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ABSTRACT  

The ocean’s biological carbon pump (BCP) contributes to the sequestration of organic 

carbon in the deep ocean and influences atmospheric CO2 levels. Despite its significance, 

the BCP remains poorly characterized due to insufficient observations. Recent advances of 

Biogeochemical-Argo (BGC-Argo) program have greatly increased the availability of 

biogeochemical observations including those which contain a wealth of information about 

the BCP. Therefore, the application and interpretation of these new observations warrants 

further investigation. This thesis presents applications of BGC-Argo data to improve 

estimates and mechanistic understanding of the BCP by exploring their synergies with 

biogeochemical models, and by performing comprehensive analyses of high-frequency 

BGC-Argo observations. Specifically, I carried out model optimizations using different 

combinations of satellite chlorophyll and BGC-Argo observations. Results show that the 

inclusion of BGC-Argo profiles of multiple biogeochemical properties in the parameter 

optimization greatly improved the model’s representation of subsurface biological 

distributions and vertical carbon flux. Since the availability of BGC-Argo profiles is so far 

insufficient for sequential data assimilation in most regions, multivariate data assimilation 

of satellite observations was applied to a coupled physical-biogeochemical model. 

Repeating data assimilation experiments by using an alternative light parameterization that 

had been a priori calibrated with BGC-Argo profiles showed that a well-calibrated model 

with accurate parameterizations is fundamental to data assimilation. This motivated me to 

investigate to what extent BGC-Argo data can help in distinguishing different 

parameterizations of vertical carbon flux. I set up a 1D model framework and calibrated it 

using BGC-Argo data to compare common parameterizations of vertical carbon flux in the 

same model environment. Results show great potential for BGC-Argo to inform vertical 

flux parameterizations and in determining the associated parameter values. Finally, I 

applied a new method, based on the mass balance of particulate organic carbon and oxygen, 

to BGC-Argo data to estimate vertical carbon flux due to different mechanisms. Results 

show that, in addition to the gravitational sinking flux of large particles, small particles 

make a significant contribution to the vertical flux at 100 m due to multiple mechanisms 

and at 600 m due to fragmentation of large particles. 
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CHAPTER 1                                                                               

INTRODUCTION  

1.1  Background 

The ocean’s biological carbon pump (BCP) is an important component of the global 

carbon cycle. It transports organic carbon that is produced at the surface to the deep ocean 

through different mechanisms and sequesters carbon out of contact with the atmosphere 

over time scales of hundreds to thousands of years thus controlling the partitioning of CO2 

between ocean and atmosphere. A long-standing paradigm is that the BCP is mainly fueled 

by the gravitational sinking flux of large organic particles, e.g., aggregates and fecal pellets. 

However, this was challenged by the realization that the metabolic carbon demand in the 

mesopelagic ocean (200 to 1000 m) is in excess of the organic matter supplied by 

gravitational sinking (Burd et al. 2010) suggesting that some alternative mechanisms might 

exist. Additional carbon fluxes into the deep ocean can be due to the “biological migrant 

pump” and the “physical injection pump” (Boyd et al. 2019). The former refers to the 

transport of organic carbon by vertically migrating zooplankton and larger carnivorous 

organisms. The latter includes physical subduction driven by different mechanisms 

including a deepening of the mixed layer (also termed the “mixed-layer pump”; Dall’Olmo 

and Mork 2014; Bol et al. 2018; Lacour et al. 2019), the large scale circulation (“Ekman 

pump”; Resplandy et al., 2019), and mesoscale eddies or frontal structures (“eddy 

subduction pump”; Llort et al., 2018; Omand et al., 2015). Unlike gravitational settling, 

these alternative mechanisms act on suspended and dissolved organic carbon which is not 

subject to gravitational settling out of the euphotic zone. 

Despite its significance, the BCP remains poorly characterized in terms of its 

magnitude and underlying mechanisms, primarily due to insufficient observations. This 

limits the validation of biogeochemical models and hence their predictive capabilities with 

regard to biological carbon export. The uncertainty in global estimates of carbon export 
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out of the euphotic zone is large, varying from 4 to over 10 Pg C yr-1 (Henson et al. 2011, 

2012, 2015; Siegel et al. 2014; DeVries and Weber 2017; Bisson et al. 2020). 

Conventionally, the magnitude of the BCP is measured directly by sediment traps (Francois 

et al. 2002; Honjo et al. 2008; Giering et al. 2018) and quantified from radioactive tracers, 

e.g. 234Th-238U and 210Pb-210Po (Buesseler et al. 2006; Le Moigne et al. 2013). These 

observations can then be upscaled to the global ocean using empirical relationships with 

satellite observations, e.g., sea surface temperature and net primary production (Dunne et 

al. 2005; Henson et al. 2011) but with large uncertainties given the limited spatial and 

temporal coverage of observations and a measurement bias towards productive regions. 

The magnitude of the BCP can be also derived from budgets of dissolved biogeochemical 

tracers such as nutrients (Wilson et al. 2015; Weber et al. 2016) and dissolved oxygen 

(Hennon et al. 2016; DeVries and Weber 2017; Quay et al. 2020). However, these 

approaches are subject to several sources of uncertainty including from ocean circulation. 

The currently available observations of carbon flux and dissolved biogeochemical tracers 

may not be sufficient to constrain the BCP highlighting the importance of additional 

independent observations. For instance, analyses of existing observations have yielded two 

contrasting global patterns of the transfer efficiency, the fraction of the exported organic 

matters out of the euphotic zone that can reach the deep ocean (Henson et al. 2012; Lima 

et al. 2014; Weber et al. 2016; DeVries and Weber 2017). Specifically, some studies put 

forward the idea that the transfer efficiency is high in low latitudes and decreases to high 

latitudes (Henson et al. 2012; Lima et al. 2014; Guidi et al. 2015), while other studies 

suggest an opposite pattern with low transfer efficiency in low latitudes (Marsay et al. 2015; 

Weber et al. 2016; DeVries and Weber 2017). Recent studies also suggested that available 

observations cannot distinguish between alternative parameterization schemes of carbon 

flux. Although different parameterizations fit the observations equivalently well they 

produced markedly different distributions of vertical carbon flux and atmospheric CO2 

levels (Cael and Bisson 2018; Lauderdale and Cael 2021). 

Proxies of the particulate organic carbon (POC) concentration, which is dynamically 

related to the POC flux, may be an important complement to the currently available 

observations for studying the BCP. Due to recent advances in autonomous platforms and 

bio-optical sensors, proxies measurements of the POC concentration can be made in high 
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spatial and temporal resolution over a broad spatial scale and for an extended period. This 

includes the Biogeochemical (BGC)-Argo floats which are providing a large number of 

profile observations in the ocean interior at an unprecedented scale (Roemmich et al. 2019; 

Chai et al. 2020). These observations contain a wealth of information regarding particle 

abundance (e.g., POC concentration), particle size (e.g., small versus large particles; Briggs 

et al. 2011; Lacour et al. 2019), and particle transformations (e.g., fragmentation; Briggs 

et al. 2020) and have been used to infer contributions to the BCP from different 

mechanisms, e.g., the gravitational settling (Briggs et al. 2011), the mixed layer pump 

(Dall’Olmo and Mork 2014; Kheireddine et al. 2020), and the eddy subduction pump (Llort 

et al. 2018). Therefore, application of this new type of observations for improving our 

understanding and quantification of the BCP is promising and warrants further 

investigation. 

In addition, BGC-Argo observations are useful for informing numerical 

biogeochemical models. Such models are increasingly used for providing three 

dimensional estimates of the BCP (Lima et al. 2014; Henson et al. 2015), improving 

understanding of the controlling processes (Weber and Bianchi 2020; Nowicki et al. 2022), 

and predicting the future response to climate changes (Laufkötter et al. 2016, 2017; 

Palevsky and Doney 2021). However, model estimates are subject to potentially 

inappropriate parameterizations of natural processes, errors from numerical approximation, 

inaccuracies in model input forcing, and require specification of many poorly known 

parameters. Data assimilation, which, in a broad sense, refers to any technique for 

constraining a numerical model using observations (Edwards et al. 2015), is a standard 

method to compensate for some of these deficiencies. There are two broad applications of 

data assimilation in biological oceanography that depend on the intended purpose: 

parameter optimization, which aims to correct systematic biases due to model deficiencies 

such as inappropriate model structures and inaccurate parameter values, and state 

estimation, which is used to reduce random errors typically due to stochastic processes 

(Fennel et al. 2022). For instance, parameter optimization perturbs poorly known 

parameters systematically to seek their optimum values by minimizing misfits between 

model and observations (Fennel et al. 2001; Xiao and Friedrichs 2014a; Kuhn et al. 2018). 

In addition, it can be used to objectively compare model structures with different levels of 
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complexity and to remove processes that cannot be well constrained by observations (Ward 

et al. 2013; Xiao and Friedrichs 2014b; Kuhn and Fennel 2019). In contrast, state 

estimation adjusts the model state variables to reduce their discrepancies with observations 

and then re-initializes the model from this updated field sequentially (Kerry et al. 2016; 

Mattern et al. 2017; Yu et al. 2018; Pradhan et al. 2019). Nevertheless, both these 

applications critically depend on appropriate observations.  

1.2 Objectives 

This thesis explores the application of BGC-Argo data for improving estimates and 

our mechanistic understanding of the BCP. Since the North Atlantic Ocean is highly 

productive and plays critical roles in the ocean’s BCP and climate regulation, I focus on 

two contrasting ecosystems in the North Atlantic: the low-latitude, oligotrophic Gulf of 

Mexico and the productive subpolar North Atlantic including the Labrador Sea, which is 

one of only a few regions where deep convection occurs. I address four specific research 

questions in the following four chapters:  

(1) What is the value of BGC-Argo profiles for parameter optimization (Chapter 2)? 

Biogeochemical models are powerful tools, but their performance is largely 

determined by the appropriate choice of model parameter values. Parameter optimization 

is a standard method for addressing this issue but typically cannot constrain all parameters 

with confidence, even for the simplest biogeochemical models, because of insufficient 

information provided by available observations (Matear 1995; Fennel et al. 2001; Ward et 

al. 2010). For instance, the satellite estimates of surface chlorophyll, a major source of 

observations used for parameter optimization (e.g. Prunet et al., 1996; Xiao and Friedrichs, 

2014a, 2014b), do not provide information below the surface and are not direct measures 

of carbon-based phytoplankton, which is a base of marine ecosystems. In the context of 

recent advances in BGC-Argo floats that allow for the simultaneous profiling measurement 

of multiple biogeochemical variables (i.e., oxygen, chlorophyll, nitrate, particulate 

backscattering, pH, and downwelling irradiance) over broad spatial scales and for sustained 

periods (Johnson and Claustre, 2016; Roemmich et al., 2019), the objective of this chapter 
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is to assess the value of the BGC-Argo profiles versus ocean color observations for 

optimizing a biogeochemical model. 

(2) Can data assimilation of satellite observations in combination with a priori model 

calibration by BGC-Argo profiles improve 3D distributions of biological 

properties (Chapter 3)? 

Apart from poorly known parameters, biogeochemical models are also subject to 

uncertainties from stochastic processes. State estimation is therefore required to address 

these uncertainties, but current data streams of biogeochemical observations are generally 

considered insufficient. Although the recent advances in BGC-Argo implementation has 

provided us abundant profile measurements of key biogeochemical variables 

(Biogeochemical-Argo Planning Group 2016; Roemmich et al. 2019; Chai et al. 2020), 

these observations are insufficient so far for state estimation either in global or regional 

applications except in a few specific regions with high float densities, e.g., the 

Mediterranean Sea (Cossarini et al. 2019) and the Southern Ocean (Verdy and Mazloff 

2017).  Elsewhere, assimilation of BGC-Argo float data has been limited to parameter 

optimization (Wang et al. 2020) and twin experiments (Yu et al. 2018; Ford 2020). In this 

chapter, a multivariate data assimilation scheme was applied to the coupled physical-

biogeochemical model which had been optimized in Chapter 2 to evaluate whether the 

assimilation of satellite observations in combination with a prior model calibration by 

BGC-Argo profiles can improve the 3D distributions of biogeochemical properties. 

(3) Do BGC-Argo float data add information when assessing the predictive skill of 

alternative vertical carbon flux parameterizations (Chapter 4)? 

The remineralization length scale, defined as the distance over which the vertical 

carbon flux attenuates by a factor of 1/e (~ 63%), is known to increase with depth. This 

indicates that either the remineralization rate is getting slower, or the sinking velocity is 

getting faster. Both of these are used in vertical carbon flux parameterizations within 

biogeochemical models to achieve the increase in remineralization length scale. Previous 

studies that compared different parameterization schemes have placed emphasis on the 

schemes’ ability to reproduce the sparse in-situ observations of POC flux and 
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climatological datasets of nutrients (Cael and Bisson 2018; Lauderdale and Cael 2021) and 

found that different schemes can match observations equally well within the observational 

uncertainties but result in very different predictions of atmospheric CO2 levels. This 

suggests that the currently available observations of POC flux and nutrients are insufficient 

to determine which parameterization scheme is more mechanistically appropriate and that 

additional observations are needed. POC concentration, which is dynamically related to the 

POC flux, has received little attention for calibration of biogeochemical models. This 

chapter addresses the question of what value proxy observations of POC concentration can 

add to the currently available observations when calibrating biogeochemical models. 

(4) What are the relative contributions from small and large particles to deep carbon 

sequestration (Chapter 5)? 

The BCP includes a range of processes that transport organic matter from the surface 

to the deep ocean, where it is remineralized and sequestered as inorganic carbon for 

decades to millennia. However, the magnitude of this vertical carbon transport remains 

poorly constrained by observations and the detailed processes involved are insufficiently 

understood. In particular, attention to the contribution of small particles has increased in 

recent years but previous estimates of the associated vertical carbon flux are likely biased 

because they have ignored remineralization and particle fragmentation. In this chapter, I 

present a new method for estimating i) vertical carbon flux of small and large organic 

particles and ii) the effect of remineralization and particle fragmentation on mesopelagic 

(100-1000 m) flux attenuation using BGC-Argo profiles of backscattering and dissolved 

oxygen. 

1.3 Outline 

This thesis is organized as follows: 

In Chapter 2, a suite of optimization experiments is carried out in the Gulf of Mexico 

using different combinations of satellite chlorophyll and profile measurements of 

chlorophyll, phytoplankton, and POC from BGC-Argo floats to assess the value of BGC-

Argo profiles for parameter optimization. As parameter optimization in 3D models is 
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computationally expensive, I optimize the parameters in a 1D model version and then 

perform 3D simulations using these parameters. 

In Chapter 3, to evaluate whether data assimilation of satellite observations with a prior 

model calibration by BGC-Argo profiles can improve 3D distributions of biological 

properties, the multivariate deterministic ensemble Kalman filter (DEnKF) is implemented 

to assimilate physical and biological observations into a three-dimensional coupled 

physical-biogeochemical model which has been calibrated in the Chapter 2 for the Gulf of 

Mexico. The impact, especially on the subsurface distributions of biological properties, is 

assessed by comparing forecast results from the data-assimilative models to independent 

observations from five BGC-Argo floats that were not assimilated. In addition, an 

alternative light parameterization that is tuned a priori using BGC-Argo observations is 

applied to test the sensitivity of the data assimilation impact on subsurface biological 

properties. 

In Chapter 4, to evaluate the information that BGC-Argo float data can add when 

assessing the alternative vertical carbon flux parameterizations, I first classify the vertical 

carbon flux parameterizations from 12 Earth System Models (ESMs) from the sixth phase 

of the Coupled Model Intercomparison Project (CMIP6). To isolate the model-to-model 

differences in vertical carbon flux across ESMs that are due to the choice of 

parameterization schemes from other sources of model discrepancies, e.g., model 

resolution, differences in biogeochemical model complexity, etc. the two most common 

schemes are implemented in a common 1D model framework. The 1D model is calibrated 

using BGC-Argo float data thus enabling an objective comparison between the ballast 

scheme, where a fraction of sinking POC is protected from remineralization by minerals, 

and the Wlin scheme, where the sinking velocity is assumed to increase with depth. In 

addition, sensitivity experiments are conducted to evaluate whether profiles of POC 

concentration can provide a unique estimate of POC flux. 

In Chapter 5, I introduce a new method for estimating vertical carbon flux based on a 

mass balance of POC and dissolved oxygen to quantify the relative contributions from 

small and large particles to deep carbon sequestration. I then apply this method to BGC-

Argo floats in the subpolar North Atlantic and estimate the vertical carbon flux due to 
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different mechanisms by explicitly accounting for the remineralization and fragmentation 

of organic particles. 

An overarching summary of my main conclusions and the outlook for future work are 

given in Chapter 6. 

Chapters 2-5 are based on four individual papers. Specifically, Chapter 2 was 

published in Biogeosciences under the title of “Assessing the value of biogeochemical 

Argo profiles versus ocean color observations for biogeochemical model optimization in 

the Gulf of Mexico” (Wang et al. 2020). Chapter 3 was published in Ocean Science under 

the title of “Can assimilation of satellite observations improve subsurface biological 

properties in a numerical model? A case study for the Gulf of Mexico” (Wang et al. 2021). 

