. Finally, SP starts with

a funding ratio of 0.822, which increases to 0.992 in period 11. The fund return for

SP starts at 0.002, decreases to -0.007 in period three, and then increases to 0.004 in

period 10.
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The average funding ratio for MD is 0.976, indicating an average funding ratio

below 1. This suggests that, on average, the assets are lower than the liabilities for

MD. BD has a mean funding ratio of 1.006, indicating a slightly higher average ratio

where assets are closer to liabilities. WM has the highest mean funding ratio among

the models at 1.040, suggesting a relatively higher average ratio of assets to liabilities.

SP has the lowest mean funding ratio of 0.860, indicating a lower average ratio where

liabilities are higher than assets. In terms of the mean fund return, MD has a mean

value of 0.004, suggesting a slightly positive average return. BD has a higher mean

fund return of 0.013, indicating a relatively higher average return compared to MD. WM

has a mean fund return of 0.018, suggesting a slightly higher average return among

the models. SP has the lowest mean fund return value of 0.001, indicating a very low

average return.

The standard deviation values provide insights into the variability or dispersion

of the performance metrics. For the funding ratio, MD has a standard deviation of

0.083, indicating a relatively higher variability compared to the other models. BD has

the lowest standard deviation of 0.039, suggesting a lower variability in funding ratio

performance. WM and SP have standard deviations of 0.048 and 0.104, respectively,

indicating moderate to high variability. Regarding the fund return, MD has a standard

deviation of 0.009, suggesting a relatively higher variability in returns. BD has the

lowest standard deviation of 0.005, indicating a lower variability in fund return per-

formance. WM has a standard deviation of 0.005, similar to BD, suggesting relatively

stable fund return outcomes. SP has a standard deviation of 0.003, indicating a lower

variability compared to the other models.

Based on the results presented in Table 4.4, it is evident that the WM model out-

performs the other models in terms of both fund return and funding ratio. With the

highest mean values across the investment horizon, WM demonstrates superior perfor-

mance from both perspectives. In particular, the WM model exhibits a higher mean

funding ratio compared to MD and SP, indicating a more favorable financial position.

This implies that WM manages to maintain a healthier balance between assets and lia-

bilities, resulting in a greater ability to meet financial obligations. The higher funding

ratio suggests a more robust and secure asset-liability management strategy. Addi-

tionally, WM achieves the highest mean fund return among all the models, surpassing
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Table 4.4: Out-sample performance of the ALM models

MD BD WM SP

Decision moments Funding ratio Fund return Funding ratio Fund return Funding ratio Fund return Funding ratio Fund return

0 1.077 0.009 0.957 0.006 0.963 0.013 0.822 0.002
1 1.043 0.001 0.959 0.010 0.972 0.014 0.981 0.001
2 1.016 0.001 0.960 0.010 0.983 0.014 0.983 0.004
3 1.022 0.007 0.965 0.011 1.036 0.015 0.774 -0.007
4 0.816 -0.002 1.022 0.011 1.044 0.021 0.730 -0.004
5 0.931 0.014 1.014 0.010 1.058 0.023 0.923 0.001
6 0.970 0.001 1.028 0.018 1.048 0.009 0.752 -0.003
7 0.976 0.004 1.016 0.013 1.049 0.018 0.770 0.001
8 0.978 0.013 1.012 0.015 1.059 0.014 0.781 0.004
9 0.820 -0.015 1.045 0.019 1.077 0.025 0.859 0.002
10 1.035 0.017 1.038 0.013 1.088 0.025 0.982 0.005
11 1.030 -0.002 1.067 0.024 1.114 0.025 0.992 0.003

Average 0.976 0.004 1.006 0.013 1.040 0.018 0.860 0.0007
Std. Dev. 0.083 0.009 0.039 0.005 0.048 0.005 0.104 0.003

BD, MD, and SP. This indicates that WM generates more favorable investment returns

on average throughout the investment horizon. A higher mean fund return suggests

better investment performance, potentially leading to higher profits and returns for

the ALM strategy. Therefore, based on the mean funding ratio and fund return val-

ues, it can be concluded that WM exhibits better performance than the other models in

terms of stability and asset management. Its higher funding ratio indicates a stronger

financial position, while the superior mean fund return reflects better investment out-

comes. These findings highlight the effectiveness of the WM model in achieving both

financial stability and favorable investment returns, making it a preferable choice

among the options considered.

4.5 Conclusions

Pension funds play a vital role in ensuring retirement income security for workers glob-

ally. However, they face challenges such as uncertainty of asset return and liability

values. To address these issues, an effective asset-liability management (ALM) strat-

egy must be implemented, balancing the competing objectives of generating returns

and meeting future obligations. In this chapter, we addressed the uncertainty of pa-

rameters in the ALM problem by exploring three different approaches: using mixture

ambiguity sets with discrete scenarios and box uncertain discrete distribution func-

tions. However, both of these approaches have limitations, and to overcome them,
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we incorporated the Wasserstein metric into the ALM problem. By incorporating the

Wasserstein metric, we provide a more comprehensive and reliable approach to deal-

ing with the limitations of ambiguity sets while maintaining the desirable properties

of finite sample guarantee, asymptotic consistency, and tractability.

This study has used data from the CPP to conduct a series of numerical experi-

ments and tests to simulate different market scenarios and their impact on the plan.

Monte Carlo simulation based on geometric Brownian motion was used to generate

scenarios of asset returns. The analysis revealed four distinct market regimes during

the observed period from November 2012 to November 2022.

The in-sample performance analysis of four ALM models (MD, BD, WM, and SP)

reveals valuable insights into their performance in terms of funding ratio and fund

return. The results indicate that all four models generally demonstrate good perfor-

mance, but there are variations across models and periods. The SP model consistently

exhibits the highest funding ratio and fund return, indicating its optimistic perfor-

mance. It has a higher ratio of assets to liabilities on average and earns a relatively

high rate of return on its assets. On the other hand, the BD model displays the most

conservative approach, with the lowest funding ratio range and lowest fund return

range among the models.

The out-of-sample analysis of the ALM models reveals that the WM model demon-

strates superior performance compared to the MD, BD, and SP models in terms of both

funding ratio and fund return. The superior performance of the WM model in terms of

funding ratio and fund return can be attributed to its robust optimization approach

and risk management capabilities. By incorporating worst-case distribution functions

based on the scenarios of asset returns, the WM model is designed to handle extreme

market conditions and mitigate potential risks. The higher mean funding ratio of

the WM model indicates a more conservative approach to asset-liability management,

ensuring that the liabilities are well-covered by the available assets. This conserva-

tive stance provides a buffer against unexpected market fluctuations and reduces the

likelihood of financial instability.

Furthermore, the higher mean fund return of the WM model suggests that it is able

to capture profitable investment opportunities more effectively than the other models.

This can be attributed to the optimization framework of the WM model, which aims to
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maximize investment returns while considering the constraints imposed by liabilities

and risk tolerance. The stability of the WM model’s funding ratio and fund return is

also evident from its lower standard deviation values compared to the other models.

A lower standard deviation implies less variability and a more consistent performance

over time. This stability is crucial for long-term financial planning and managing the

risks associated with asset-liability mismatches.

Prospective research avenues could further enrich the comprehension and utiliza-

tion of ALM strategies for pension funds, encompassing several key directions.

Initially, an intriguing path involves expanding the analysis to encompass risk

measures within the ALM problem. By assimilating such preferences into the ALM

framework, a more intricate assessment of the interplay between risk and return can

emerge. This approach could unveil how diverse investors, driven by varying risk

appetites, might adopt distinct ALM strategies.

Subsequently, while the present study harnessed the Wasserstein metric to bolster

the resilience of ALM models, alternative distance metrics like the Kullback-Leibler

divergence or the Total Variation distance remain unexplored. Pioneering investi-

gations could delve into the utilization of diverse distance metrics, evaluating their

efficacy within the ALM context to discern any performance disparities.

Lastly, though the current study centered on the CPP, an intriguing trajectory

involves extending the inquiry to encompass other pension funds across diverse re-

gions. This endeavor would illuminate the adaptability and efficacy of ALM models

within distinct contexts. Scrutinizing the performance of ALM strategies across as-

sorted pension funds could elucidate how varying market dynamics and regulatory

landscapes influence the effectiveness of these strategies.
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Figure 4.1: Comparision of optimal asset allocation
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Chapter 5

A Double-Oracle, Logic-Based Benders Decomposition

Approach to Solve the K-adaptability Problem

5.1 Introduction

Robust Optimization (RO) has become a classical framework for dealing with pa-

rameter uncertainty in optimization problems (Bertsimas et al., 2011). In RO, pa-

rameter uncertainty is captured through an uncertainty set of proper structure and

size, and the optimization is conducted with respect to the worst-case realization

in it. An important class of RO problems that has gained considerable attention

recently is adaptive/adjustable robust optimization (ARO), in which some decisions

are assumed to be delayable until the realized values of uncertain parameters be-

come partially or fully known. Whereas ARO formulations often lead to better (less

pessimistic) solutions than their corresponding static RO models, they are computa-

tionally intractable (Ben-Tal et al., 2004). However, several exact and approximate

algorithms have been proposed to solve important ARO classes such as linear two-

stage RO problems (Thiele et al., 2009; Chen & Zhang, 2009; Kuhn et al., 2011; Zhao

& Zeng, 2012; Bertsimas et al., 2012; Jiang et al., 2012; Iancu et al., 2013). With

a few exceptions, these algorithms use duality to handle the second-stage (recourse)

problem. Hence, they can be used only with continuous recourse decisions. Although

some attempts have been made to develop efficient solution algorithms for ARO prob-

lems with discrete recourse (see, e.g., (Dhamdhere et al., 2005; Georghiou et al., 2015;

Bertsimas & Georghiou, 2015, 2018)), the literature for this class of problems is still

sparse.

Recently, an alternative modeling approach referred to as K-adaptability, has been

proposed as a conservative approximation for ARO problems with discrete recourse

(Hanasusanto et al., 2015; Subramanyam et al., 2020). Rather than allowing any

feasible integer recourse to be selected, the decision-maker prepares K solutions in

157
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advance (under uncertainty). Then, upon full knowledge of the realized value of the

uncertain parameters, the best among these K solutions is selected. Apart from being

better in general compared to the solutions of static RO, Buchheim & Kurtz (2017)

argued that K-adaptability solutions are more easily accepted by a human user as

they do not change each time but are taken from a relatively small set of candidate

solutions.

Similar to Hanasusanto et al. (2015) and Subramanyam et al. (2020), we initially

focus on a linear version of the problem, in which both the objective function and

constraints in the first- and second-stages are affine functions of the decision vari-

ables, the uncertain parameters affect the second-stage objective function, and the

uncertainty set is polyhedral. However, we later show how the algorithm that we

propose can be adapted to solve other variants of the problem. Formally, the linear

K-adaptability problem under consideration is formulated as follows:

min
x∈X ,{yk}k∈[K]

c⊺x + max
ξ∈Ξ

min
k∈[K]

{
ξ⊺Qyk : Tx +Wyk ≤ b

}
(5.1a)

s.t. yk ∈ Y , k ∈ [K], (5.1b)

where c ∈ Rn, Q ∈ Rq×m, T ∈ Rs×n, W ∈ Rs×m, b ∈ Rs, and [K] := {1, . . . , K}.
In this formulation, ξ denotes the uncertain parameters contained in the polyhedral

set Ξ ⊂ Rq, whereas x ∈ X ⊂ {0, 1}n and yk ∈ Y ⊂ Nm represent the here-and-now

(first-stage) and the wait-and-see (second-stage) decision variables, respectively.

