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Abstract 

Kidney transplantation is an essential treatment option for individuals diagnosed with End-

stage renal disease (ESRD). Being able to predict the survival of the transplant and the 

outcome of the recipient is an important decision point at the time of kidney allocation. 

Understanding the underlying characteristics of donors and recipients—referred to as 

phenotypes—can help in matching donors and recipients to improve patient and allograft 

survival. In this thesis, we are studying clustering methods to identify clusters of 

homogeneous donors and recipients with respect to their clinical characteristics, and using 

the generated phenotypes to study their relationship with kidney transplant outcomes. The 

dataset is a combination of both categorical and numerical data, consisting of 25824 

records of donor and recipient features spanning 3 years (2009 - 2011). We investigated 

multi-modal clustering methods to handle the mixed data types. Two base clustering 

methods, KAMILA and Mixture Model, were applied resulting in 3 clusters. Consensus 

clustering was next applied using three consensus functions, k-modes, Majority Voting 

and Latent Class Analysis (LCA), to generate the final consensus-driven clusters. Latent 

Class Analysis (LCA) gave us the best clusters on the basis of internal evaluation indices 

and t-SNE visualizations. Self-Organizing Maps (SOMs) with hierarchical clustering was 

applied to validate the consensus clustering results. The generated clusters were evaluated 

by domain experts for clinical utility and each of the phenotypes. Importantly the clusters 

showed strong and differential associations with transplant outcomes. Some non-outcome 

attributes were also separately distributed across clusters. 
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CHAPTER 1   INTRODUCTION 

1.1  Motivation 

Kidneys are an essential organ in human beings that are tasked with excretion, metabolism 

and endocrine functions [1]. When there is an irreversible decline in an individual’s kidney 

function that is serious enough to be potentially fatal, that is termed End-stage renal disease 

(ESRD). There are a lot of factors that could increase the risks of ESRD, and ESRD in 

turn can lead to fluid retention, increased chances of cardiovascular disease and anaemia, 

among other issues [2]. 

For the individuals with ESRD, kidney transplantation is the most economical and 

preferred method of renal replacement therapy [3]. Kidney transplants are capable of 

providing high-quality life years to those suffering from ESRD. Transplantation is more 

beneficial for long-term survival in comparison with maintenance dialysis [4]. With 

regards to that comparison, kidney transplants could also lead to reductions in risk of 

mortality and cardiovascular events as well as quality of life improvements when 

compared to dialysis [5]. However, transplant recipients face a number of problems such 

as immunologic rejection and adverse effects of immunosuppressant agents [3]. 

Nonetheless, acknowledging that transplant is superior to dialysis in most scenarios, 

prolonging graft survival and reducing outcomes following transplantation have been key 

areas of focus for several studies up until this point. There are many donor and recipient 

characteristics that are known to play a role in the outcomes of kidney transplantation [6]. 

Being able to understand the complex relationships that may exist among these 

characteristics and the outcomes can play a crucial role towards advancing patient care, 

kidney allocations for transplants and survival prediction. 

Machine Learning (ML) algorithms are an efficient tool to predict events as well as 

understand patterns and relationships leading to them. Cluster analysis (primarily 

unsupervised learning) has the potential to partition available data into groups based on 

their characteristic features. This provides us with a deeper understanding or interpretation 

of how certain outcomes are more likely to occur within a group and the potential 

associations between features of a group. Clustering algorithms have been employed 
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across various industries like healthcare, e-commerce and banking. In relation to kidney 

transplantation, cluster analysis can be used to recognize patterns within the data and thus 

potentially contribute toward improving outcomes and our understanding of the 

underlying features and their associations. 

Clustering has been shown to be an effective approach towards phenotyping in several 

previous works. Soler at al. employ hierarchical clustering in their work for identifying 

phenotypic subgroups among patients with chronic rhinosinusitis (CRS). They mention 

inadequacies with the existing classification methodology and use clustering to produce a 

more appropriate classification for CRS patients [7]. Asthma phenotypes were identified 

using clustering analysis in a work by Moore et al. They used data from a research program 

cohort consisting of individuals with asthma and found five distinct clusters with 

differences in clinical, physiologic and inflammatory parameters [8]. Cluster analysis was 

used to identify phenotypes of chronic heart failure using patients’ clinical data in the study 

by Ahmad et al. Their results also demonstrate the heterogeneity that exists among the 

patients that current measures might not recognize [9]. In an attempt to further the 

understanding of the pathophysiology of acute heart failure and contribute to decision-

making, Horiuchi et al. used k-means clustering to identify phenotypes of acute heart 

failure. They obtained three clusters with differing clinical feature observations [10]. 

Bailly et al. identified eight phenotypes of obstructive sleep apnoea using data from over 

20000 patients with the help of the Latent Class Analysis (LCA) clustering technique. 

Among the clusters obtained, four of them were gender-based [11].     

   

1.2  Research Objectives 

The primary objective of this study is to identify phenotypes among kidney transplant 

donors and recipients on the basis of their clinical characteristics. This can help provide a 

deeper understanding of possible associations existing among individuals’ characteristics 

and outcomes to facilitate better event prediction and patient care. With the help of ML 

methods of unsupervised learning, we employ cluster analysis to generate phenotypes of 

kidney donors and recipients and then identify their association with patient/graft survival. 

An ensemble or consensus clustering approach, combining multiple clustering algorithms, 
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is investigated for handling mixed (numerical and categorical) data types. The research 

centers around obtaining meaningful and valuable groups or phenotypes rather than solely 

comparing performances among clustering algorithms. 

This work is set to answer the following research questions: 

a) Can we identify distinct phenotypes among kidney transplant donors and recipients 

based on their clinical characteristics with unsupervised cluster methods? 

b) Can ensemble clustering facilitate better groupings among kidney transplant data than 

individual clustering methods? 

 

1.3  Solution Approach 

Our dataset comprises of mixed data types - i.e. categorical and numerical attributes - and 

there are no class labels to support cluster evaluation. To address these challenges, our 

solution approach is to (a) investigate clustering approaches that can simultaneously 

handle multiple data types, and (b) use expert validation to interpret the clusters in order 

to generate phenotypes. For clustering, we applied model-based clustering and cluster 

ensemble methods to generate consensus clusters. Additionally, we employed Self-

Organizing Maps (SOMs) as an alternate approach to validate our consensus clustering 

results. This thesis details an approach to the task of performing cluster analysis when the 

data is of a mixed nature in the absence of class labels while attaining valuable results and 

insights in the domain of kidney transplantation. 

 

1.4  Contributions 

The contributions of this work are encapsulated as follows: 

• Experimentation and application of clustering algorithms capable of handling mixed-

type features to generate valuable results in the absence of a ground truth or labels. 
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• Employing cluster ensemble methods to produce meaningful clusters among kidney 

transplant donors and recipients based on their clinical characteristics. Additionally, 

supporting those results through the alternative method of Self-Organizing Maps. 

This work can potentially assist nephrologists and kidney transplant researchers in their 

understanding of clinical characteristics and outcome associations to potentially improve 

optimal kidney allocation. On a broader scale, it could contribute to the area of mixed data 

type clustering which has not been as extensively researched as clustering typically 

involves only numeric or categorical data. 

 

1.5  Organization of the Thesis 

The thesis is structured into five primary chapters. The first is the introduction to the work, 

research questions and the motivation behind it. The second chapter consists of a detailed 

literature review in addition to the background behind the methods and procedures 

involved. This chapter also has a brief discussion of the prior work done in the area of 

kidney transplantation involving ML methods.  

The third chapter is focused on the methodology used in the work for data preprocessing, 

imputation, clustering, consensus clustering, self-organizing maps and finally their 

visualization and evaluation. 

The fourth chapter details the results obtained from the various clustering algorithms and 

approaches used and compares them using different metrics and visualizations. Similarity 

or agreement between clusters produced by the different methods is shown. Overall cluster 

descriptions and variable distributions based on the results obtained are presented here. 

The fifth and final chapter summarizes the entire work involved, its contributions and the 

limitations encountered in the process. Future work that can be explored is highlighted in 

this chapter. 
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CHAPTER 2   BACKGROUND 

In this section, we give a brief review of some of the prior work done in the area of ML 

for kidney transplantation. Next, we discuss data imputation methods as applied in our 

work. We provide a detailed description of the clustering algorithms, cluster evaluation 

metrics and cluster visualization methods used in our work. 

 

2.1  ML in Kidney Transplantation 

Several previous studies in kidney transplantation involving clustering methods are 

focused on either donors or recipients of a certain group or even a certain demographic. 

Joshi et al. discussed a method of clustering in order to better understand renal function 

loss following transplantation. The data they worked with consisted of the glomerular 

filtration rate (eGFR) of individuals taken over a two-year time period. Two clusters were 

generated in their work from that data [12]. In the work by Vaulet et al., histologic data of 

biopsies from kidney transplant recipients were used to perform semi-supervised 

clustering in order to attain phenotypes of kidney transplant rejection, using consensus 

clustering with the k-means method. Their goal was to develop a clinically relevant 

phenotypic reclassification of renal transplant rejection that also improved the prediction 

of subsequent graft failure above and beyond existing approaches. In their study the 

standard of care (the Banff pathological classification) was compared with their method to 

show its effectiveness [13]. In another study, consensus clustering techniques were used 

to identify phenotypes among Black kidney transplant recipients from a cohort covering 

five years. Thongprayoon et al. applied a consensus clustering approach based on multiple 

runs of the k-means clustering algorithm (with Euclidean distance) [14]. Consensus 

clustering was also used to identify clusters among a population of morbidly obese kidney 

transplant recipients and to analyze outcomes [15]. Gangopadhyay et al. employed spectral 

clustering algorithms on time-series data of 24 months following 111 patients’ transplants 

in an effort to study renal function following kidney transplantation and identify 

intervention strategies [16]. In order to better understand changes in health-related quality 

of life (HRQOL) post-kidney transplantation, Villeneuve et al. used k-means clustering 
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specifically designed for longitudinal data and identified two clusters of time profiles. 

They used data from patients at different points in time spanning a 36-month period. 

Differences among clusters in terms of the HRQOL were described. Additionally, Random 

Forests were used to study the association between the covariates involved and the clusters 

obtained [17].   

Beyond clustering, ML-based classification algorithms have been used to predict the risk 

of graft failure following transplant across three temporal cohorts in the work by Naqvi et 

al. [18]. Paquette et al. used various survival analysis models that also included artificial 

neural networks in an attempt to predict transplant outcomes for donor-recipient pairs [19]. 

Yoo et al. created new prediction models of graft survival in order to predict long-term 

graft survival in kidney transplant recipients using data from a Korean population [20]. 

Decruyenaere et al. employed multiple ML models to predict delayed graft function in 

recipients post-renal transplantation. They compared the performances of 9 different 

models and used a reduced form of a dataset consisting of features that were potential risk 

factors for delayed graft function and found that Linear Support Vector Machines (SVMs) 

had the best model performance [21]. An ensemble of Random Survival Forests and Cox 

proportional hazard model was used to predict kidney transplant survival in the study by 

Mark et al.. They split the data into two age-dependent cohorts and applied one of the two 

models to each of them and finally combined the predictions from both of them. Variable 

selection was done based on importance. The performance of the proposed method was 

compared with other existing kidney transplant survival models [22]. Four different ML 

models were applied to data from kidney transplant recipients in the work of Peng et al.. 

This was done in order to study the association between immune monitoring and 

pneumonia, said to be one of the major complications post-surgery. A comparison of the 

methods in their ability to evaluate pneumonia risk was reported and characteristic 

differences among pneumonia patients and those without penumonia were highlighted 

[23].  

The work presented in this thesis involves data spanning a broad population involving both 

donor and recipient characteristics using consensus clustering built on model-based 
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clustering algorithms. To our knowledge, we have not seen previous work that has dealt 

with model-based clustering methods in the area of kidney transplantation.  

 

2.2  Multivariate Imputation by Chained Equations  

Multivariate Imputation by Chained Equations (MICE) is a popular data imputation 

approach. It can be used to impute both categorical and numerical data simultaneously, 

which other imputation methods such as KNNimputer [24][25], IterativeImputer [24][26] 

are unable to achieve. 

MICE enables us to use regression methods appropriate for categorical data like logistic 

regression and linear regression for numerical data simultaneously [27]. 

Also known as fully conditional specification (FCS), MICE allows us to specify an 

imputation model on a variable-by-variable basis by a set of conditional densities, one for 

each of the existing variables with incomplete values [27]. Another well-known multiple 

imputation approach is joint modeling (JM); however, JM utilizes linear regression 

equations and does not work well for categorical data imputation due to its assumption of 

normality and linearity [28]–[30].  

Yang et al. used fully conditional specification for multiple imputation for an 

epidemiologic study evaluating national blood utilization patterns in Namibia [30]. Their 

study specified the importance of using imputation in datasets with a substantial amount 

of missing information instead of working on complete cases only, which can introduce a 

loss of information and bias. Complete case analysis is a widely used approach to deal 

with missing data where any record with missing variables is excluded from the analysis, 

which could be appropriate when we have less than 5% missing data. Multiple imputation 

has the added advantage of working with more relaxed assumptions [30], [31]. Robert et 

al. applied multiple imputation by chained equations to impute missing values in their data 

associated with smoking cessation treatment [32]. MICE was employed in a study that 

compared initial growth, virological and immunological responses of HIV-infected 

children in the United Kingdom/Ireland and Kampala, Uganda to antiretroviral therapy 
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(ART) [33]. Thongprayoon et al. used MICE in their work on clustering to identify 

groupings among black kidney transplant recipients [14]. 

The procedure involved in MICE is briefly described below. 

Let the hypothetically complete data 𝑌 be a partially observed random sample from the p-

variate multivariate distribution 𝑃(𝑌|𝜃). 𝜃 is a vector of unknown parameters that is 

assumed to completely specify the multivariate distribution of 𝑌. 𝑡 =  1,2, … . , 𝑚 denote 

the variables in 𝑌. 𝑌𝑡 is the 𝑡𝑡ℎ variable and 𝑌−𝑡 denotes all the other variables in Y besides 

𝑌𝑡. MICE attains the posterior distribution of 𝜃 by sampling iteratively from conditional 

distributions of the form 

𝑃(𝑌1|𝑌−1, 𝜃1) … … …  𝑃(𝑌𝑚|𝑌−𝑚, 𝜃𝑚) 

𝜃1 ⋅ ⋯ ⋯ 𝜃𝑚 are associated with the respective conditional densities. Beginning at a draw 

from the observed marginal distributions, the 𝑛th iteration of chained equations is a Gibbs 

sampler that successively draws 

𝜃1
∗(𝑛)

 ~ 𝑃(𝜃1|𝑌1
𝑜𝑏𝑠, 𝑌2

(𝑛−1)
, … . , 𝑌𝑚

(𝑛−1)
) 

𝑌1
∗(𝑛)

 ~ 𝑃(𝑌1|𝑌1
𝑜𝑏𝑠, 𝑌2

(𝑛−1)
, … . , 𝑌𝑚

(𝑛−1)
, 𝜃1

∗(𝑛)
) 

       … 

𝜃𝑚
∗(𝑛)

 ~ 𝑃(𝜃𝑚|𝑌𝑡
𝑜𝑏𝑠, 𝑌1

(𝑛)
, … . , 𝑌𝑚−1

(𝑛)
) 

𝑌𝑚
∗(𝑛)

 ~ 𝑃(𝑌𝑚|𝑌𝑚
𝑜𝑏𝑠, 𝑌1

(𝑛)
, … . , 𝑌𝑚

(𝑛)
, 𝜃𝑚

∗(𝑛)
) 

where 𝑌𝑡
(𝑛)

= (𝑌𝑡
𝑜𝑏𝑠, 𝑌𝑡

∗(𝑛)
) is the 𝑡𝑡ℎ imputed variable in the 𝑛𝑡ℎ iteration [27]. 

In our work, we have used only one of five different imputations generated. This is further 

elaborated in section 3.2.3. By using only one imputation, we were aware that we were not 

taking the possible uncertainty associated with the imputation into consideration. 

However, most of the prior studies and documentation spoke to regression analysis and 

used standard error when analyzing the datasets since those datasets consist of only 

numerical variables. One study even mentioned a value ‘CritCF’ that would be applicable 

for cluster analysis, but that criterion only works with numerical data [34]. For that reason, 
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in our study, we employed a Kolmogorov-Smirnov Test to test the quality of imputation. 

