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Abstract

Magnetic resonance imaging (MRI) performed with main magnetic field strengths be-
low the conventional 1.5T or 3T has typically been considered inferior, due, primarily,
to the proportional decrease in raw signal available. However, recent advancements
in gradient systems and radiofrequency receive chains have opened the door to new
image acquisition strategies that benefit from use at low field. Hence, this thesis
investigates balanced steady-state free precession (bSSFP) protocols designed for a
0.5T system with fast, strong gradients. The protocols are used to image regions that
demonstrate susceptibility-induced off-resonance effects, which require phase-cycling
techniques to mitigate banding artifacts at conventional field strengths.

The work presented herein consists of three studies. The first, titled “Artifact-
resistant balanced steady-state free precession imaging of the temporal bone and paranasal
sinuses without phase-cycling at 0.5T” illustrates the high artifact tolerance and
signal-to-noise ratio attained, at clinical resolutions, by the 0.5T bSSFP protocols.
While these metrics are informative, the true value of an image is based on a radiol-
ogist’s ability to use it to answer a clinical question. To that end, the second study,
titled “Low-field vs. conventional field balanced steady-state free precession imaging
of the temporal bone: radiologist rating of anatomical visualization” examines radi-
ologists’ ability to visualize structures of the temporal bone when viewing images
acquired with bSSFP at 0.5T or phase-cycled bSSFP at 3T. Analyses revealed no
significant difference, overall, in radiologists’ ratings, indicating the images were of
similar quality. Finally, the third study, titled “Super resolution allows for the bene-
fits of low resolution balanced steady-state free precession imaging without degrading
image quality”, applies a machine learning pipeline to low resolution images resulting
from a faster 0.5T bSSFP temporal bone acquisition, bringing them back to high
resolution. Evaluation of image ratings shows that radiologists’ ability to visualize
temporal bone structures is not significantly reduced, thereby permitting a reduction
in scan time.

Together, these works illustrate the new opportunities afforded by low-field bSSFP
imaging with high-performance gradient systems. These advantages, combined with
super resolution techniques, have the potential to make MRI of challenging regions
fast and artifact-free, thereby improving patient experience without sacrificing image
utility.
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Chapter 1

Introduction

1.1 Preamble

Magnetic resonance imaging (MRI) is a non-invasive, versatile imaging modality with

unsurpassed soft tissue contrast, and it is an integral tool in contemporary clinical

medicine.1

Advancements in MR system components including magnets, gradient systems,

and radiofrequency (RF) receive chain technology have contributed to renewed inter-

est in MR imaging at field strengths below the conventional 1.5T, opening the door

to new acquisition strategies. Balanced steady-state free precession (bSSFP) is one

such acquisition strategy that is now seeing increased application on low-field sys-

tems, as it demonstrates high signal-to-noise ratio (SNR) efficiency - important when

dealing with decreased polarization of spins at low fields - and enables high resolution

imaging in clinically acceptable scan times. The increase in field homogeneity, and

decrease in field distortions caused by magnetic susceptibility differences at low field,

can minimize artifacts due to off-resonance effects, common to bSSFP acquisitions.

These advantages suggest that effective low-field bSSFP imaging could be performed

for challenging regions with multiple air/tissue and air/bone interfaces such as the

temporal bone and paranasal sinuses.

In addition to hardware developments, the application of machine learning tech-

niques to MR image reconstruction has further modified the landscape of what was

once possible with low-field MR acquisitions. Super resolution algorithms, for ex-

ample, are capable of generating high resolution images from faster, low resolution

scans, permitting a wider range of acquisition parameters and lessening the gaps in

the well-known trade-off between SNR, resolution, and acquisition time in MRI.

The overall goal of the research presented in this thesis is to investigate the po-

tential afforded by low-field bSSFP imaging and super resolution techniques in the

context of temporal bone and paranasal sinus acquisitions. To that end, this work

1
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begins by examining the artifact tolerance of bSSFP protocols designed to image

the temporal bone and paranasal sinuses at 0.5T. In the second study, the results

of the temporal bone image evaluation are put into a clinical context by employing

board-certified neuroradiologists to rate their ability to visualize clinically relevant

structures. Finally, the ability to reap the benefits of low resolution bSSFP acquisi-

tions is explored by application of a super resolution pipeline.

1.2 History

1.2.1 Field Strength

MRI relies on the polarization of hydrogen nuclei (or “spins”) in the body, accom-

plished by placing the subject in a strong, static magnetic field of strength B0 (see

Chapter 2 for a comprehensive description of signal generation and image reconstruc-

tion). The earliest clinically useful MR images of humans were acquired in 1980 using

a resistive magnet that created a static magnetic field with B0 = 0.014 T.2 The in-

troduction of superconducting magnets to MR imaging in the early 1980s made it

possible to generate much stronger fields, and the first commercial units were pro-

duced with a field strength of 0.35 T.2,3 The field strength of choice rapidly increased

to 1 T in the mid 1980s and by the 1990s, superconducting systems with B0 = 1.5T

were the clinical standard. 3T systems were available by the early 2000s, but were

slow to be used clinically, with motion artifacts being difficult to remedy at the high

resolutions achieved. Over time, however, 3T became seen as superior to 1.5T for

particular applications. By 2020, systems with field strengths equal or greater than

1.5 T represented approximately 85% of market size in North America and Europe.4

Today, systems operating at 7 T have also seen clinical use for specific applications.5

This march towards ever higher field strengths has been motivated, primarily, by

the proportional increase in the number of spins that become polarized, which are

required to generate an MR signal. The raw signal obtained can then be used to

generate images with higher and higher SNR values. Historically, attaining the high-

est number of polarized spins possible was considered crucial, as conventional MRI

required a trade-off between SNR, spatial resolution, and scan time, as demonstrated

in Figure 1.1. For example, a common approach to acquiring an image with sufficient
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resolution and SNR is to average the data acquired over multiple measurements (i.e.

number of excitations, NEX), increasing imaging time by an equivalent factor.

Figure 1.1: The trade-off between SNR, spatial resolution, and scan time in MRI.

However, a comparison of images acquired on early and modern 0.5 T MR systems

(Figure 1.2) clearly demonstrates that field strength - and therefore the number of

polarized spins available for imaging - is not the limiting factor in achieving diagnostic

quality images.2

Figure 1.2: MRI of the brain acquired at B0 = 0.5 T in (a) 1984 and (b) 2020. Despite
identical field strengths, the image in (B) was acquired in under half the time, and
demonstrates improved SNR, contrast, and resolution. Figure is reproduced from
Runge et al. 2020.2
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1.2.2 Gradients and RF Receive Coils

Ancillary system components, such as gradient systems, and RF receive chain tech-

nology have also seen significant improvements since the first clinical MR systems.

Importantly, data acquisition in MRI does not take place in image space. Instead,

information is collected in the spatial frequency domain and placed into a data array

known as k-space (see Section 2.1.2), such that an image and its k-space data are

related by Fourier transformation. Linearly varying weak magnetic fields, or gradient

fields, are utilized in addition to the static field to systematically encode the spa-

tial frequency information required across the volume to be imaged. The maximum

gradient strength used, as well as the time required to reach it (i.e. the rise time),

dictate the maximum attainable resolution for a given scan time, or alternatively,

the scan time for a given resolution. Since clinical MRI began in the 1980s, gradient

strengths have increased from 1 mT/m to 300 mT/m, with possible slew rates (the

ratio of maximum gradient strength to rise time) increasing from 3 T/m/s to 400

T/m/s.6 Importantly, the physiological limit of peripheral nerve stimulation (PNS)

prevents the use of high slew rates on whole body systems. However, some modern

head-only systems use asymmetric gradient designs,7,8 which allow the patient’s head

to be at the isocenter of the gradient field while minimizing the field experienced by

the rest of the body. This design reduces PNS concerns significantly and permits

the use of high slew rates, though acquisition strategies must still consider patient

heating restrictions.

Radio frequency coils are a vital part of the MR system. Transmit coils emit

magnetic flux at radio frequencies, causing polarized spins to tip away from the z-

axis and into the transverse plane, generating a measurable signal. This signal is then

captured by the RF receive coils.9 The receive coil on the first whole-body MR system

consisted of wires wound around the bore of the magnet,10 detecting the signal from

the region of interest as well as noise emanating from anywhere within its diameter.

Small surface coils, designed to fit closely to the anatomy being examined, were

developed in the 1980s and significantly reduced the measurement of unwanted noise

from outside the region of interest,11 improving the SNR of the resulting images.

Switchable arrays of coils, first used in the early 1990s, permitted high-sensitivity

imaging of large regions (e.g. the spine) without the need to adjust the patient.
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However, such arrays still made use of a single receive channel, and “switching” of

the coil being used to image was therefore required. Switchable arrays paved the way

for the use of multiple coils with independent receive chains, known as phase-array

coils, again improving SNR significantly. Today, multi-channel RF receive coils can

be made to adjust or conform to the anatomy to be imaged, enabling patient-specific

placement and improved measurement efficiency.

1.2.3 Data Acquisition and Reconstruction

The hardware developments discussed in the previous section have decreased acqui-

sition times significantly to that considered comfortable for most patients to endure

(≈ 5 minutes), while maintaining image quality. However, data acquisition and recon-

struction techniques have improved in parallel to hardware advancements and permit

accelerated acquisitions that do not necessarily rely on gradient performance.

Partial Fourier techniques, introduced in 1986,12 require as little as half of k-space

to be acquired, and rely on the symmetry of k-space to estimate the remaining por-

tion and produce an image. In practice, field inhomogeneities, susceptibility effects,

patient motion, etc. can cause mistakes in spatial encoding, and effort must be taken

to correct these errors prior to reconstruction.

Parallel imaging emerged in the 1990s, following the development of phased-array

coils. Parallel imaging uses knowledge of the sensitivity profile of each individual coil

to assist in spatial localization, allowing for a systematic reduction in the number

of k-space points acquired, and a corresponding reduction in scan time. A Fourier

transform of each incomplete k-space would result in images that exhibit aliasing

artifacts (see Section 2.1.3), however methods were developed to reconstruct a single,

un-aliased image, which operate in the spatial frequency domain (e.g. GeneRalized

Autocalibrating Partial Parallel Acquisition, GRAPPA13) or in the image domain

(e.g. SENSitivity Encoding, SENSE14). These techniques provided the greatest gain

in imaging speed since the conception of MRI,15 but come at the cost of reduced

SNR. Compressed sensing was demonstrated by Lustig et al. in 2007,16 and is an

iterative image reconstruction technique that that reconstructs images from highly

undersampled data, without the need to acquire complementary information, as is

required with parallel imaging. An appropriate choice of k-space sampling pattern
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prevents loss of SNR, but image reconstruction is relatively slow and imposes a high

computational burden, and it is these factors that slowed the uptake of compressed

sensing in clinical environments.

Machine Learning Techniques

The introduction of machine learning (ML) techniques has dramatically altered the

joint task of MR data acquisition and image reconstruction, and is a rapidly growing

field. In general, ML refers to the ability of a predictive model to learn to per-

form a task, and eventually make predictions based on unseen input data. Although

the up front training of an ML model can be time and resource expensive, the re-

sulting pipeline can reconstruct images significantly faster than other reconstruction

techniques (e.g. compressed sensing). As such, numerous ML models have been

developed to perform tasks that mitigate the issues that arise from undersampling k-

space. Some approaches include estimating the missing k-space data,17 denoising the

resulting images,18,19 or learning the transformation from data space to artifact-free

image space.20

Super resolution (SR) techniques are an ML method that originated in the field

of computer vision, and generate high resolution (HR) images from low resolution

(LR) ones. Over time, numerous model architectures have been used to perform the

SR task, starting from the first application of a convolutional neural network (CNN)

to SR (i.e. SRCNN) in 2014,21 to the use of a residual neural network (ResNet),22,23

to a generative adversarial network (GAN), termed SRGAN.24 Further description of

these architectures is provided in Chapter 2.3.

In recent years, existing deep-learning super resolution models have been applied,

and new ones developed, for application to LR MR images. While SRCNN was

originally designed to operate on 2D natural images, Pham et al. designed a pipeline

to apply SRCNN to 3D MR brain images, enabling doubling of the acquisition voxel

size, and finding improved results compared to cubic spline interpolation.25 Chen,

Xie et al. developed a 3D model based on a dense ResNet for 3D MRI SR,26 and

subsequently introduced a discriminator network to their model, producing a 3D GAN

that creates 3D MRI volumes nearly indistinguishable from the HR target.27 More
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recently, SR methods have been applied to clinical systems; Siemens Healthcare has

released Deep Resolve Sharp,28 a CNN that enables an increase of acquired voxel size

of up to a factor of two along both in-plane axes, thereby reducing scan times.

As demonstrated thus far, many recent efforts in the areas of data acquisition

and reconstruction focus on reducing scan time without degrading images signifi-

cantly. In addition to improving patient experience, a decrease in scan time reduces

image artifacts resulting from patient motion that may require repeated acquisitions.

Furthermore, scan time reduction has the important benefits of increased patient

throughput and more efficient use of costly healthcare resources.

Overall, each of the developments outlined in Section 1.2 have provided more

opportunities to bridge the gaps in the trade-off between SNR, resolution, and scan

time (Figure 1.1). Though previously overlooked, these advancements are now being

applied to low-field systems, creating a resurgence in research and development of

low-field MRI.

1.3 Advantages and Disadvantages of Low-Field MRI

The range of field strengths used on clinical systems today is accompanied by a

corresponding continuum of advantages and disadvantages. In the low field regime

(B0 < 1.5 T), industry has found a “sweet spot” of operation at B0 ≈ 0.5 T where

there are opportunities to leverage the benefits of low field while still balancing the

need for sufficient raw signal strength.7,29 What follows is an overview of some of

the advantages and disadvantages of utilizing MR systems at B0 ≈ 0.5T with high-

performance components in comparison to conventional (1.5T and 3T) systems.

1.3.1 Installation and Operation

The installation and implementation of conventional MR systems present a number

of challenges. MRIs can weigh between ≈4 000 to ≈40 000 kg and require special-

ized equipment to move them to their designated location. In addition, such systems

have a large footprint and typically require the venting of cryogens, making imple-

mentation in existing imaging departments difficult. These barriers, along with the

cost of purchase, installation, maintenance, and operation, hinder accessibility and
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ultimately limiting patient access.2,30

On the other hand, the installation and infrastructure requirements for low-field

systems are significantly reduced. They are generally lighter (e.g. < 3600 lbs31) and

smaller, minimizing siting requirements. Additionally, many low field systems use

closed, conduction cooled superconducting magnets that do not require venting of

cryogens, enabling easier installation and dramatically reducing the need for scarce,

expensive liquid helium coolant.7,32 The possibility of installing such systems in ex-

isting departments opens the door to new applications of MRI outside of diagnostic

imaging. Such systems could, for example, be installed in existing emergency depart-

ments or intensive care units, allowing for efficient, point-of-care imaging of patients

that require time-sensitive decision making, or that are too ill to tolerate transport.

1.3.2 Patient Safety and Comfort

MRI is generally considered to be a safe form of imaging compared to modalities

such as computed tomography (CT) and x-ray, which expose a patient to potentially

harmful ionizing radiation. There are, however, safety hazards associated with the

strong main magnetic field, RF field, and quickly varying gradient fields33 used to

generate an MR image.

In general, the higher field strength a magnet produces, the larger the fringe field

it creates. This increases the risk of metallic objects being attracted to the magnet

and becoming dangerous projectiles. A low-field magnet possesses a smaller fringe

field, and the risk of patient injury due to projectiles is significantly reduced.

During imaging, multiple RF pulses are required for each image acquisition, each

depositing energy into a patient’s body. The resulting absorption of energy by var-

ious tissues is termed the specific absorption rate (SAR), and is estimated by all

commercial MR systems to ensure patient safety during a given imaging sequence. In

addition to depending on RF field characteristics, SAR is proportional to the square

of the static field strength. For a given imaging sequence, SAR is therefore 36 times

lower at 0.5T than at 3T, resulting in a reduced risk of heat-induced injuries at low

field strengths. Similarly, imaging with lower field strength offers the advantage of

reduced heating of implants, and interventional devices (e.g. catheters, guidewires34),

as the wavelength of the RF wave required to generate a signal increases beyond the
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length of these devices and beyond dimensions of the human body.

The possibility of PNS must be considered when utilizing strong gradients at any

field strength. PNS can occur when rapidly changing gradient fields induce an electric

field in the human body, causing stimulation of peripheral nerves. This imposes

limits on the parameters of imaging sequences that require rapid gradient switching

such as echo planar imaging (EPI) and steady-state free precession (SSFP). Notably,

PNS concerns are significantly reduced when using systems designed exclusively for

neuroimaging due to a reduction in the time-changing gradient fields at relevant

anatomy.35 Such head-only systems have the additional advantage of reducing a

patient’s experience of claustrophobia during imaging.

Finally, Ampére’s force law describes forces imposed on the gradient coil windings

during scanning, which can produce sound pressure in excess of 100dB, which comes

with the risk of temporary or permanent hearing loss, or tinnitus.33 Even when

operating with high gradient strengths, these forces are reduced at low field, which

thereby reduces the acoustic noise, allowing for less risk of acoustic injury and a more

relaxed experience for the patient.30,36

1.3.3 Image Acquisition

The number and timing of RF pulses combined with the use of gradient fields de-

fines the MR imaging sequence. Sequence parameters are constrained by physiological

limits as well as what the system’s components permit, including B0, and each com-

bination confers different advantages and disadvantages. The following is an overview

of aspects to be considered when regarding B0 as a changeable imaging parameter.