A special case of the K-adaptability problem, known in the literature as the min-

max-min robust combinatorial optimization (MMMRCO) problem, arises when the

only decision that is made under uncertainty is the pre-selection of the K possible

recourse actions. In other words, the problem does not have ”real” first-stage de-

cisions. This problem has many practical applications such as parcel delivery and

finding routes in hazardous situations (Arslan et al., 2022). The basic MMMRCO

problem (without constraint uncertainty) is formulated as follows:

min
yk∈Y

max
ξ∈Ξ

min
k∈[K]

{
ξ⊺Qyk : Wyk ≤ b

}
. (5.2)
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So far, two solution approaches have been developed for the K-adaptability prob-

lem. Hanasusanto et al. (2015) proposed a mixed-integer linear programming approx-

imation derived using linear programming (LP) duality, which leads to a monolithic

formulation involving bilinear terms. A McCormick envelope is used to linearize the

bilinear terms, which requires a large number of new variables to be introduced.

Moreover, the number of binary variables increases significantly as K becomes larger.

In another attempt to solve the K-adaptability problem, Subramanyam et al. (2020)

proposed a branch-and-bound algorithm that enjoys asymptotic convergence in gen-

eral, but has finite convergence under specific conditions. This algorithm works by

generating a relevant subset of uncertainty realizations and enumerating their assign-

ment to the pre-selected K solutions. Nevertheless, both approaches were found to

be ineffective for solving large instances of the shortest path problem, e.g., with more

than 25 nodes.

Besides the aforementioned methods that can handle the general case (i.e., with

first-stage decisions), a few approaches to solve variants of Problem (5.2) have been

proposed. Chassein et al. (2019) developed a branch-and-bound algorithm that can

solve large instances of the MMMRCO problem, yet only with budget uncertainty

sets. They also proposed a heuristic solution algorithm based on the formulation of

Hanasusanto et al. (2015). However, instead of using the McCormick linearization

approach to handle the bilinear terms, they used the block-coordinate descent algo-

rithm, which has no optimality guarantee. Moreover, their algorithms can hardly

solve any instance of the shortest path problem with K > 3. For the same special

case, Goerigk et al. (2020) developed an integer programming formulation and an ex-

act row-and-column-generation algorithm that is suitable only for small instances, in

addition to two heuristics that can handle larger ones. Recently, Arslan et al. (2022)

proposed a solution approach that iteratively generates scenarios of the uncertain

parameters and assigns them to solutions by solving a p-center problem. However, it

works well only if there is an effective way to restrict and enumerate the search space.

In this chapter, we present a new approach to solve the K-adaptability problem

with binary or integer first-stage decisions. The scenario generation step in the pro-

posed approach enjoys finite convergence when the uncertainty set is polyhedral, but
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the approach can be used with any convex uncertainty set. Although we focus ini-

tially on problems with affine functions, the proposed algorithm can be extended to

the case of nonlinear recourse problems. The proposed approach uses a logic-based

(also referred to as combinatorial) Benders algorithm to handle the first-stage deci-

sions such that the remaining subproblem is an MMMRCO that is solved iteratively

to generate optimality cuts. To solve this subproblem, we propose a double-oracle

algorithm that iterates between solving an adversary problem to iteratively generate

worst-case scenarios for a K-subset of feasible solutions and determine the scenario-

solution assignment and solving a decision-maker problem to find the optimal K-

subset of solutions for all the scenarios generated so far. Although the way scenarios

are generated and assigned to solutions is similar to that proposed by Arslan et al.

(2022), our approach uses a more efficient way (i.e., by solving an optimization prob-

lem) to identify the optimal K-subset of recourse solutions in every iteration. We

note that the K-adaptability problem formulation provided in (5.1) is based on that

introduced by Bertsimas & Caramanis (2010), i.e., with a first-stage problem that is

not subject to uncertainty, whereas Hanasusanto et al. (2015) addressed an extended

version in which both stages are affected by the same uncertain parameters. Hence,

we show how the proposed algorithm can be extended to handle K-adaptability prob-

lems with uncertainty in both stages (whether the two stages depend on the same

or different uncertain parameters). Finally, extensive numerical experiments are con-

ducted on benchmark instances of several classical optimization problems, and the

computational superiority of the proposed approach vis-á-vis state-of-the-art solution

methods is demonstrated.

The remainder of this chapter is organized as follows. Section 5.2 presents the

approach proposed to solve problem (5.1) (i.e., with linear objective function and

constraints and with uncertainty affecting only the recourse objective function). Sec-

tion 5.3 studies the convergence properties of the proposed algorithm and proves its

finite convergence. In Section 5.4, we show how the proposed algorithm can be modi-

fied to solve different variants of the K-adaptability problem, namely, problems with

integer first-stage decision variables, problems with nonlinear functions, and problems

affected by uncertainty in both stages. The numerical experiments conducted to test

the proposed algorithm on benchmark problems, and a detailed discussion of their
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results, are presented in Section 5.5. Finally, Section 5.6 provides some conclusions

and suggests future research directions.

Notation. We use upright lower and upper case letters, respectively, for vectors and

matrices. Individual elements of these vectors and matrices are denoted using italic

versions of the same letters. For example, elements of the I-dimension vector x are

denoted as xi. Depending on the context, upper case letters might be used also to

denote scalars (e.g., I), whereas lower case letters might denote also functions (e.g.,

g(·)). The calligraphic font is used for sets (e.g., X ). [J ] is used as a shorthand for

the set of integers {1, 2, . . . , J}. A partial set of a given set [J ] is denoted as [J ′]. The

symbol e is used to denote an all-ones vector of appropriate size and ej is the j-th

column of the identity matrix Ij.

5.2 The Proposed Solution Approach

In this section, we present the proposed approach to solve the K-adaptability problem

(5.1) with binary first-stage decision variables and recourse objective uncertainty.

First, we show how a logic-based Benders decomposition is applied to deal with the

discrete first-stage variables. Then, we describe a double-oracle algorithm to solve

the subproblem.

5.2.1 A Logic-based Benders Decomposition

We apply Benders decomposition by projecting the model onto the subspace defined

by the first-stage variables x to get the master problem (MP):

min
x∈X∩V

c⊺x + ν(x), (5.3)

where V := {x : Wy ≤ b− Tx for some y ∈ Y}. For a given x̄ ∈ X ∩ V , ν(x̄) is the

optimal value of the sub-problem (SP):

min
{yk}k∈[K]

max
ξ∈Ξ

min
k∈[K]

ξ⊺Qyk (5.4a)

s.t. yk ∈ Y , Wyk ≤ b− Tx̄ ∀k ∈ [K]. (5.4b)
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We note that since x ∈ X ∩ V , the problem enjoys relatively complete recourse, i.e.,

SP has feasible solutions for all x̄ ∈ X ∩ V . Without this property, the SP might be

infeasible for some x̄, thus requiring feasibility cuts to be generated.

The basic idea of the classical Benders algorithm is to approximate the function

ν(x) using hyper-planes (referred to as optimality cuts) generated by solving the dual

SP for fixed values of x. However, since SP has integer decision variables, it is not

possible to use the duality theory to generate cuts. Assuming that we have an oracle

to solve SP, in any iteration r, the r-th feasible solution xr is used to define the sets

Sr := {i ∈ [n] : xri = 1} and to evaluate its corresponding worst-case second-stage

objective function value θr. We use this solution and value to generate the valid

combinatorial cut, first proposed by Laporte & Louveaux (1993),

θ ≥ (θr − Lr)

(∑
i∈Sr

xi −
∑
i/∈Sr

xi

)
− (θr − Lr) (|Sr| − 1) + Lr, (5.5)

where |Sr| is the cardinality of Sr, Lr is a lower bound of ν(x) for all x ∈ X , and θ is

a MP decision variable that defines the epigraph of ν(x). Hence, MP can be written

as follows:

min
x∈X ,θ

c⊺x + θ (5.6a)

s.t. θ ≥ (θr − Lr)

(∑
i∈Sr

xi −
∑
i/∈Sr

xi

)
− (θr − Lr) (|Sr| − 1) + Lr ∀r ∈ R, (5.6b)

where R := {1, . . . , |X |} is a set of indexes that enumerate all the members of X , i.e.
{xr}|X |

r=1 = X . Note that |X | is necessarily finite since the feasible set X is discrete

and bounded. For completeness, we refer the reader to Appendix 5.7 for more details

on the equivalence between (5.3) and (5.6).

The Logic-based Benders decomposition algorithm is summarized as follows:
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Initiate with an arbitrary feasible x̄, set UB =∞, LB = −∞, r = 1

while UB − LB ≥ ϵ do

Solve SP (5.4) with x̄ and find θr

Find a lower bound Lr for SP (5.4) as will be explained later

Generate the optimality cut:

θ ≥ (θr − Lr)
(∑

i∈Sr xi −
∑

i/∈Sr xi
)
− (θr − Lr) (|Sr| − 1|) + Lr

Update the upper bound: UB = min {UB, c⊺x̄ + θr}
Solve MP (5.6) with the new optimality cut added and find the optimal

partial solution x∗

Set LB equal to the optimal value of MP (5.6)

Use x∗ as x̄ in the next iteration and set r = r + 1

end

Return: Declare the pair
(
x∗, yk

∗)
as the optimal solution

Algorithm 1: Logic-based Benders decomposition algorithm for solving K-

adaptability problem

We note that SP (5.4) is an MMMCRO problem. In the next section, we propose

a novel approach to solve it and obtain the lower bound Lr.

5.2.2 A Double-oracle Algorithm for Solving SP

Arslan et al. (2022) showed that SP (5.4) can be reformulated as a p-center problem

over the entire sets Y and Ξ, denoted herein by P(Y ,Ξ). It should be noted that

both Y and Ξ have exponential numbers of elements and vertices, respectively. Hence,

rather than considering all their elements/vertices at the outset, the recourse solutions

and scenarios are generated and added to the formulation iteratively. Let us define

the partial sets Y ′ ⊆ Y , with |Y| ≥ K, and Ξ′ ⊂ Ξ and use j ∈ [J ] ([J ′]) and h ∈ [H]

([H ′]) to index the elements of Y (Y ′) and the vertices of Ξ (Ξ′), also referred to as

”scenarios”, respectively. Hence, a reduced subproblem over the partial sets Y ′ and
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Ξ′ can be stated as the p-center problem P(Y ′,Ξ′):

min
{zj}j∈[J′],{vjh}j∈[J′],h∈[H′],w

w (5.7a)

s.t. w ≥
∑
j∈[J ′]

(ξ⊺
hQyj) vjh ∀h ∈ [H ′] (5.7b)

∑
j∈[J ′]

vjh = 1 ∀h ∈ [H ′] (5.7c)

∑
j∈[J ′]

zj = K (5.7d)

vjh ≤ zj ∀j ∈ [J ′], ∀h ∈ [H ′] (5.7e)

vjh, zj ∈ {0, 1} ∀j ∈ [J ′], ∀h ∈ [H ′]. (5.7f)

The binary variable zj takes value 1 if the feasible solution yj is selected to be among

the K ”prepared” solutions, and vjh takes value 1 if scenario ξh is assigned to solution

yj, and 0 otherwise. Constraint (5.7b) finds the scenario-solution pair with the worst

cost among all assignments. Constraint (5.7c) ensures that each scenario is assigned

to exactly one solution, whereas (5.7d) and (5.7e), respectively, stipulate that K

solutions are selected and that scenarios can be assigned to selected solutions only.