An identical approach was previously described in the work by Liu and De and was a 

method we found to be useful to determine if the imputations were reasonable [30]. 

 

2.3  Clustering Algorithms 

Clustering is a popular ML method that can help us break down datasets and understand 

the detailed, complex and sometimes unexpected interactions that may exist in them while 

also being able to group the data into clusters. The aim is to find clusters where data points 

are most similar within the cluster and different from points in other clusters. This 

approach has been widely popular in a wide range of fields and applications like medicine, 

market segmentation and data analysis. Most commonly, it is a form of unsupervised ML 

since we are trying to find clusters among data not knowing their labels or groups that may 

already exist. In this work, clustering enables us to identify phenotypes among kidney 

transplant donors and recipients based on their clinical characteristics.  

One of the most common clustering algorithms is k-means which is a simple yet effective 

algorithm to generate clusters [35]. However, k-means generally requires the data to be 

numerical. k-means is a distance-based partitional clustering algorithm [36]. Huang 

developed the k-prototype clustering algorithm, like the k-means algorithm, but it could 

work with mixed data type variables [37], [38]. However, it had a few shortcomings like 

several other partitional clustering algorithms or other algorithms that relied on the 

distance calculation/matrices for their cluster generation [39]. For one, the computational 

power and large memory required for the calculation of some of the distance matrices are 

a limitation. Some of these distance matrices have a complexity of 𝑂(𝑛2) that are severely 

impacted by the size of the datasets. In our work, we decided to employ model-based 

clustering methods that can handle the data in their original state without any encoding or 

additional processing. Several studies have shown the promising results yielded when 

using model-based clustering algorithms, even with mixed datasets. These algorithms 

work off the assumption that the data points match a statistical distribution [39], [40].  



10 

 

Preud’homme et al. did a comparison of the results obtained using various distance-based 

and model-based clustering algorithms on a heterogenous clinical trial data and found the 

model-based methods to generally perform better [41]. Hunt and Jorgensen used mixed 

model clustering on a large mixed variable medical dataset and mentioned some of the 

issues with traditional clustering algorithms. One of them is that any randomness in the 

sample is not reflected and small fluctuations in the data can lead to considerably varying 

clusters being generated [42]. Storlie et al. performed clustering with a model-based 

method called the Dirichlet process model, on a group of individuals with potential autism 

spectrum disorder [43]. 

We have used two model-based clustering algorithms in our work, mixture model and 

KAMILA which are discussed below in Section 2.3.1 and Section 2.3.2 respectively.  

 

2.3.1  Mixture Model 

Mixture models are an effective way for us to cluster data consisting of mixed data type 

variables as it allows us to use gaussian mixtures for numerical data and multivariate latent 

class models for categorical data [44]. Depending on the problem, various algorithms are 

available to estimate the mixture parameters, particularly Expectation Maximization (EM), 

Stochastic Expectation Maximization and Classification Expectation Maximization [45].  

In the case of gaussian models, each point 𝑥𝑖 is assumed to arise independently from a 

mixture of 𝑑-dimensional Gaussian density having mean 𝜇𝑘 and variance matrix 𝛴𝑘. 

The eigen value decomposition of 𝛴𝑘 yields 

𝛴𝑘 = 𝜆𝑘𝐷𝑘𝐴𝑘𝐷𝑘
′  

𝜆𝑘 = |𝛴𝑘|1∕𝑑 and 𝐷𝑘 is the matrix of eigenvectors of 𝛴𝑘. 𝐴𝑘 is the diagonal matrix with 

|𝐴𝑘| = 1. 𝜆𝑘, 𝐷𝑘  𝑎𝑛𝑑 𝐴𝑘 define the volume, orientation and shape respectively of the 

cluster 𝑘. By varying these three quantities 𝜆𝑘, 𝐷𝑘 𝑎𝑛𝑑 𝐴𝑘, different gaussian models are 

generated. The Bayesian information criterion (BIC), integrated completed likelihood 

(ICL) and normalized entropy criterion (NEC) can be used to determine which gaussian 

model is suitable for the task.  
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For categorical variables, each point 𝑥𝑖 arises independently from a mixture of multivariate 

multinomial distributions. This latent class model assumes that the categorical variables 

are independent given the latent variable. Similar to gaussian mixture models, the 

multinomial distribution associated with the 𝑡𝑡ℎ variable of the 𝑘𝑡ℎ component is 

reparametrized by a center 𝑎𝑘
𝑡  and dispersion 𝜀𝑘

𝑡  around this center. Different models are 

obtained depending on whether 𝜀𝑘
𝑡  is independent of variable 𝑡 or component 𝑘 or both 

[44], [45]. 

The idea behind mixture models is to attain a statistical formulation of the data in the form 

of a model whose parameters are estimated using a maximum likelihood algorithm. This 

is used to identify group membership conditional probabilities of the samples involved. 

On convergence, clusters can be identified using those probabilities. Hunt and Jorgensen 

discuss how finite mixture models could be useful even in the absence of a natural cluster 

structure among the data. In their study, they demonstrated the use of mixture model 

clustering on two mixed datasets, a heart disease dataset and a class examination dataset 

[46]. 

Mixture model-based clustering was used to cluster prostate cancer patients who were 

diagnosed with stage 3 or 4 prostate cancer by McParland and Gormley. The dataset 

consisted of both numerical and categorical variables. They used the Bayesian information 

criterion (BIC) to determine the model to be used for their data and found 3 clusters to be 

ideal. They also applied their method to a mixed data type simulated dataset and attained 

good results [47]. Hunt and Jorgensen applied mixture models to identify clusters that are 

closely related to the pre-existing structure within the same prostate cancer dataset [48], 

[49]. However, their method involved clustering in the presence of incomplete data [50]. 

A Gaussian copulas-based mixture model is proposed in the work by Marbac et al.. It is 

capable of working with data that are of continuous, integer or ordinal types. The proposed 

method’s effectiveness is evaluated on two real datasets and the BIC and ICL criteria are 

used for model selection in the process [51]. A multivariate Gaussian mixture model is 

presented in a work by Morlini that is capable of clustering datasets consisting of binary 

and numerical variables. Its effectiveness is shown with multiple datasets (simulated and 
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real) while the models are compared using the Akaike information criterion (AIC) and 

Bayesian information criterion (BIC) [52]. 

 

2.3.2  KAMILA 

Kay-means for Mixed Large data (KAMILA) is a clustering method developed by Foss et 

al. to be able to cluster data containing quantitative and qualitative variables without 

having to make strong parametric assumptions and is also efficient with larger datasets. 

They identified that current clustering methods tended to make strong parametric 

assumptions to properly weigh the contribution from quantitative and qualitative variables 

and wanted to counter this problem. KAMILA is a semi-parametric generalization of k-

means that is able to balance the contributions from both types of variables without having 

to additionally specify any weights for them [53]. Quantitative variables are modeled with 

a general class of elliptical distributions while qualitative variables are modeled with 

mixtures of multinomial random variables [54]. Similar to the mixture models mentioned 

above, parameters here are estimated by a process similar to expectation maximization 

[53], [54]. KAMILA showed great results when compared with several other clustering 

algorithms that were applied to a clinical trial dataset in the work by Preud’homme et al. 

[41]. In the benchmark study of Jimeno et al., they evaluated the performance of KAMILA 

along with other algorithms in 27 different simulated scenarios consisting of different 

cluster numbers, overlaps and number of numerical variables and found KAMILA to 

consistently perform well [55].  

  

2.4  Cluster Ensemble 

Cluster ensemble is a method of combining solutions from various clusterings of the same 

dataset in order to produce a better quality and more robust solution than the individual or 

base clusterings. The consensus clusters that result from these cluster ensembles are 

obtained based on different generation mechanisms and consensus functions [56]. 
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Performances of algorithms may vary widely depending on the dataset being used. For 

these ensembles, we first need to decide on the method of cluster generation. This can 

come from varying the number of runs of the algorithm, differing initialization parameters 

(like in k-means) or as in our case, algorithms that partition the data by different 

approaches. Our method of cluster generation allows us to use the results from diverse 

clustering algorithms that vary in their approach to clustering the data and integrate it into 

a single result. Following the generation phase, we can obtain a consensus among these 

“base clusterings” through several different available strategies [57], [58].  

Shen et al. generated a cluster ensemble using k-means, a hierarchical clustering method 

and an expectation maximization (EM) based method. Stability and fitness were used to 

validate the best solutions among the base clustering methods since they were generated 

by varying the number of clusters. Six best solutions were obtained after evaluation. They 

proceeded to use k-modes as the consensus function to generate a single consensus result 

from these initial clusterings. This method was applied to a dataset consisting of patients 

with Pervasive Development Disorders (PDD) [59]. Alternatively, in the study by Iam-On 

et al., a cluster ensemble was generated by using different initialization parameters on the 

same k-prototypes clustering algorithm. They have presented a link-based approach to 

aggregate the clustering results and produce the final consensus solution. Results from the 

use of this ensemble approach on two different biological datasets are discussed [60].  

Greene et al. employ k-means, k-medoids and a fast “weak clustering” algorithm to 

generate the clusterings for the ensemble. They obtain a consensus from these clusterings 

using hierarchical clustering algorithms with different linkage options. Results from 

consensus clustering on benchmark medical datasets as well as synthetic datasets are 

presented [57], [61].  

In our work, the base clusters are produced by the two clustering algorithms - i.e. mixture 

model and KAMILA. Three different consensus functions are tested and applied to the 

base clustering outcomes to generate the final consensus clusters - i.e. k-modes, majority 

voting and Latent Class Analysis (LCA).  
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2.4.1  k-modes 

k-means is an effective clustering algorithm traditionally used for numerical data. k-modes 

is a method of clustering datasets that consists of categorical variables and was developed 

to be an extension of k-means by Huang. As a result, k-modes also works as a suitable 

method of consensus clustering using the resulting clusters (with their labels) produced by 

the two individual model-based clustering algorithms. It primarily differs from k-means in 

the type of dissimilarity being used, using modes instead of means and following a 

frequency-based approach in order to update those modes [62].  

The dissimilarity is given by 

𝑑(𝑋, 𝑌) = ∑ 𝛿(𝑥𝑡, 𝑦𝑡)

𝑚

𝑡=1

 

where X and Y are two objects between which we are trying to find the dissimilarity and 

𝑥𝑡 and 𝑦𝑡 are their respective categorical variable values for the variable 𝑡. 

𝛿(𝑥𝑡, 𝑦𝑡) =  {
0   (𝑥𝑡 =  𝑦𝑡)
1   (𝑥𝑡  ≠  𝑦𝑡)

 

 

The mode of 𝑋 where 𝑋 is a set of categorical objects having attributes (𝐴1, 𝐴2, … . , 𝐴𝑚) 

is given by 𝑄 = [𝑞1, 𝑞2, … , 𝑞𝑚] ∈  𝛺 that minimizes  

𝐷(𝑄, 𝑋) =  ∑ 𝑑(𝑋𝑖, 𝑄)

𝑛

𝑖=1

 

𝛺 is the overall space consisting of 𝐴1, 𝐴2, … . , 𝐴𝑚 attributes. 

As with k-means, we first select initial modes for each cluster, assign samples to those 

clusters depending on the shortest 𝑑 from the mode, and constantly update the mode of the 

cluster after each assignment. We then check the dissimilarity of the samples again with 

the new modes and reassign any samples that might be closer to another mode. We then 

calculate the new modes and repeat the process of assignment of samples and dissimilarity 
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calculation to newly generated modes until there are no more changes occurring in the 

assignment [38], [62]. 

The success of this algorithm on a popular soybean disease dataset is shown as well. This 

method also has the added advantage of working with very large datasets, just like with k-

means [38], [62]. As mentioned in Section 2.4, k-modes was used as the consensus 

function in the study by Shen et al. [59]. Luo et al. demonstrate how k-modes can be used 

as a consensus function for obtaining final partitions based on labels from multiple runs of 

the k-means algorithm. Comparisons with five other consensus functions using a popular 

benchmark dataset are presented in their work [63]. 

 

2.4.2  Majority Voting 

Ayad and Kamel developed a voting-based consensus clustering method that directly dealt 

with the voting problem. The voting problem is that of estimating sample assignments to 

the reference cluster partitions on the basis of their assignments to the base cluster 

partitions that make up the ensemble, so as to minimize the estimation errors with the 

representative ensemble partition. They deal with the voting problem using a multiple 

regression approach where they treat the representative cluster partitions as the outcome 

variables and the base clustering partitions as the input variables. The final consensus 

partition is regarded as a soft partition which means that it is generated by averaging the 

probabilities of cluster-label assignment. The objective is to find the optimal compression 

of the statistical distribution to retain the maximum amount of information [64]. Two 

algorithms, one that follows a bipartite matching scheme or bVote and an adaptive 

cumulative voting scheme or Ada-cVote are presented by Ayad and Kamel. The results of 

their consensus clustering approach on two artificial datasets and three real-world datasets 

are presented and compared with other existing algorithms [64]. Vaulet et al. use majority 

voting to obtain a consensus solution with multiple k-means algorithm runs (with different 

subsamples and initializations) in their work to identify phenotypes for acute renal 

transplant rejection [13]. 
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2.4.3  Latent Class Analysis (LCA) 

This is a technique useful for multivariate categorical data and hence works as a method 

of consensus clustering based on clusters produced by individual clustering algorithms. 

“The latent class model aims to stratify the cross-classification table of observed (or  

“manifest”) variables by an unobserved (“latent”) unordered categorical variable that 

eliminates all confounding between the manifest variables” [65]. Essentially, the model 

tries to group each sample into a latent class in a probabilistic manner. The observed 

variables are sampled from a mixture of multinomial distributions, which are associated 

with the cluster that the sample is a part of  [41]. It works similarly to the mixture model 

mentioned previously. Ferreira et al. use latent class analysis to identify groupings in a 

study among patients with heart failures in order to be able to understand the outcomes 

and responses to different treatments [66]. As with the other model-based clustering 

methods, this is probabilistic in nature which implies that a sample is believed to be part 

of one cluster but the uncertainty about an object’s class membership is taken into 

consideration as well. This method does share some similarities with fuzzy clustering 

approaches. Vermunt and Magdison show the clustering performed by Latent Class on a 

diabetes dataset of numerical variables and a Prostate cancer dataset with mixed variables. 

In the case of the prostate cancer dataset, they wanted to identify clusters that differed 

based on the likelihood of success from treatment [67]. LCA was used as a clustering 

method in the work by Bailly et al. towards phenotyping sleep apnoea using a large dataset 

of over 20,000 patients [11]. As shown later in our results, this consensus method provided 

us with the best solution.  

 

2.5  Self-Organizing Maps (SOMs) 

Kohonen developed an Artificial Neural Network (ANN) method for the visualization of 

high-dimension data that presents the information on a low-dimensional grid. This 

implicitly groups samples together in the process which can be further observed in a data 

clustering manner. SOMs manage to retain the topological and metric relationships that 

may exist between the observations when obtaining that lower-dimensional representation. 
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In its generation, SOMs produce a two-dimensional grid of nodes where each node is 

linked to a model of some sample. These models are grouped closer together when they 

are more similar than the ones that are not. This is done in a nonparametric, recursive 

regression method [68]. Even though SOMs are able to group similar observations closer 

together, by applying a clustering method like partitioning around medoids (pam) or a 

hierarchical clustering algorithm on the output from the SOM, we can obtain clearly 

distinguishable clusters. Originally, SOMs generate prototype vectors that represent the 

main dataset which are then combined with some clustering algorithm such as hierarchical 

clustering as used in our work. Every sample of the dataset is a part of the same cluster as 

its nearest prototype. Vesanto and Alhoneimi state how this this method of clustering 

allows for efficient utilization of clustering algorithms due to the algorithms working with 

the prototype vectors which are typically smaller than the dataset and could also result in 

identifying clusters of arbitrary shapes and sizes [69]. 