Chapter 4 is in preparation for journal submission. Chapter 5 was published in Limnology 

and Oceanography under the title of “Biogeochemical-Argo data suggest significant 

contributions of small particles to the vertical carbon flux in the subpolar North Atlantic” 

(Wang and Fennel 2022). 



 9 

CHAPTER 2                                                                                           

ASSESSING THE VALUE OF BGC ARGO PROFILES VERSUS 

OCEAN COLOUR OBSERVATIONS FOR BIOGEOCHEMICAL 

MODEL OPTIMIZATION IN THE GULF OF MEXICO1 

2.1 Introduction 

Oceanic primary production forms the basis of the marine food web and fuels the 

biological pump, which contributes to the sequestration of atmospheric CO2 in the ocean’s 

interior, thus mitigating global warming. An accurate quantification of primary production 

and biological carbon export is therefore important for our understanding of the marine 

carbon cycle and for predicting how carbon cycling and marine ecosystems will interact 

with climate change. 

Direct observations of primary production and export flux are relatively sparse because 

of the cost and effort involved in measuring these fluxes. Numerical models can 

complement sparse observations. Well validated and calibrated models are useful tools for 

hindcasting and nowcasting past and present biogeochemical fluxes and are the most 

common tool for projecting future changes.  

In recent years, many biogeochemical models with different complexities have been 

developed to study ocean biogeochemical processes. Regardless of their complexities, the 

performance of these models is highly dependent on the appropriate choice of model 

parameter values (e.g., maximum growth, grazing and mortality rates), most of which are 

poorly known. A standard method for choosing these parameters is optimization, a process 

by which the misfit between model results and available observations is minimized by 

iteratively varying parameters (Matear, 1995; Prunet et al., 1996a, 1996b; Fennel et al., 

                                                           
1 Based on: Wang, B., Fennel, K., Yu, L., and Gordon, C.: Assessing the value of biogeochemical Argo 

profiles versus ocean color observations for biogeochemical model optimization in the Gulf of Mexico, 

Biogeosciences, 17, 4059–4074, https://doi.org/10.5194/bg-17-4059-2020, 2020. 
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2001; Friedrichs et al., 2007; Kuhn et al., 2015, 2018). However, even formal optimization 

typically cannot constrain all biogeochemical parameters (i.e., provide optimal parameter 

estimates with relatively small uncertainties) because of insufficient information in the 

available observations (Matear 1995; Fennel et al. 2001; Ward et al. 2010; Bagniewski et 

al. 2011). For example, Matear (1995) used a so-called simulated annealing algorithm to 

optimize three different ecosystem models and found that, even for the simplest nutrient-

phytoplankton-zooplankton model, not all independent parameters could be constrained 

well, leaving the others with large uncertainty ranges. A more recent study reported that 

the lack of zooplankton observations led to poor accuracy of the optimized zooplankton-

related parameters when using a suite of Lagrangian-based observations during the North 

Atlantic spring bloom (Bagniewski et al. 2011). A broader suite of observation types should 

be favourable to parameter optimization although complications can arise. For example, 

when optimizing a suite of 1D models for the Mid-Atlantic Bight, the use of satellite 

particulate organic carbon (POC) observations in addition to satellite chlorophyll did not 

yield further improvements in model-data fit but degraded the representation of chlorophyll 

(Xiao and Friedrichs 2014a). 

Typically surface ocean chlorophyll from satellite is the main source of observations 

for model validation (e.g. Doney et al., 2009; Gomez et al., 2018; Lehmann et al., 2009) 

and parameter optimization (Prunet et al. 1996b; Xiao and Friedrichs 2014a; b), 

supplemented by other observation types as available. However, satellites only see the 

ocean surface and do not resolve the vertical distribution of chlorophyll. This is especially 

problematic in oligotrophic regions where the deep chlorophyll maximum (DCM) is 

relatively deep and hardly observed by the satellite (Fennel and Boss 2003; Cullen 2015). 

In addition, although chlorophyll has long been used as a proxy of phytoplankton biomass 

and to estimate primary production based on some assumptions (Behrenfeld and Falkowski 

1997), it is not a direct measure of carbon-based phytoplankton biomass. The ratio of 

chlorophyll-to-phytoplankton carbon varies by at least an order of magnitude due to 

physiological responses of phytoplankton to their ambient environment (e.g. nutrients, 

light, and temperature) (Geider 1987; Fennel and Boss 2003; Cullen 2015). Changes in 

chlorophyll may result from physiologically induced modifications of the chlorophyll-to-

phytoplankton ratio rather than actual changes of phytoplankton biomass (Mignot et al. 
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2014; Pasqueron de Fommervault et al. 2017). Satellite surface chlorophyll alone is 

therefore likely insufficient for model validation and for constraining biogeochemical 

models via parameter optimization. 

Recent advances in autonomous platforms and sensors have opened opportunities for 

simultaneous measurement of several biological and chemical properties throughout the 

upper ocean with high resolution, over broad spatial scales and for sustained periods 

(Roemmich et al. 2019). In particular, the biogeochemical (BGC) Argo program (Johnson 

and Claustre, 2016; Roemmich et al., 2019) will provide temporally evolving 3D 

information on biogeochemical variability at previously unobserved scales. Here I assess 

to what degree observations of chlorophyll fluorescence and particle backscatter from Argo 

profiles improve the prospects of optimizing a biogeochemical model for the Gulf of 

Mexico.  

Since the high computational cost and storage demands of 3D models make direct 

application of most parameter optimization techniques difficult (but see Mattern et al., 

2012; Mattern and Edwards, 2017; Tjiputra et al., 2007 for exceptions), they are typically 

applied in computationally efficient 1D models before using the resulting parameters in 3D 

version (e.g. Hoshiba et al., 2018; Kane et al., 2011; Kuhn and Fennel, 2019; Schartau and 

Oschlies, 2003). I follow the latter approach here. 

The main objective of this chapter is to assess the added value of bio-optical profile 

information from Argo floats for biogeochemical model optimization in the Gulf of 

Mexico. I first examine the feasibility of improving the 3D model by applying the optimal 

parameters from 1D model optimizations with some minor manual modifications. I find 

that the gains from the 1D optimizations transfer to the 3D version. Then, by using different 

combinations of satellite and float observations, I show that parameters optimized with 

respect to satellite data cannot reproduce subsurface distributions unless the float 

observations (i.e. chlorophyll, phytoplankton, and POC) are also used.  

2.2 Study region 

The Gulf of Mexico (GOM) is a semi-enclosed marginal sea (Fig. 2.1) which is 

characterized by eutrophic coastal waters on the northern shelf and an oligotrophic deep 
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ocean. The high productivity in the northern coastal region is fueled by large nutrient and 

freshwater inputs from the Mississippi and Atchafalaya Rivers. The large nutrient load and 

strong stratification driven by Mississippi and Atchafalaya River inputs lead to summer 

hypoxia and ocean acidification in bottom waters on the northern shelf (Yu et al. 2015; 

Laurent et al. 2017), but nutrient export across the shelf break into the open Gulf is minor 

(Xue et al. 2013). 

 

Figure 2.1. Model bathymetry (unit: m) with trajectories of six bio-optical floats (small 

colored dots and lines) which were operated in the Gulf of Mexico from 2011 to 2015. The 

location of the 1D model is denoted by the large orange dot. The north and south black 

boxes represent the Mississippi Delta and the central gulf, respectively, to show 

comparisons of surface chlorophyll in Fig. B.5. 

The deep ocean of the GOM is oligotrophic. Previous satellite-based studies have 

revealed a clear seasonal cycle in surface chlorophyll, with highest concentrations in winter 

and lowest in summer (Muller-Karger et al. 1991, 2015; Martínez-López and Zavala-

Hidalgo 2009). Thanks to advances in autonomous profiling technology, recent studies 

based on simultaneous measurements of subsurface chlorophyll and backscatter have 

demonstrated that the seasonal variability of surface chlorophyll might be a result of the 

vertical redistribution of subsurface chlorophyll and/or physiological response to solar 

radiation of phytoplankton (Green et al. 2014; Pasqueron de Fommervault et al. 2017). 
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2.3 Methods 

2.3.1. Biological observations 

Monthly averaged satellite chlorophyll from the Ocean Colour Climate Change 

Initiative project (OC-CCI, https://www.oceancolour.org) with a spatial resolution of 4 km 

from 2010 to 2015 was used for model validation and parameter optimization. These data 

were provided by the European Space Agency (ESA), which produced a set of validated 

and error-characterized global ocean color products by merging SeaWiFS (Sea-viewing 

Wide Field-of-view Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer), 

MERIS (Medium Resolution Imaging Spectrometer), and VIIRS (Visible Infrared Imaging 

Radiometer Suite) products.  

In addition to the satellite-based measurements, bio-optical measurements from six 

autonomous profiling floats were used (Fig. 2.1), which were deployed by the Bureau of 

Ocean Energy Management (BOEM) and operated in the deep GOM from 2011 to 2015. 

These floats were equipped with a CTD and bio-optical sensors to collect biweekly profiles 

of temperature, salinity, chlorophyll, and backscatter at 700 nm (bbp700 (m-1)) from the 

surface to 1000 m depth (see Pasqueron de Fommervault et al., 2017; Green et al., 2014, 

for more details). Chlorophyll was derived from fluorescence based on the sensor 

manufacturer’s calibrations and compared with the satellite estimates of surface 

chlorophyll. While the surface chlorophyll measurements from the floats and the satellite 

estimates both showed a typical seasonal cycle and were highly correlated (R2=0.74; see 

Figs. B.1 and B.2a in the Supplement), the satellite underestimated the float-measured 

chlorophyll concentrations in winter (Fig. B.1c). Satellite estimates were therefore 

corrected following the regression equation shown in Fig. B.2a. 

The backscatter sensor carried by the floats provided the volume scattering function at 

a centroid angle of 140o and a wavelength of 700 nm (𝛽(140o, 700nm) m-1 sr-1). The 

profiles were filtered (Briggs et al., 2011) to remove spikes and then converted into bbp700 

following Green et al. (2014). After that, profiles of bbp700 were converted into bbp470 

based on a power law (Boss and Haëntjens 2016) to obtain the phytoplankton (mmol N m-

3) and POC (mg C m-3) estimates: 

https://www.oceancolour.org/
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𝑏𝑏𝑝(𝜆1) = (
𝜆1

𝜆2
)

−𝛾

𝑏𝑏𝑝(𝜆2),                                                                                                    (2.1) 

𝑃ℎ𝑦 = 30100 ×
𝑏𝑏𝑝470 − 76 × 10−5

12 × 6.625
,                                                                                (2.2) 

𝑙𝑜𝑔10(𝑃𝑂𝐶) = 1.22 × 𝑙𝑜𝑔10(𝑏𝑏𝑝470) + 5.15,                                                                (2.3) 

where λ1 and 𝜆2 represented the measured wavelength, and 𝛾 was estimated as 0.78 based 

on the global measurements. The relationships for phytoplankton (Martinez-Vicente et al., 

2013; Eq. 2.2) and POC (Rasse et al., 2017; Eq. 2.3) were obtained from a data set for the 

Atlantic Ocean that covered a wide range of oceanographic regimes from eutrophic to 

oligotrophic ecosystems. The scale factors of 12 and 6.625 in Eq. 2.2 represented the 

molecular weight of carbon and the Redfield ratio to convert phytoplankton concentrations 

from mg C m-3 to mmol N m-3. The intercept 76 × 10−5  in Eq. 2.2 represented the 

background backscatter of nonalgal detritus, which based on Behrenfeld et al. (2005) was 

the backscatter value when chlorophyll was zero. However, in this chapter, the majority 

(87%) of bbp470 in the upper 200 m was below the intercept and the resulting 

phytoplankton concentrations were therefore close to zero, which is unrealistic in the Gulf 

of Mexico. Therefore, the satellite estimate of bbp670 from OC-CCI was converted into 

bbp700 and compared with the float measurements. Compared to surface chlorophyll, 

surface bbp700 has a less distinct seasonal cycle (Fig. B.3). For example, the coefficient of 

variation, defined as the ratio between standard deviation and mean to show the extend of 

variability, is much lower for bbp700 (0.09 and 0.07 for floats and satellite, respectively) 

than for chlorophyll (0.31 and 0.26 for floats and satellite, respectively). The float bbp700 

is weakly correlated with the satellite estimates (R2=0.11) and generally lower by a factor 

of 0.45 than the satellite estimates (Fig. B.2b). The bbp700 profiles were therefore 

multiplied by 2.2 before being converted to bbp470. As a result, the mean value of the 

bbp470 (88 × 10−5 𝑚−1) is close to the intercept in Eq. 2.2 when chlorophyll went to zero. 

Furthermore, the resulting concentrations of phytoplankton biomass and POC as well as 

the ratio of chlorophyll to phytoplankton biomass are reasonable (please see Figs. 2.4 and 

2.10). This gave me confidence in my conversion process for float backscatter and my 

choice of empirical equations relating backscatter to phytoplankton and POC. 
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2.3.2. Three-dimensional model description 

The physical model was configured based on Regional Ocean Modeling System 

(Haidvogel et al., 2008, ROMS, https://www.myroms.org) for the Gulf of Mexico (Fig. 

2.1). The model has a horizontal resolution of ~5 km and 36 terrain-following sigma layers 

with refined resolution near the surface and bottom as in Yu et al. (2019). The model solved 

the horizontal and vertical advection of tracers using the multidimensional positive 

definitive advection transport algorithm (MPDATA, Smolarkiewicz and Margolin, 1998). 

Horizontal viscosity and diffusivity were parameterized by a Smagorinsky-type formula 

(Smagorinsky 1963), and vertical turbulent mixing was calculated by the Mellor-Yamada 

2.5-level closure scheme (Mellor and Yamada 1982). Bottom friction was specified by a 

logarithmic drag formulation with a bottom roughness of 0.02 m. The model was forced 

by 3-hourly surface heat and freshwater fluxes; 6-hourly air temperature, sea level pressure, 

and relative humidity; and 10 m winds from the European Centre for Medium-Range 

Weather Forecast ERA-Interim product with a horizontal resolution of 0.125o (ECMWF 

reanalysis, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim). 

A bulk parameterization was applied to calculate the surface net heat fluxes and wind 

stress. The model was one-way nested inside the 1/12o data-assimilative global 

HYCOM/NCODA (https://www.hycom.org). Tidal constituents were neglected in the 

model.  

The biogeochemical model used a seven-component model (Fennel et al. 2006) to 

simulate the nitrogen cycle in the water column. The model described the dynamics of two 

species of dissolved inorganic nitrogen (nitrate, NO3, and ammonium, NH4), one function 

of phytoplankton (Phy), chlorophyll (Chl) as a separate state variable which allowed 

photoacclimation based on the model of Geider et al. (1997), one function of zooplankton 

(Zoo), and two pools of detritus (i.e., small suspended detritus, SDeN, and large fast-

sinking detritus, LDeN). Water-sediment interactions were simplified by an instantaneous 

remineralization parameterization, where detritus sinking out of the water column 

immediately resulted in a corresponding influx of ammonium into the bottom layer. 

Detailed descriptions of the model equations can be found in Fennel et al. (2006) and 

Laurent et al. (2017). The biological model parameters are listed in Table 2.1.  

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
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Table 2.1. Initial values and ranges of primary parameters used in the biogeochemical 

model 

Descriptions (unit) Symbol Value Range 

Radiation threshold for nitrification (W m-2) I0 0.0095a 0.005b-0.01b 

Half-saturation radiation for nitrification (W m-2) kI 0.1a 0.01b-0.5b 

Maximum nitrification rate (day-1) nmax 0.2c 0.01b-0.35b 

Phytoplankton growth at 0 oC (Dimensionless) μ0 0.69a 0.1b-3.0b 

Initial slope of P-I curve (mg C (mg Chl W m-2 day)-1) α 0.125a 0.007a-0.13a 

Half-saturation for NO3 uptake (mmol N m-3) kNO3 0.5a 0.007a-1.5a 

Half-saturation for NH4 uptake (mmol N m-3) kNH4 0.5a 0.007a-1.5a 

Phytoplankton mortality (day-1) mP 0.075 0.01b-0.2b 

Aggregation parameter (day-1) τ 0.1 0.01b-25b 

Maximum chlorophyll to carbon ratio (mg Chl mg C-1) θmax 0.0535c 0.005a-0.15b 

Phytoplankton sinking velocity (m day-1) wPhy 0.1a 0.009a-25a 

Maximum grazing rate (day-1) gmax 0.6a 0.1b-4b 

Half-saturation for phytoplankton ingestion ((mmol N m-

3)2) 
kP 0.5 0.01b-3.5a 

Zooplankton assimilation efficiency (Dimensionless) β 0.75a 0.25b-0.75b 

Zooplankton basal metabolism (day-1) lBM 0.01 0.01b-0.15b 

Zooplankton specific excretion (day-1) lE 0.1a 0.05b-0.35b 

Zooplankton mortality (day-1) mZ 0.2 0.02b-0.35b 

Small detritus remineralization (day-1) rSD 0.3c 0.005b-0.25a 

Large detritus remineralization (day-1) rLD 0.1 0.005b-0.25a 

Small detritus sinking velocity (m day-1) wSDet 0.1a 0.009a-25a 

Large detritus sinking velocity (m day-1) wLDet 1a 0.009a-25a 

aFennel et al. (2006); bKuhn et al. (2018); cYu et al. (2015) 

The model received freshwater, nutrients (NO3 and NH4) and organic matter inputs 

from major rivers along the Gulf coast. Freshwater and nutrients from the Mississippi and 

Atchafalaya rivers were prescribed based on the daily measurements by the US Geological 

Survey river gauges. River particulate organic nitrogen (PON) was assigned to the small 

detritus pool and determined as the difference between total Kjeldahl nitrogen and 
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ammonium (Fennel et al. 2011). Other rivers utilized the climatological estimates of 

freshwater, nutrients, and PON as in Xue et al. (2013). 