To solve SP, the following algorithm is proposed:

1. Solve the problem P(Y ′,Ξ), i.e., the problem with the subset Y ′ of all recourse

solutions generated so far (carried forward from Step 2 in the previous iteration)

and all scenarios in Ξ to obtain an upper bound UB. To solve this problem, we

begin with a subset Ξ′ of scenarios and perform the following steps.

(a) Solve the problem P(Y ′,Ξ′) (i.e., Problem (5.7)) to find z∗, v∗ and w∗.

Identify the optimal K-subset of recourses as
{
yk ∈ Y ′ : z∗k = 1

}
.

(b) Given the current optimal K-subset
{
yk
}
k∈[K]

of recourses, try to find a

scenario ξ|H′|+1 ∈ Ξ that violates (5.7b) by solving the following problem:

max
ξ∈Ξ,η

η (5.8a)

s.t. η ≤ ξ⊺Qyk k ∈ [K]. (5.8b)
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(c) If η∗ > w∗, add the new scenario to Ξ′ and repeat Steps (a) and (b).

Otherwise, stop and move to Step 2.

2. In this step, we find the optimal K-subset
{
yk

∗}
k∈[K]

of feasible recourses that

minimize the worst-case loss for the discrete scenario set Ξ′ by solving the

following problem:

min
{yk}k∈[K],γ,{ukh}k∈[K],h∈[H′]

γ (5.9a)

s.t. ξ⊺
hQyk ≤ γ +M(1− ukh) ∀k ∈ [K], ∀h ∈ [H ′]

(5.9b)∑
k∈[K]

ukh = 1 ∀h ∈ [H ′] (5.9c)

yk ∈ Y ∀k ∈ [K] (5.9d)

Wyk ≤ b− Tx̄ ∀k ∈ [K] (5.9e)

ukh ∈ {0, 1} ∀k ∈ [K], ∀h ∈ [H ′],

(5.9f)

where ukh takes the value 1 if scenario h is assigned to recourse k, in which case

constraint (5.9b) reduces to ξ⊺
hQyk ≤ γ; otherwise it becomes redundant. We set

M >
{
maxyk∈Y ξ⊺

hQyk, s.t. Wyk ≤ b− Tx̄
}
. The solution pool is then updated

as Y ′ ← Y ′ ∪
{
yk

∗}
k∈[K]

, where
{
yk

∗}
k∈[K]

is the partial optimal solution of

problem (5.9). Moreover, we set LB = γ.

3. Iterate between Steps (1) and (2) until UB − LB < ε. Declare the incumbent{
yk

∗}
k∈[K]

as the optimal solution.
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Initialization: Y ′,Ξ′, LB = −∞, UB = +∞
Iteration:

while UB − LB ≥ ϵ do

while Scenario-added=true do

Compute w∗, z∗, v∗, and yk
∗
by solving (5.7)

Compute ξ|H|+1 ∈ Ξ, and η∗ by solving (5.8)

if η∗ > w∗ then

Ξ′ ← Ξ′ ∪
{
ξ|H|+1

}
k∈[K]

Scenario-added=true
else

Ξ′ ← Ξ′

Scenario-added=false

end

end

Return: Ξ′, UB = w∗

Compute {yk∗}k∈[K], γ
∗ by solving (5.9)

Y ′ ← Y ′ ∪
{
yk

∗}
k∈[K]

LB = γ∗

end

Return: {yk∗}k∈[K]

Algorithm 2: The Double-Oracle (DO) algorithm for solving SP

To generate an optimality cut, the logic-based Benders decomposition algorithm

explained in the previous section requires a valid lower bound on the optimal value of

the second-stage problem that satisfies Lr ≤ min
x
{ν(x)| x ∈ X}. In every iteration of

the proposed algorithm, we calculate a lower bound on the optimal value of SP for a

fixed first-stage decision x̄ by solving (5.9). However, a lower bound on the optimal

value of SP for all x ∈ X is required, which can be obtained by solving the following
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problem:

min
{yk}k∈[K],γ,{ukh}k∈[K],h∈[H′],x

γ (5.10a)

s.t. ξ⊺
hQyk ≤ γ +M(1− ukh) ∀k ∈ [K], ∀h ∈ [H ′] (5.10b)∑
k∈[K]

ukh = 1 ∀h ∈ [H ′] (5.10c)

yk ∈ Y ∀k ∈ [K] (5.10d)

Wyk ≤ b− Tx ∀k ∈ [K] (5.10e)

x ∈ X (5.10f)

ukh ∈ {0, 1} ∀k ∈ [K], ∀h ∈ [H ′]. (5.10g)

Note that the lower bound changes at each Benders iteration since we solve problem

(5.10) in each iteration by using an updated subset of scenarios Ξ′. We also suggest

warm-starting SP in every Benders iteration by re-using some of the y variables gen-

erated in previous iterations. Given a subset {yj}j∈[J ′] of recourse solutions, one can

”filter” them using constraint (5.9e) and reuse the ones that satisfy this constraint

for the new x̄ in problem (5.7) right away. Likewise, the scenarios (vertices of Ξ)

generated in an iteration can be re-used in subsequent iterations of the Benders algo-

rithm since they do not depend on x̄. Such warm-staring techniques can substantially

improve the performance of the DO algorithm. Figure 5.1 illustrates the proposed

approach.

There are similarities and differences between our approach and both the scenario

generation (SG) algorithm developed by Arslan et al. (2022) and the row-and-column-

generation (RCG) algorithm proposed by Goerigk et al. (2020). Neither SG nor RCG

can handle the K-adaptability problem as they are developed for the MMMRCO

problem only. Both algorithms use the p-center problem (5.7) to assign scenarios to

solutions. However, SG uses a decision version of problem (5.7) that is solved through

a binary search algorithm, in contrast to the more-efficient double-oracle algorithm

proposed in this chapter. RCG uses a formulation similar to (5.7) as the master

problem. However, it assumes that yk are also decision variables, thus has to deal

with the bilinear terms v⊺yk, which are linearized by defining additional variables

and constraints. Moreover, RCG is developed specifically for a discrete budgeted
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Figure 5.1: Double-oracle, logic-based Benders decomposition approach

uncertainty set, whereas our algorithm does not have this limitation. Later, we show

how our algorithm can handle different extensions of the problem that SG and RCG

cannot.

5.3 Finite Convergence

The proposed approach consists of two loops. The outer loop handles the first-stage

decisions through a logic-based Benders decomposition algorithm. The inner loop,

which has two steps: scenario generation and solution generation, is used to solve SP,

which is a MMMRCO problem. We show that both the outer loop and the scenario

generation step in the inner loop terminate after a finite number of iterations, and

that the solution generation step leads to the convergence of LB and UB. Note that

the following lemmas do not exploit the linearity of the cost and recourse constraint
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functions in Problem (5.1).

Lemma 11. By assuming that X is a bounded discrete set, the number of iterations

of the outer loop is finite.

Proof. Since X is a bounded discrete set, there is a finite number of feasible solutions

x̄ for the first-stage problem (5.6). Each first-stage solution corresponds to a single

optimality cut (5.6b), generated by solving SP to obtain xr, θr and Lr. Hence, the

number of optimality cuts is finite, and so is the number of outer loop iterations.

Lemma 12. By assuming that Y is a bounded discrete set, the maximum number of

scenarios {ξh}h∈H that can be generated through the double oracle algorithm is finite

and equal to |J |!
K!(|J |−K)!

.

Proof. Since Y is a bounded discrete set, its elements (feasible solutions) are finite and

thus can be enumerated. The p-center problem (5.7) selects K solutions and assigns

those selected solutions to scenarios. Moreover, those K selected solutions are used

to generate worst-case scenarios through problem (5.8); and if the generated scenario

violates constraint (5.7b), it is added to the set of scenarios. However, if all possible

worst-case scenarios of all feasible (x̄, yk) assignments in our subset of scenarios are

available, then no generated scenario from problem (5.8) can violate (5.7b) and the

iteration between (5.7) and (5.8) will terminate. If all combinations of K out of

|Y| are selected and used in problem (5.8), all possible worst-case scenarios for all

feasible (x̄, yk) are generated. Since Y is a bounded discrete set, there are exactly(|J |
k

)
possible ways to select K elements from the set Y . Consequently, at most there

are
(|J |
k

)
= |J |!

k!(|J |−k)! possible solutions for (5.7). Hence, in the worst-case situation,

with the finite number of iterations between the p-center problem, (5.7), and the

scenario generation problem, (5.8), all possible worst-case scenarios are generated.

therefore, no new scenario can violate (5.7b) and then, this step terminates.

Lemma 13. The upper and lower bounds, obtained respectively by solving problems

P (Y ′,Ξ) and P (Y ,Ξ′), converge after a finite number of iterations.

Proof. The upper bound is found by solving P(Y ′,Ξ). To get the optimal assignment,

problem (5.7) with Y ′ must be solved. However, its optimal value, which is the upper

bound, can be obtained alternatively by solving UB = maxh∈[H] minj∈[J ′] ξ
⊺
hQyj (see
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Proposition 15 in Appendix 5.7). On the other hand, by using a fixed set of scenarios,

a K-subset of solutions is generated by solving (5.9), which can be reformulated as

LB = maxh∈[H′] minyk∈Y ξ⊺
hQyk (see Proposition 16 in Appendix 5.7). There are two

cases:

Case 1: The optimal solutions yk
∗
already exist in the subset of solutions Y ′, in

which case the optimal pair of solutions and scenarios will be found by solving (5.7)

and its objective value equals UB = maxh∈[H] minj∈[J ′] ξ
⊺
hQyj. On the other hand,

the optimization problem related to the lower bound (5.9) will generate yk
∗
as the

optimal solution since the scenarios are fixed for both the lower and upper bound

problems. In this case, LB = UB and the algorithm terminates.

Case 2: The optimal solutions yk
∗
are not in the subset of solutions Y ′. In this

case, by using fixed scenarios and solving (5.9), a K-subset of solutions is generated

that includes yk
∗
. These solutions are added to the subset of solutions in the p-center

problem (5.7). Consequently, the optimal pair of solutions and scenarios will be in the

Y ′, and Ξ′, respectively. Hence, by solving the p-center problem (5.7), the optimal

pair of solutions and scenarios will be selected. Consequently, LB = UB and the

algorithm will terminate.

Based on these lemmas, we can conclude that all three loops in the proposed

algorithm will terminate in a finite number of iterations. Hence, the following theorem

is proven.

Theorem 14. The double-oracle, logic-based Benders decomposition algorithm enjoys

finite convergence.

5.4 Extensions

So far, we focused on the K-adaptability problem with linear objectives and con-

straints, binary first-stage and integer second-stage decision variables, and with ob-

jective uncertainty only in the second-stage. In this section, we show how the proposed

algorithm can be extended to more general cases beyond the basic setting outlined

earlier.
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5.4.1 Second-stage Constraint Uncertainty

Similar to the algorithm proposed by Arslan et al. (2022) to solve the MMMRCO

problem, our approach can be extended to the case when uncertainty affects both the

objective function and constraints of the recourse problem. The extended problem

can be formulated as follows:

min
x∈X ,{yk}k∈[K]

c⊺x + sup
ξ∈Ξ

min
k∈[K]

{
ξ⊺Qyk : Tx +W(ξ)yk ≤ b

}
(5.11a)

s.t. yk ∈ Y , k ∈ [K], (5.11b)

where W(ξ) is an affine mapping of uncertain parameters. Note the dependency of

the SP constraints on ξ. To solve this problem, we use the same iterative algorithm

explained earlier but with a modified p-center problem P′(Y ′,Ξ′) by adding (5.12f),

as follows:

min
{zj}j∈[J′],{vjh}j∈[J′],h∈[H′],w

w (5.12a)

s.t. w ≥
∑
j∈[J ′]

ξ⊺
hQyjvjh ∀h ∈ [H ′] (5.12b)

∑
j∈[J ′]

vjh = 1 ∀h ∈ [H ′] (5.12c)

∑
j∈[J ′]

zj = K (5.12d)

vjh ≤ zj ∀j ∈ [J ′], ∀h ∈ [H ′] (5.12e)

vjh = 0 ∀j ∈ [J ′], h ∈ [H ′] : ∃s ∈ [S]

s.t. e⊺s(W(ξh)yj − b + Tx̄) > 0

(5.12f)

vjh, zj ∈ {0, 1} ∀j ∈ [J ′], ∀h ∈ [H ′]. (5.12g)

In this formulation, there are s constraints with uncertain parameters, i.e., b ∈ Rs.