Ong and Abidi used SOM on a dataset from the World Bank involving social indicators 

as the input variables. They were able to obtain a good visualization and clustering of the 

observations by applying the a-dK means method to the trained SOM. In their analysis, 

they observed that countries with a similar geographical location were grouped closer 

together in the SOM representation even though the SOM was trained in an unsupervised 

manner where no direct indication of similar countries was provided [70]. Vesanto and 

Alhoneimi explore the use of an agglomerative method and k-means clustering method on 

the output of the Self-Organizing Map. They apply their methodology to three diverse 

datasets, one real-world and two artificial, to yield some interesting results and also 

slightly emphasized the computational efficiency of this method [69]. In the study by 

Kiang, they applied a contiguity-constrained clustering method to the output of the SOM 

that was generated. Their clustering method relied on a minimal variance criterion rather 

than a minimal distance criterion. Comparisons with other clustering approaches were 

drawn as well. They applied this to two popular datasets, the Iris and wine datasets from 

UCI [61], [71]. Garcıá and González describe a two-level approach to using the prototype 

vectors obtained from SOM and apply k-means to obtain proper clusters in their work 

involving wastewater treatment monitoring. They detail the SOM algorithm and discuss 

the various ways to represent the information from the SOM generation [72]. 
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In our work, we have used SOM as a way to support our clustering results. This is because 

there are a lack of existing metrics and evaluation indices when it comes to clustering 

mixed data having no “ground truth” or labels [39]. The results from our work also indicate 

how SOMs could be used as an independent clustering approach for mixed-type data 

clustering and not just as a supporting method. Additionally, SOMs present a visualization 

method for our dataset.   

 

2.6  Cluster Evaluation  

The clustering algorithms used in our study work with mixed-type data without relying on 

a distance measure. However, to evaluate the algorithms using the internal evaluation 

indices, a distance measure needs to be computed for our dataset. The Gower’s distance 

measure is employed to facilitate that. This distance measure is also used to generate the 

t-SNE visualizations of our clustering results. 

 

2.6.1  Gower’s Distance 

Calculating the distance between points in a dataset is an integral part of several clustering 

algorithms. A great portion of cluster analysis studies tends to deal with numerical 

variables only, for which multiple different distance measures are available to calculate 

the distance between two data points. In that case, Euclidean distance, Manhattan distance, 

and Minkowski distance are some of the commonly used distance measures. However, it 

is a little more complex when dealing with a mixture of numerical and categorical data. 

One of the most popular distance measures for mixed data (categorical and numerical) is 

the Gower distance. Gower introduced the concept in 1971 as a coefficient of similarity 

between sampling units [73]. It is a relatively simple distance calculation involved 

compared to some other mixed data distance measures. Weatherall et al. use this distance 

measure in their cluster analysis study that identified phenotypes among airway diseases 

in a population. Diana and agnes were the two hierarchical clustering algorithms that used 

the Gower distance in their cluster formation [74]. Özlem et al. performed clustering on a 

mixed panel dataset using agglomerative hierarchical clustering with Gower distance since 
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they had to deal with numerical and categorical variables [75]. Ebbert et al. analysed 

students’ lecture recordings to identify patterns by clustering, using the partitioning around 

medoids algorithm with Gower distance [76].  

Let 𝑡 =  1,2, … , 𝑚 be the variables in the dataset. The Gower’s distance is based on the 

following calculation: 

𝑆𝑖𝑗 =  

∑ 𝑠𝑖𝑗𝑡𝛿𝑖𝑗𝑡

𝑚

𝑡=1

∑ 𝛿𝑖𝑗𝑡

𝑚

𝑡=1

 

Where 𝑆𝑖𝑗 is the similarity between the two points 𝑖 and 𝑗. 𝑠𝑖𝑗𝑡 and 𝛿𝑖𝑗𝑡 are calculated based 

on whether the variable is numerical, categorical or dichotomous.  

If the variable is numerical: 

𝑠𝑖𝑗𝑡 = 1 − |𝑥𝑖𝑡 − 𝑥𝑗𝑡| ∕ 𝑅𝑡 , where 𝑥𝑖𝑡 and 𝑥𝑗𝑡 are the respective values of the points 𝑖 and 

𝑗 for the variable 𝑡 and 𝑅𝑡 is the range of the variable 𝑡. 

If the variable is categorical: 

𝑠𝑖𝑗𝑡  =  1 if both 𝑖 and 𝑗 have the same value for the variable 𝑡. 

If the variable is dichotomous: 

Only when both 𝑖 and 𝑗 have the same value of the variable 𝑡 (Presence or yes or positive 

etc.), the 𝑠𝑖𝑗𝑡 = 1. In every other case, including when both 𝑖 and 𝑗 don’t have a value for 

𝑡 (absence or negative), the 𝑠𝑖𝑗𝑡 = 0. 𝛿𝑖𝑗𝑡 is always 1 unless there is no value for variable 

𝑡 for 𝑖 and 𝑗. 

𝛿𝑖𝑗𝑡 is always 1 whenever the variable is categorical or numerical.  

The Gower distance between 𝑖 and 𝑗 is given by  √1 − 𝑆𝑖𝑗 [73]. 
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2.6.2  Internal Evaluation Indices 

To evaluate the performances of the clustering algorithms and identify the right number 

of clusters for our problem, internal evaluation indices need to be utilized. Since the data 

is of a mixed type and has no ‘ground truth’ or labels, options to evaluate the different 

approaches’ and algorithms’ performances are limited. This could be due to a lack of 

available implementations as well as not being applicable to data of this nature. Several 

previous works involving mixed-type data have worked with datasets having a ground 

truth or labels for which performance metrics like clustering accuracy, rand index and 

normalized mutual information are used [39]. We have identified three indices, the 

Silhouette index, Dunn’s index and Calinski-Harabasz scores for our work. The indices 

are usually used on numerical variable datasets with Euclidean distance measures. In this 

work, they are applied to the Gower’s distance matrix that is computed for mixed-type 

data.  

 

2.6.2.1  Silhouette index 

The Silhouette index is a cluster validity measure that is representative of the tightness and 

separation of clusters. It is dependent on the actual cluster partitions rather than the 

algorithms that are used. It can also aid us in determining the right number of clusters (or 

k) [77]. In a dataset of 𝑚 objects and 𝑐 clusters, the Silhouette width for an object 

𝑠(𝑖)(𝑖 = 1, … , 𝑚) is given by  

𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
 

where 𝑎(𝑖) is the average distance between the 𝑖th object and all of the objects in a cluster 

𝑋𝑗 (𝑗 = 1, … , 𝑐) and 𝑏(𝑖) is the minimum average distance between the 𝑖th object and all 

of the objects in cluster 𝑋𝑘 (𝑘 = 1, … , 𝑐; 𝑘 ≠ 𝑗). The silhouette scores shown in our work 

are the overall average silhouette widths that are obtained by averaging the 𝑠(𝑖) values for 

all the objects. The scores fall between a value of −1 and +1 where a value closer to the 

latter is representative of a good clustering and a score closer to the former is indicative of 

a misclassification [77], [78].  
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2.6.2.2  Dunn’s index 

Dunn’s index could be used to detect compact and well-separated clusters. In a dataset 

with 𝑐 clusters and a partition 𝑈, the index is calculated by  

𝐷(𝑈) =  min
1≤𝑖 ≤𝑐

{ min
1≤𝑗 ≤𝑐

{ 
𝛿(𝑋𝑖, 𝑋𝑗)

max
1≤𝑘 ≤𝑐

{ 𝛥(𝑋𝑘) }
 }}  

where 𝛿(𝑋𝑖, 𝑋𝑗) is the intercluster distance between the two clusters 𝑋𝑖 and 𝑋𝑗; 𝛥(𝑋𝑘) is 

the intracluster distance of cluster 𝑋𝑘 and 𝑈 is the overall partition that the clusters are a 

part of. For Dunn’s index, the value lies between 0 and ∞ where a higher score represents 

good clusters [78]. 

 

2.6.2.3  Calinski - Harabasz index 

Initially proposed by Calinski and Harabasz, this cluster validation metric was shown to 

be successful in the work by Milligan and Cooper [79], [80]. Hennig and Liao extended 

this metric with mixed-type variables using dissimilarities [81]. The Calinski-Harabasz 

index is given by 

𝐶𝐻 =
𝛴𝑘𝑑2(𝑐𝑘, 𝑔) (𝑁𝐶 − 1⁄ )

𝛴𝑘𝛴𝑗𝜖𝑋𝑘
𝑑2(𝑗, 𝑐𝑘)/(𝑚 − 𝑁𝐶)

  

where  𝑑2(𝑐𝑘, 𝑔) is the squared distance between the center of the cluster 𝑘 and the center 

of the dataset 𝑔. 𝑑2(𝑗, 𝑐𝑘) is the squared distance between the point j and the center of the 

cluster 𝑘. 𝑚 is the total number of points in the dataset and 𝑁𝐶 is the number of clusters. 

This metric measures both compactness and separation simultaneously. A higher score 

represents a better result [79], [82].  

 

2.6.3  t-Distributed Stochastic Neighbor Embedding (t-SNE) 

t-SNE is a visualization technique for high-dimensional data that allows each sample to 

have a location in a two or three-dimensional map. This method manages to capture most 
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of the local structure present in the data while simultaneously being able to represent the 

global structure of the presence of clusters. Maaten and Hinton show the superiority of this 

method compared to other methods like Sammon mapping and Isomaps on a number of 

data sets. The drawbacks of Stochastic Neighbor Embedding that are resolved by t-SNE 

are stated in their work [83]. The t-SNE visualization is computed on the Gower distance 

matrix generated. 

 

2.6.4  Statistical Tests 

Statistical tests can be used to compare variable distributions among the clusters and 

understand significant differences and associations among clusters. We have used the non-

parametric Kruskal-Wallis test for numerical variables and the chi-square test for 

categorical variables. Statistical tests have been previously used in phenotyping studies to 

compare cluster variables. Thongprayoon et al. used the ANOVA and Kruskal-Wallis tests 

for numerical and chi-square test for categorical variables in their study involving 

clustering in kidney transplantation [14]. Soler et al. used t-tests for numerical and chi-

square for categorical variables in their work to identify phenotypes among patients with 

chronic rhinosinusitis [7]. In their study involving phenotyping in sleep apnoea patients, 

Bailly et al. used the Kruskal-Wallis tests for numeric variables and chi-square or Fisher’s 

exact test for categorical variables [11].  

 

2.7  Summary 

We have performed a significantly detailed review of existing literature and methods 

surrounding our work in this section. Initially, existing studies involving ML in kidney 

transplantation are presented. We discuss Multivariate Imputation by Chained Equations 

(MICE) which is an effective data imputation method that is versatile in its application. 

This is a popular imputation approach taken by researchers in this field. It works well with 

datasets that consist of both categorical and numerical variables. We then talk about the 

concept of clustering and the methods involved in our work. Cluster analysis is a data 

mining task that is popularly employed across industries and applications. A lot of existing 
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work has involved distance-based clustering algorithms or clustering with quantitative 

data. Clustering with mixed-type data is not as straightforward or as popular and is a field 

that needs to be explored further. There are a lot of challenges that come with a mixture of 

variable types like imputation, integration of distance calculations for the respective types 

and visualizing the data in the same space. Model-based clustering methods are effective 

in dealing with some mixed data clustering issues and can lead to significant insights from 

data of such mixed nature, which a lot of real-world medical datasets are. Two clustering 

algorithms for the task at hand are presented. There are benefits that these algorithms 

provide over a more traditional approach like k-means. Obtaining a consensus among 

clustering results is discussed. It is an effective method to improve our results by providing 

better quality solutions. This consensus can be obtained in different ways as has been done 

in other work. The k-modes, Majority Voting and Latent Class Analysis (LCA) functions 

to obtain a consensus among clustering solutions are detailed in this chapter. 

We have described Self-Organizing Maps (SOM) as a method of clustering to reinforce 

the results. This also works as a powerful visualization tool in our analysis. Previous works 

that used SOM to cluster observations are reviewed and reported. 

We proceed to talk about the distance measure of Gower distance, which was used in our 

work to select algorithms that performed well for our task and implemented with cluster 

evaluation indices. Gower distance is a popular mixed data distance measure and is 

relatively simple in calculation. This distance measure has widely been used in previous 

works involving distance-based clustering methods. Internal evaluation metrics to evaluate 

clustering model performances in the absence of labels are presented, even when the data 

is of a mixed nature. 

Finally, we have reviewed t-Distributed Stochastic Neighbor Embedding (t-SNE) which 

is a powerful visualization technique. It allows us to view high-dimensional data, in a two 

or three-dimensional form. Overall cluster structure from the various clustering methods 

and algorithms can be observed in this lower dimensional form. 
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CHAPTER 3   CLUSTERING METHODOLOGY AND 

EXPERIMENTS 

Our clustering methodology is designed to handle mixed data types and the lack of class 

labels that are used for cluster evaluation (as is the case with past clustering studies).  The 

unlabelled dataset used in this study comprises both numerical and categorical features. 

The methodology that has been developed can be segmented into four phases as shown in 

Figure 1. The first step of our methodology is pre-processing the dataset which includes 

an elaborate imputation approach suitable for our dataset. Next, model-based clustering 

algorithms that work with mixed-type data are investigated to generate base clustering 

results. Consensus methods are applied to these base clusters to produce the final 

consensus clusters. Our methodology also involves the evaluation of the clustering results 

in the absence of ground truth or labels. Finally, based on expert validation of the clusters, 

kidney donor and recipient phenotypes are generated.  

 

Figure 1: Overview of research methodology 
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The four phases involved are briefly described below and the methods involved are 

elaborated further in the next sections. 

Phase 1 - The first phase involves the preprocessing of the dataset, including imputation, 

null value deletion, value deletion by criteria, and data standardization among other tasks. 

Recalculation / Creation of new features is a part of this phase as well. 

Phase 2A and 2B - In the second phase, clustering is performed on the features obtained 

after preprocessing the dataset (and cohort extraction) using two different clustering 

algorithms to generate the base clusters. Additionally, in this phase, Self-Organizing Maps 

with clustering is applied to substantiate the final ensemble clustering results. 

Phase 3 - In the third phase, we generate a consensus cluster from the base clusters using 

three popular ensemble methods: k-modes, Majority Voting and Latent Class Analysis 

(LCA). This allows us to obtain the final cluster partitions. 

Phase 4 - In the fourth and final phase, we evaluate and visualize generated clusters. 

Heatmaps are used to represent the categorical variable distributions among the generated 

clusters. Simple tables to show differences between numerical variables among the 

clusters are presented. Internal evaluation indices of Silhouette index, Dunn index and 

Calinski- Harabasz scores for the various methods are presented. Self-Organizing Maps 

and t-SNE are used to represent the clusters obtained in different forms. Final cluster 

descriptions obtained from the solutions are described and detailed. Brief as well as 

elaborate summaries are presented in Section 4.5. 

Our methodology is applied to a kidney transplantation dataset involving donor and 

recipient characteristics. It allows us to obtain clusters in that data to identify phenotypes 

that exist among these individuals. This provides us with a better understanding of 

underlying associations and outcome predictions. As mentioned previously, this could 

contribute to better diagnostic and treatment plans for the individuals involved.  
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3.1  Dataset 

The dataset that is employed in this study is from the Scientific Registry of Transplant 

Recipients (SRTR). The SRTR data system includes data on all donors, wait-listed 

candidates, and transplant recipients in the United States, submitted by the members of the 

Organ Procurement and Transplantation Network. The Health Resources and Services 

Administration and the US Department of Health and Human Services provided an 

overview of the activities of the Organ Procurement and Transplantation Network and 

SRTR contractors. The dataset consists of kidney transplant donor and recipient clinical 

and outcome features originally spanning a period of 18 years from 2000 to 2017. There 

are a total of 165,090 records and 52 features. Each record is associated with features of 

one donor and one recipient individual. A description of all the features along with their 

feature name is provided in Table 1. The features include a wide range of characteristics 

of the individuals like height, weight and BMI as well as more specific illness-related 

features like a history of hypertension, diabetes and time on dialysis. Pandas dataframes 

were used to handle the datasets in python [84], [85]. 

