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Abstract
Neural populations in the sympathetic nervous system are involved in hierarchical

closed loop control of the heart involving multiple intrathoracic ganglia. They re-

ceive afferent information from cardiopulmonary regions and process such informa-

tion through various networks for cardiac control. This thesis expands on processing

and networking capabilities of such neuronal populations with a focus on the stellate

ganglion (SG).A large proportion of SG neurons, termed local circuit neurons, are

involved in processing of cardiopulmonary information. To examine cardiopulmonary

processing, approximately eight hour extracellular recordings (16 channel LMA probe)

were made from the left stellate ganglion. These were considered for anesthetized

healthy and heart failure pigs’ neural activity along with simultaneous measurements

of left ventricular pressure (LVP) and respiratory pressure (RP). Analysis of stel-

late population activity depended upon a novel, ’competitive masking’, unsupervised

spike detection algorithm. Spatial coherence analysis between populations was then

estimated using events representing instances with a majority of pairs of recorded

sites displaying high co-activity. Dynamic linkages between stellate population ac-

tivity and cardiopulmonary information was derived from a novel, neural specificity

metric.Stellate neuronal activity showed an integration of cardiopulmonary informa-

tion.(i)Weak periodicity of population activity with respect to heart and respiratory

rates is observed.(ii)Neural specificity to cardiopulmonary markers is independent of

spiking rate and biased, relative to random sampling, toward specific LVP regions

in both animal groups.(iii)Heart failure animals showed higher population spatial co-

herence coupled to greater variation in neural specificity compared to healthy pigs in

baseline.(iv)Heart failure animals showed greater variation in neural specificity during

instances of high spatial coherence than the healthy animals. These findings reveal a

network whose linkage to cardiopulmonary dynamics is strongly dependent on animal

status despite the general consistency of cardiopulmonary observables between animal

groups. The studies of stellate architecture and their simultaneous linkages to car-

diopulmonary dynamics have improved our general understanding of cardiac control.

These insights should be useful to help answer questions surrounding the mechanics

of ventricular arrhythmia and assess the risk of sudden cardiac death (SCD).
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Chapter 1

INTRODUCTION

The autonomous nervous system (ANS) is involved in beat-beat regulation of cardiac

function [6, 9]. The two parts of the ANS, the sympathetic and the parasympathetic

nervous system exert cardiac control in a complex manner as opposed to a simple

reciprocal manner observed in early studies. Modern findings indicate that the ANS

with respect to cardiac function consists of nested feedback loops with the intrinsic

cardiac ganglia, extracardiac intrathoracic ganglia, the spinal cord and higher centers.

Neural interactions within and between these control centers put together are involved

in beat to beat regulation of the heart. In the context of sympathetic cardiac control,

beat to beat maintenance of cardiopulmonary indices such as blood pressure and

respiratory pressure is referred to as regulation. Dysregulation at the level of these

control centers can lead to the cardiac disease such as arrhythmia and heart failure.

This thesis is aimed at bridging the gaps in the understanding of neural interac-

tions in the extracardaic intrathoracic ganglia, specifically the stellate ganglion with

the help of healthy and diseased animal studies. Stellate ganglion neurons are thought

to possess processing capabilities with respect to cardiac and respiratory information

in addition to sensing cardiac mechanical and chemical stimuli [4, 5]. Understanding

the processing capabilities and neural network dynamics of stellate neurons will help

in furthering the current knowledge about autonomic cardiac regulation and evolution

of pathology such as sudden cardiac death.

The following sections provide a review of studies that involve direct and indi-

rect afferent pathways between the heart and the stellate ganglion, stellate ganglion

as a cardiac control center, sympathetic efferent postganglionic cardiac projections

through the stellate ganglion, stellate ganglion in the setting of heart failure and

potential therapeutic techniques targeted at the stellate in treating sudden cardiac

death due to ventricular arrhythmia.
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1.1 AFFERENT INFORMATION FROM THE HEART

Afferent information from the heart is transduced through localized and functionally

independent sensory neurites. The sensory neurites of cardiovascular receptors are

anatomically found to be localized on the atria, ventricles, and the aorta of the dog

[1]. The atrial receptors are localized in the superior vena cava, sinoatrial node

region, and the upper region of the right atrium which are all sensitive to local

mechanical distortion fig 1.1. These receptors are functionally grouped based on

their location and the area of tissue containing the receptors. These atrial receptors

contain mostly myelinated axons and project through the left stellate cardiac nerve.

The ventricular receptors are located in the endocardial outflow tracts and around

the ventricular anterior papillary muscle fig 1.1A and most of them have activity

related to the cardiac cycle and respond to changes in epicardial stretch. These

receptors may be grouped based on their behavior specific to the tissue in which they

were located. Ventricular receptors also contain mostly myelinated axons and project

through the recurrent cardiac nerve fig 1.1B. Mechanosensitive aortic receptors are

mostly found in the ascending and arch regions of the aorta with myelinated axons

that project through the dorsal cardiac nerve fig 1.1B. These aortic mechanoreceptors

are also activated at different aortic pressure thresholds. Chemosensitive receptors

are also found in the interventricular septum and the aortic root. Similar discharge

patterns are recorded from the atrial mechanoreceptors of the cat [10]. These receptors

respond to mechanical changes such as low frequency changes in length. Application

of bradykinin to the endings of afferent fibers and the left atrium increased both

fast conducting mechanoreceptors and slow conducting chemosensitive receptors [11].

Afferent activity recorded at the thoracic white rami and cardiac nerves also confirmed

the location of various cardiac receptors distributed across the heart [12]. These

receptors mostly had random discharges and responded to mechanical stimuli and

changes in blood pressure.
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Figure 1.1: A : Location of sensory neurites of most cardiac afferent somata in the
canine heart. The size of the markers indicate the size of the mechanosensory regions
on the heart. B : Number and location of receptors on the heart and surrounding
thoracic regions shown in the left column and corresponding locations in thoracic
nerves is shown at the top. Taken from [1]
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1.2 CARDIAC AFFERENT INFORMATION AT THE LEVEL OF

THE STELLATE GANGLION

The afferent somata or neuron cell bodies of the sensory neurites which are projections

from these somata described in section 1.1 are primarily located in the nodose gan-

glia, the dorsal root ganglion (DRG), intrathoracic extracardiac and intrinsic cardiac

ganglia [13]. This section reviews the literature on anatomical pathways involving

different kinds of afferent information received at the level of the stellate ganglion

directly or from the spinal cord through the DRG. The afferent information is either

processed within the stellate or used directly in sympathetic efferent postganglionic

outflow from the stellate to the heart and the intrinsic cardiac nervous system.

Early findings indicated an anatomical pathway involving cardiac afferent informa-

tion reaching the spinal cord and efferent postganglionic sympathetic fibers through

myocardial responses. compound action potential (CAP) are recorded in cardiac af-

ferent nerves following coronary artery occlusion induced in the cat [14]. This was

followed by increased activity in preganglionic fibers after coronary occlusion in the

dog [15]. Spontaneous impulse activity in phase with cardiac events is recorded from

afferent fibers projected from the atria and the ventricles [16]. Mechanoreceptors

found in the right heart and the pulmonary artery also activated myelinated and un-

myelinated sympathetic afferent fibers [17]. These early findings provide evidence of

pathways through the spinal cord in transducing cardiac afferent information. Car-

diac responses in the form of increased myocardial contractile force is found with the

stimulation of the ventral and the upper thoracic roots in the spinal cord in the dog

[18, 19]. Stimulation of the right thoracic roots also increased inotropic responses in

the left ventricle while the left thoracic roots caused the same response in the right

ventricle.

In order to probe the characteristics of this pathway, retrograde labeling, intra-

cellular recordings and immunoreactivity techniques were used in subsequent studies.

These techniques helped isolate the location and characteristics of neuronal cell bodies

receiving such cardiac afferent information, axonal projections and the neurotransmit-

ters used in their transmissions. The next two sections will look into the literature

involved in a specific link in the pathway described above. It will be focused on

locating the pathway involving the DRG and the stellate ganglion.
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1.2.1 THE DORSAL ROOT GANGLION PATHWAY

Cell bodies or somata receiving cardiac afferent information are labelled using ret-

rograde injections of horseradish peroxidase (HRP) to various central and thoracic

regions in animals. Injections into the middle cardiac nerve and the sympathetic trunk

labelled cell bodies of afferent axons passing through the stellate ganglion. They are

found to have an extensive rostro-caudal distribution (T1- T5) in the DRG [20]. The

labeled cell bodies are not identified only as receiving cardiac afferent information but

also from other thoracic structures including the heart. The location of afferent cell

bodies projecting through the spinal cord specifically innervating the left ventricle

region of the heart are located bilaterally in the DRG of the cat [21]. These cells

are concentrated in the three upper thoracic spinal cord labels (T1-T3) in the DRG.

More injections into cardiopulmonary afferent axons also found afferent somata in

the ipsilateral DRG in the dog [22]. Small propotion of afferent neurons receiving

information from different regions of the heart are labelled bilaterally in the DRG.

Retrograde labeling also found small populations of ventricular afferent neurons in

the DRG [23].

The DRG cardiac afferent neurons receive varying degrees of mechanical and chem-

ical afferent stimuli. Activity recorded from spontaneously active DRG afferent neu-

rons with epicardial neurites responded to both mechanical and chemical stimuli [24].

These neurons also responded to adrenergic agents at the level of the sensory neu-

rites indicating an important role in cardiac feedback with local catecholamine release.

Portions of these neurons being immunoreactive to individual or colocalized transmit-

ters such as substance P (SP), calcitonin gene-related peptide (CGRP) and neuronal

nitric oxide synthase (nNOS) indicated a diverse variety of neurotransmitters used by

these afferent neurons.

These findings provide evidence to cardiac afferent information reaching the DRG

and also reaching the stellate ganglion either through synaptic connections or axonal

projections. The next section deals with the stellate ganglion as a control center

for cardiac regulation. Literature finding anatomical connections between the DRG

and the stellate ganglion, between the stellate and the heart as efferent outflow and

processing of cardiac information within the stellate will be explored in the next

section.
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1.2.2 STELLATE GANGLION AS A CARDIAC CONTROL SYSTEM

Early works investigating the possibility of a cardiac peripheral reflex involving the

stellate ganglion found synaptic connections in the cells of the cat stellate ganglion

in response to excitation of axons in cardio-pulmonary regions [25]. A combination

of in vitro and in situ intracellular recordings were conducted to record the synaptic

responses of individual stellate cells. These responses indicate an integration of cen-

tral and peripheral excitatory inputs in the stellate as well as a close association of

stellate neuron activity with the cardiac and respiratory cycle. Following studies used

more retrograde labeling injected into various locations of the stellate to identify the

location of neurons receiving cardiac afferent information. Fewer neurons are found

to be the origin of cardiopulmonary nerves in the stellate ganglion compared to the

middle cervical ganglion (MCG) after retrograde labeling [2]. Most of the labelled

neurons found in the stellate are regional to its cranial pole shown in fig 1.2 A. Fluo-

rescent retrograde tracers injected in to the right atrium, right ventricle, inferior vena

cava and right atria ganglionated plexus located sympathetic efferent neurons in the

cranial region of the stellate innervating the porcine heart (fig 1.2B) [3].

Further electrophysiological studies recorded CAPs in efferent cardiopulmonary

nerves following the stimulation of an ipsilateral afferent cardiopulmonary nerve in

both acutely [26] and chronically decentralized canine stellate ganglia [27]. Such

CAPs recorded in efferent cardiopulmonary nerves suggest synaptic connections in

intrathoracic ganglia such as the MCG and the stellate ganglion. More synaptic

connections are suggested to be present in the MCG than in the stellate ganglion

due to the nature of the recorded CAPs. The possibility of the existence of multiple

types of neurons such as direct afferent, and efferent neurons in the intrathoracic

ganglia is explored due to CAPs generated following decentralization. Intracellular

recordings made in the stellate found excitatory synaptic input from the ventral ansa

(VA) , dorsal ansa (DA) and the stellate cardiac nerve in line with previous findings

[28]. Activity recorded from the DA following afferent input applied to the stellate

cardiac nerve further substantiated the presence of synaptic connections in the stellate

ganglion. These results indicate an important role played by the neurons in the stellate

towards the existence of a possible peripheral function such as a cardiac reflex. This

led to more studies directly probing the activity and responses elicited by various
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Figure 1.2: A: Efferent neurons in the cranial pole of the left stellate ganglion (LSG)
following HRP injection into cardiopulmonary nerves [2].B- C :Efferent neurons in the
cranial region of LSG and right stellate ganglion (RSG) using fluorescent retrograde
tracers [3]
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intrathoracic ganglia neurons.

Spontaneous activity is recorded with in situ extracellular recordings from both

an intact and an acutely decentralized stellate of the dog [4]. These spontaneously

active stellate neurons are closely associated with the cardiac and respiratory cycle

and also respond to mechanical distortions in regions near the heart and the great

thoracic vessels (Table 1.3). Most of these spontaneously active neurons are also unre-

sponsive to cardiopulmonary nerve or vagosympathetic trunk stimulation. This hints

at the possibility of the presence of function specific interneurons in the stellate. Fur-

ther intracellular recordings from stellate neurons following chronic decentralization

showed persistence in stellate activity after cardiac afferent nerve stimulation [29].

These findings obtained directly from the stellate confirmed the existence of cardiac

afferent cell bodies in the peripheral ganglia. The results of the study also implied

cardiac regulation occurring with the help of the intrathoracic ganglia independent of

the central nervous system. More recent findings using immunofluorescent staining

on the stellate ganglion found only a small proportion of cardiac afferent neurons fig

1.4. Various sites called varicosities are observed indicating sites of possible afferent

to efferent neurotranmsission.

Stimulation of distinct regions in all the intrathoracic ganglia including the stellate

elicited chronotropic, inotropic or both types of cardiac responses [30]. The effects

of sympathetic postganglionic efferent axons was separated from those of the pregan-

glionic axons using hexamethonium injected into an acutely decentralized stellate.

Hexamethonium is a nicotinic receptor antagonist that is used in ganglionic block-

age in the study. Different regions of the stellate elicited consistent, sporadic or no

cardiac responses. The right stellate was mostly both chronotropic and inotropic in

its response while the left stellate was mostly inotropic. Regions of the stellate with-

out any efferent postganglionic neurons are also involved in cardiac responses. These

findings along with cardiac responses elicited due to stimulation of clusters of neurons

along a cardiac nerve further suggested the possibility of the existence of interneurons

or functionally different neurons in the stellate. This possibility is further explored

by retrograde labeled neurons with shorter axon projections separating them from

their efferent counterpart within the caudal region of the cat stellate ganglion [31].

This was opposed to the finding of long axon projections found in the cranial pole
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Figure 1.3: A large number of spontaneously active neurons located in the stellate
ganglion are associated with cardiac/respiratory cycle and various mechanical distor-
tions [4]
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Figure 1.4: (A) Stellate ganglion neurons identified by immunofluorescent staining
(red - identified by PGP9.5 staining), and adjacent afferent fibers marked by green
( CGRP staining). Possible locations of afferent to efferent neurotransmission called
Varicosities, are marked by white arrows. (B) Network of afferent fibers (white) shown
with a lower magnification image in the stellate ganglion. The sites of some neurons,
marked by the asterisk (*), show that most of the neurons are adjacent to afferent
fibers [Obtained from Dr. Olujimi Ajijola]



11

of the stellate corresponding to neurons involved in efferent postganglionic outflow

to cardiopulmonary nerves. The findings from this study further led to more stud-

ies probing the characteristics of such functionally different neurons present in the

stellate ganglion and their role in the modulation or processing towards sympathetic

efferent activity.

Immunoreactive studies were carried out in order to probe into characteristics such

as the neurotransmitters used by various neurons in the stellate ganglia. Various

neuropeptide-like immunoreactivity is found in both the right and the left stellate

ganglia after chronic decentralization [32]. The distribution of this immunoreactivity

is distinct from the distribution of efferent postganglionic neurons. Changes in cardiac

response observed from stellate stimualtion and other intrathoracic nerves is nicotinic

and cholinergic in nature [33]. Neurons present in the stellate are also involved in

eliciting cardiac responses following the administration of neurochemicals such as

acetylcholine, nicotine and isoproterenol [34]. These neurons are located in multiple

loci in the stellate without a definitive distribution. Administration of substance P

and vasoactive intestinal peptide (VIP) to the acutely decentralized stellate ganglia

induced chronotropic and inotropic responses [35]. These peptide modification of

cardiac responses in the stellate ganglion cease after β - adrenergic receptor ganglionic

blockage.

The characteristics of such intrathoracic ganglia neurons and their influence on

cardiac myocytes were further studied in vitro using a model with intrathoracic neu-

rons co cultured with cardiac myocytes [36]. This model was effective in studying the

intrathoracic neurons as well as the myocyte cells independently. Using this model,

nitric oxide sensitive neurons increasing the beating rate of myocytes are found in

the stellate ganglion [37]. Nitric oxide did not affect the myocytes cultured alone

indicating a neurotransmitter mechanism for extracardiac intrathoracic neurons con-

trolling the myocardium beating rate. Using the same model, stellate ganglion neu-

rons co cultured with adult guinea pig myocytes and cultured alone in vitro exhibited

various morphological characteristics and were immunoreactive to multiple neuro-

chemicals such as tyrosine hydroxylase (TH), protein gene product 9.5 (PGP 9.5),

choline acetyltransferase (ChAT) etc [38]. Cardiomyocyte responses are also elicited

to ANG II administration both in an acutely decentralized stellate in situ and in vitro
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using cocultured intrathoracic neurons with myocytes [39]. These findings indicate

ANG II sensitive neurons present in the stellate ganglion known to cause increased

chronotropic and inotropic effects in the heart [40].

Previous studies served to further the understanding of the characteristics of the

stellate neurons and their role in a cardiac peripheral reflex. More recent studies

looked at population activities to represent activities from different intrathoracic

ganglia. The population activity represented by spiking activity for an intratho-

racic ganglia recorded over a long duration was analysed using cross correlation. The

cross correlation analysis between all the major extracardiac intrathoracic ganglia

and intrinsic cardiac ganglia did not reveal any coherence among their populations

[5]. Ventricular epicardial mechanical stimuli did not alter stellate activity but al-

tered that of the MCG and the intrinsic cardiac neurons (ICNs). Altering cardiac

after load by occlusion of the aorta reduced the basal stellate activity while all extrac-

ardiac activity including the stellate activity were completely removed following acute

decentralization. The activity in all the intrathoracic ganglia was modified by epicar-

dial chemical stimuli in the form of substance P and purinergic agents. These effects

are suppressed in the extracardiac intrathoracic ganglia following acute decentraliza-

tion. Acute ischemia induced by coronary artery occlusion also affected the stellate

activity. The effects of multiple interventions on hemodynamics, stellate activity and

intrinsic cardiac activity can be found in the table below (Table 1.5). These findings

indicated complex, nested feedback loops present in the peripheral nervous system

with differential control over cardiac function. As presented in these results, these hi-

erarchical cardiac control loops were found to be capable of functioning independently

of the central nervous system.

These findings lay the foundation of the modern view of autonomic cardiac control

seen in fig 1.6. This modern view consists of multiple control centers located in the

central nervous system, extracardiac intrathoracic ganglia and the intrinsic cardiac

ganglia with the help of a variety of neurotransmitters in their transmission [6]. This

multiple decentralized control centers of cardiac function will be referred to as the

cardiac neuraxis in the following sections.

The cardiac neuraxis focused on the stellate ganglion is also described in 1.7.