General Considerations

It is necessary that the RF field experienced by hydrogen nuclei be consistent across

the region to be imaged for a uniform signal to be measured from a given type of

tissue.

First, the intensity of an electromagnetic field decreases as it passes through the

tissues of the human body. The depth at which a wave’s intensity drops to 37% of

its initial value is known as its penetration depth, and decreases with an increase in

the frequency of the wave. Consequently, since the frequency of the RF pulse used
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in MRI increases in proportion to the main magnetic field strength, the penetration

depth of the RF wave decreases as the field strength increases. On its own, this effect,

therefore, leads to a decrease in the signal acquired from regions deep inside the body

as field strength increases. Furthermore, as the frequency of the RF wave increases,

the wavelength decreases proportionally. Consequently, an increase in field strength,

and therefore in the frequency of the RF pulse required, leads to the wavelength of the

RF pulse becoming comparable to the dimensions of the human body; as B0 increases

to 3T, the wavelength decreases to the size of the human torso, and at 7T it becomes

comparable to the size of the human head. In such scenarios, a standing wave can form

which causes the intensity of the RF wave to increase with depth. Combined, these

two effects can lead to complicated RF excitation in the region being imaged, when

imaging is performed at field strengths above conventional values. Fortunately, both

effects are reduced at low field strengths, and can ultimately be considered negligible.

As discussed in Section 1.3.2, SAR is proportional to the square of the static field

strength. Since the contribution of B0 to SAR is reduced at low field strengths, there

are more options for the strength and length of time of the RF pulse used, thereby

permitting the use of sequence parameters that would be SAR limited at high field.

The consideration of concomitant gradient fields is of particular importance when

utilizing a low-field system with strong gradients. Maxwell’s equations dictate that

any gradient field must be accompanied by concomitant fields with amplitudes com-

parable to that of the applied gradient’s amplitude itself. These additional fields can,

therefore, alter the overall desired magnetic field by a non-negligible amount when

imaging with low B0 and high amplitude gradient fields,37 leading to distortions and

signal drop out in acquired images due to errors in spatial encoding. Fortunately,

methods exist to mitigate these errors, including compensatory frequency or shim

offsets38 and sequence-based corrections.

Artifact or Imaging Opportunity?

The behaviour of spins in one field-strength regime can bestow desired results while

creating undesired artifacts in another. As such, the choice of field strength must be

considered based on the task at hand. Two examples relevant to a comparison of low

and high field strength acquisitions are presented here.
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The local magnetic field experienced by a given spin changes slightly depending

on its molecular environment. Despite being placed in the same magnetic field, the

hydrogen nuclei in water, for example, experience a slightly different magnetic field

than hydrogen nuclei in fat, due to differences in magnetic shielding. This difference

in magnetic field leads to different resonant frequencies, which itself can lead to errors

in spatial encoding efforts. The magnitude of this difference is proportional to B0,

therefore artifacts resulting from signal mismapping are easier to prevent at low field

strengths. Some imaging techniques, however, rely on this difference to be successful.

Fat suppression, for example, is necessary for tumour evaluation in the high-fat region

of the optic nerve; imaging sequences that perform fat suppression use the difference

in spin behaviour to null any signal emanating from hydrogen nuclei in fat, while still

measuring the signal in other tissues.

A tissue with high magnetic susceptibility will interact with B0 and therefore dis-

tort the local magnetic field. In the context of anatomical MR imaging, susceptibility

differences between tissues can cause spins to behave in unsought ways, causing errors

in spatial encoding and therefore creating signal dropout and spatial mismapping in

the images acquired. Artifacts of this nature are especially prevalent around implants

and air/tissue boundaries, but the magnitude of this effect is proportional to B0, and

is therefore reduced at low field strengths. However, the effects of magnetic suscep-

tibility can also be leveraged for other acquisition strategies: functional MRI, for

example, relies on the susceptibility difference between oxygenated and deoxygenated

blood in and around blood vessels and achieves best results at high field strengths.

Image Contrast

Though a small effect, the behaviour of spins at low field strength can alter the desired

image contrast. Following an RF pulse, the recovery of spins to the longitudinal

plane is governed by the T1 time constant, with different tissues exhibiting different

T1 values, and imaging parameters can be chosen to probe this difference. It has

been shown that T1 values typically decrease at low field strengths,34,39 which could

permit a reduction in overall exam time.29 On the other hand, decreases in T1

values results in smaller absolute differences between tissues, and poses a challenge for

imaging sequences that rely on these differences to produce contrast (e.g. T1 weighted
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and T1 fluid attenuated inversion recovery sequences). Further, contrast-enhanced

imaging relies on the properties of gadolinium-based contrast agents to reduce the T1

of tissues in which it is taken up. A reduction in the T1 of surrounding tissues means

that a further reduction is more difficult to detect, and contrast enhancement is less

pronounced at low field strengths.

Scan Times

Despite its flexibility and superior soft-tissue contrast, long scan times are an inherent

aspect of MR imaging that puts it at a disadvantage to other imaging modalities. As

outlined in Sections 1.3.1 and 1.3.2, low-field systems have the potential for use in

emergency and point-of-care scenarios. However, long scan times may be a larger

issue in this field-strength regime, where the reduced SNR often leads to the need for

multiple measurements and signal averaging. Addressing this concern may therefore

be necessary to increase patient comfort and reduce the possibility of motion artifacts,

and to bolster the value of low-field MRI in an emergency or point-of-care scenario.

1.4 Balanced Steady-State Free Precession Imaging at Low Field

Strengths

Balanced Steady-State Free Precession (bSSFP) is an imaging technique that was

proposed by Oppelt et al. in 1986,40 but didn’t find application until fast, strong,

and precise gradient systems were developed. It has recently seen a resurgence at low

field strengths that utilize high-performance gradients41 as it is distinctly suited to

demonstrating the advantages of imaging with such systems.

Importantly, bSSFP sequences measure a coherent steady-state signal (see Section

2.2.3), and therefore offer the most SNR per unit time of all imaging sequences.42,43

Use at low field strengths then ensures that the raw signal available is used to its full

potential while still enabling high resolution imaging in clinically acceptable exam

times. Further, the signal is highly dependent on the flip angle used. The reduced

SAR at low field strengths means that the duration for which the RF pulse is trans-

mitted can be increased, permitting a wider range of flip angles without reaching

patient heating limits and allowing for sequence parameters that optimize the avail-

able signal. In addition, the signal measured in bSSFP acquisitions inversely depends
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on T1 values, therefore with all other sequence parameters constant, reduced T1

at lower fields leads to a higher amplitude of transverse magnetization available for

measurement.

Notably, bSSFP sequences are particularly sensitive to inhomogeneities in B0 that

can be caused by susceptibility differences at tissue interfaces. bSSFP images ac-

quired under these conditions demonstrate band-like artifacts that can obscure rele-

vant anatomy. The nature of the bSSFP sequence dictates that banding occurs when

spins are off-resonance by frequencies of ±1/2TR. While methods such as phase cy-

cling of the RF pulse44 (Section 2.2.3) can be used to compensate for the effects that

cause banding, they require longer scan times, leading to motion-induced artifacts,

as well as increased reconstruction times. bSSFP sequences can therefore benefit

from the increased B0 homogeneity and decrease in susceptibility effects at low field

strengths.41 Performing bSSFP acquisitions on head only systems with high strength

gradients has the additional advantage of allowing for a reduction in TR, which can

limit the time available for off-resonance precession to occur, thereby reducing band-

ing artifacts.

Two regions that could benefit from the advantages of low-field bSSFP imaging are

the temporal bone and the paranasal sinuses. These regions are typically considered

challenging to image with MRI due to many air/bone/tissue interfaces that generate

off-resonance effects due to magnetic susceptibility differences. In addition, these

areas are comprised of complex anatomical structures that require high contrast and

resolution to visualize effectively.

1.5 Imaging the Temporal Bone and Paranasal Sinuses

1.5.1 Temporal Bone

The temporal bones are two major bones of the skull that form its lateral base and

protect the structures and nerves of the ear canal, middle ear, and inner ear. The

vestibulocochlear and facial nerves begin at the cerebellopontine angle in the brain

before passing through the internal auditory canal (IAC) to enter the inner ear. The

vestibulocochlear nerve splits into the vestibular and cochlear nerves at the distal end

of the IAC before abutting the cochlea and vestibule, respectively. Together with the
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semicircular canals, the cochlea and vestibule make up the bony labyrinth of the inner

ear (Figure 1.3). Inside the bony labyrinth is a collection of fluid-filled chambers and

tubes called the membranous labyrinth, responsible for hearing and balance. The

cochlea converts sound waves into nerve signals, while the vestibule and semicircular

canals are responsible for the sense of balance and equilibrium.45 After entering the

inner ear, the facial nerve winds it way between the vestibule and cochlea before

exiting the inner ear through the stylomastoid foramen to the facial canal.

Figure 1.3: The temporal bone protects the structures of the inner ear, depicted
here alongside the middle and outer ear. The figure is reproduced from Encyclopedia
Britannica.46

This complex space is imaged for a variety of reasons including evaluation of

sensorineural hearing loss, evaluation of cochlear implant candidacy, and monitoring

neoplastic and infectious processes. Patients with conditions of the inner ear may

present with a myriad of symptoms including vertigo, autophony, tinnitus, or de-

creased speech discrimination,47 and often both CT and MRI are ordered as they

tend to provide complimentary information. CT, for example, has become the gold

standard for diagnosis of dehiscence of the superior semicircular canal,48 while the

superior soft tissue contrast and isotropic resolution of MRI aids in detection of small

schwannomas along the IAC.49

The contrast and resolution provided by bSSFP sequences are ideal for visualizing

the complex region of the inner ear, as the signal from the fluid-filled structures is
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high compared to the petrous part of the temporal bone. However, the potential

formation of banding artifacts traversing the relevant structures leads to preference

for lower SNR sequences, such as fast spin echo (FSE), when imaging at conventional

field strengths; Benson et al. utilize an FSE sequence to image the inner ear and note

that banding artifacts are particularly problematic when examining the vestibule,

semicircular canals, and cochlea with bSSFP at 3T.50 Similarly, a study performed at

1.5T involving radiologists’ ratings of “detectability of inner ear structures” showed

preference for FSE acquisitions, and the authors hypothesize that the banding arti-

facts present in bSSFP acquisitions were to blame for their inferior ratings.51 With

increased field homogeneity and reduced susceptibility effects, low-field bSSFP imag-

ing of the temporal bone has the potential to provide high resolution, artifact tolerant

results.

1.5.2 Paranasal Sinuses

The paranasal sinuses are four sets of air-filled spaces that extend from the nasal

cavity, each named after the bone that they are situated: the frontal, ethmoid, max-

illary, and sphenoid sinuses (see Figure 1.4). The role of the paranasal sinuses is not

definitively known, however they are thought to increase the resonance of the voice,

heat and humidify air that is breathed in, and protect vital structures in the case of

trauma.
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Figure 1.4: The locations of the nasal cavity and four sets of paranasal sinuses. Figure
is reproduced from the National Institute of Health’s National Cancer Institute.52

The nasal cavity and sinuses, as well as the drainage pathways connecting them,

are lined with a mucous membrane known as mucosa, responsible for keeping the

sinuses moist and for trapping airborne pathogens. Inflammation of this lining is

termed sinusitis, and is a common condition encountered by primary care physicians.53

Patients experiencing acute or chronic sinusitis may present with sinus pain and

tenderness, nasal discharge or congestion, and fever.

Imaging of the paranasal sinuses and surrounding structures is indicated for pa-

tients with symptoms of sinusitis that do not respond to medical treatment, and

is required for diagnosis, assessment of anatomic variants, and to provide detailed

anatomy for surgical planning.54,55 When endoscopic surgery is required, pre-surgical

visualization of the cribriform plate is of particular importance. The cribriform plate

is a thin portion of the ethmoid bone that forms the roof of the nasal cavity, sepa-

rating it from the brain. Puncture of the cribriform plate can lead to cerebral spinal

fluid (CSF) leak, olfactory impairment, and frontal lobe injury.56

CT is the modality of choice for imaging of the paranasal sinuses, due primarily

to its availability, speed, and the resolution of bony structures that is provides. CT,

however, comes with significant disadvantages including exposure of the patient to
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potentially harmful ionizing radiation and possible reduced resolution in the superior-

inferior direction. Access to MR imaging could prevent exposure of the patient to

radiation, and a bSSFP acquisition performed on a low-field system could provide the

SNR efficiency, isotropic resolution, artifact tolerance, and speed required to compete

with CT for imaging the paranasal sinuses.

1.6 Research Objectives

As described, low-field MRI has the potential to provide new opportunities to image

challenging regions which demonstrate susceptibility-induced off-resonance effects. As

such, this thesis investigates the application of bSSFP sequences to imaging of the

temporal bone and paranasal sinuses on a 0.5T, head-only system with high strength

gradients. It is comprised of three studies, each addressing a unique research objective.

The first study is presented in Chapter 3 and addresses the first objective - to

quantitatively evaluate the images resulting from 3D bSSFP protocols designed to

image the temporal bone and paranasal sinuses at 0.5T with clinical resolutions.

More specifically, the artifact tolerance and the SNR achieved will be quantified. The

study is titled

Artifact-resistant balanced steady-state free precession imaging of the

temporal bone and paranasal sinuses without phase-cycling at 0.5T

While the metrics examined in the first study are informative, the true value

of an MR acquisition lies in a radiologist’s ability to use the image to answer a

clinical question. This aspect is investigated in the second study, presented in Chapter

4, where the objective is to evaluate radiologists’ ability to visualize structures of

the inner ear in bSSFP images acquired at 0.5T in comparison to clinical bSSFP

acquisitions at 3T. The second study is titled

Low-field vs. conventional field balanced steady-state free precession

imaging of the temporal bone: radiologist rating of anatomical

visualization.

The third study is presented in Chapter 5 and its objective is to explore the

benefits of low resolution bSSFP acquisitions, and to return the resulting images
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to high resolution, without significant degradation, with a publicly available super

resolution model. The third study is titled

Super resolution allows for the benefits of low resolution balanced

steady-state free precession imaging without degrading image quality.

Independent hypotheses for each study are provided in their corresponding chap-

ters.



Chapter 2

Theory and Experimental Details

2.1 Acquiring an MR Image

2.1.1 Signal Generation

Hydrogen nuclei are found in abundance in fat and water in the tissues of the human

body. The hydrogen nucleus possesses a fundamental property known as “spin”, or

spin angular momentum, and for this reason hydrogen nuclei are often referred to

as “spins” in MR literature. The angular momentum of a spin generates a magnetic

dipole moment, and it is this property that is used to generate MR images. Without

any external influence, the direction of a given magnetic moment is random. However,

the presence of a strong, external magnetic field of strength B0, causes a small excess

of spins to become aligned along its direction. The direction of the main magnetic

field in MR imaging is conventionally parallel to the the z-axis, i.e. B⃗0 = B0ẑ, where

ẑ is a unit vector along the z-axis. The excess of dipoles aligned along ẑ results in

a net magnetization vector, M⃗ , the magnitude of which depends on many factors

including the density of hydrogen nuclei, and the strength of B0. Generally speaking,

any external magnetic field, B⃗, will induce a torque on M⃗ , causing it to precess about

the direction of the field with a frequency known as the Larmor frequency, ω = γB⃗,

where γ is the gyromagnetic ratio (γ = 42.6 MHz/T for hydrogen nuclei). Spins

oscillating at this frequency are said to be on resonance, and this motion is described

by the 3D equations of motion for M known as the Bloch equations:

dM⃗

dt
= M⃗ × γB⃗. (2.1)

To generate a measurable signal, a secondary oscillating magnetic field is applied

for a short duration. This field is set to oscillate at the Larmor frequency, which is

in the RF range for conventional clinical field strengths. The pulsed magnetic field

19
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is therefore referred to as an RF pulse. The application of the RF pulse tips the

net magnetization away from ẑ such that a transverse component, Mxy, is produced.

Since Mxy continues to oscillate about ẑ, it is convenient to consider the transverse

plane as complex such that

Mxy = Mx + iMy. (2.2)

Immediately following the RF pulse, M⃗ will relax back to the longitudinal plane

as more and more spins return to their equilibrium positions aligned with B0. The

longitudinal component, Mz recovers to its equilibrium value, now referred to as

M0, according to a relaxation time constant, T1. Simultaneously, but independently,

Mxy decays due to atomic and molecular interactions creating local disturbances in

the magnetic field. The variation in field strength experienced by individual spins

causes the spins that make up Mxy to start oscillating out of phase. This process is

governed by the T2 time constant. However, other field disturbances can exist due

to inhomogeneities in the main magnetic field, which accelerate the dephasing, and

therefore the decay, of the transverse magnetization. This contribution to decay is

governed by the T
′

2 time constant. Combined, these two effects are described by T ∗

2 ,

where

1

T ∗

2

=
1

T2

+
1

T
′

2

(2.3)

Notably, T ∗

2 is always less than T1. Differences in T1, T2, T
∗

2 , and spin density (or a

combination of these) between tissues can be probed with various imaging strategies,

and it is these differences that generate contrast in MR images.