Table 1: Description of variables in the dataset 

Feature Name Feature Description Feature Type 

dtype Donor type Categorical  

TRR_ID Individual transplant ID number Categorical 

rwt2 Recipient weight (kg) Numerical 

rht100 Recipient height (cm) Numerical 

dwt Donor weight (kg) Numerical 

dht100 Donor height (cm) Numerical  

rbmisimp Recipient BMI (kg/m2) category Categorical  

dbmisimp Donor BMI (kg/m2) category Categorical 

functstat4 Functional status Categorical 

pkpragroup Peak PRA group Categorical 

rsex Recipient sex Categorical 

rracesimp Recipient race Categorical 
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Feature Name Feature Description Feature Type 

esrddxsimp Simplified End Stage Renal Disease diagnosis Categorical 

dsex Donor sex Categorical 

dracesimp Donor race Categorical 

dgf Delayed Graft Function Categorical 

txtype Transplant type Categorical 

rdm2 Recipient Diabetes Categorical 

hlamm HLA mismatch Categorical 

rprvki Previous kidney transplant Categorical 

cit Cold ischemia time (hours) Numerical 

dage Donor age at transplant (years) Numerical 

ragetx Recipient age at transplant (years) Numerical 

dcmv Donor CMV Categorical 

ddm Donor Diabetes Categorical 

dhcv Donor Hepatitis C virus Categorical 

dcd Donation after cardiac death Categorical 

drcmv Donor and recipient CMV Categorical 

drsex Donor and recipient sex Categorical 

drrace Donor and recipient race Categorical 

abshtdif Absolute height difference between donor and 

recipient 

Numerical  

drwtdif Donor and recipient weight difference Numerical 

dragedif Donor and recipient age difference Numerical 

eventdt3 Minimum date of death, graft loss or censor Categorical 

event Event Categorical 

survtime3 Survival time of recipient (or last follow-up) Categorical 

txdate Transplant date Categorical 

graftfailure Graft failure or death Categorical 

death Death Categorical 

txfailuredt Graft failure date Categorical 
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Feature Name Feature Description Feature Type 

txdeathdt Recipient death date Categorical 

ecd Expanded criteria donor Categorical 

rhtn Recipient Hypertension Categorical 

rcvd Recipient Cardiovascular disease Categorical 

rpvd Recipient Peripheral Vascular disease Categorical 

rmalig Recipient Malignancy Categorical 

rcmv Recipient CMV Categorical 

dhtn2 Donor Hypertension Categorical 

preemptive Pre-emptive transplant Categorical 

rcad Recipient Coronary Artery disease Categorical 

vintage Years on dialysis pre-transplant Numerical 

wit Warm ischemia time (hours) Numerical 

 

3.2  PHASE 1: Data Preprocessing 

3.2.1  Data Cleaning and Feature Engineering 

Based on our analysis and experts’ opinion, features have been deleted, modified and 

generated to resolve any inconsistencies that may exist in the dataset. Most of the 

preprocessing and cleaning were done in python using the pandas, numpy and datetime 

(for date-related operations) libraries [84]–[87]. 

There were some features that were unimportant for our analysis and these were removed. 

The features dtype and TRR_ID were removed since dtype only had one value and 

TRR_ID is simply an ID number that did not have any significance in the study. Any 

individuals with previous kidney transplants (rprvki) were eliminated followed by 

removing the feature since it had only one value. We wanted to observe the effects of using 

unpaired variables like sex, cmv, height, etc., of the donors and recipients instead of the 

paired variables for them. Hence, the drcmv, drsex, drrace, abshtdif and drwtdif variables 

were removed. Delayed graft function (dgf) was an outcome variable that we did not want 

to include in our analysis and it was removed. Warm ischemia time (wit) was deleted due 
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to having far too many missing values (>40%). The event date (eventdt3) was recalculated 

to reflect the earliest of the events (graft loss or death or censored) since in some cases it 

did not consist of the earliest event occurrence date. A new feature called txtoevent which 

contained the number of days between the transplant and the event date had been 

calculated. This was used to recalculate the survival time (survtime3) field since it had 

some incorrect values. The event date (eventdt3) column was dropped as it did not have 

any information now that would help with our clustering objective. Similarly, the graft 

failure date (txfailuredt) and recipient death date (txdeathdt) were removed. The empty 

values in the event, graftfailure and death variables were replaced with 0 for easier 

interpretability and processing in the future stages. Records with negative vintage values 

were removed since that is not viable. We also got rid of the recipient and donor BMI 

category features (rbmisimp and dbmisimp) because some of the values were missing. We 

recalculated these features after the imputation tasks. The set of attributes obtained at this 

stage is shown in Table 2. There are a total of 143,297 records at this stage. 

Table 2: Variable type and status. 

Variable Name Type - Status 

rwt2 Recipient - Incomplete 

rht100 Recipient - Incomplete 

dwt Donor - Complete 

dht100 Donor - Incomplete 

functstat4 Recipient - Incomplete 

pkpragroup Recipient - Complete 

rsex Recipient - Incomplete 

rracesimp Recipient - Complete 

esrddxsimp Donor - Incomplete 

dsex Donor - Complete 

dracesimp Donor - Incomplete 

txtype Recipient - Complete 

rdm2 Recipient - Complete 

hlamm Recipient - Complete 
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Variable Name Type - Status 

cit Donor - Incomplete 

dage Donor - Complete 

ragetx Recipient - Complete 

dcmv Donor - Incomplete 

ddm Donor - Incomplete 

dhcv Donor - Incomplete 

dcd Donor - Incomplete 

event Recipient - Complete 

survtime3 Recipient - Complete 

graftfailure Recipient - Complete  

death Recipient - Complete 

ecd Donor - Complete 

rhtn Recipient - Incomplete 

rcvd Recipient - Incomplete 

rpvd Recipient - Incomplete 

rmalig Recipient - Incomplete 

rcmv Recipient - Incomplete 

dhtn2 Donor - Incomplete 

preemptive Recipient - Incomplete 

rcad Recipient - Incomplete 

vintage Recipient - Complete 

 

3.2.2  Data Standardization 

In order to impute the numerical variables in the next stage, the variables were first scaled 

using a method that did not forcefully center the data. This in turn avoids getting rid of any 

sparsity that may exist. For that purpose, scikit - learn’s absolute maximum scaler 

(MaxAbsScaler) in python was used. This allows the variables to be scaled in a way that 

each of their respective maximum absolute values would be 1.0 [24].  
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3.2.3  Data Imputation 

For the imputation step, there were 35 variables in our dataset after the cleaning and 

removal of some features as mentioned above. They are specified above in Table 2. Their 

status, whether complete or incomplete and if they are a recipient or donor variable is also 

shown. Only variables with lower than ~20% missing data are imputed which is 

approximately the maximum missingness in a variable at this stage.  

Two imputation tasks were performed with different groups of attributes. 

 

3.2.3.1  First Imputation Task 

In this task, all the donor variables are involved in addition to the recipient age (ragetx) 

variable based on the expert’s suggestion, given the completeness of data for donor 

parameters and recipient age in the SRTR. These 13 variables and the model used for the 

imputation of incomplete variables are shown in Table 3. 

Table 3: First imputation task feature data types and imputation methods 

Feature Name Type Model 

dwt Numerical  

dht100 Numerical Predictive mean matching 

dsex Categorical - 2 levels  

dracesimp Categorical - 3 levels Polytomous logistic regression 

cit Numerical Predictive mean matching 

dage Numerical   

ragetx Numerical  

dcmv Categorical - 2 levels Logistic regression 

ddm Categorical - 2 levels Logistic regression 

dhcv Categorical - 2 levels Logistic regression 

dcd Categorical - 2 levels Logistic regression 

ecd Categorical - 2 levels  
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Feature Name Type Model 

dhtn2 Categorical - 2 levels Logistic regression 

 

3.2.3.2  Second Imputation Task 

For the second imputation task, all the recipient variables in addition to donor variables 

that were complete were included. These 27 variables and the corresponding imputation 

method for incomplete variables are shown in Table 4. 

Table 4: Second imputation task feature data types and imputation methods 

Feature Name Type Model 

rwt2 Numerical Predictive mean matching 

rht100 Numerical Predictive mean matching 

dwt Numerical  

functstat4 Categorical - 10 levels Polytomous logistic regression 

pkpragroup Categorical - 3 levels Polytomous logistic regression 

rsex Categorical - 2 levels  

rracesimp Categorical - 3 levels  

esrddxsimp Categorical - 5 levels Polytomous logistic regression 

dsex Categorical - 2 levels  

txtype Categorical - 2 levels  

rdm2 Categorical - 2 levels Logistic regression 

hlamm Categorical - 7 levels Polytomous logistic regression 

dage Numerical  

ragetx Numerical  

event Categorical - 3 levels  

survtime3 Numerical   

graftfailure Categorical - 2 levels  

death Categorical - 2 levels  

ecd Categorical - 2 levels  
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Feature Name Type Model 

rhtn Categorical - 2 levels Logistic regression 

rcvd Categorical - 2 levels Logistic regression 

rpvd Categorical - 2 levels Logistic regression 

rmalig Categorical - 2 levels Logistic regression 

rcmv Categorical - 2 levels Logistic regression 

preemptive Categorical - 2 levels Logistic regression 

rcad Categorical - 2 levels Logistic regression 

vintage Numerical  

 

For both imputation tasks, we performed independent imputations using the ‘mice’ 

function from the mice R package [27]. The parameters used for both imputation tasks are 

the same besides the features involved and the models specified for those features. The 

parameters we specified for the ‘mice’ function are given in Table 5.  

Table 5: Parameters for both imputation tasks 

Parameter Value 

m (number of imputations generated) 5 

maxit (number of iterations) 10 

seed  2105 

 

There is another parameter predictorMatrix which is used to set the predictors that will be 

used for the imputation tasks. For the first imputation task, we created a partition of the 

dataset with only donor variables and recipient age variables and so did not have to specify 

the predictorMatrix parameter since it uses all the variables present by default for the 

imputation process. Whereas in the case of recipient variable imputation, almost the entire 

dataset was imported and we set the predictorMatrix parameter entries to ‘0’ (feature is 

not used for imputation) for the donor variables that had null values prior to imputation 

and for the txtoevent feature we created. The txtoevent variable is simply another 

representation of the recalculated survtime3 field and is redundant going further. In order 
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to set these entries of the predictorMatrix parameter, we had to do a dry run of the ‘mice’ 

function to generate that predictor matrix and then modify the values in it as suggested by 

Buuren and Groothius-Oudshoorn [27]. The reason for setting these parameter entries to 

‘0’ in the predictorMatrix rather than simply removing the variables in this step is to avoid 

confusion and further unnecessary processing going further. 

The logistic regression model is used for the imputation of categorical values with 2 

categories/levels while the polytomous logistic regression model is used when there are >

2 levels. Predictive mean matching is a semi-parametric imputation model used for 

numerical variable imputation that ensures that the imputations respect the upper and lower 

bounds of the variable [27], [88]. This method and its benefits are further elaborated in the 

book by Buuren [89]. Imputations with linear regression (with predicted values), linear 

regression ignoring model error and linear regression with bootstrap were briefly 

experimented and the results are presented in section 4.1. 

The default number of imputations produced by this method is 5. Liu and De discuss how 

generating multiple complete imputations help include the uncertainty from the imputation 

method and the variability of values in their analysis. However, that work revolves around 

combining estimates from the different methods in a setting such as regression analysis as 

also described in the documentation of the mice package [27], [30]. In the work by Liu 

and De, they also described picking a dataset at random, applying diagnostics and also 

seeing if similar results are obtained with other imputations [30]. However, for our work, 

we require only one dataset. As mentioned earlier in the background section, we are aware 

that doing so does not account for uncertainty from the imputation process. For that reason, 

we picked one dataset at random from the 5 different datasets produced for both imputation 

tasks (5 is the default number of imputations). We applied a non - parametric Kolmogorov-

Smirnov test to compare the distributions of the imputed numerical variables with the 

original distributions of those variables. If the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 was less than 0.05, we would 

say that the distributions are different and hence an undesirable outcome. In the case of all 

the imputed variables (donor and recipient) from the imputation method we picked, the 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 was >  0.05 hence signifying that the distributions are similar. Also, a visual 

inspection of the density plots of the pre and post imputation numerical variables showed 
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extremely identical and nearly indistinguishable plots with our method. Some of the other 

models that we tested for imputing numerical variables led to visually different density 

plots as well as 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.05 for the Kolmogorov-Smirnov test. Liu and De 

suggested a similar approach to determining the quality of the imputation generated and 

has shown how different models can lead to different diagnostic results [30]. These results 

are further elaborated in section 4.1. 

For reference, we randomly selected the 2nd imputed dataset generated from the first 

imputation task and the 4th imputed dataset generated from the second imputation task. 

 

3.2.4 Additional Dataset Processing  

After the imputation process, all the donor and recipient variables from both imputation 

tasks are combined into one complete dataset for further processing and analysis. We also 

apply an inverse transform to the numerical variables back to their unscaled form, using 

the same absolute maximum scaler (scikit-learn’s MaxAbsScaler) [24].  

The recipient and donor BMIs are calculated based on the now completed dataset. This is 

attained by dividing the weight (in kg) of the donor or recipient by the square value of the 

height (in cm) of the donor or recipient. Based on these calculations, the missing recipient 

and donor BMI category features (rbmisimp and dbmisimp) from our original dataset are 

calculated. These features are now made a part of the completed dataset for further 

analysis. 

The transplant date is also added to the complete dataset at this point for the purpose of 

extracting the required cohort in further stages. 

Based on experts’ suggestions, we deleted records from the dataset where the recipient or 

donor BMIs were below 10 or above 100. The recipient and donor heights, weights and 

BMI calculations are removed from the dataset since they are no longer required. 

However, the categorical variables consisting of the BMI categories that were filled in as 

mentioned above (rbmisimp and dbmisimp), remain in the dataset.  
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3.2.5  Cohort Preparation 

The entire dataset (140,000+ records) is very large to efficiently run experiments with the 

various methods and analyze the results due to the computational expense. So, a cohort 

was prepared at this stage for further experiments.  

On the basis of the transplant date, we prepared a cohort consisting of transplants that took 

place between 2009 and the end of 2011. This produced 25,824 records. Selecting a cohort 

that is in the more contemporary time frame of the dataset would be expected to result in 

fewer outcomes being observed (due to the short observation period in a lot of cases) and 

selecting a cohort that is much earlier in the dataset might be outdated and not 

generalizable to the management of transplantation in the most current era. After picking 

this cohort, the transplant date (txdate) is eliminated from the dataset since it serves no 

further purpose. 

We perform one final transformation of scaling the numerical variables in this dataset 

using the scikit-learn’s MaxAbsScaler for our clustering work going ahead [24]. 

The outcome variables event, graftfailure, death, survtime3, txtoevent as well as ecd are 

excluded in the dataset we used for the clustering and only reported after the clusters were 

generated for analysis. This was because we did not want the outcome variables to 

influence the clustering methods. A breakdown of the records from each year in the cohort 

is given in Table 6.  

Table 6: Number of records by year in the selected cohort. 

Year Number of records 

2009  8,294 

2010 8,557 

2011 8,973 

 

3.3  PHASE 2A: Clustering 

There was a total of 28 variables obtained after the previous pre-processing and cohort 

preparation tasks in Phase 1 that contribute towards the clustering of the dataset as shown 
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in Table 7. In our work, we decided to go with less traditional and popular clustering 

methods. Several previous studies involving clustering algorithms relied on distance 

measures and numerical datasets. There are distance measures that can work with mixed 

datasets having categorical and numerical data. However, a lot of these measures and 

algorithms that rely on them, have very expensive computation requirements and suffer 

from various drawbacks that are discussed in the background section. We wanted to 

explore model-based clustering methods for the purpose of mixed data clustering. Also, 

according to the silhouette index, some of the algorithms that are used in this work 

performed significantly better than distance-based methods like k-prototype, partitioning 

around medoids and hierarchical clustering that are built to handle mixed datasets [37], 

[38], [90], [91]. k-medoids and hierarchical clustering used the Gower distance matrix for 

computation while k-prototypes uses its own measure. k-prototypes was employed with 

the clustMixType R package while portioning around medoids was from the cluster R 

package and hierarchical clustering, from the stats R package [91]–[93]. The two 

clustering algorithms selected to produce the base clusterings are Mixture Model and 

KAMILA. For both algorithms, we generated 3 clusters since it produced a better 

silhouette score than anything above 3 clusters and 2 clusters (binary problem) were not 

of interest in our research. The silhouette plot showing the decrease in scores when using 

the KAMILA clustering algorithm is shown in Figure 7 in Section 4.2.1. A similar plot 

with the SOM method is presented in Section 4.3.  