Multiple cardiac reflexes at the level of multiple cardiac control centers, afferent and
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Figure 1.5: Spontaneous activity generated by various intrathoracic neurons including
the stellate ganglion neurons and corresponding responses to different mechanical and
chemical interventions performed in the study. Taken from [5]
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Figure 1.6: Schematic organization of the cardiac nervous system control of cardiac
function. Aff: afferent; β, β: adrenergic receptor; C: cervical; DRG: dorsal root
ganglion; Gi: inhibitory G-protein; Gs: stimulatory G-protein; L: lumbar; LCN: local
circuit neuron; M2: muscarinic receptor; T: thoracic. Taken from [6]
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efferent pathways involving the stellate are described. These anatomical pathways

and control centers form the cardiac nervous system.

1.3 STELLATE GANGLION IN HEART FAILURE

While the previous sections established the stellate ganglion as a control center in

healthy hearts, this section will review the role of the stellate in heart failure. With

respect to heart failure, this thesis attempts to further the understanding of sudden

cardiac death resulting from lethal ventricular arrhythmia by probing stellate network

activity. Hence, only studies with myocardial infarction and ventricular arrhythmia

models of heart failure are reviewed in this section to limit the scope of this thesis.

A brief anatomical review will be presented on the efferent sympathetic projections

from the stellate ganglion to the heart. This will serve to establish a sympathetic

efferent postganglionic pathway from the stellate and the extent of stellate - cardiac

innervation.

1.3.1 SYMPATHETIC EFFERENT POST GANGLIONIC CARDIAC

INNERVATION

Electrical stimulation of the stellate ganglion was used as the primary technique to

localize its efferent postganglionic sympathetic projections. Early studies observed

changes in electrocardiographs and ventricular refractory periods following unilat-

eral stellate ganglion stimulation and stellate ganglionectomy [41]. The removal of

bilateral stellate ganglia prolonged refractory periods in different regions of the ven-

tricles. These early findings indicated a possibility of rich cardiac innervation through

bilateral stellate ganglia. More evidence of cardiac innervation was obtained by fur-

ther anatomical studies. Surgical denervation of the epicardium removed contractile

responses in localized regions of the heart following bilateral stellate ganglion stimula-

tion in the dog [42]. From this technique, the left ventricle was found to be innervated

majorly from tissues along the left anterior descending artery while the right ventricle

was innervated by the right A-V groove. These cardiopulmonary nerves were found to

be anatomically part of the sympathetic ganglia providing more evidence for cardiac

innervation by the stellate. Another technique involving electrical stimulation of the

stellate and different regions of the ventro lateral cardiac nerve changed contractile
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Figure 1.7: Modern view of the cardiac nervous system – The cardiac nervous system
contains multiple centers involved in feedback loops for cardiac control. These con-
trol centers are present in the central nervous system, the extracardiac intrathoracic
ganglia and the intracardiac nervous system. DRG: dorsal root ganglion; SG: stellate
ganglion ; ICNS: intracardiac nervous system. Taken from [7].
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Figure 1.8: Right(a.) and Left(b.) view of cardiac nerves from the neck and the
thorax localizing bilateral stellate ganglion. Bilateral stellate and middle cervical
ganglion contain most of the cardiopulmonary nerves that make up the sympathetic
postganglionic efferent projections to the heart. Non cardiac sympathetic postgan-
glionic efferent projections to the esophagus, trachea and other structures in the head
and the neck can also be found in the stellate ganglion. Taken from [8]
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force and caused tachycardia [1]. More cardiovascular responses recorded from mul-

tiple thoracic autonomic nerve stimulation further localized the efferent sympathetic

nerve endings in the dog [43]. Sympathetic efferent nerves are in a small number

in the stellate cardiac nerve and increased both rate and force of contraction in the

heart. The ventrolateral view of the major cardiac nerves along with the location

of the stellate ganglion is shown in fig 1.8. More studies with electrical stimulation

of different cardiac nerves shortened the ventricular refractory periods in localized

regions of the myocardium of the dog [44]. Further exploration of sympathetic pro-

jections involved in chronotropic (rate) and inotropic (force of contraction) responses

by ansa subclavia stimulation also revealed distinct sympathetic efferent projections

to different types of tissues in the heart [45]. The origin and pathways of various au-

tonomic nerves were also identified using microscopy in human cadavers [46]. These

studies provided an anatomical basis for understanding the role of the stellate in

cardiac control in normal and stressed conditions. An exhaustive anatomical review

containing histological and immunohistochemical techniques in locating neurons in

the cardiac neuraxis, sympathetic and parasympathetic projections to the heart and

other thoracic structures can be found in the cited review [7].

1.3.2 REMODELING IN THE STELLATE GANGLION IN HEART

FAILURE

Abnormal anatomical and electrical remodeling is observed in the sympathetic ner-

vous system in diseased states such as myocardial ischemia (MI) and heart failure.

Spontaneous ventricular tachycardia (VT), ventricular fibrillation (VF) and sudden

cardiac death (SCD) are recorded in dogs with chronic MI and atrioventricular block

induced using coronary artery occlusion and catheter ablation [47]. Mechanistically,

remodeling in the form of increased sympathetic nerve density and nerve sprout-

ing is implicated in heart failure [48, 49]. Heart failure models based on increased

nerve growth in the stellate induced abnormal electrophysiogical changes in the heart

[50, 51, 52]. Mechanisms such as action potential prolongation in the atria and the

ventricles, down regulation of K currents, abnormal Ca2+ handling are implicated in

lethal cardiac arrhythmias in patients with heart failure [53].These findings represent

early works probing into the role of abnormal sympathetic activity in the generation
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of ventricular arrhythmia and sudden cardiac death.

Direct electrical and anatomical changes in the stellate neurons are observed in MI

models. Acute and chronic MI induced neural, electrical and anatomical modeling in

the stellate ganglia in both animals and humans. Acute MI induced electroanatomical

remodeling in both the left ventricle and the stellate ganglion neurons in the form of

increased synaptic density and increased activity in the dog [54]. This also resulted

in neural remodeling of bilateral stellate ganglia in the rabbit in the form of nerve

sprouting and increased serum NGF levels [55]. Acute and chronic MI also induced

changes in the form of increased neuron size in humans and alterations in peptide

immunoreactivity in bilateral stellate ganglia of the pig [56, 57, 58]. A more exhaustive

review of neural remodeling in response to heart failure and therapies targeted at

different levels of the cardiac neuraxis can be found in the cited review [59].

Due to abnormal sympathetic activation, possibly from such aberrant remodel-

ing occurring at the level of the stellate, heterogeneous electrophysiological responses

are observed in the myocardium. Direct and reflex sympathetic activation increased

regional differences in ventricular repolarization with the reflex activation showing

greater activation recovery interval (ARI) dispersion in humans with cardiomyopa-

thy [60]. Although reflex sympathetic stimulation was perfromed with the help of

nitroprusside infusion, there is a possibility of the effect of increased sympathetic

drive through the stellate on ventricular repolarization. Directly stimulating the LSG

and the RSG shortened the after ARI and increased norepinephrine concentrations

in the anterior left ventricle wall of the porcine heart [61]. In an another myocar-

dial ischemia (MI) model, alterations in repolarization dispersion, ARI intervals and

activation propagation are observed [62]. Shortening of ARI and increased disper-

sion of repolarization is also observed in the endocardium and epicardium of the left

ventricle following left, right and bilateral stellate stimulation [63]. T peak - T end

interval, seen as a marker for sudden cardiac death, is prolonged and associated with

dispersion of repolarization in the heart.

1.4 THERAPIES TARGETED AT THE STELLATE GANGLION

Increased sympathetic tone, decreased parasympathetic tone and structural alter-

ations in the heart are known to elicit ventricular arrhythmia leading to sudden
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cardiac death [64, 65, 66, 67, 68]. Therapies developed to address such imbalances

in sympathetic tone and effects from structural changes in the heart have been ex-

plored in more recent studies. Two therapies targeted at the stellate-cardiac pathway

- Cardiac sympathetic denervation (CSD) and blockage of abnormal cardiac afferent

information in the treatment of ventricular arrhythmia and sudden cardiac death have

been reviewed in this section.

CSD has been used as therapy for patients with ventricular tachycardia refractory

to other pharmacological treatments. Bilateral cardiac sympathetic denervation was

helpful for patients with ventricular arrhythmias [69]. Bilateral cardiac sympathetic

denervation was also more beneficial than unilateral CSD for patients with VT storm

or recurrent VTs [70]. Cardiac sympathetic denervation decreased sustained VT

in patients with refractory ventricular arrhythmia [71].The possibility of reducing

increased afferent signalling as part of reducing abnormal sympathetic drive has been

explored in more recent studies. A novel therapy involving the epicardal application

of resiniferatoxin (RTX) in order to deplete transient receptor potential vanilloid-

1 (TRPV1) afferent fibers signalling has been recently studied [72]. Depletion of

cardiac TRPV1 afferents reduced ventricular arrhythmias after MI in the porcine

heart . TRPV1 depletion also reduced fibrosis and electrical instability in the MI

scar border zone. Increased sympathetic tone indicated by stellate ganglion activity

is also normalized by the TRPV1 afferent depletion. However, RTX application only

helped remove ventricular dysfunction in the form of PVC induced cardiomyopathy

in the short term [73]. Application of RTX serves to be a promising therapy technique

in treating heart failure.

More therapy techniques used in the treatment of ventricular arrhythmia can be

found in the cited reviews [6, 9, 74].

1.5 THESIS GOALS

All the different findings in the above studies point to a clear role played by the stellate

in the generation of ventricular arrhythmia leading to potential therapies targeted

at the stellate ganglion. While the nature of stellate neurons has been explored

extensively, the extent of network processing within the stellate is largely unknown.

Previous in vivo extracellular studies probing into stellate ganglion function have
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been limited by episodic experiments and elemental spike detection techniques. In

this thesis, novel techniques for spike detection, spatial coherence and neural-target

bias have been explored with the help of continuous recordings of stellate activity in

baseline and during cardiopulmonary stressors both in normal and heart failure pigs.

The following hypotheses have been examined in the thesis

• Stellate ganglion populations exhibit an integration of cardiopulmonary function

• Stellate population activity is biased towards specific phases of the cardiac and

respiratory cycle in baseline.

• Heart failure animals exhibit greater temporal events of high spatial coherence

in spiking activity across recorded channels in stellate activity compared to

normal animals in baseline.

• Heart failure animals exhibit higher entropy representing uncertainty in change

in neural specificity with respect to LVP compared to normal animals in baseline



Chapter 2

METHODS

2.1 BACKGROUND

Spike detection from extracellular recordings were traditionally performed with the

help of a voltage threshold [75]. A single voltage threshold was used to extract events

considered as outliers in an otherwise noise dominated extracellular signal. This is

primarily used for the purpose of extracting single units or single neuron activities

crossing the chosen threshold closest to recording sites in an experiment. Single neu-

ron activity usually represented with a unique action potential shape presents multiple

challenges in the extraction process. The choice of the voltage threshold played an

important role in detecting actual spikes as opposed to noisy background events. A

very high threshold failed to detect all of the relevant spikes near recording sites and

a very low threshold considered noisy data as false positive spikes. With the spikes

considered as outliers and the assumption of Gaussian background noise, an optimum

threshold is chosen typically to be a multiple of an estimate of the standard deviation

of the noise in more recent studies [76, 77, 78]. This is used as the most common way

to detect spikes as events closest to the recording sites in most studies involving a spike

detection process. Representing all the detected spikes as activity from a single unit

presents another major challenge. Spikes containing similar action potential shapes

are considered a single unit while those with different amplitudes or superimposed

spikes crossing the same threshold lead to a very inaccurate representation of a single

neuron. This is also observed in the case of spikes changing the shape of their action

potentials in the course of an experiment referred to as drift. These challenges are

addressed with the help of a spike sorting procedure following the detection process.

Features such as the peak-peak amplitude and width are extracted from the detected

spikes and an unsupervised clustering procedure is performed to assign unique labels

to each of the detected spikes. Spikes belonging to the same label are considered

to represent the activity from a single neuron. Clustering techniques like principal

22



23

component analysis, projection on basis functions, density based clustering, wavelet

analysis and template matching are used to obtain the labels. A review on all the

common spike sorting techniques and the challenges presented in each of them is be-

yond the scope of this thesis. The reader is referred to [76, 77] for more details on

spike sorting techniques.

While effective in extracting single neuron activity, using a single threshold and a

subsequent spike sorting process would inaccurately represent the neural population

activity. The choice of the threshold would limit the amount of spikes detected

to extract population activity. Most studies using extracellular recordings design

experiments short in duration and rely on static metrics to draw inferences from the

data. While a fully or a semi supervised analysis pipeline was found to be well suited

for such experiments, longer and more complex experiments require an unsupervised

and dynamic analysis pipeline. In order to address such limitations, a new spike

detection algorithm based on iterative thresholds was introduced in the thesis. The

new algorithm followed by novel metrics were developed to probe into the spatial and

temporal neural population dynamics. The new algorithm referred to as Competitive

masking algorithm will be detailed in the following sections.

2.2 COMPETITIVE MASKING ALGORITHM FOR SPIKE

DETECTION

The competitive masking algorithm was built to detect peaks in the recorded data in

an iterative and unsupervised fashion. This was done with the help of a decreasing

amplitude threshold followed by a competition between positive and negative polarity

peaks detected at each threshold.

Data acquisition was performed with the help of the CED Spike2 software. The

exact acquisition procedure and the instruments used to record extracellular data from

the stellate are detailed in the methods sections of Chapters 3 and 4. A screenshot

of an example Spike2 recording for a single animal is shown in fig 2.1. Channel-

wise neural recordings and target recordings like LVP were manually extracted for

each animal in the ’.mat’ format for the masking algorithm and subsequent metrics

pipeline. The neural and target data extracted as a ’.mat’ files from the Spike2

software were read into the algorithm using the HDF5 format [79]. The HDF5 format

https://ced.co.uk/products/spkovin
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Figure 2.1: Screenshot of the Spike2 software showing three channels and LVP of one
animal

is a type of hierarchical file format that aids in quick access of data that are large in

size and complex in structure. More details on the HDF5 format could be found in

the documentation of the corresponding python library. Once the data was available

channel-wise, pre-processing was performed by normalization and smoothing. The

data was first normalized to zero mean and unit variance for the purpose of clear

thresholds in unsupervised detection. The smoothing process was performed with

the help of a four-point Gaussian smoothing function and was repeated three times

to make sure the outliers accurately represented the spikes as the algorithm progressed

detection to lower levels. This was repeated for every channel of each animal as part

of the unsupervised threshold based detection pipeline. The following subsections

describe the different steps and functions used in the competitive masking algorithm.

2.2.1 OBTAINING LEVELS

The primary step in the algorithm involved detection of spikes or peaks in the data

crossing different amplitude thresholds referred to as levels henceforth from the pre-

processed data. These levels were obtained in an iterative manner until a minimum

number of spikes was reached for the level or a minimum level was reached for each

https://ced.co.uk/products/spkovin
https://docs.h5py.org/en/stable/
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channel. Events crossing a threshold will henceforth be referred to as spikes. Variables

used in the algorithms will be referred to in round brackets.

The amplitude of the level to detect the locations of spikes in the data (X) was

found with the help of the getNewLevel function described in algorithm 1. A New level

(Level) was generated by this function by iterating over decreasing levels and stopping

at a level that either contains the minimum number of spikes (MinNewSpike) or a

minimum level (MinLevel). MinNewSpike and MinLevel are hyper parameters chosen

qualitatively with respect to the data being analysed. The locations of the spikes

crossing the new level are updated to the location containing the highest value in the

6ms window (SpikeWidth - 120) surrounding the detected spike location. Finally,

the updated spike locations were stored (SpikeList) and made available for further

analysis along with the level used for detection.

Algorithm 1 GetNewLevel
function GetNewLevel(X, Region, Level, MinNewSpike, MinLevel)

SpikeWidth← 120 ▷6 ms spike width

SpikeList← [] ▷initialize list to store spike locations ▷look for new level until

minimum spikes found at level or minimum level reached

while Spikes > MinNewSpike ∨ Level < MinLevel do

Level← level −DeltaLevel ▷reduce level by a small amount

SpikeList← (X > Level) ∧ (Region[X > Level] = 0) ▷find unmasked

spikes above level

for N,L,R in [SpikeIndex, SpikeList, SpikeList + SpikeWidth] do

SpikeList[N ]← argmax(X[L : R]+SpikeList[N ])∧
∑

Region[L : R] >

1 ▷move spike peak index to the maximum value in the 6ms window of detected

unmasked spike

end for

SpikeList← SpikeList[Diff(SpikeList) > 100] ▷spikes are spaced by at

least 5ms

end while

return Level, SpikeList

end function
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2.2.2 ANALYSIS OF DETECTED SPIKES

Characteristically, since the data contained spikes of both positive and negative po-

larity, the function getNewlevel was used a second time on the data with the polarity

reversed (-1 * data). This ensured two levels were generated containing locations

of both positive and negative spikes for each of the polarities. The greater of the

magnitude of the two levels (positive and negative) was chosen to proceed for further

analysis on the detected spikes. The higher level and its corresponding polarity was

described as "winning a competition" between positive and negative spikes for the

level used in the iteration. This ensured the spikes detected in the level of the winning

polarity were not doubly detected in the other polarity.

After the level were obtained, an analysis involving multiple functions was per-

formed on the spikes detected at this stage before moving onto the next iteration

of getNewlevel. This was performed by using the function AnalysisLevelGetSpike as

described in algorithm 2.

Algorithm 2 AnalysisLevelGetSpike
function AnalysisLevelGetSpike(ARGUMENT LIST)

Location,Region← getSpikeLevel(Location, Region, SpikeIndex, Level)

↓
Region← getCleanedUp(X, Level, Region)

↓
Location,Region, LocationList ← getRingingCleanedUp(X, Location, re-

gion, RingCutoff, RingThreshold, RingSecond, RingNumPeriod, Level, NeuralIn-

terval)

↓
Region← getRidOfIsland(Region)

end function

Algorithm 2 made use of four separate functions on the spikes detected at the win-

ning level. The following section expands on the algorithms for each of the functions

used in the algorithm described above.

In the first step, the function getSpikeLevel described in algorithm 3 was used

to assign the level of each detected spike to a list that was equal in length to the
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length of the data. This collated a list for every single spike detected for current and

future levels with the value of the levels at their locations in the data (Location).

The function was also used to perform the important step of masking every detected

spike to make them unavailable for the next iterations of getNewLevel. The mask

applied was 6ms (120 - SpikeWidth) in duration around the spike and spikes masked

in previous iterations were ignored as seen in algorithm 1. The masking was performed

with the help of a binary variable equal in length to the data called "Region" that

stored ones for the duration of the detected spikes and zeros otherwise. The updated

list of spikes containing their locations, levels and the masked locations were returned

for the next step.