The quantifier constraint (5.12f) is not a problem in terms of modeling, but it prevents

infeasible assignment of solution-scenario pairs. Moreover, problem (5.8) is modified
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by adding constraint (5.13c) as follows:

max
ξ∈Ξ,η,λ∈{0,1}K

η (5.13a)

s.t. η ≤ ξ⊺Qyk +Mλk k ∈ [K] (5.13b)

W(ξ)yk > b− Tx̄−M(1− λk) k ∈ [K], (5.13c)

where λk = 1 if the scenario ξ is such that yk is infeasible for any of the s un-

certain constraints, thus enforces that we do not consider ξ⊺Qyk for calculating the

upper bound on η. Moreover, the solution generation problem (5.9) is modified by

considering constraint (5.14e) with uncertain parameters.

min
{yk}k∈[K],γ,{ukh}k∈[K],h∈[H′]

γ (5.14a)

s.t. ξ′
hQyk ≤ γ +M(1− ukh) ∀k ∈ [K], ∀h ∈ [H ′]

(5.14b)∑
k∈[K]

ukh = 1 ∀h ∈ [H ′] (5.14c)

yk ∈ Y ∀k ∈ [K] (5.14d)

W(ξ⊺
h)y

k ≤ b− Tx̄ +M(1− ukh) ∀k ∈ [K], ∀h ∈ [H ′]

(5.14e)

ukh ∈ {0, 1} ∀k ∈ [K], ∀h ∈ [H ′].

(5.14f)

One should note that even though V can be modified to ensure that MP satisfies

relatively complete recourse, it might happen that for some x̄ ∈ X ∩ V , there exist

no set of K solutions {yk}Kk=1 that ensure that some yk is always feasible under all

ξ ∈ Ξ. For this reason, at the r-th iteration of the logic-based Benders decomposition

algorithm, SP might become infeasible for xri , which is identified when problem (5.14)

becomes infeasible for some Ξ′. At this point, Algorithm 1 should be modified to

generate and add to MP a feasibility cut of the form:

∑
i∈Sr

xi −
∑
i/∈Sr

xi ≤ |Sr| − 1,
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in order to discard xri from the set of feasible candidates, instead of producing an

optimality cut of the form (5.5).

5.4.2 Bounded First-stage Integer Decision Variables

The outer loop in the proposed algorithm depends on the first-stage variables being

binary (i.e., x ∈ {0, 1}n) to generate logic-based Benders cuts of the type (5.5).

However, if the first-stage integer variables are not binary, but rather bounded general

integer, i.e., X ∈ Zn+, one can simply apply the transformation xi =
∑Pi

pi=0 2
puipi , i =

1, . . . , n, where uipi ∈ {0, 1}, and Pi depends on the upper bound of xi. Clearly, this

generalization comes at the expense of increasing the number of variables in the first-

stage problem, thus it might be efficient only for small values of Pi.

5.4.3 First-stage Objective Uncertainty

Even though Bertsimas & Caramanis (2010) defined K-adaptability such that the

first-stage objective is deterministic, we extend our algorithm to the case when there

is first-stage objective uncertainty, similar to Hanasusanto et al. (2015). A practi-

cal example of the K-adaptability problem with uncertainty in the first-stage is the

multi-period portfolio selection problem when decisions about the allocation of bud-

get among assets have to be made at the beginning of the investment horizon, thus

are first-stage decisions. Indeed, asset returns are uncertain even at the outset, and

the initial capital allocation decision cannot be postponed until this uncertainty is

revealed. Hence, the here-and-now decisions are directly affected by uncertain pa-

rameters. In this section, we differentiate between two cases of first-stage objective

uncertainty. First: when uncertain parameter is independent of the second-stage

uncertainty, which means uncertain parameters of first and second-stage objective

functions are two different and independent parameters. Second: when some (or all)

uncertain parameters affect both stages, i.e., dependent uncertainty, which means

they depend on the same uncertain parameters. We show how the proposed approach

is tailored for each case.
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Independent Uncertainty

Let us consider the following K-adaptability problem:

min
x∈X

max
ξ∈Ξ,ω∈Ω

min
k∈K
{ω⊺Cx + ξ⊺Qyk : Tx +Wyk ≤ b} (5.15a)

s.t. yk ∈ Y , k ∈ [K], (5.15b)

where ω ∈ Rc, C ∈ Rc×n, and Ω is a compact and convex uncertainty set. Other

variables and parameters are the same as those used in formulation (5.1). We assume

that ω and ξ are disjoint sets of uncertain parameters. In this case, MP (5.6) is

modified as follows:

min
x∈X , θ

max
ω∈Ω

ω⊺Cx + θ (5.16a)

s.t. θ ≥ (θr − L)

(∑
i∈Sr

xi −
∑
i/∈Sr

xi

)
− (θr − Lr) (|Sr| − 1) + L, (5.16b)

which is a static RO problem that can be tractably reformulated by applying convex

duality on the inner maximization. The SP does not change, and we can apply the

double-oracle algorithm described in Section 5.2.2 to solve it.

Dependent Uncertainty

Next, we consider the K-adaptability problem variant addressed by Hanasusanto

et al. (2015), where the same uncertain parameters affect both stages, formulated as

follows:

min
x∈X ,{yk}k∈[K]

max
ξ∈Ξ

min
k∈K

ξ⊺Cx + ξ⊺Qyk (5.17a)

s.t. yk ∈ Y , Tx+Wyk ≤ b, k ∈ [K], (5.17b)

where C ∈ Rq×n and the rest of the parameters and variables are the same as in (5.1).

Since both first and second-stage decision variables depend on the same uncertain

parameter ξ, we can reformulate model (5.17) into model (5.1). To propose this

reformulation, we defined ỹ ∈ {0, 1}n × Y . Moreover, let Q̃ = [C,Q] ∈ Rq×(n+m),
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T̃ =


I
I
T

, W̃ =


−I 0

I 0

0 W

, and b̃ =


0

0

b

. We have that problem (5.17) can be

equivalently formulated as:

min
x∈X ,{ỹk}k∈[K]

max
ξ∈Ξ

min
k∈K

ξ⊺Q̃ỹk (5.18a)

s.t. ỹ ∈ {0, 1}n × Y , T̃x+ W̃ỹk ≤ b̃, k ∈ [K]. (5.18b)

In problem (5.18), ỹ is the second-stage decision variable while x is the first-stage

decision variable.

5.4.4 Nonlinear Objective and Constraint Functions

In principle, our algorithm can be extended to address nonlinear K-adaptability prob-

lems of the form:

min
x∈X

f(x) + max
ξ∈Ξ

min
k∈K
{g(ξ, yk) : h(ξ, x, yk) ≤ b} (5.19a)

s.t. yk ∈ Y , k ∈ [K], (5.19b)

where f : X 7→ R is convex in x, g : Ξ × Y 7→ R is affine in ξ and convex in

y, and h : Ξ × X × Y 7→ R is affine in ξ and jointly convex in x and y. In this

case, MP (5.6) is modified by using f(x) instead of c⊺x. Moreover, the p-center

problem (5.12) is modified by replacing ξ⊺
hQyj and W(ξh)yj +Tx̄ with g(ξh, yj) and

h(ξh, yj, x̄), respectively. In the p-center problem, vjh and zj are decision variables

while yj, ξh, and x̄ are constants. Consequently, regardless of the type of functions

g(·, ·) and h(·, ·, ·), the p-center problem finds the optimal K solutions and assigns

them to scenarios. Moreover, the scenario generation problem (5.8) is rewritten as

follows:

max
ξ∈Ξ,η,λ∈{0,1}K

η (5.20a)

s.t. η ≤ g(ξ, yk) +Mλk k ∈ [K] (5.20b)

h(ξ, yk, x̄) > b−M(1− λk) k ∈ [K], (5.20c)
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which again takes the form of a mixed integer LP given our assumption that g(·, ·)
and h(·, ·, ·) be affine in ξ. Finally, the solution generation problem (5.9) is changed

by replacing ξ⊺
hQyk and Wyk + Tx̄ with g(ξh, y

k) and h(ξh, y
k, x̄), respectively.

5.5 Numerical Results

This section presents and analyzes the numerical results obtained by implementing

the proposed algorithm to solve four problems: the shortest path problem, the knap-

sack problem, a generic K-adaptability problem, and the asset-liability management

problem. These results are compared (when possible) to those obtained from the

following state-of-the-art algorithms.

• MILP: the mixed-integer linear programming reformulation of Hanasusanto et al.

(2015);

• IA: the iterative algorithm of Chassein et al. (2019);

• RCG: the row-and-column generation algorithm of Goerigk et al. (2020);

• SG: the scenario generation approach of Arslan et al. (2022); and

• BB: the branch-and-bound method of Subramanyam et al. (2020).

The proposed DO algorithm, MILP, IA, and RCG were coded on Python 3.10.4 using

Jupyter. SG is available here1, and BB is also available here2. The subproblems were

solved using CPLEX called through CPLEX-CMD on a Linux laptop with an 8th

generation Intel Core i7 7700 processor and 16 GB RAM. The time limit was set to

two hours (7200 seconds).

5.5.1 Shortest Path Problem

The first problem used to evaluate the proposed algorithm is the adaptive shortest

path problem, previously studied in Hanasusanto et al. (2015) and Chassein et al.

(2019). This problem aims to select a subset of network arcs with the least total cost

to form a path from a source s to a destination t when arc costs are uncertain. In

1https://github.com/mjposs/min-max-min
2https://github.com/AnirudhSubramanyam/KAdaptabilitySolver

https://github.com/mjposs/min-max-min
https://github.com/AnirudhSubramanyam/KAdaptabilitySolver/blob/v1.0/README.md
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the K-adaptability variant of the problem, K paths are pre-formed and the shortest

(least costly) among them is selected once the actual costs are realized. We used test

instances from Arslan et al. (2022), available here3.

Formally, the problem can be described as follows: A network (V ,A) has the cost
of each arc (i, j) ∈ A characterized as cij = c̄ij + ξij ĉij, where c̄ij is the nominal cost

and ĉij is the maximal deviation. The primary uncertain parameter ξ belongs to the

budgeted uncertainty set Ξ =
{
ξ ∈ [0, 1]|

∑
(i,j)∈A ξij ≤ Γ

}
, where Γ is an uncertainty

budget that controls the size of uncertainty set. With that, the problem is formulated

as follows:

min
x∈{0,1}n

∑
(i,j)∈A

cijxij (5.21a)

s.t.
∑

(i,j)∈δ+(i)

xij −
∑

(i,j)∈δ−(i)

xij = bi, ∀i ∈ V , (5.21b)

where bs = −1, bt = 1, and bi = 0 for i ∈ V/ {s, t} and the sets δ+i and δ−i represent

the forward and backward stars of node i ∈ V , respectively.