Table 7: List of variables used for clustering. 

functstat4 pkpragroup rsex rracesimp 

esrddxsimp dsex dracesimp txtype 

rdm2 hlamm cit dage 

ragetx dcmv ddm dhcv 

dcd rhtn rcvd rpvd 

rmalig rcmv dhtn2 preemptive 

rcad vintage rbmisimp dbmisimp 
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Outcome variables are not a part of the clustering process since we wanted to analyze how 

clusters were formed in their absence. However, when analyzing cluster results, we look 

at the presence of those outcome variables among generated clusters. 

 

3.3.1  Mixture model  

The first clustering algorithm that was utilized was a mixture model-based clustering 

method obtained from the Rmixmod package in R [45], [91]. The function used is called 

mixmodCluster and the parameters used are specified in Table 8. The method is able to 

differentiate between quantitative and qualitative attributes automatically and no discrete 

specification of data types or variable discretization is required [45]. 

Table 8: Parameters for mixture model clustering 

Parameter Values Selected Value 

nbCluster (number of clusters 

required) 

3 - 8 3 

criterion (criterion for 

picking the best model) 

BIC, ICL, NEC BIC 

seed - 5 

 

The model used is called “Heterogeneous_pk_Ekjh_Lk_Bk” which indicates free and not 

necessarily equal proportions. Other models that were tested were 

“Heterogeneous_pk_Ekjh_Lk_B”, “Heterogeneous_pk_Ekjh_L_Bk” and 

“Heterogeneous_pk_Ekj_Lk_Bk” which produced worse results (silhouette score wise). 

There are 40 composite models available and when running a search based on BIC, ICL 

and NEC criteria for the best model, they all selected models that produced lower 

silhouette scores than our selected “Heterogeneous_pk_Ekjh_Lk_Bk” model. The various 

models differ in their parameters used in identifying clusters. When we tried to identify 

clusters greater than 3 with this method and the selected model, the model failed and 

produced errors. That could also indicate that a higher number of clusters are not suitable 
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for our dataset (with this model) because this algorithm fails to fit the components when 

𝑘 >  3 [45]. A similar issue was seen when we tried using another package that 

implemented a similar method. This method generates the first set of base clusters for our 

work. 

 

3.3.2  KAMILA 

KAy-means for Mixed Large data (KAMILA) is a semi-parametric clustering approach 

that we implement using the kamila package in R, developed by Foss and Markatou. The 

kamila function in this package is used to perform clustering [54]. Unlike the mixture 

model function we used, we are required to explicitly specify a dataframe of quantitative 

variables and a dataframe of qualitative variables. The parameters used for this clustering 

method are mentioned in Table 9.   

Table 9: Parameters for KAMILA clustering 

Parameter Values Selected 

numClust (number of clusters required) 2-8 3 

numInit (number of initializations) 30,40,100,1000 100 

maxIter (maximum number of iterations 

in each run) 

25,100,1000 1000 

 

The selected parameter values obtained the best silhouette scores for the randomly set seed 

of 3 (for reproducibility). The decrease in Silhouette scores with the increase in clusters is 

shown in the results section. We obtain the 2nd set of base clustering assignments from this 

method.  
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3.4  PHASE 3: Cluster Ensemble Generation 

The consensus among base clusterings is obtained with the help of three methods from the 

diceR package in R. The k-modes, Majority Voting and LCA consensus methods from this 

package are employed to generate the consensus clustering results [94].  

 

3.4.1  k-modes 

To generate a consensus using the k-modes algorithm, the ‘k_modes’ method from the 

diceR package is utilized [94]. k-modes is a relatively simple algorithm that was originally 

meant for clustering categorical variables and hence works well in order to obtain a 

consensus using base clustering assignment labels. It is similar in its operation to the very 

popular k-means clustering algorithm but is meant for categorical features rather than the 

numerical features that k-means is suited for. The parameters employed with this 

consensus method are mentioned in Table 10 below. 

Table 10: Parameters for k-modes consensus function 

Parameter Value 

is.relabelled TRUE 

seed 1 

 

The parameter is.relabelled is set to TRUE just to allow the k_modes function to generate 

its own consensus labels instead of using the first clustering as a reference. Some other 

random seeds were experimented with but produced worse silhouette scores [94]. 

Shen et al. used k-modes as a consensus function on results from three different clustering 

algorithms of k-means, hierarchical and Expectation-Maximization clustering methods. 

The goal of their study was to identify subtypes of Pervasive Development Disorders 

(PDD) using a dataset of patients with PDD [59]. 
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3.4.2  Majority Voting  

Majority voting is a consensus method that is able to deal with the voting problem through 

a multiple regression approach and produces a final consensus partition in the form of a 

soft partition attained by cluster-label assignment probabilities being averaged [64].  

The ‘majority_voting’ function from the diceR package is implemented to facilitate this 

method. The only parameter specified for this package is the ‘is.relabelled = TRUE’ 

parameter, identical to what is mentioned for the kmodes method (‘k_modes’ function) 

[94]. 

 

3.4.3  Latent Class Analysis (LCA) 

The ‘LCA’ method from the diceR package is used to implement the LCA consensus 

algorithm in our work. There are only two parameters for this method, one of which is 

‘is.relabelled = TRUE’ (same as in the other two consensus methods above) and seed 

which is set to 4 which gave the best silhouette score [94]. 

 

3.5  PHASE 2B: Self-Organizing Maps (SOMs) 

Self-Organizing Maps are an effective approach to clustering as well as data visualizations 

as discussed previously. On their own, SOMs group samples closer together based on how 

similar they are [68]. With the help of a clustering algorithm being employed on the results 

generated by the SOM, we are allowed to observe visually distinguishable cluster 

partitions [70]. In our work, these SOMs are used to substantiate the clustering consensus 

results we obtain and allow us to make a stronger case for our results. This also further 

strengthens the case for using SOMs as an independent clustering approach, even in the 

presence of mixed-type attributes. Self-Organizing Maps also provide an effective means 

for visualization, especially considering how challenging the task of visualization tends to 

become in the case of mixed-type datasets. First, the SOM is generated using the scaled 

numerical variables and categorical variables which were also used in the base clustering 

tasks. We have implemented SOMs with the help of the aweSOM package in R [95]. We 
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apply a clustering algorithm to the SOM representation produced to obtain proper cluster 

assignments for all the samples in the dataset. aweSOM has an interactive interface that 

provides several tools and customization options. The parameters used to generate the 

SOM in our work are provided in Table 11. 

Table 11: Parameters for Self-Organizing Maps method 

Parameter Values 

Rows, Cols 20, 20 

Topology rectangular 

Random seed 81016 

Initialization Random Obs 

maxNA.fraction 0.25 

rlen 100 

Alpha (start, stop) 0.05, 0.01 

Radius (start, stop) 11, -11 

 

‘rlen’ represents the number of times the complete dataset is presented to the network; 

alpha is the learning rate and radius is the neighborhood radius. 

For the hierarchical clustering of the SOM output, we applied the ‘ward.D’ linkage to 

generate 3 clusters. This linkage presented the best results based on silhouette score and 

representation (appropriately distinguishable clusters) among ward.D, single, complete, 

average and mcquitty linkage methods. We also tried the partitioning around medoids 

clustering on the SOM output and got lower silhouette scores than the selected method 

[95]. The visualizations from this method are presented in Section 4.3. A silhouette plot 

indicating the decrease in scores when 𝑘 > 3 clusters are used is also presented in that 

section.  
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3.6  PHASE 4: Evaluation and Visualization 

3.6.1  Internal Evaluation Indices 

The Silhouette scores, Dunn’s index and Calinski-Harabasz scores are used to briefly 

evaluate the clusters obtained from the various clustering methods. Since the data is of a 

mixed type, they are applied to the Gower’s distance matrix calculated by the daisy method 

from the cluster package in R (“gower” metric). The Silhouette score is calculated with 

that same package as the Gower’s distance matrix [93]. Dunn’s index value calculation is 

obtained with the help of the clValid package in R [96]. The Calinski-Harabasz score is 

calculated using the fpc package in R [97]. 

 

3.6.2  Visualizations 

t-SNE is used to represent the overall cluster structure produced by various methods. 

Heatmaps are used to understand cluster variable distributions as well as in identifying 

cluster agreements with the Self-Organizing Maps method. 

 

3.6.2.1  t-Stochastic Neighbor Embedding (t-SNE) 

In addition to the visualizations produced by SOMs from above, t-SNE is also used to 

show clusters obtained from the results of the clustering and consensus functions. A matrix 

constructed from the Gower’s distance calculation is used to generate the 2-d 

representation using t-SNE. The ‘Rtsne’ function from the Rtsne package in R allows us 

to create this visualization by taking the Gower’s distance matrix as input. The seed is 

randomly set to 2 and the parameter ‘is_distance’ is set to ‘TRUE’ [98]. The output of that 

function creates an object that we plot using the ggplot function from the tidyverse package 

in R [99]. The cluster memberships are also plotted with the points in the t-SNE plot to 

view the different clusters.         
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3.6.2.2  Heatmaps 

Heatmaps are used to show the difference in the distribution of categorical variables 

among the clusters generated. This is done with the help of the heatmap method from the 

seaborn library as well as the matplotlib library in python [100], [101]. The pandas crosstab 

function is responsible for computing the categorical variable distributions being shown 

in the heatmaps [84], [85]. Each cell in the heatmap shows the presence of the 

corresponding level of that attribute in that cluster (1-100%). We have also used heatmaps 

to show the similarity between clusters produced by different methods. 

 

3.6.3  2-D Tables 

Means and standard deviations of the numerical variables among clusters are represented 

in simple 2-d tables. These tables help us get a better understanding of the numerical 

features present among the different clustering results. It is also used to present a detailed 

overview of final cluster compositions in Section 4.5.1. 

 

3.6.4  Statistical Tests 

The Kruskal-Wallis test for numerical variables and chi-square tests for categorical 

variables were performed using the ‘kruskal.test’ and ‘chisq.test’ functions respectively, 

from the stats package in R [91]. The parameter ‘correct’ is set to ‘FALSE’ for the 

chisq.test since we are not using the test on a 2 ×  2 table. We have used a significance 

level of 0.05 in our work for both tests which is a common standard used in the field. 

 

3.7  System and Packages Used 

For our work, we constantly switched between python on Jupyter Notebook and R on 

RStudio [102], [103]. Since the dataset was of mixed type and imputation was required, 

acquiring packages and methods in any one environment or language proved challenging, 

hence the constant transition. Dataset handling, preprocessing and modification such as 
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standardization and recalculation took place primarily in python using Numpy and pandas 

packages [84]–[86]. Standardization was performed with the scikit-learn library in python 

[24]. Imputation was done in R using the mice package [27]. The base clustering and 

consensus clustering was attained using the Rmixmod, kamila and diceR packages in R 

[45], [54], [94], [104]. The Self-Organizing Maps were employed with the aweSOM 

package in R [95]. Heatmaps for visualizations were produced using the seaborn and 

Matplotlib libraries in python [100], [101]. t-SNE representations were obtained in R using 

the Rtsne package [98]. Additionally, some of the other packages that were used in R to 

facilitate data manipulation, processing, testing and method support are cluster, dplyr, 

tidyverse, tidymodels, ggplot2 and Rcpp [91], [93], [99], [105]–[110].   

All the experiments and analyses were carried out on a machine with an Intel i7 - 9750H 

CPU (Base Clock: 2.6 GHz, Turbo Clock: 4.5 GHz) paired with 32 GB of RAM and a 

Windows 10 64-bit Operating system. 
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CHAPTER 4   RESULTS 

Clustering analysis was performed on a cohort of 25,824 records consisting of clinical 

features of donors and recipients between the years of 2009 – 2011 (3 years). Following 

an elaborate pre-processing and imputation process, cluster algorithms and consensus 

clustering are employed to provide us with a set of results. Simultaneously, Self-

Organizing Maps provides us with an alternate solution to support our consensus 

clustering results.  

In the following section, Section 4.1, we examine the results from the imputation 

procedures following which we go discuss the individual clustering and consensus 

clustering results in Section 4.2. In Section 4.3, Self-Organizing Map results are presented 

and compared with ensemble clustering results. t-SNE visualizations are provided in 

Section 4.4. Finally, the cluster descriptions and distributions are detailed in Section 4.5. 

 

4.1  PHASE 1 Results: Data Imputation 

In the data imputation process, only variables with lower than 20% missingness are 

imputed. Four of the variables imputed are numerical - i.e. donor height (dht100), cold 

ischemia time (cit), recipient weight (rwt2) and recipient height (rht100). Eighteen of the 

imputed variables are categorical (binary and nominal). As mentioned in the methodology, 

multiple imputations are generated in both imputation tasks and a dataset is selected from 

each task. In addition to the statistical test for quantitative variables, we also compared the 

means and standard deviations of those variables pre and post-imputation to ensure the 

quality of imputation. Density plots are also used to support the imputations produced.  

For the statistical test of quantitative variables, we used the nonparametric Kolmogorov-

Smirnov (KS) test as suggested in the work by Liu and De [30]. The p-value is used to 

identify whether there exists a statistically significant difference in the distributions of the 

variable before and after imputation. When the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05, this is indicative of a 

significant difference and that would be undesirable since we would prefer that the variable 

distributions to not be significantly affected by the imputation process. Different 

imputation methods led to different 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 being obtained as well as different density 
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plots. Predictive mean matching (pmm) is the method selected for quantitative variable 

imputation. Another method that was previously tried and tested from this package is the 

linear regression with predicted values [30]. Following statistical testing, the method was 

changed to pmm which obeyed all the bounds of the variable being imputed as well as 

consistently satisfied the statistical test for all the numerical variables being imputed. 

Comparisons of the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 from the two different methods from the first and second 

imputation tasks are presented in Table 12. When using the linear regression (with 

predicted values) method for numerical variable imputation, the cold ischemia time (cit) 

and recipient height (rht100) imputations did not satisfy our requirement for the KS 

statistical test and produced 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 <  0.05.  

Table 12: Kolmogorov-Smirnov Test results p-value comparison between pmm and linear 

regression (with predicted values). 

 Pmm Linear Regression 

(predicted values) 

cit 1 < 2.2e-16 

dht100 1 1 

rwt2 1 1 

rht100 1 0.002 

  

Predictive mean matching always produced consistent results with imputations within 

bounds (existing upper and lower bounds of the variable) and satisfied the statistical test. 

In most cases, it produced an almost visually indistinguishable density plot that compared 

the distributions of the variable pre and post-imputation.  

We have primarily shown the cold ischemia time (cit) variable in the figures in this section 

since it has the largest number of missing values to be imputed for a numerical variable 

(~6%) and for easier comparison among imputation methods. More visually 

distinguishable plots can be seen for this variable when comparing methods. 

Figure 2 and Figure 3 show the density plots representing pre and post-imputation values 

for the cold ischemia time (cit) variable using predictive mean matching and linear 

regression with predicted values respectively.  

Method 

Variable 
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Figure 2: Density plot of the original dataset and dataset completed with 

imputation for cit variable with pmm 

Figure 3: Density plot of the original dataset and dataset completed with 

imputation for cit variable with linear regression (with predicted values) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The recipient height variable (rht100) did not satisfy the KS test requirement when using 

the linear regression (with predicted values) imputation method. This variable did not 

 Original  Imputed  

 Original  Imputed 
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Figure 4: Density plot of the original dataset and dataset completed with 

imputation for rht100 variable with pmm 

Figure 5: Density plot of the original dataset and dataset completed with 

imputation for rht100 variable with linear regression (with predicted 

values) 

show as much distinction among density plots produced with the predictive mean 

matching (pmm) and linear regression (with predicted values) methods in comparison with 

the cit variable. Figure 4 shows the density plot for the rht100 variable using the pmm 

method while Figure 5 shows the density plot for that variable using linear regression (with 

predicted values). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Original  Imputed 

 Original  Imputed 
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Figure 6: Density plot of the original dataset and multiple imputations 

generated for the cit variable with pmm 

All of the alternate imputations generated match closely to the original dataset using the 

method we selected (pmm), as can be seen in Figure 6 which represents the density plot 

for the cold ischemia time (cit) variable consisting of the original data and all the possible 

alternate imputation values (5 different imputations). To be clear, this figure is showing 

distributions of the possible imputed values from the alternate imputations and not the 

dataset completed with imputed values as shown and compared in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Additional tests involving other methods like linear regression ignoring model error and 

linear regression using bootstrap from the same package also satisfied the  KS statistical 

test and provided similar density plots as the predictive mean matching methods we used 

[27]. However, in several of the cases involving these two methods, the imputations did 

not obey the bounds of the variable (by default) being imputed and even produced negative 

values which cannot be the case for those variables. Figure 7 shows the density plot of the 

cit variables’ imputations produced with the linear regression using bootstrap method 

while Figure 8 shows the imputations with the linear regression ignoring model error 

method. 