Algorithm 3 getSpikeLevel
function getSpikeLevel(Location, Region, SpikeIndex, Level)

Location[SpikeIndex]← Level

↪→ ▷Store Level of detected spike in the variable Location

for EachSpike in SpikeIndex do

Region[EachSpike− 20 : EachSpike+ 100]← 1

↪→ ▷Mask 6ms around detected spike by setting the variable region to 1

end for

return Location,Region

end function

The returned list of masked regions was then updated by combining masked re-

gions close to each other and masking any unmasked regions obtained from the pre-

vious function. This process was described in algorithm 4.
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Figure 2.2: A : Six representative spikes with ringing. B : Ringing value calculated
for one of the spikes expanded in duration to ringHorizon. Red dots represent the
peaks detected. The number of peaks detected in the example (13) is greater than
the hyperparameter RingNumPeriod and ringing metric calculated (6.94) exceeds the
Ring Threshold to be rejected

Algorithm 4 getCleanedUp
function getCleanedUp(X, Level, Region) ▷Identify close masked regions

CloseSpikeList← (Region[N : −SpikeWidth] ∧Region[SpikeWidth :]) == 1

for A, B in [CloseSpikeList, CloseSpikeList + 120] do

Region[A : B]← 1 ▷Combine close masked regions

end for ▷Identify unmasked regions greater than current level

AboveLevelList← X > Level ∧Region[X > Level] = 0

for C, D in [AboveLevelList - 60, AbovelevelList + 60] do

Region[C : D]← 1 ▷Extend mask for unmasked regions

end for

return Region

end function
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Ringing Parameters Description Default
RingSecond Duration in seconds after the detected

spike to look for ringing
60ms

RingCutoff Maximum value set for peaks to be de-
tected in RingHorizon

0.5

RingNumPeriod Minimum number of peak to calculate
the ringing metric

5

RingThreshold Threshold placed on the ringing metric
to reject spikes with ringing

0.5

Table 2.1: Table containing the descriptions and default values of the parameters
used in rejecting spikes with ringing

Once the spikes were detected and masked for a particular level, those that exhib-

ited a ringing characteristic were removed from the list of detected spikes. A spike was

considered to have ringing if it contained multiple peaks of high amplitude following

the detected peak. Examples of ringing in spikes were shown in 2.2A. Each spike

detected for a level was checked for ringing using the process detailed in 5. For a de-

tected spike location (N), the spike was expanded to the duration of the ring horizon

parameter (60ms default) and scaled to zero mean. The DetectPeaks function was

used to find peaks or outliers in the scaled signal and all the peaks with values greater

than RingCutoff (0.5 default) were set to a variable called MaxValueSet (shown as

red dots in figure 2.2B). The ringing metric was calculated for those spikes that had

the number of peaks detected by the function DetectPeaks (MaxValueSet) greater

than RingCutoff parameter using the equation described below.

Ring =

∑NumPeaks
i Peaks[i]2

max(Peaks)

Ring = Ringing metric

Peaks = List of peak values greater than RingCutoff

NumPeaks = Number of peaks in the Peaks list

i = ith peak in the Peaks list

Spikes that exceeded the RingThreshold (0.5 default) were set to zero (rejected)

in list of detected spikes and masked for the duration of the RingHorizon to make
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them unavailable for the future levels. The descriptions and default values of the

parameters used in the rejection of spikes with ringing is shown in table 2.1.
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Algorithm 5 getRingingCleanedUp
function getRingingCleanedUp(X, Location, region, RingCutoff, RingTh-

reshold, RingSecond, RingNumPeriod, Level, NeuralInterval)

RingHorizon← RingSecond/NeuralInterval ▷Number of seconds after

detected spike to look for ringing

LocationList← Location == Level ▷Get locations of spikes belonging to

current level

for N in LocationList do ▷For all the spike locations

X ← (X[N : N+RingHorizon]−Mean(X[N : N+RingHorizon]))/X[N ]

▷Scale spike + RingHorizon

MaxV alueSet← DetectPeaks(X) ▷Find peaks in ringing horizon

MaxV alueSet←MaxV alueSet > RingCutoff ▷Select peaks above

RingCutOff

if Len(MaxValueSet) > RingNumPeriod then ▷Calculate ringing metric

only if number of peaks detected > RingNumPeriod Fig2.2

Ring ←
∑

(MaxV alueSet) ∗ MaxV alueSet/Len(MaxV alueSet))

▷Ringing metric

if Ring > RingThreshold then ▷Criterion for rejecting and masking

spikes

Location[N : N +RingHorizon]← 0

Region[N : N +RingHorizon]← 1

end if

end if

end for

LocationList← Location == Level

for N, XPeak, L, R in [LocationList, X[LocationList], LocationList - 20, Loca-

tionList + 100] do

if mean(X[L : R]) > 0.75 ∗Xpeak ∨Xpeak −mean(X[L : R]) < 1 then

Location[N ]← 0 ▷Reject spikes if mean before peak is too high

end if

end for

LocationList← Location == Level ▷Update spike locations

return Location,Region, LocationList

end function
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Algorithm 6 getRidOfIsland
function getRidOfIsland(Region)

SpikeWidth← 120 ▷6ms spike width

DetectIsland← Diff(Region) ▷First difference in region to isolate start and

end of masked regions

StartOf ← DetectIsland > 0 ▷Start points of masked regions

EndOf ← DetectIsland < 0 ▷End points of masked regions

WidthOfgetsEndOf − StartOf ▷Width of masked regions

SmallIsland = WidthOf < SpikeWidth ▷Isolate small masked regions less

than 6ms called small islands

AmountToWiden = SpikeWidth−Widthof [SmallIsland] ▷Amount to

extend small islands

if Len(SmallIsland) > 0 then

for Start, Widen in [StartOf[SmallIsland], AmountToWiden] do

Region[Start−Widen : Start]← 1 ▷Mask extended for extended small

islands

end for

end if ▷Update masked regions after small islands are extended

DetectIsland← Diff(Region)

StartOf ← DetectIsland > 0

EndOf ← DetectIsland < 0

SpaceBetween = StartOf [1 :]− EndOf [: −1] ▷Isolate space between masked

regions

CloseIsland = SpaceBetween < SpikeWidth ▷Identify spaces with width less

than 6ms

if Len(CloseIsland) > 0 then

for EndOfPrevious, StartOfNext in [EndOf[CloseIsland],

StartOf[CloseIsland]] do

region[EndOfPrevious : StartOfNext] = 1 ▷Combine regions with

spaces less than 6ms

end for

end if

return Region

end function
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Figure 2.3: Surrogate data used in building three iterations of the MultiLevel algo-
rithm described in algorithm 7

The final step in the analysis of spikes detected for a level was widening the width

of masked spikes with duration less than 6ms (120 points). This was followed by

combining masked regions separated by less than 6ms. This was performed with the

help of the function getRidOfIsland described in algorithm 6.
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Figure 2.4: Three iterations of Multilevel for the surrogate data in fig 2.3
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2.2.3 MULTILEVEL

Algorithm 7 MultiLevel - Part 1
function Multilevel(ARGUMENT LIST)

[ChannelNumber,X,NeuralStart,NeuralInterval, LV P, LV PStart,

↪→ LVPInterval, Resp, RespStart, RespInterval] ← ReadData(())

XSmooth← GaussianFilter(X,SmoothingWidth) ▷Smooth the raw data with

a gaussian filter

NumberNeuralSample← len(Xsmooth) ▷Number of data points in smoothed

data

Location← zeros(NumberNeuralSample) ▷Initialize the location variable to

zeros to store the value of the level at detected spike locations

Region← zeros(NumberNeuralSample) ▷Initialize the region variable to store

"1" to mask detected spike locations for 6ms

LevelP lus← LevelP lusFactor ∗Max(Xsmooth) ▷Initialize the level to detect

positive spikes

LevelMinus← LevelMinusFactor ∗ LevelP lus ▷Initialize the level to detect

negative spikes

NumLevels← 0

▷Iterate until the minimum level parameter

while Levels available do

NumLevels← NumLevels+ 1

[LevelP lus, ProposedP lusIndex]← getNewLevel(ArgList,

SmoothingWidth,

XSmooth,

Region,

LevelP lus,

DeltaLevel,

MinNewSpikeP lus,

MinLevel,

Left,

Right)
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Algorithm 8 MultiLevel - Part 2
[LevelMinus, ProposedMinusIndex]← getNewLevel(ArgList,

SmoothingWidth,

XSmooth,

Region,

LevelMinus,

DeltaLevel,

MinNewSpikeMinus,

MinLevel,

Left,

Right)

ArgList

= NumNeuralSample,

Location,

Region,

RingCutoff,

RingThreshold,

RingSecond,

RingNumPeriod,

MeanShift,

Left,

Right,

NeuralInterval

if LevelPlus >= LevelMinus then

PlusSpikes ← AnalysisLevelGetSpike(Xsmooth, levelPlus, Pro-

posedPlusIndex, ArgList)

else

MinusSpikes ← AnalysisLevelGetSpike(Xsmooth, levelMinus,

ProposedMinusIndex, ArgList)

end if

end while

end function
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Parameters Description Default
SmoothingWidth Number of points to apply the gaussian

filter to raw data
4

LevelPlusFactor Percentage of Max value of raw data
used as starting positive level

0.8

LevelMinusFactor Percentage of LevelPlus used as start-
ing negative level

0.9

DeltaLevel Decrements in level for iterations of
getNewLevel

0.1

MinLevel Minimum Level to stop future itera-
tions of getNewLevel

0.8

MinNewSpikePlus Minimum number of positive spikes
to proceed to next iteration in get-
NewLevel

1000

MinNewSpikePlus Minimum number of negative spikes
to proceed to next iteration in get-
NewLevel

500

Left Number of points to the left of detected
spikes

20

Right Number of points to the right of de-
tected spikes

100

Table 2.2: Table containing the descriptions and default values of the parameters
used in MultiLevel
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The four steps described in algorithms 3, 4, 5 and 6 that were used sequentially by

the function AnalysisLevelGetSpike in algorithm 2 were used only for future winning

levels. The procedure is described in algorithm 7.

The parameters and descriptions used in MultiLevel along with the default values

were presented in table 2.2.

In order to further elaborate the multilevel procedure, three iterations of multi-

level were described on surrogate data shown in fig 2.3. The surrogate data used

to aid in explaining the novel algorithm was constructed by concatenating scaled

spikes extracted from the real experimental data. Initial values for LevelPlus (8.0)

and LevelMinus (7.2) were selected based on the default values for LevelPlusFactor

and LevelMinusFactor in table 2.2. For the purpose of clarity, MinLevel, MinNew-

PlusSpike and MinNewMinusSpike were chosen at 1.0, 3.0 and 2.0 respectively. Values

for DeltaLevel, Left, Right and Ringing parameters were used from defaults in tables

2.1 and 2.2.The steps of choosing the winning level for analysis and eliminating spikes

with ringing were shown in three iterations in fig 2.4. Masked spikes from previous

iterations were shown using green pointers for each iteration. Spikes with ringing

were shown in black for the second and third iteration.

This procedure was extended to multiple channels of multiple animal data to

develop an unsupervised algorithm for detecting spikes for multi channel and multi

animal extracellular data. Results for each of the multi channel multi animal pipeline

can be accessed with the help of the directory tree shown below.

/

Animals

AnimalData

Animal1

MlOutput

A1Channel1

diaryMlA1Channel1.txt

metadataMutlilevelA1Channel1.txt

outputSpikeA1Channel1.csv

A1Channel2

diaryMlA1Channel2.txt
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metadataMutlilevelA1Channel2.txt

outputSpikeA1Channel2.csv

NeuralFiles

A2Channel1.mat

A2Channel2.mat

NeuralSpecificity20s6minbuff

TargetFiles

A2LVP.mat

A2Resp.mat

Animal2

MlOutput

A1Channel1

diaryMlA2Channel1.txt

metadataMutlilevelA2Channel1.txt

outputSpikeA2Channel1.csv

A1Channel2

diaryMlA2Channel2.txt

metadataMutlilevelA2Channel2.txt

outputSpikeA2Channel2.csv

NeuralFiles

A2Channel1.mat

A2Channel2.mat

NeuralSpecificity20s6minbuff

TargetFiles

A2LVP.mat

A2Resp.mat

NeuralSpecificity

The directory tree is shown for two animals A1 and A2 consisting of two channels

each. The extracted neural recordings of all channels of each animal were stored

in a directory called "NeuralFiles" in the .mat format. The first channel of the

first animal was shown as A1Channel1.mat and the other channels were represented

with a similar terminology. Similarly, the target data for each animal was stored in
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File Description
diaryMLAxChannely.txt Text file containing the progress of each

function called in algorithm 7 for chan-
nel y of animal x

metadataMultiLevelAxChannely.txt Text file containing the values of the
hyper parameters shown in table 2.2 for
a particular run of multilevel for chan-
nel y of animal x

outputSpikeAxChannely.csv Detected spike locations in channel y
and polarity in comma separated values

Table 2.3: Table describing output files generated by algorithm 7 for channel y of
animal x

"TargetFiles" (A1LVP.mat). The multilevel algorithm (algorithm 7) was run channel-

wise for each animal using data stored in the structure described below. A directory

called "MLOutput" was created for each channel of each animal to store the output

files generated for a multilevel run. The below table contains descriptions of each

output file per channel.

2.3 COFLUCTUATION AND ENTROPY METRICS

2.3.1 COACTIVITY MATRIX, COFLUCTUATION AND EVENT

RATE

In order to probe the spatial coherence among neural populations recorded from

different regions of the stellate, a coactivity matrix was constructed. The matrix was

built to explore the relationship between spiking activities recorded from all channels

of a probe used in an experiment. The figure used in Chapter 4 has been reproduced

here in fig 2.5 to explain the construction of the coactivity matrix.

A representative four channels, CH1 - CH4 shown in Fig 2.5A was used to explain

the construction of a 4 x 4 coactivity matrix. The population activity of each channel

was represented as a time series of the mean and standard deviation estimated from

rolling windows of spike rate (peaks/sec) for the duration of the channel recording.

This yielded two time series’ from each channel called Spikeratemean and Spikeratestd

shown on the y axis of fig 2.5A. A Pearson cross correlation was calculated for rolling

windows of Spikeratemean/std
for all pairs of channels in the super diagonal of the
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Figure 2.5: Building the coactivity matrix, cofluctuation series and event rate
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channel matrix shown in bold in fig 2.5B. Two rolling windows in red and blue for CH1

and CH2 respectively are shown as an example of a single window cross correlation

calculation, R12 for a pair of channels. The single window calculation was extended

to multiple rolling windows considered as timestamps spanning the duration of the

channel recordings to obtain a cross correlation time series for all possible channel

pairs (Rij shown in the y axis of fig 2.5C). These cross correlation time series’ were

arranged as rows of the coactivity matrix in increasing order of the distance between

the pairs of channels. This arrangement was shown as rows in blocks separated by

white spaces in fig 2.5C with each block representing adjacent channels and channels

separated by 2 and 3 times the inter channel distance of 500µ m.Typically, for N

channels in an experiment, a total of N(N−1)
2

cross correlation time series’ are used as

rows to construct the coactivity matrix. For the 16 channels used in the experiments

in this work, 120 rows were used to build the coactivity matrix. A cross correlation

value of 1.0 was shown in yellow and of -1.0 shown in purple.

The procedure to construct the coactivity matrix was also described in algorithm

9. The rolling mean and standard deviation of spike rate of all channels of an animal

were stored as columns in a Pandas dataframe (DataFrame). The cross correlation

time series for each pair of channels in the super diagonal of the channel matrix was

computed using the built in correlation function of the pandas dataframe (Values).

The 16 x 16 coactivity matrix was constructed for all the six control animals and

heart failure animals to check for regions of high coactivity among neural population

activities of all channels. The coactivity matrix constructed for both mean and std

of spiking activity for one of the control animals was shown in fig 2.6. A similar

coactivity matrix was also shown for one of the heart failure animals in fig 2.7.A

rolling window or a timestamp in the coactivity matrix was considered to be a region

of high coactivity if a large proportion among all the channel pairs in that timestamp

were found to be highly correlated. This was indicated by long columns of yellow

with a representative high coactivity region shown in a black dotted box in figs 2.6

and 2.7. It was observed qualitatively that the heart failure animals contained more

regions of high coactivity than the control animals.

In order to identify and quantify the number of high coactivity regions of the

coactivity matrix in all animals, a cofluctuation time series, events and event rate

https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
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Figure 2.6: Control animal - 16 x 16 Coactivity matrix constructed for both
Spikeratemean and Spikeratestd with regions of high coactivity shown in black dotted
boxes
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Figure 2.7: Heart Failure(HF) animal - 16 x 16 Coactivity matrix constructed for both
Spikeratemean and Spikeratestd with regions of high coactivity shown in black dotted
boxes
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Figure 2.8: cofluctuation time series for control and HF animal shown in figs 2.6 and
2.7
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Figure 2.9: Surrogate data for constructing the neural specificity metric with respect
to LVP

were defined. The cofluctuation time series was defined as the percentage of channel

pairs that exceeded a threshold C shown as R > C in fig2.5D. Cofluctuation series

calculated for both mean and std of the control and the HF animals shown in figs

2.6 and 2.7 are shown in fig 2.8. Following the construction of cofluctuation series’

for all animals, an event was defined as a timestamp of up crossing cofluctuation

through another threshold called the event threshold shown as T in fig 2.5D and

E. These events represent timestamps in an experiment with high spatial coherence

among neural populations from different regions of the stellate. In order to compare

the number of events between different groups of animals, an event rate (ER) for the

cofluctuation series of mean and std was defined with respect to the duration of the

experiment as seen below.

ERmean/std =
Number of Events

Duration of experiment

Characteristics of the cofluctuation series and a hypothesis based on number of

events between animal groups is elaborated in Chapter 5 as part of the paper titled

"Metrics of High Cofluctuation and Entropy to Describe Control of Cardiac Function

in the Stellate Ganglion" by Gurel & Sudarshan et al.

2.3.2 NEURAL SPECIFICITY

The neural specificity metric was constructed in order to probe into the bias of neural

populations towards a particular phase or value of a target signal for the duration of

an experiment. LVP and respiratory pressure are two examples of such target signals
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Algorithm 9 Coactivity Part 1
NumChan = rows(ChNumbers)

CoactivityV als← [] ▷Initialize empty list to store coactivity between channels

for SuperDiagonal in Range(NumChan) do

for Index in Range(NumChan - SuperDiagonal) do

PhysName0← ChNumbers[Index]

↪→ ▷First Channel in pair

PhysName1 = ChNumbers[Index+ SuperDiagonal]

↪→ ▷Second channel in pair

▷Names of channels as header in data frames to access their spike rates

Name0 = ”XIcn” + str(PhysName0)

Name1 = ”XIcn” + str(PhysName1)

for Name0 in Cols(DataFrame) and Name1 in Cols(DataFrame) do

V alues←
↪→
RollingWindows(Correlate(DataFrame[Name0], DataFrame[Name1]),Window)]

▷Correlate pairs of channels in superdiagonal in rolling windows

CoactivityV als.append(values) ▷Store rolling window correlated series

of channel pair in a separate list

end for

Rows← rows(transpose((CoactivityV als))) ▷Number of rows in

transpose of CoactivityVals

CoactivityStats← zeros(Rows) ▷Initialize empty list to store Coactivity

stats

▷Looping through all the channel pairs

for Row in Range(Rows) do

Ind← NonZeros(CoactivityV als[row]) ▷Isolate indices of non zero

rolling windows channel correlation pairs

FilterRow ← CoactivityV als[Row][Ind] ▷Non zero rolling windows
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Algorithm 10 Coactivity - Part 2

CoactivityStats[Row]← len(NonZeros(Abs(FilterRow)>CorrThreshold))

▷Store the number of Channel pairs that exceed the CorrThreshold parameter for

a rolling window as a series

CoactivityStats[Row]← CoactivityStats[Row] ∗ 100.0/len(FilterRow)

▷Percentage of number of channel pairs exceeding the CorrThreshold parameter as

a series

end for

end for

end for

StateArray ← zeros(len(CoactivityStats)) ▷Initialize empty list to store State

changes in CoactivityStats

for i in range(len(CoactivityStats)) do

if CoactivityStats[i] > StateThreshold then

StateArray[i]← 1 ▷A "1" is stored where percentage of channel pairs

↪→ exceeds the StateThreshold parameter

end if

end for

TransitionT imestamp← [] ▷Initialize an empty list to store State Transition

indices

for i in Range(len(StateArray) - 1) do

if StateArray[i] - StateArray[i + 1] == -1 then

TransitionT imestamp← append([i+ 1]) ▷Store the indices where

StateArray moves from 0 to 1 to indicate an event

end if

end for

EventRate← len(TransitionT imestamp)/ExptT ime ▷Calculate event rate for

the Coactivity matrix
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Figure 2.10: Construction of the neural specificity metric and the corresponding
entropy time series with respect to LVP
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used in the thesis. The metric was constructed by subtracting a normalized histogram

of the target signal computed at random spike times from that of the target computed

at actual spike times in moving windows for the course of the experiment. The width

of the moving windows was chosen to contain sufficient target data for computing

the normalized histograms. In the case of the neural specificity metric for LVP , the

moving window width was chosen to contain many cycles of LVP.