We solve the problem in different sizes of |V| ∈ {20, 25, 40, 50}. For each prob-

lem size, we considered K ∈ {2, 3, 4, 5, 6} and Γ ∈ {3, 6}. Ten randomly-generated

instances were solved for each combination of |V|, K, and Γ. We compare the results

of our algorithm with those obtained using MILP, RCG, IA and SG. Table 5.1 shows the

number of solved instances out of 10 instances by these algorithms for Γ = 3, and

Γ = 6.

Intuitively, as the problem size increases (in terms of both |V| and K), fewer

instances were solved to optimality by all algorithms. Nevertheless, DO showed better

performance than all other algorithms. For example, it solved all instances with

Γ = 3 and K ∈ {2, 3, 4, 5}, while none of the other algorithms could solve all of

these instances within the cut-off time. Moreover, DO solved 30-60% of the instances

with |V| =50, Γ=3, and K ∈ {2, 3, 4, 5, 6}, while the next best algorithm was SG

that could not solve instances with |V| =50 and K >3. The comparison results for

Γ=6 exhibit the same pattern. DO had a significant performance over the benchmark

3https://github.com/mjposs/min-max-min

https://github.com/mjposs/min-max-min
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Table 5.1: Number of solved instances and average CPU time for the shortest path
problem

Number of solved instances Average CPU time (s)
Γ |V|Alg K=2K=3K=4K=5 K=6 K=2 K=3 K=4 K=5 K=6

3 20

DO 10 10 10 10 10 1.55 1.56 1.69 1.82 1.99
MILP 10 10 8 8 8 0.46 0.96 3.09 6.54 43.08
IA 9 9 7 7 6 0.35 0.41 0.38 0.40 0.43
RCG 10 10 8 8 8 1.37 2.21 3.81 6.21 4.87
SG 10 10 8 8 8 1.62 1.59 1.77 1.85 1.99

3 25

DO 10 10 10 10 10 2.87 2.80 3.26 3.70 7.23
MILP 10 10 4 1 1 12.69 53.75 524.45 2.50 16.55
IA 10 10 8 4 4 3.44 3.42 3.23 4.08 4.36
RCG 8 8 8 7 7 2.59 2.61 6.08 7.57 8.70
SG 10 10 10 10 10 2.93 2.95 3.07 3.94 6.52

3 40

DO 10 10 10 10 10 8.63 7.50 9.04 11.97 86.95
MILP 9 8 4 0 0 90.61 299.26 873.76 TL TL
IA 10 10 10 8 7 68.45 81.99 79.13 65.68 77.08
RCG 9 9 6 5 4 4.54 8.81 13.19 15.14 59.29
SG 10 10 8 8 8 6.91 6.51 8.93 10.85 82.07

3 50

DO 7 5 5 4 4 9.00 17.04 17.15 15.36 17.78
MILP 1 0 0 0 0 355.99 TL TL TL TL
IA 2 1 0 0 0 102.68 118.69 TL TL TL
RCG 1 1 0 0 0 90.56 232.81 TL TL TL
SG 3 1 0 0 0 28.93 TL TL TL TL

6 20

DO 10 10 10 10 9 1.54 1.54 1.54 1.61 1.85
MILP 10 10 8 7 7 0.72 1.26 3.31 7.21 119.40
IA 9 8 7 6 6 0.28 0.35 0.36 0.40 0.42
RCG 8 8 8 7 7 1.27 2.21 3.74 6.23 4.77
SG 8 8 6 6 5 1.55 1.57 1.61 1.64 1.93

6 25

DO 10 10 10 10 10 4.43 4.47 5.08 8.19 9.23
MILP 10 10 4 1 0 14.31 75.40 151.24 389.98 TL
IA 10 10 10 6 4 3.39 4.34 4.84 5.28 14.11
RCG 6 5 4 4 4 2.69 3.13 3.21 14.28 17.19
SG 9 9 7 7 7 4.40 4.66 4.91 8.16 10.10

6 40

DO 9 9 8 8 8 10.59 11.27 14.58 22.20 26.96
MILP 8 7 10 0 0 70.59 664.92 1044.60 TL TL
IA 10 10 10 9 5 54.03 73.24 74.91 81.40 85.20
RCG 5 4 2 2 1 7.32 14.41 39.41 45.17 125.01
SG 8 8 6 5 5 11.41 11.81 12.20 20.76 24.96

6 50

DO 6 5 5 4 4 10.46 15.45 15.70 18.01 22.08
MILP 0 0 0 0 0 TL TL TL TL TL
IA 1 0 0 0 0 81.04 TL TL TL TL
RCG 2 0 0 0 0 TL TL TL TL TL
SG 3 1 0 0 0 377.54 TL TL TL TL
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algorithms, except IA, when the uncertainty budget Γ was doubled. IA solved 100% of

the instances with |V|=40, K ∈ {2, 3, 4}, and Γ=6, while DO solved 80% to 90% of the

instances of the same size. However, for |V|=50, the performance of IA deteriorated,

as it could only solve 0-10% of the instances, whereas DO solved 40-70% of these

instances. These results clearly show the performance advantage of the proposed

approach over other algorithms proposed in the literature, especially for large-size

problems. It is worth noting that IA, unlike DO, cannot guarantee global optimality

since it uses a fixing heuristic to handle a bilinear term in each iteration.

Another important performance metric for comparing algorithms is the processing

(CPU) time. The average CPU time (in seconds) for Γ=3, Γ=6 are shown in Table

5.1. When TL is shown, it indicates that the problem could not be solved within the

cut-off time. It can be seen that IA had better performance than DO in small-size

instances (with an average difference of about 2 seconds). However, for the largest

problem size (|V|=50), IA could not solve any instance with K >3 within the cut-

off time, whereas DO solved instances of the same size with K=6 in less than 20

seconds. We observe that the DO had much smaller CPU times for large instances in

comparison to the iterative algorithm, which also does not guarantee optimality. The

average CPU times for DO and SG were almost identical. For example, the average

CPU times of DO for instances with |V| ∈ {20, 25, 40}, Γ=3, and K = {2, 3, 4, 5, 6}
were between 1.55 and 86.95 seconds, while those for SG were 1.62-82.07 seconds.

However, SG could not solve any instances with |V|=50, and K >3, while DO solved

some of these instances within the cut-off time.

Furthermore, all tested algorithms (except MILP) provide lower bounds on the

optimal value for instances that could not be solved to optimality. Hence, we compare

the best lower bound achieved by each algorithm to the best lower bound of DO based

on 10 instances for different |V| and Γ values. The relative gaps shown in Table 5.2

are calculated as
LBDO−LBAlg

LBDO
, Alg ∈ {IA, RCG, SG}. A positive relative gap means that

DO reached a better (higher) LB than the benchmark algorithm. We notice that the

average gaps of RCG and SG relative to DO were up to 3% in small-size instances, but

reached 13% in large instances. As shown earlier, RCG, SG and DO could solve the

problem to optimality for |V| =20, K ∈ {2, 3} and Γ ∈ {3, 6}, resulting in zero gaps

between them. Moreover, SG and DO generated the same results for instances with
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Table 5.2: Gap analysis for the shortest path problem

Relative gap (%) Ratio of better LB by DO

Γ |V|Alg K=2 K=3 K=4 K=5 K=6K=2 K=3 K=4 K=5K=6

3 20
IA 2.69 3.43 11.98 13.45 16.71 1/1 1/1 3/3 2/3 4/4
RCG - - -1.36 1.82 1.41 - - 2/2 2/2 1/2
SG - - -1.10 1.90 2.97 - - 1/2 1/2 1/2

3 25
IA - - 5.86 13.74 16.71 - - 2/2 4/6 5/6
RCG 1.12 3.43 -1.36 4.97 2.41 2/2 2/2 1/2 3/3 2/3
SG - - - - - - - - - -

3 40
IA 7.92 11.59 15.94 14.77 17.15 - - 1/1 2/2 2/3
RCG 2.11 2.07 0.48 3.42 2.31 1/1 1/1 3/4 5/5 5/6
SG - - 1.08 0.87 1.45 - - 2/2 1/2 1/2

3 50
IA 12.27 13.15 15.68 18.09 19.56 7/8 9/9 10/10 10/10 9/10
RCG 4.89 5.33 6.85 7.60 9.82 8/9 8/9 10/10 10/10 8/10
SG 3.23 5.58 7.54 5.39 8.54 4/7 5/9 6/10 4/10 5/10

6 20
IA 4.66 6.65 5.06 5.09 5.14 1/1 2/2 2/3 4/4 3/4
RCG 1.29 2.19 -1.47 3.11 2.7 2/2 2/2 1/2 3/3 2/3
SG 1.43 2.32 1.74 -0.29 1.29 2/2 2/2 3/4 2/4 3/5

6 25
IA 4.19 5.13 9.19 8.87 11.41 - - - 2/2 2/6
RCG 2.28 2.99 2.57 3.63 1.73 4/4 5/5 4/6 4/6 3/6
SG 2.43 3.43 3.93 2.98 -3.78 1/1 1/1 3/3 2/3 1/3

6 40
IA 1.51 3.41 3.21 4.23 6.79 - - - 1/1 2/5
RCG 2.38 4.56 5.28 6.43 9.67 3/5 5/6 7/8 7/8 9/9
SG 1.94 5.12 3.56 6.17 8.79 1/2 2/2 2/4 4/5 4/5

6 50
IA 11.95 17.37 21.02 25.03 27.55 9/9 10/10 10/10 9/10 9/10
RCG 6.14 7.78 10.89 11.47 13.1 6/8 9/10 9/10 10/10 7/10
SG 4.95 -1.67 2.78 7.46 8.74 5/7 5/9 6/10 7/10 7/10
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|V| =25, K ∈ {2, 3, 4, 5}, and Γ =3. On the other hand, IA, a heuristic with no

optimality guarantee, had relative gaps of up to 26%.

Table 5.2 also shows the number of instances for which DO reached a better LB

than the benchmark algorithm among the instances that could not be solved within

the cut-off time. We note that RCG and SG provided the same LB as DO for instances

with |V| =20 and Γ=3. Moreover, IA, SG, and DO provided the same LB for instances

with |V| ∈ {25, 40}, Γ ∈{3,4}, and K ∈{2,3,4}. However, DO frequently provided

better lower bounds than the other algorithms in large instances. For example, it

outperformed IA in terms of LB in 7/8 to 10/10 instances with |V| = 50 that could

not be solved to optimality. The ratios for the same set of instances were 8/9 to 10/10

compared to RCG and 4/7 to 7/10 compared to SG. Clearly, DO reached the best LB

in the vast majority of cases.

5.5.2 Adaptive Knapsack Problem

We then tested on the adaptive knapsack problem, which aims to prepare K different

combinations of items that respect the capacity constraint without exact knowledge

of their profit. Let [n] be the set of items, wi and pi, respectively, be the weight

and profit of item i ∈ [n], and b is the available budget. The feasible set is defined

as X = {x ∈ {0, 1}n|
∑

i∈[n] wixi ≤ b}. The goal is to find the best combination

of items that maximize the profit p⊺x. The uncertain parameter pi is assumed to

follow pi =
(
1 +

∑
j∈[m]

Φijξj
2

)
p̄i, where p̄i is the nominal profit, m is the number of

uncertain factors and Φ ∈ Rn×m is the factor loading matrix. The i-th row of Φ is

characterized by the set
{
Φi ∈ [−1, 1]m |

∑
j∈[m] |Φij| = 1

}
. As a result, the realized

profit of each object i ∈ [n] remains within the interval [ p̄i
2
, 3p̄i

2
]. We solve the problem

in different sizes n ∈ {100, 150, 200, 300} and different values of K ∈ {2, 3, 4, 5, 6}.
Ten instances of each combination of n, and K are solved, and the results obtained

from our algorithm are compared to those of IA, MILP and SG.