 Original  Imputations 
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Figure 7: Density plot of the original dataset and multiple imputations 

generated for cit variable with linear regression using bootstrap 

Figure 8: Density plot of the original dataset and multiple imputations 

generated for cit variable with linear regression ignoring model error 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results from the data imputation tasks are summarized below. Imputed numerical variable 

statistics (mean and s.d.) pre and post-imputation are mentioned in Table 13. The imputed 

 Original  Imputations 

 Original  Imputations 
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categorical variables are represented by their respective values’ counts (and %) pre and 

post-imputation, in Table 14. In both tables, the frequency of missing values (and %) are 

mentioned with the feature names.  

Table 13: Imputed numerical variable statistics (mean ± s.d) pre and post-imputation 

 Donor height 

(cm) 

5 (0.003) 

Cold Ischemia 

Time (hrs) 

8059 (5.6) 

Recipient 

weight (kg) 

325 (0.2) 

Recipient 

height (cm) 

7484 (5.2) 

Mean ± s.d 

(original) 

170.15 ± 14.53 17.77 ± 9.00 81.72 ± 19.21 170.31 ± 11.01 

Mean ± s.d 

(completed) 

170.15 ± 14.53 17.77 ± 8.99 81.72 ± 19.21 170.32 ± 11.00 

 

Table 14: Imputed categorical variable distribution (frequency and %) pre and post-

imputation 

Feature Original 

(n = 143,297) 

Imputed 

(n = 143,297) 

Functional Status - 7822 (5.4) 

10% - moribund 367 (0.2) 406 (0.2) 

20% - very sick 1230 (0.8) 1333 (0.9) 

30% - severely disabled 580 (0.4) 633 (0.4) 

40% - disabled 2253 (1.5) 2396 (1.6) 

50% - req consid assist 3356 (2.3) 3564 (2.4) 

60% - req assist 11082 (7.7) 11665 (8.1) 

70% - unable to do normal 

activity 

21696 (15.1) 22644 (15.8) 

80% - some sx 30243 (21.1) 31738 (22.1) 

90% - minor sx 22916 (15.9) 24160 (16.8) 

100% - no complaints 41752 (29.1) 44758 (31.2) 

Peak PRA group - 23178 (16.1) 

0 89738 (62.6) 106040 (74.0) 
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Feature Original 

(n = 143,297) 

Imputed 

(n = 143,297) 

1 20669 (14.4) 25409 (17.7) 

2 9712 (6.7) 11848 (8.2) 

ESRD Diagnosis - 4328 (3.0) 

Diabetes  40499 (28.2) 40842 (28.5) 

GN 28331 (19.7) 29655 (20.6) 

HTN 39501 (27.5) 40669 (28.3) 

Other 18276 (12.7) 19221 (13.4) 

PCKD 12362 (8.6) 12910 (9.0) 

Donor Race - 30 (0.02) 

Black 19358 (13.5) 19364 (13.5) 

Other 4656 (3.2) 4659 (3.2) 

White 119253 (83.2) 119274 (83.2) 

Recipient Diabetes - 1279 (0.8) 

DM 51382 (35.8) 51540 (35.9) 

No DM 90636 (63.2) 91757 (64.0) 

Donor Diabetes - 667 (0.4) 

Negative 133181 (92.9) 133781 (93.3) 

Positive 9449 (6.5) 9516 (6.6) 

HLA mismatch - 1073 (0.7) 

0 11070 (7.7) 11122 (7.7) 

1 3440 (2.4) 3455 (2.4) 

2 6363 (4.4) 6408 (4.4) 

3 18488 (12.9) 18625 (12.9) 

4 36568 (25.5) 36847 (25.7) 

5 43797 (30.5) 44169 (30.8) 

6 22498 (15.7) 22671 (15.8) 

Recipient CMV - 6263 (4.3) 

Negative 43112 (30.0) 45127 (31.4) 



54 

 

Feature Original 

(n = 143,297) 

Imputed 

(n = 143,297) 

Positive 93922 (65.5) 98170 (68.5) 

Donor CMV - 600 (0.4) 

Negative 53432 (37.2) 53650 (37.4) 

Positive 89265 (62.2) 89647 (62.5) 

Donor Hepatitis C Virus - 240 (0.1) 

Negative 138962 (96.9) 139195 (97.1) 

Positive 4095 (2.8) 4102 (2.8) 

Donation after Cardiac death - 14 (0.009) 

No 125595 (87.6) 125607 (87.6) 

Yes 17688 (12.3) 17690 (12.3) 

Recipient Hypertension - 16543 (11.5) 

No 15287 (10.6) 18287 (12.7) 

Yes 111467 (77.7) 125010 (87.2) 

Recipient Cardiovascular disease - 24121 (16.8) 

No 115474 (80.5) 138790 (96.8) 

Yes 3702 (2.5) 4507 (3.1) 

Recipient Peripheral Vascular disease - 5491 (3.8) 

No 129621 (90.4) 134828 (94.0) 

Yes 8185 (5.7) 8469 (5.9) 

Recipient malignancy - 4728 (3.2) 

No 130479 (91.0) 134975 (94.1) 

Yes 8090 (5.6) 8322 (5.8) 

Donor Hypertension - 973 (0.6) 

No 103157 (71.9) 103835 (72.4) 

Yes 39167 (27.3) 39462 (27.5) 

Pre-emptive transplant - 1033 (0.7) 

No 126549 (88.3) 127420 (88.9) 

Yes 15715 (10.9) 15877 (11.0) 
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Feature Original 

(n = 143,297) 

Imputed 

(n = 143,297) 

Recipient Coronary Artery disease - 26591 (18.5) 

No CAD 105520 (73.6) 129807 (90.5) 

CAD 11186 (7.8) 13490 (9.4) 

 

4.2  PHASE 2A and PHASE 3 Results: Clustering  

In this section, the results from individual clustering methods are presented, followed by 

consensus clustering results and their comparison with the individual clustering approach.  

 

4.2.1  Base Clustering Results 

This work focuses on the use of clustering algorithms that are capable of handling data 

consisting of qualitative and quantitative variables together. Two model-based clustering 

algorithms - i.e. Mixture model and KAMILA are employed to generate base clustering 

solutions. Other traditional distance-based clustering algorithms like k-prototypes, k-

medoids and hierarchical clustering were briefly experimented with, to compare their 

performance with the algorithms we selected for our work. The distance-based methods 

produced worse silhouette scores for our selected number of clusters. Our selected 

methods are also less computationally expensive than some of the distance-based methods. 

As mentioned in the methodology section, the number of clusters (𝑘) used in our work is 

3. This was because if 𝑘 = 2, it would result in a binary classification problem which 

would have had little clinical utility in the face of a single variable completely 

dichotomizing the dataset. Furthermore, any value > 3 affected clustering performances 

(visually and metric-wise). For the mixture model algorithm, 𝑘 > 3 resulted in model 

errors possibly due to the data being unfit for more than 3 clusters. However, we were able 

to perform experiments with a different number of clusters with the KAMILA method. 

The change in silhouette scores with 𝑘 = 2 𝑡𝑜 8  for this method is shown in Figure 9. 
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Figure 9: Silhouette score plot for k = 2 to 8 with KAMILA 

 

A similar trend can be seen in the silhouette score plot using the SOM method as shown 

later in section 4.3. 

We identified three internal evaluation indices that could work with our data. Based on the 

internal evaluation indices, KAMILA performed better among the two base clustering 

algorithms. Table 15 shows the scores of the various evaluation indices using the two 

methods when 𝑘 = 3. 

Table 15: Internal evaluation indices scores for base clustering algorithms with k = 3 

Method Silhouette Scores (↑) Dunn Index (↑) CH Index (↑) 

KAMILA 0.108 0.0536 2760 

Mixture model 0.091 0.0099 2514 

 

These indices reflect the cohesion, separateness and compactness in the clusters produced 

by the clustering algorithm. A higher score is preferred for all three indices. The KAMILA 
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method produces better scores in all the metrics. These metrics have been calculated using 

the Gower distance matrix computed for mixed-type data.  

The numerical variable means and standard deviations among clusters generated with the 

KAMILA method are shown in Table 16. 

Table 16: Numerical variable statistics (mean ± s.d) among clusters with the KAMILA 

method 

Cluster 

# 

cit  

(hrs) 

dage 

(yrs) 

ragetx 

(yrs) 

survtime3 

(yrs) 

txtoevent 

(days) 

vintage 

(yrs) 

1 16.96 ± 9.88 34.12 ± 

15.17 

49.93 ± 

13.61 

5.29 ± 

2.13 

1932.3 ± 

781.5 

3.54 ± 

3.52 

2 17.10 ± 9.31 36.98 ± 

15.75 

57.56 ± 

9.71 

4.99 ± 

2.23 

1824.7 ± 

815.7 

3.33 ± 

2.77 

3 17.80 ± 9.66 50.39 ± 

10.32 

57.09 ± 

11.79 

4.76 ± 

2.35 

1740.5 ± 

859.4 

3.57 ± 

3.30 

 

From the above table. a clear distinction can be observed in some of the numerical 

variables between clusters, particularly donor age (dage), recipient age (ragetx) and 

survival time (survtime3).  

Heatmaps using the KAMILA method for some categorical variable distributions among 

clusters where there is a visible distinction are presented below.  
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Figure 10: event variable distribution among clusters using the KAMILA method 

 

 

Figure 11: graftfailure (left) and death (right) variable distribution among clusters using 

the KAMILA method 
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Figure 12: rdm2 variable distribution among clusters using the KAMILA method 

 

 

Figure 13: rsex variable distribution using the KAMILA method 
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Figure 14: dsex variable distribution using the KAMILA method 

 

4.2.2 Cluster Ensemble Results 

To obtain a consensus among the two base clustering results, three consensus methods are 

used - i.e. k-modes, Majority voting and Latent Class Analysis (LCA). Traditionally used 

to cluster categorical data, k-modes and Latent Class Analysis (LCA) are able to work as 

consensus functions by treating the cluster label assignments from the base clustering 

solutions as categorical variables and obtaining a consensus. Table 17 shows the 

performances of the three consensus methods using the internal evaluation metrics. 

Table 17: Internal evaluation indice scores for consensus clustering algorithms with k = 3 

Method Silhouette Scores (↑) Dunn Index (↑) CH Index (↑) 

k-modes 0.108 0.0200 2704 

Majority Voting 0.076 0.0282 2065 

Latent Class Analysis 

(LCA) 

0.113 0.0538 2843 

 

LCA produced the best scores among the three consensus methods while majority voting 

performed the worst in terms of silhouette and Calinski-Harabasz scores. Additionally, 

LCA also attained the best evaluation scores and visualizations in comparison with the 
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base clustering algorithms. Moving forward, this is the method we will use to primarily 

describe our consensus clustering results. 

The numerical variable means and standard deviations among clusters generated with the 

LCA method are shown in Table 18. 

Table 18: Numerical variable statistics (mean ± s.d) among clusters with the LCA method 

Cluster # cit  

(hrs) 

dage 

(yrs) 

ragetx 

(yrs) 

survtime3 

(yrs) 

txtoevent 

(days) 

vintage 

(yrs) 

1 17.13 ± 

8.96 

41.33 ± 

15.83 

58.28 ± 

9.50 

4.86 ± 

2.28 

1777.7 ± 

833.4 

3.34 ± 

2.69 

2 16.96 ± 

9.88 

34.12 ± 

15.17 

49.93 ± 

13.61 

5.29 ± 

2.13 

1932.3 ± 

781.5 

3.54 ± 

3.52 

3 18.16 ± 

10.49 

49.69 ± 

10.23 

55.35 ± 

12.98 

4.88 ± 

2.33 

1784.6 ± 

853.8 

3.71 ± 

3.69 

 

In the above table, we can observe a clear distinction among some of the variable means 

and standard deviations, particularly in the cases of donor age (dage), recipient age 

(ragetx) and survival time (survtime3). 

Some of the categorical variable distributions with visible distinctions among clusters are 

shown below. 

 

Figure 15: event variable distribution among clusters using the LCA method 
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Figure 16: graftfailure (left) and death (right) variable distribution among clusters using 

the LCA method 

 

 

Figure 17: dcmv variable distribution among clusters using the LCA method 
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Figure 18: dbmisimp variable distribution among clusters using the LCA method 

 

 

Figure 19: esrddxsimp variable distribution among clusters using the LCA method 
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Figure 20: rbmisimp variable distribution among clusters using the LCA method 

 

4.2.3  Comparison between Individual and Ensemble Clustering Results 

Consensus clustering is a method of obtaining a more robust and higher-quality solution 

than individual clustering algorithms. In our work, Latent Class Analysis performed the 

best among all the methods involved (individual and consensus clustering). This can be 

seen using the internal evaluation indices’ scores shown in Table 19. 

Table 19: Evaluation indices’ scores among various methods for 3 clusters 

Method Silhouette Scores (↑) Dunn Index (↑) CH Index (↑) 

Individual Clustering 

KAMILA 0.108 0.0536 2760 

Mixture model 0.091 0.0099 2514 

Consensus Clustering 

k-modes 0.108 0.0200 2704 

Majority Voting 0.076 0.0282 2065 

Latent Class Analysis 

(LCA) 

0.113 0.0538 2843 

Alternative Solution 
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Method Silhouette Scores (↑) Dunn Index (↑) CH Index (↑) 

Self-Organizing Map 

(SOM) 

0.100 0.0512 2595 

 

Although the internal evaluation scores of the LCA and SOM are slightly different, which 

could be due to the distance measure used, the two methods produce very identical results 

in variable distributions among clusters and t-SNE visualizations. This is discussed in 

Section 4.3. 

In terms of cluster sizes, there is a commonality shared by the various methods. There is 

usually a cluster that is evidently the biggest, followed by two smaller clusters. The 

magnitude of variation in size between the two smaller clusters depends on the algorithm 

used. Table 20 describes the cluster sizes produced by the various methods. 

Table 20: Cluster sizes generated by the various methods for k = 3 

Method Cluster Sizes (in decreasing order) 

Individual Clustering 

KAMILA 11472,  7628,  6724 

Mixture model 11061,  9098,  5665 

Consensus Clustering 

k-modes 12499,  9184,  4141 

Majority Voting 15699,  7266,  2859 

Latent Class Analysis (LCA) 11472,  9583,  4769 

Alternative Solution 

Self - Organizing Maps (SOMs) 12472,  9443,  3909 

 

A comparison between LCA and KAMILA for some of the categorical variable 

distributions is presented below. An important point to be noted when comparing methods 

is that the cluster numbers are arbitrary and do not have any meaning by themselves. We 
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can observe how the variable distributions among clusters differ between methods in these 

heatmaps. 

 

Figure 21: death variable cluster distribution with the KAMILA (left) and LCA (right) 

methods 

 

 

Figure 22: dhtn2 variable cluster distribution with the KAMILA (left) and LCA (right) 

methods 
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Figure 23: ecd variable cluster distribution with the KAMILA (left) and LCA (right) 

methods 

 

 

Figure 24: dbmisimp variable cluster distribution with the KAMILA (left) and LCA (right) 

methods 
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Figure 25: esrddxsimp variable cluster distribution with the KAMILA (left) and LCA 

(right) methods 

 

In the majority of heatmaps shown above, we can observe the LCA consensus method 

producing a better distinction among clusters than the individual clustering method of 

KAMILA.   