The procedure used in constructing the metric for any target was elaborated in

algorithm 11. Information from the output of Multilevel (algorithm 7) such as spike

time (SpikeTime), target value computed at spike times (Tar) and list of channels

(ChannelList) were used to represent population activity. The target information was

primarily represented using the raw target signal (TarRaw). Spikes detected at the

same time across a fixed number of channels in an animal were considered as artifact

and an artifact removal operation was performed. This artifact removal was performed

with the number of channels set as a hyper parameter (NumArtCompare). Since the

spike detection process extracted spikes up to the minimum level hyper parameter

in Multilevel, those detected at the lowest levels might represent the putative noise

floor falsely being considered as spikes. In order to avoid this problem, another

level threshold was qualitatively chosen to accurately represent population activity.

Positive and negative spikes above this level (LevelPlus and LevelMinus) were used

to represent population activity for further steps in the construction of the metric.

A list of all the parameters and descriptions used in the construction of the metric

was detailed in table 2.4. This was followed by creating moving windows for the

duration of the experiment with the width chosen as a hyper parameter. The window

width was chosen qualitatively at 10 minutes for experiments conducted for 6-8 hours

to include sufficient target and spike data. For each of the moving windows, two

normalized histograms were computed as described below,

• A normalized histogram for the kth bin of the target Tj at a randomized spike

time tj over M bins referred to as randomly sampled target was defined as,

H(Tj)k =
h(Tj)k∑k=M

k=1 h(Tj)k

• Another normalized histogram for the kth bin of the target STj computed at

an actual spike time tj over M bins referred to as neurally sampled target was
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Algorithm 11 NeuralSpecificityMetric Part 1
TarRaw, TarStart, TarInterval← readTarget()

ChannelList,DataChannel, SpikeT ime, Tar ← readMultilevel2Spike()

Index← RemoveArtifact(NumArtCompare, ChannelList,DataChannel,

↪→
SpikeT ime) ▷remove artifact

SpikeT ime, SpikeLevel,DataChannel, Tar ← SpikeT ime[Index],

↪→
SpikeLevel[Index], DataChannel[Index], Tar[Index] ▷extract spike data after

artifact removal

BinWidth← 0.0025 ▷isolate positive and negative spikes

PlusSpikes← SpikeLevel[SpikeLevel>0]

MinusSpikes← SpikeLevel[SpikeLevel<0]

BinEdges← linspace(0, 5, 5/BinWidth)

▷isolate spikes based on predetermined levels

Index← (SpikeLevel>LevelP lus) ∨ (SpikeLevel<−LevelMinus)

SpikeT ime, SpikeLevel,DataChannel, Tar ←
↪→

SpikeT ime[Index], SpikeLevel[Index], DataChannel[Index], Tar[Index]

SpikeT imes← SpikeT ime+Window ▷create sliding windows based on a

window width

for Spike in SpikeTimes do

EndIndex[N ]← argmax(SpikeT ime > Spike)

N ← N + 1

end for

StartIndex← 1 : len(EndIndex)

Specificity ← Zeros[len(StartIndex), NumBin] ▷Initialize neural specificity

metric matrix for storing the histograms of target computed at spike times



52

Algorithm 12 NeuralSpecificityMetric Part 2

SpecificityNotSet← Zeros(len(StartIndex)) ▷Track neural specificity bins

for (Start, End) in (StartIndex, EndIndex) do

Specificity[Start, :]← histogram(tar[Start : End], NumBin) ▷Histogram of

the target at spike times

Specificity[Start, :]← SavGolF ilter(Specificity[Start, :])

↪→ ▷Smoothed Histogram using the Savistky-Golay filter

SpecificityNotSet[Start]← 1 ▷moving window histogram calculated

end for

RawStartIndex← (SpikeT ime[StartIndex]− TarStart)/TarInterval ▷Start

times of moving windows for raw target

RawEndIndex← RawStartIndex+ (Window/TarInterval) ▷End times of

moving windows for raw target

SpecificityRandom← Zeros[len(StartIndex), NumBin] ▷Initialize neural

specificity metric matrix for storing the histograms of target computed at random

spike times

SpecificityRandomNotSet← Zeros(len(StartIndex)) ▷Track random neural

specificity bins

for [I, Start, End, TarStart, TarEnd] in

↪→ [(1 : len(StartIndex)), StartIndex, EndIndex, RawStartIndex,

RawEndIndex] do

SpecificityRandom[Start, :] ← histogram(TarRaw(random([TarStart :

TarEnd])), NumBin)

↪→ ▷Histogram of the target at random spike times

SpecificityRandomNotSet[Start]← 1 ▷moving window histogram calculated

end for

Specificity ← Specificity − SpecificityRandom ▷Subtract to obtain neural

specificity metric

Specificity ← Specificity/std(Specificity)
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Algorithm 13 NeuralSpecificityMetric Part 3
▷Apply hard threshold to the metric

Specificity > HardThreshold← 1

Specificity < HardThreshold← 0

Specificity < −HardThreshold← −1
▷Entropy computation

NumWindows← len(StartIndex)

ShannonEntropy ← Ones(NumWindows)

for Row in range(len(StartIndex)) do

Diff = Diff(Row)

P = histogram(Diff, 3)

ShannonEntropy[Row]← entropy(p, base = 3)

end for

PlotResults(Specificity, SpecificityRandom,HardThreshold)

defined as

H(STj)k =
h(STj)k∑k=M

k=1 h(STj)k

A small segment of LVP shown in blue tracings in fig 2.10 A was used to graphically

describe the steps in the construction of the metric. The two normalized histograms

described above were shown in fig 2.10 B for a single moving window.

The neural specificity Ajk for the kth bin was obtained by performing a bin-wise

subtraction of the two histograms described above.

Ajk = H(Tj)k −H(STj)k

This operation was shown for a single moving window in fig 2.10 C. The subtracted

histogram was color coded to clearly represent the neural population bias. The color

codes for the kth bin were chosen as,

• yellow for Ajk = 1 to represent a higher bias to the target bin compared to

random target sampling.

• purple for Ajk = −1 to represent a lower bias to the target bin compared to

random target sampling.
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Parameters Description Default
LevelPlus Minimum level used for the choice of

detected positive spikes
1.5

LevelMinus Minimum level used for the choice of
detected negative spikes

1.5

HardThreshold Threshold used to color code each of
the normalized histograms of the met-
ric

0.5

Window Duration of the moving windows in sec-
onds

20

NumArtCompare Number of channel to look for artifact 5

Table 2.4: Table containing the descriptions and default values of the parameters
used in Neural Specificity

• teal for Ajk = 0 to represent no change in bias to the target bin compared to

random target sampling.

This color code was also shown in fig 2.10 C. The above steps were repeated for

multiple moving windows spanning the course of the experiment to build the neural

specificity metric for a specific target. For the case of LVP, the metric was shown for

a single channel in fig 2.10 D.

In order to extract information from the metric, Shannon entropy was calculated

for each of the moving windows. A first difference in neural specificity, ∆Atj for a

time window tj, was calculated prior to the entropy calculation (first difference in

fig 2.10 C). Change in neural specificity takes on values 0, 1 and 2 to represent the

magnitude of changes in neural specificity. The entropy was calculated as,

E =

∆Atj=2∑
∆Atj=0

p(∆Atj)log3(p(∆Atj))

A uni variate time series was obtained by repeating the entropy calculation for

all of the moving windows as shown in 2.10 E. Mean and standard deviation of the

entropy time series was used to develop and test hypotheses between different animal

groups further elaborated in Chapter 5 as part of the paper titled "Metrics of High

Cofluctuation and Entropy to Describe Control of Cardiac Function in the Stellate

Ganglion" by Gurel et al.
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Figure 2.11: LVP - neural specificity metric for 2 mins and entropy shown for two
channels of one animal



56

File Description
diaryAxChannely.txt Text file to track the progress of algo-

rithm 11 for channel y of animal x
metadataNeuralSpecificityAxChannely.txt Text file containing the values of the

hyper parameters shown in table ? for
a particular run of neural specificity for
channel y of animal x

NeuralSpecificityMetricLVP,pdf Plot of LVP-neural specificity for chan-
nel y

ShannonEntropy.csv Shannon entropy time series computed
from the metric for channel y stored as
comma separated values

Table 2.5: Table describing output files generated by algorithm 11 for channel y of
animal x

The directory structure for an example two channel two animal surrogate data

can be found in the repository : GitHub Repo Link

/

Animals

AnimalData

Animal1

MlOutput

NeuralFiles

NeuralSpecificity20s6minbuff

A1Channel1

ShannonEntropy.csv

diaryA1Channel1.txt

imageA1Channel1NeuralSpecificityMetricLVP.pdf

metadataNeuralSpecificityA1Channel1.txt

A1Channel2

ShannonEntropy.csv

diaryA1Channel2.txt

imageA1Channel2NeuralSpecificityMetricLVP.pdf

metadataNeuralSpecificityA1Channel2.txt

TargetFiles

https://github.com/Koustubh2111/Cofluctuation-and-Entropy-Code-Data.git
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Animal2

MlOutput

NeuralFiles

NeuralSpecificity20s6minbuff

A2Channel1

ShannonEntropy.csv

diaryA2Channel1.txt

imageA2Channel1NeuralSpecificityMetricLVP.pdf

metadataNeuralSpecificityA2Channel1.txt

A2Channel2

ShannonEntropy.csv

diaryA2Channel2.txt

imageA2Channel2NeuralSpecificityMetricLVP.pdf

metadataNeuralSpecificityA2Channel2.txt

TargetFiles

NeuralSpecificity

NeuralSpecificityMC.py

detectpeaks.py

runNeuralSpecificity.py

The same two channel two animal directory structure was used to describe the out-

put files generated for a multi channel neural specificity metric case. The output files

and the metric figures were stored channel-wise in a directory called "NeuralSpeci-

ficity" that was created for each animal. The neural specificity algorithm (algorithm

11) was run sequentially for all channels of an animal and the output files were stored

in individualized channel directories. These channel directories, shown as A1Channel1

and A1Channel2 for animal 1 for instance, stored four files to represent the output

files detailed in table 2.5. The neural specificity metric plots and the corresponding

entropy plots was also shown for the two channels of one animal in fig 2.11.

Characteristics of the neural specificity metric and a hypothesis based on entropy

calculated from the metric between animal groups are elaborated in Chapters 4 as

part of the paper titled "A novel metric linking stellate ganglion neuronal physiology

to cardiopulmonary dynamics" by Sudarshan et al and 5 as part of the paper titled
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"Metrics of High Cofluctuation and Entropy to Describe Control of Cardiac Function

in the Stellate Ganglion" by Gurel & Sudarshan et al.



Chapter 3

ANALYSIS OF STELLATE GANGLION POPULATIONS IN

HEALTHY ANIMALS

Contribution of the student :

The candidate was a primary contributor to the competitive masking algorithm,

neural specificity metric, data analysis, interpretation of experimental results, fig-

ure preparation, drafting, editing and manuscript revision.
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INNOVATIVE METHODOLOGY

Integrative Cardiovascular Physiology and Pathophysiology

A novel metric linking stellate ganglion neuronal population dynamics to
cardiopulmonary physiology

Koustubh B. Sudarshan,1 Yuichi Hori,2 M. Amer Swid,2 Alexander C. Karavos,1 Christian Wooten,2

J. Andrew Armour,2 Guy Kember,1 and Olujimi A. Ajijola2,3
1Department of Engineering Mathematics and Internetworking, Dalhousie University, Halifax, Nova Scotia, Canada; 2Cardiac
Arrhythmia Center and Neurocardiology Research Program, University of California, Los Angeles, California; and 3Molecular,
Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, California

Abstract

Cardiopulmonary sympathetic control is exerted via stellate ganglia (SG); however, little is known about how neuronal firing pat-
terns in the stellate ganglion relate to dynamic physiological function in the heart and lungs. We performed continuous extracel-
lular recordings from SG neurons using multielectrode arrays in chloralose-anesthetized pigs (n = 6) for 8–9 h. Respiratory and
left ventricular pressures (RP and LVP, respectively) and the electrocardiogram (ECG) were recorded concomitantly. Linkages
between sampled spikes and LVP or RP were determined using a novel metric to evaluate specificity in neural activity for
phases of the cardiac and pulmonary cycles during resting conditions and under various cardiopulmonary stressors. Firing fre-
quency (mean 4.6 ± 1.2 Hz) varied spatially across the stellate ganglion, suggesting regional processing. The firing pattern of
most neurons was synchronized with both cardiac (LVP) and pulmonary (RP) activity indicative of cardiopulmonary integration.
Using the novel metric to determine cardiac phase specificity of neuronal activity, we found that spike density was highest dur-
ing diastole and near-peak systole. This specificity was independent of the actual LVP or population firing frequency as revealed
by perturbations to the LVP. The observed specificity was weaker for RP. Stellate ganglion neuronal populations exhibit cardio-
pulmonary integration and profound specificity toward the near-peak systolic phase of the cardiac cycle. This novel approach
provides practically deployable tools to probe stellate ganglion function and its relationship to cardiopulmonary pathophysiology.

NEW & NOTEWORTHY Activity of stellate ganglion neurons is often linking indirectly to cardiac function. Using novel
approaches coupled with extended period of recordings in large animals, we link neuronal population dynamics to mechanical
events occurring at near-peak systole. This metric can be deployed to probe stellate ganglion neuronal control of cardiopulmo-
nary function in normal and disease states.

cardiopulmonary; hemodynamics; neural recordings; spike activity; stellate ganglion

INTRODUCTION

Populations of neurons within stellate ganglia (SG) are
involved in closed loop hierarchical control of cardiac func-
tion (1). Existing studies show that the SG integrates afferent
input frommultiple sites and processes them via local circuit
neurons (2–4). Cardiomotor responses resulting from SG
processing are mediated via postganglionic neurons that
project to the heart (5).

Structural and neurochemical remodeling of SG neu-
rons have been observed in pathological states, and are
accepted to have a major impact on cardiac function in
animals (6–8) and in humans (9, 10). Interventions target-
ing the stellate ganglion are used to treat various cardio-
vascular diseases including cardiac arrhythmias (11–13).

However, network processing in normal states within SGs
is not understood. Furthermore, the mechanisms through
which cardiac disease alters SG network or processing
function remains unknown. Knowledge of these proc-
esses is needed to fundamentally understand the onset
and evolution of pathology, mediated by the SG, for ther-
apeutic purposes.

Prior in vivo extracellular recording studies of SG neuronal
function have been limited by relatively low spike detection
and associated spike counts, such that spike sorting of spe-
cific neurons has been limited to episodic recordings (3, 14–
17). Such features lack the space and time resolution required
to examine SG-networked processing of neural populations
within intrathoracic extracardiac sympathetic ganglia that
coordinate cardio-respiratory function.
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The purpose of this study is to explore neural processing
of cardiopulmonary transduction by SG neuronal popula-
tions during baseline states and in response to specific cardi-
ovascular and pulmonary stressors. To accomplish this, we
performed continuous recordings of the activity generated
by populations of SG neurons for several hours, with ongoing
cardiopulmonary dynamics. To gain sufficient resolution of
neural population activity to evaluate any specificity in fir-
ing patterns, we coupled prolonged recording periods (8–9
h/animal subject) with a spike detection approach to detect
neural activity close to the noise threshold. The evolution of
specificity in neural population activity relative to unbiased
random sampling exposed dynamic features of network
processing of physiological function such as cardiac and pul-
monary variables overmultiple time scales.

METHODS

Animal Model and Protocols

This study was approved by the University of California, Los
Angeles (UCLA) Animal Research Committee. Male Yorkshire
pigs (n = 6) weighing 43.8 ± 4.2 kg were studied. Studies were
performed consistent with the UCLA Institutional Animal Care
and Use Committee (IACUC) guidelines and the National
Institutes of Health’s Guide for the Care and Use of Laboratory
Animals. Each porcine subject was sedated with terconazole
(4–8 mg/kg im), intubated, and maintained under general an-
esthesia with inhaled isoflurane (2%). After median sternot-
omy, animals were transitioned to chloralose anesthesia with
supplemental oxygen (2 L/min) during the experimental study.
Surface electrocardiogram (ECG) and hemodynamic measures
were continuouslymonitored.

Experimental Studies

Sedation and intubation were performed as described previ-
ously (17). Arterial blood pressure was monitored continuously
from the left femoral artery using a pressure catheter (SPR350,
Millar Inc., Houston, TX). ECGs were also continuously
recorded during the experimental protocol, and arterial blood
gas was evaluated hourly. Fentanyl citrate (20 μg/kg) was
administered intravenously before sternotomy. The pericar-
diumwas opened to expose the heart and both stellate ganglia.
Following completion of surgical procedures, isoflurane was
gradually tapered off and switched to a-chloralose (6.25 mg/125
mL; 1 mL/kg for bolus, 20–35 mL/kg or titrated to effect for
maintenance) for in vivo neural recordings from the left stellate
ganglion. The left carotid artery was exposed, and a pressure
catheter (SPR350, Millar Inc., Houston, TX) was inserted to
continuously monitor left ventricular pressure. Animal sub-
jects were kept covered and heated using water blankets (37�C–
38�C), and a saline drip (8–10 mL/kg/h) was continuously
given intravenously. Arterial blood gas was sampled hourly or
more frequently (RoVent Jr., Kent Scientific Corporation,
Torrington, CT) during respiratory stressors such as apnea. At
the end of the study, subjects were euthanized under deep
sedation of isoflurane and cardiac fibrillation was induced.

Extracellular Stellate Ganglion Neuronal Recordings

A linear microelectrode array (LMA, 16 channels,
Microprobes, Gaithersburg, MD) was inserted into the

craniomedial pole of the left stellate ganglion. The plati-
num-iridium electrodes consisted of 25-mm surface area,
500-mm interelectrode spacing, and 0.2–0.5-MX imped-
ance. A microelectrode amplifier (Model 3600, A-M
Systems, Inc., Carlsborg, WA) was used to acquire ampli-
fied signals. These electrode characteristics enable record-
ings of soma action potentials, not axons of passage in the
stellate ganglion. Neuronal recording signals were filtered at
300 Hz to 3kHz, with a gain of 1,000–2,500 and transferred
into a data acquisition platform (Power1401, Cambridge
Electronic Design, Cambridge, UK) and recorded using
Spike2 software (Cambridge Electronic Design).

Spike Detection

A schematic summary for spike detection is shown in
Supplemental Fig. S1; all Supplemental material is avail-
able at https://doi.org/10.6084/m9.figshare.14347061.v2.
Surrogate neural data are normalized to zero mean and
unit variance. The competition algorithm is initialized by
placing plus/minus barriers and then scanning for cross-
ings above the plus barrier and below the minus barrier.
The plus/minus barrier levels are brought closer to zero
until a minimal number of crossings occur. Plus or minus
spikes “win” upon: 1) first reaching a minimal number of
crossings, or 2) both sides reaching the minimal number
and the side with most crossings wins. The regions at,
and beyond, the plus/minus barriers ±9 are highlighted
in gray. We refer to the gray regions, at and beyond the
barriers, as “barriers” for simplicity in what remains. All
spike peaks beyond the barriers are annotated with green
(plus) and red (minus) stars. Below the figure containing
surrogate data, the plus spikes (below left) and minus
spikes (below right) that were found are shown.