Equation 2.1 must now be modified to describe the precession of M⃗ , as well as its

relaxation to its equilibrium position. For simplicity, we will assume that the effects

of field inhomogeneities are negligible such that T ∗

2 = T2:

dM⃗

dt
= M⃗ × γB⃗ +

(M0 −Mz)ẑ

T1

−
(Mxx̂+Myŷ)

T2

(2.4)

where x̂, ŷ, and ẑ are unit vectors along the x, y, and z directions. Equation

2.2 can then be used to solve the first order linear differential equations defined by
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Equation 2.4 to obtain

Mxy(r⃗, t) = Mxy(r⃗, 0)exp

[

−t

T2

]

exp[−iω(r⃗)t] (2.5)

and

Mz(r⃗, t) = M0(r⃗) + [Mz(r⃗, 0)−M0(r⃗)]exp

[

−t

T1

]

, (2.6)

where Mxy(r⃗, 0) is the transverse magnetization at location r⃗ immediately follow-

ing an RF pulse, and is equal to M0(r⃗)sinα, where α is the angle that M⃗ is tipped

away from the z-axis. Mz(r⃗, 0) is therefore given by Mz(r⃗, 0) = M0(r⃗)cosα.

Importantly, it is this oscillation of Mxy(r⃗, t) that is fundamental in generating an

MR image; the oscillating magnetic field in the transverse plane generates an electric

current in the RF receive coils, as governed by Faraday’s law of electromagnetic

induction.

2.1.2 Data Acquisition and Image Reconstruction

Clearly, spatial information must be encoded into the spins so that the location of

a given signal can be transferred to the image. To do this, linearly varying gradient

fields are applied in the x−, y−, and z−directions so as to modify B0ẑ in a specified

manner. The magnetic field experienced by a spin at a location r⃗ and time t is then

given by

B⃗(r⃗, t) = [B0 +Gxx+Gyy +Gzz]ẑ = B0 + G⃗ · r⃗ (2.7)

for a time-independent gradient field of magnitude G. The addition of gradient fields

modifies the Larmor frequency accordingly:

ω(r⃗) = γ(B0 + r⃗ · G⃗) = ω0(r⃗) + γr⃗ · G⃗ (2.8)

For convenience, we can now adopt a reference frame that rotates with the net

magnetic field vector about the z−axis with frequency ω0. In this frame of reference

ω(r⃗) = γr⃗ · G⃗ (2.9)



22

As demonstrated, the application of gradient fields causes spins at different loca-

tions, r⃗, to precess at different frequencies. Consequently, application of a gradient

field will cause spins to accrue various phase offsets, ϕ, according to their local mag-

netic field and the time over which the field is experienced. The phase offset is

therefore

ϕ(r⃗, t) =

∫ t

0

ω(r⃗, t′)dt′ = γ

∫ t

0

r⃗ · G⃗(t′)dt′ = γtr⃗ · G⃗ (2.10)

for time-independent gradient fields.

The signal measured at time t is the vector sum of signals generated from trans-

verse magnetization, at all points in the volume being imaged. Combining equations

2.5 and 2.10, we can therefore state that the signal is given by

s(t) =

∫

Mxy(r⃗, 0)exp

[

−t

T2

]

exp[−iϕ(r⃗, t)]dr⃗ (2.11)

This equation can be simplified if the time between signal generation (via the RF

pulse) and measurement time, t, is significantly less than T2, such that exp [−t/T2]

approaches 1. Further, as we know that Mxy(r⃗, 0) results from the RF tipping of M0,

we know that it is proportional to the density of spins, temperature of the region, and

the static magnetic field B0, as well as RF receive coil sensitivity. We can therefore

define an “effective spin density” term, ρ(r⃗) such that :

s(t) =

∫

ρ(r⃗)exp[−iϕ(r⃗, t)]dr⃗. (2.12)

Now, if we define

k⃗(t) =
γ

2π

∫ t

0

G⃗(t′)dt′, (2.13)

we can re-state ϕ(r⃗, t) (Equation 2.10) as

ϕ(r⃗, t) = γ

∫ t

0

r⃗ · G⃗(t′)dt′ = 2πr⃗ · k⃗(t), (2.14)

leading to

s(k⃗) =

∫

ρ(r⃗)exp[−i2πr⃗ · k⃗(t)]dr⃗. (2.15)
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This result demonstrates that the acquired signal, s(k⃗), is the Fourier transform

of the effective spin density, ρ(r⃗), which is what we aim to visualize. The inverse

Fourier transform therefore allows us to obtain an image,

ρ(r⃗) =

∫

s(k⃗)exp[i2πr⃗ · k⃗(t)]dk⃗. (2.16)

This equation therefore returns the relative “amount” that a spatial frequency

vector, k⃗(t) contributes across space r⃗. Hence, the data collected in MRI is a series

of complex numbers, placed in a data array known as k-space. The k-space matrix

has axes x, y, and z which intersect at the center of k-space where x = y = z = 0.

2.1.3 Discrete Sampling of k-Space

Importantly, we have thus far considered r⃗ and k⃗ as continuous variables, leading us

to Equations 2.15 and 2.16. However, truly continuous sampling of k⃗ is not possible

in practice, and as such, k-space is a discrete, finite data array. Assuming we acquire

Nx, Ny, and Nz points in k-space in the x-, y-, and z- dimensions, we can discretize

Equations 2.15 and 2.16 to find

s(kx, ky, kz) =
Nx−1
∑

x=0

Ny−1
∑

y=0

Nz−1
∑

z=0

ρ(x, y, z)exp

[

−i2π

(

kxx

Nx

+
kyy

Ny

+
kzz

Nz

)]

(2.17)

ρ(x, y, z) =
1

NzNyNz

Nx−1
∑

x=0

Ny−1
∑

y=0

Nz−1
∑

z=0

s(kx, ky, kz)exp

[

i2π

(

kxx

Nx

+
kyy

Ny

+
kzz

Nz

)]

(2.18)

where the factor of 1/NxNyNz in Equation 2.18 is required to ensure the total power

in image space is equivalent to the total power in the signal (Parseval’s theorem).

As demonstrated by Equation 2.13, different values of k are defined by the integral

of the function describing gradient strength over time. It is therefore with careful

manipulation of G⃗ that k-space gets filled. If, for example, a constant gradient is

applied to alter B0 along the x-axis, and measurements are made with time interval

∆t, then a row of k-space can be filled according to knx = Gxnx∆t, where nx =
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(0, 1, ..., Nx/2). This gradient application has the effect of systematically altering

the frequency of spins, and as such this process is termed frequency encoding. In

practice, a negative amplitude gradient is often applied prior to data acquisition,

moving to the edge of k-space and allowing for an entire row of data to be acquired

in succession, i.e. knx = −GNx

2
∆t + Gxn∆t, where n = (0, 1, ..., Nx). To change the

y- position in k-space, a second gradient is applied for a fixed duration, t, according

to kny = ny∆Gyt. This gradient application has the effect of systematically changing

the phase of spins along the y-direction, and is therefore termed phase encoding.

Following the application of the phase-encode gradient, frequency encoding can be

repeated to collect data for the corresponding row of k-space. An example of basic

frequency and phase encoding for a 2D image is shown in a pulse sequence diagram

in Figure 2.1. Pulse sequence diagrams are read from left to right with each row

depicting the amplitude and length of time with which a given gradient is applied.
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Gx

Gy

ky

kx

Gz

RF

Gx

Gy

ky

kx
Gz

RF

(a)

(b)

Figure 2.1: (a) and (b) both show the basic sequence of events required to traverse a
desired row of k-space. In both, the application of a slice-select gradient, Gz, occurs
simultaneously with an RF pulse designed to excite spins within the desired slice.
In (a), a negative frequency gradient, Gx, moves the k-space point being measured
from the origin to the negative periphery. A subsequent positive application of Gx,
with twice the duration of the previous pulse, allows for traversal of the entire row of
k-space. In (b), a phase-encoding gradient, Gy, is applied to move along the positive
y-axis of k-space. The frequency gradient is then applied as it was in (a) to traverse
the row.

If a 3D acquisition is desired (as described by Equation 2.18), further spatial en-

coding can be accomplished by additional phase encoding along the third dimension.

The scaling property of the Fourier transform defines the image field of view

(FOV) in each dimension to be equivalent to the reciprocal of the step size in k-space

taken in that dimension. For acquisition of a 2D image slice, we therefore have the

relationships

FOVx =
1

∆kx
, FOVy =

1

∆ky
, (2.19)

which show that the size of ∆k is limited to the reciprocal of the size of the object
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in the corresponding dimension. If ∆k is too large, the FOV may not encompass the

anatomy to be imaged, causing overlapping of signal, or aliasing.

We can also express the FOV of an image via the intuitive relationship between the

dimensions of an image’s pixels and the number of pixels acquired i.e. FOVx = Nx∆x

and FOVy = Ny∆y. This leads us to expressions for the resolution of an image, which

is:

∆x =
FOVx

Nx

, ∆y =
FOVy

Ny

. (2.20)

From this relationship, we can see that the higher the number of data points

acquired, the smaller the voxel size, or the higher the image resolution. This is

equivalent to increasing the extent of k-space measurements made. The outer edges

of k-space therefore contain information on the high frequency components of on

an image, and those at the center contain the information related to low frequency

information, or contrast. This concept is demonstrated in Figure 2.2.

Figure 2.2: K-space data (lower row) and the corresponding image (upper row) after
inverse Fourier transformation. With low frequencies removed from the center of k-
space (left-most column), the image contains only high frequency information such
as edges. When only the central region of k-space is sampled (right-most column),
the high frequency information is lost, resulting in an image with sufficient contrast,
but low image resolution. Figure is reproduced from Gallagher et al. 2008.57
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High resolution acquisitions can be time-consuming due to the numerous phase-

encoding steps that must be taken to fill k-space. This can be mitigated, to some

extent, by decreasing the number of values acquired in the periphery and instead

performing zero-padding of the k-space matrix. This has the effect of reducing ∆x

and ∆y as shown in Equation 2.20, thereby improving image visualization. It is

important to note, however, that no new spatial information is actually acquired,

and only the apparent resolution of the image is improved. Clearly, this technique

has its limits, and reducing resolution may lead to loss of information that could be

important for clinical diagnosis.

Finally, the discrete sampling of k-space defined by Equation 2.18 consists of a

finite number of samples, Nx, Ny and Nz. The inability to measure an infinite number

of k-space points is equivalent to truncation of the “true” k-space representation of

an object. In image space, this leads to an artifact known as Gibbs ringing, which

appears as faint lines parallel to high contrast interfaces. Fortunately, filtering of

k-space can be used to mitigate the worst of these effects.

2.2 Balanced Steady-State Free Precession

2.2.1 The Gradient Echo Sequence

The transverse magnetization described by Equation 2.5 decays exponentially ac-

cording to T2 in a process known as free induction decay (FID), therefore, multiple

RF pulses are applied, separated by the repetition time, TR, to generate the signals

required to fill k-space. When imaging with a gradient echo (GRE) sequence, the

frequency (or “readout”) gradient is applied twice with equivalent amplitudes, in op-

posite directions, so as to dephase and re-phase the transverse magnetization. Doing

so generates a spatially encoded echo of the initial FID between RF pulses at the

echo time, TE. A basic pulse sequence diagram, provided in Figure 2.3, shows the

sequence of events used to generate a GRE.
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Figure 2.3: A pulse sequence diagram depicting the sequence of events that generate
a gradient echo. To start, the RF pulse is applied to flip the spins simultaneously
excited by the slice-select gradient, Gx by an angle α, inducing free induction decay.
A negative slice-select gradient is applied to undo phase offsets introduced by slice
selection, while the phase-encode gradient, Gy generates the intended phase offsets for
a given TR (with various amplitudes for each TR indicated by the dotted lobes). A
negative frequency-encoding gradient, Gz, is applied to dephase the FID signal, and
its amplitude is then reversed so as to read out a frequency-encoded gradient echo
signal at the echo time, TE. What happens following the measurement of the echo
depends on the type of image contrast desired - any residual transverse magnetization
can be destroyed, or “spoiled”, or it can be maintained as is the case in bSSFP. Figure
is reproduced from Hargreaves 2012.58

2.2.2 Steady State Imaging

GRE sequences can enable fast imaging by the use of flip angles, α, of less than

90◦, wherein a significant proportion of longitudinal magnetization remains along the

z-axis. Consequently, a subsequent RF pulse can be applied with a short TR, i.e.

TR < T1, while still having sufficient longitudinal magnetization to act on. When

TR is such that incomplete recovery of the longitudinal magnetization occurs, a steady

state of magnetization is formed. Most rapid GRE sequences utilize steady-states in

which both incomplete T1 and T2 relaxation occurs,58 thereby reducing imaging time

and generating a signal that is a complicated combination of both T1 and T2 effects.
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While numerous methods exist to create and maintain a steady-state signal,59 the

simplest is that in which an initial preparation RF pulse is applied to achieve a flip

angle of α/2. A subsequent −α pulse after time TR/2 is then followed by alternating

±α pulses separated by TR. T1 and T2 relaxation effects cause a smooth dampening of

the transverse magnetization over successive RF pulses, causing it to evolve towards

a consistent steady-state. Once in the steady-state, the signal is maintained between

±α RF pulses (Figure 2.4).

Figure 2.4: An initial α/2 preparation pulse brings the tip of the transverse magne-
tization (indicated by the unfilled circles) into the xy-plane. Subsequent alternating
±α pulses, combined with T1 and T2 relaxation effects cause a smooth dampening
of the transverse magnetization towards an oscillating steady state. The resulting
steady-state transverse magnetization is shown here to have a magnitude of Mss.
Figure is reproduced from Scheffler and Lehnhardt 2003.42

As described, a steady-state signal is the result of T1 and T2 effects, however the

contrast achieved during imaging depends on how the residual transverse magnetiza-

tion is managed prior to a subsequent RF pulse.

The application of a spoiler gradient induces a linear variation of spin precession

across a voxel. This has the effect of reducing the magnitude of the signal, but it

prevents the characteristic banding artifacts exhibited by bSSFP sequences (Section

1.4). Gradient spoiling can be used to eliminate transverse magnetization within

one TR, but the dephased signal may be rephased by subsequent spoiler gradients,

leading to a transverse signal that is not completely eliminated. Gradient spoiled

SSFP sequences, therefore, exhibit contrast that is the result of both T1 and T ∗

2

effects.
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In addition to the use of spoiler gradients, incrementally varying the phase of the

RF pulse can be used to eliminate the effect of any remaining transverse magneti-

zation. The resulting distribution of magnetization within a voxel is complicated,

but the signal generated is well approximated by neglecting the residual transverse

magnetization prior to RF pulses.58 The contrast provided by sequences with RF

spoiling is therefore T1 weighted.

2.2.3 Balanced Steady-State Free Precession Imaging

When imaging with a bSSFP sequence, the residual transverse magnetization that

persists is recovered before the the next RF pulse by the use of fully balanced gra-

dients; the bSSFP pulse sequence diagram in Figure 2.5 shows that each positive

gradient area is balanced by an equivalent negative gradient area, indicating that

the total gradient-induced dephasing within TR is exactly zero. In other words, the

steady-state magnetization vector is fully recovered prior to the subsequent RF pulse.

Figure 2.5: A pulse sequence diagram for bSSFP image acquisition. The net gradient
amplitude between each TR is zero, such that the steady-state magnetization vector
is recovered, and the effect of gradients can be ignored. Figure is reproduced from
Hargreaves 2012.58

Figure 2.5 depicts acquisition of a single, 2D imaging slice. However, volumetric

(3D) bSSFP imaging is commonly performed, as it confers certain advantages over 2D.

Volumetric imaging produces an increase in SNR, as the signal is acquired from the



31

entire volume, and it enables the acquisition of images with high isotropic resolution.

Steady-state imaging, in particular, benefits from a volumetric approach in that the

steady-state magnetization need only be generated once across the entire imaging

volume, and the use of short TR values permits volumetric imaging with scan times

appropriate for clinical use. In the case of 3D imaging, the slice select gradient and RF

pulse are used to excite a thick imaging “slab” or volume. Phase encoding then occurs

simultaneously in 2 dimensions (using slice select and phase-encode gradients, for

example) with all possible combinations of gradient amplitudes being cycled through.

The frequency encode gradient is applied as in the 2D case.

Signal and Contrast

To derive an expression for the transverse magnetization, Mxy, in the steady-state,

we make use of the fact that relaxation effects do not change the length of the mag-

netization vector, M , within one TR, i.e. TR < T2 < T1. We can therefore say

that

δM⃗

δt
· M⃗ = 0 (2.21)

Combining this with the Bloch Equations defined in Equation 2.4, we find:

(

Mz −
M0

2

)2

+
M2

x +M2
y

T2/T1

=

(

M0

2

)2

(2.22)

or

(

Mz −
M0

2

)2

(

M0

2

)2 +
M2

x +M2
y

T2

T1

(

M0

2

)2 = 1 (2.23)

which is the equation of an ellipse centered on (0,M0/2) with width M0

√

T2

T1

, and

heightM0. This ellipse defines the possible locations of the steady-state magnetization

vector.

Off-resonance Effects

Before proceeding further with the derivation, off-resonance effects must be taken into

account. As discussed, bSSFP sequences are particularly sensitive to off-resonance
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effects, such as field inhomogeneities in the main magnetic field, or those caused by

susceptibility differences between tissues. This is due the fact that they are only

capable of reversing dephasing caused by the gradients themselves, therefore any

additional T ′

2 dephasing will be incorporated into the steady-state signal.