As we will see with respect to t-SNE visualizations as well, the cluster ensemble of LCA 

produces better clusters than any of the individual clustering algorithms. Cluster 

interpretation and descriptions from the LCA method are provided in Section 4.5. 

 

4.3  PHASE 2B and PHASE 3 Results: Self-Organizing Maps  

In our work, SOMs are used to provide an alternate solution that supports our consensus 

clustering results. This provides an additional method of validation for our approach in the 

absence of labels or ground truth for mixed type data. Similar to the silhouette plot in 

section 4.2.1 with the KAMILA algorithm, Figure 26 shows an identical trend in silhouette 

scores using the SOM algorithm where 𝑘 >  3 clusters results in lower scores. 
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Figure 26: Silhouette score plot for k = 2 to 8 with SOM 

 

The results obtained from SOMs match very closely with that produced by the ensemble 

clustering methods, particularly LCA. This is elaborated further in section 4.3.1. Figure 

27 shows the average distances between units (or cells) of the Self-Organizing Maps 

representation generated from our data. This is based on a 20 x 20 rectangular topography 

SOM representation.  
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Figure 27: Average neighbor distance SOM representation 

 

Each of the cells in this representation is a collection of points. SOMs are traditionally a 

visualization technique algorithm that produces a 2-d representation of the data. These 

SOMs inherently group similar items closer together. However, to obtain clearly marked 

boundaries and clusters, a clustering algorithm is applied to the SOM representation. In 

our work, we used hierarchical clustering with the ward D linkage measure on the SOM 

representation to obtain the distinct clusters shown in Figure 28. ward D produced a better 

SOM visualization and silhouette scores (clearer and more tightly grouped clusters) 

compared to the other linkage measures like average, single, mcquitty and complete 

linkage. It also produced a better result in comparison to the partitioning around medoids 

clustering algorithm applied to the SOM. 
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Figure 28: Rectangular SOM representation with 3 clusters using ward D linkage 

 

We can also visualize how some features are distributed among clusters in the SOM 

representation. This closely matches the corresponding heatmap of that categorical 

variable. Figure 29 shows the donor hypertension (dhtn2) variable distributed among 

clusters in the SOM representation while Figure 30 shows the same variable’s distribution 

as a heatmap. 

 

Figure 29: dhtn2 variable composition among clusters in SOM representation 
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Figure 30: dhtn2 variable distribution among clusters using the SOM method 

 

In Figure 29, we can observe how there is one cluster majorly composed of donors with 

no hypertension, one cluster almost entirely with donors having hypertension and a cluster 

that has a mixture of donors with and without hypertension. This is also reflected in the 

heatmap of that variable shown in Figure 30 above. 

Numerical variable statistics (mean ± s.d) among clusters obtained with SOM are 

presented in Table 21. 

Table 21: Numerical variable statistics (mean ± s.d) among clusters with the SOM method 

Cluster # cit 

(hrs) 

dage  

(yrs) 

rage  

(yrs) 

survtime3 

(yrs) 

txtoevent 

(days) 

vintage 

(yrs) 

1 17.38 ± 

9.49 

41.90 ± 

15.76 

58.36 ± 

9.55 

4.84 ± 

2.28 

1770.3 ± 

835.5 

3.41 ± 

2.84 

2 16.93 ± 

9.78 

34.92 ± 

15.35 

50.30 ± 

13.57 

5.25 ± 

2.16 

1920.6 ± 

790.5 

3.50 ± 

3.51 

3 17.93 ± 

9.72 

49.43 ± 

10.32 

55.47 ± 

12.93 

4.93 ± 

2.30 

1801.6 ± 

841.9 

3.68 ± 

3.50 
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We can observe clearly distinguishable differences among numerical variables, especially 

for donor age (dage), recipient age (ragetx) and survival time (survtime3) from the above 

table. 

Some of the categorical variables where a clear difference among clusters can be observed 

are presented below. 

 

Figure 31: death variable distribution among clusters using the SOM method 

 

 

Figure 32: esrddxsimp variable distribution among clusters using the SOM method 
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Figure 33: ecd variable distribution among clusters using the SOM method 

 

 

Figure 34: dracesimp variable distribution among clusters using the SOM method 

 

4.3.1  Comparison between Self-Organizing Maps and Consensus 

Clustering 

Self-Organizing Maps produce a very similar result to that of our consensus clustering 

methods, particularly Latent Class Analysis. Cluster sizes between SOMs and LCA are 

relatively similar as shown in Table 22.  
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Table 22: Cluster Sizes generated by LCA and SOM 

Method Cluster Sizes (in decreasing order) 

Latent Class Analysis (LCA) 11472,  9583,  4769 

Self - Organizing Maps (SOMs) 12472,  9443,  3909 

 

Table 23 below shows the comparison between numerical variable means and standard 

deviations produced by the two methods. The numerical variable statistics among clusters 

generated by the two methods are identical for all the variables involved.  

Table 23: Numerical variable statistics (mean ± s.d) among clusters with the LCA and 

SOM method 

Method Cluster #1 Cluster #2 Cluster #3 

Cold Ischemia Time (cit) - hrs 

LCA 17.13 ± 8.96 16.96 ± 9.88 18.16 ± 10.49 

SOM 17.38 ± 9.49 16.93 ± 9.78 17.93 ± 9.72 

Donor Age (dage) - yrs 

LCA 41.33 ± 15.83 34.12 ± 15.17 49.69 ± 10.23 

SOM 41.90 ± 15.76 34.92 ± 15.35 49.43 ± 10.32 

Recipient Age (ragetx) - yrs 

LCA 58.28 ± 9.50 49.93 ± 13.61 55.35 ± 12.98 

SOM 58.36 ± 9.55 50.30 ± 13.57 55.47 ± 12.93 

Survival Time (survtime3) - yrs 

LCA 4.86 ± 2.28 5.29 ± 2.13 4.88 ± 2.33 

SOM 4.84 ± 2.28 5.25 ± 2.16 4.93 ± 2.30 

Days between transplant and event (txtoevent) - days 

LCA 1777.7 ± 833.4 1932.3 ± 781.5 1784.6 ± 853.8 

SOM 1770.3 ± 835.5 1920.6 ± 790.5 1801.6 ± 841.9 

No. of years on dialysis pre-transplant (vintage) - yrs 

LCA 3.34 ± 2.69 3.54 ± 3.52 3.71 ± 3.69 

SOM 3.41 ± 2.84 3.50 ± 3.51 3.68 ± 3.50 
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The similarity between results produced by the two methods is also reflected in categorical 

variables as shown in the heatmaps below. 

 

Figure 35: rdm2 variable cluster distribution between the SOM (left) and LCA (right) 

methods 

 

 

Figure 36: dsex variable cluster distribution between the SOM (left) and LCA (right) 

methods 
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Figure 37: ecd variable cluster distribution between the SOM (left) and LCA (right) 

methods 

   

We can represent the agreement between clusters obtained using the SOM and consensus 

clustering methods in the form of heatmaps. Figure 38 shows this agreement between the 

LCA and SOM methods.  

 

Figure 38: Agreement between clusters generated by the LCA and SOM methods 

 

In the above figure, each cell represents how well clusters match or more specifically, how 

much of each cluster produced by SOM consists of samples from a cluster from the LCA 

method. For example, in Cluster 1 of SOM, about 96% of the data belongs to Cluster 1 of 
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the LCA consensus method, while only about 3% of the points belong to Cluster 3 of the 

LCA consensus method. Likewise, in Cluster 3 of SOM, about 97% of the data belongs to 

Cluster 3 of LCA while only about 1% of points belong to Cluster 1 or 2 of LCA. This 

tells us that the ensemble clustering methods produce results that are very similar to SOM’s 

results. In comparison, Figure 39 shows the agreement between the KAMILA and SOM 

clusters with a weaker result or agreement.  

 

Figure 39: Agreement between clusters generated by the KAMILA and SOM methods 

 

All the results mentioned in this section represent the close relationship between results 

produced by Self-Organizing Maps and the cluster ensemble of Latent Class Analysis 

(LCA). In that regard, SOMs are able to substantiate our consensus clustering results. 

Additionally, these results also represent how SOM could be used as an independent 

clustering approach in mixed-type data clustering scenarios and provide valuable results. 

 

4.4  PHASE 4 Results: Visualization  

Heatmaps and SOM visualizations have been shown previously. In addition to them, t-

SNE is used to provide an overall view of the clusters obtained. Figure 40 shows the t-

SNE visualization of the clusters produced by the Latent Class Analysis (LCA) consensus 
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clustering algorithm. This method produced the best clusters in terms of the t-SNE 

visualization, evaluation indices and agreement with SOM clusters. 

 

Figure 40: t-SNE representation of LCA clusters 

 

The visualization for the SOM method is very similar to Latent Class Analysis (LCA) as 

shown in Figure 41.  
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Figure 41: t-SNE representation of SOM clusters 

 

Figure 42 and Figure 43 represent the t-SNE visualizations of the k-modes and majority 

voting consensus methods respectively. For k-modes, there is a more visible cluster 

overlap and randomness as opposed to LCA. In the majority voting visualization, we can 

observe a weaker overall cluster structure with significant dispersion and cluster overlap.  
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Figure 42: t-SNE representation of k-modes clusters 

 

 

Figure 43: t-SNE representation of Majority Voting clusters 
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Figure 44 and Figure 45 show the t-SNE visualizations for the base clustering algorithms 

of KAMILA and mixture model respectively. There is significantly more visible cluster 

overlap for mixture model than any of the other methods.  

 

Figure 44: t-SNE representation of KAMILA clusters 
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Figure 45: t-SNE representation of Mixture model clusters 
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We can visualize the cluster structures when 𝑘 > 3 to observe how they shift with higher 

clusters. This is shown with the KAMILA algorithm in Figure 46 and Figure 47.  

 

Figure 46: t-SNE visualization for KAMILA with 4 clusters 
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Figure 47: t-SNE visualization with KAMILA for 5 clusters 

 

4.5  Cluster Interpretations to Derive Phenotypes 

One of the primary goals of this work is to identify phenotypes among kidney transplant 

donors and recipients based on their clinical characteristics. With the use of heatmaps for 

categorical variables and statistical measures for numerical variables, we can make sense 

of the clusters being generated by the various clustering algorithms to identify phenotypes 

among our data. Some of the heatmaps and statistical measures have been shown 

previously throughout this section. Cluster descriptions based on all of the variable 

distributions are provided below to summarize the consensus clustering result findings. 

The cluster descriptions mentioned are based on the best-performing algorithm of Latent 

Class Analysis (LCA). These descriptions primarily highlight differentiating or unique 

features among clusters. Following that, we provide a detailed summary of numerical and 

categorical variable distributions in the clusters. 
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4.5.1  Cluster Descriptions 

Cluster A 

This is the biggest cluster. On average, this cluster has the youngest donors and recipients 

and the longest survival time for recipients post-transplant. There is also a slightly higher 

presence of female recipients contained within this cluster. The primary End-stage renal 

disease diagnosis is Glomerulonephritis (GN) and Hypertension. Most of the recipients 

here do not have diabetes, while most of the donors do not have hypertension. Donors 

mostly do not belong to the expanded criteria in this cluster. With regards to BMI, this 

cluster has the highest occurrence of recipients in the >18.49 - 24.99 category while having 

the lowest occurrence in the >29.99 - 34.99 and >34.99 categories. An identical trend is 

seen for donor BMIs as well. 

Cluster B 

This is the second-largest cluster. This group consists of the oldest recipients on average. 

It also has the least average number of years that the recipient spends on dialysis pre-

transplant. The functional statuses between 40% and 70% seem to be most prevalent in 

this cluster compared to others. The majority of ESRD diagnoses here are Diabetes. 

Almost the entire population of recipients in this group have Diabetes. There is 

significantly more death occurring among the recipients. A substantial portion of the 

donors is from the expanded criteria. In comparison with other clusters, there is some 

presence of Peripheral Vascular Disease and also a higher presence of Coronary Artery 

disease. Unlike cluster A, there is a considerable portion of donors that have Hypertension. 

With respect to BMIs, recipients in the ranges of >29.99 - 34.99 and >34.99 occur more 

frequently in the population. 

Cluster C 

This is the smallest cluster among the three. The oldest donor population on average exists 

in this cluster while the average recipient age here also happens to be significantly higher 

than that of Cluster A. The recipients also happened to spend a greater number of years 

(on average) on dialysis pre-transplant. There is a slightly higher occurrence of female 

recipients here than in Cluster B and a higher occurrence of female donors than in other 
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clusters. The majority of the ESRD diagnoses here are Glomerulonephritis (GN) and 

Hypertension. This group has the highest presence of donors who identify from the black 

race. Most of the recipients here do not have diabetes. Donor CMV and donor Diabetes 

have a greater prevalence in the population here. This is also the cluster that has the greatest 

proportion of recipients that have suffered a graft loss. A substantial part of the donor 

population in this group belongs to the expanded criteria. Almost all the donors had 

hypertension. With regards to BMIs, donors in the ranges of >29.99 - 34.99 occur more 

frequently in this cluster. 

Table 24 gives a detailed overview of the variable distributions among the different 

clusters produced from the Latent Class Analysis (LCA) consensus method. Categorical 

variables are represented by their frequencies (and %) in that cluster. Numerical variables 

are represented by their means and standard deviations among clusters (means ± s.d). The 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 from the Kruskal-Wallis test for numerical variables and the chi-square test 

for categorical variables are also presented. 

In all the statistical tests, the p-value was lesser than our chosen significance level of 0.05 

for all the variables as shown in the table below. This indicates the strong association 

between the dependent variable (clusters) and all the independent variables (for categorical 

variables) as well as the significant difference among clusters for the numerical variables. 

Table 24: Variable distributions among clusters. Categorical variables shown by count (% 

of cluster) and numerical variables shown by mean ± s.d. p-values of the two statistical 

tests are provided. 

Features Clusters p-value 

A (n = 11,472) B (n = 9,583) C (n = 4,769) 

Functional status  

10% - moribund 25 (0.2) 23 (0.2) 7 (0.1) <0.001 

20% - very sick 105 (0.9) 92 (1) 39 (0.8) 

30% - severely 

disabled 

57 (0.5) 46 (0.5) 16 (0.3) 

40% - disabled 217 (1.9) 223 (2.3) 79 (1.7) 
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Features Clusters p-value 

A (n = 11,472) B (n = 9,583) C (n = 4,769) 

50% - req consid 

assist 

186 (1.6) 347 (3.6) 86 (1.8) 

60% - req assist 688 (6.0) 855 (8.9) 310 (6.5) 

70% - unable to do 

normal activity 

1930 (16.8) 1919 (20.0) 829 (17.4) 

80% - some sx 3720 (32.4) 2974 (31.0) 1488 (31.2) 

90% - minor sx 2849 (24.8) 1974 (20.6) 1220 (25.6) 

100% - no 

complaints 

1695 (14.8) 1130 (11.8) 695 (14.6) 

Peak PRA group  

0 7747 (67.5) 6825 (71.2) 3382 (70.9) <0.001 

1 2533 (22.1) 1945 (20.3) 1029 (21.6) 

2 1192 (10.4) 813 (8.5) 358 (7.5) 

Recipient sex 

Female 4949 (43.1) 3357 (35.0) 1940 (40.7) <0.001 

Male 6523 (56.9) 6226 (65.0) 2829 (59.3) 

Donor sex 

Female 4280 (37.3) 3869 (40.4) 2184 (45.8) <0.001 

Male 7192 (62.7) 5714 (59.6) 2585 (54.2) 

Recipient race 

Black 3790 (33.0) 3283 (34.3) 1682 (35.3) <0.001 

Other 886 (7.7) 863 (9.0) 333 (7.0) 

White 6796 (59.2) 5437 (56.7) 2754 (57.7) 

Donor race 

Black 1469 (12.8) 1344 (14.0) 981 (20.6) <0.001 

Other 322 (2.8) 341 (3.6) 176 (3.7) 

White 9681 (84.4) 7898 (82.4) 3612 (75.7) 

ESRD Diagnosis 
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Features Clusters p-value 

A (n = 11,472) B (n = 9,583) C (n = 4,769) 

Diabetes 0 (0.0) 7771 (81.1) 26 (0.5) <0.001 

GN 3532 (30.8) 321 (3.3) 1201 (25.2) 

HTN 4279 (37.3) 1019 (10.6) 2135 (44.8) 