Initial and open boundary conditions for NO3 were specified by applying an empirical 

relationship between NO3 and temperature, derived from the World Ocean Atlas (WOA; 

Fig. B.4a), that was applied to the temperature fields from HYCOM/NCODA. 

Analogously, empirical relationships between chlorophyll and density (Fig. B.4b), 

phytoplankton and density (Fig. B.4c), and POC and density (Fig. B.4d) were obtained 

from the median profiles of the bio-optical floats and used to derive initial and boundary 

conditions for these variables. Zooplankton and small detritus were assumed to amount to 

10% of phytoplankton biomass and the remaining fractions of POC attributed to large 

detritus. Sensitivity tests showed that changing these allocations had little impact on model 

results. 

A 6-year (5 January 2010 – 31 December 2015) hindcast was performed that included 

the period of operation of the bio-optical floats. The first year was considered model spin-

up and the next five years are discussed. 

2.3.3. One-dimensional model description 

As optimizing a 3D biogeochemical model is computationally expensive, it was more 

practical to perform the optimization using a reduced-order model surrogate. A surrogate 

can be a coarser resolution model, a simplified model, or a reduced-dimension model. In 

this chapter, a 1D model was used to optimize the biological parameters of the 3D model. 

This approach has been successfully used previously (Oschlies and Schartau 2005; Kane 

et al. 2011; Hoshiba et al. 2018). 

The 1D model, which is similar to that used by Lagman et al. (2014) and Kuhn et al. 

(2015), covered the upper 200 m of the ocean with a vertical resolution of 5 m and was 

configured at one location in the open Gulf (see Fig. 2.1). This relatively fine vertical 

resolution was used because it was close to that of the BGC-Argo floats (4~6 m in upper 

200 m) and was much higher than the 3D model whose vertical resolution varies from a 

few meters near the surface to about 50 m near at 200 m depth around the 1D station. In 

the vertical direction, the water column was divided into two layers: the turbulent surface 
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layer and a quiescent layer below. A higher diffusion coefficient (𝐾𝑍1 = max(𝐻𝑀𝐿𝐷
2 /

400,10), in unit of m2 day−1) was applied in the turbulent surface layer and a lower 

diffusion coefficient (𝐾𝑍2 = 𝐾𝑍1/2)  was assigned to the quiescent bottom layer. The 

interface between these two layers was determined by the mixed layer depth (𝐻𝑀𝐿𝐷, in unit 

of m), defined as the depth where the temperature was 5oC lower than at the surface, and 

was obtained from daily outputs of the 3D model. The model was integrated in time using 

the Crank-Nicolson scheme for vertical turbulent mixing and an implicit time-stepping 

scheme for the biogeochemical tracers, which were treated identically to the 3D model. 

Some of the biogeochemical parameterizations required input of temperature and solar 

radiation, which were also taken from the 3D model. As the 1D model did not consider 

horizontal and vertical advection, NO3 below 100 m was nudged to that from the 3D base 

simulation with a nudging time scale of 20 days. The 1D model was run for the year 2010 

repeatedly for three cycles, with the first two being model spin-up and the last annual cycle 

used to calculate the misfit between model and observations. 

2.3.4. Parameter optimization method 

The evolutionary algorithm described by Kuhn et al. (2015, 2018) was used to search 

for optimal model parameters by minimizing the misfit between the model and 

observations. The misfit was measured by the following cost function: 

𝐹(𝑝⃗) =  ∑ 𝐹𝑣(𝑝⃗),

𝑉

𝑣=1

                                                                                                                      (2.4) 

𝐹𝑣(𝑝⃗) =
1

𝑁𝑣𝜎𝑣
2

∑(𝑦̂𝑖,𝑣 − 𝑦𝑖,𝑣(𝑝⃗))
2

𝑁𝑣

𝑖=1

,                                                                                       (2.5) 

where 𝑝⃗ represented the parameters vector, V was the number of different observation 

types, 𝑁𝑣  was the number of observations for each variable, 𝐹𝑣(𝑝⃗)  was the misfit for 

observation type 𝑣 measured as the mean-square difference between observations (𝑦̂) and 

corresponding model estimates (𝑦(𝑝⃗)). The cost function 𝐹𝑣(𝑝⃗) was normalized by the 

standard deviation of each variable type (𝜎𝑣) in order to remove the effect of different units. 
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The algorithm is inspired by the rules of natural selection. Following Kuhn et al. 

(2015), an initial parameter population of 30 parameter vectors was randomly generated 

within a predefined range of parameters (see Table 2.1). The model was evaluated for each 

parameter vector and the resulting cost function was calculated. For this initial generation 

and each of the following generations, the half of the population with the lower misfit 

survived into the next generation. The other half was regenerated through a recombination 

of survivors in a process analogous to genetic crossover. In addition, each newly generated 

population was subject to random mutations by multiplying the parameter values by a 

random value between 0 and 2. Parameter values exceeding the predefined range were 

replaced by their corresponding minimum or maximum limits to avoid unrealistic values. 

The above procedure was performed iteratively for 300 generations to reach the minimum 

of the cost function, which corresponded to the optimal parameter set. 

Previous parameter optimization studies have shown that it is difficult to constrain all 

model parameters even for very simple ecosystem models because the information content 

of available observations is typically insufficient (Matear, 1995; Fennel et al., 2001; Ward 

et al., 2010). Here I conducted sensitivity tests to identify the parameters that were most 

sensitive to the available observations and chose a subset of these to be optimized. In the 

base case, all parameters were at their initial guess values obtained from the previous 

literature and some initial tuning (Table 2.1). Then the test cases were run multiple times 

by incrementally changing one parameter at a time to be the minimum; the first, second 

and third quartile; and the maximum of its corresponding range while setting the other 

parameters to their initial guess value (Table 2.1). The sensitivity was measured as the sum 

of a normalized absolute difference between the base case (𝑦𝐵𝑎𝑠𝑒) and the test case (𝑦𝑇𝑒𝑠𝑡)  

𝑄(𝑦, 𝑝⃗) =
1

𝑚
∑

1

𝑛
∑

|𝑦𝐵𝑎𝑠𝑒 − 𝑦𝑇𝑒𝑠𝑡|

𝑦𝐵𝑎𝑠𝑒

𝑛

𝑗=1

𝑚

𝑖=1

,                                                                                  (2.6) 

where m is the number of parameter increments (here 5) and n is the number of base-test 

pairs consisting of all 1D model grid cells throughout the whole simulation period for all 

variables to be compared.  
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Results of the sensitivity analysis are shown in Fig. 2.2, where parameters are ranked 

by sensitivity with respect to chlorophyll (Fig. 2.2a) and the sum of chlorophyll, 

phytoplankton, and POC (Fig. 2.2b). POC is the sum of phytoplankton, zooplankton, and 

small and large detritus. 

 

Figure 2.2. Parameter sensitivities (unit: dimensionless) with respect to (a) chlorophyll and 

(b) the sum of chlorophyll, phytoplankton, and POC. 

 

2.3.5. Parameter optimization experiments 

For the parameter optimization of the 1D model, satellite chlorophyll within a 33 

pixel (12 km12 km) area around the 1D station and monthly climatological profiles from 

the BGC-Argo floats were used. For the climatological profiles, all float profiles in the gulf 

were averaged because the deep Gulf of Mexico is homogenous horizontally and only few 

profiles were available in the immediate vicinity of the 1D station. 
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To assess the effects of the optimization with respect to the different observation types, 

I conducted three groups of experiments in which (A) surface satellite chlorophyll only, 

(B) surface satellite chlorophyll and float profiles of chlorophyll, and (C) surface satellite 

chlorophyll and float profiles of chlorophyll, phytoplankton, and POC were used. For each 

of these three groups, four to five optimizations were conducted, starting with the three 

most sensitive parameters and then adding one more parameter at a time (Table 2.2) guided 

by the sensitivity analysis with respect to the observed variables they used. Specifically, 

groups A and B were based on the sensitivity analysis with respect to chlorophyll, while 

group C was based on sensitivity analysis with respect to the sum of chlorophyll, 

phytoplankton, and POC. Each optimization was replicated four times. The optimization 

with smallest model-data misfit within each group was then used. Prior tests have shown 

that the available observations cannot simultaneously constrain the sinking rates of small 

and large detritus (wSDet and wLDet) because an increase in one parameter can be 

counteracted by a decrease in the other. Therefore, a constant ratio of 0.1 between these 

two parameters (wSDet =0.1wLDet) was imposed based on their prior values and only one 

of the two was optimized. In groups A and B, the aggregation parameter τ was fixed at 0.05 

because prior tests generated unreasonably high values for this parameter.  

I report two different metrics of misfits for these groups of experiments. The first 

metric, which I refer to as the case-specific cost function value, is based on the optimized 

observations in a given experiment and was minimized by the optimization algorithm, i.e. 

𝐹𝐴(𝑝⃗) =  𝐹𝑆𝑢𝑟𝑓𝐶𝐻𝐿(𝑝⃗),                                                                                                                (2.7) 

𝐹𝐵(𝑝⃗) =  𝐹𝑆𝑢𝑟𝑓𝐶𝐻𝐿(𝑝⃗) + 𝐹𝐶𝐻𝐿(𝑝⃗),                                                                                           (2.8) 

𝐹𝐶(𝑝⃗) =  𝐹𝑆𝑢𝑟𝑓𝐶𝐻𝐿(𝑝⃗) + 𝐹𝐶𝐻𝐿(𝑝⃗) + 𝐹𝑃ℎ𝑦(𝑝⃗) + 𝐹𝑃𝑂𝐶(𝑝⃗).                                                   (2.9) 

However, the models with lower case-specific misfit do not necessarily have better 

predictive skill in reproducing the unoptimized observations because of the so-called 

overfitting problem (e.g. the model might be tuned to reproduce optimized observations 

through wrong mechanisms, Friedrichs et al. 2006). To account for this, a second metric 

referred to as the total misfit is given by Eq. 2.9. For group C, the second metric is the same 
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as the case-specific cost function. For groups A and B, the total misfit metric allows me to 

assess improvements in the model’s predictive skill to represent unoptimized fields. 

2.4 Optimization of 1D models 

2.4.1 Observations and base case 

To provide context for the evaluation of the optimization experiments, the 

observations and the base case will be described first. As shown in Fig. 2.3a, the observed 

surface chlorophyll shows a clear seasonality with the high concentrations in winter and 

low concentrations in summer. In the base case, the simulated surface chlorophyll fits 

observations well. Unlike the surface chlorophyll, the observed integrated chlorophyll as 

well as the phytoplankton and POC over the upper 200 m tend to be more constant with 

much less seasonality (Fig. 2.3b-d). This has been reported by Pasqueron de Fommervault 

et al. (2017), who attributed the seasonality of surface chlorophyll to the vertical 

redistributions of subsurface chlorophyll and/or photoacclimation rather than real changes 

in biomass. 

The DCM is a ubiquitous phenomenon in the oligotrophic regions and can form 

independently of the biomass maximum (Fennel and Boss 2003; Cullen 2015). In this 

chapter, I define the DCM depth as where the maximum of subsurface chlorophyll is. 

Observations detect a predominant DCM at around 60-100 m depth throughout the whole 

year, with a sharp deepening in June and gradual shoaling after July (Fig. 2.3e), reflecting 

the seasonality of the solar radiation. Unlike the large variability in the depth of the DCM, 

its magnitude is relatively constant at around 0.62 mg m-3 (Fig. 2.3f). In the annually 

averaged profiles, the observed DCM is located at about 80 m depth with a concentration 

of 0.52 mg m-3 (Fig. 2.4a). The base case succeeds in reproducing the DCM at 65±7 m 

depth. However, it fails to reproduce the deepening of the DCM in June, and the simulated 

annually averaged depth of DCM is shallower by about 15 m than the observed. The 

simulated magnitude of the DCM is about 2-fold larger than the observed (Fig. 2.3f and 

Fig. 2.4a), and hence the base case generally overestimates vertically integrated 

chlorophyll (Fig. 2.3b). 
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Figure 2.3. Annual cycle of surface chlorophyll (a), vertically integrated chlorophyll (b), 

vertically integrated phytoplankton (c), vertically integrated POC (d), and the depth (e) and 

magnitude (f) of the DCM from observations (black dots with error bars); the base case 

(black lines); the experiment A (orange lines; only satellite surface chlorophyll is used), B 

(yellow lines; satellite surface chlorophyll and float profiles of chlorophyll are used), and 

C (blue lines; all available observations are used). Chlorophyll, phytoplankton, and POC 

are integrated over the top 200 m. Black error bars represent the interquartile range of 

observations. 

With respect to phytoplankton and POC, the observed maximum concentration occurs 

at about 60 m depth, which is 20 m above the DCM (Fig. 2.4b-c). The observed vertical 

distributions of phytoplankton and POC are not well captured by the base case. For 

example, phytoplankton and POC in the upper layer are overestimated with the model-data 

discrepancies exceeding the variability of the observations (Fig. 2.4b-c). As a result, the 

base case yields an overall overestimation of the vertically integrated phytoplankton and 

POC (Fig. 2.3c-d). 
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Figure 2.4. Observed (black dots with error bars) and simulated (colored lines) vertical 

profiles of chlorophyll, phytoplankton, and POC. Black errors represent the interquartile 

range of observations. The solid and dashed black lines in (a) represent the median values 

of mixed layer depth from July and December. 

Figure 2.4b also shows that both observed and simulated phytoplankton approach zero 

at about 160 m depth. Unlike phytoplankton, the observations show that the POC 

concentrations are 19 mg C m-3 at about 200 m depth because of the existence of detritus, 

or zooplankton, or both (Fig. 2.4b, c). However, the base case fails to reproduce this non-

zero POC concentrations, indicating that the model might be underestimating the carbon 

export fluxes at 200 m. 

2.4.2 Results of the optimizations 

2.4.2.1 Model-data misfits 

The case-specific cost function values and total misfits for the different 1D 

optimizations are shown in Fig. 2.5. Not surprisingly, all optimizations result in a reduction 

of the case-specific cost function values. The extent of the reductions depends on the 

specific subset of parameters that were optimized. However, the total misfits are not 

reduced in all optimizations. Optimizations A1 and A2 lead to slightly larger total misfits 
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than the base case, and optimization B2 leads to a significantly larger total misfit. The 

smallest total cost function values are achieved in A4, B4, and C4, i.e., in the experiments 

where a larger subset of parameters was optimized (six parameters). The optimal parameter 

sets (A4, B2, and C4), which are selected based on case-specific misfit from these three 

groups, will be used in subsequent analyses and hereafter are denoted simply as experiment 

A, experiment B, and experiment C. Further comparisons are presented below to assess the 

impact of the different combinations of observations.  

 

Figure 2.5. The case-specific cost function values (a-c) and total misfits (d) of the base 

case and the different optimizations. 

2.4.2.2 Experiment A: satellite chlorophyll only 

The optimal parameters (Table 2.2) from experiment A yield a 58% reduction in the 

misfit for surface chlorophyll (Fig. 2.5d). However, the vertical structure of chlorophyll 

deteriorates relative to the base case (Fig 2.4a) because of inappropriate estimates of the 

initial slope (α=0.0101; see Table 2.2) and the maximum ratio of chlorophyll to carbon 

(θmax=0.0191; see Table 2.2). The annually averaged depth of the DCM is lifted up to 

around 30±10 m and the magnitude of DCM strongly decreases (Figs. 2.3a and 2.4b). 

Similar to chlorophyll, these deteriorations also manifest in the vertical phytoplankton and 
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POC distributions (Fig. 2.4b-c). As a result, experiment A underestimates vertically 

integrated chlorophyll, phytoplankton, and POC (Fig. 2.3b-d).  