Two plus spikes are found along with one minus spike in
the first iteration (Iter 1). Given a minimum of two spikes
required, plus meets the criterion and wins the first iteration
and, therefore, the plus spikes are retained. After winning
the first iteration, all neural activity associated with plus
spikes from Iter 1 are masked (black bar with zero signal).
The barriers are further reduced, and the search region is
noted as a darker gray bar. The algorithm is iterated and plus
andminus peaks are found. Note that the minus spike found
earlier in Iter 1 is found again and the minus count has a
competitive advantage in this iteration. In Iter 2, there are
more minus than plus spikes with minus satisfying the crite-
rion of at least two spikes and minus wins the second itera-
tion. The competition algorithm is repeated and shown for a
third iteration. Note that previous iteration plus spikes have
been subsumed into the minus population. The algorithm is
continued until the barrier passes a minimum level for plus
andminus.

Stressors

After the experimental preparation described above, a
20-min waiting period was allowed for stabilization.
Various stressors [inferior vena cava (IVC) occlusion, aortic
occlusion, and right ventricular endocardial pacing] were
performed in a random order. Decremental right ventricu-
lar pacing (RVP) was performed with a cycle length (CL) of
450 ms (133 beats/min) to 250 ms (240 beats/min) down by
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50 ms steps over 100 s using the Micropace (EP320) and
Prucka CardioLab System (GE Healthcare). Bradykinin (20
μg/mL) applied epicardially to the ventricles were used to
activate TRPV1 afferents. The heart was washed with warm
saline 10 min after application and a 30-min waiting period
was allowed for recovery of the baseline hemodynamic
function.

Sliding Autocorrelation Definition

The spiking rate xj, 1 � j � Nmax is found over a sliding
window of fixed width time s. Because the spikes occur at
unequally spaced times, the equally sampled spiking rate
computed at equally spaced times over a window of fixed

width has a varying number of spikes per window.
Therefore, the window width is chosen such that the mean
spiking rate can be computed to a desired degree of
accuracy.

The sliding autocorrelation of the spiking rate, found at
equally spaced times tj, 1 � j � Nmax � N, where Nmax is the
total number of samples of xj, 1 � j � Nmax andN is the num-
ber of samples in the jth overlapping window, is

qj mð Þ ¼
E xn jð Þþm � lx½ �� �2

r2
x

;

with shift 0 � m � N. The sample times ranging over j � n
(j) � j þ N have N windowed values and the upper limit on j
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Figure 1. Experimental workflow. A: repre-
sentative image of the recording linear
microelectrode array in the pig left stellate
ganglion. B: example of recordings of neu-
ral activity, respiratory pressure, left ven-
tricular pressure, and electrocardiogram.
C: the approach to spike sorting. D: exam-
ples of identified spikes. ECG, electrocar-
diogram; LVP, left ventricular pressure.
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ensures that samples accessed within the last window do not
exceed the index Nmax. In this work, the autocorrelation is
also centered by usingN odd, and assigning j to j þ N/2.

Neural Specificity Rationale and Definition

To evaluate this neural activity bias, a randomized spike
histogram of left ventricular pressure (LVP) was computed
over many cardiac cycles and subtracted from the neurally
sampled LVP histogram (the LVP histogram computed from
LVP evaluated at the time of spike occurrences).The
randomized sampling of LVP follows the simple inverse pro-
portionality to LVP slope previously described and provides
a benchmark to evaluate neural activity bias. If there is no
neural activity bias toward LVP, then the neurally sampled
and randomly sampled histograms of LVP will be the same.
Where the neurally sampled LVP histogram exceeds or goes
below the randomly sampled LVP histogram, there is a re-
spective positive or negative bias toward or away from that
part of the LVP cycle. This neural activity bias was computed
over a sliding window of fixed width of many cardiac cycles
to also show its evolution. The results demonstrated that rel-
ative to random sampling of LVP, neuronal populations
showed a strong positive and persistent bias toward near-
peak systole and an equally persistent negative bias toward
systole. The voltage level cutoff for the neurally sampled
LVP was qualitatively chosen by identifying convergence of
themetric for different lower limits.

The metric for specificity in neural activity is based on a
normalized sliding histogram of a generic variable zj, 1 � j �
Nmax at time tj computed over a set ofM bins and defined for
the kth bin as:

H zjð Þk ¼
hðzjÞkXM

k¼1
hðzjÞk

:

Since the samples zj occur at unequally spaced times, tj,
the sliding histogram assigned to time tj is computed with
reference to all zj falling within a window of width s at and
beyond the sample time, tj. As such, each histogram is based
on a variable number of samples and the value of s should be
chosen to provide a desired degree of accuracy. In this work:
1) the histogram is centered by using samples falling within
s/2 before and after time tj and 2) the notationH(zj)k is equiv-
alent to themore convenient notationHzj,k used below.

The steps below outline the method used to compute the
neural specificity.

1) The sampled value of a physiological variable (e.g., LVP)
at the time of each spike tj, 1 � j � Nmax such as neurally
sampled LVP, defined as SLVPj, 1 � j � Nmax, is found and its
normalized formHSLVPj,k is constructed.

2) The normalized histogram of equally spaced sampling
of left ventricular pressure LVPj,k over the same epoch as in
step 1) is found and based on the same bins as those used for
HSLVPj,k. This normalized histogram approximates the
same found by random sampling.

3) The neural specificity follows from considering step 2
relative to step 1 as aj,k = HSLVPj,k = LVPj,k and to enable a
consistent comparison through time, space, and across data
sets, the neural specificity is “normalized” by scaling aj,k to
zero mean and unit variance with respect to aj,k > 0 and la-
beled asAj,k.

There are three cases of interest:

1) Aj,k > 0: Greater bias toward the value of the physiologi-
cal variable at the kth bin than that due to random
sampling.

2) Aj,k < 0: Lesser bias toward the value of the physiological
variable at the kth bin than that due to random
sampling.

3) Aj,k � 0: Near-zero bias toward the kth bin value of the
physiological variable and this approximates random
sampling.

For ease of visualization and qualitative interpretation, the
sliding window histogram of neural specificity is mapped to
the discrete set �1, 0, 1 and, respectively, colored as blue,
teal, and yellow. All values of the bias histogram at or
exceeding a threshold of a are set to 1, all values between �a
and þ a are set to 0, and all values at or below �a are set to
�1. Specifically, the colors blue, teal, and yellow, respec-
tively, imply a qualitative tendency toward less, the same,
and greater degree of bias in neural activity than that
expected from random sampling.

Statistical Analysis

Variables are presented as means ± SE. The Shapiro–Wilk
test was used for assessing distribution. A two-tailed
Student’s t test and ANOVA test were used for data that were
normally distributed, and the Mann–Whitney test and
Kruskal–Wallis test were used for data that were not nor-
mally distributed. Statistical significance were indicated at P
values of <0.05, <0.01, <0.001, and <0.0001. Analysis was
performed using Microsoft Excel (Redmond, WA) and
GraphPad Prism (La Jolla, CA).

RESULTS

The experimental and data workflows are shown in Fig. 1.
Linear microelectrode arrays (16-channel) were impaled into
SGs, as shown in Fig. 1A, to record neural activity.
Simultaneously, left ventricular pressure (LVP), respiratory
pressure (RP), and electrocardiogram (ECG) were recorded
(Fig. 1B). Raw tracings (example shown in Fig. 1C) were sub-
jected to artifact removal and spike detection as shown in
Fig. 1D. Representative examples of detected spikes are
shown in Supplemental Fig. S2. Spike detection was opti-
mized to yield significantly more than would be obtained by
a single positive or negative threshold. By iteratively detect-
ing and masking spikes as described, we obtained �400,000
spikes (Supplemental Fig. S3) from a single channel during 8
h of continuous experimental recordings.

Spatiotemporal Dynamics of Stellate Ganglion Neuronal
Populations Reflects Regional Processing

An immunofluorescent image of a porcine left SG with a
schematic of the recording array is shown in Fig. 2A (see
Table 1 for antibodies). Recorded activity showed spatiotem-
poral differences across the ganglion. Initially, there was a
robust activity recorded upon insertion of the electrode that
abated after �2 h (Fig. 2B). When this activity became less
pronounced, a steady state was reached (Fig. 2C). Mean firing
frequency across electrodes in the entire cohort was 4.6 ± 1.2
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Hz (intersubject range 1.1–9.6 Hz; Fig. 2D). Firing frequency
was nonuniform across ganglia in all animals, suggesting re-
gional processing within the ganglion. The difference across
ganglia in each subject ranged from 4.1 Hz to 10.6 Hz.

Similarly, introduction of cardiovascular (i.e., great vessel
occlusion, cardiac ischemia, and rapid ventricular pacing)
and pulmonary stressors (i.e., apnea, hypopnea, and tachyp-
nea) resulted in varied responses across the ganglion (Fig. 2,
B, E, and F) with some regions responding minimally. The
extent of variation in responses from steady to stressed states
did not yield significant results using a paired t test (not
shown). Interestingly, although sympathoexcitatory reflex

response to stressors is thought to be reflected by increased
SG neuronal firing, we observed a reduction in neural activ-
ity across most electrodes (Fig. 2F). This pattern is indicative
of processing within the ganglion, as reflex inhibition of neu-
ral activity was associated with sympathoexcitation.

Temporal Local Dynamics

We next examined local spike dynamics in the context of
cardiac and pulmonary activity, that is, LVP and RP, respec-
tively. Representative tracings of spike activity, RP, LVP, and
ECG are shown in Fig. 3A. Modulation of spike activity by
the respiratory cycle (yellow highlight, inspiration and

Table 1. List of antibodies used

Concentration Source

Primary antibody
Vesicular acetylcholine transporter 1:200 Polyclonal rabbit antibody. Synaptic Systems, Goettingen, Germany. #139-103.
Tyrosine hydroxylase 1:200 Polyclonal sheep antibody. EMD Millipore. Darmstadt, Germany. ab1542.

Secondary antibody
Cy3 AffiniPure aonkey anti-rabbit IgG 1:400 Polyclonal rabbit antibody. Jackson Immunoresearch Laboratories, Inc., West

Grove PA. 711-165-152.
Alexa flour 488 AffiniPure donkey anti-sheep IgG 1:400 Polyclonal sheep antibody. Jackson Immunoresearch Laboratories, Inc., West

Grove PA. 713-545-003.

Figure 2. Spatiotemporal dynamics of stel-
late ganglion neuronal populations. A:
schematic of the 16-electrode array
inserted into the ganglion (upper) and
actual size of recording electrode relative
to neurons (lower). Spike dynamics over
8 h in eight channels spanning the stellate
ganglion (B); plot of firing frequencies
across all 16 electrodes (E1–E16) in six
male study animals upon insertion of the
probe, during steady state, and during
cardiopulmonary stressors (C); mean firing
frequencies across the ganglion in study
animals (D); mean firing frequencies
across the ganglion in the study animals
(E); distribution of responses to several
cardiovascular stressors including aorta
occlusion, rapid ventricular pacing, ische-
mia, apnea plotted as differences in mean
firing between steady and stressed
states (F).
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expiration) can be readily identified. Spike activity was
inhibited during the respiratory cycle when lung pressure
was>0 cmH2O (Fig. 3, A and B). This resulted in a cyclic pat-
tern where spike period, the interval between successive
spikes, increased and decreased in tandem with respiratory
pressure during the respiratory cycle (Fig. 3C).

A subset of channels showed 1:1 phase locking to the car-
diac cycle; two such channels are shown in Fig. 3B. The car-
diac cycle, highlighted in yellow, is associated with phase-
locked spikes in the red and blue channels and this was only

present for respiratory pressures at or near 0 cmH2O. Such
association with cardiac and pulmonary activity is reflective
of integrated cardiopulmonary processing. This observation
is further illustrated (Fig. 3C) by the timing of neural activity,
where individual spikes are shown as red dots relative to
LVP and RP. Most spikes are clustered at peak, or near-peak,
LV pressure, and are relatively inhibited during inspiration
(arrows). This cyclic inhibition is illustrated by the evolution
of spike period (blue line) in Fig. 3C. To verify the influence
of breathing on spike dynamics, we instituted apnea by

*

Figure 3. Cardiopulmonary integration is reflected in stel-
late ganglion neural activity. A and B: representative record-
ings from several electrodes (blue and red tracings) using
the 16-channel linear array, along with respiration (Resp), left
ventricular pressure (LVP), and the electrocardiogram (ECG)
in purple tracings. Yellow bars highlight respiration (A) and
the cardiac cycle (B). Activity in the blue and red channels
are locked to cardiac and/or pulmonary. C: stellate ganglion
(SG) neuron activity (red dots are individual spikes) shows
increased firing rate at peak and near-peak LV pressures;
however, firing is inhibited during respiration, as reflected
by increased spike period (heavy blue line) mirroring inspi-
ration and expiration. D: representative response of SG neu-
ral activity to apnea (60 s). Black trace is scaled up
respiratory activity, and black arrows identify baseline peak
and trough of the spike period (green trace). E: spike period
oscillation (peak-trough values) while breathing at baseline,
and over the same period in apnea. n = 6 animals; 	P =
0.016, two-tailed Wilcoxon rank-sum test.
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transiently stopping the ventilator (30–60 s). Interestingly,
we found that the oscillations in spiking activity entrained
by breathing were abolished (Fig. 3, D and E). Next, we
sought to assess whether the oscillations could be com-
pletely delinked from cardiac dynamics. In a subset of ani-
mals, we induced ventricular fibrillation by applying an
electrical pulse to the heart. In this setting (data not shown),
transiently stopping and resuming respiration via the ventila-
tor also attenuated and reestablished the oscillations in firing.
Taken together, these data demonstrate the contribution of
both cardiac and respiratory function to SG neuronal popula-
tion dynamics.

Transduction of Cardiopulmonary Function

To determine whether heart rate and respiratory rate are
reflected in spike population dynamics over long-time
scales, we used a sliding window autocorrelation to look for
the presence of periodicities in spike density linked to
changes in heart rate and respiratory rate. The autocorrela-
tion analysis is shown at baseline and during cardiovascular
and pulmonary stressors (Fig. 4, A–D). The analysis revealed
weak correlation with heart rate but a near-perfect correla-
tion with respiratory rate. With respect to respiratory rate,
the strong correlation is consistent with local activity previ-
ously described (Fig. 3) over a duration of several hours.

To extract aspects of cardiopulmonary function present in
neurotransmission, we examined bias of neural activity
regarding LVP and RP. We specifically sought to determine
whether the relationship between spike timing and LVP (or
RP) as shown in Fig. 4, A and B, is merely proportional to the
inverse slope of LVP or RP (e.g., systole vs. diastole and inspi-
ration vs. expiration). In other words, if there were no spe-
cific relationship between spike timing and cardiac, or
respiratory, phase, then spike timing would mirror the dura-
tion of each LVP (or RP) phase as occurs in random firing.

To do this, we devised themetric to evaluate bias in neural
activity (Supplemental Fig. S4) to determine whether spikes
were over- or underrepresented at each LVP (or RP) phase
relative to random association, that is, we established
whether or not neurons were biased toward a specific phase
of the cardiopulmonary cycle as compared with random
sampling. We draw on a similar work that explores associa-
tions of neural populations with external stimuli in the vis-
ual cortex of the mice for the neural specificity metric (18). A
sliding window comparison was made between the LVP at
the time of recorded spikes, and the distribution of recorded
LVP over the same epoch, which represented random sam-
pling. The results showed that spiking activity, relative to
random sampling, was overrepresented at near-peak LVP
(Supplemental Fig. S4C, yellow bars) and underrepresented
at peak systole and diastole (dark blue bars). When examined

Figure 4. Periodicity in spiking activity reflects specificity for a narrow range of LVP and respiratory rate. A: left ventricular pressure (LVP) is plotted in
blue tracings along with individual spikes as red dots. B: respiratory pressure is plotted in black tracings with individual spikes superimposed as blue
dots. C and D: autocorrelation of spiking activity calculated for equally spaced windows for different lags over the course of an experiment. The autocor-
relation value (between �1 and 1) is represented by the color scheme shown in C and D. Maximum autocorrelation (one) of the spiking activity in a win-
dow for a particular lag represents periodicity in the spiking activity for that lag. The plot of the sliding autocorrelation reveals the heart rate and the
respiration rate with the spiking activity being highly correlated for the respiratory period (5 s) and the heart period (0.5 s). The respiration rate (D) is
revealed more clearly than the heart rate (C). E and F: the neural bias toward LVP and respiratory pressure for the duration of the experiment (near-zero
bias is teal, positive bias is yellow, and negative bias is blue). E: the degree of bias in neural activity toward specific LVP over the course of the experi-
ment. F: the same with respect to the respiratory pressure.
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over longer periods (Supplemental Fig. S4, D–F and Fig. 4E),
this relationship remained stable, as was the case across
study animals (not shown). With regard to respiratory pres-
sure, evaluation of neural specificity yielded a less specific
airway pressure ranged at which spikes were over- or under-
represented (Fig. 4F).

To investigate the spatial coherence of neural specificity,
we applied it to individual electrodes spatially distributed
across the SG (Fig. 5). Across the ganglion, the rising phase of
the LVP tracing had a higher degree of specificity in neural
activity. However, the blood pressure range to which spikes
were related, varied geographically across the ganglion. In
some channels, bias in neural activity also appeared to be
transient. Collectively, these behaviors likely reflect the spa-
tiotemporal structure of network function throughout the
ganglion.

The totality of these observations indicate that richly
organized neural networks are present in the stellate gan-
glion. Some of this organization is reflected in relatively dif-
ferent stellate ganglion spike dynamics in relation to the
cardiac and pulmonary cycles. Although spike density was
weakly correlated to heart rate, it was strongly associated
with a specific range of LVP. On the other hand, whereas re-
spiratory rate was strongly correlated with spike dynamics
and reflected in respiratory modulation of neural activity,
a weaker association was present between spike activity
and RP.

Spike rate does not predict the degree of neural
specificity.
We sought to determine whether neural specificity conveyed
information that is independent of spike frequency dynam-
ics. We plotted themean and standard deviation of firing fre-
quency from multiple channels with the associated neural
bias (Fig. 6). Data from three animal subjects are shown. The
bias remained stable over several hours in each animal sub-
ject and was independent of swings inmean firing frequency
and standard deviation. This suggests that the neural bias
conveys information regarding the relationship between
neural activity and cardiopulmonary indices that is inde-
pendent of the frequency of neural activity in the ganglion.

Specificity in Neural Activity toward near Systole is
Independent of Blood Pressure

Next, we sought to determine whether the specificity in
neural activity toward the near-peak systolic phase of the
cardiac cycle observed in Figs. 4 and 5 reflected neuronal
tracking of LVP or a cardiac mechanical event, such as
isovolumetric contraction or opening of the aortic valve.
Specifically, we aimed to determine whether raising or low-
ering LVP abolished any specificity in neural activity, as
cardiac mechanical events occur despite hypotension, nor-
motension, or hypertension. To examine this, we performed
stressors to perturb LVP [specifically occlusion of the aorta
and inferior vena cava (IVC)] and compared the spiking
probability at different phases of the LVP before, during, and
after the cardiac stressors. Lowered LVP induced by transi-
ently reducing preload (IVC occlusion) did not impact spike
probability in the near-peak systolic phase (Fig. 7, A–C).
Similarly, increased LVP elicited by rapidly increasing blood

pressure in the aortic arch by thoracic aortic occlusion did
not change spiking probability in the systolic phase.
Although these interventions did not alter spiking probabil-
ity in the near-peak systolic range, it increased the spike pe-
riod (i.e., reduced firing frequency) across all subjects.