In the reference frame oscillating at the Larmor frequency, off-resonance effects

cause Mxy to precess about z by an angle ϕ during TR, leading Mxy to meet the edge

of the ellipse at an angle greater than α. As such, we define an “effective flip angle”,

β, which represents the flip angle with the effects of precession included. Figure 2.6

demonstrates the relationship between α, ϕ, and β, which is

tan

(

β

2

)

=
tan

(

α
2

)

cos
(

ϕ

2

)

.
(2.24)
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Mx = Mz tan(α/2)

α

Mx

Mz

Mx = Mz tan(α/2)

φ/2

φ/2

Mx = Mz tan(β/2)

φ
Mx

My

Mx = Mz tan(β/2)

β

Mx

Mz(a)

(d)

(b) (c)

Figure 2.6: The magnitude of transverse magnetization along the x-axis, Mx, for the
flip angle α in (a), and the “effective flip angle”, β, in (b), which takes into account
the phase-offset caused by precession of spins oscillating off-resonance. The angle of
precession, ϕ, is shown on the Mx-My axis in (c). The dotted yellow box in (c) is
expanded on in panel (d), which shows the relationship between α, β, and ϕ.

The signal defined by Equation 2.23, with and without precession effects, is demon-

strated in Figure 2.7.
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Figure 2.7: The transverse component of steady-state magnetization defines an ellipse
with height and width demonstrated here. The choice of flip angle, α, defines where
along the ellipse the signal is measured. Off-resonance effects will alter this position,
resulting in an “effective flip angle” of β.58

We can now consider the transverse component of magnetization generated by

using a flip angle of β. Letting M2
xy = M2

x +M2
y , and substituting Mxy = Msin(β/2),

and Mz = Mcos(β/2) in Equation 2.23, we can achieve

Mxy =
M0

cot(β/2) + T1

T2

tan(β/2)
(2.25)

A full derivation of Equations 2.23 and 2.25 is provided in Appendix A.

As expected, Equation 2.25 demonstrates that the contrast in bSSFP acquisitions

is not a simple T1 or T2 weighting. Instead, it depends on the difference of T1/T2

ratios between tissues. Importantly, the signal strength shows a strong dependence

on the effective flip angle, β; for given T1 and T2, the optimal flip angle, βopt, would
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bring M to touch the ellipse at its maximum width, such that the peak signal is

given by Mpeak = 1
2
M0

√

T1

T2

. For similar T1 and T2, the maximum attainable signal

therefore approaches 1
2
M0. It is this feature that makes bSSFP sequences the most

SNR efficient - it is possible to continuously acquire a signal of 1
2
M0.

42

For a fixed flip angle, α, an increase in off-resonance precession, ϕ, towards 180◦

leads to a corresponding increase in β/2 towards 90◦ (see Equation 2.24), causing

the signal defined by Equation 2.25 to approach zero. This relationship between

precession angle and measured signal is demonstrated in Figure 2.8.

Figure 2.8: (a) Steady-state transverse magnetization achieved with varying phase
offsets, denoted here as θ. Notably, for this example, the signal increases initially
as the offset deviates from zero. This is due to the flip angle used being less than
βopt such that the signal lays above the maximum width of the ellipse depicted in
Figure 2.7 - offsets increase the angle between M and the z-axis, thereby bringing
the magnetization vector down the edges of the ellipse to its maximum width. The
signal dropout that occurs with θ = 180◦ is shown by the white arrows in panel (b).
The figure is a modified version of that displayed by Scheffler and Lehnhardt 2003.42

The phase offset, ϕ, accrued by a spin over time TR is simply its angular frequency,

2 · 180◦ · ν, multiplied by TR such that ϕ = 2 · 180◦ · ν ·TR. Therefore, spins that are

180◦ out of phase after TR must be oscillating with a frequency of

θ = 2 · 180◦ · ν · TR

±180◦ = 2 · 180◦ · ν · TR

ν =
1

±2TR

(2.26)
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Thus, dark bands occur in image locations where spins are off-resonance by fre-

quencies of ν = ± 1
2TR

(Panel (b) of Figure 2.8), and a precession frequency “pass-

band” of width 1/TR exists. As discussed, off-resonance can be a result of inhomo-

geneities in B0, or of susceptibility differences between tissues. Fortunately, Equation

2.26 shows that a decrease in TR will reduce the amount of time for dephasing, re-

quiring very high frequency offsets for bSSFP banding artifacts to be produced. This

feature of bSSFP acquisitions can be considered when imaging regions that typically

exhibit high likelihood of susceptibility-induced distortions.

Phase Cycling

When a reduction in TR is not sufficient, or not possible due to SAR constraints,

phase cycling of the RF pulse can be used to minimize the presence of off-resonance

banding artifacts. This method requires the collection of two or more separate data

sets, and for the sake of simplicity, the case of two acquired data sets is considered

here; in this case, one acquisition uses RF pulses that have alternating phases (as

depicted in Figure 2.5), and one in which the phase of the RF pulse is not altered.

In the first case, spins with ϕ = 180◦ after TR do not contribute to the steady-

state signal, as described previously. In the second case, spins with ϕ = 180◦ do

contribute to the steady-state signal, and instead, those that are on resonance (i.e.

ϕ = 0◦) do not. This has the effect of shifting the locations of banding artifacts in

the image to regions where spins are on-resonance, as demonstrated in Figure 2.9.
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Figure 2.9: Cycling the phase of the RF pulse used in a bSSFP acquisition shifts the
banding artifacts to locations where spins are oscillating on-resonance, as indicated
by the red dotted line. The image is a modified version of that presented by Scheffler
and Lehnhardt 2003.42

The two images can then be combined so as to minimize the presence of artifact.

Numerous methods have been proposed to combine the two data sets, and the most

commonly used is that of maximum intensity projection (MIP).60 MIP reconstruction

calculates a new 3D image by using the maximum of each data set on a pixel-wise

basis. Brown et al.61 demonstrate that the SNR of an image resulting from MIP

increases with the number of images included in the reconstruction. The trade-off,

however, is increased scan time which can lead to blurring artifacts due to patient

motion between acquisitions. In addition, the signal variation, as seen in Figure 2.9,

can never be fully removed from all tissues.

2.3 Super Resolution

Apart from the decrease in image quality, low resolution (LR) acquisitions confer a

number of advantages: decreased acquisition times, reduced patient heating, and re-

duced patient motion. This approach applied to bSSFP acquisitions has the additional

advantage of increased artifact tolerance due to a decrease in TR. The application

of a neural network, trained to perform the task of super resolution, could allow for

the advantages of LR bSSFP imaging to be realized, without significantly degrading

image quality.
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2.3.1 Neural Networks

In general, a neural network consists of numerous connected computational units

known as neurons. When working with image data, each pixel in the image corre-

sponds to a neuron in the network’s input layer. Subsequent neurons are organized

into layers such that input data enters the input layer, makes its way through the

computational elements of the hidden layers, and exits the model at the output layer.

Figure 2.10 depicts a simple neural network consisting of two hidden layers. The

number and type of hidden layers used in a model, and how they are connected,

defines a model’s architecture.

Figure 2.10: The basic components of a neural network organized into input, hidden,
and output layers. The Figure is reproduced from Malik 2019.62

The weight of a neuron’s contribution to the neurons in the subsequent layer is

an important feature of a neural network. They are traditionally initialized as small,

random numbers, and it is these values that are fine-tuned during the training process

such that the desired task can be performed.
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Figure 2.11: A single convolutional filter (i.e. W × H × C = 3 × 3 × 1) acts on an
input image of size 5 × 5 × 1, using a stride of 1, producing an output array of size
3 × 3 × 1. Convolutional layers in a CNN can consist of multiple filters, producing
multiple output layers that capture various high-level features in the input image.
The figure is a modified version of that produced by IBM Cloud Education.64

2.3.2 Fundamental Layers of Convolutional Neural Networks

Convolutional neural networks (CNNs) are capable of extracting high-level features

from an image and are, therefore, very commonly used for image-oriented tasks.63

The fundamental building block of a CNN is the convolutional layer, which utilizes

a convolutional filter. The convolutional filter is commonly a tensor of shape Hj ×

Wj × Cj where Hj and Wj are the height and width of the filter at layer j, and Cj

is the number of channels, or feature maps, to be extracted at the jth layer. As the

convolutional filter is generally much smaller than the input it is being applied to,

multiple steps are required when performing the convolution operation. The size of

the step taken is termed the stride and is typically set to 1 or 2. The example in

Figure 2.11 demonstrates a convolution with a stride of 1, which results in the output

array having smaller dimensions than the input. If this is undesirable, zero padding

along the borders of the input can be performed such that the convolution operation

does not change the dimensions of the input. Importantly, the values that make up

each filter are the weights that need to be trained in a CNN. The size and number of

filters used at a given convolution layer are an example of a model’s hyperparameters

and can be chosen to reflect the number and size of features in the image that are to

be extracted.
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Following a convolutional layer is an activation layer, which allows the network to

learn non-linear relationships between the input and output. The most common acti-

vation function is the Rectified Linear Unit, ReLU, defined as AReLU(z) = max(0, z)

for input z. The LeakyReLU function is a modified version of ReLU, designed to

prevent neurons from being assigned a value of zero over numerous updates to the

weights. Leaky ReLU returns αz (where α is typically chosen to be 0.01) when

z < 0, and z when z > 0.65 The sigmoid activation function is commonly used

when the network is trained to perform a binary classification task. The function,

Asigmoid(z) = 1/(1 + e−z), returns values between 0 and 1, and is therefore ideal for

determining the probability of the input belonging to a given class.63 Activation func-

tions are applied in an element-wise manner and therefore do not alter the dimensions

of the input. Notably, activation functions do not contain any trainable parameters.

Batch normalization66 is a procedure that can be performed before or after a

convolutional layer. Here, “batch” refers to a subset of the training data that is

provided to the network before the weights are updated. To prevent the distribution

of weights at a given layer from changing between each update, the output of the

previous layer is normalized to a standard distribution by subtracting the batch mean

and dividing by its standard deviation. Batch normalization has been said to speed

up training and reduce the dependency on weight initialization.63

Fully connected, or dense layers are typically used when a classification task is

being performed. A dense layer is one in which the layer’s neurons are each connected

to every neuron in the preceding layer, with each connection having an associated

weight used to determine its contribution. In the case of binary classification, the

final layer consists of a single, fully connected neuron, whose value can be input to

a sigmoid activation function, for example, to determine the final class to which the

input is assigned.

2.3.3 Model Architectures

Many networks have been developed that make use of CNNs, and an overview of some

of the common architectures is provided by Lundervold et al.63 Of relevance to the

work presented in this thesis is the Residual Network (ResNet) and the Generative

Adversarial Network (GAN).
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A Residual Network (ResNet), is a CNN that employs many “skip connections”,

which do not have trainable parameters, but simply add the output of a previous

layer to a layer ahead. The residual blocks created are the fundamental component

of a ResNet22 (Figure 2.12(a)). The connections between layers will include a linear

projection, if necessary, to ensure the layers’ outputs have identical dimensions before

being combined. Figure 2.12 also demonstrates a dense residual block, where the

connections are such that the output of one layer is concatenated with the output

from numerous subsequent layers. This connection between upper and lower layers

of a network allows the preservation of information from layers higher up in the

architecture. Compared to CNNs, ResNets have the advantage of preserving higher

level information without the need to train additional parameters.

Figure 2.12: (a) A diagram of a residual block where the output of a shallow layer (not
shown) is added to the output of a deeper convolutional layer. A residual dense block
(b), in which each the output of a convolutional layer (followed by ReLU activation)
is concatenated to the output of each subsequent activation. The figure is reproduced
from Zhang et al. 2018.67

A generative adversarial network (GAN)68 consists of two sub models - a generator

and a discriminator. When performing image-related tasks, the generator learns to

produce a modified version of the input image, and the discriminator attempts to

classify the image as originating from the domain of “real” images, provided during

training, or as “fake”, i.e. produced by the generator. The overall architecture of

a GAN is shown in Figure 2.13. The generator model typically consists of a CNN

such as ResNet, as discussed. The discriminator can also be comprised of a CNN,

but must include fully-connected layers, and an activation layer such as the sigmoid

function, as the last computational steps. This structure permits the discriminator

to output one final variable: the probability of an image belonging to the real image

domain. Training a GAN requires optimizing a min-max problem - the probability of
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the discriminator correctly labelling an image as real or fake is maximized while the

generator is trained so as to minimize the probability of the discriminator labelling

its images as fake. This encourages the generator to produce images that look more

and more like those in the real image domain. The training therefore takes place in

an alternating manner until the discriminator is unable to determine what domain an

image originates from (i.e. it predicts equal probabilities for fake and real images).

Further discussion on training of GANs is provided in the following section.

Figure 2.13: An overview of the architecture of a generative adversarial network
(GAN). The figure is reproduced from Brownlee 2017.69

2.3.4 Training, Validation, and Testing

Models can be trained via supervised or unsupervised learning. In the context of per-

forming the super resolution task, supervised learning is feasible when paired examples

of low resolution (LR) input and high resolution (HR) target images are available to

train the model on. During training, the model is sequentially shown a large number

of LR-HR training pairs (or multiple pairs in the form of a batch). It then gradually
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learns the relationship between an LR input image and its corresponding HR target

via optimization of an objective function which compares the model’s output to the

target. When paired examples are not available, a model can undergo unsupervised

learning. In this case, the model tries to generate an image, based on LR input, that

fits into the domain of HR images that it is provided. Further discussion of possi-

ble optimization functions is provided in in Section 2.3.5. The iterative optimization

process considers the effect of each of the network’s weights as it adjusts them and

attempts to find the optimal solution to the multidimensional objective function. The

mathematical process of doing so is known as backpropagation.

In parallel to the training process, the model can be fed previously unseen images

to generate a prediction based on its weights at that point in training. Doing so is

a way to estimate of the model’s current skill and is known as validation. The skill

level can be quantified via calculation of the loss function or via a new function more

relevant to the desired outcome. When learning the SR task via supervised learning,

for example, validation be completed via calculation of the peak signal-to-noise ratio

(Section 2.3.5) between the model’s prediction and the HR target. Validation is not

used to adjust model weights, but can instead be used to tune hyper-parameters of

the model such as the number and type of layers.

Once training is completed, the final model can be used to make predictions based

on unseen test data in a stage known as testing.

Training, validation, and testing of a neural network can require very large datasets.

Ledig et al.,24 for example, trained their network, SRGAN, on 350 thousand images

from the ImageNet70 database of natural images. In the context of MRI, such large

data sets are difficult to acquire. For this reason, multiple publicly available MR data

sets have been developed to encourage model development and training (see Bento

et al.71 for a summary of some of the publicly available brain imaging data sets). It

is important to note, however, that such data sets, while valuable, may not reflect

the characteristics of images acquired on a particular MR system, and may lead to

misleading or unreliable results.71
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2.3.5 Objective Functions

The choice of objective function is crucial for both supervised and unsupervised learn-

ing methods, as optimization of the function is what determines the adjustment of

model weights.

For image tasks, supervised learning techniques most commonly attempt to min-

imize the pixel-wise mean squared error (MSE) as it is a convex and differentiable

function. For an image, Y , output by a model, and the reference image, X, both with

N pixels, the mean squared error is given by:

MSE(X, Y ) =

∑N

i=1(Xi − Yi)
2

N
(2.27)

The peak signal-to-noise ratio, PSNR, is related to MSE, and is also a commonly

used metric for image-related tasks. If we consider the output image to be equivalent

to the reference image with additional undesirable features, i.e. “noise”, the difference

between predicted and reference images results in the “noise” signal. MSE is therefore

the power of the average noise signal. As such, PSNR is a measure of the ratio of the

maximum signal in the reference image to the average noise signal:

PSNR(X, Y ) = 10 · log10

(

MAX2
X

MSE(X, Y )

)

(2.28)

However, it is widely accepted that MSE, and consequently PSNR, do not correlate

well with humans’ perception of image quality. MSE, for example, assumes that the

effect of noise is independent of local image characteristics, whereas the human visual

system’s sensitivity to noise depends on local luminance, contrast, and structure.72

Introduced in 2016, the perceptual loss function calculates the average MSE be-

tween higher level features of the images, extracted from a CNN known as VGG

(named after the Visual Geometry Group that developed it).73 This type of loss

function better reflects human perception and was shown to produce predictions that

out-perform identical models trained on MSE.74 For the jth layer of the VGG net-

work, a feature map of shape Cj ×Hj ×Wj is created, and the perceptual loss is then

given by
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LVGG,j
perceptual(X, Y ) =

1

CjHjWj

||VGGj(X)− VGGj(Y )||2 (2.29)

where VGGj is the output of the jth layer of the VGG network.

Training a GAN requires optimization of the max-min adversarial problem defined

by Goodfellow et al.;68 for a generator, G, and discriminator, D acting on fake images,

z, and real images, x, this problem can be defined as

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.30)

where pdata(x), and pz(z) represent an image, x, drawn from the distribution of

real images pdata, and a fake image, z, drawn from the distribution of images created

by the generator, pz, respectively.

2.4 Experimental Details

To accomplish the research objectives outlined in Section 1.6, images resulting from

two unique 0.5T bSSFP protocols, one designed to examine the temporal bone and

one to image the paranasal sinuses, were acquired. What follows is a description of

the MR system used and the protocols developed.

2.4.1 Hardware

Imaging protocols were developed on a 0.5T head-only MR system (Synaptive Medi-

cal, Toronto, Canada) designed for point-of-care neuroimaging. The system consists

of a cryogen-free, closed conduction cooled superconducting magnet, and high per-

formance asymmetric gradient coils with a peak strength of 100 mT/m and peak

slew rate of 400 T/m/s. An adjustable 16 channel head-coil enables patient-specific

placement, and is combined with a digital receive chain.