Table 2.2. The best fit of parameter set for each optimization experiment. Dashed lines 

represent these parameters are not included in the parameter optimization and use their 

prior values. The optimal optimization A4, B2, and C4 which are further discussed and are 

denoted simply as experiment A, B, and C are highlighted as bold. 

  wPhy mP kNH4 τ θmax α wLDet 

1D model 

Base  0.1000 0.0750 0.5000 0.1000 0.0535 0.1250 1.000 

A1 0.0608 0.0100 1.5000 -- -- -- -- 

A2 0.6863 0.0100 0.0195 -- 0.0169 -- -- 

A3 1.6567 0.1978 0.1004 -- 0.0250 0.0219 -- 

A4 0.9468 0.0737 0.2454 -- 0.0191 0.0101 4.9694 

3D model A  0.9468 0.0737 0.0100 -- 0.0191 0.0101 4.9694 

1D model 

B1 0.2863 0.0983 1.5000 -- -- -- -- 

B2 0.4217 0.0130 0.0300 -- 0.0158 -- -- 

B3 2.1016 0.0176 1.5000 -- 0.0346 0.0079 -- 

B4 0.0090 0.0100 1.5000 -- 0.0361 0.0405 8.3514 

3D model B 0.4217 0.0130 0.0100 -- 0.0158 -- -- 

  wPhy rLD mP τ kNH4 wLDet θmax 

1D model 

Base 0.1000 0.1000 0.0750 0.1000 0.5000 1.0000 0.0535 

C1 1.9231 0.2500 0.1805 -- -- -- -- 

C2 0.9755 0.2500 0.0100 1.1402 -- -- -- 

C3 0.4071 0.0630 0.0100 1.8531 0.0070 -- -- 

C4 0.0090 0.0050 0.0634 0.0995 0.0431 5.6623 -- 

C5 0.0090 0.2245 0.0100 0.6451 1.5000 2.5202 0.0614 

3D model C 0.0090 0.0050 0.0634 0.0500 0.0100 5.6623 -- 

 

2.4.2.3 Experiment B: satellite chlorophyll and chlorophyll profiles 

Due to the addition of observed chlorophyll profiles to the optimization in experiment 

B, the misfits for surface and subsurface chlorophyll decrease relative to the base case (Fig. 

2.5d), but the reduction in the misfit for surface chlorophyll (38%) is smaller than that in 
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experiment A (58%). A straightforward interpretation is that the addition of subsurface 

observations reduces the model’s degrees of freedom to fit one single observation type 

(surface chlorophyll). The vertical profile of chlorophyll is reproduced better in experiment 

B than in the base case and experiment A in that the magnitude of the DCM is closer to the 

observations, although the DCM depth is still too shallow, on average by about 20 m (Fig. 

2.4a). The improvement in the vertical chlorophyll structure results in a better model-data 

fit of vertically integrated chlorophyll (Fig. 2.3b). 

Despite the improvements in chlorophyll, the vertical profiles of phytoplankton and 

POC exhibit a marked deterioration relative to the base case and experiment A (Fig. 2.4b-

c) because the parameter optimization underestimates the maximum chlorophyll-to-carbon 

ratio (θmax =0.0158; see Table 2.2). Experiment B leads to an overestimation of 

phytoplankton and POC relative to the base case with misfits roughly 2.7 and 1.6 times 

larger than those of the base case, respectively (Fig. 2.5d). Although experiment B 

reproduces the non-zero POC concentrations at about 200 m depth, the proportion of 

phytoplankton in the POC pool is incorrect. In contrast to the observations where the 

phytoplankton’s contribution is neglectable (Fig. 2.4), the simulated POC at 200 m is 

dominated by phytoplankton (49%). 

2.4.2.4 Experiment C: all available observations 

Incorporating all observations (i.e., surface chlorophyll and profiles of chlorophyll, 

phytoplankton, and POC) in experiment C improves the model-data misfits for almost all 

aspects except for surface chlorophyll (Fig. 2.3). Although a slight increase in the misfit 

occurs for the surface chlorophyll (~ 5%), the total misfit is reduced by 75% compared to 

the base case. As shown in Fig. 2.4a, the annually averaged depth of DCM of 80 m 

coincides with the observed DCM, primarily because experiment C reproduces the 

deepening of the DCM in summer. The magnitude of the DCM is also decreased relative 

to the base case but remains higher than the observed. Phytoplankton and POC profiles 

exhibit only minor deviations from the observations (Fig. 2.4b-c). Importantly, experiment 

C reproduces the non-zero POC concentrations at 200 m. In contrast to experiment B, 

phytoplankton in experiment C drops to zero at about 160 m and POC is dominated by 

detritus (85%), which is more consistent with the observations. 
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2.4.3 Simulated carbon fluxes 

Annually averaged carbon fluxes within the upper 200 m are shown for each 

experiment in Fig. 2.6. The primary production in the base case amounts to 0.78 g C m-2 

day-1, of which 37% is consumed by zooplankton, and the remaining 63% flows into 

detritus pools through sloppy feeding, mortality, and aggregation of phytoplankton. As for 

the production of detritus, contributions from the phytoplankton and zooplankton pools 

account for 70% and 30%, respectively. Most of the produced detritus is recycled into the 

nutrient pool fueling recycled primary production, and only a small fraction is removed 

from the upper layer through gravitational sinking. As a result, carbon export, which is 

estimated as the sum of sinking fluxes by phytoplankton and detritus, is only 0.00032 g C 

m-2 day-1 and accounts for 0.04% of primary production. 

 

Figure 2.6. Annually averaged carbon fluxes integrated over the upper 200 m (unit: g C 

m-2 day-1) for the base case (a) and optimized experiments A, B, and C. The N, P, Z, and 

D stand for the pools of nutrient, phytoplankton, zooplankton, and the sum of small and 

large detritus, respectively. The thickness of arrows scales with the magnitude of fluxes. 

Dashed arrows represent fluxes lower than 0.01 g C m-2 day-1. 
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Due to the underestimation of phytoplankton in experiment A, primary production is 

reduced to 0.21 g C m-2 day-1 in that case. All other fluxes in the top 200 m decrease relative 

to the base case as well, except for the export flux which increases to about 0.8% of primary 

production. This relative increase in export is the result of larger sinking rates of 

phytoplankton and detritus (wPhy=0.95, wLDet =4.97; see Table 2.2) than those used in the 

base case. 

In contrast to experiment A, experiment B yields an increase of primary production 

relative to the base case. The proportion of the grazing flux to primary production and the 

contribution of zooplankton to the production of detritus also increase to about 59% and 

52%, respectively. Unlike in the other three experiments, carbon export in experiment B is 

dominated by the sinking of phytoplankton, reflecting its large contribution to POC at 200 

m. Although the simulated POC concentration at 200 m is very close to the observations, 

the relative contributions of phytoplankton, zooplankton, and detritus are problematic and 

likely do not result in a better estimation of carbon export (in this case 0.3% of primary 

production). 

In experiment C, primary production is 0.30 g C m-2 day-1, with 24% flowing to 

zooplankton. The mortality of zooplankton causes a flux of 0.047 g C m-2 day-1 to detritus, 

which accounts for 17% of the production of detritus. Finally, about 24% of primary 

production is removed from the upper 200 m through gravitational sinking. The simulated 

export ratio of 24% is within the wide range of reported export ratios, from 6% to 43%, at 

120 m depth in the Gulf of Mexico (see Table 3 of Hung et al., 2010). Despite the high 

degree of uncertainty that exists when estimating export ratios (e.g., the global mean export 

ratio varies from ~10% Henson et al., 2012; Lima et al., 2014; Siegel et al., 2014 to ~20% 

Henson et al., 2015; Laws et al., 2000), it is obvious that only experiment C reproduced an 

export ratio of a reasonable magnitude. A more detailed validation of primary production 

and export fluxes will be presented in the following sections.  

2.5 Three-dimensional biogeochemical model 

The optimal parameter sets from the 1D optimizations of A, B, and C were applied in 

the 3D model for the whole GOM for five years (2011-2015). The performance of the 3D 
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model can be regarded as a cross-validation of the parameters optimized in 1D at different 

times and locations. It is possible that the optimization algorithm has modified parameters 

to compensate for biases between 1D and 3D simulations, e.g., the absence of advection in 

1D model as well as the differences in the model domain, model period, and model 

resolution, that degrades the 3D model performance (Kane et al., 2011). Indeed, directly 

applying the optimal parameter sets from the 1D version to the 3D model yields lower 

model-data agreement than the 1D counterpart but preserves the most important features 

well. For instance, when the resulting parameters are used in the experiment C, chlorophyll 

concentrations in the upper layer were lower in the 3D model and farther away from the 

observations. However, the DCM depth and the non-zero POC concentrations at 200 m 

with appropriate contributions from each component are well reproduced in the 3D model. 

I therefore performed a few manual tests and made the following modifications to the 

optimized parameters to bring the model-data agreement of 3D model in better alignment 

with that of 1D version (Table 2.2): the half-saturation for NH4 uptake (kNH4) was decreased 

to 0.01 in experiment B and C, and the aggregation parameter (τ) was decreased to 0.05 in 

the experiment C. 

 

2.5.1 Spatial patterns of surface chlorophyll 

First, the annual climatological surface chlorophyll from satellite and model are 

compared from 2011 to 2015. The satellite estimates show high chlorophyll in the coastal 

regions and low chlorophyll in the deep ocean (Fig. 2.7a). This spatial pattern of surface 

chlorophyll is well reproduced in all simulations except in experiment A, which even fails 

to reproduce the relatively high chlorophyll near the Mississippi-Atchafalaya River 

systems because of the high sinking rate of phytoplankton (wPhy=0.95; see Table 2.2). The 

largest model-data differences occur in the coastal regions, where all simulations 

underestimate the observed surface chlorophyll. Since all BGC-Argo floats operated in the 

deep ocean (Fig. 2.1) and the parameter optimization is performed at one central station 

without any influence from coastal environments, only the model results in the deep ocean 

(depth > 1000 m) will be considered in the following discussion. 
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Figure 2.7. Spatial distributions of the annual mean chlorophyll in the surface layer from 

the satellite (OC-CCI) climatology (2011-2015) and the different model versions. The gray 

contours mark the bathymetric depths of 200 and 1000 m. 

2.5.2 Subsurface distributions 

Figure 2.8 shows the seasonal cycles of surface chlorophyll as well as the vertically 

integrated chlorophyll, phytoplankton, and POC within the deep ocean (depth > 1000 m). 

Analogous to the 1D models, chlorophyll, phytoplankton, and POC were integrated over 

the upper 200 m. Here again the whole deep ocean was averaged because it is homogenous 

horizontally. In addition, I compare surface chlorophyll with satellite estimates in two sub-

regions from the Mississippi Delta and the central Gulf in Fig. B.5.  

Comparisons of vertical profiles between observations and model results are given in 

Fig. 2.9. In general, the main features in the 3D models are very similar to those in 1D. 

Experiment A cannot constrain the vertical profiles of chlorophyll because of the 

inappropriate estimation of initial slope (α), experiment B overestimates phytoplankton and 

its contribution to POC since the maximum ratio of chlorophyll to carbon (θmax) is weakly 

constrained, and experiment C shows significant improvements in the model-data 

agreement.  
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Figure 2.8. Observed and simulated seasonal cycles of surface chlorophyll (a), vertically 

integrated chlorophyll (b), vertically integrated phytoplankton (c), and vertically integrated 

POC (d) from each 3D model. Solid lines represent the median values over the deep ocean 

of GOM (depth > 1000 m). Error bars and shades show the 25% and 75% percentiles. 

Chlorophyll, phytoplankton, and POC are integrated over the top 200m.  

Additional comparisons of the chlorophyll-to-carbon ratio, primary production, and 

carbon export fluxes from 1D and 3D models with observations are given in Fig. 2.10. The 

chlorophyll-to-carbon ratio is estimated as the vertically integrated chlorophyll divided by 

phytoplankton in the upper 200 m (Fig. 2.10a). As an important indicator of phytoplankton 

physiological status (Geider 1987), the observed chlorophyll-to-carbon ratio varies 

considerably in response to the ambient environment. In general, the ratios derived from 
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the 3D models are lower than their corresponding 1D values, but the differences are still 

within the range of variability. Without utilizing the observations of phytoplankton and 

POC, experiments A and B in both the 1D and the 3D versions underestimate the 

chlorophyll-to-carbon ratio. In experiment C, the simulated chlorophyll-to-carbon ratios 

from 1D and 3D are in good agreement with the observations although the observed 

variability is underestimated.  

 

Figure 2.9. Observed and simulated vertical profiles of chlorophyll, phytoplankton, and 

POC from each 3D model.  
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Figure 2.10. Comparisons of the chlorophyll-to-carbon ratio (a), primary production (b), 

and carbon export fluxes (c) between the 1D and 3D models.  

For reference, satellite-based primary production (PP) is provided by two algorithms, 

the Vertically Generalized Production Model (VGPM, Behrenfeld and Falkowski, 1997) 

and the Carbon-based Productivity Model (CbPM, Westberry et al., 2008). As shown in 

Fig. 2.10b, satellite-based PP differs depending on the algorithm applied. PP results from 

all 3D simulations which were integrated down to 200 m are qualitatively similar to the 1D 

simulations. Experiment C provides the best estimates of PP when compared to satellite-

based estimates from VGPM and CbPM, both in 1D and 3D. 

The base case and experiments A and B yield carbon export fluxes smaller by 1 to 2 

orders of magnitude than experiment C. Thus, only experiment C from the 1D and 3D 

models are shown in Fig. 2.10c in comparison to observations from sediment traps (see 

Appendix B). The carbon export fluxes at 200 m from the 1D and 3D are similar in 

magnitude although the 1D model yields higher fluxes and larger variability. Despite the 

scarcity of carbon export observations in the GOM, the model estimates are within the 

range of observations down to ~1600 m and capture the observed declining trend of carbon 

export with depth. 

In summary, all the results above demonstrate the feasibilities of using the locally 

optimized parameters from the 1D model to improve the 3D simulation. In addition, by 

incorporating all available observations (i.e., surface chlorophyll from satellite estimates, 
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profiles of chlorophyll, phytoplankton, and POC from bio-optical floats), experiment C 

cannot only simulate the biogeochemical processes well in the upper 200 m, but also 

reproduce the carbon export flux and its associated attenuation in the deep ocean (200-

1600m) of the GOM.  

2.6 Discussion 

2.6.1 Trade-offs between different observations for parameter optimization 

The results of the optimization experiments vary dramatically depending on how many 

observation types are used. Using only satellite surface chlorophyll in experiment A 

succeeds in reducing the misfits of surface chlorophyll, but at the expense of the vertical 

structure since the predominant DCM disappears in experiment A. Satellite surface 

chlorophyll alone cannot constrain several vital parameters, including the initial slope of 

the productivity-irradiance curve (α) and the maximum ratio of chlorophyll to carbon 

(θmax), with confidence. This result highlights the importance of subsurface observations 

for parameter optimization and similarly for model validation.  

The floats provide valuable subsurface observations, but chlorophyll profiles alone are 

not sufficient for parameter optimization. In experiment B, the addition of chlorophyll 

profiles leads to significant improvements in vertical chlorophyll distributions; however, 

the profiles of phytoplankton and POC deteriorate largely because the maximum ratio of 

chlorophyll to carbon (θmax) is poorly constrained. Using estimates of phytoplankton 

biomass and POC derived from backscatter measurements in experiment C yields the best 

estimation of plankton-related state variables and carbon fluxes (i.e., primary production 

and carbon export). Only in this experiment do the improvements obtained from 

observations in the upper 200 m extend to the deep ocean as reflected in the improved 

carbon export estimates below 1000 m. 

It should be noted, however, that degradation of unoptimized variables did not occur 

in all optimizations within experiments A and B. In some cases, the unoptimized fields 

were improved. For example, the A2 optimization yields a 69% reduction in the misfit for 

subsurface chlorophyll (Fig. 2.5d) and large improvements of chlorophyll profiles (Fig. 

B.6a) even though no observations of subsurface chlorophyll are used. Another example is 
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that B1 optimization improves simulations of phytoplankton and POC (Fig. 2.5d and Fig. 

B.6b-c) through the correlations between the observed chlorophyll and phytoplankton (R2 

= 0.69) and POC (R2 = 0.69). Similar findings have been reported in Prunet et al. (1996b), 

where the improvements of chlorophyll profiles within the mixed layer were obtained by 

using surface chlorophyll in a 1D model. In a more recent study by Xiao and Friedrichs 

(2014a), where satellite data was used, subsurface fields were improved in addition to 

surface fields.  

In optimizations A2 and B1, the improvement in unoptimized fields occurred because 

the poorly constrained parameters were not optimized but well defined coincidently (α = 

0.125 in the optimization A2 and θmax= 0.0535 in the optimization B1; see Table 2.2). 

Including the poorly constrained parameters into the parameter optimization can return a 

lower misfit with respect to the observations used in optimization but increases the risk of 

overfitting and reduces the model’s predictive skill, i.e., the ability to simulate unoptimized 

observations and those collected at different locations and times. This is consistent with 

previous studies (Friedrichs et al. 2006, 2007; Ward et al. 2010). For example, Friedrichs 

et al. (2006) optimized three ecosystem models of different complexities against three 

seasons of observations, and the resulting parameters were used to quantify the predictive 

skill for the fourth season. Cross-validation showed that exclusion of the poorly constrained 

parameters from the optimization increased the predictive skill. 

Although prior knowledge of the parameters allows one to exclude those poorly 

constrained ones from the optimization and thus can prevent degradation in unoptimized 

variables, most parameters are poorly known. Thus, the ultimate resolution of this issue 

should be to increase availability of observations so that more parameters can be 

constrained with confidence. In addition, even if the poorly constrained parameters are 

well-known, a lack of observations hampers our ability to recognize improvements in the 

model’s predictive skill and hence may prevent us from identifying the optimal solutions. 