The percentage of solved knapsack problem instances are shown in Tables 5.3.

It can be seen that for different problem sizes, DO and SG were able to solve almost

the same percentage of test instances. However, MILP and IA could hardly solve any

instances with K ≥3 or n ≥ 200. By increasing n and K, the percentage of solved

instances by SG and DO dropped to 50-60%, showing the significant impact of n and
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Table 5.3: Number of solved instances and average CPU time for the adaptive knap-
sack problem

Number of solved instances Average CPU time
n Alg K=2K=3K=4K=5 K=6 K=2 K=3 K=4 K=5 K=6

100

DO 10 10 10 10 10 16.29 25.92 49.01 49.60 128.35
MILP 2 0 0 0 0 3,829.95 TL TL TL TL
IA 2 1 0 0 0 999.12 1,460.23 TL TL TL
SG 10 10 10 10 10 22.60 28.85 70.23 118.96 212.19

150

DO 10 10 10 10 10 83.93 92.21 93.19 93.45 110.52
MILP 1 0 0 0 0 4,072.81 TL TL TL TL
IA 1 0 0 0 0 70.94 TL TL TL TL
SG 10 10 10 10 10 72.73 88.41 82.61 102.92 124.05

200

DO 7 7 7 6 6 457.84 515.72 545.24 567.05 574.33
MILP 0 0 0 0 0 TL TL TL TL TL
IA 0 0 0 0 0 TL TL TL TL TL
SG 7 7 7 6 6 537.63 548.42 573.13 622.36 630.55

300

DO 6 6 5 5 5 1,734.74 2,129.96 2,673.10 3,382.99 4,875.86
MILP 0 0 0 0 0 TL TL TL TL TL
IA 0 0 0 0 0 TL TL TL TL TL
SG 5 3 3 4 3 1,733.66 2,438.93 3,138.38 4,568.43 5,233.18

K on their performance. Table 5.3 also shows the average CPU time in seconds for

the solved knapsack problem instances. It can be seen that the average CPU times

for DO and SG are very close, with no clear advantage for either algorithm. However,

our algorithm is much faster than IA and MILP.

Table 5.4 shows the relative gaps of IA and SG with regard to the best upper bound

(UB) found by DO. This relative gap is calculated as
UBAlg−UBDO

UBDO
, Alg ∈ {IA, SG}.

Thus, positive relative gaps indicate that DO provides tighter upper bounds than

the benchmark algorithm. Moreover, the ratio of unsolved instances for which DO

provides a better UB than the other algorithm is provided. We note that the upper

bounds provided by IA are consistently looser than those of DO, with 8-10 out of the

10 unsolved instances having better DO upper bounds. On the other hand, both DO

and SG solved all instances with n ∈ {100, 150} to optimality, thus leading to zero

relative gaps between the two algorithms. However, ratios for the instances with n ∈
{200, 300} ranged between 1/3 to 5/6. Results in Table 5.4 clearly demonstrate that

DO provides better upper bounds for the knapsack problem than the other algorithms,

especially for large instances.
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Table 5.4: Gap analysis for the adaptive knapsack problem

Relative gap (%) Ratio of better UB by DO

n Alg K=2 K=3 K=4 K=5 K=6 K=2 K=3 K=4 K=5 K=6

100
IA 4.32 6.11 12.79 14.36 19.89 8/10 9/10 10/10 10/10 10/10
SG - - - - - - - - - -

150
IA 2.12 4.33 5.83 7.46 9.37 9/10 10/10 10/10 10/10 10/10
SG - - - - - - - - - -

200
IA 8.66 9.22 7.03 8.82 8.58 10/10 10/10 10/10 10/10 10/10
SG 2.44 -1.28 -1.39 3.58 1.09 2/3 1/3 3/3 4/4 2/4

300
IA 10.57 16.31 17.36 18.22 21.77 10/10 10/10 10/10 10/10 10/10
SG 3.21 2.56 3.06 3.24 6.19 3/4 4/5 4/4 4/5 5/6

5.5.3 Generic K-adaptability Problem

So far, we presented the results obtained for instances in the form of MMMRCO

problems, which do not have actual first-stage decision variables. In this section, we

test on binary K-adaptability problems with actual first-stage decisions in the form

of model (5.22) to implement the logic-based Benders decomposition (LBD) presented

in Algorithm 1.

min
x,{yk}k∈[K]

max
ξ∈Ξ

min
k∈[K]

∑
i

aixi +
∑
j

cjy
k
j (5.22a)

s.t.
∑
i

xi = b, (5.22b)

−
∑
i

dixi +
∑
j

fjyj ≥ l, (5.22c)

where x ∈ {0, 1}n, y ∈ {0, 1}m are the first- and second-stage decision variables, re-

spectively. Moreover, we set cj = c̄j+ξj ĉj, where c̄j is the nominal value that is drawn

at random from the uniform distribution U(8, 12) and ĉj is the maximal deviation,

set equal to 25% of the nominal value. Moreover, ai, di fj are generated randomly

based on the uniform distributions U(8, 12), U(50, 100) and U(80, 90), respectively.
Finally, we set b=10, and l=0. The uncertain parameter ξj is contained in the set

Ξ =
{
ξ ∈ [0, 1] |

∑
j ξj ≤ Γ

}
. Ten random instances of each size and uncertainty

budget combination were solved. We compared our approach against the other al-

gorithms in the literature that can handle first-stage decision variables, namely MILP
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Table 5.5: Number of solved instances and average CPU time for generic K-
adaptability instances

Number of solved instances Average CPU time
(n,m) Alg K=2K=3K=4K=5 K=6 K=2 K=3 K=4 K=5 K=6

(20, 20)
LBD 10 10 10 10 10 12.17 16.51 22.11 28.48 37.52
MILP 10 10 10 10 10 0.82 1.47 0.50 21.93 70.54
BB 10 10 10 10 10 12.47 17.75 24.29 26.62 35.78

(30, 30)
LBD 10 10 10 10 10 31.84 41.69 42.13 57.68 58.45
MILP 10 10 10 10 10 1.10 2.78 128.62 325.99 402.52
BB 10 10 10 10 10 32.62 44.82 96.30 153.90 355.75

(40, 40)
LBD 10 10 10 10 10 50.67 62.05 73.02 189.71 294.91
MILP 10 8 8 0 0 1.50 112.55 196.46 TL TL
BB 10 10 8 8 7 81.91 660.71 800.25 1,077.28 TL

(50, 50)
LBD 10 8 8 7 7 74.63 86.93 186.54 308.29 530.35
MILP 6 0 0 0 0 3.87 TL TL TL TL
BB 10 6 5 2 1 176.47 930.46 1,205.01 TL TL

and BB.

The percentages of solved instances by each algorithm are presented in Table 5.5.

For small instances (i.e., n = m =20, 30), the three algorithms were able to solve all

instances. However, as the problem sizes were increased, the performance advantage

of our algorithm became clear, especially for large values of K. For example, MILP

could solve 60% of the instances of size n = m =50 only with K =2, but none when

K >2. In contrast, LBD solved the vast majority of instances of the same size to

proven optimality within the cut-off time even with K = 6. Table 5.5 also shows

the CPU times of all algorithms for the instances that were solved within the cutoff

time. Again, it is clear that while MILP could solve small instances with small K

values efficiently, LBD significantly outperformed it in large instances. Furthermore,

the proposed algorithm scales well in K, thus can result in high adaptability in the

face of parameter uncertainty. Similar insights could be drawn when comparing LBD

to BB.

5.5.4 Asset Liability Management Problem

Some modifications to the proposed algorithm were presented in Section 5.4 to han-

dle extensions of the basic problem. The most complicated among these extensions
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is the K-adaptability problem with objective uncertainty in both stages alongside

uncertainty in the second-stage constraints, as outlined in Sections 5.4.1 and 5.4.3.

To demonstrate the validity of the modifications proposed for this extension, we solve

an adaptive asset-liability management (ALM) problem.

Bogentoft et al. (2001) defined the ALM problem as a multi-period asset alloca-

tion problem to balance assets and liabilities. The goal is to find the optimal asset

allocation that maximizes profit in each period and covers liabilities. The investment

horizon has length T , which is divided into a set of decision moments t = 0, ..., T .

Let us consider n asset classes to select for investment. Then, xt ∈ {0, 1}n is a binary

decision vector in the tth period, where xn,t = 1 if the nth asset class in period t is

selected for investment, otherwise xn,t = 0. The value of assets owned by the fund

at time t is denoted by at. Payments made by the fund to retirees at time t are

liabilities and are denoted by dt. The present value of these liabilities at time t is

dt. The minimum threshold of the funding ratio, which is the ratio of asset values

to the present value of liabilities in each period, is given by ψ. Finally, rt ∈ Rn and

ct ∈ Rn are vector of asset values and investment costs in the tth period, respectively.

the ALM problem with binary decision variables is formulated as follows:

max
{xt∈Xt,at}t=0,...,T

AT (5.23a)

s.t. at = at−1 + r⊺t xt−1 − c⊺t xt − dt ∀t = 1, . . . , T (5.23b)

a0 = b− c⊺0x0 − d0 (5.23c)

at ≥ ψdt ∀t = 0, . . . , T (5.23d)

xt ∈ Xt ∀t = 0, . . . , T. (5.23e)

The objective function (5.23a) tries to maximize the asset value in the final pe-

riod. Constraint (5.23b), referred to as the balance constraint, ensures that the value

of assets owned by the fund at period t is equal to the assets carried from period

t − 1 minus liabilities and costs at this period. Constraint (5.23c) is the balance

constraint of the current period, which is the current budget for investment b minus

costs of investment in the current period and liabilities. Constraint (5.23d), referred

to as the funding ratio, guarantees that the ratio of assets owned by the fund to the
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present value of liabilities at period t is greater than a minimum threshold ψ. Finally,

constraint (5.23e) encompasses the regulatory constraints governing the fund.

Note that the asset values can be stated as follows:

at = b+
t∑

τ=1

r⊺τxτ−1 −
t∑

τ=0

(c⊺τxτ + dτ ) ∀t = 1, . . . , T.

Hence, by substituting in (5.23), the adaptive ALM problem becomes

max
xt∈Xt

b+
T∑
t=1

r⊺t xt−1 −
T∑
t=0

(c⊺t xt + dt) (5.24a)

s.t. b+
t∑

τ=1

r⊺τxτ−1 −
t∑

τ=0

(c⊺τxτ + dτ ) ≥ ψDt ∀t = 0, . . . , T (5.24b)

xt ∈ Xt ∀t = 0, . . . , T.. (5.24c)

We consider an adaptive ALM problem with only two periods in this round of

experiments, i.e., t ∈ {0, 1}, which leads to the following formulation:

max
x0∈X0,x1∈X1

b+ r⊺1x0 − c⊺0x0 − c1x1 − d0 − d1 (5.25a)

s.t. b+ r⊺1x0 − c⊺0x0 − c1x1 − d0 − d2 ≥ ψD1, (5.25b)

where x0 and x1 are first and second-stage decision variables, respectively. The ob-

jective function (5.25a) includes both first and second-stage decision variables with

uncertain coefficients, c1, and r1. We assume that c0 is deterministic while r1 is con-

tained in the box uncertainty set {r1 = r̄1 + ξr̂1, ξ ∈ [−1, 1]n}, where r̄1 is the nominal

asset value and r̂1 is the maximum deviation of asset value. Moreover c1 = c̄1 + ξĉ1,

where c̄1 is the nominal value of costs, and ĉ1 is the deviation of costs.