2.4.2 Temporal Bone Protocol

The complex region of the inner ear requires high resolution to visualize effectively,

and as such, an acquisition strategy with isotropic resolution of 0.3 mm was prioritized
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when developing the temporal bone protocol. A maximum gradient strength of 60

mT/m permitted a TR of 6.7 ms.

With these parameters, however, it was found that some subjects’ images demon-

strated band-like artifacts that traversed the FOV and often obscured the relevant

anatomical structures. These artifacts were confirmed to be due to concomitant gra-

dient fields by altering the placement of the participant on the scanning bed. The ar-

tifacts remained inferior to the inner ear structures unless the participant was situated

inferior to the isocenter of the gradient fields. Since ideal placement of participants

in the scanner was not always possible, the protocol was modified to use a maximum

gradient strength of 30 mT/m so as to reduce the effect of concomitant fields and to

allow for more flexibility of participant positioning. This led to an increase of TR to

7.0 ms, and an increase in scan time of 19 s. All other imaging parameters are listed

in Table 2.1.

Imaging Parameter
Field of view (cm) 18

Acquired isotropic resolution (mm) 0.6
Number of slices 164

Number of excitations 1
Receive Bandwidth (kHz) 70

Repetition time (ms) 6.7 / 7.0
Echo time (ms) 3.3
Flip angle (◦) 60

Interpolated isotropic resolution (mm) 0.3
Maximum gradient strength (mT/m) 60 / 30

Slew rate (T/m/s) 200
Scan time 4min. - 4min. 19s.

Table 2.1: Imaging parameters for the 0.5T bSSFP temporal bone protocol.

An image with concomitant gradient artifacts, acquired with a maximum gradient

strength of 60 mT/m, is shown in Figure 2.14, along with an image of the same patient

acquired with a maximum gradient strength of 30 mT/m.
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(a) G = 60 mT/m (b) G = 30 mT/m

Figure 2.14: Images acquired from a healthy volunteer with the 0.5T bSSFP tempo-
ral bone protocol using a maximum gradient strength of (a) 60 mT/m, and (b) 30
mT/m. The red arrows in the top panel of (a) indicate the loss of signal resulting
from concomitant gradient fields, and the bottom panels show the image acquired at
this axial location. The volunteer’s position along the superior-inferior direction was
unchanged between acquisitions.

The temporal bone images in this work were acquired from a total of 38 par-

ticipants. The initial version of the low-field protocol was used to acquire images

from the first 10 participants, with the remaining 28 being imaged with the modified

protocol. Recruitment and acquisition protocols were approved by the Nova Sco-

tia Health (NSH) Research Ethics Board (REB), and participants’ oral and written

consent were obtained. The protocol also provided permission to access any par-

ticipants’ retrospectively acquired clinical scans, making research objectives 1 and 2

feasible (Section 1.6).

2.4.3 Sinus Protocol

The multiple air/tissue and air/bone interfaces in the paranasal sinuses exhibit inher-

ently high contrast but have large susceptibility differences that cause off-resonance
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effects. The resulting banding artifacts can mimic drainage pathways or obscure the

fine structures that separate the air-filled regions. For this reason, a small TR value

of 3.5ms, enabled by high peak gradient strength and slew rate, was prioritized in

our sinus protocol in order to reduce off-resonance effects, and ultimately minimize

the presence of banding artifacts in the anatomical structures of interest. As such,

a small flip angle of 30◦ was used to maintain contrast. The imaging parameters for

the 3D bSSFP sinus protocol are shown in Table 2.2.

Imaging Parameter
Field of view (cm) 18

Acquired isotropic resolution (mm) 0.8
Number of slices 176

Number of excitations 1
Receive Bandwidth (kHz) 150

Repetition time (ms) 3.5
Echo time (ms) 1.6
Flip angle (◦) 30

Interpolated isotropic resolution (mm) 0.4
Maximum gradient strength (mT/m) 50

Slew rate (T/m/s) 200
Scan time 1min. 52s.

Table 2.2: Imaging parameters for the 0.5T bSSFP paranasal sinus protocol.



Chapter 3

Artifact-resistant balanced steady-state free precession

imaging of the temporal bone and paranasal sinuses without

phase-cycling at 0.5T

3.1 Study Objectives and Hypotheses

The primary objective of this study is to perform a quantitative analysis of the ar-

tifact tolerance afforded by the 0.5T temporal bone and paranasal sinus protocols

by tabulating the number of images with artifacts traversing relevant structures. A

theoretical decrease in susceptibility-induced off-resonance effects at 0.5T, compared

to conventional field strengths, leads us to hypothesize that:

1. the majority (>50%) of images from the 0.5T temporal bone and paranasal

sinus protocols will be free of artifact traversing relevant structures.

Since our institution’s clinical temporal bone exams include bSSFP images, we

will compare the artifact tolerance between 0.5T and these clinical exams. The clin-

ical temporal bone images are obtained at 3T with phase-cycled bSSFP acquisitions

reconstructed with MIP. As such, we hypothesize that:

2. the number of temporal bone images without banding artifacts traversing rel-

evant structures in images acquired at 0.5T will be less than those acquired

clinically.

Provided sufficient artifact tolerance, the contrast-to-noise (CNR) ratio between

neighbouring tissues is a key metric in satisfactory visualization.75 The majority of

the structures examined herein abut air-filled spaces, and the SNR of each structure is

therefore equivalent to a measure of CNR. A study of radiologist preference, performed

by Owen et al.76 yielded the result that an SNR of ≈ 20 is desirable, with any excess

being traded for resolution. To that end, the SNR of relevant structures will be

49
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calculated for each protocol. Given the decrease in T1 values at low field, and the use

of fast gradients and a conformable head-coil, we hypothesize that:

3. the SNR in images resulting from the 0.5T temporal bone and paranasal sinus

protocols will be the same as, or greater than that preferred for visualization

by radiologists (i.e. SNR ≥ 20) for all structures examined.

3.2 Methods

3.2.1 Image Acquisition

Temporal Bone

A subset of temporal bone images from 21 participants were included in this study.

The inclusion criteria were that participants’ clinical exams were performed at 3T,

and that their 0.5T scans were acquired under the newest version of the temporal

bone protocol (i.e. TR = 7.0ms and maximum gradient strength 30 mT/m, with all

other imaging parameters as listed in Table 2.1). The cohort included 9 participants

that identified as male (mean age 52 years ± 11) and 12 participants that identified

as female (mean age 48 years ± 13). Combined cohort mean age was 52 years ± 12

years ranging from 22 to 66 years.

Participants’ SOC temporal bone images were acquired at 3T on the Discovery

MR750 system with a rigid, 32-channel head coil (General Electric Healthcare). All

SOC images were produced from phase-cycled bSSFP acquisitions. Phase cycling

consisted of one acquisition with a consistent RF pulse phase, and a second acquisi-

tion with an RF pulse phase that alternated between 0◦ and 180◦. The final image

was reconstructed with MIP. This cohort of images will henceforth be referred to by

its vendor-specific name of phase-cycle Fast Imaging Employing Steady-state Acqui-

sition, i.e. FIESTA-C. The acquisition parameters for the 3T FIESTA-C images were

chosen to be the best for SOC imaging of the temporal bone at 3T by our institution,

and are listed in Table 3.1.

To quantify the effect of field strength on artifact tolerance, three additional

bSSFP images were acquired from a healthy volunteer (48-year-old male) under an

REB approved protocol for technique development. Two of the images were acquired

on the 3T system - one image was acquired with the same parameters as the clinical
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Imaging Parameter
Field of view (cm) 18

Acquired isotropic resolution (mm) 0.6
Number of slices 136 or 144

Number of excitations 2
Receive Bandwidth (kHz) 73

Repetition time (ms) 5.5 - 5.6
Echo time (ms) 2.2 - 2.3
Flip angle (◦) 60

Number of phase cycles 2
Interpolated isotropic resolution (mm) 0.3
Maximum gradient strength (mT/m) 55

Slew rate (T/m/s) 140
Scan time 5min. 22s - 5min. 45s.

Table 3.1: Imaging parameters used for clinical 3T 3D axial FIESTA-C acquisitions.

FIESTA-C protocol (NEX = 2, phase-cycling and MIP), and a second was acquired

without phase cycling methods (NEX = 2), and therefore MIP was not performed

(scan time = 4 min 6 s, and all other parameters as listed in Table 3.1). The third

image was collected on the 0.5T system with the parameters shown in Table 2.1 (i.e.

NEX = 1, no phase cycling).

Paranasal Sinus

Under our REB approved paranasal sinus protocol, 25 participants were scanned

who had clinical requisitions for suspected sinus abnormalities requiring CT imaging.

Informed written consent was obtained. The sinus cohort included 11 participants

that identified as male (mean age 55 years ± 13) and 14 participants that identified

as female (mean age 57 years ± 12). The combined cohort mean age was 56 years ±

12, ranging from 33 to 73 years.

Although clinical MRI of the sinuses is not performed at our institution, a 3T

protocol was developed under the REB-approved technique development protocol,

with parameters similar to that of the 0.5T protocol (FOV=18cm, matrix = 226×226,

172 slices, isotropic acquired resolution = 0.8mm, NEX=1, RBW= 73 kHz, TR/TE =

4.2ms / 1.6ms, flip angle = 30◦, interpolated isotropic resolution = 0.4mm, scan time

= 2 min 48s, no phase cycling) to exemplify the challenges of imaging the paranasal
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sinuses at conventional field strengths. One healthy volunteer (48-year-old male) was

scanned with this protocol, as well as the 0.5T paranasal sinus protocol (parameters

shown in Table 2.2) to facilitate comparison.

3.2.2 Image Analysis

To quantify the artifact tolerance of the 0.5T temporal bone protocol (NEX = 1, no

phase cycling or MIP) in comparison to the clinical 3T FIESTA-C acquisitions (NEX

= 2, phase cycling and MIP), as well as the artifact tolerance of the 0.5T paranasal

sinus protocol (NEX = 1, no phase cycling), a researcher was first trained by one

radiologist on how to identify problematic artifacts. Next, all images (excluding

those of the healthy volunteer) were examined individually and the presence of any

banding artifacts in the structures of interest were recorded and tabulated.

To calculate the SNR values resulting from the low-field protocols, two board-

certified neuroradiologists provided guidance on the structures critical to characterize

under each protocol, and regions of interest (ROIs) were drawn around them. For the

temporal bone exam, this included the left and right vestibules, cochlea, and superior

semi-circular canals, and regions of cerebral spinal fluid (CSF) surrounding the left

and right facial, cochlear, and vestibular nerves. Additionally, a white matter region

of the brain, and the fourth ventricle were included in the analysis. For the sinus

images, ROIs were drawn around a region of CSF superior to the cribriform plate,

inside one globe, inside one maxillary sinus, and mucosa in one of the middle nasal

turbinates. All ROIs were drawn in the plane which best visualized the structure and

spanned a minimum of 5 slices. A noise region was drawn in each image outside the

head along the frequency-encode direction.

The average SNR for each anatomical structure was calculated according to

SNR = 0.70
S

SDair

(3.1)

where S is the mean signal in the ROI and SDair is the standard deviation of

signal in the noise ROI. It has been shown that the transformation from complex MR

data to magnitude image results in the distribution of pixel intensities, in the presence

of Gaussian noise, following the Rician probability distribution function (PDF). For

regions in which there is high signal intensity, the PDF behaves like a Gaussian PDF,
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while reducing to a Rayleigh PDF in the absence of signal. In addition, the use of

a 16 channel RF receive coil alters the Rayleigh noise distribution. Combined, these

effects lead to a correction factor of 0.70 being applied to compare ROIs containing

signal to those of background noise.77

Once calculated, the SNR for left and right temporal bone structures were concate-

nated such that there was one set of results for each structure at each field strength.

All SNR calculations were done for all subjects and the mean and 95% confidence

interval across subjects were determined for each structure.

It is important to note that the degree to which the MIP method alters the dis-

tribution of pixel intensities differs from one PDF to another. We have empirically

confirmed that performing a MIP operation on multiple phase-cycled images signifi-

cantly alters signal and noise distributions of the resulting image, in a way that is not

as easily corrected as standard Fourier reconstructions. Despite quantitative compar-

isons of MIP and other acquisition techniques being performed in other studies, there

is no consensus in the literature on how to calculate SNR in MIP reconstructions.

Thus, we believe that a direct comparison of SNR between the 0.5T bSSFP (without

phase cycling and MIP) and 3T FIESTA-C acquisitions (with phase cycling and MIP)

may not be meaningful.

3.3 Results

3.3.1 Temporal Bone

Representative images from temporal bone acquisitions at 0.5T (NEX = 1, no phase

cycling) and 3T (NEX = 2, phase cycling and MIP) are shown in Figure 3.1. The

additional 3T acquisitions are shown in Figure 3.2, along with the 0.5T acquisition

of the same healthy volunteer. Together, these images portray the necessity of phase

cycling and MIP when acquiring temporal bone images at 3T.
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(a) 0.5T
(i)

(ii)

(iii) (iii)

(ii)

(i)
(b) 3T

Figure 3.1: Axial (i), coronal (ii), and sagittal (iii) views of representative (a) 0.5T
bSSFP and (b) 3T FIESTA-C temporal bone acquisitions. 3T data are displayed as
a MIP of phase-cycled acquisitions. 0.5T data were acquired with NEX = 1, while
3T data were acquired with NEX =2 and displayed as a MIP of the phase-cycled
acquisitions. The 3T images were acquired with a repetition time of 5.5ms and an
echo time of 2.2ms, while all other parameters are as those listed in Table 3.1.
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Figure 3.2: Images resulting from (a) FIESTA-C at 3T (NEX = 2, phase cycling and
MIP), (b) FIESTA at 3T (NEX = 2, no phase cycling and no MIP), and (c) bSSFP
(NEX = 1, no phase cycling) at 0.5T. The red boxes are zoomed-in views of the region
surrounding the right vestibule and lateral SSC. Red arrows in (b) point to banding
artifacts that are not present at similar anatomical locations in (a) and (c).

Of the 21 sets of temporal bone images examined, 4 (19%) demonstrated banding

artifacts in the structures of interest at 0.5T (NEX = 1, no phase cycling), while 18

(86%) of the 3T FIESTA-C (NEX = 2, phase cycling and MIP) acquisitions showed

banding. An example image with artifacts present at 3T is shown in Figure 3.3 along

with the 0.5T image of the same participant.

(a) (b)

Figure 3.3: Images resulting from a (a) 0.5T bSSFP (NEX = 1, no phase cycling)
acquisition and (b) a 3T FIESTA-C (NEX = 2, phase cycling and MIP) acquisition.
The red arrows in (b) indicate banding artifacts in the right vestibule and lateral
semicircular canal, which are not present in the 0.5T acquisition.
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The ROIs examined in the 0.5T temporal bone acquisitions are depicted in Figure

3.4 and the resulting SNR achieved are displayed in Table 3.2.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 3.4: The ROIs examined under the 0.5T (NEX = 1, no phase cycling) temporal
bone protocol are shown in red: (a), (b), and (c) are axial slices that show the fourth
ventricle, left white matter, and right vestibule regions, respectively. (d) is a sagittal
reformat that shows the CSF surrounding the left facial, vestibular, and cochlear
nerves, and (e) and (f) are coronal reformats that show a portion of the right superior
semi-circular canal, and the right cochlea, respectively.

Structure Mean SNR Standard Error 95% Confidence Interval
4th ventricle 123.88 2.17 (102.60, 145.16)
White matter 26.49 0.44 (22.21, 30.77)
Vestibule 108.70 1.81 (96.71, 120.70)

CSF in nerve region 93.34 1.51 (83.34, 103.33)
SSC 85.18 1.43 (75.69, 94.66)

Cochlea 92.17 1.42 (82.78, 101.55)

Table 3.2: SNR of structures examined in the 0.5T bSSFP temporal bone protocol
(based on bSSFP acquisitions from n = 21 participants with NEX = 1, no phase
cycling).
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3.3.2 Paranasal Sinus

A representative image acquired with the 0.5T sinus protocol is shown in Figure 3.5,

while Figure 3.6 demonstrates the extensive banding present when attempting to

image with a similar protocol at 3T (NEX = 1, no phase cycling).

(a) (b) (c)

Figure 3.5: A representative image from the 0.5T axial 3D bSSFP paranasal sinus
protocol (NEX = 1, no phase cycling). (a) is the native axial plane, (b) is a coronal
reformat and (c) is a sagittal reformat.

(a) (b)

Figure 3.6: A comparison of paranasal sinus acquisitions with similar imaging pa-
rameters at (a) 3T (NEX = 1, no phase cycling) and (b) 0.5T (NEX = 1, no phase
cycling). The multiple red arrows in (a) point to areas with numerous banding arti-
facts resulting from off-resonance effects.

Of the 25 participants’ images acquired with the 0.5T paranasal sinus protocol

(NEX = 1, no phase cycling), 11 (44%) demonstrated banding that intersected the

relevant structures, however 4 of these were due to suspected metallic dental work
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(Figure 3.7). Therefore, of the 21 images that did not have metallic artifacts inter-

secting the sinus anatomy, 14 (67%) were free of banding artifact. An example of an

acquisition with banding is shown in Figure 3.8.