Next, we assessed whether neural specificity for near-peak
systole was modulated by cardiac chemo-afferent input, by
applying bradykinin (40 mg/mL) to the epicardium for 60 s.
The application of bradykinin caused an immediate increase
in spiking activity as shown in representative recordings
(Supplemental Fig. S5A) and a decrease in spike period (i.e.,
increased firing frequency) (Supplemental Fig. S5, A and B).
This decrease was found to occur following a sharp increase
in the spike period (Supplemental Fig. S5B). This could be
due to an ancillary response to the application of bradykinin.
[However, chemical activation of cardiac afferents did not
impact the neural bias toward spiking at near-peak systolic
(Supplemental Fig. S5, C andD)].

These results suggest that the selectivity of neuronal activ-
ity for the near-peak systolic phase likely reflects cardiac
mechanics not LVP or chemo-afferent function, and indicate
that SG neurons closely track cardiacmechanical indices.

DISCUSSION

Using a novel approach to link neuronal population dy-
namics in SG to cardiopulmonary physiology, our major
findings indicate that: 1) SG neurons exhibit dynamic spatio-
temporal activity reflective of network processing of afferent
inputs; 2) the activity of neuronal populations exhibits a
high degree of cardiopulmonary integration; and 3) cardiac
dynamics are transduced by SG neurons as reflected by a
specificity in neural activity for spiking near-peak systole.
These findings represent the first demonstration of the com-
plex-integrated cardiopulmonary regulation inherent in
sympathetic ganglia.

The Stellate Ganglion as an Integrator of
Cardiopulmonary Function

To date, neural recordings derived from intrathoracic ex-
tracardiac ganglionic neurons in situ have not involved any
description of networking within such populations in the
context of the cardiopulmonary control hierarchy (3, 14, 17,
19) as considered here. Although data from existing litera-
ture has separately considered cardiac and pulmonary regu-
lation, we determined that many of the neurons located in
intrathoracic extracardiac ganglia transduce both cardiac
and pulmonary dynamics. This indicates that considering
one index without the other may be an artificial representa-
tion of local neural control.

There is strong rationale for cardiopulmonary integration,
for example, the heart rate response to deep breathing,
which strongly links cardiac and pulmonary function to
maintain cardiac output. The finding of neural activity
responding to both cardiac and pulmonary inputs identifies
a neural signature for integrated cardiopulmonary function
in the stellate ganglion. The anatomic basis for this finding
may be related to local processing within the stellate
ganglion and/or from projections into the ganglion from ar-
terial baroreceptors (19). Specifically, efferent postganglionic
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Figure 5. Regionality of cardiac cycle specificity in neural activity. Bias in neural activity plotted for the duration of the experiment across five channels in
one animal subject, with the spike rate superimposed as a red line. The five channels plotted are arranged according to the spatial arrangement of the
electrodes across the ganglion. This plot indicates that within each channel the bias in neural activity is relatively consistent over time while spike is
highly variable. On the other hand, spike rate across channels shows some degree of consistency, whereas the bias in neural activity is relatively more
variable.
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neurons to the heart and lungs are predominantly localized
to the cranio-medial pole of the mammalian stellate ganglia
(19–21). As such, our recordings across the stellate ganglion
likely captured the activity of local circuit neurons (LCNs)
predominantly. LCNs have been functionally demonstrated
in the stellate ganglion (14), and are the likely population
integrating cardiopulmonary function as identified in this
work.

Spatiotemporal Population Dynamics is Context
Dependent

Our findings demonstrate that the activities generated by
neurons distributed throughout stellate ganglia demonstrate
temporal dynamics and variations in regional coherence of
network processing. Specifically, we found that activities
generated by neurons located throughout stellate ganglia are

Figure 6. Dynamic changes in neuronal spiking density does not impact cardiac cycle phase specificity. The number of spikes (red line) and associated
variation (blue line) are computed from the mean and standard deviation of spiking frequency calculated from sliding windows of 10-min width. These
are superimposed over the remaining phase selectivity image. Changes in the number of spikes and their variation are not uniquely associated with the
phase selectivity or changes in systolic pressure. Changes in the same computation across different animals show little consistency within, or among,
animals of the spiking activity and its variation with respect to LVP. The degree of phase selectivity to LVP just below the systolic pressure is consistent
across animals despite wide variations in systolic pressure. LVP, left ventricular pressure.
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not only selective to cardiac and respiratory control, but also
that such activities are dynamic over time. This is reflected
by spiking-density variations during basal resting states as
well as following the introduction of various cardiopulmo-
nary stressors. Even within the resting state, differences in
the activity generated by neurons in some regions was
dynamic, likely suggesting ongoing adaptations to cardio-
pulmonary sensory inputs over time in basal states.

Differential Reflection of Cardiac and Pulmonary Inputs
in Stellate Ganglion Spatiotemporal Processing

Autocorrelation of the neural activities generated by pop-
ulations of neurons throughout individual stellate ganglia
indicates a strong periodicity of their activities associated
with respiratory rate—with relatively less associations with
heart rate. This may be explained by the periodic inhibition
of neural activity that occurs during respiration inflation
(Fig. 3C) such that the relationship of their activities to heart
rate is not as strong. This may be partly due to the fact that
compared with respiration, an order of magnitude reduction
in the number of spikes available to resolve the heart rate
was evident (i.e., spikes available in 0.5-s interval for heart
rate vs. 6 s for respiratory dynamics). Although this observa-
tion implies that the periodicity of stellate ganglion neuronal
activity is very much linked to respiratory dynamics, it does
not describe how cardiac and respiratory function are linked
neuronally within stellate ganglia, particularly during con-
trol states.

Furthermore, we examined interactive control between
the LVP and RP cycles and neuronal activity. We found that
although neuronal activity is strongly modulated by specific
phases of LVP, it is less so for respiratory dynamics. This is
shown in Fig. 5, E and F, where a strong link to a narrow
range of LVP (yellow band) is readily observed, but such link-
age to RP mechanics is less precise. The degree of bias in
neural activity to specific ranges of LVP is maximal near-
peak systole (possibly reflecting aortic valve opening, maxi-
mal LV papillary muscle contraction, and/or other critical
events in the cardiac cycle). This illustrates the very selective
nature of neural activity generated with respect to LVP when
it occurred during each cardiac cycle. Such bias in neural ac-
tivity toward cardiac and pulmonary function reflect the dif-
ferential transduction of cardiac and pulmonary mechanics
by SG.

LIMITATIONS

The neural specificity metric explored in this study
dynamically looks at the association of population dynamics
with a target index such as LVP or respiratory pressure.
Although it is effective in giving an insight into the dynamics
of transduction of such afferent inputs, it does not provide a
basis to infer about the source or the causality of such inputs.
The SG neural populations receive direct afferent input due
to a small fraction of afferent soma present in the ganglion.
The stellate also receives indirect afferent input from the
intermediolateral regions for processing along with efferent
outflow. The neural specificity metric does not have a way of
resolving the source or cause of such activity. This would
restrict addressing specific questions such as direct or

indirect respiratory feedback, activation of baroreflex from
aortic occlusion, or effects of a decreased preload to only the
dynamic transduction of their final target indices. Future
experiments can be designed to include experimental proto-
cols to address such questions with themetric.

Another limitation of the study lies in classifying detected
action potentials based on region and function. The compet-
itive masking algorithm was aimed at detecting action
potentials at multiple voltage levels. Although effective at
obtaining the population activity, the algorithm does not
classify the detected neurons based on function such as
afferent, efferent, or local circuit neurons or features of the
detected neurons such as the shape of the action potential.
Addressing these limitations would be the subject of future
experiments with spike sorting as an additional pipeline to
the algorithm.

Differences in population response during individual stres-
sors compared with steady state around the intervention did
not yield significant results owing to a small sample of data
during the stressor (30–60 s). In the future, experiments will
be designed to include longer interventions to include a larger
sample of data in order to explore this question.

Conclusions

In summary, the activity generated by SG neurons shows
that their different populations receive differential cardiac
and pulmonary inputs that influence dominant populations
of neurons (3). These populations track, via the ganglion’s re-
spiratory and cardiac afferent inputs (likely mechanosen-
sory), cardiopulmonary dynamics to generate integrative
control. Furthermore, these data demonstrate the extent and
manner with which SG act as a primary peripheral integra-
tive source for continuous cardiopulmonary functional inte-
gration. These findings have important implications for
pathological states, where a reduction in spatial coherence
of control across the ganglion may reflect deranged cardiac-
pulmonary integrative control. Whether such derangements
can serve as a biomarker of risk or can be targeted therapeu-
tically remains to be determined and should be the focus of
future studies on cardiopulmonary neuromodulation.

SUPPLEMENTAL DATA

Supplemental Figs. S1–S5: https://doi.org/10.6084/m9.figshare.
14347061.v2.
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Supplemental Figure 1. Spike Detection Algorithm.  

Schematic summary to demonstrating spike identification from extracellular stellate ganglion 

neural recordings. Iter = Iteration 
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Supplemental Figure 2. Examples of Superimposed Spikes. 

Various magnitudes of two hundred spikes with similar peaks superimposed - one 

millisecond prior and two milliseconds post. All spikes are taken from a single channel 

demonstrating the softwares spike detection capability.    
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Supplemental Figure 3. Spike Detection as Minimum Level Decreases. 
Cumulative positive, negative and total (blue,red,black) spikes found in a channel as the 
amplitude threshold is lowered. The normalized voltage range 1.2-0.8 is highlighted to show 
where the noise floor was set. Total spikes found is inversely related to normalized voltage 
floor, delineated by total spikes found approximately doubling as normalized voltage goes 
from 4.0 to 2.0 
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Supplemental Figure 4. Schematic explanation of  the phase selectivity metric. A. Left 
ventricular pressure (LVP) shown over 15 seconds (blue tracings) and neural samples of LVP 
(red dots). B. Normalized histograms of equally-spaced sampling of LVP (red line), taken from a 
10 minute sample, and neural samples of LVP from the same time frame (blue line). C. The two 
histograms in panel B are subtracted to form a comparison between equally-spaced and 
neurally-sampled LVP. The subtracted histogram bins exceeding the plus saturation threshold 
(chosen as >=0.5 here) are colored yellow, those bins exceeding the minus saturation threshold 
(chosen as <=-0.5 here) are coloured purple, and the balance within the saturation threshold 
(between -0.5 and 0.5) are colored teal. D. Normalized histogram of neurally-sampled LVP 
arranged as vertical strips and computed over a 10 minute sliding window for the duration of the 
experiment. E. Same as Panel D but applied to equally-spaced sampling of LVP. In panels D 
and E, individual histogram bin values are colored by saturating at an upper threshold of 0.5. E. 
Subtracted histogram of panels D and E and colored as in C. The colors yellow, teal, and purple 
qualitatively represent the degree of ‘phase selectivity’ of neural sampling to LVP relative to a 
benchmark, the degree of ‘phase selectivity’ through equally-spaced of LVP. Yellow regions 

77



indicate a relative increase in phase selectivity, the purple regions indicate a relative decrease 
in phase selectivity, and the teal regions indicate relatively similar phase selectivity. 
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Supplemental figure 5. Chemo-afferent activation does not impact near-peak systolic 

phase-selectivity.  

A. Representative recordings (blue and red tracings) before, during ( the 60s period noted in the 

figure), and after the epicardial application of bradykinin (40ug/ml) along with LVP and ECG 

tracings. B. Spike periodicity (green tracings) plotted along with LVP(blue tracings) with 

individual spikes represented as black dots. Bradykinin increased spiking activity (and 

decreased spike period). C. Spike fraction is plotted for normalized LVP 5 minutes before (blue), 

during (green) and after (red) the application of bradykinin with the kd-kernel estimated spike 

fraction distribution superimposed This shows no difference in the near-peak systolic phase 

selectivity (red arrow) of spikes before, during, or after bradykinin application. D. Mean and 

standard error plot of the spiking probability for 16 channels in a subject. 
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Chapter 4

ANALYSIS OF STELLATE POPULATIONS IN HEART

FAILURE ANIMALS

Contribution of the student :

The candidate was a primary contributor to the coactivity matrix, entropy met-

ric, hypothesis formation based on developed metrics, data analysis, interpreted re-

sults of experiments, figure preparation, manuscript drafting, editing and revision of

manuscript along with Dr. Nil Gurel.

80
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11

Abstract Stellate ganglia within the intrathoracic cardiac control system receive and integrate12

central, peripheral, and cardiopulmonary information to produce postganglionic cardiac13

sympathetic inputs. Pathological anatomical and structural remodeling occurs within the14

neurons of the stellate ganglion (SG) in the setting of heart failure. A large proportion of SG15

neurons function as interneurons whose networking capabilities are largely unknown. Current16

therapies are limited to targeting sympathetic activity at the cardiac level or surgical interventions17

such as stellectomy, to treat heart failure. Future therapies that target the stellate ganglion will18

require understanding of their networking capabilities to modify any pathological remodeling.19

We observe SG networking by examining cofluctuation and specificity of SG networked activity to20

cardiac cycle phases. We investigate network processing of cardiopulmonary transduction by SG21

neuronal populations in porcine with chronic pacing-induced heart failure and control subjects22

during extended in-vivo extracellular microelectrode recordings. We find that information23

processing and cardiac control in chronic heart failure by the SG, relative to controls, exhibits: i)24

more frequent, short-lived, high magnitude cofluctuations, ii) greater variation in neural25

specificity to cardiac cycles, and iii) neural network activity and cardiac control linkage that26

depends on disease state and cofluctuation magnitude.27

28

Introduction29

Neural control of cardiac function involves adaptive adjustment of mechanical and electrical activ-30

ity to meet the organism’s demand for blood flow. This cardioneural control scheme consists of31

neural populations in the central, peripheral, and intrinsic cardiac nervous systems. Interactions32

among components of the cardiac nervous system highlight that these neural populations work33

in concert, rather than as independent, singular processing units (Ardell et al., 2016). From an34

information processing standpoint, the operation of these interconnected neural networks has35

evolved to coordinate cardiac function on a beat-by-beat basis, producing the “functional” outputs36

of this control scheme such as blood pressure, heart rate, or respiratory pressure and rate. Local-37

ized adaptations in the cardioneural network in response to pathology can cause an evolution of38

global network properties with heightened risk of poor outcomes without measurable evidence39
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from these functional outputs (Deyell et al., 2015; Kember et al., 2013).40

There is a current focus on understanding cardioneural network processing within the stel-41

late ganglion (SG), a collection of nerves serving as the major source of sympathetic input to the42

heart(Mehra et al., 2022). The SG (located in either side of the neck) operates as an integrative43

layer within the control hierarchy where it processes central cardiac inputs to the heart, receives44

cardiac feedback, and projects efferent control outputs to the heart. In pathological states such as45

heart failure (HF), morphological and neurochemical remodeling of SG neurons has been reported46

in both animal models (Ajijola et al., 2013; Han et al., 2012; Ajijola et al., 2015; Nakamura et al.,47

2016) and in humans (Ajijola et al., 2020, 2012b). Due to its key role in proarrhythmic neural signal-48

ing and convenience in surgical accessibility, clinical interventions targeting SG are used to treat49

various cardiovascular conditions (Vaseghi et al., 2012, 2017; Ajijola et al., 2012a). It has also been50

established that an enhanced cardiac sympathetic afferent reflex contributes to sympathoexcita-51

tion and pathogenesis of heart failure (Wang and Zucker, 1996; Ma et al., 1997; Chen et al., 2015;52

Wang et al., 2017, 2008, 2014; Gao et al., 2005, 2007). Despite these novel interventions and gen-53

eral understanding, SG clinical therapy will remain largely unexplored without greatly improved54

understanding of SG neuronal information processing in healthy versus pathological states. Prior55

studies examining the SG neural activity have been limited to in vivo extracellular recordings (Ar-56

mour, 1983, 1986; Armour et al., 1998; Yoshie et al., 2020, 2018).57

Recently, we explored network processing of cardiopulmonary transduction by SG neuronal58

populations in healthy porcine, defining a novel metric ’neural specificity’ that measures specificity59

of neural firing patterns to cardiopulmonary signals (Sudarshan et al., 2021). This metric is con-60

trastive and a measure of the difference between the probability density function (PDF) of neural61

’sampling’ of a control target relative to the same in the random sampling limit. While the target,62

left ventricular pressure (LVP) considered here is periodic this is not a necessary condition for use63

of the specificity metric; it is also applicable to aperiodic signals in an event-based fashion.64

In the current work, we investigate differences in information transfer between control and65

heart failure porcine models with multi-channel electrode arrays. We first uncover network-level66

spatiotemporal dynamic signatures by quantifying short-lived high cofluctuation events in neural67

activity. Second, we study coherence and consistency in the evolution of neural specificity with re-68

spect to the control target. Third, we expose differences in neural specificity and its coherence and69

consistency, via entropy, inside and outside cofluctuation events. These differences are consid-70

ered for control and heart failure models and quantify differences in the maintenance of function71

between these groups.72

Methods73

Animal Experiments74

Fig. 1 presents the conceptual overview and study design. The study was performed under a75

protocol approved by the University of California Los Angeles (UCLA) Animal Research Committee76

(ARC), in compliance with the UCLA Institutional Animal Care and Use Committee (IACUC) guide-77

lines and the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals.78

Fig. 1D-E summarizes the studied animal groups and experimental pipeline. Male Yorkshire pigs79

(𝑛 = 17) weighing 57.5 ± 12𝑘𝑔 (𝑚𝑒𝑎𝑛 ± 𝑆𝐷) were studied as control (𝑛 = 6) and HF model (𝑛 = 11)80

groups. For SG neural data collection, the animals were sedated with tiletamine and zolazepam81

(Telazol, 4-8mg/kg) intramuscularly, intubated, and maintained under general anesthesia with in-82

haled isoflurane (2%). Continuous intravenous saline (8 − 10𝑚𝑙∕𝑘𝑔∕ℎ) was infused throughout the83

protocol and animals were temperature maintained using heated water blankets (37𝑜𝐶 − 38𝑜𝐶).84

Median sternotomy by an incision down the midline of the entire sternum was performed to85

have a wide view of the thoracic region (Fig. 1A). The pericardium was opened to expose the heart86

and both stellate ganglia. After surgical procedures, animals were transitioned to alpha-chloralose87

anesthesia (6.25𝑚𝑔∕125𝑚𝐿; 1𝑚𝐿∕𝑘𝑔 for bolus, 20 − 35𝑚𝐿∕𝑘𝑔 or titrated to effect for maintenance)88
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with supplemental oxygen (2𝐿∕𝑚𝑖𝑛𝑢𝑡𝑒) for in vivo neural recordings from the left stellate ganglion.89

The left carotid artery was exposed, and a pressure catheter (SPR350, Millar Inc., Houston, TX) was90

inserted to continuously monitor left ventricular pressure (LVP). Additionally, three-lead surface91

electrocardiogram (ECG) and respiratory pressure (RP) weremonitored continuously, and sampled92

at 1𝑘𝐻𝑧. Arterial blood gas contents were monitored at least hourly to ensure appropriate exper-93

imental conditions. At the end of the protocol, animals were euthanized under deep sedation of94

isoflurane and cardiac fibrillation was induced.95

The heart failure model was created with implanted pacemakers (Viva Cardiac Resynchroniza-96

tion Therapy–Pacemaker, Biotronik, Lake Oswego, OR), as previously described (Hori et al., 2021),97

and summarized in Fig. 1D. After implantation, animals had a recovery period of 48 hours and98

chronic bigeminy pacing was initiated from the right ventricle. This process produces premature99

ventricular contractions (PVCs) which lead to cardiomyopathy, also known as PVC-induced car-100

diomyopathy (Blaye-Felice et al., 2016). To confirm the progression of cardiomyopathy, echocar-101

diography was performed, before and after implantation. After the animals have been confirmed102

to have cardiomyopathy (referred as HF animals) at eight weeks after implantation, surgical pro-103

cedures described in Fig. 1E were performed, and extracellular recordings were obtained from104

the left stellate ganglion, shown in Fig. 1A. It should be noted that a subset of HF animals (𝑛 = 6)105

underwent an intervention, epicardial application of resiniferatoxin (RTX) to study its effects on106

the progression of cardiomyopathy as a separate study. However no significant effect of RTX was107

noted in any of the echocardiographic, serum, physiological, and autonomic tests (Hori et al., 2021).108