For example, without the observations of phytoplankton and POC, I could not have known 

that optimization B1 improved simulations of phytoplankton and POC, let alone that the 

optimization B1 was a better solution than the optimization B2 (the experiment B) in terms 

of the lower total misfit as shown in Fig. 2.5d.  
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It has been suggested that when performing a parameter optimization not only 

parameter values but also parameter uncertainties should be taken into account (Fennel et 

al., 2001; Ward et al., 2010; Bagniewski et al., 2011). The parameter uncertainties can be 

assessed by performing an uncertainty analysis (Prunet et al. 1996b; a; Fennel et al. 2001), 

replicating the parameter optimization (Ward et al. 2010), and cross-validating the resulting 

parameters (Xiao and Friedrichs 2014a). In this chapter, a cross-validation of the 

parameters was conducted by evaluating the model’s predictive skill with respect to 

different variables, times, and locations. However, even when cross-validation at different 

times and locations produces large misfits, I cannot conclude that the models reproduce 

observations through wrong mechanisms. This is because the large misfit can be a result 

of intrinsic heterogeneity of biological parameters at different times (Mattern et al. 2012) 

and locations (Kidston et al. 2011). Therefore, it is important to evaluate the predictive skill 

of unoptimized variables.  

Collectively, the discussion above highlights the values of BGC float data for 

parameter optimization and model validation, not only because of their high spatiotemporal 

coverage but also their ability to measure multiple properties simultaneously.   

 

2.6.2 Feasibilities of applying the local optimized parameters to 3D models 

As the high computational cost makes direct optimization for a 3D biogeochemical 

model impractical, I performed parameter optimizations first in a 1D surrogate model with 

the same biogeochemical component as the 3D model. However, there are some difficulties 

in porting the locally optimized parameters to the basin-scale model.  

Firstly, the 1D model necessarily neglects advection and inevitably differs from the 

3D model, e.g., in model domain and model resolution. The optimized parameters from the 

1D model may have been adjusted to compensate for biases between 1D and 3D models, 

and, as a result, this may degrade the 3D simulations (Kane et al. 2011). Although counter 

examples also exist where the 3D simulations outperform the 1D models with respect to 

vertical profiles of phytoplankton and nitrate (Hoshiba et al. 2018), some manual 

modifications might be necessary before the optimal 1D parameters can be applied in the 

3D model. In this chapter, despite some degradations in 3D simulations, the benefits of the 
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1D optimization were mostly preserved in the 3D simulations. This greatly simplified the 

following subjective tuning of the 3D model by limiting the number of parameters that 

needed to be adjusted and confirmed the feasibility of improving the 3D model by 

optimizing a 1D surrogate.  

Secondly, the spatial heterogeneity of parameters (e.g., Kuhn and Fennel 2019) is 

another issue that influences the portability of parameters from 1D to 3D models. For 

example, the underestimation of surface chlorophyll in the coastal regions may result from 

the contrasting ecosystem functioning between coastal regions and deep ocean, whereby 

the highly productive continental shelf in the northern GOM is fueled by the large nutrient 

load from the Mississippi and Atchafalaya River systems with primary production being 

as high as 4 g C m-2 day-1 near the Mississippi River delta (Fennel et al. 2011), while the 

deep ocean is oligotrophic and nutrient limited with the primary production ranging from 

0.2 to 0.5 g C m-2 day-1 (see Fig. 2.10). In some studies, the parameter optimization has 

been performed at several contrasting stations with a goal of using different parameter sets 

in different regions of the 3D model (Hoshiba et al. 2018). In other studies different stations 

were optimized simultaneously to obtain one single optimized parameter set (Schartau and 

Oschlies 2003; Oschlies and Schartau 2005; Kane et al. 2011). Such parameters 

compromise the misfit in each single station but take into account all stations and can often 

yield an overall better simulation of all these stations as shown by, e.g., Kuhn and Fennel 

(2019).  

 

2.7 Conclusions 

In this chapter, I have performed parameter optimization for a 1D biogeochemical 

model and then used the resulting parameters with a few modifications to generate 

simulations with a corresponding 3D model in the GOM. Three experiments have been 

conducted by using different combinations of observations (surface chlorophyll from 

satellite estimates, vertical profiles of chlorophyll, phytoplankton biomass and POC from 

BGC Argo floats) in order to examine the trade-offs between the different observations for 

parameter optimization. Two misfit metrics have been defined using the case-specific 
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misfit and the total misfit to measure the models’ abilities to reproduce the optimized and 

unoptimized observations. 

Model results show that satellite surface chlorophyll alone cannot reproduce well the 

vertical structures in a biogeochemical model unless profile observations are used in 

addition. BGC Argo floats are an excellent platform for obtaining such observations at high 

spatiotemporal coverage and for a relatively broad suite of parameters. Only adding 

chlorophyll profiles is not sufficient because they fail to constrain the ratio of chlorophyll 

to phytoplankton, but the addition of backscatter, which allows estimation of 

phytoplankton biomass and POC, enables us to constrain the subsurface carbon state 

variables and reproduce PP and carbon export fluxes to below 1000 m depth well. Finally, 

the 3D model was improved and reproduced similar results to the 1D version, which is 

promising for the application of parameter optimization. 
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CHAPTER 3                                                                                                

CAN ASSIMILATION OF SATELLITE OBSERVATIONS 

IMPROVE SUBSURFACE BIOLOGICAL PROPERTIES IN A 

NUMERICAL MODEL? A CASE STUDY FOR THE GULF OF 

MEXICO2 

3.1 Introduction 

Given the multiple and increasing pressures of ocean warming, acidification, 

deoxygenation, and changes in primary productivity on ocean ecosystem health, accurate 

model simulations are urgently needed to assess past and current states of marine 

ecosystems, forecast future trends, and predict the ocean’s response to different scenarios 

of climate change and management policies. In practice, numerical models are imperfect 

representations of the natural system, and their accuracy is limited by many factors 

including insufficient model resolution, inaccuracies in discretization schemes and model 

formulations, parameterization of unresolved processes, and uncertainties in model inputs. 

Data assimilation is a practical approach used to compensate for these model deficiencies. 

It is a statistical method to interpolate and extrapolate sparse observations into the regular 

model space in a dynamically consistent way. Its success critically depends on well-

resolved observations. While any practice to constrain a model by observations can be 

referred to as data assimilation, in this chapter I specifically refer to state estimation, i.e., 

sequential updates of the model state. 

Data assimilation is well developed in physical oceanography (Edwards et al. 2015) 

but less mature in biogeochemical ocean modelling, largely due to insufficient observations 

(Fennel et al. 2019). Thus far, satellite data on ocean color (e.g. chlorophyll) have been the 

                                                           
2 Based on: Wang, B., Fennel, K., and Yu, L.: Can assimilation of satellite observations improve subsurface 

biological properties in a numerical model? A case study for the Gulf of Mexico, Ocean Sci., 17, 1141–1156, 

https://doi.org/10.5194/os-17-1141-2021, 2021. 
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major source of observations to be assimilated (e.g., Ford and Barciela, 2017; Gregg, 2008; 

Hu et al., 2012; Mattern et al., 2013; Pradhan et al., 2019; Teruzzi et al., 2018) because of 

their relatively high resolution and routine availability. More recent advances have focused 

on the incorporation of other satellite-derived products including size-fractionated 

chlorophyll (e.g., Ciavatta et al., 2018, 2019; Pradhan et al., 2020; Skákala et al., 2018) and 

optical properties (e.g., Ciavatta et al., 2014; Gregg and Rousseaux, 2017; Jones et al., 

2016; Shulman et al., 2013; Skákala et al., 2020). However, these measurements are limited 

to the surface ocean and provide little information about the subsurface and ocean interior. 

In addition, it has been acknowledged that assimilating satellite data of ocean color often 

fails to improve and even degrades simulation of unobserved biological variables (Fontana 

et al. 2013; Ford and Barciela 2017; Ciavatta et al. 2018; Skákala et al. 2018; Teruzzi et al. 

2018). Problems also remain in accounting for the co-dependencies or covariances between 

biological variables. For instance, Fontana et al. (2013) found subsurface nitrate was barely 

impacted by assimilating the satellite surface chlorophyll because of its weak correlations 

with surface chlorophyll. Although BGC-Argo floats may ultimately provide us with 

abundant subsurface measurements of multiple key biogeochemical properties 

(Biogeochemical-Argo Planning Group 2016; Roemmich et al. 2019; Chai et al. 2020), the 

profiling observations will likely remain insufficient for three-dimensional data 

assimilation for a number of years, making satellite data the main observation streams for 

sequential data assimilation in biogeochemical models (Ford 2021). 

The insufficient availability of subsurface and interior ocean biogeochemical 

observations is reflected not only in the immaturity of biogeochemical data assimilation 

but also its skill assessment. When compared with the surface, the subsurface has received 

less attention in skill assessments of biogeochemical data assimilation systems. Although 

there have been studies that compared vertical structures with in situ observations and/or 

climatological datasets (e.g., Fontana et al., 2013; Ford and Barciela, 2017; Mattern et al., 

2017; Ourmières et al., 2009; Teruzzi et al., 2014), these validations were often limited to 

low spatiotemporal resolution. The recent growth of autonomous observation systems, 

especially BGC-Argo floats and gliders, make it possible to evaluate biogeochemical data 

assimilation systems below the surface in high resolution (e.g., Cossarini et al., 2019; Salon 

et al., 2019; Skákala et al., 2021; Verdy and Mazloff, 2017). 
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 Finally, since physical processes affect biological properties through advection and 

diffusion of biological tracers as well as some temperature-dependent biological activities 

(e.g., phytoplankton growth), deficiencies in biological models can arise from imperfect 

simulation of the physics (Doney 1999; Oschlies and Garçon 1999; Doney et al. 2004). 

Although there have been studies demonstrating a positive effect of physical data 

assimilation on biological properties (Ourmières et al. 2009; Fiechter et al. 2011), often 

this approach degrades biological distributions because of elevated vertical velocities and 

violation of consistency between physical and biological properties (Anderson et al. 2000; 

Raghukumar et al. 2015; Yu et al. 2018). To address these issues, joint assimilation of 

physical and biological observations (Song et al. 2016a; b) or multivariate updates based 

on the cross-covariances between physical and biological properties (Yu et al. 2018; 

Goodliff et al. 2019) have been suggested. 

In this chapter, a multivariate physical-biological data assimilation scheme is applied 

to a coupled physical-biological model in the Gulf of Mexico. The rationale for choosing 

the Gulf of Mexico is that the dominant circulation, including the Loop Current and its 

associated mesoscale eddies, is stochastic and can influence the subsurface biological 

distributions, e.g., deep chlorophyll maximum (Pasqueron de Fommervault et al. 2017). In 

addition, I test how data assimilation impacts depend on model calibration when using two 

alternative light parameterizations. By comparing forecast results from the assimilative 

model with independent observations from five BGC-Argo floats which are not assimilated 

but used in a priori tuning of the biogeochemical model, I rigorously evaluate whether the 

main biological observation stream (satellite estimates of surface chlorophyll) in 

combination with physical observations (satellite estimates of sea surface height and sea 

surface temperature) can inform the 3D ocean distributions in high spatial and temporal 

resolution. 

3.2 Tools and methods 

3.2.1 Coupled physical and biological model 

The coupled physical and biological model used in this chapter is based on the 

Regional Ocean Modeling System (ROMS; Haidvogel et al., 2008) configured in the Gulf 

of Mexico (red rectangle in Fig. 3.1 shows the model domain) with a horizontal resolution 
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of ~ 5 km and 36 vertical sigma levels (Yu et al. 2019; Wang et al. 2020). The model used 

a multidimensional positive definitive advection transport algorithm (MPDATA; 

Smolarkiewicz and Margolin, 1998) to solve the horizontal and vertical advection of 

tracers, a Smagorinsky-type formula (Smagorinsky 1963) to parameterize horizontal 

viscosity and diffusivity, and the Mellor-Yamada 2.5-level closure scheme (Mellor and 

Yamada 1982) to calculate the vertical turbulent mixing. Atmospheric forcing is provided 

by the European Centre for Medium-Range Weather Forecast ERA-Interim product ( 

ECMWF reanalysis; Dee et al., 2011) with a horizontal resolution of 1/8o (approximately 

12 km14 km) to calculate the surface wind stress as well as the net heat fluxes and 

freshwater fluxes. 

The biological model uses a nitrogen-based model (Fennel et al. 2006) to simulate 

transportation and transformation of seven pelagic variables, i.e., nitrate (NO3), ammonium 

(NH4), chlorophyll (Chl), phytoplankton (Phy), zooplankton (Zoo), small detritus (SDeN), 

and large detritus (LDeN). As a separate state variable, chlorophyll accounts for 

photoacclimation based on Geider et al. (1997). In the coupled model, the biological tracers 

are advected and diffused as part of the 3D circulation but provide no feedback to the 

physical model. Biological parameters are from the parameter optimization study of Wang 

et al. (2020) except that the half-saturation constant of nitrate was subjectively re-tuned 

based on the BGC-Argo floats data from 0.5 mmol N m-3 to about 1.4 mmol N m-3 because 

the previous model underestimated the nitrate in the euphotic zone.  
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Figure 3.1. Bathymetric map of the Gulf of Mexico with a schematic pattern of the Loop 

Current (black curve with arrows) and Loop Current eddies (black circle with arrows). 

Trajectories of five BGC- Argo floats (colored lines) in 2015 are also shown in the figure. 

The model domain is represented by the red rectangle.  

        The coupled model receives freshwater and nutrients inputs from the Mississippi-

Atchafalaya River systems, which are specified by the daily measurements from the US 

Geological Survey river gauges and those from other major rivers that utilize the 

climatological estimates (Xue et al. 2013). To ensure a dynamically consistent biological 

field, a 1-year spin-up is performed in 2014 wherein the physical model is initialized from 

the output of the 1/12o data-assimilative global HYCOM/NCODA (Chassignet et al. 2005) 

and the biological model starts from a regressed 3D field of nitrate based on its 

climatological relationship with temperature (see Fig. C.1). A semi-prognostic method is 

used during the spin-up period to reduce model drift by replacing model density with a 

linear combination of model and climatological density fields when calculating the 

horizontal pressure gradient (Sheng et al. 2001; Greatbatch et al. 2004). After the spin-up, 

experiments are performed for a year from January 2015 to December 2015. 
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3.2.2 Data assimilation technique 

In this chapter, the data assimilation scheme uses the deterministic formulation of the 

Ensemble Kalman Filter (DEnKF), which was first introduced by Sakov and Oke (2008). 

The approach consists of two steps: (1) the forecast step in which an ensemble of state 

variables is integrated forward in time by the model, and (2) the analysis step in which 

observations are assimilated to update the forecasted ensemble following the Kalman Filter 

equations: 

𝑥𝑎 = 𝑥𝑓 + 𝐾(𝑑 − 𝐻𝑥𝑓),                                                                                                           (3.1) 

K =  𝑃𝑓𝐻𝑇(𝐻𝑃𝑓𝐻𝑇 + 𝑅)−1,                                                                                                     (3.2) 

where 𝑥 represents the model state estimate, 𝑑 represents the available observations, 𝐻 

represents the observation operator mapping the model state onto observations, and 𝐾 

represents the Kalman gain matrix, which is determined by the model error matrix 𝑃 and 

observation error matrix 𝑅 (Eq. 3.2). Superscripts “𝑎” and “𝑓” represent analysis (i.e., 

updated) and forecast (i.e., prior to the update) estimates, and T represents the matrix 

transpose. Unlike the original stochastic EnKF, which updates each ensemble member with 

perturbed observations, the DEnKF updates ensemble mean (𝑥̅) and anomalies (𝐴 = 𝑥 − 𝑥̅ 

) separately without perturbating observations, i.e., the former is updated as in Eq. 3.1 while 

the latter is updated by 

𝐴𝑎 = 𝐴𝑓 −
1

2
𝐾𝐻𝐴𝑓 .                                                                                                                  (3.3) 

More details of the DEnKF can be referred in Sakov and Oke (2008) and Yu et al. (2018). 

The data assimilation framework and configurations are the same as in Yu et al. (2019) 

wherein twin experiments were performed in the same model domain. In this chapter, I 

extend the work to jointly assimilate the physical and biological observations into a coupled 

model. For the sake of keeping the data assimilation experiments computationally 

affordable, I chose an ensemble size of 20 which has been successfully used in previous 

studies including an idealized channel (Yu et al. 2018), the Middle Atlantic Bight (Hu et 

al. 2012; Mattern et al. 2013), and the Gulf of Mexico (Yu et al. 2019). Spurious 



 46 

correlations, which can arise with relatively small ensembles, are avoided here by applying 

a distance-based localization with a radius of 50 km (Evensen 2003). Vertical localization 

is not applied. Ensemble anomalies are inflated by 1.05 in each update step to account for 

unrepresented sources of model uncertainty (Anderson and Anderson 1999). Values of the 

localization radius and inflation factor were determined in Yu et al. (2019). 

In order to account for uncertainties in the model’s initial, boundary and atmospheric 

forcing conditions, and biological parameters, the ensemble is initialized from 20 different 

daily outputs, centered on the initial date of 1 January 2015, from a previous deterministic 

model simulation (as described above in Section 3.2.1) and is forced by open boundary 

conditions, which are lagged by up to ±10 days for the different ensemble members. 

Furthermore, each ensemble member is forced by a perturbed version of the wind forcing. 