(b)(a)

Figure 3.7: Metallic dental work creates dipole field inhomogeneity patterns that lead
to bSSFP banding artifacts in 4 participants’ 0.5T bSSFP sinus acquisitions (NEX
= 1, no phase cycling). One participant’s (a) coronal and (b) sagittal reformats are
shown here, with red arrows pointing to the outer edges of artifacts resulting from
this effect.

(a) (b)

Figure 3.8: Coronal (a) and sagittal (b) reformats of an axial 3D bSSFP acquisi-
tion from the sinus protocol developed on the low-field system (NEX = 1, no phase
cycling). The red arrows indicate banding artifacts that traverse the ostiomeatal com-
plex and maxillary sinuses in (a) and extend from the jaw to the base of the sphenoid
sinus in (b).
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The ROIs examined under the 0.5T paranasal sinus protocol are shown in Figure

3.9 and the results of SNR calculations are listed in Table 3.3.

Figure 3.9: The ROIs examined for SNR calculations under the 0.5T paranasal sinus
protocol. The red region is the CSF superior to the right cribriform plate, the green
region encompasses a portion of the right orbit, the yellow region encompasses some of
the mucosa in the right middle turbinate, and the blue region encompasses a portion
of the right maxillary sinus.

Structure SNR Standard Error 95% Confidence Interval
CSFa 81.09 1.93 (60.76, 101.42)
Globe 89.10 2.16 (66.34, 111.86)

Maxillary sinus 3.74 0.09 (2.76, 4.72)
Mucosa 39.89 0.98 (29.59, 50.19)

Table 3.3: SNR of structures examined in the 0.5T bSSFP paranasal sinus protocol
(based on acquisitions from n = 25 participants with NEX = 1, no phase cycling). a

CSF refers to the CSF superior to the cribriform plate.
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3.4 Discussion

3.4.1 Temporal Bone

More than 50% (81%) of temporal bone images acquired with the 0.5T bSSFP proto-

col, without phase cycling techniques, were free of banding artifacts traversing relevant

structures, allowing us to confirm the first hypothesis. The 3T FIESTA-C (NEX = 2,

phase cycling and MIP) acquisitions displayed less artifact tolerance than the bSSFP

acquisitions performed at 0.5T, with only 14% being free of banding artifacts travers-

ing relevant structures, thus we can reject hypothesis 2. This is a surprising result,

as the FIESTA-C acquisition is commonly used with MIP reconstruction, and is said

to “greatly reduce banding artifacts”.60 Given the similar TR values used in both

the 0.5T and 3T FIESTA-C protocols, we can infer that the increase in off-resonance

effects at 3T was responsible for producing banding in both of the FIESTA-C acqui-

sitions used in the MIP reconstruction. If multiple, large banding artifacts existed at

similar locations in each acquisition during phase cycling, these artifacts could persist

despite the use of MIP. These results, along with Figure 3.2 demonstrate the advan-

tage of reduced off-resonance effects at low field strengths - a 0.5T bSSFP acquisition

of the temporal bone can demonstrate improved artifact tolerance over a similar 3T

acquisition that utilizes phase cycling and MIP reconstruction, thereby reducing scan

time and eliminating the need for advanced reconstruction techniques.

The SNR of the temporal bone structures examined is well above the minimum

required as preferable to radiologists,76 confirming hypothesis 3 for the temporal bone

protocol. While excess SNR suggests that an even higher resolution protocol could

be attempted, the required increase in TR would be likely to introduce more band-

ing artifacts in relevant structures. Instead, future studies could explore traditional

acceleration techniques, such as GRAPPA,13 to reduce scan time, while maintaining

sufficient SNR to delineate the relevant structures. Further, the fast gradients on the

0.5T system permitted a high readout efficiency, allowing a high SNR acquisition in

a shorter scan time than 3T acquisitions.

In summary, the 0.5T bSSFP images of the temporal bone were acquired with scan

times less than those of the clinical exams while demonstrating improved artifact tol-

erance. Additionally, the 0.5T images displayed sufficient SNR at isotropic resolutions
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equivalent to clinical acquisitions. These results support the case for future use of the

0.5T system for clinical temporal bone exams.

3.4.2 Paranasal Sinus

The artifact tolerance of the paranasal sinus protocol was shown to be sufficient to

confirm hypothesis 1, i.e. > 50% of the images were free of artifacts traversing rele-

vant structures. Even more artifact tolerance could be prioritized in future protocol

modifications; a decrease in resolution would permit an even shorter TR, making the

acquisition even more robust to off-resonance effects. Future studies, as well as clini-

cians’ opinions, are required to determine whether to prioritize resolution or artifact

suppression in future versions of the 0.5T paranasal sinus protocol. The attempt to

acquire an image with similar acquisition parameters on a 3T system (Figure 3.6)

further demonstrates the advantages of imaging with a low-field system with high-

performance gradients - to acquire the same resolution and FOV, a TR/TE of 4.2ms

/ 1.6ms is required at a RBW of 73 kHz to image at 3T (compared to 3.5ms / 1.6ms

and 150 kHz at 0.5T), due primarily to SAR limits, as well as the lower gradient slew

rate (140 T/m/s at 3T compared to 200 T/m/s at 0.5T). The necessity of a long TR

creates banding that renders the images non-diagnostic.

When imaging at 0.5T, the high SNR efficiency of the bSSFP sequence allowed a

high receive bandwidth to be tolerated for banding artifact suppression via shortened

TR, while maintaining SNR sufficient for radiologist visualization. The high SNR

values (> 39) found in structures other than the air-filled maxillary sinus (Table 3.3),

permits the delineation of structures and allows us to confirm hypothesis 3 for the

paranasal sinus protocol. These results suggest that SNR could be sacrificed such

that even higher resolution protocols could be explored in the future. Doing so would

require employing higher receive bandwidths with stronger, faster slew rate gradient

settings. Notably, the 0.5T system used has an upper slew rate setting of 400 T/m/s

without producing evident peripheral nerve stimulation from testing at our facility,

however gradient heating must be taken into account when high slew rates are used.

While CT is the current standard of imaging for paranasal sinuses, our health

center performs CT acquisitions with a slice thickness of 3mm. Our MRI protocol

offers preferable, sub-millimeter resolution in the coronal and sagittal planes, as well
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as superior soft-tissue differentiation, and is free of potentially harmful radiation.

Furthermore, the parameters used in our sinus acquisition resulted in a scan time

of 1 min 52s, which competes with CT when practical aspects of clinical work flow

are considered. Combined with the high SNR and resolution of the acquired images,

this work demonstrates the potential of MRI for high throughput sinus pathology

evaluation.

Overall, the quantitative evaluation of the 0.5T temporal bone and paranasal sinus

protocols performed here shows that the decrease in off-resonance effects at 0.5T,

and the ability to use a short TR, are beneficial in reducing the banding artifacts

that are expected when imaging regions with susceptibility differences. Moreover,

imaging with a head-only system with strong, fast gradients permits artifact-tolerant

acquisitions without sacrificing SNR or resolution. We suspect that post-processing

noise suppression from proprietary reconstruction techniques is, in part, responsible

for the resulting SNR values. It is reasonable to hypothesize that the remaining

contributions to SNR resulted from the use of the conformable 16-channel head-coil

(compared to the rigid head-coil on the 3T system), while the additional elements of

the modern receive chain no doubt aided in the maintenance of sufficient SNR.

3.4.3 Limitations

Although it does not represent a true limitation of the study, a comprehensive com-

parison of artifact tolerance and SNR for 0.5T and clinical paranasal sinus acquisitions

was not feasible, given that clinical MRI of the paranasal sinuses is not performed

at our institution. Importantly, while the metrics examined here are informative,

the true value of an MR acquisition lies in a radiologist’s ability to use the image to

answer a clinical question. To that end, a study that investigates radiologists’ ability

to visualize structures of the temporal bone is presented in the following Chapter.

3.5 Conclusions

The results of this study support the confirmation of Hypothesis 1, i.e. >50% of the

images in each protocol were free of artifact traversing relevant structures. Hypothesis
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2 was rejected in that the 0.5T temporal bone protocol (NEX = 1, no phase cycling)

produced more images that were free of banding artifacts traversing relevant struc-

tures than the clinical 3T FIESTA-C protocol (NEX = 2, phase cycling and MIP).

The SNR from the 0.5T temporal bone and paranasal sinus protocols was shown to

be greater than that preferred for visualization by radiologists, allowing us to confirm

Hypothesis 3.



Chapter 4

Low-field vs. conventional field balanced steady-state free

precession imaging of the temporal bone: radiologist rating

of anatomical visualization

4.1 Study Objectives and Hypotheses

The objective of this study is to evaluate the advantages and disadvantages of our

0.5T temporal bone bSSFP protocol in a clinical context. To achieve this objective,

we will examine radiologists’ ability to visualize structures of the inner ear and IAC

in bSSFP images acquired at 0.5T (NEX = 1, no phase cycling) in comparison to the

clinical FIESTA-C images acquired at 3T (NEX = 2, phase cycling and MIP).

While full-reference image quality metrics (IQM), such as root mean square er-

ror (RMSE) and structural similarity index (SSIM), are commonly used to facili-

tate quantitative comparison of images, none are suited for application across field

strengths. SSIM was considered for use in this study, however, it is a measure of sim-

ilarity in luminance, contrast, and structural content,78 and it can be expected that

image luminance and contrast will vary across different field strength acquisitions.

In addition, it has been shown that various IQMs do not yield strong correlations

to radiologists’ evaluation of image quality. Therefore, this study makes use of a

task-based measurement, instead of full-reference IQMs, to compare image quality.78

Clinical MRI of the paranasal sinuses is not performed at our institution, therefore

a comparison analogous to that being done with temporal bone protocols cannot be

performed.

The results of the previous study showed that the protocol exhibits better artifact

tolerance compared to 3T FIESTA-C acquisitions, and sufficient SNR for visualization

by radiologists, with isotropic resolution identical to the clinical acquisitions. We

therefore hypothesize that:

1. Radiologists’ ratings of their ability to visualize the SSC, vestibule, facial nerve,
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cochlear nerve, and cochlea will be significantly higher for images acquired at

0.5T than at conventional field strengths. Consequently, we also hypothesize

that

2. the combination of all ratings at each field strength will result in a rating that

demonstrates a statistically significant improvement in visualization of struc-

tures in images acquired at 0.5T.

4.2 Methods

4.2.1 Image Acquisition

An objective inclusion criteria of participant isocenter being < 60mm from the imag-

ing isocenter was used to select image sets to be included in this study. This criterion

was chosen as this position was determined to be the location above which con-

comitant gradient artifacts began to obscure the relevant anatomical structures (see

Section 2.4.2). In addition, we required that participants’ clinical acquisitions were

performed at a field strength of 3T.

A subset of 19 images fit this criteria, however 15 were included in the study - 3 par-

ticipants had large vestibulocochlear schwannomas that obscured relevant anatomy,

and 1 participant’s images were excluded due to an error in the 0.5T pre-scan cal-

ibration that rendered the image non-diagnostic. 7 of the participants identified as

male (52 ± 13 years), and 8 identified as female (47 ± 15 years), with a mean age of

49 years and standard deviation of 14 years.

Of the 15 included data sets, 6 of the 0.5T acquisitions were acquired with the

original temporal bone protocol using TR = 6.7ms, and a maximum gradient strength

of 60 mT/m. The remaining 9 were acquired with the modified protocol with TR =

7.0 ms, and a maximum gradient strength 30 mT/m. All other parameters are shown

in Table 2.1). Images from 14 of the participants were included in the previous study.

SOC imaging consisted of FIESTA-C acquisitions (NEX = 2, and phase cycling

with MIP) at 3T (GE Discovery MR750), using the same parameters shown in Table

3.1. The FIESTA-C sequence consisted of one acquisition with an RF phase pulse

that alternated between 0◦ and 180◦, and one in which the phase of the RF pulse

remained constant.
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4.2.2 Image Analysis

All images were anonymized and shown to two board-certified neuroradiologists (each

with > 5 years of sub-speciality experience), and the order in which the 3T and 0.5T

images for each participant were provided was randomized. The radiologists inde-

pendently rated their ability to visualize 5 anatomical structures relevant to clinical

temporal bone MRI exams: the superior semicircular canal (SSC), the vestibule, the

facial nerve, the cochlear nerve, and the cochlea. Ratings were reported using a 5-

point Likert scale ranging from 1 (very poor) to 5 (excellent). Scoring was separately

recorded for left and right ears. During analysis, left and right ratings were con-

catenated such that there was one set of ratings per anatomical structure for each

rater.

To quantify inter-rater reliability, Gwet’s AC2 (with ordinal weights) was calcu-

lated for each structure at each field strength with the AgreeStat360 application.79

There is strong evidence that low kappa values can occur when utilizing Cohen’s kappa

on ordinal data with high agreement80–82 and Gwet’s AC2 has been shown to over-

come this paradox. On the advice of our group’s statistician, results from weighted

Gwet’s AC2 tests are presented in the following section with their associated 95%

confidence intervals.

Wilcoxon signed rank tests were used to compare ratings at each field strength

cohort for each structure. In addition, an overall comparison was made in which the

combined scores at 0.5T were compared to those at 3T. Python 3.6 and the Statistical

Functions module were used to calculate P values. A result of P < 0.05 was considered

significant. Since radiologists’ ability to visualize a given structure was assumed to

be independent from their ability to visualize another, it was unnecessary to apply a

correction factor for multiple comparisons.

4.3 Results

Representative images acquired at each field strength are shown in Figure 4.1, and

demonstration of the structures being examined by radiologists is shown in Figure

4.2.
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Figure 4.1: Representative axial bSSFP MR images of the temporal bone from two
participants. Panel (a) displays an example slice from axial bSSFP acquisitions on
the 0.5T system (NEX = 1, TR/TE 7.0 ms/3.3 ms, scan time 4 min 19 s. All other
imaging parameters are shown in Table 2.1). Panel (b) displays an example FIESTA-
C acquisition from the 3T system (NEX = 2, TR/TE 5.5 ms/2.2 ms, number of slices
136, scan time 5 min 20 s, phase cycling and MIP. All other imaging parameters as
shown in Table 3.1).

(a) (b)

Figure 4.2: A depiction of the structures being rated. Images were acquired at 0.5 T
(TR/TE 7.0 ms/3.3 ms, maximum gradient strength 30 mT/m, scan time 4 min 19
s. All other imaging parameters are shown in Table 2.1). Image (a) is an axial slice
depicting the left cochlea (red arrow), vestibule (blue arrow), cochlear nerve (yellow
arrow) and facial nerve (green arrow), and image (b) is a coronal reformat where the
white arrow points to the SSC.
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The results of the Gwet’s AC2 test for inter-rater reliability are shown in Table

4.1. According to the scale defined by Landis and Koch,83 the results demonstrate

moderate to substantial agreement (0.41 < AC2 < 0.80) between raters’ Likert scores

for all structures except the cochlea which showed fair agreement (0.21 < AC2 <

0.40).

Gwet’s AC2 Value 95% Confidence Interval
(Ordinal Weights)

Conventional Field Strengths

Overall 0.8 (0.71, 0.80)
SSC 0.8 (0.66, 0.87)
Vestibule 0.8 (0.71, 0.87)
Facial nerve 0.9 (0.79, 0.93)
Cochlear nerve 0.9 (0.86, 0.94)
Cochlea 0.5 (0.45, 0.60)

0.5T

Overall 0.9 (0.85, 0.9)
SSC 0.9 (0.88, 0.97)
Vestibule 0.9 (0.83, 0.90)
Facial nerve 0.9 (0.88, 0.96)
Cochlear nerve 0.9 (0.85, 0.94)
Cochlea 0.8 (0.70, 0.86)

Table 4.1: The results of Gwet’s AC2 calculations for inter-rater reliability and their
95% confidence intervals.

The ratings are summarized by boxplots presented in Figure 4.3. Raters’ Likert

scores, overall, do not differ significantly when rating their ability to visualize struc-

tures of the temporal bone on images acquired 0.5T (NEX = 1, no phase cycling) or

3T (NEX = 2, phase cycling with MIP), resulting in a P value of 0.20, however, there

are differences when specific structures are being considered. Raters prefer the images

acquired at 0.5T for visualizing the SSC (P < 0.001) and the vestibule (P = 0.006),

whereas 3T acquisitions were preferred for visualizing the facial and cochlear nerves

(P = 0.003 and P = 0.004, respectively). No significant difference was found between

ratings for each field strength cohort when visualizing the cochlea (P = 0.70).
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Likert Scores for Images Resulting From 0.5T bSSFP Acquisitions 
 Compared to Images Resulting from 3T FIESTA-C Acquisitions
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Figure 4.3: Ratings for visualization of structures at 0.5T and 3T. The bold, red lines
indicate median values. * indicates 0.01 < P ≤ 0.05, ** indicates 0.001 < P ≤ 0.01,
and **** indicates P ≤ 0.0001. The lack of whiskers indicating the upper quartile
range reveals that the ratings were skewed towards the upper limit of the Likert scale.

4.4 Discussion

Interestingly, we were not able to confirm or reject Hypothesis 1 uniformly. There

was no statistically significant difference in overall ratings for images acquired at 0.5T

(NEX = 2, no phase cycling) and 3T (NEX =1, phase cycling with MIP), i.e. we

rejected Hypothesis 2 with P = 0.2, however, significant differences were found for

ratings of four of the five structures examined.