For the regulatory constraints defining Xt, we use the cardinality constraint e⊺t xt =

⌈n/2⌉ ∀t, where et is a vector of ones of size n. We considered n ∈ {100, 150, 200, 250}
in our experiment. Nominal asset values and nominal cost are generated randomly

based on the uniform distributions U(1000, 2000) and U(20, 50), respectively. More-

over, we set dt =
∑n
i=1 rit
8
∀t, b =

∑n
i=1 ri1
2

and ψ = 1.05, and use an interest rate of 5%

per anuum to calculate the present value of liabilities.
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Table 5.6: Number of solved instances and average CPU time for adaptive ALM
problem

Number of solved instances Average CPU time
n K=2K=3K=4K=5 K=6 K=2 K=3 K=4 K=5 K=6

100 10 10 10 10 10 34.03 42.89 55.89 69.12 83.35

150 10 10 10 10 10 62.14 88.25 114.43 140.12 172.66

200 10 10 10 10 9 114.91 165.42 224.57 279.93 327.66

250 10 10 10 9 9 156.31 206.19 566.16 699.83 917.70

Table 5.6 shows the number of ALM instances solved to proven optimality by our

algorithm within the cut-off time. The results demonstrate that LBD was able to solve

the vast majority of instances (between 90-100%) for different combinations of n and

K. We also provide the average CPU time for the solved instances, which clearly

depends on n and K as well. For instances with n =100, the average CPU time was

34.03-83.35 seconds, whereas it was between 4.5 and 11 times larger for instances

with n =250, amounting to 156.31-917.70 seconds. To our best knowledge, no other

algorithm can handle the K-adaptability problem with uncertainty in the recourse

constraints and the first and second-stage objective functions. Consequently, it was

not possible to compare LBD to other algorithms for this problem.

5.6 Conclusion

A new approach for solving K-adaptability problems is presented in this chapter.

A logic-based Benders decomposition is used first to isolate the first-stage variables

in a master problem such that the remaining Benders subproblem, taking the form

an MMMRCO problem, is solved to iteratively generate Benders optimality cuts. A

novel double-oracle algorithm that iterates between generating new adverse scenarios

and assigning them to K-subsets of recourses, and generating new recourse solutions

is devised. Unlike other algorithms proposed in the literature, the recourse solutions

are generated by solving MILP problems, and thus can be performed effectively. We

proved the finite convergence of the proposed approach. Furthermore, we showed how

it can be extended to other important variants of the MMMRCO and K-adaptability

problems, some of which are unsolvable by existing algorithms. These extensions
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include problems with second-stage constraint uncertainty, bounded first-stage integer

decision variables, first-stage objective uncertainty (independent or dependent from

the second-stage uncertainty), and general convex objective and constraint functions.

Numerical experiments on several standard benchmark test problems from the

literature clearly demonstrated the performance advantage of the proposed approach

vis-à-vis state-of-the-art solution algorithms. We were able to solve large instances of

the shortest path problem with 50 nodes and K =6, not solvable by other algorithms,

in an average of 22 seconds. Likewise, the proposed approach was capable of solving

large instances of the adaptive knapsack problem with n =300 and K of up to 6,

outperforming all other algorithms. Even for the instances that could not be solved

within the cut-off time, our algorithm consistently provided stronger bounds than the

benchmark algorithms. We also solved large K-adaptability problems with real first-

stage variables in shorter times compared to the existing MILP and BB approaches.

Finally, to demonstrate the validity of the proposed extensions, we solved a new

adaptive ALM problem with constraint uncertainty in the recourse problem and with

first and second-stage objective uncertainty and showed that it can handle large

instances of up to 250 assets in less than 16 minutes on average.

Our forthcoming research endeavors encompass a comprehensive exploration of

the potential extensions and enhancements to the proposed algorithm. Primarily,

we intend to delve into the extension of the algorithm to encompass general RO

problems involving combinatorial recourse, as well as K-adaptability problems with

continuous first-stage variables. Recognizing that the crux of our approach’s efficacy

lies in resolving the p-center assignment problem, especially for vast sets of scenarios

and recourse solutions, we are dedicated to investigating strategies that can effectively

address this challenge. This exploration holds the promise of substantially bolstering

the overall efficiency of our proposed algorithm.

Furthermore, a notable avenue for improvement pertains to the combinatorial

Benders decomposition technique. Acknowledging its susceptibility to sluggish con-

vergence due to the generation of weak cuts, we anticipate that the incorporation

of enhancement techniques specific to Benders decomposition could notably enhance

the performance of our proposed approach.
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Concurrently, we advocate for the utilization of streamlined methodologies in tack-

ling the p-center problem, with the aim of optimizing the efficiency of our algorithm.

Additionally, our future endeavors will be directed toward refining the lower bound

employed in the optimality cut, as a more robust lower bound has the potential to

expedite convergence towards the optimal solution within our proposed algorithm.

5.7 Appendix

Proposition 15. The objective function value, w, of the p-center problem (5.7) can

be achieved by solving:

w∗ = max
h∈[H]

min
j∈[J ′]

ξ⊺
hQyj.

Proof. There are |H| constraints in the form of (5.7b) while constraints (5.7c) force

the problem to select one pair of scenario and solution in each constraint (5.7b).

The objective value should be minimum of w that is greater than selected pairs

of scenarios and solutions in each h constraint (5.7b). To find the optimal value

of w, minimum of ξ⊺
hQyj for each h ∈ [H ′] is selected, then optimal w∗ will be

maximum of selected pairs of scenarios and solutions in each constraint (5.7b). If

w∗ > maxh∈[H] minj∈[J ′] ξ
⊺
hQyj, then it cannot be optimal because there is a feasible

solution with lower objective value which is maxh∈[H] minj∈[J ′] ξ
⊺
hQyj. On the other

hand, if w∗ < maxh∈[H] minj∈[J ′] ξ
⊺
hQyj, then some of constraints (5.7b) whose pair

of solutions and scenarios are greater than w will be violated. Consequently, UB =

w∗ = maxh∈[H] minj∈[J ′] ξ
⊺
hQyj.

Proposition 16. The objective function value, γ, of the problem (5.9) can be achieved

by solving:

γ∗ = max
h∈[H′]

min
yk∈Y

ξ⊺
hQyk.

Proof. Let yk
∗
be the optimal solution of problem (5.9). There are |K| × |H ′| con-

straints of (5.9b). For each h ∈ [H ′] there are |K| constraints in form of (5.9b). Con-

straints (5.9c) force the problem to select one pair of scenarios and solutions for each

h ∈ [H ′]. The objective function is minimization, consequently, minimum of (yk
∗
, ξ⊺

h)

for each h ∈ [H ′] are selected. Since γ should be greater than ξ⊺
hQyk

∗
, then maximum

of selected pairs will be optimal objective value γ∗. Consequently, the optimal value of

objective function, γ∗ can be achieved by solving γ∗ = maxh∈[H′] minyk∈Y ξ⊺
hQyk.
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Proposition 17. Problem (5.3) and (5.6) are equivalent.

Proof. First, given that θ serves as an epigraph variable, it is clear that problem (5.6)

is equivalent to:

min
x∈X∩V

c⊺x + max
r∈R

ρ(x, r),

where ρ(x, r) := (θr − Lr)
(∑

i∈Sr xi −
∑

i/∈Sr xi
)
− (θr − Lr) (|Sr| − 1) + L. We are

therefore left with showing that for all x̄ ∈ X ∩V we have that ν(x) = maxr∈R ρ(x, r).

To do so, we let r̄ ∈ R be the index such that xr̄ = x̄ and consider two cases for the

values returned by ρ(x, r). First, in the case that r = r̄:

ρ(x̄, r̄) = (θr̄ − Lr)

(∑
i∈Sr̄

x̄i −
∑
i/∈Sr̄

x̄i

)
− (θr̄ − Lr) (|Sr̄| − 1) + Lr

= (θr̄ − Lr) (|Sr̄| − |Sr̄|+ 1) + Lr = θr̄ = ν(xr̄) = ν(x̄).

Next, if r ̸= r̄, then

ρ(x̄, r) = (θr − Lr)

(∑
i∈Sr

x̄i −
∑
i/∈Sr

x̄i

)
− (θr − Lr) (|Sr| − 1) + Lr

= θr − (θr − Lr)

(
|Sr| −

∑
i∈Sr

x̄i +
∑
i/∈Sr

x̄i

)

= θr − (θr − Lr)

(∑
i∈Sr

(1− x̄i)−
∑
i/∈Sr

x̄i

)
≤ θr − (θr − Lr) · 1 = Lr ≤ ν(x̄),

where in the first inequality we exploited the fact that when x̄ ̸= xr, it must be that∑
i∈Sr(1 − x̄i) −

∑
i/∈Sr x̄i ≥ 1, whereas we also have that 0 ≤ ν(xr) − Lr = θr − Lr.

We can thus conclude that :

max
r∈R

ρ(x̄, r) ≤ ν(x̄) = ρ(x̄, r̄) ≤ max
r∈R

ρ(x̄, r),

so ν(x̄) = maxr∈R ρ(x̄, r).
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Conclusions

6.1 Summary of Research Themes

This dissertation explored four themes dealing with the optimization of ALM prob-

lems under uncertainty. The first theme provided a critical review of robust PSPs,

identifying challenges and potential areas for future research. The second theme

presented theoretical frameworks for developing worst-case CVaR for general loss

functions that can be used in ALM problems where the loss function includes the

present value of future liabilities and asset returns. Moreover, a moment-based am-

biguity set is developed for the ALM problem to propose the DRO formulation of

ALM with WCVaR. The third theme addressed DRO formulations of the ALM prob-

lem based on the mixture distribution function, box ambiguity sets of the discrete

probability distribution, and the Wasserstein ambiguity set. The fourth theme in-

troduced a double-oracle, logic-based Benders decomposition approach to solve the

K-adaptability problem that can be used in ALM problems with discrete/binary de-

cision variables. The conclusions and future research extensions for the four themes

are discussed below.

While there has been a significant increase in research in the field of PSP under

uncertainty in the last 20 years, driven by advances in RO, few recent reviews of the

robust PSP literature exist to cover the mathematical and theoretical aspects of this

problem. In Chapter 2 dealing with Theme 1, a state-of-the-art literature review of

robust PSPs was conducted to provide a comprehensive understanding of the field

and its advancements. The study examined recent research articles on robust PSP

optimization using a systematic classification and analysis framework to classify and

analyze the models. The review also identified the limitations and potential areas for

future research in the field.

In Chapter 2, we identified some research gaps related to robust PSPs. Moreover,

we highlighted that existing methods for addressing ALM problems are insufficient

191
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when it comes to incorporating uncertain parameters and discrete decision variables.

Furthermore, the current theoretical frameworks do not adequately accommodate

the loss function in the ALM problem, hindering the proposal of worst-case CVaR.

Additionally, the literature lacks studies on DRO formulations of ALM problems due

to the absence of applicable theoretical frameworks. These ALM research gaps are

only some of the gaps identified through the review.

Theme 2 presents a theoretical framework for the development of a WCVaR for-

mulation in the context of ALM problems. The theoretical foundation put forth in

this study is applicable to a wide range of problems featuring general loss functions.