Specifically, the wind forcing from the deterministic run is decomposed into empirical 

orthogonal functions (EOFs) and then the first 4 EOFs are perturbed by multiplying random 

numbers with zero mean and variance of 1 as in Li et al. (2016) and Thacker et al. (2012). 

In addition, four sensitive biological parameters, namely the mortality rate of 

phytoplankton, the maximum ratio of chlorophyll to carbon, the grazing rate of 

zooplankton, and the growth rate of phytoplankton at 0 oC, were identified in sensitivity 

experiments. Specifically, a 1D version of model, described in Wang et al. (2020) was run 

multiple times while incrementally perturbing one parameter at a time by factors ranging 

from 0.25 to 1.75 with an increment of 0.25. The four sensitive parameters were selected 

based on the normalized absolute differences between the perturbed and unperturbed run. 

In the data assimilation experiments, these parameters are subject to a Gaussian 

perturbation with a relative variance of 75%, but they are not updated. The parameters are 

resampled from their distributions before each forecast step to prevent some extreme 

parameter values being used throughout the whole data assimilation experiment.  

3.2.3 Observations 

In this chapter, physical and biological observations are jointly assimilated to constrain 

the coupled model. The observations assimilated include sea surface height (SSH), sea 

surface temperature (SST), Argo T-S profiles, and satellite estimates of surface 

chlorophyll.  
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The SSH observations for assimilation are obtained by adding the 1/4o mapped sea 

level anomaly (SLA) from Archiving Validation and Interpretation of Satellite 

Oceanographic Data (AVISO) to a mean dynamic topography (MDT) from Rio et al. 

(2013), and they are adjusted by removing the spatially averaged mismatches between 

assimilated and forecasted SSH to account for differences in reference time between the 

SLA data  (1993-2012) and the coupled model (2015) (Haines et al. 2011; Xu et al. 2012; 

Song et al. 2016a). This is equivalent to assimilating the SSH gradient into the model, as it 

is the only dynamically meaningful quantity for driving the geostrophic component of 

ocean currents and adjusting subsurface thermohaline structures. The SST observations are 

the Advanced Very High Resolution Radiometer (AVHRR; Martin et al., 2012) product 

with a horizontal resolution of 0.01o. Observation errors are specified as 0.02 m for SSH 

and 0.3oC for SST (Song et al. 2016a; Yu et al. 2018, 2019).  

The surface chlorophyll is provided by the Ocean-Colour Climate Change Initiative 

project (OC-CCI; Sathyendranath et al., 2018) at a daily frequency with a spatial resolution 

of 1/24o. However, for the daily chlorophyll field, a large portion of data can be missing 

due to cloud cover and inter-orbit gaps. In 2015 for the Gulf of Mexico, the spatial coverage 

of surface chlorophyll varies from 0 to 63% with a mean coverage of 9.5±9.0%. Hence, to 

increase the availability of observations, an asynchronous data assimilation method (Sakov 

et al. 2010) is applied so that not only the daily records of surface chlorophyll at the date 

of update but also the daily records within the preceding 7 days are assimilated. Errors 

associated with the surface chlorophyll are set to be 35% of the measured concentrations, 

which has been commonly used in previous applications (e.g., Fontana et al., 2013; Ford, 

2021; Ford and Barciela, 2017; Hu et al., 2012; Mattern et al., 2017; Santana-Falcón et al., 

2020; Song et al., 2016b; Yu et al., 2018).  In this chapter, the update is performed on actual 

chlorophyll concentrations because my prior tests showed that it outperforms assimilating 

log-chlorophyll in the open Gulf (with depth >1000 m). There are previous examples in 

which the actual chlorophyll values have been assimilated successfully (e.g., Hu et al., 

2012; Yu et al., 2018) although I note that assimilating the actual chlorophyll values is 

theoretically suboptimal because of their non-Gaussian distribution. 
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Profiling observations are from the International Argo project (hereafter referred to as 

Argo floats) and five BGC-Argo floats, which were funded by the Bureau of Ocean Energy 

Management (hereafter referred to as BOEM floats). In 2015, the Argo floats provided 

nearly 800 T-S profiles extending from the surface to 2000 m depth in the Gulf of Mexico. 

These are treated either as independent observations for model skill assessment or, in the 

DAargo experiment (see Section 3.2.4), assimilated with uncertainties of 0.3oC for 

temperature and 0.01 for salinity. The BOEM floats collected more than 500 profiles of 

temperature, salinity, chlorophyll, and backscatter at a biweekly frequency from 2011 to 

2015, 114 of which were collected in 2015 (see Fig. 3.1 for their locations) and are used as 

independent observations. Backscatter is converted into phytoplankton and particulate 

organic carbon (POC) concentrations following Wang et al. (2020). In the absence of direct 

measurements for nitrate, I estimate it along the BOEM float trajectories based on their 

climatological relationship with temperature (Fig. C.1). 

3.2.4 Simulation strategy 

I performed five 1-year simulations in 2015. The first one is a deterministic model 

simulation without data assimilation (henceforth referred to as Free simulation). The 

second one is an ensemble run assimilating satellite data (SSH, SST, and satellite surface 

chlorophyll) only (henceforth DAsat), and the third one is an ensemble run assimilating 

Argo T-S profiles in addition to satellite data (henceforth DAargo). The calculations (Att 

= 0.04+0.025Chl) used in these three simulations are from literatures (e.g., Fennel et al., 

2006, 2011); the light attenuation coefficient, Att, is strongly determined by water depth 

and not very sensitive to chlorophyll concentrations. The Free run and DAsat run are 

repeated by using an alternative light parametrization (henceforth referred to as Free-alt 

and DAsat-alt simulations, respectively) to evaluate its effect on the data-assimilation 

impact on subsurface biological properties. This alternative light parameterization (Att = 

0.027+0.075Chl1.2) is subjectively tuned based on the BGC-Argo observations and 

emphasizes the self-shading effect of chlorophyll on light attenuation. 

A two-step update is used on a weekly data assimilation cycle in the assimilative 

experiments, in which the physical observations are first assimilated to update both 

physical and biological state variables through the multivariate covariance, and chlorophyll 
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observations are assimilated next to update only biological state variables. Although the 

DEnKF can update all state variables based on their cross-covariance, I limit updates to 

two physical variables (temperature and salinity) and four biological variables (nitrate, 

chlorophyll, phytoplankton, and zooplankton) that are key to the coupled physical-

biogeochemical system. As the circulation features in the open Gulf (the Loop Current and 

its associated mesoscale eddies) are primarily in geostrophic balance, an update of 

temperature and salinity can improve three-dimensional circulation features in large scales 

effectively, as shown in the twin experiments in Yu et al. (2019). All these state variables 

are updated throughout the whole water column, while other variables are adjusted by 

internal model dynamics. 

To evaluate the prediction skill, I calculate the root mean square error (RMSE), the 

bias, and the correlation coefficient (Corr) of the model forecast (M) with respect to 

assimilated and independent observations (O): 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑀 − 𝑂)2                                                                                                      (3.4) 

𝑏𝑖𝑎𝑠 =  
1

𝑁
∑(𝑀 − 𝑂)                                                                                                              (3.5) 

where N represents the number of model-data pairs available. To account for the 

overestimation of nitrate in warm waters, which typically occurs in the euphotic zone (Fig. 

C.1), an unbiased root mean square error (unbiased RMSE) is used to quantify the model-

data misfit of nitrate. 

𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑀 − 𝑂 − 𝑏𝑖𝑎𝑠)2                                                                     (3.6) 
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3.3 Results 

3.3.1 Assimilation impacts on physical properties 

As the biological model provides no feedback to the physical model, the alternative 

light parameterization does not affect physical properties. The physical results from Free-

alt and DAsat-alt runs are thus not displayed in this section.  

 

Figure 3.2. Monthly averaged Loop Current and Loop Current eddies based on the 10 cm 

SSH contour from satellite data (black), the Free run (blue), the DAsat run (orange), and 

the DAargo run (yellow). The gray contours represent the isobaths of 200, 1000, and 3000 

m. 

The dominant circulation features in the Gulf of Mexico, the Loop Current and Loop 

Current Eddies, are assessed by comparing their fronts, defined here as the 10-cm SSH 

contour, from satellite data, the Free run, and two data-assimilative runs (i.e., the DAsat 

and DAargo runs). In the first 2 months, all model estimates of the Loop Current are 

different from satellite observations due to the influence of initial conditions (Fig. 3.2). 
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After March, the SSH field shows a similar northward and westward extension of the Loop 

Current intrusion between two assimilative runs and satellite observations, but large 

deviations from observations remain in the Free run. In addition, all estimates except for 

the Free run reproduce the satellite-observed timing of eddy shedding well, as well as the 

size, shape, and position of Loop Current eddies. 

 

Figure 3.3. Spatial map of root mean square error (RMSE) in the Free run (a, d) and its 

differences between the Free run and the two data-assimilative runs for SSH and SST (b, 

c, e, f). Positive values represent improvements, while negative values represent 

deteriorations by data assimilation. Gray contours represent the 300, 1000, and 3000 m 

isobaths.  

For a more quantitative assessment, the daily output of SSH and SST fields from the 

three runs is compared with the satellite estimates. The spatial distribution of RMSE from 

the Free run and the RMSE changes in two data-assimilative runs are shown in Fig. 3.3. In 

the regions influenced by the Loop Current and Loop Current eddies, this figure shows 

high RMSE for SSH in the Free run (Fig. 3.3a) and large RMSE reductions in two data-

assimilative runs (Fig. 3.3b-c). In contrast, the reductions in SST RMSEs are more spatially 

homogeneous. A summary of the overall RMSE, the bias, and the correlation coefficient 

(Corr) for physical variables from the Free run and two data-assimilative runs are shown 

in Table 3.1. In general, the two data-assimilative runs both significantly improved SSH 

and SST with reduced RMSEs and increased correlation coefficients. Although the two 
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data-assimilative runs tend to underestimate the satellite observations of SST, the bias (-

0.06 oC) is relatively small.  

 

Figure 3.4. Vertical distributions of temperature from BOEM floats, the Free run, the 

DAsat run, and the DAargo run. Gray lines represent isothermal lines with an interval of 2 
oC. Thick black lines represent SSH. The observed SSH is obtained from the matching 

record of altimeter observations. 

The correction of mesoscale features by data assimilation was not limited to the surface 

but extend to the subsurface and even deep waters. Specifically, the two assimilative runs 

corrected the position, the amplitude, and the polarity of mesoscale eddies and hence better 

represented the elevated and depressed thermoclines within these eddies (Fig. 3.4). The 

most noticeable improvement (by 60% - 61%) was witnessed by float 287, which captured 

a newly detached Loop Current eddy with features of high SSH and depressed thermoclines 
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during July and October. In addition, assimilation of Argo T-S profiles in the DAargo run 

led to slight further improvements in the subsurface temperature distributions when 

compared with the DAsat run. For instance, although the DAsat run greatly improved 

subsurface temperature distributions along the trajectory of float 285, an underestimation 

of temperature at a depth of about 200 m remains within the peak of the anticyclonic eddy. 

Corrections imposed by assimilating Argo profiles increased temperature here and 

decreased the bias from observations. These small but localized further improvements can 

also be observed by other floats, e.g., in July-October for float 289 and February for float 

290. 

Table 3.1. The root mean square error (RMSE), bias, and correlation coefficient (Corr) for 

SSH and SST, as well as vertical profiles of temperature and salinity from Argo and BOEM 

floats. Percentages in the parentheses represent the relative reductions in RMSE values. 

Since the spatial and temporal average of mismatch between the modelled and observed 

SSH is removed, the bias of SSH is not shown here. 

 
SSH 

(m) 

SST 

(oC) 

Argo BOEM 

Temp 

(oC) 
salt 

Temp 

(oC) 
salt 

RMSE 

Free 0.17 0.88 1.70 0.22 1.55 0.18 

DAsat 0.08 

(54%) 

0.55 

(37%) 

0.89 

(48%) 

0.14 

(36%) 

0.83 

(46%) 

0.11 

(39%) 

DAargo 0.08 

(54%) 

0.56 

(36%) 

0.86 

(49%) 

0.13 

(41%) 

0.79 

(49%) 

0.10 

(44%) 

Bias 

Free -- 0.00 0.07 0.02 0.26 0.03 

DAsat -- -0.06 0.12 0.02 0.24 0.02 

DAargo -- -0.06 0.06 0.02 0.21 0.02 

Corr 

Free 0.72 0.96 0.96 0.92 0.97 0.95 

DAsat 0.94 0.98 0.99 0.97 0.99 0.98 

DAargo 0.94 0.98 0.99 0.97 0.99 0.98 
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In general, assimilating the satellite data in the DAsat run resulted in large reductions 

in RMSEs of 3D temperature (by 46%-48%; Table 3.1) and salinity (by 36%-39%; Table 

3.1) with respect to Argo floats and BOEM floats (Fig. 3.5). The reductions extend to over 

1000 m and a depth of about 800 m for temperature and salinity, respectively. It should be 

noted again that data from both Argo and BOEM floats are independent in the DAsat run. 

Although assimilating the Argo profiles in the DAargo run only yields marginal further 

improvements in RMSEs of temperature (~ 3%) and salinity (~ 5%), it notably reduces the 

overestimation of temperature that occurs below the surface in the DAsat run (Table 3.1). 

 

Figure 3.5. Vertical profiles of root mean square error (RMSE) for temperature and salinity 

with respect to Argo and BOEM floats. 

 

3.3.2 Assimilation impacts on biological properties 

Assimilating satellite observations in the DAsat run reduced RMSEs of surface 

chlorophyll almost everywhere, with only 3% of the model domain experiencing 
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degradation (Fig. 3.6b). Although large reductions in RMSE were achieved in the coastal 

regions, e.g., in the northern Gulf of Mexico, on Campeche Bank, and in Campeche Bay, 

the simulated chlorophyll concentrations remained much lower than the satellite estimates 

because of high observational uncertainties and a large background misfit in the Free run 

(Fig. 3.6a). This was expected because the biological model was optimized for the open 

Gulf (Wang et al. 2020). Table 3.2 shows the RMSE, the bias, and the correlation 

coefficient for biological variables from the Free run and the data assimilative runs. A 

relative reduction in RMSE equal to or exceeding 10% is considered as a significant 

improvement. In the open Gulf, encompassed by the 1000 m isobath, the overall RMSE of 

surface chlorophyll was reduced by 19% from 0.13 mg m-3 in the Free run to 0.11 mg m-3 

in the DAsat run (Table 3.2). In addition, the correlation coefficient increased from 0.52 to 

0.68. Assimilating Argo T-S profiles in the DAargo run led to lower reductions in the 

overall RMSEs of surface chlorophyll (Table 3.2) and even more deteriorations (Fig. 3.6c). 

 

Figure 3.6. The same as Fig. 3.3 except for surface chlorophyll.  

To evaluate the impacts of data assimilation on subsurface biological properties, the 

temporal evolution of nitrate in different model experiments is shown in Fig. 3.7 in 

comparison to nitrate estimated based on its climatological relationship with temperature. 

The temperature-based nitrate tends to be overestimated in the upper layers (Fig. C.1). 

Because of its high correlation with temperature, the nitrate distribution was modulated in 

the two assimilative runs along with the improvement in temperature fields. For instance, 

the two assimilative runs reproduce the Loop Current eddy observed by float 287 and hence 

capture the depressed thermoclines that are not present in the Free run (Fig. 3.4). At the 

same time, the nitraclines are also depressed and the nitrate concentrations become lower 

within this Loop Current eddy (Fig. 3.7). As a result, the unbiased RMSE of nitrate 
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following this float is reduced by 40% in the DAsat run and 38% in the DAargo run. These 

depressed (upwelled) nitraclines due to the increase (decrease) in SSH by data assimilation 

can also be observed elsewhere, e.g., in August for float 285, in April-July for float 286, 

January-April for float 287, and in August-October for float 290, although the amplitude 

of these mesoscale eddies is smaller. In general, data assimilation improved the overall 

agreement of subsurface nitrate with correlation coefficients and decreased RMSEs by 28% 

and 30% in the DAsat and DAargo runs relative to the Free run (Table 3.2). 

 

Figure 3.7. Vertical distributions of nitrate, which are estimated based on its climatological 

relationship with temperature and modeled by different experiments, superimposed with 

the SSH (thick black lines).  
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Table 3.2. The root mean square error (RMSE), bias, and correlation coefficient (Corr) for 

surface chlorophyll in the open gulf, along with vertical profiles of NO3, chlorophyll, 

phytoplankton, and POC, as well as the depth of the deep chlorophyll maximum with 

respect to observations from BOEM floats. Percentages in the parentheses represent the 

relative reductions in RMSE values. Only a reduction in RMSE larger than or equal to 10% 

is considered a significant improvement. The NO3 is estimated based on its climatological 

relationship with temperature. Since the estimated NO3 tends to be overestimated in warm 

regions, the unbiased RMSE of NO3 is reported and the bias is not shown here.  