The results allowed us to confirm Hypothesis 1 for the SSC and vestibule, as

raters preferred the 0.5T acquisitions for visualizing these structures (P < 0.001 and

P = 0.006, respectively). Subsequent discussions with raters revealed that these pref-

erences were due to a lower prevalence of banding; some of the FIESTA-C images

acquired at 3T demonstrated fine banding artifacts that traversed the region sur-

rounding the vestibule (Figure 4.4), thereby making dehiscence of the nearby SSC

difficult to confirm. This demonstrates the advantages, in the context of a clini-

cal temporal bone exam, of decreased off-resonance effects when imaging a low field
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strengths - it is possible to acquire artifact-tolerant bSSFP images at 0.5T, without

the need for phase cycling techniques, permitting sufficient visualization in scan times

less than that required when imaging at 3T.

0.5
T

3.0
T

(c) (d)

(a) (b)

Figure 4.4: Example in which the 0.5T acquisition (top panel) was preferred over
the 3T acquisition (lower panel) for visualizing the vestibule and SSC by both raters.
All panels display coronal reformats of axial 3D bSSFP acquisitions. 0.5T data were
acquired with NEX = 1, no phase cycling, TR/TE 6.7 ms / 3.3 ms, and a scan time of
4min. 3T FIESTA-C data was acquired with NEX=2, TR/TE = 5.5/2.2ms, 136 slices,
scan time 5min 20s, and is presented as a MIP of the phase-cycled acquisitions. The
red arrows in (c) indicate examples of banding artifacts that are seen in the vestibule
in some 3T FIESTA-C acquisitions.

Hypothesis 1 was rejected for the facial and cochlear nerves, as raters preferred

3T FIESTA-C acquisitions when visualizing these structures (P = 0.003 and P =

0.004, respectively). Raters expressed that these preferences were due to the nerves

appearing “nodular” when visualized at 0.5T, making it difficult to rule out tiny

tumours. The difference in appearance between field strength cohorts is demonstrated

in Figure 4.5. A possible decrease in SNR in images acquired at 0.5T, as well as
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variations in reconstruction algorithms across vendors may be responsible for these

preferences.
(a)
0.5

T

(b)
3.0

T
Figure 4.5: An example in which the (b) 3T FIESTA-C acquisition was preferred
over the (a) 0.5T acquisition for visualization of the cochlear and facial nerves. The
red arrow in (a) indicates the “nodular” feature that raters disliked. 0.5T data were
acquired with NEX = 1, TR/TE 6.7 ms/3.3 ms, and a scan time of 4min. 3T data
were acquired with NEX = 2, TR/TE = 5.5 ms/2.2 ms, and a scan time of 5min 26s,
and is presented as a MIP of the phase-cycled acquisitions.

While CT is the current standard to diagnose SSC dehisence, MRI is required to

rule out tumours of the inner ear and schwannomas along the nerves in the inner

auditory canal.50 Our results do not demonstrate improved visualization of nerves at

0.5T, and additional studies should focus on the accuracy of tumour diagnosis, and

other areas of diagnostic utility, of low-field bSSFP imaging of the temporal bone.

Hypothesis 2 is rejected since the 0.5T images were not rated as significantly higher

than the images acquired at 3T when all ratings were combined to perform an overall

comparison. This, however, is still an important finding - bSSFP images acquired

at 0.5T, without phase cycling techniques, are not rated significantly different from

images acquired at 3T with phase cycling and MIP. Performing temporal bone imaging

at 0.5T therefore has the potential to reduce scan times and thereby reduce the overall

burden on the healthcare system.
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4.4.1 Limitations

The primary limitation of this study was the inability to truly blind raters to the field

strength used to acquire a given image; this is an unfortunate and unavoidable result

of radiologist training and experience that could have led to unconscious bias during

rating. Secondly, the majority of participants underwent 0.5T scans immediately

following their SOC exam, and it is possible that participants became uncomfortable

over time, causing motion-induced artifacts in the 0.5T acquisitions. This could have

had the effect of causing lowered ratings of the 0.5T images. Although a comparison

of paranasal sinus images acquired at 0.5T and 3T was not feasible, a parallel study is

being performed by other members of the group, which compares radiologists’ ability

to answer clinical questions when using images from our 0.5T paranasal sinus protocol

to their ability when using participants’ clinical CT images.

4.5 Conclusions

Hypothesis 1 was confirmed for the SSC (P < 0.001) and the vestibule (P = 0.006),

as raters preferred the 0.5T acquisitions for visualizing these structures. Hypothesis 1

was rejected for the facial and cochlear nerves, as raters preferred the 3T FIESTA-C

acquisitions for visualizing these structures (P = 0.003, and P = 0.004, respectively).

Hypothesis 1 was also rejected for the cochlea, since there was no significant differ-

ence between ratings (P = 0.7). The overall ratings did not demonstrate significant

improvements for visualization at 0.5T (P = 0.2), thus Hypothesis 2 is rejected.



Chapter 5

Super resolution allows for the benefits of low resolution

balanced steady-state free precession imaging without

degrading image quality.

5.1 Study Objectives and Hypotheses

As described, compressed sensing is commonly used to decrease image acquisition

times, thereby reducing patient motion. However, in addition to reduced scan times,

patient motion, and patient heating, low resolution (LR) bSSFP acquisitions can ben-

efit from the use of a shorter TR, enabling improved artifact tolerance. Importantly,

however, high resolution (HR) is a priority for temporal bone imaging to ensure suf-

ficient visualization of the fine structures of the inner ear.

The overall objective of this study is, therefore, to acquire LR images of the

temporal bone and to return them to HR with a publicly available super resolution

(SR) machine learning model, without significant degradation.

Many studies that implement super resolution pipelines synthesize LR images

from HR acquisitions (e.g.26,84). In doing so, there are paired true HR and super

resolution HR images that can be used to quantify the performance of the model,

by, for example, RMSE and/or SSIM.85 It is relevant to note that since our approach

involves separate HR and LR acquisitions, accurate co-registration of the true HR

and super resolution HR images would be required to utilize a pixel-wise comparison

such as RMSE. Further, while SSIM calculations were attempted, it was found that

the results were dominated by imperfections in co-registration, and that expected

differences in image characteristics rendered the results of SSIM calculations unin-

formative. Instead, this study employs two board-certified neuroradiologists to rate

their ability to visualize temporal bone structures in images from the original tem-

poral bone protocol (“original resolution”, or OR) as well as LR acquisitions, both

brought to HR with standard interpolation methods, and also with a super resolution
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pipeline. Analysis will compare ratings of the OR images brought to HR with stan-

dard interpolation methods to LR images brought to HR with the super resolution

pipeline. In addition, the effect of each method applied will be examined by com-

paring ratings between HR images resulting from LR acquisitions (with interpolation

and super resolution), and a similar comparison will be made between ratings of the

images resulting from OR acquisitions.

We hypothesize that:

1. LR images brought to HR with super resolution methods will not be rated

significantly different, or will be rated significantly higher, than HR images

brought to clinical resolution with standard interpolation techniques.

2. LR images brought to HR with super resolution methods will be rated sig-

nificantly higher than LR images brought to HR with standard interpolation

methods.

3. OR images brought to HR with super resolution methods will be rated sig-

nificantly higher than OR images brought to HR with standard interpolation

methods.

5.2 Methods

5.2.1 Image Acquisition

Images were acquired from 10 healthy volunteers. 6 participants identified as male

(mean age 38 ± 11 years) and 4 identified as female (mean age 28 ± 1 years). The

total participant cohort had a mean age of 35.6 years ± 11. Three axial, 3D bSSFP

images were acquired from each patient: two images were acquired with the original

0.5T temporal bone protocol, which used a TR of 7.0ms, and an isotropic resolution

of 0.6 mm. These images are therefore referred to as the “original resolution”, OR,

acquisitions. One OR acquisition was interpolated onto a 0.3 mm image matrix with

matrix size (600 × 600 × 328) (as described previously, e.g. Table 2.1), and one was

acquired without interpolation, generating an image with matrix size (300×300×164).

One LR image was acquired with a TR of 6.3 ms, and an isotropic resolution of 0.7

mm without interpolation performed, generating an image with matrix size (260 ×
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Imaging Parameter ORInt. OR LR
Field of view (cm) 18 18 18
Acquired isotropic resolution (mm) 0.6 0.6 0.7
Acquisition matrix (300 × 300) (300 × 300) (260 × 260)
Number of slices 164 164 140
Receive Bandwidth (kHz) 70 70 70
Repetition time (ms) 7.0 7.0 6.3
Echo time (ms) 3.4 3.4 3.1
Flip angle (◦) 60 60 60
Interpolated isotropic resolution (mm) 0.3 0.6 0.7
In-plane image matrix size (600 × 600) (300 × 300) (260 × 260)
Number of image slices 328 164 140
Scan time 4min. 19s 4min. 19s 3min. 11s

Table 5.1: Imaging parameters for high resolution (HR) acquisitions with and without
interpolation, and low resolution (LR) acquisitions without interpolation

260 × 140). The imaging parameters used for these 3 protocols are shown in Table

5.1. Notably, the scan time of the 0.7mm protocol was 3 minutes, 11 seconds, which

is a decrease in scan time of 1 minute 8 seconds compared to the 0.6mm protocol.

5.2.2 Data Set Preparation

This section describes the process of generating an experimental data set for each

participant. For reference, a summary is provided at the end of this section in Figure

5.7.

Interpolation

As demonstrated in Table 5.1, one of the OR protocols had interpolation to 0.3mm

performed as part of the standard reconstruction performed by the system. Images

obtained with this protocol were included as one of the experimental data sets and

are henceforth referred to as the ORInt. cohort.

Bicubic interpolation of the LR images from (260×260×140) to (600×600×328)

was performed with the Open Source Computer Vision Library (OpenCV) for Python

3.6, generating an image matrix with 3D isotropic resolution of 0.3mm. The resulting

images are henceforth referred to as the LRInt. cohort.



76

Super Resolution

Network Architecture and Training

The SR model we employed was the “Image Super-Resolution (ISR)” model provided

by Cardinale.86 The model architecture is an implementation of the residual dense

network (dense ResNet) created by Zhang et al,67 shown in Figure 5.1. The RDN

consists of 20 residual dense blocks (RDBs), each with 6 convolutional layers that

extract 64 feature maps from their input. The convolutional layers outside the RDBs

also produce 64 feature maps.

(a)

(b)

Figure 5.1: (a) The architecture of the residual dense network used in ISR, developed
by Zhang et al. “Global residual learning” is achieved by summing the shallow feature
maps, F−1 with the global feature maps, FGF to produce the dense feature maps, FDF .
The upscaling was performed by using the Efficient Sub Pixel Convolutional Neural
Network (ESPCNN) designed by Shi et al.87 Each of the residual dense blocks (RDBs)
in (a) performs “local residual learning” (b) via summation of the feature maps from
the previous layer, Fd−1 with the local feature maps, Fd,LF , which are created by the
current residual dense block. The figure is generated from those presented by Zhang
et al 2018.67

Multiple sets of pre-trained weights for the model were provided. One such set

resulted from training the model on the DIV2K dataset,88 while optimizing the mean

squared error (MSE) and validating with the peak signal-to-noise ratio (PSNR). As

this training is described as “PSNR-driven”, the resulting weights are henceforth

referred to as WPSNR.
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For a second set of weights, the RDN was trained by minimizing a combination

of MSE, and perceptual loss (using VGG19). In addition, the RDN was treated as

the generating component of a GAN such that the prediction produced by the model

was fed to a discriminator, where the discriminator architecture was based on that

designed by Ledig et al.,24 shown in Figure 5.2. The overall loss used to produce the

second set of weights was therefore calculated as a weighted sum of MSE, perceptual

loss, and the binary cross-entropy resulting from the GAN component. Model output

was validated using PSNR. This architecture was trained, in part, on input images

from the DIV2K data set, compressed by 50%. Since the model then learned to reduce

compression artifacts, the resulting weights were referred to as the “noise-cancelling”

weights by the authors, and we will refer to them as WNC here. Further details on

network architecture and training can be found at Cardinale’s GitHub repository.86

Figure 5.2: The architecture of the discriminator used to produce WNC in the ISR
model. Here, k is the dimension of the square convolution kernel, n is the number
of feature maps extracted, and s is the stride used in each step of the convolutional
kernel. The figure is reproduced from Ledig et al. 2017.24

Pre- and Post-processing of Images

ISR was designed to operate on square, 2D, RGB images of UINT8 (8-bit unsigned

integer) datatype, and as such, a number of pre- and post-processing steps were

required to use the network for our application. These steps were completed using

Python 3.6 with a number of required image processing packages. An overview of the

steps performed for one image volume is provided here. For clarity, the dimensions

of the output at each step in the SR pipeline are shown for LR and OR (without

interpolation) input in Table 5.2.
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Images from the 0.5T system are automatically saved in DICOM format, with

INT16 pixel arrays. To begin, the DICOM image volume was loaded into an image

array with dimensions (x, y, z), corresponding to the anterior-posterior, left-right, and

superior-inferior directions, respectively. Pixel values were re-scaled to the interval

[0, 255] for conversion to UINT8.

The array was zero-padded along the slice dimension (z) to match the x and y

dimensions, thereby generating a cubic image volume. The image volume was then

converted to UINT8 data type. To simulate a 3-channel RGB image volume, the

volume was repeated along a fourth array dimension (i.e. (x, y, z, 3)). Each 2D

image slice along the superior-inferior, anterior-posterior, and left-right directions

were saved as individual Portable Network Graphics (.png) files creating 2D square,

RGB, images representing axial, coronal, and sagittal slices, respectively, to be fed

to the ISR network. The series of images along each direction were then individually

sent through the ISR model such that 3 “SR” image volumes were produced.

The zero-padding along the z-direction was propagated through the ISR network,

therefore the first post-processing step was to crop the excess rows in the image

volumes resulting from coronal and sagittal image inputs. Next, since the number

of slices fed to the ISR network is not altered, this dimension is not doubled by the

network. To produce an image volume that is doubled in all dimensions, each SR

volume underwent bicubic interpolation along this direction. A complete estimation

of a 3D SR image was then obtained by taking the average of the three resulting image

volumes, and the final image array was converted back to gray scale. Converting the

image volumes to UINT8 datatype altered the pixel values compared to the original

INT16 input, therefore the final SR image volume was converted back to UINT16

datatype and normalized to the maximum of the OR image volume, in an attempt

to create comparable contrast.

Notably, the ISR model only permits increases in resolution by factors of 2. Each

LR image was therefore brought from (260×260×140) to (520×520×280) with the

SR pipeline. These images therefore underwent additional bicubic interpolation to

(600× 600× 328) to match the dimensions of the other images in each data set. LR

images brought to clinical resolutions with the SR pipeline are therefore referred to as

the LRSrInt. data set. The OR acquisitions did not require additional interpolation
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and were brought to HR with all steps discussed previously, creating the ORSr data

set.

Image Array Size (x, y, z)
LR Input OR Input

(260, 260, 140) (300, 300, 164)
1. Pad image volume along
slice dimension

(260, 260, 260) (300, 300, 300 )

2. Convert to UINT8 (260, 260, 260) (300, 300, 300)
3. Simulate RGB image (260, 260, 260, 3 ) (300, 300, 300, 3 )
4. Run ISR on:

Axial slices (520, 520, 260, 3) (600, 600, 300, 3)
Coronal slices (260, 520, 520, 3) (300, 600, 600, 3)
Sagittal slices (520, 260, 520, 3) (600, 300, 600, 3)

5. Crop excess padding along
slice dimension

Axial slices (520, 520, 260, 3) (600, 600, 300, 3)
Coronal slices (260, 520, 280, 3) (300, 600, 328, 3)
Sagittal slices (520, 260, 280, 3) (600, 300, 328, 3)

6. Interpolate volumes along
direction that images were fed
to ISR

Axial slices (520, 520, 280, 3) (600, 600, 328,3)
Coronal slices (520, 520, 280, 3) (600, 600, 328, 3)
Sagittal slices (520, 520, 280, 3) (600, 600, 328, 3)

7. Calculate mean image vol-
ume

(520, 520, 280, 3) (600, 600, 328, 3)

8. Convert to gray scale (520, 520, 280) (600, 600, 328)
9. Convert to INT16 (520, 520, 280) (600, 600, 328)
10. Interpolate to same di-
mensions as ORInt., LRInt.

and ORSr

(600, 600, 328 ) N/A

Table 5.2: Pre- and post-processing steps for creation of super resolution image vol-
umes. Dimensions that have been changed from the previous processing step are
denoted in italics.

Representative axial slices resulting from LR input to the SR pipeline, with the
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use of WPSNR and WNC are shown in Figure 5.3. As is clear, both sets produced

undesirable outcomes; the use of WPSNR resulted in images with point-like high signal

artifacts, while the use of WNC produced images that appear over-smoothed and

unrealistic. Further, both sets of weights resulted in images with reduced contrast

compared to the LR acquisition.

(b) WPSNR

LRSrInt.

(a) LR Acquisition (c) WNC

Figure 5.3: Axial slices resulting from the (a) LR acquisition sent through the SR
pipeline using (b) WPSNR and (c) WNC .

Interpolating Network Weights

In an attempt to improve on the images generated by the SR pipeline, we utilized

the method of Wang et al.89 to create a new set of model weights resulting from

interpolation between WPSNR and WNC , i.e.

WInterp. = (1− λ)WPSNR + λWNC . (5.1)

To determine the value of λ, images of the small ACR phantom90 were acquired

with the ORInt. and LR sequences shown in Table 5.1. The LR image volume was

then brought to 0.3mm isotropic resolution with the SR pipeline (Table 5.2), using

WPSNR (i.e. WInterp. with λ = 0), WNC (i.e. WInterp. with λ = 1.0), and WInterp. with

λ = 0.5.