By leveraging this theoretical framework, we introduced a data-driven DRO formu-

lation of the ALM problem, where the loss function is a linear combination of asset

returns and the present value of future liabilities. The DRO formulation of the ALM

problem was proposed in two distinct cases. Firstly, we considered situations where

the moments of the distribution function are fully known and fixed. Secondly, we ex-

plored the case where the moments of the distribution function of random variables

are uncertain and belong to an uncertainty set. This formulation accounted for the

inherent uncertainty associated with the underlying distributions and offers a more

robust approach than SP of the ALM problem.

To evaluate the performance of the optimal investment strategies derived from

solving the DRO reformulations in Chapter 3, we used real data from the CPP as a

case study. The analysis encompasses both in-sample and out-of-sample performance

assessments of the models. The in-sample performance evaluation compared the DRO

formulation with the fixed moments, the DRO formulation with uncertain moments,

and the traditional SP ALM model in terms of fund returns and funding ratios across

different periods. The results demonstrated that the SP formulation of the ALM ex-

hibits superior in-sample performance compared to the DRO formulation with fixed

and uncertain moments with respect to fund returns and funding ratios within each

period. However, the out-of-sample performance analysis revealed a different picture.

The investment strategy derived from the DRO formulation with uncertain moments

consistently outperformed both the DRO formulation with fixed moments and the

SP model. It exhibited a higher overall average fund return and achieves a better

funding ratio over time. Based on these findings, we can confidently conclude that
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the investment strategy derived from the DRO formulation of the ALM problem with

uncertain moments offers a superior approach to managing the asset and liability bal-

ance of pension funds. The robustness of the DRO approach, combined with its ability

to account for uncertain moments, enables more effective decision-making in ALM

problems and contributes to the stability and success of pension fund management.

In theme 3, we tackled the inherent uncertainty in ALM problems by exploring

three different DRO approaches: mixture ambiguity sets with discrete scenarios, box

ambiguity sets for a discrete distribution function and Wasserstein ambiguity set. To

validate our approach, we utilized data from the CPP to conduct a series of numeri-

cal experiments and tests, simulating various market scenarios and their impacts on

the plan. Applying Monte Carlo simulation based on geometric Brownian motion,

we generated scenarios of asset returns. The analysis revealed four distinct market

regimes observed from November 2012 to November 2022.

We presented an in-sample performance analysis of four ALM models: MD, BD, WM,

and SP, covering a 12-period timeframe. The funding ratio and fund return serve as

crucial metrics for evaluating the solvency and investment performance of the fund.

Overall, the results indicated that all four models perform well in terms of both

funding ratio and fund return, with the SP model exhibiting the highest performance

in most periods. However, variations in performance across models and periods exist,

with the BD model adopting a more conservative approach. Furthermore, the WM and

BD models demonstrated more diversified portfolios, posing less risk compared to the

SP and MD models. This is attributed to the WM and BD models considering a broader

range of possible probability distributions in their ambiguity sets, thus providing a

more robust and stable asset allocation strategy over time. Conversely, the MD model

considers a limited set of scenarios, while the SP model assumes complete knowledge

of the discrete distribution function of uncertain parameters, asset returns, and the

present value of future liabilities. Consequently, the results suggest that the WM and

BD models are better suited for investors seeking less risky and diversified portfolios,

whereas the SP and MD models may appeal to investors targeting higher returns at

the expense of increased risk. In addition to the in-sample analysis, we conducted an

out-of-sample evaluation of the four models: MD, BD, WM, and SP. The results indicated

that the BD model achieves the highest average funding ratio, followed by WM, MD, and
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SP. Moreover, the WM model exhibited the highest average fund return, followed by

BD, MD, and SP. Consequently, these models offered valuable insights for investors

and fund managers seeking to make optimal asset allocation decisions and manage

portfolios efficiently.

Under Theme 4 in Chapter 5, we presented a new method for tacklingK-adaptability

problems. Departing from conventional approaches, our technique utilized a logic-

based Benders decomposition to isolate the first-stage variables in a master problem.

By doing so, we effectively transformed the remaining Benders subproblem, which

takes the form of an MMMRCO problem. Iteratively solving this subproblem en-

abled the generation of Benders optimality cuts. To further enhance the efficiency

and effectiveness of our approach, we devised a novel double-oracle algorithm. This

algorithm engaged in a cyclical process that involves generating new adverse scenar-

ios and assigning them to K-subsets of resources. It also focused on generating new

recourse solutions. Notably, unlike other algorithms proposed in previous studies,

our approach utilized MILP problems to generate recourse solutions. This choice

facilitates a more streamlined and effective resolution process. To establish the va-

lidity and potential of our method, we have rigorously proven the finite convergence

of the proposed approach. Additionally, we have demonstrated its versatility by ex-

tending it to address other significant variants of the MMMRCO and K-adaptability

problems. Notably, our approach successfully tackled problems with second-stage con-

straint uncertainty, bounded first-stage integer decision variables, first-stage objective

uncertainty (independent or dependent on the second-stage uncertainty), as well as

problems with general convex objective and constraint functions. These extensions

address limitations that existing algorithms have been unable to overcome.

To substantiate the practical advantages of our approach, we conducted com-

prehensive numerical experiments using various standard benchmark test problems

drawn from the literature. The results unequivocally showcased the superior perfor-

mance of our proposed technique when compared to state-of-the-art solution algo-

rithms. We sought to validate the effectiveness of our proposed extensions by solving

a novel adaptive ALM problem. This particular problem entailed constraint uncer-

tainty in the recourse problem, as well as first and second-stage objective uncertainty.

Our approach demonstrated its capabilities by handling large instances, involving up
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to 250 assets, in under 16 minutes on average. Moreover, when solving large instances

of the shortest path problem with 50 nodes and K = 6, our approach outperformed

alternative algorithms by achieving an average solution time of just 22 seconds. Sim-

ilarly, when tackling large instances of the adaptive knapsack problem with n = 300

and K ranging up to 6, our technique consistently outperformed other algorithms.

Even in cases where our algorithm did not meet the cutoff time, it consistently pro-

vided stronger bounds than the benchmark algorithms. Moreover, when confronted

with large-scale K-adaptability problems involving real first-stage variables, our ap-

proach outperformed the existing MILP and BB approaches in terms of solution times.

In summary, the last theme introduces a groundbreaking approach to solving K-

adaptability problems. Through novel methodologies and rigorous experimentation,

we have demonstrated its superiority over existing algorithms and highlighted its

potential for addressing various problem variants. By offering more efficient and ef-

fective solutions, our approach paves the way for advancements in decision-making

under uncertainty and resource allocation optimization.

6.2 Managerial Insights

The realm of ALM within pension funds and investment portfolios is complex, espe-

cially in the presence of uncertainty. This study delves into a comprehensive analysis

of ALM problems, offering valuable insights that can significantly impact decision-

making processes for fund managers and investors.

6.2.1 Key Takeaways

The research underscores the importance of a data-driven approach to ALM. By

incorporating real-world data from the CPP, the study demonstrates the practical

application of theoretical frameworks. This approach aligns investment strategies

with actual market dynamics, improving the accuracy of fund performance evaluation.

The introduction of the DRO formulation represents a significant advancement

in ALM. This approach acknowledges the uncertainty inherent in distributions, pro-

viding a robust and effective alternative to traditional SP. The ability to adapt to

uncertain moments contributes to the resilience of investment strategies, particularly

during turbulent market periods.



196

The comparison between different DRO formulations (MD, BD, WM) and SP

highlights the value of diversification in managing risk. The models with broader

ambiguity sets exhibit more stable and less risky asset allocation strategies over time.

This insight can guide investors seeking a balance between risk and return.

The study’s out-of-sample analysis reveals the long-term efficacy of the DRO for-

mulation with uncertain moments. While traditional SP may excel in in-sample

performance, the DRO approach consistently outperforms in terms of average fund

return and funding ratio over time. This finding highlights the importance of consid-

ering the broader market context for sustainable performance.

The study’s approach extends beyond ALM problems, showcasing the efficacy

of logic-based Benders decomposition and the double-oracle algorithm in addressing

K-adaptability problems. The technique’s adaptability to diverse scenarios and its

ability to provide efficient solutions make it a promising tool for complex decision-

making under uncertainty.

6.2.2 Managerial Implications

• Enhanced Decision-Making: Fund managers can leverage the DRO formulation

with uncertain moments to develop more robust investment strategies. This

approach facilitates effective ALM by accounting for market volatility and un-

certainty, ultimately leading to more stable and sustainable fund performance.

• Risk-Adjusted Strategies: Investors seeking to manage risk while aiming for

attractive returns should consider models with broader ambiguity sets, such

as BD and WM. These models provide diversified portfolios that can weather

market fluctuations more effectively.

• Long-Term Perspective: While SP may demonstrate superior in-sample perfor-

mance, the study emphasizes the need for a long-term perspective. Investments

informed by the DRO formulation with uncertain moments exhibit resilience

over time, making them valuable choices for investors focused on sustained

growth.
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• Adaptability to Complex Scenarios: The introduced methodology offers a ver-

satile solution for various decision-making problems beyond ALM. Decision-

makers facing intricate resource allocation challenges and uncertainty can ben-

efit from this approach’s efficiency and effectiveness.

6.3 Future Research Direction

For future research endeavors, we suggest exploring potential extensions of the double-

oracle, logic-based Benders decomposition algorithm to solve theK-adaptability prob-

lem to encompass general RO problems featuring combinatorial recourse, as well as

K-adaptability problems incorporating continuous first-stage variables. It is worth

noting that the proposed approach encounters a bottleneck in solving the p-center as-

signment problem, particularly when dealing with large sets of scenarios and recourse

solutions. Thus, it becomes crucial to investigate methods that effectively address

this problem, ultimately enhancing the overall efficiency of the proposed algorithm.

Another avenue for improvement lies in the combinatorial Benders decomposition,

which is known to exhibit slow convergence due to the generation of weak cuts. In-

troducing enhancement techniques to the Benders decomposition methodology holds

significant potential in substantially improving the performance of the proposed ap-

proach. These research directions offer promising avenues for future investigations

and hold the potential to advance the capabilities and efficiency of our proposed

algorithm.

Another important avenue for future research in this context is to explore the

application of sequential robust optimization techniques to address the multi-stage

nature of the ALM problem. The ALM problem typically involves decision-making

over multiple time periods, where decisions made in earlier stages can have a signifi-

cant impact on future stages. Sequential robust optimization provides a framework for

making decisions sequentially while considering uncertainty in future stages (Havinga

et al., 2017; Houska & Diehl, 2013). By incorporating this approach into the ALM

problem, researchers can develop more dynamic and adaptive strategies that account

for evolving market conditions and changing investment opportunities over time.

Another potential direction for research is to investigate the integration of robust

optimization within a rolling horizon framework. In this approach, the ALM problem
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is solved iteratively over a series of time periods, with decisions being made for each

period based on the available information at that time. As new information becomes

available, the optimization problem is re-evaluated and updated decisions are made,

taking into account the evolving uncertainty based on robust approximate dynamic

programming (Jiang & Jiang, 2013; Mei et al., 2022; Wei et al., 2021).

Moreover, while the performance of the proposed models has been analyzed using

real-world data from the CPP, conducting further testing on a diverse set of pension

funds can offer a better understanding of the generalizability and robustness of the

proposed models. Lastly, the proposed models can be extended to incorporate other

important considerations in pension fund management, including taxes, transaction

costs, and regulatory constraints. These extensions can contribute to a more compre-

hensive framework for pension fund management that can effectively handle a wider

range of real-world constraints and provide more realistic and actionable strategies.

By addressing these avenues for future research, scholars can deepen their un-

derstanding of ALM under uncertainty and contribute to the development of more

sophisticated and practical models for managing pension funds.
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