 
SChl 

(mg m-3) 

NO3 

(mmol N m-3) 

Chl 

(mg m-3) 

Phy 

(mmol N m-3) 

POC 

(mg C m-3) 

DCM depth 

(m) 

RMSE 

Free 0.13 3.71 0.18 0.11 18.62 25.48 

DAsat 0.11  

(19%) 

2.66 

(28%) 

0.17  

(6%) 

0.10  

(9%) 

16.46  

(12%) 

21.08  

(18%) 

DAargo 0.12  

(9%) 

2.58  

(30%) 

0.17  

(6%) 

0.10  

(9%) 

16.77  

(10%) 

22.39  

(12%) 

Free_alt 0.17 3.71 0.18 0.11 17.55 24.35 

DAsat_alt 0.13 

(26%) 

2.63  

(29%) 

0.17 

 (6%) 

0.10  

(9%) 

15.53  

(12%) 

20.42  

(16%) 

Bias 

Free -0.01 -- -0.04 -0.02 -8.01 -0.98 

DAsat 0.02 -- -0.04 -0.01 -5.05 0.45 

DAargo 0.03 -- -0.02 -0.01 -3.84 2.59 

Free_alt 0.00 -- -0.04 -0.02 -6.57 -1.09 

DAsat_alt 0.03 -- -0.03 -0.00 -3.15 1.83 

Corr 

Free 0.52 0.94 0.73 0.72 0.63 0.25 

DAsat 0.68 0.97 0.76 0.75 0.71 0.50 

DAargo 0.65 0.97 0.74 0.75 0.70 0.45 

Free_alt 0.58 0.94 0.73 0.72 0.64 0.43 

DAsat_alt 0.70 0.97 0.76 0.75 0.72 0.58 
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Figure 3.8. Same as Fig. 3.4 but for chlorophyll. Gray contours represent the simulated 

isolumes, and red lines represent the depth of the deep chlorophyll maximum. Thick black 

lines represent SSH.  
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The impacts of assimilation on subsurface chlorophyll are more complicated because 

of the high nonlinearity of the model with regard to chlorophyll. Although the mean vertical 

profiles of chlorophyll are well reproduced in all three experiments (Fig. C.2), all failed to 

resolve the high spatiotemporal variability in subsurface chlorophyll, which is at least 

partly due to the presence of mesoscale eddies (Fig. 3.8). As a result, assimilation improved 

subsurface chlorophyll RMSEs marginally, even in the Loop Current eddy for float 287 for 

which the most noticeable improvements of temperature (~ 60%) and nitrate (~ 40%) 

RMSEs were obtained. Results for phytoplankton and POC are similar to chlorophyll, 

although the reductions in their RMSEs are larger because assimilating the satellite data 

reduces their biases, especially in the upper layer (Fig. C.2, Table 3.2). 

The model’s inability to reproduce the spatiotemporal variability of subsurface 

chlorophyll is also reflected by the positions of the deep chlorophyll maximum (DCM, 

denoted by red lines in Fig. 3.8). As a ubiquitous phenomenon in the oligotrophic regions, 

a distinct DCM is observed throughout the whole year in the open Gulf of Mexico, and its 

depth is inversely correlated with SSH (correlation coefficient = -0.6). Although the mean 

position and magnitude of the DCM are well reproduced by the model with and without 

data assimilation (Fig. C.2), the simulated DCM depth is much more stable and less 

sensitive to SSH variations. As a result, the reduction in the RMSE of DCM depth is limited 

to 18% in DAsat run but is significant (Table 3.2).  

3.3.3 Sensitivity of subsurface chlorophyll to the light parameterization 

Both with and without data assimilation, the alternative parameterization led to higher 

correlations between simulated SSH and DCM depth with correlation coefficient of -0.60 

in Free-alt run and -0.67 in DAsat-alt run. As a result, the alternative parameterization 

produces slightly lower RMSEs and a higher correlation coefficient for DCM depth (Table 

3.2) and yields larger improvements in chlorophyll within the Loop Current eddy of float 

287 (Fig. 3.8). To illustrate the underlying reasons, the mean vertical profiles of nitrate, the 

intensity of photosynthetically active radiation (PAR), the chlorophyll, and the 

phytoplankton within the center of this Loop Current eddy are shown in Fig. 3.9. When 

using the original parameterization, assimilating the satellite data depresses the DCM depth 

from 70 m in the Free run to 90 m in the DAsat run but with a considerable bias of 20 m 
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when compared to the observations. However, the chlorophyll is underestimated in the 

DAsat run, and as a result its RMSEs are barely improved. In contrast, in the DAsat-alt run 

the DCM depth is corrected to 120 m, in agreement with the observations, and represents 

the vertical chlorophyll distribution more accurately, although the nitrate profile is almost 

the same as in DAsat run. This was because the alternative parameterization accounted for 

the elevated PAR intensity as a response to reduced chlorophyll concentrations in the upper 

layer, which in turn facilitated the synthesis of chlorophyll and hence corrected their 

concentrations toward the observations 

 

Figure 3.9. Mean vertical profiles of nitrate, light intensity (photosynthetically active 

radiation, PAR), chlorophyll, and phytoplankton within the center of the newly detached 

Loop Current eddy from the Free run, the DAsat run, the Free-alt run, and the DAsat-alt 

run.  

3.4 Discussion 

I implemented a coupled data assimilation scheme for jointly assimilating physical and 

biological observations in a biogeochemical model and evaluated to what degree satellite 

observations can inform subsurface distributions, especially of biological properties. The 
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degree to which the data assimilation impact can depend on model calibration was tested 

by using an alternative light parametrization. Although biological data assimilation has 

received much attention in recent years, observations that are assimilated and used in skill 

assessment are typically limited to the surface ocean. The increasing availability of BGC-

Argo data now makes it possible to validate and improve model performance below the 

surface (Cossarini et al. 2019; Salon et al. 2019; Terzić et al. 2019; Wang et al. 2020) but 

so far these observations have been too sparse for sequential assimilation in three 

dimensions; hence, relevant applications are limited to idealized twin experiments (Yu et 

al. 2018; Ford 2021) and a few specific regions with high float densities, e.g., the 

Mediterranean Sea (Cossarini et al. 2019). In addition, since a biogeochemical model is 

coupled to a physical model, assimilating physical observations theoretically should confer 

improvements on the biological model by correcting the circulation (e.g., Fiechter et al., 

2011; Raghukumar et al., 2015; Song et al., 2016b, 2016a) and potentially by providing 

additional constraints via multivariate updates to biological variables (e.g., Goodliff et al., 

2019; Yu et al., 2018). This is particularly important when the physical model is biased 

(Yu et al. 2018). 

This chapter shows that assimilating satellite data (DAsat run) can constrain the main 

circulation features in the Gulf of Mexico, i.e., the Loop Current and its associated 

mesoscale eddies. Temperature and salinity are also improved down to a depth of ~1000 

m because of the correction of mesoscale eddies. When calculating the reductions in RMSE 

for SSH and each single profile of temperature and salinity, I find that the improvement in 

SSH is highly correlated with those in temperature (correlation coefficient = 0.96) and 

salinity (correlation coefficient = 0.92, Fig. C.3). Assimilating the satellite data also 

improves subsurface nitrate because it is tightly correlated with the density structure 

expressed by SSH and temperature profiles. However, improvements in temperature and 

nitrate do not necessarily yield better simulations of chlorophyll or phytoplankton because 

they tend to be light-limited below the surface. In this biogeochemical model, the light 

intensity is attenuated by water and chlorophyll and is not directly updated by the data 

assimilation scheme but only adjusted indirectly through changes in chlorophyll during 

forecast steps. This, in turn, impacts the synthesis of chlorophyll and growth of 

phytoplankton. However, in the original parameterization, light attenuation is mainly 
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controlled by water depth and much less sensitive to chlorophyll concentrations than it 

appears to be in reality. By applying an alternative light parameterization with more 

pronounced self-shading by chlorophyll, the subsurface chlorophyll and phytoplankton 

distributions are further improved after assimilating the satellite data. These results show 

that the biological variables can be improved through model dynamical response to data 

assimilation. However, the efficiency of this mechanism depends on the accuracy of the 

biological model. That is why data assimilation generally benefits from a well-calibrated 

model. For example, the usage of suboptimal biological parameters can yield a substantial 

degradation of data assimilation efficiency, especially with respect to unobserved variables 

(Song et al. 2016b). Although BGC-Argo profiles have so far been insufficient for 

sequential assimilation, they can provide substantial benefits for biogeochemical prediction 

by enabling a priori model tuning, e.g., of biological parameter values (Wang et al. 2020) 

and the key parameterization schemes (Terzić et al. 2019).  

In addition to the model’s dynamical response, the biological fields can be directly 

updated by physical and biological observations through multivariate covariances. To 

distinguish their influence, I show the increments obtained from assimilating each 

observation type in the DAsat run (Fig. 3.10). The increment of DCM depth is defined 

analogously to other state variables as changes due to the update. As shown in Fig. 3.10a, 

b, assimilating physical observations has a much stronger impact than biological 

observations on nitrate, and therefore I conclude that the improvement of nitrate in this 

chapter is mainly obtained from assimilating physical observations. This is consistent with 

previous studies (e.g., Ciavatta et al., 2018; Skákala et al., 2018; Teruzzi et al., 2018) 

wherein assimilating surface chlorophyll had little impact on nitrate and even degraded it 

in both variational and sequential data assimilation. In variational data assimilation, it is 

hard to define the background errors accurately (Mattern et al. 2017; Teruzzi et al. 2018) 

and the biological model can fit itself to observed chlorophyll through many different 

pathways, e.g., direct changes of biomass or an indirect way through nitrate. However, 

observations are often insufficient to provide this information (Mattern et al. 2017). In 

sequential data assimilation, the multivariate covariance between surface chlorophyll and 

subsurface nitrate can be considered, but typically this covariance is not linear or constant. 

For instance, Fontana et al. (2013) assimilated satellite surface chlorophyll into a biological 
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model in the North Atlantic and found that subsurface nitrate was barely influenced 

because it was weakly correlated with surface chlorophyll, leading the authors to suggest 

that it is impossible to fully constrain a 3D biogeochemical model by only assimilating the 

surface chlorophyll. This issue remains when assimilating the surface chlorophyll to update 

other biological variables (Yu et al. 2018), e.g. phytoplankton functional groups (Ciavatta 

et al. 2018).  
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Figure 3.10. Histogram of increments in nitrate (mmol N m−3), chlorophyll (mg m−3), and 

DCM depth (m) obtained by assimilating physical and biological observations.  
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In contrast to nitrate, assimilating satellite data from physical and biological 

observations has a comparable influence on subsurface chlorophyll (Fig. 3.10c-f). 

Specifically, they can change subsurface chlorophyll concentrations even below a depth of 

100 m and vertical structures of chlorophyll by adjusting the DCM depth; e.g., there are 

10% and 5% of profiles with changes in DCM depth exceeding ±20 m due to the update 

of physical and biological observations, respectively. Because BGC-Argo profiles are 

currently sparse, i.e., only 14 profiles are available at all update steps, it is hard to draw 

definitive conclusions about these impacts on chlorophyll and DCM depth.  

Assimilating Argo T-S profiles in the DAargo run yields slightly further improvements 

with respect to independent profiles of temperature and salinity, similar to the twin 

experiments in Yu et al. (2019). To diagnose it, I calculate the root mean square difference 

(RMSD) of temperature between two data-assimilative runs with respect to each profile 

from the BOEM floats. In general, the RMSD between two data-assimilative runs 

decreases with distance to the nearest Argo profiles that have been assimilated recently but 

shows no significant decreasing trends with the days after update (Fig. C.4). This means 

that the differences induced by assimilating Argo profiles are sustained locally by model 

dynamical adjustments. The overall similarities between two data-assimilative runs (i.e., 

DAsat and DAargo runs) in Fig. 3.4 can be explained to some extent by the large distances 

between BOEM and Argo profiles. However, it does not mean that increasing the 

localization radius can necessarily improve the data assimilation performance. I note that 

the current localization radius was determined in Yu et al. (2019). The additional benefits 

in physical properties obtained by assimilating Argo T-S profiles are also translated into 

the simulation of subsurface nitrate but not into other biological fields, i.e., chlorophyll, 

phytoplankton, and POC. Moreover, assimilating the Argo T-S profiles can even degrade 

surface chlorophyll because of spurious correlations. This issue has also been reported in 

a recent study (Goodliff et al. 2019) that assimilated sea surface temperature to update both 

physical and biological variables, and this issue was alleviated by muting the multivariate 

update of phytoplankton, zooplankton, and detritus.  

In general, coupled data assimilation of both physical and biological satellite 

observations can improve subsurface biological properties because it benefits from the high 
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correlations of some biological distributions, especially nutrients, with the vertical density 

structure and because of the dynamical responses to improvements in circulation in the 

forecast step. However, this is preconditioned on the coupled model being well calibrated 

a priori. Therefore, this chapter provides an intermediate step toward 3D updates of 

biological properties before the BGC-Argo profiles ultimately become more abundant. 

3.5 Conclusions 

In this chapter, a coupled data assimilation scheme for both physical and biological 

satellite observations was implemented to investigate whether these observations can 

inform subsurface distributions. In addition, Argo T-S profiles were assimilated to assess 

their impact beyond satellite observations. The multivariate update was applied by using 

the covariance structure between physical and biological variables. The Gulf of Mexico 

was selected as the study region because the dominant physical features, the Loop Current 

and its associated mesoscale eddies, are stochastic and can substantially influence the 

biological properties in three dimensions. Results show that assimilating satellite data leads 

to significant improvements in the simulation of SSH and SST and also projects these 

improvements from the surface to a depth of about 1000 m for temperature and salinity, as 

shown by an assessment of the independent BGC-Argo profiles. With respect to biological 

fields, the subsurface nitrate distribution benefits greatly from the tight correlation with 

density and the improved fidelity of mesoscale features. However, initially there were only 

slight improvements in other biological variables below the surface, i.e., chlorophyll, 

phytoplankton, and POC, because a suboptimal light parameterization did not react to the 

changed chlorophyll concentrations appropriately and failed to provide accurate feedbacks 

on the synthesis of chlorophyll and growth of phytoplankton. I tested an alternative light 

parameterization with a larger relative contribution from chlorophyll to light attenuation. 

As a result, the subsurface chlorophyll and phytoplankton were further improved. This 

highlights the importance of a priori tuning to achieve better assimilation performance. 

Finally, assimilating the Argo T-S profiles on top of satellite observations yields slight 

further improvements with respect to independent vertical profiles of temperature and 

salinity, which also translated into improvements in subsurface nitrate. 
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CHAPTER 4                                                                                                   

AN ASSESSMENT OF VERTICAL CARBON FLUX 

PARAMETERIZATIONS USING BACKSCATTER DATA FROM 

BGC ARGO  

4.1 Introduction 

 

The ocean’s biological carbon pump (BCP) is a collection of processes that create 

organic carbon in the surface ocean and transport a fraction from the surface to the deep 

ocean thus sequestering carbon. Respiration of this organic matter during its vertical 

transport affects the distribution of biogeochemical properties such as nutrients, oxygen, 

and dissolved inorganic carbon (Howard et al. 2006; Kwon et al. 2009; Niemeyer et al. 

2019). Although only a relatively small fraction of the organic carbon produced at the 

surface is sequestered deeper than 1000 m for centuries to millennia, variations in 

biological carbon sequestration can significantly influence atmospheric CO2 levels and 

thus climate (Kwon et al. 2009; Gloege et al. 2017). 

Despite its significance, the BCP remains poorly characterized in that current estimates 

of its magnitude vary greatly (Henson et al. 2011, 2012, 2015; Siegel et al. 2014; DeVries 

and Weber 2017; Bisson et al. 2020) and its future projections are highly uncertain 

(Laufkötter et al. 2016; Henson et al. 2022). While Earth System Models (ESMs) are 

considered as the best tools for predicting the future response of the BCP to climate change, 

their utility critically depends on their ability to make skillful predictions. To date, model 

parameterizations of vertical carbon flux remain poorly constrained by observations. For 

example, previous studies have shown that the sparse in-situ observations of particulate 

organic carbon (POC) flux and climatological datasets of nutrients and dissolved oxygen 

are insufficient for distinguishing between vertical flux models that yield vastly different 
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atmospheric CO2 levels but fit the observations equally well within their range of 

uncertainty (Cael and Bisson 2018; Lauderdale and Cael 2021). 

Respiration of organic carbon during its vertical transport is often described by the 

Martin curve, which is a power law equation fitted to in-situ measurements of POC flux 

from sediment traps (Martin et al. 1987). In this empirical parameterization, the 

remineralization length scale, defined as the distance over which the vertical carbon flux 

declines by a factor of 1/e (about 63%), is increasing with depth. This implies that either 

the remineralization rate is getting slower (r∝1/z) or the sinking velocity is getting faster 

with depth (w∝z) or a combination of both. One mechanistic interpretation of this behavior 

is that organic carbon is a complex mixture of compounds with different liabilities and 

sinking velocities. Since labile and/or slow-sinking particles are more likely to be respired 

at a shallower depth, their relative contributions will decline with depth and the bulk 

remineralization rate (sinking velocity) will decrease (increase) with depth.  