To objectively quantify the performance of the SR pipeline with each value of

λ, we began by examining the resolution of each outcome. To do so, we used an
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axial image slice with the resolution insert visible. The insert consists of three hole

arrays, with hole diameters of 0.9mm, 0.8mm, and 0.7mm when viewed from left

to right. The profile of pixel intensities across the top horizontal row of all three

upper left hole arrays, and the profile of pixel intensities down the right-most vertical

column of the 0.8mm lower hole array were obtained using MATLAB R2018a for each

LRSrInt. result. In addition, the LR acquisition was examined to estimate whether

the SR pipeline improved resolution, and the ORInt. image was also examined as it

demonstrates the “goal” resolution (Figure 5.4).
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Figure 5.4: Images of the resolution insert in the small ACR phantom (first column).
The second and third columns show the intensity profiles taken along the paths indi-
cated by the red and yellow lines, respectively, in the corresponding image. The top
two rows display results from the ORInt. and LR acquisitions, while the bottom three
rows show results from the SR pipeline using WInterp. with λ = 0.0, 0.5, and 1.0.
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Since the profiles resulting from the use of λ = 0.5 appeared to be the most similar

to that of the LR and ORInt. profiles, the same analysis was performed on LRSrInt.

images resulting from the use of WInterp. with λ = 0.4, 0.6, and 0.7. These results,

along with those from λ = 0.5 are shown in Figure 5.5.

Figure 5.5: Images of the resolution insert in the small ACR phantom (first column).
The second and third columns show the intensity profiles taken along the paths indi-
cated by the red and yellow lines, respectively, in the corresponding image. Results
are from the SR pipeline using WInterp. with λ = 0.4, 0.5, 0.6, and 0.7.

For further evaluation, the SNR of each image was calculated via SNR = 0.70 S
SDair

where S is the mean pixel intensity in an ROI drawn inside the T1 contrast vial and

SDair is the standard deviation of pixel intensities in an ROI drawn outside the
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phantom in the lower left corner of the image. These regions were also used to

calculate CNR = 0.70S−Sair

SDair
, where Sair is the mean signal intensity in the air ROI,

and fractional signal, ∆S
S

= S−Sair

S
. A depiction of the regions used and the results of

the calculations are shown in Figure 5.6.

(a) (b)

Figure 5.6: (a) Signal (red) and noise (green) ROIs used for calculation of (b) SNR,
CNR, and ∆S/S in ORInt., and LR acquisitions, and images resulting from the SR
pipeline using WInterp. with λ = 0.0, 0.4, 0.5, 0.6, 0.7, and 1.0

As is clear in Figures 5.4 and 5.6, the use of WInterp. with λ = 0.0 (WPSNR)

results in images that do not maintain the baseline contrast of the ORInt. and LR

acquisitions. WNC did improve the SNR and CNR of images compared to ORInt

and LR, but the fractional signal is reduced. This indicates that the noise region

has a lower standard deviation but a higher average signal, consistent with excessive

“smoothing” required to reduce compression artifacts. Since the profiles in Figure

5.5 and the SNR, CNR, and ∆S/S in Figure 5.6 show comparable results for λ =

0.4, 0.5, 0.6, and 0.7, we chose a value of λ = 0.6, to avoid the issues resulting from

λ = 0.0 and 1.0.

A final summary of how the experimental data set for each participant (ORInt.,

ORSr, LRInt., and LRSrInt.) was created is shown in Figure 5.7.
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Figure 5.7: A summary of how the experimental data set for each participant was
generated from the acquired images.

5.2.3 Image Analysis

The ORInt., ORSr, LRInt., and LRSrInt. images for each patient were converted to

DICOM format with any identifying information removed, and shown to two-board

certified radiologists (each with > 5 years sub-speciality experience) in a randomized

order. Raters were asked to independently rate their ability to visualize the superior
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semi-circular canals (SSC), facial nerves, cochlear nerves, cochleas, and vestibules, as

well as their impression of overall image quality. Ratings were done using a Likert

scale ranging from 1 (very poor) to 5 (excellent). Ratings were recorded separately

for left and right ears and ratings were subsequently concatenated such that there

was one set of ratings per structure per rater. Gwet’s AC2, with ordinal weighting,

was calculated to determine inter-rater reliability for each structure under each image

type.

Wilcoxon signed-rank tests were used to compare ratings between image types (as

described in Section 5.1), for all structures examined as well as overall image quality.

To correct for multiple comparisons of image data sets, a conservative Bonferroni

correction was applied such that a P value of P < 0.02 (i.e. ≈ 0.05
3
) was considered

significant. Python 3.6 and the Statistical Functions module were used to perform

statistical calculations.

5.3 Results

A representative experimental data set from one participant is shown in Figure 5.8.
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Figure 5.8: Example axial, coronal, and sagittal slices of an experimental data set
from one participant. Coronal and sagittal slices have been cropped to remove ex-
cess background. Structures in the red boxes are zoomed-in versions of the vestibule,
cochlea, and facial and cochlear nerves (axial), the cochlea (coronal), and cross sec-
tions of the facial and cochlear nerves (upper and lower left dark spots in the sagittal
view).
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The inter-rater reliability calculations (Table 5.3) yielded “poor” to “moderate”

agreement between raters,83 for all structures, for each of the image cohorts examined.

As such, the ratings from each rater cannot be combined into a single data set, and

instead will be considered as two unique case studies.

ORInt. ORSr LRInt. LRSrInt.

Structure AC2 95% C.I. AC2 95% C.I. AC2 95% C.I. AC2 95% C.I.
SSC 0.01 (-0.50, 0.52) -0.42 (-0.96, 0.12) 0.19 (-0.26, 0.65) 0.25 (-0.24, 0.74)
Facial nerve -0.48 (-0.95, -0.01) -0.05 (-0.62, 0.52) 0.24 (-0.20, 0.68) -0.05 (-0.51, 0.40)
Cochlear nerve -0.10 (-0.62, 0.41) -0.30 (-0.87, 0.27) 0.28 (-0.14, 0.70) 0.24 (-0.24, 0.72)
Cochlea -0.14 (-0.62, 0.34) 0.21 (-0.33, 0.76) 0.16 (-0.18, 0.51) 0.18 (-0.26, 0.63)
Vestibule -0.25 (-0.80, 0.30) -0.12 (-0.55, 0.31) -0.21 (-0.76, 0.33) 0.29 (-0.10, 0.68)
Image quality -0.002 (-0.78, 0.77) 0.47 (0.02, 0.92) -0.38 (-1.15, 0.39) 0.14 (-0.56, 0.84)

Table 5.3: Gwet’s AC2 values for inter-rater reliability and their corresponding 95%
confidence intervals (95 % C.I.) for each structure examined in each type of image.
Results show “poor” (AC2 < 0) to “fair” (0.21 ≤ AC2 ≤ 0.40) agreement between
raters, apart from the image quality ratings of the ORSr images which show “mod-
erate” agreement (0.41 ≤ AC2 ≤ 0.6).

Results from the first rater are summarized in Figure 5.9, and those from the

second rater are shown in Figure 5.10. For convenience, P values resulting from all

Wilxocon signed-rank tests are shown in Table 5.4.
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Figure 5.9: Average Likert scores from Rater 1. Error bars depict 95% confidence
intervals.

Figure 5.10: Average Likert scores for Rater 2. Error bars depict 95% confidence
intervals. * indicates 0.003 < P ≤ 0.02, ** indicates 0.0003 < P ≤ 0.003, and ***
indicates 0.00003 < P ≤ 0.0003.
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P Value From Wilcoxon Signed-Rank Test
Rater 1 / Rater 2

Structure Comparison of Comparison of Comparison of
LRSrInt. and ORInt. LRInt. and LRSrInt. ORInt. and ORSr

SSC 1.0 / 0.1 0.05 / 0.0005 0.16 /0.33
Facial Nerve 0.14 / 0.05 0.37 / 0.003 0.71 / 0.41
Cochlear Nerve 0.14 / 0.56 0.37 / 0.06 0.41 / 0.05
Cochlea 0.03 / 0.0006 0.12 / 0.001 0.05 / 0.0003

Vestibule 1.0 / 0.0004 1.0 / 0.002 1.0 / 0.0002

Image Quality 0.12 / 0.01 0.16 / 0.02 0.18 / 0.01

Table 5.4: P values from Wilcoxon signed-rank tests. Values are presented in Rater 1
/ Rater 2 format and bold values indicate a statistically significant difference between
ratings, i.e. P < 0.02.

Analysis of ratings from the first rater yielded no statistically significant differences

between ratings for any image type when visualizing any structures, nor for overall

image quality.

Alternatively, there are a number of significant differences in the second rater’s

results. First, the LRSrInt. images were preferred over the ORInt. images for visual-

ization of the cochlea, and the vestibule, as well as for overall image quality. There

are no statistical differences when visualizing the SSC, facial nerve, or cochlear nerve.

When comparing methods used to bring images to HR, the LRSrInt. images were

preferred over the LRInt. images for visualizing the SSC, the facial nerve, the cochlea,

and the vestibule, while no statistical difference was found for visualization of the

cochlear nerve or for overall image quality. The ORSr images are preferred over the

ORInt. images for visualizing the cochlea, vestibule, and for overall image quality, and

there are no statistical differences when visualizing the SSC, the facial nerve or the

cochlear nerve.

5.4 Discussion

The objective of this study was to perform LR bSSFP acquisitions, allowing for the

advantages of e.g. reduced scan times and reduced patient motion. Notably, the

RBW used for the LR protocol was identical to that in the OR protocol so as to

maintain comparable SNR in the resulting images, and a further reduction in TR
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would be feasible if this were not a concern.

The fact that ISR was not designed, or trained, to operate on MR images was

known prior to its use, and is therefore not considered a limitation of the study itself.

It did require, however, that numerous pre- and post-processing steps were performed

on the MR images, and thus the results are not necessarily representative of what the

ISR model is capable of, nor of what is possible with SR of MRI volumes.

Despite this, however, neither radiologist’s ratings of their ability to visualize

structures of the temporal bone in HR images produced with the SR pipeline were

significantly lower than HR images generated with standard interpolation methods.

Notably, although the LR images required acquisition times that were less than the

OR acquisitions, the time required to produce LRSrInt. images with the SR pipeline

is substantially longer than that required for native reconstruction and interpolation

by the system. Future investigations could focus on improving both acquisition and

reconstruction times, potentially by using a model designed for 3D image volumes,

thereby reducing the need for time-consuming pre- and post-processing steps.

The result that ratings from Raters 1 and 2 yielded poor to fair agreement is, itself,

an important and compelling result. Subsequent discussions with Rater 1 revealed a

preference for standard interpolation methods due to the ORSr and LRSrInt. images

appearing “over-smoothed”. This is in contrast to Rater 2’s results which, overall,

show that the images generated with the SR pipeline were preferred over, or not rated

significantly lower than, those generated with standard interpolation methods. While

some MRI SR studies have shown similar levels of inter-rater reliability (e.g.91), oth-

ers show much higher levels of agreement (e.g.92), yet little attention has been paid

to this phenomenon in the literature. Given that MRI system vendors provide filter-

ing options in their reconstruction pipelines to satisfy local preferences, we suspect

that differences in training are responsible for the preferences demonstrated, and fur-

ther investigation with more than two raters and a larger number of participants is

required.

Overall, neither radiologist rated the LRSrInt. images significantly lower than

ORInt. images when visualizing structures of the inner ear, nor for overall image

quality, thereby permitting a reduction in scan time of 1 minute and 8 seconds.
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5.4.1 Limitations

One main limitation of this study is the fact that we could never truly blind raters

to image type, due to their experience, and bias may have therefore affected their

ratings. Furthermore, no “calibration” session was performed for radiologists’ use of

the Likert scale, therefore experience may not only play an important role preference

for image type, but in range of scores assigned to each image.

5.5 Conclusions

Since no significant differences were found between ratings provided by Rater 1, the

first hypothesis, which predicted that LR images processed with the SR pipeline would

not be rated as significantly lower than OR images processed with interpolation, can

be confirmed for Rater 1. Hypotheses 2, that LR images processed with the SR

pipeline would be rated significantly higher than those processed with interpolation,

and hypothesis 3, that OR images processed with the SR pipeline would be rated

significantly higher than those processed with interpolation, are both rejected for

Rater 1.

The ratings from Rater 2 allow us to confirm hypothesis 1 for all structures ex-

amined as well as overall image quality. Hypothesis 2 is confirmed for the SSC, facial

nerve, cochlea, and vestibule, and it is rejected for the cochlear nerve and for overall

image quality. Finally, hypothesis 3 is confirmed for the cochlea, vestibule, and for

overall image quality, and is rejected for the SSC, facial nerve, and cochlear nerve.



Chapter 6

Conclusions and Future Work

To our group’s knowledge, the studies presented in this thesis are the first to provide

valuable insight into the use of a 0.5T head-only MR system with high-strength,

fast slew rate gradients, for effective and efficient bSSFP imaging of the challenging

regions of the temporal bone and paranasal sinuses.

The first study (Chapter 3), showed that a bSSFP sequence could be used to

image the temporal bone and paranasal sinuses and that the majority (> 50%) of

the resulting images, from both protocols, were free of artifacts traversing relevant

structures. Unexpectedly, the non-phase cycled 0.5T temporal bone images provided

superior artifact tolerance compared to 3T, phase-cycled acquisitions reconstructed

with MIP, demonstrating a clear advantage to imaging regions with large susceptibil-

ity differences at low field strength. Both protocols achieved an average SNR greater

than that preferred for visualization by radiologists,76 at resolutions comparable to

clinical acquisitions. In addition, the scan time of the 0.5T temporal bone acquisi-

tions were over a minute shorter than the shortest clinical acquisition included in this

study. The inability to compare SNR between the 0.5T and 3T temporal bone images

presents a possible avenue for future work - describing the SNR of images acquired

with MIP would allow for meaningful comparisons to be made. While the sinus pro-

tocol produced sufficient artifact tolerance, future adjustments to the protocol could

further reduce the presence of banding artifacts by reducing resolution to allow for

an even shorter TR.

The advantages of temporal bone bSSFP imaging at 0.5T were examined in a

clinical context in the second study (Chapter 4). The improved artifact tolerance,

established in the first study, led radiologists to prefer bSSFP temporal bone images

acquired at 0.5T over conventional bSSFP acquisitions for visualization of the SSC

and vestibule. While conventional acquisitions were preferred to visualize the facial

93
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and cochlear nerves, no preference was found for visualizing the cochlea, nor when rat-

ings from all structures were combined into an overall comparison. To further examine

the clinical use of our 0.5T temporal bone protocol, studies that investigate sensitivity

and specificity when using the images for diagnosis must be performed. Furthermore,

these questions should be asked in the context of the entire temporal bone protocol,

and not solely the bSSFP sequence. Temporal bone exams, including the clinical

exams performed within our health institution, typically include a diffusion-weighted

imaging sequence (DWI) to rule out the presence of vestibulocochlear schwannomas

or cholesteatomas.50 A DWI sequence should therefore be developed and included in

the 0.5T temporal bone protocol for any further evaluations of clinical use. Although

images resulting from the sinus protocol were not included in this study, there is a

current study underway in our group in which the confidence of radiologists in answer-

ing clinical questions is assessed for both the 0.5T MRI protocol and current SOC

CT acquisitions, and we expect the results to provide valuable feedback on future

versions of the 0.5T bSSFP paranasal sinus protocol.

The exploration performed in the third study (Chapter 5) yielded a number of

interesting results. Most importantly, we found that bringing low resolution 0.5T tem-

poral bone bSSFP images to high resolution with a super resolution pipeline produced

images that radiologists did not rate as significantly different from original resolution

acquisitions brought to high resolution with standard interpolation methods, when

visualizing structures of the inner ear. We can therefore state that the advantages

conferred by low resolution bSSFP imaging were realized, without a significant degra-

dation in image quality. More specifically, the super resolution pipeline permitted a

reduction in scan time of 1 minute and 8 seconds compared to the original resolu-

tion acquisition. As discussed, reducing the resolution of the paranasal sinus bSSFP

protocol would permit a shorter TR and improved artifact suppression. The results

of the SR study were encouraging, and present an opportunity to obtain LR images

of the paranasal sinuses, with improved artifact tolerance, that can be brought back

to clinical resolutions without significant degradation. Finally, the pipeline presented

in this work was limiting in that we were required to modify the input and output

for use in our application. Additional future work could focus on training the ISR
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model on MR images with the current pre- and post- processing steps applied, or

alternatively, work could be done to develop our own model to perform the SR task

on 3D MRI volumes.

The results of the studies presented herein demonstrate the new opportunities

afforded by bSSFP imaging on modern, low-field MR systems. Leveraging the advan-

tages of low-field imaging with high-strength gradients, and combining this with super

resolution techniques, has the potential to make MR imaging of challenging regions

not only possible, but fast and artifact-free, thereby improving patient experience

without sacrificing image utility.



Appendix A

Derivation of the steady-state transverse magnetization

In a steady-state, the transverse magnetization, M⃗ , does not change within one TR,

i.e.
dM⃗

dt
· M⃗ = 0 (A.1)

where dM⃗
dt

is (i.e. Equation 2.4):
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T1

−
(Mxx̂+Myŷ)
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dM⃗

dt
· M⃗

=

[(

γMyBz −
Mx

T2

)

x̂−

(

γMxBz +
My

T2

)
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