Hence, in this work, we combined RTX-treated HF animals with untreated HF animals.109

We confirmed the RTX depleted the afferents by analyzing both structural and functional data.110

Structural depletion was proven with immunohistochemistry studies of the left ventricle (LV) and111

T1 dorsal root ganglion (DRG). Calcitonin gene-related peptide (CGRP)-immunoreactive fibers, a112

marker of sensory afferent nerves, was significantly reduced within the nerve bundles located in113

the LV for the RTX-treated group. Furthermore, the depletion of cardiac transient receptor po-114

tential vanilloid-1(TRPV1) afferents was confirmed by the significant reduction of CGRP-expressing115

neurons in DRG. Functional depletion was proven by the response to the agonist of TRPV1 chan-116

nel bradykinin and capsaicin. The RTX-treated group had a significantly lower LV pressure (LVP)117

response in the application of bradykinin and capsaicin, indicating that elimination of cardiac sym-118

pathetic afferent reflex was accomplished by RTX application in each case.119

SG Neural Recordings and Experimental Protocol120

For each animal, a 16-channel, linear, single shankmicroelectrode array (LMA,Microprobes, Gaithers-121

burg, MD) was inserted in the craniomedial pole of the left stellate ganglion (Fig. 1A). The LMA con-122

sisted of a polyimide tube of 0𝑚𝑚 that contains recording sites, and a stainless steel tip of 1𝑚𝑚 (Fig.123

1B). Polyimide tube hosted a total of 16 platinum-iridium recording sites with 25𝜇𝑚 radius, sep-124

arated by 500𝜇𝑚 intra-electrode spacing. A microelectrode amplifier (Model 3600, A-M Systems,125

Carlsborg, WA) was used to amplify (gain of 1000 − 2500) and filter (300𝐻𝑧 − 3𝑘𝐻𝑧 band-pass fil-126

ter) the acquired signals. The signals were transferred to a data acquisition platform (Power 1401,127

Cambridge Electronic Design, Cambridge, UK) and recordedusing Spike2 software (Cambridge Elec-128

tronic Design, Cambridge, UK). All data were processed in Python and MATLAB. Increases in spike129

rate occur within 90-minutes of electrode insertion, hence a stabilization time of approximately130

three hours is required after the insertion takes place (Sudarshan et al., 2021).131

It should be noted that our study deals with multi-electrode recordings of the closest neural132

populations to the electrode array. The earliest fundamental studies probing into cardiac nervous133

system used single-unit recordings, for which the target neurons should be isolated and appro-134

priate low-impedance conductors should be used for obtaining high quality neural signals. Unlike135

these early studies, we used multi-unit (16-channel) electrode arrays to monitor the ensemble be-136

haviors of SG neural populations. This experimental shift from single-unit to multi-unit recording137

has gained interest in the recent years in neurocardiology and neuroscience communities, offering138
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an experimental view to the ensemble behaviors of neural populations (Gurel et al., 2022).139

Data Availability140

Data is available in the Dryad repository141

https://datadryad.org/stash/share/nEzGj21D1bUvrBYEtSNATZSAYTW39cBjjmV5RuVveLY142

Signal Processing and Time Series Analysis143

Signal Processing Pipeline144

A high-level description of the signal processing pipeline is in Fig. 2. In summary, Pearson’s cross145

correlation is used to construct the coactivity matrix as the collection of cross correlations between146

all possible channel pairs. The coactivitymatrix is computed at each timestampand associatedwith147

a window of past neural activity (Fig. 2, ‘Coactivity’ block). This computation yields a causal sliding148

window of coactivity matrices referred to as the ‘coactivity time series’.149

Discrete events of high cofluctuation occurring in the coactivity time series are defined using150

two thresholds: (i) the coactivity time series is mapped to a univariate ‘cofluctuation time series’151

where, at each timestamp, the percentage of coactivitymatrixmembers exceeding a threshold 𝐶 is152

found, and (ii) discrete ‘events’ are defined as those timestamps when up-crossings of the cofluctu-153

ation time series through a second threshold 𝑇 occur. The method used to choose the (𝐶, 𝑇 ) pair,154

detailed in this section, generates discrete event timestamps and allows for the computation of the155

event rate (𝐸𝑅)mean and standard deviation (𝑆𝑇𝐷) statistics, which are used later in the statistical156

analyses. These cofluctuation events are regions that expose shifts in neural processing within the157

SG. These events are linked to function through the consideration of how neural specificity differs158

inside and outside cofluctuation events in control and heart failure animals.159

The relationship between a control target such as LVP and neural activity at each channel is160

quantified via a continuously varying neural specificity (Sudarshan et al., 2021) (Fig. 2, ‘Neural161

Specificity’ block). The neural specificity is contrastive since it is the difference between the PDF of162

neural sampling of a target and the same found from random sampling. The neural activity in the163

SG is known to be a mixture of afferent, efferent, and local circuit activity derived from local circuit164

neurons with inputs from multiple sources. It in this sense that we define neural computation;165

when we observe the specificity to the target operating above or below the random sampling limit.166

Neural specificity is amultivariate signal measured acrossmultiple target states at each channel as167

a function of time. This is reduced, for each channel, to a univariate time series by constructing its168

coherence in terms of entropy. The evolution of coherence in time provides access to the dynamics169

or consistency of neural computation. Detailed information about each signal processing step is170

provided in this section. The supplementary section contains material detailing the mathematical171

aspects of the analysis. As stated in the signal processing block diagram, our outcome measures172

are event rate, entropy, event entropy. Thesemetrics are developed in the SupplementaryMaterial173

1.174

Unsupervised Spike Detection175

We use a competitive, adaptive threshold, unsupervised approach for neural spike detection (Su-176

darshan et al., 2021). The algorithm initializes plus and minus barriers at the plus or minus signal177

maximum amplitude. The barriers are respectively lowered or raised until the plus or minus bar-178

rier ‘wins the competition’ and is the first to yield a minimal number of crossings. Detected spike179

regions are masked as a zero signal and the process repeated with barrier sizes further reduced180

in subsequent iterations. The competition is halted when one barrier is first to reach a minimal181

barrier height.182

Code Availability183

Supporting Apache License codes are at GitHub (https://github.com/Koustubh2111/Cofluctuation-184

and-Entropy-Code-Data).185
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Dataset and Statistical Analysis186

Statistical analyses are performed inMATLABStatistics&Machine Learning Toolbox (versionR2021a)187

and Python SciPy Library (version 3.8.5).188

Sample Size Breakdown189

Two channels were excluded from two animals due to insufficient signal quality. Within event rate190

analyses, all animals had sufficient neural data (𝑛 = 17 animals, 6 control, 11 HF). Entropy analyses191

for 3 HF animals were excluded due to insufficient LVP quality resulting in 𝑛 = 14 animals (6 control,192

8 HF).193

Outcome Measures194

Within the signal processing pipeline described in Fig. 3, the event rate measures, 𝐸𝑅𝑀𝐸𝐴𝑁 and195

𝐸𝑅𝑆𝑇𝐷 , are used to summarize the cofluctuation time series for each animal. Amean and standard196

deviation of the 16 channel-wise entropy time series results in 32measures of entropy per animal197

(16 for 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁 and 16 for 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷 per animal).198

Statistical Analysis199

For variables that result in a single number per animal (such as 𝐸𝑅𝑀𝐸𝐴𝑁 and 𝐸𝑅𝑆𝑇𝐷, Fig. 4A-B),200

independent samples t-tests or Wilcoxon rank-sum tests are respectively used for normal or non-201

normal data (normality assessed by Shapiro-Wilk) to quantify differences between animal groups.202

For variables that have multiple variates per animal (such as 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁 calculated from mul-203

tiple channels, Fig. 4C-D), mixed effects models are constructed in the MATLAB Statistics and204

Machine Learning Toolbox (Pinheiro and Bates, 1996; MATLAB, 2021). 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁 and similarly205

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷 (not shown) and𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁,𝐸𝑉 𝐸𝑁𝑇 and similarly𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷,𝐸𝑉 𝐸𝑁𝑇 (not shown) aremod-206

elled via mixed effects as, 1| indicates random effects,207

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁 = 𝐴𝑛𝑖𝑚𝑎𝑙 𝑇 𝑦𝑝𝑒 + (1|𝑐ℎ𝑎𝑛𝑛𝑒𝑙) + (1|𝑎𝑛𝑖𝑚𝑎𝑙 𝐼𝐷) (1)
𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁,𝐸𝑉 𝐸𝑁𝑇 = 𝐸𝑣𝑒𝑛𝑡 𝑇 𝑦𝑝𝑒 + 𝐴𝑛𝑖𝑚𝑎𝑙 𝑇 𝑦𝑝𝑒 +

𝐶𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑇 𝑦𝑝𝑒 + (1|𝑐ℎ𝑎𝑛𝑛𝑒𝑙) + (1|𝑎𝑛𝑖𝑚𝑎𝑙 𝐼𝐷) + (1|𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁 ) (2)
In Eq. (2), and depicted in Fig. 4C-D, the computed metric 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁 is the outcome variable;208

the animal type (𝑐𝑜𝑛𝑡𝑟𝑜𝑙∕𝐻𝐹 ) a fixed effect; and the channel number (1 − 16) and the 𝑎𝑛𝑖𝑚𝑎𝑙 𝐼𝐷209

random effects. The analysis of 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷 follows by replacing ’MEAN’ with ’STD’.210

In Eq. (2) the model 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁,𝐸𝑉 𝐸𝑁𝑇 is shown and refers to entropy mean data within event211

regions where the model for mean entropy data outside event regions is 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁,𝑁𝑂𝑁−𝐸𝑉 𝐸𝑁𝑇 .212

In this way, models are constructed for event / non-event, mean / std entropy as the outcome vari-213

able; the event type (event / non-event), the animal type (control / HF), and coactivity computation214

type (mean / std) are fixed effects; and channel number, animal ID, and entropy (type matching215

the outcome entropy’s type, mean or std) are random effects.216

For all analyses using mixed effects modeling, the 𝛽 coefficients (fixed effects estimates), 𝑝-217

values, effect sizes (𝑑𝑅𝑀 based on repeatedmeasures Cohen’s 𝑑𝑅𝑀 , (Lakens, 2013)), 95% confidence218

intervals (𝐶𝐼) of 𝛽 coefficients (lower, upper bounds) are reported in results in (𝛽, ±𝐶𝐼 , 𝑑𝑅𝑀 , 𝑝)219

format. The 𝛽 coefficients indicate the adjusted differences (units matching the outcome variable’s220

unit) in one group compared to the other. For analyses with independent samples, p-values and221

independent samples effect sizes (𝑑, based on Cohen’s 𝑑) are reported in (𝑝, 𝑑) format. For all222

analyses, a two-sided 𝑝 < 0.05 denoted statistical significance.223

Results224

Neural activity was measured over 16 channels along with simultaneous left ventricular pressure225

(LVP) for approximately six hours of continuous recordings per animal. Representative neural ac-226

tivity recording for a single channel, LVP, and representative spike trains are displayed for control227
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and heart failure animals in Fig. 1A. A total of 17 Yorkshires (6 control, 11 HF, Fig. 1D) underwent228

the terminal experiment described in Fig. 1E. Upon the signal processing pipeline described above,229

we computed two event rate measures per animal as the final product representing the cofluctu-230

ations (𝐸𝑅𝑀𝐸𝐴𝑁 , 𝐸𝑅𝑆𝑇𝐷). As the metric representing the neural specificity, we computed two en-231

tropy measures per channel (𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁 , 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷), resulting in a total of sixteen 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁232

and sixteen 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷 per animal. Finally, we used these metrics to quantify: i) neural popu-233

lation dynamics (i.e., 𝐸𝑅𝑀𝐸𝐴𝑁 , 𝐸𝑅𝑆𝑇𝐷), ii) neural specificity to target LVP, or cardiac control (i.e.,234

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁 , 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷), and iii) Linkage between neural population dynamics and specificity (i.e.,235

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁,𝐸𝑉 𝐸𝑁𝑇 , 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷,𝐸𝑉 𝐸𝑁𝑇 ).236

Stellate Ganglion in Heart Failure Exhibits High Event Rate237

Fig. 4A-B show event rate outcomes grouped by heart failure (HF) models and controls. HF animals238

show significantly higher event rates compared to control animals for both 𝐸𝑅𝑀𝐸𝐴𝑁 (𝑝 = 0.011,239

effect size 𝑑 = 1.59) and 𝐸𝑅𝑆𝑇𝐷 (𝑝 = 0.023, 𝑑 = 1.48). The cofluctuation time series for each animal is240

depicted in Fig. 6, where the event time series are computed. The ‘events’ or short-lived intervals241

where high cofluctuations exist are shown as level 1, leading to the event time series in Fig. 7. We242

observe that the cofluctuations are more localized in HF animals with greater heterogeneity.243

HF Animal Models Have Heavy Tailed Cofluctuation Distributions244

We qualitatively explored the statistical distribution of the cofluctuation time series. Fig. 5 shows245

log-normal fits for each animal group for𝐶𝑜𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑀𝐸𝐴𝑁 and𝐶𝑜𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑆𝑇𝐷 time series, along246

with 68% confidence interval (CI) bounds, mean of fit (𝜇𝐹𝐼𝑇 ) and standard deviation of fit (𝜎𝐹𝐼𝑇 ).247

Control animals (Fig. 5A-B) exhibit narrow confidence intervals, lower (𝜇𝐹𝐼𝑇 ) and (𝜎𝐹𝐼𝑇 ) values, and248

tighter log-normal fits. In contrast, HF animals (Fig. 5C-D) exhibit wider confidence intervals, higher249

(𝜇𝐹𝐼𝑇 ) and (𝜎𝐹𝐼𝑇 ) values, and poorer log-normal fits. Of note, HF animals have heavy tails ranging250

further outside of confidence bounds.251

Stellate Ganglion Shows Greater Variation in Neural Specificity to LVP in Heart Fail-252

ure253

We next examined the neural specificity to LVP, quantified by entropy measures in Eq. (2). Fig.254

4C-D shows 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁 and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷, grouped by animals. Compared to the control group,255

stellate ganglion of HF animals exhibited significantly higher 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷 (variation in entropy, Fig.256

4D, adjusted 𝛽 = 0.01 n.u., 95% 𝐶𝐼 = ±0.01 n.u., 𝑑𝑅𝑀 = 0.73, 𝑝 = 0.009). However, there is no257

significant difference in 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁 (mean entropy) between animal groups. (Fig. 4C, 𝛽 = 0.04258

n.u., ±0.05 n.u., 𝑑𝑅𝑀 = 0.82, 𝑝 = 0.087).259

Neural Network Activity and Cardiac Control Linkage Depends on Animal Group260

and Cofluctuation Magnitude261

We explored the nature of cardiac control inside and outside short duration regions of high cofluc-262

tuation, i.e. ‘events’, characterized by strongly coherent stellate neural activity patterns. Insight263

into how these events may be relevant to cardiac control is considered here in the context of how264

control differs inside and outside events and termed ‘event entropy’.265

First, we studied the extent to which event entropy differs inside and outside of events (Fig. 8A,266

C, event type as fixed effect in Eq. (9)). Second, we studied whether event entropy is sensitive to267

the animal type characterized here as control or HF (Fig. 8B, D, animal type as fixed effect in Eq.268

(9)).269

Regardless of the animal group,270

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁,𝑁𝑂𝑁−𝐸𝑉 𝐸𝑁𝑇 significantly exceeds 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁,𝐸𝑉 𝐸𝑁𝑇 (Fig. 8A, 𝛽 = 0.007 n.u., ±0.004271

n.u., 𝑑𝑅𝑀 = 0.07, 𝑝 < 0.001). Similarly, 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷,𝑁𝑂𝑁−𝐸𝑉 𝐸𝑁𝑇 significantly exceeds 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷,𝐸𝑉 𝐸𝑁𝑇272

(Fig. 8C, 𝛽 = 0.01 n.u., ±0.002 n.u., 𝑑𝑅𝑀 = 0.29, 𝑝 < 0.001). An examination of the contribution of each273

animal group showed no significant difference between groups for 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑀𝐸𝐴𝑁,𝐸𝑉 𝐸𝑁𝑇 (Fig. 8B,274
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𝛽 = 0.06 n.u., ±0.05 n.u., 𝑑𝑅𝑀 = 1.13, 𝑝 = 0.07). On the other hand, HF animals exhibited an increase275

in 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑇𝐷,𝐸𝑉 𝐸𝑁𝑇 compared to control animals (Fig. 8D, 𝛽 = 0.02 n.u., ±0.02 n.u., 𝑑𝑅𝑀 = 0.75,276

𝑝 = 0.012). These analyses imply that the linkage between neural network function and cardiac277

control differs inside and outside of cofluctuation events and between animal groups in the stellate278

ganglion.279

Discussion280

In this work, we performed a novel investigation of SG neural population dynamics and neural281

specificity to continuous left ventricular pressure in control and heart failure Yorkshire pigs. The282

methods in this work are intended to measure the way population neural activity relates to closed-283

loop control of a target and how that computation changes in diseased states. This was applied284

here to closed-loop control of cardiac output where the assumed target was LVP.285

The methods in this work involved286

• Neural SpecificityAmeasure of bias in neural activity toward ’sampling’ of specific target states.287

The target specificity is a contrastive measure that compares neural sampling of a target288

relative to random sampling of the same target.289

• Neural Specificity Coherence Entropy of neural specificity was used to measure coherence of290

neural specificity as a function of time.291

• Cofluctuation Events The degree of coactivity in the dynamics of the mean and its standard292

deviation was measured between pairs of channels from minimum to maximum physical293

separation and this exposed short duration ’events’ when cofluctuation was unusually high.294

• Event Entropy Functional significance of cofluctuation events was evaluated by comparing dif-295

ferences in the degree of neural specificity coherence inside and outside of events.296

Prevalence of Short-Lived Cofluctuations in SG Activity in HF297

In prior work, we identified neural specificity toward near-peak systole of the LVP waveform in con-298

trol animals (Sudarshan et al., 2021). Application of this metric and the construction of a related299

coherence measure provided insight into differences in neural processing dynamics between con-300

trol and HF animals. Our results show that cardiac control exerted within diseased states has301

greater variation in entropy and thus less consistency for heart failure animals compared to con-302

trol animals. This finding may extend to other pathologies for which the cardiac control hierarchy303

is disrupted.304

Neural Network Activity is Linked to Cardiac Control305

Based on the effect size (𝑑𝑅𝑀 ), event entropymagnitude appears to be higherwith greater variation306

observed in HF animals compared to control animals (Fig. 8B-D). This implies a level of increased307

unpredictability and increased difficulty in cardiac control for animals in heart failure over control308

animals.309

A limitation of this result is that the effect sizes for event versus non-event comparisons are310

small to medium, which potentially indicates a larger study is necessary to better understand the311

physiological contributions from event type. Another limitation of the study lies in the absence312

of multiple-class pathologies (i.e., different heart failure models or other reproducible models)313

and in the absence of stratified pathologies (i.e., animal models with varying degrees of heart fail-314

ure). Measurement of these neurocardiac metrics during slow, quasi-static application of clinically-315

relevant stressors (Akeju and Brown, 2017; Chamadia et al., 2019) should provide unique opportu-316

nities to investigate unresolved questions. Future studies should focus on expanding the dataset317

to examine how thesemetrics change with varying pathologies or varying diseasemodels. We also318

cannot exclude possible effects of general anesthesia, open chest and open pericardial effects on319

our findings, though the effects are likely consistent across the groups studied in the samemanner.320
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Conclusion321