Other 2074 (18.1) 378 (3.9) 721 (15.1) 

PCKD 1587 (13.8) 94 (1.0) 686 (14.4) 

Transplant type 

Left kidney 5333 (46.5) 4713 (49.2) 2364 (49.6) <0.001 

Right kidney 6139 (53.5) 4870 (50.8) 2405 (50.4) 

Recipient Diabetes 

DM 0 (0.0) 9580 (100.0) 345 (7.2) <0.001 

No DM 11472 (100.0) 3 (0.0) 4424 (92.8) 

Donor Diabetes 

Negative 11114 (96.9) 8862 (92.5) 3853 (80.8) <0.001 

Positive 358 (3.1) 721 (7.5) 916 (19.2) 

HLA mismatch 

0 680 (5.9) 575 (6.0) 181 (3.8) <0.001 

1 160 (1.4) 104 (1.1) 35 (0.7) 

2 464 (4.0) 359 (3.7) 152 (3.2) 

3 1543 (13.5) 1149 (12.0) 581 (12.2) 

4 3128 (27.3) 2528 (26.4) 1286 (27.0) 

5 3676 (32.0) 3235 (33.8) 1632 (34.2) 

6 1821 (15.9) 1633 (17.0) 902 (18.9) 

Recipient CMV 

Negative 3782 (33.0) 2698 (28.2) 1493 (31.3) <0.001 

Positive 7690 (67.0) 6885 (71.8) 3276 (68.7) 

Donor CMV 

Negative 4405 (38.4) 3423 (35.7) 1493 (31.3) <0.001 

Positive 7067 (61.6) 6160 (64.3) 3276 (68.7) 
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Features Clusters p-value 

A (n = 11,472) B (n = 9,583) C (n = 4,769) 

Donor Hepatitis C Virus 

Negative 11194 (97.6) 9231 (96.3) 4686 (98.3) <0.001 

Positive 278 (2.4) 352 (3.7) 83 (1.7) 

Donation after Cardiac death 

No 9700 (84.6) 8176 (85.3) 4234 (88.8) <0.001 

Yes 1772 (15.4) 1407 (14.7) 535 (11.2) 

Event 

Censored 8406 (73.3) 5412 (56.5) 2900 (60.8) <0.001 

Death 1395 (12.2) 2651 (27.7) 866 (18.2) 

Graft loss 1671 (14.6) 1520 (15.9) 1003 (21.0) 

Graft failure 

Censored 8406 (73.3) 5412 (56.5) 2900 (60.8) <0.001 

Yes 3066 (26.7) 4171 (43.5) 1869 (39.2) 

Death 

Censored 9647 (84.1) 6190 (64.6) 3541 (74.3) <0.001 

Yes 1825 (15.9) 3393 (35.4) 1228 (25.7) 

Expanded criteria donor 

No 10923 (95.2) 7430 (77.5) 2762 (57.9) <0.001 

Yes 549 (4.8) 2153 (22.5) 2007 (42.1) 

Recipient hypertension 

No 1463 (12.8) 840 (8.8) 509 (10.7) <0.001 

Yes 10009 (87.2) 8743 (91.2) 4260 (89.3) 

Recipient Cardiovascular disease 

No 11210 (97.7) 9094 (94.9) 4643 (97.4) <0.001 

Yes 262 (2.3) 489 (5.1) 126 (2.6) 

Recipient Peripheral Vascular disease 

No 11288 (98.4) 8722 (91.0) 4661 (97.7) <0.001 

Yes 184 (1.6) 861 (9.0) 108 (2.3) 
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Features Clusters p-value 

A (n = 11,472) B (n = 9,583) C (n = 4,769) 

Recipient malignancy 

No 10795 (94.1) 9064 (94.6) 4396 (92.2) <0.001 

Yes 677 (5.9) 519 (5.4) 373 (7.8) 

Donor Hypertension 

No 11462 (99.9) 6601 (68.9) 4 (0.1) <0.001 

Yes 10 (0.1) 2982 (31.1) 4765 (99.9) 

Pre-emptive transplant 

No 9952 (86.8) 8695 (90.7) 4211 (88.3) <0.001 

Yes 1520 (13.2) 888 (9.3) 558 (11.7) 

Recipient Coronary Artery disease 

CAD 659 (5.7) 1391 (14.5) 316 (6.6) <0.001 

No CAD 10813 (94.3) 8192 (85.5) 4453 (93.4) 

Recipient BMI 

<=18.49 325 (2.8) 90 (0.9) 77 (1.6) <0.001 

>18.49-24.99 3827 (33.4) 1682 (17.6) 1440 (30.2) 

>24.99-29.99 3784 (33.0) 3235 (33.8) 1707 (35.8) 

>29.99-34.99 2379 (20.7) 2878 (30.0) 1017 (21.3) 

>34.99 1157 (10.1) 1698 (17.7) 528 (11.1) 

Donor BMI 

<=18.49 770 (6.7) 366 (3.8) 62 (1.3) <0.001 

>18.49-24.99 4571 (39.8) 3263 (34.0) 1029 (21.6) 

>24.99-29.99 3535 (30.8) 3134 (32.7) 1479 (31.0) 

>29.99-34.99 1643 (14.3) 1652 (17.2) 1165 (24.4) 

>34.99 953 (8.3) 1168 (12.2) 1034 (21.7) 

Numerical Variables 

Cold ischemia time 

(hrs) 

16.96 ± 9.88 17.13 ± 8.96 18.16 ± 10.49 <0.001 

Donor age (yrs) 34.12 ± 15.17 41.33 ± 15.83 49.69 ± 10.23 <0.001 
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4.6  Discussion 

The primary motivation of our work is to use unsupervised learning towards recognizing 

phenotypes that may exist among kidney transplant donors and recipients. To that goal, 

we employed individual clustering and consensus clustering algorithms. Additionally, 

Self-Organizing Maps was used to produce an alternate solution to support our results. 

Cluster ensembles can produce more robust clusters by combining the results from the 

individual clustering algorithms that operate in different ways.  

In our results, we first discussed the outcome of imputation using MICE and the 

diagnostics involved. Kolmogorov-Smirnov (KS) statistical test was used in the 

imputation process to check the quality of the numerical variable imputations. We also 

briefly compared numerical variable imputation methods. Following that, the base 

clusterings and consensus clustering results are presented in addition to a comparison 

among them. Between the two base clustering algorithms of mixture model and KAMILA, 

KAMILA performed better with scores of 0.103, 0.0536 and 2760 for the Silhouette, Dunn 

index and Calinski-Harabasz metrics respectively. These model-based methods also 

produced better results than traditional partitional and hierarchical clustering methods like 

k-medoids, k-prototypes and hierarchical clustering (with different linkages) which can be 

limited by large datasets and parameter selection. There is the added issue of identifying 

an appropriate mixed-type distance measure for some of those algorithms [39]. As 

Features Clusters p-value 

A (n = 11,472) B (n = 9,583) C (n = 4,769) 

Recipient age at 

transplant (yrs) 

49.93 ± 13.61 58.28 ± 9.50 55.35 ± 12.98 <0.001 

Survival Time (yrs) 5.29 ± 2.13 4.86 ± 2.28 4.88 ± 2.33 <0.001 

Survival Time 

(days) 

1932.37 ± 

781.54 

1777.70 ± 

833.44 

1784.62 ± 

853.88 

<0.001 

Time on dialysis 

pre-transplant 

(yrs) 

3.54 ± 3.52 3.34 ± 2.69 3.71 ± 3.69 0.015 
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mentioned by Hunt and Jorgensen in their work, some of these traditional clustering 

algorithms might not reflect randomness present in the data and also can lead to 

significantly varying results with small changes in the data [42]. Three different consensus 

methods of k-modes, Majority voting and Latent Class Analysis (LCA) were tested and 

evaluated. The Latent Class Analysis (LCA) consensus method produced the best results 

for the evaluation metrics, visualizations and distinction between cluster features among 

consensus and base clustering algorithms. The Silhouette, Dunn index and Calinski-

Harabasz scores for the LCA method were 0.113, 0.0538 and 2843 respectively. Numerical 

variables represented by means and standard deviations and categorical variables 

represented by heatmaps are presented for the base clustering and consensus clustering 

results. They provide further insight into the clusters obtained. The alternate results 

produced by Self-Organizing Maps are discussed. Self-Organizing Maps also produces its 

own unique visualization for our data. This method generates clusters that are identical to 

those of LCA thus supporting our consensus clustering results. t-SNE visualizations of all 

the methods involved are presented and a close resemblance between SOM and LCA’s 

clusters can be observed in them. They also are shown to have the best cluster structures 

among the methods.  

Finally, the cluster interpretations from the LCA method in the form of cluster descriptions 

and a detailed summary of the variable distributions among clusters are discussed. 

Additionally, results from statistical tests to further validate our results have been 

presented. We were able to identify features, numerical and categorical that are clearly 

distinguishable among clusters. For numerical variables, donor age (dage), recipient age 

(ragetx) and survival time (survtime3) have particularly varying statistics among the 

clusters obtained. Several categorical variables have clear distinctions between clusters. 

This is true, especially for the outcome variables of event (event), graft failure 

(graftfailure), death (death) and expanded donor criteria (ecd). Among donor-related 

categorical variables, donor Hypertension (dhtn2), donor Diabetes (ddm), donor sex (dsex) 

and donor BMI (dbmisimp) are some variables that had a visible distinction among 

clusters. For recipient-related categorical variables, that was seen in ESRD Diagnosis 

(esrddxsimp), recipient Diabetes (rdm2), recipient sex (rsex), recipient BMI (rbmisimp), 

recipient Coronary Artery disease (rcad) variables.  
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To conclude the discussion above, the final cluster descriptions and summaries are based 

on the results of the Latent Class Analysis (LCA) consensus method. We were able to 

compare solutions from the individual and consensus clustering approaches using various 

measures. We used an additional solution from Self-Organizing Maps to support our 

results. This also strengthens the position of using SOMs as an independent clustering 

approach for mixed-type data and attain valuable results. Our solution shows clear 

distinctions for some of the donor and recipient characteristics among clusters. This is 

presented with numerical statistics, heatmaps and overall cluster distributions. 
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CHAPTER 5   CONCLUSION 

5.1  Summary 

Predicting kidney transplant survival and identifying phenotypes among donors and 

recipients is crucial for those involved in kidney transplantation. National kidney 

transplant data is an extremely rich source of information that can be leveraged to provide 

insights concerning the individuals involved. Being able to understand the patterns that 

may reside within this data has a massive potential to help experts in their decision-making. 

It could help them identify phenotypes and hence predict graft survival, design more 

specialized treatment plans, understand the possibilities of various outcomes taking place 

and recognize trends among these groups. In this work, we utilized a dataset from the 

Scientific Registry of Transplant Recipients (SRTR) that had 165,090 records spanning 

the years of 2000 - 2017. We performed significant data pre-processing followed by a 

comprehensive imputation process that consisted of two separate tasks. Multivariate 

Imputation by Chained Equations (MICE) is a powerful method of imputation that allowed 

us to simultaneously impute categorical and numerical variables using methods best suited 

for them. The cohort of individuals from the years of 2009 - 2011 (3 years) was prepared 

from the dataset for further analysis. Two different model-based clustering methods, 

KAMILA and Mixture model, capable of handling a mixed-type dataset, were applied to 

this cohort and gave us the base clustering solutions. Cluster ensemble methods that 

produced a consensus result from the base clusterings were employed in this work. The 

three consensus clustering methods were k-modes, Majority Voting and Latent Class 

Analysis (LCA). Simultaneously, as part of our methodology, Self-Organizing Maps with 

hierarchical clustering was used to support the results obtained from the cluster ensemble 

methods. Clusters identified through both approaches (consensus clustering and SOM) 

were very good and insightful. In addition to the evaluation indices of Silhouette, Dunn 

and Calinski-Harabasz, heatmaps and numerical statistics were generated to compare and 

evaluate the results obtained from the various methods. t-SNE visualizations were 

produced and compared among methods to give an idea of the overall cluster structures. 

Using t-SNE with Gower’s distance allowed us to represent both categorical and numerical 

variables in the same space. The Latent Class Analysis (LCA) ensemble produced the best 
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results among all the methods (individual and consensus). This method also had the best 

agreement with the alternate solution produced by Self-Organizing Maps. By summarizing 

the information from the heatmaps and numerical statistics, three different potential groups 

were recognized, and their descriptions were generated. We were able to identify 

distinctions between clusters for the outcome variables of event, death, graft failure and 

expanded donor criteria in addition to several other non-outcome variables. These cluster 

interpretations can be used towards deriving phenotypes. 

 

5.2  Limitations 

One of the primary limitations in our work is caused by the data consisting of mixed-type 

attributes. This severely limited the number of clustering algorithms available at our 

disposal. The imputation process became much more extensive and complex. Current 

research in the area of mixed-type clustering is not as comprehensive as it is in the case of 

either numerical or categorical data clustering. Due to the nature of the data, it was 

challenging to identify evaluation techniques and indices that would otherwise be readily 

usable. Prior work involving mixed data clustering algorithms used popular datasets that 

had a ground truth or labels which allowed for some of the common evaluation metrics to 

be used. These previous works regularly focused on the same popular datasets and 

evaluated algorithms using them. The survey paper by Ahmad and Khan also identified 

this problem of the lack of use of performance metrics not based on labels or a ground truth 

[39]. Another major limitation is that we had to constantly move back and forth between 

using R and python due to the lack of packages available for mixed-data clustering and 

analysis. This increased the overall time required to perform experiments and made it a 

more complex and tedious process. With regard to the evaluation metrics used in this work, 

we initially tried to use another distance metric that seemed to be more insightful. 

However, due to the lack of available packages to compute this, Gower’s distance was 

used. The alternate distance metric took in more information in its computation, rather than 

the simple 1’s and 0’s that Gower’s distance uses when comparing categorical values. It 

considered the co-occurrence of variables when generating the distance and automatically 
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provided weights for the variables involved. This was proposed by Ahmad and Dey with 

an emphasis on the k-mean clustering algorithm in their work [111]. 

Due to the large size of the dataset and the type of data, parts of our methodology like 

imputation were computationally expensive. When experimenting with different methods 

and approaches, there were instances where an algorithm wouldn’t compute or take too 

long. This was the case when we tried using the LCE consensus method in our work from 

the diceR package [94], [104]. We had found a package for the alternate distance metric 

that we tried to implement but failed to make it work for our data. This was the 

DisimForMixed package in R [112]. There was also the issue of massive storage space 

being consumed by some of the distance calculations due to the size of the dataset. 

Although we did try various parameters for some of the algorithms involved, it was a 

challenging problem due to the large number of methods and parameters. This can be 

explored further in future work. 

With regard to visualization, it was difficult to identify methods that could represent both 

categorical and numerical variables in the same space without any discretization or 

encoding that may have resulted in a loss of information. 

 

5.3  Future Work 

Our research opens a lot of avenues for future work. We can try and evaluate other types 

of mixed-type data clustering algorithms. We can look into variable importance among 

clusters generated. Additional cluster ensemble generation techniques and methods can be 

explored and compared to include greater diversity and information. Visualization 

techniques capable of handling mixed-type data could be further researched or developed 

to provide alternative representations. Identifying diagnostic measures for categorical 

variable imputation could be a valuable addition to the imputation process. We can 

experiment with larger datasets or more variables to identify these phenotypes. Further 

hyperparameter tuning of the algorithms involved can be experimented with, to potentially 

improve clustering performances. SOMs which are shown to be an efficient and valuable 
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clustering approach, can be further explored independently and not just as a supporting 

method.  

Unlike traditional clustering problems that focus on either numerical or categorical data, 

there is a lot of work that can be done in the area of mixed-type data clustering, especially 

without labels or a ground truth. Considering a lot of the real-world data, especially in 

medicine and healthcare, consists of mixed-type data, it is extremely important to work on 

this. Our research can be used to aid further work by researchers and nephrologists in the 

domain of kidney transplantation. 

 

5.4  Disclaimer 

The data reported here have been supplied by the Hennepin Healthcare Research Institute 

as the contractor for the SRTR. The interpretation and reporting of these data are the 

responsibility of the authors and in no way should be seen as an official policy of or 

interpretation by the SRTR or the US Government. 
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