In this study, we looked, for the first time to our knowledge, at long-term studies of in vivo car-322

diac control in baseline states. The baseline states provide unique signatures that differentiate323

animals with heart failure and controls. We discovered the inputs (i.e., neural signals) and outputs324

(i.e., blood pressure) are linked, which led us to develop metrics to analyze the dynamical state of325

this networked control (Gurel et al., 2022). The primary observation has been that event-based326

processing within the stellate ganglion and its relationship to cardiac control is strongly modified327

by heart failure pathology. Our analysis is pointing to heart failure being best considered as a328

spectrum rather than a binary state. The magnitude of cofluctuation and neural specificity may329

give us a measure of the degree of heart failure and insight the extent to which cardiac control is330

compromised with respect to neural specificity and/or cofluctuation. Future therapies may bene-331

fit from being able to infer the degree of heart failure in terms neural markers as represented in332

this work, in a less invasive way. Intriguing connections involve the alignment of our work with a333

growing consensus in neuroscience. Spatiotemporal changes in neural activity and linkages with334

control targets are associated with behavioral changes and the onset and development of specific335

pathologies. For instance, spatiotemporal brain-wide cofluctuations were reported to reveal major336

depression vulnerability (Hultman et al., 2018). Neural ensembles were linked to visual stimuli in337

mice Miller et al. (2014). Another study reported that brain’s functional connectivity is driven by338

high-amplitude cofluctuations and that these cofluctuations encode subject-specific information339

during experimental tasks (Esfahlani et al., 2020). Similar cofluctuations were also reported to340

inform olivary network dynamics in the form of state changes in learning new motor patterns in341

mice (Wagner et al., 2021). Unique co-activation patterns in spontaneous brain activity indicated342

a signature for conscious states in mice (Gutierrez-Barragan et al., 2022). Global brain activity has343

also been linked to higher level social behaviours (Mague et al., 2022). These parallel conclusions344

in cardiac and neuroscience studies indicate similar experimental methods used to measure neu-345

ral integration relative to control targets. Such measurements may be instrumental to design and346

assess the efficacy of neurally-based clinical interventions both at the level of the brain and the347

stellate ganglion.348
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Supplementary Material 1465

Cofluctuation and Event Rate Definitions466

Coactivity Matrix467

A 16𝑥16 correlation matrix, 4𝑥4 version is shown in Fig. 3B for 𝑛 = 4 channels, is used to inves-468

tigate spatial coherence among neural populations in different regions of the SG spanned by 16469

electrodes (Supplementary Fig. 1). The coactivity matrix at each timestamp is found from Pear-470

son’s cross-correlation between all possible pairs of spike rate, causal channel, sliding mean and471

standard deviation. The sliding mean and standard deviation of spike rate are 𝑆𝑝𝑖𝑘𝑒𝑅𝑎𝑡𝑒𝑀𝐸𝐴𝑁 and472

𝑆𝑝𝑖𝑘𝑒𝑅𝑎𝑡𝑒𝑆𝑇𝐷, and are on the y-axis of Fig. 3A. These are referred to as ‘spike rate’ in what follows473

when both are implied. To fix ideas, consider Pearson’s cross correlation coefficient (𝑅) between474

channels 1 and 2, labeled as 𝑅12: namely, the red and blue windows respectively in Fig. 3A. In the475

coactivity matrix depicted in Fig. 3B, there are 𝑛 = 4 channels, hence 𝑛 − 1 = 3 super-diagonals.476

These are vertically stacked in Fig. 3C at each timestamp beginning with the first super-diagonal as477

𝑅12, 𝑅23, 𝑅34. In this way, adjacent channels are placed at the bottom followed by super-diagonals478

corresponding to 2 and 3 channels of separation. The super-diagonal of the 16-channel LMA elec-479

trode correlation matrix has 𝑛 = 16 channels separated by 500𝜇𝑚 and 𝑛(𝑛−1)∕2 = 120 possible pair-480

wise correlations (See Supplementary Fig. 1 for an example). This yields 120 rows in the stacked481

version of the coactivity matrix at each timestamp analogous to the same visualized in Fig. 3C for482

𝑛 = 4 channels.483

Cofluctuations and Event Rate484

The univariate cofluctuation time series is the percentage of coactivity matrix members, at each485

timestamp, that exceed a threshold Pearson’s 𝑅 > 𝐶 , depicted in Fig. 3D. Discrete events are486

considered to begin at a time of up-crossing of the univariate cofluctuation time series through a487

threshold 𝑇 . Each event ends at a down-crossing some time later, as shown in Fig. 3E. These dis-488

crete events capture spatiotemporal zones of high SG coactivity. Up-crossing times are respectively489

converted to an event rate (𝐸𝑅𝑀𝐸𝐴𝑁 , 𝐸𝑅𝑆𝑇𝐷) for the (𝑆𝑝𝑖𝑘𝑒𝑅𝑎𝑡𝑒𝑀𝐸𝐴𝑁 , 𝑆𝑝𝑖𝑘𝑒𝑅𝑎𝑡𝑒𝑆𝑇𝐷) over a duration490

(𝐸𝑅𝑀𝐸𝐴𝑁 , 𝐸𝑅𝑆𝑇𝐷) =
(𝑁𝑀𝐸𝐴𝑁 , 𝑁𝑆𝑇𝐷)
𝐸𝑣𝑒𝑛𝑡𝑠𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

(3)
where event rate, 𝐸𝑅, has units 1∕𝑠 and (𝑁𝑀𝐸𝐴𝑁 , 𝑁𝑆𝑇𝐷) are the number of upcrossings within the491

𝐸𝑣𝑒𝑛𝑡𝑠𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 considered.492

Cofluctuation Probability Distribution493

The cofluctuation time series at each threshold 𝐶 (as in Fig. 3D) qualitatively approximates a log-494

normal distribution. The log-normal fits of cofluctuation time series (Fig. 5) are obtained using495

Python SciPy package, with statistics and random numbers module (scipy.stats) (Virtanen et al.,496

2020).497

Bootstrapping and Selection of Convergent Thresholds498

The event rate is calculated based on a pair of thresholds (𝐶, 𝑇 ). The first threshold (𝐶 , Fig. 3D) is499

used to reduce the coactivity time series of matrices to a univariate cofluctuation time series. The500

univariate series is the percentage of coactivity matrix entries exceeding 𝐶 at each timestamp. The501

cofluctuation time series is then used to define regions of high cofluctuation based on intervals502

where the time series exceeds a second threshold 𝑇 . These regions are discrete ‘events’ that begin503

and end when the cofluctuation time series respectively up- and down-crosses through 𝑇 (Fig. 3D).504

Bootstrapping of the event up-crossing timestamps is used to construct the event rate histogram505

of a threshold pair (𝐶, 𝑇 ).506

These histograms lead to a convergent choice of threshold pairs (𝐶, 𝑇 ). The convergent (𝐶, 𝑇 )507

pair is taken as the location in (𝐶, 𝑇 ) space where the confidence interval (𝐶𝐼) width shows appar-508

ent convergence. An upper bound on (𝐶, 𝑇 ) is imposed so that there is sufficient data to compute509

the desired statistics.510
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Fig. S1. Cofluctuation bootstrapping pipeline for individualized event rate (ER) for each animal - Part I. A)Coactivity matrix and cofluctuation time series for a cofluctuation threshold and event threshold pair (𝐶, 𝑇 ).B) Cofluctuation time series with depicted events (red triangles are upcrossing timestamps) for a range of
(𝐶, 𝑇 ) pairs. Fig. S1A is further explained in Supplementary Figure labelled Fig. S5.
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The procedure is visualized in Fig. S1A using a surrogate coactivity matrix 𝑅. Univariate cofluc-511

tuation time series are created from a range of thresholds 𝐶 that inclusively vary over 60-90% with512

15% increments. Discrete events are determined, shown as red up-crossing triangles in Fig. S1 A-B,513

for each of the thresholds 𝐶 and considered over an inclusive range 40-90% with 10% increments514

of event thresholds 𝑇 . Bootstrapped events provided the associated 𝐸𝑅 histogram of each (𝐶, 𝑇 )515

threshold pair and desired 95% CI width of each animal (Fig. S2A). A convergent (𝐶, 𝑇 ) pair for an516

animal is provided in Fig. S2B (𝐶, 𝑇 = 0.9, 90), that converged to a 95% CI width of 0.005. Following517

this approach, convergent (𝐶, 𝑇 ) pairs and bootstrapped CI widths are listed for each animal in Fig.518

S2C.519

Using these individualized convergent (𝐶, 𝑇 )pairs, original (i.e., not bootstrapped) data are used520

to calculate event rates for each animal. Note that event rates are calculated from both spike rate521

mean and standard deviation coactivity matrices, and referred to as 𝐸𝑅𝑀𝐸𝐴𝑁 and 𝐸𝑅𝑆𝑇𝐷. These522

are then used in statistical analyses (one 𝐸𝑅𝑀𝐸𝐴𝑁 and one 𝐸𝑅𝑆𝑇𝐷 per animal) as shown in Fig. 2.523

A similar procedure was performed in the literature using neuroimaging time series data based524

on Pearson’s 𝑅 (Esfahlani et al., 2020) however the threshold selection process was qualitative. In525

this work, we have developed a quantitative approach for threshold selection.526

Neural Specificity527

The neural specificitymetric (Sudarshan et al., 2021), Figs. S3 and S4, is used to evaluate the degree528

to which neural activity is biased toward control target states taken here as LVP. Briefly, this metric529

is computed in three stages530

1. Neural Sampling The value of the target state (LVP) is ‘sampled’ at the timestamp of each531

spike occurrence. This sampling is assumed to approximate a quasi-stationary distribution532

over a causal (backward in time) sliding window of spiking activity that is updated at each533

new timestamp. The distribution is approximated as a normalized and sliding histogram of534

neurally sampled target states (LVP).535

2. Random Sampling The normalized, sliding random sampling histogram is found at each spike536

occurrence in (1), but based on all available LVP samples within the same causal window537

referenced in (1), which approximates the random sampling limit.538

3. Neural Specificity The normalized, sliding random sampling histogram (2) is subtracted from539

its neural sampling counterpart (1) to form the neural specificity contrastive measure.540

Subtraction of the random sampling histogram from the neural sampling histogram allows for541

the discovery of the degree to which neural activity is biased, or specific, toward sampling control542

target states (LVP here) relative to random sampling. To explain the construction of the metric543

with LVP, a representative window is shown in Fig. S3A with the spikes shown as green dots over544

LVP waveform. The following steps outline the construction of the neural specificity metric, 𝐴, for545

a representative LVP window546

1. Neural Sampling547

Following (Sudarshan et al., 2021), the normalized sliding window histogram of neurally sam-548

pled 𝐿𝑉 𝑃𝑗 at all spike times 𝑡𝑗 and taken over𝑀 bins is defined for bin 𝑘 as549

𝐻(𝑆𝐿𝑉 𝑃𝑗)𝑘 =
ℎ(𝑆𝐿𝑉 𝑃𝑗)𝑘

Σ𝑘=𝑚
𝑘=1 ℎ(𝑆𝐿𝑉 𝑃𝑗)𝑘

(4)
Eq. (4) approximates the distribution of neural sampling of the target LVP at the green dots550

over a causal window in Fig. S3A. The resulting normalized histogram shown for one times-551

tamp (green line) in Fig. S3B.552

2. Random Sampling The normalized sliding window histogram at the random sampling limit of553

𝐿𝑉 𝑃𝑗 is computed as in (1), but based on all LVP samples within the same causal window554

and defined as 𝐻(𝐿𝑉 𝑃𝑗)𝑘. This is depicted as sampling of the pink line in Fig. S3A over the555
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same causal window used to describe neural sampling of LVP. The result is shown for one556

timestamp as the normalized histogram (pink line) in Fig. S3B.557

3. Neural Specificity The neural specificity, 𝐴𝑗𝑘, for bin 𝑘 is558

𝐴𝑗𝑘 = 𝐻(𝑆𝐿𝑉 𝑃𝑗)𝑘 −𝐻(𝐿𝑉 𝑃𝑗)𝑘 (5)
𝐴𝑗𝑘 is mapped to three levels (𝑙𝑒𝑠𝑠, 𝑠𝑎𝑚𝑒, 𝑔𝑟𝑒𝑎𝑡𝑒𝑟) relative to random sampling. These are559

respectively defined as (−1, 0, 1) and depicted as (𝑝𝑢𝑟𝑝𝑙𝑒, 𝑡𝑒𝑎𝑙, 𝑦𝑒𝑙𝑙𝑜𝑤) in Fig. S3C and S4A. As560

such, given the mapping threshold 𝛼 > 0 it follows that (𝐴𝑗𝑘 < −𝛼, 𝐴𝑗𝑘 < 𝛼,𝐴𝑗𝑘 > 𝛼]) is respec-561

tively (−1, 0, 1) implying (𝑙𝑒𝑠𝑠, 𝑠𝑎𝑚𝑒, 𝑔𝑟𝑒𝑎𝑡𝑒𝑟) neural specificity relative to random sampling and562

visually represented as (𝑝𝑢𝑟𝑝𝑙𝑒, 𝑡𝑒𝑎𝑙, 𝑦𝑒𝑙𝑙𝑜𝑤).563

Entropy Definitions564

Entropy565

The neural specificity is reduced from a multivariate signal to a univariate signal by computing the566

Shannon entropy at each timestamp of the mapped neural specificity metric (Fig. 2), Eq. (5) map-567

ping description). The entropy of the absolute change between adjacent normalized histogram568

bins is a measure of coherence in neural specificity. The absolute change in the mapped 𝐴𝑗𝑘 at569

time 𝑡𝑗 and between adjacent bins (𝑘, 𝑘 + 1), 𝑘 = 1, ..., 𝑚 − 1 is the set Δ𝐴𝑗 = (0, 1, 2) with members570

Δ𝐴𝑗𝑖, 𝑖 = 1, 2, 3. Using a base 3 logarithm to scale the entropy between 0 and 1, the entropy 𝐸𝑗 of571

the difference in the mapped 𝐴𝑗𝑘 at each timestamp 𝑡𝑗 .572

𝐸𝑗 = −Σ3
Δ𝐴𝑗𝑖=1

𝑝(Δ𝐴𝑗𝑖) ln3(𝑝(Δ𝐴𝑗𝑖)) (6)
This unequally-sampled series is interpolated to the equally-sampled time series 𝐸.573

Event Entropy574

The neural specificity is ameasure of specificity, or bias, of neural activity to target states. However,575

unusually high and short-lived cofluctuations indicate intervals in time, or ’events’, when coactivity576

between channel pairs implies that SG processing has undergone sudden changes. Functional577

relevance of cofluctuation events is found by considering the extent to which neural specificity to578

the target (LVP here) is similar or different inside and outside these events.579

Therefore, the functional relevance of cofluctuations in SG neural activity is examined by break-580

ing the time-evolution of entropy of neural specificity into regions: ‘event’ regions (within event581

intervals) and ‘non-event’ regions (outside event intervals). The mean and standard deviation of582

event and non-event entropy time series per channel are computed for each experiment and col-583

lectively referred to as ’event entropy’ where this is convenient.584
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Chapter 5

CONCLUSION

In this thesis, multi-channel, eight hour extracellular recordings from the stellate

ganglion were studied with the help of a novel unsupervised spike detection and

metrics algorithm. The spike detection algorithm extracted population activity from

the stellate in baseline and stressed states in both healthy and diseased animals. This

was followed by construction of metrics based on coactivity among populations and

specificity to different phases of target data such as LVP and respiratory pressure.

Hypotheses based on observations from metrics of both healthy and diseased animals

were tested in Chapters 3 and 4.

In Chapter 3, the competitive masking algorithm and the neural specificity metric

were developed in Python as an unsupervised multi processing software package.

Based on recorded data, populations in the stellate exert integrative control with

both cardiac and pulmonary afferent information. Population neural specificity with

respect to different phases of LVP and RP showed the extent of integrative control and

its dynamics throughout the course of an experiment. The introduction of the neural

specificity metric in this work was useful to quantify change in various intrathoracic

ganglia population with respect to different target signals and healthy and heart

failure animals.

Spatial coherence between neural activities recorded across the stellate ganglion

was measured using cofluctuation and event rates in Chapter 4. The coactivity ma-

trix dynamically showed regions of cross correlation between all possible channels

pairs in an experiment. Cofluctuation was extracted from the coactivity matrix as

the proportion of channel pairs with correlation exceeding a threshold. In order to

compare cofluctuations between animal groups, timestamps first exceeding a correla-

tion threshold were defined as events and the corresponding rate was the event rate.

Event rates were computed for a windowed mean and variation in spiking activity.
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Linkages between the degree of spatial coherence of stellate activity and the corre-

sponding degree of neural specificity to cardiopulmonary targets were also examined.

To facilitate this, the neural specificity was reduced to an entropy time series and

its mean and variation was compared between animal groups as a function of stel-

late activity spatial coherence. Higher spatial coherence was interestingly found to

be coupled to greater variance in entropy with respect to LVP specificity in diseased

animals compared to healthy animals.

The findings in this thesis indicate that spatio-temporal changes in stellate popu-

lation activity and variations in uncertainty of LVP specificity may represent markers

of specific pathologies such as premature ventricular contractions in baseline. This

observation within the peripheral nervous systems is strikingly similar to studies of

the brain: (i) Within the visual cortex, neural ensembles were reported to be linked

to visual stimuli in mice [80], (ii) spatio-temporal changes in local field potentials

similar to coactivity predicted major depressive disorder vulnerability in the brain

[81], and (iii) high amplitude cofluctuations are suspected of representing functional

connectivity in the brain [82]. Such changes observed in spatio-temporal coherence

and specificity to control targets might reflect abnormality in cardio pulmonary con-

trol by the stellate ganglion in diseased states. Future studies focusing on probing

stellate processing around regions of high co fluctuations in baseline and various

stressed states would help in understanding open ended questions such as ventricular

arrhythmia and sudden cardiac death.

5.1 LIMITATIONS AND FUTURE WORK

The neural specificity metric introduced in Chapter 3 was built to observe dynamics of

neural population linkages to a control target. As seen in Chapter 3, stellate neurons

integrate afferent information from cardiac and pulmonary regions. With respect to

a target signal such as LVP, neural specificity does not indicate the functional type of

the neurons as cardiac or pulmonary neurons but overall stellate population specificity

to LVP. A majority of stellate neurons are not involved in receiving direct or indi-

rect cardiopulmonary afferent information and sympathetic efferent cardiac outflow

as detailed in Chapter 1. Information about neural function type in terms of whether
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they receive afferent information, are involved in efferent outflow, or function as in-

terneurons, is unknown and is a major experimental limitation. Future experiments

can be designed by targeting activity of neurons based on physiological function to

address this limitation.

The competitive masking spike detection algorithm detailed in Chapter 3 ex-

tracted population activity from multi channel extracellular recordings in an unsu-

pervised manner. The spikes are detected as event crossing amplitude thresholds in

an iterative manner and are not classified based on features such as action poten-

tial shapes or physiological function. Future works aimed at adding a spike sorting

pipeline would serve to better interpret the metrics developed in the thesis and allow

for better understanding of neural recruitment.

Hypotheses tested on the observations in the metrics for stressors performed in

the experiments did not yield any statistical significance. This could be due to the

short duration of stressors and future experiments could be designed to include long

duration stressors in animals.

Other limitations with respect to multi-unit recordings compared to single-unit

recordings, translational failure arising from animal models with anesthesia, lack of

reproducible research from poor experimental design and a lack of public access data

sets and code has been detailed in our latest review [83].

A final limitation lies in animal models not designed with varying degrees of

pathology as indicated in Chapter 4 and this can be addressed in future studies.
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