To reproduce the increase in remineralization length scale, different mechanisms and 

parameterizations have been proposed from these two perspectives and been incorporated 

into biogeochemical models. The ballast hypothesis, proposed by Armstrong et al. (2001) 

based on observed correlations between the deep flux of POC and minerals (e.g. CaCO3, 

opal, and dust), assumes that these minerals facilitate the vertical transport of POC by 

protecting it from remineralization and/or increasing the sinking velocity because of their 

higher density. The ballast hypothesis has been widely implemented in biogeochemical 

models (e.g. Gehlen et al. 2006; Yool et al. 2011; Stock et al. 2020; Long et al. 2021). In 

contrast, the remineralization rate and sinking velocity are simulated prognostically in 

some biogeochemical models by incorporating a continuous spectrum of reactivity and 

particle size that reproduces the evolution of POC composition over depth (e.g., Aumont 

et al. 2015, 2017; Tjiputra et al. 2020). In a more simplified version, the sinking velocity 

is parameterized to increase linearly with depth to account for the preferential respiration 

of slow-sinking particles implicitly (e.g. Aumont et al. 2015; Tjiputra et al. 2020).  

The choice between the different sinking schemes has a big influence on projected 

future changes in carbon sequestration. The BCP is expected to decrease in ESMs because 

they project a declining trend in globally integrated biological carbon export out of the 
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euphotic zone over the 21st century (Laufkötter et al. 2016; Henson et al. 2022). However, 

in addition to changes in carbon export out of the euphotic zone, respiration in the 

mesopelagic (200-1000 m) and bathypelagic zones (> 1000 m) exerts a strong influence on 

carbon sequestration. The lysocline is expected to become shallower because of rising 

atmospheric CO2 levels. Then dissolution of CaCO3 will occur at shallower depths 

reducing the protection of POC flux from minerals. In a model that parameterizes sinking 

according to the ballast hypothesis, the shallowing of the lysocline will amplify any 

productivity-related decreases in carbon sequestration while in models that do not consider 

ballast effects it will not (Henson et al. 2012).  

BGC Argo measures backscatter, a proxy of POC concentration, in high spatial and 

temporal resolution from the sub-mesoscale to the global scale (Roemmich et al. 2019; 

Chai et al. 2020). POC concentration is dynamically related to POC flux and an important 

complement to currently available observations. Over the last decade, BGC-Argo floats 

have provided hundreds of thousands of backscatter profiles in top 2000 m of the global 

ocean. These observations have been used to derive POC fluxes (Briggs et al. 2011; 

Dall’Olmo and Mork 2014) and associated processes such as the fragmentation rate and 

sinking velocity (Briggs et al. 2020; Wang and Fennel 2022). However, backscatter as a 

proxy of POC concentration has received less attention as a means of calibrating 

biogeochemical models aside from a few examples (e.g., Bagniewski et al. 2011; Wang et 

al. 2020; Galí et al. 2022).  

Here I evaluate to what extent BGC-Argo data can help in calibrating biogeochemical 

models that aim to study the BCP. For this purpose, I first provide a classification of 

different ESMs that are part of the sixth phase of the Coupled Model Intercomparison 

Project (CMIP6) with regard to the vertical flux parameterizations employed and compare 

their simulated POC flux. Depth-resolved POC flux is made available for the first time in 

CMIP6. To isolate the model-to-model differences in vertical carbon flux that are due to 

the choice of vertical flux parameterization from differences due to other sources for 

discrepancies, e.g., model resolution, surface ocean biogeochemical representation, degree 

of parameter tuning to the observations, and definitions of POC, I implement the two most 

widely accepted sinking schemes for vertical carbon flux in an otherwise identical model 
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environment. The two parameterizations are the ballast scheme and the scheme with a 

linear increase in sinking velocity, which is referred to as WLin hereafter. Both are 

implemented in a suite of float-following 1D models that represent the conditions 

encountered by individual BGC-Argo floats in the northern North Atlantic Ocean. Both 

schemes have been widely used in large-scale biogeochemical models and reproduce the 

increase of remineralization length scale, one by decreasing remineralization rate with 

depth and the other by increasing sinking velocity. Model results from the two sinking 

schemes are then compared to assess whether measurements of POC concentration can 

help in distinguishing between the different parameterizations. Sensitivity experiments are 

then conducted to investigate whether knowledge of POC concentration can constrain the 

remineralization rate and sinking velocity independently, provided that the appropriate 

model parameterization scheme is known. Results show that the observations of POC 

concentration hold great value in complementing existing sparse observations of POC flux 

as they can inform on the appropriate parameterization scheme and constrain the related 

parameters, i.e., the remineralization rate and sinking velocity. 

4.2 Comparisons between Earth System Models 

4.2.1 Description of sinking parameterizations in Earth System Models 

In this chapter, 12 ESMs from CMIP6 are used (Table 4.1). Monthly outputs in the 

northern North Atlantic (Fig. 4.1) from the historical simulations were averaged over 15 

years (2000-2014) to produce monthly and annual climatologies. Only one ensemble 

member (r1i1p1f1) is used for each model. To facilitate comparisons between models, the 

model outputs were remapped onto a common 1°×1° regular grid. 

In-situ observations of POC flux were compiled by (Mouw et al. 2016). In the study 

domain (Fig. 4.1), most of the available in-situ observations (~90%) were collected by 

sediment traps deployed for less than 30 days while the remaining measurements were 

conducted over years. These short- and long-deployment measurements are compared to 

the monthly and annual climatologies of POC fluxes in the nearest model grid cell of each 

ESMs. The model performance is assessed by three statistical metrics including the 

correlation coefficient (Corr), the bias, and the root-mean-square-errors (RMSE). 
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Figure 4.1. A bathymetric map of the northern North Atlantic superimposed with the in-

situ observations of POC flux from sediment traps and 234Th observations (denoted as gray 

circles) and trajectories of BGC-Argo floats (small colored dots). 

Table 4.1. List of 12 ESMs used. Acronyms: National Center for Atmospheric Research, 

USA (NCAR), NOAA Geophysical Fluid Dynamics Laboratory, USA (GFDL), Institut 

Pierre Simon Laplace, France (IPSL), Max Planck Institute for Meteorology, Germany 

(MPI-M) 

Institute Model name Ocean BGC model Model Grid 

NCAR CESM2 MARBL 320×384×60 

NCAR CESM2-FV2 MARBL 320×384×60 

NCAR CESM2-WACCM MARBL 320×384×60 

NCAR CESM2-WACCM-FV2 MARBL 320×384×60 

GFDL GFDL-CM4 BLINGv2 1440×1080×75 

GFDL GFDL-ESM4 COBALTv2 720×576×75 

IPSL IPSL-CM5A2-INCA PISCESv2 182×149×31 

IPSL IPSL-CM6A-LR PISCESv2 362×332×75 

IPSL IPSL-CM6A-LR-INCA PISCESv2 362×332×75 

HAMMOZ-Consortium MPI-ESM-1-2-HAM HAMOCC6 256×220×40 

MPI-M MPI-ESM1-2-HR HAMOCC6 802×404×40 

MPI-M MPI-ESM1-2-LR HAMOCC6 256×220×40 
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Figure 4.2. Classification of the vertical carbon flux schemes in the 12 CMIP6 ESMs 

considered in this chapter. Model acronyms are in the same color as used in Fig. 4.3. 

The ocean biogeochemical components of these ESMs vary a lot with different degrees 

of complexity in representing processes in the euphotic zone as well as the subsequent 

remineralization and gravitational sinking of organic particles after escaping the euphotic 

zone (Fig. 4.2). Five out of the 12 ESMs (CESM2, CESM2-FV2, CESM2-WACCM, 

CESM2-WACCM-FV2, and GFDL-CM4) use the biogeochemical models MARBL (Long 

et al. 2021) or BLINGv2 (Dunne et al. 2020) and simulate the POC flux implicitly. This 

means there are no tracers that represent the POC concentration in these models. Instead, 

POC flux is represented by instantaneously redistributing new production in the water 

column using a prescribed remineralization length scale. Ballasting effects from minerals 

are considered in both biogeochemical models where the minerals are modelled implicitly 

as well and the POC flux associated with minerals attenuates with a prolonged 

remineralization length scale. MARBL includes protections by CaCO3, opal, and dust 

while BLINGv2 ignores opal. The remineralization length scale of free POC is prescribed 

to increase with depth and in the presence of low-oxygen conditions. In BLINGv2, the 

remineralization length scale is also dependent on temperature. 

POC concentration and flux are simulated explicitly in the other 7 ESMs. To reproduce 

the increased remineralization length scale with depth, the biogeochemical component of 

GFDL-ESM4 (COBALTv2; Stock et al. 2020) simulates the ballasting effects from 

12 ESMs

from

CMIP6

Ø Simulating POC flux implicitly

(accounting for ballast implicitly)

CESM2

CESM2-FV2

CESM2-WACCM

CESM2-WACCM-FV2

GFDL-CM4

Ø Simulating POC flux explicitly

Ø Ballast scheme

GFDL-ESM4

Ø WLin scheme

Ø Two POC size classes

IPSL-CM5A2-INCA

IPSL-CM6A-LR

IPSL-CM6A-LR-INCA

Ø One POC size class

MPI-ESM-1-2-HAM

MPI-ESM1-2-HR

MPI-ESM1-2-LR
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minerals, while in the other 6 ESMs (IPSL-CM5A2-INCA, IPSL-CM6A-LR, IPSL-

CM6A-LR-INCA, MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, MPI-ESM1-2-LR) the 

biogeochemical components (PISCESv2; Aumont et al. 2015 and HAMOCC6; Mauritsen 

et al. 2019) allow for the sinking velocity to increase with depth.  

In COBALTv2, the ballasting minerals (CaCO3, opal, and dust) are simulated 

explicitly and CaCO3 is further divided into calcite and aragonite. A part of POC is 

protected by ballasting minerals and is free from remineralization. The amount of protected 

POC declines with depth due to dissolution of minerals. The dissolution rates of calcite and 

aragonite are controlled by their saturation states which are functions of the carbonate ion 

concentration. Opal dissolves at a rate that is dependent on temperature while the 

dissolution rate of dust is assumed to be constant. The fraction of POC that is free of 

ballasting minerals is remineralized at a temperature- and oxygen-dependent rate. The 

sinking velocity of free and protected POC is assumed to be constant at 100 m day-1. 

In HAMOCC6, the remineralization rate of POC is dependent on oxygen and the 

sinking velocity is assumed to increase linearly with depth. PISCESv2 uses an oxygen- and 

temperature-dependent remineralization rate and there are two POC classes based on 

particle size: small, slow-sinking POC that sinks at a constant rate and large, fast-sinking 

POC with a sinking velocity that increases with depth. In PISCESv2, large POC is 

remineralized into small POC first and then further into the dissolved organic carbon 

(DOC), while at the same time, the small POC and DOC can in turn aggregate into the 

large POC.  

4.2.2 Results of Earth System Models 

The vertical profiles of POC flux and transfer efficiency averaged over the northern 

North Atlantic from 12 ESMs are compared in Fig. 4.3. Since POC flux in the deep ocean 

is determined by carbon export out of the euphotic zone, defined here as the top 100 m, 

and POC remineralization occurring below 100 m, the transfer efficiency was calculated 

relative to the flux at 100 m. The POC flux at 100 m varies a lot with an extremely high 

value of 190 mg C m-2 day-1 in the GFDL-CM4 (Fig. 4.3a and Table D.1). Even without 

considering GFDL-CM4, there is a 3-fold range in the POC flux at 100 m. Of the remaining 
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ESMs, 4 CESM models simulate the highest POC flux ranging from 88 mg C m-2 day-1 in 

CESM2 to 93 mg C m-2 day-1 in CESM2-FV2. The next highest flux is simulated by GFDL-

ESM4 with 79 mg C m-2 day-1 and the 3 IPSL ESMs ranging from 55 mg C m-2 day-1 in 

IPSL-CM6A-LR to 62 mg C m-2 day-1 in IPSL-CM5A2-INCA. The 3 MPI ESMs simulate 

the lowest POC flux at 100 m ranging from 32 mg C m-2 day-1 in MPI-ESM1-2-LR to 35 

mg C m-2 day-1 in MPI-ESM1-2-HR.  

 

Figure 4.3. The mean vertical profiles of POC flux (a) and transfer efficiency (b) averaged 

over the northern North Atlantic (see Fig. 4.1 for the spatial scope) from 12 CMIP6 models. 

Differences in POC flux increase with depth and the order of largest to smallest POC 

flux across 12 ESMs also changes. POC fluxes vary 6-fold at 1000 m compared to 3-fold 

at 100 m. At about 1000 m, IPSL-CM5A2-INCA has become the model with the highest 

POC flux. At 3000 m, the range of POC fluxes has further increased to about 17 folds, and 

the lowest POC fluxes are in the 4 CESM ESMs while the highest fluxes are simulated by 

the 3 IPSL ESMs. This means that the transfer efficiency varies across the 12 ESMs and 

shows patterns that are different from the POC flux (Fig. 4.3b). At 1000 m, the 3 IPSL 

ESMs simulate the highest transfer efficiency from 26% in IPSL-CM6A-LR to 34% in 

IPSL-CM5A2-INCA, indicating that the lowest fractions of the POC flux at 100 m are 

respired before reaching 1000 m. Although the POC flux at 1000 m varies a lot across the 

remaining 9 ESMs, their transfer efficiencies are clustered at 12± 0.78%. Transfer 

efficiencies start to diverge into two clusters below 1000 m. At 3000 m, the transfer 

efficiency in the 4 CESM ESMs is the lowest around 0.60% and at least 4-fold higher in 

the other 5 ESMs (i.e., GFDL-CM4, GFDL-ESM4, MPI-ESM-1-2-HAM, MPI-ESM1-2-

HR, and MPI-ESM1-2-LR). 
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To facilitate further comparison, I fit the simulated vertical profiles of transfer 

efficiency to a power law equation, the most widely used empirical equation (i.e., the 

Martin curve) with its exponent b used as an indicator to represent variability in transfer 

efficiency (Fig. D.7 and Table D.2). The resulting exponent b varies from 0.57 in IPSL-

CM5A2-INCA to 0.97 in MPI-ESM1-2-HR and MPI-ESM1-2-LR. If this variation in the 

exponent b (b = 0.40) were applied to the global ocean, it would change the equilibrium 

atmospheric CO2 levels by about 40 ppm based on the most realistic model in Kwon et al., 

(2009). The different degrees of misfit between the simulated transfer efficiency and their 

corresponding Martin curves would introduce additional variability (Lauderdale and Cael 

2021). 

When comparing the simulated POC fluxes from the 12 ESMs to in-situ observations, 

the 4 CESM ESMs agree well with the in-situ observations in the top 2000 m but 

underestimate the POC flux below (Fig. 4.4). This suggests an overestimation of respiration 

below 2000 m. In general, GFDL-CM4 and IPSL-CM5A2-INCA overestimate the in-situ 

observations throughout the water column, while the 3 MPI ESMs underestimate it. Among 

these 12 ESMs, the GFDL-ESM4 as well as the IPSL-6A-LR and IPSL-6A-LR-INCA have 

the best agreement with the in-situ observations with the highest correlation coefficient 

(>0.70) and lowest RMSE (~0.40) and bias (~0.10) even though there are large differences 

in their vertical profiles of POC flux and transfer efficiency (Fig. 4.3) despite the favorable 

statistical metrics. 
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Figure 4.4. Comparison of POC flux simulated by CMIP6 models and in-situ observations 

in log space. Black lines indicate the 1:1 relationship. The colors represent depth (km) 

below the surface. 

4.3 Comparison between 1D models 

4.3.1 BGC-Argo float data 

Data from eight BGC-Argo floats in the northern North Atlantic (Fig. 4.1) are used. 

These floats were equipped with a chlorophyll fluorometer and a sensor for particle 

backscatter at 700 nm (bbp700, m-1) and deployed for at least one year. The data set 

includes over 3000 profiles spanning all seasons from 2013 to 2020, with the most of 

profiles sampling the top 1000 m and only a few profiles extending to 2000 m (Table 4.2). 

The chlorophyll and bbp700 profiles were smoothed following Briggs et al. (2011). Then 

the smoothed chlorophyll concentration was divided by a factor of 2 to account for the 

systematic calibration error in Web Labs fluorometers (Roesler et al. 2017). The baseline 
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of bbp700 was converted into bbp440 using a power law equation to estimate the 

phytoplankton concentration (Phy, mmol N m-3): 

𝑏𝑏𝑝440 = (
440

700
)

−𝛾

× 𝑏𝑏𝑝700,                                                                                                  (4.1) 

𝑃ℎ𝑦 = 13000 × (𝑏𝑏𝑝440 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) ×
1

12 × 6.625
,                                                    (4.2) 

where 𝛾 is 0.78 based on the global measurements (Boss and Haëntjens 2016), the slope of 

13,000 mg C m-2 is obtained from Behrenfeld et al. (2005), and the intercept was 

determined by the regression analysis between chlorophyll and bbp440. 

Table 4.2. Number of profiles reaching 1000 and 2000 m for each BGC-Argo float used 

here. 

Float WMO id Number of profiles  

reaching 1000 m 

Number of profiles  

reaching 2000 m 

6901480 337 39 

6901486 295 38 

6901524 305 7 

6901527 310 14 

6901180 293 0 

6901181 230 0 

6901516 400 0 

6901647 314 0 

To obtain POC concentrations, the instrument noise was removed from the spike 

signals of bbp700 following Briggs et al. (2020) and a background baseline value, which 

is defined as the median between 950 m and 1000 m (Lacour et al. 2019), was subtracted. 

The resulting spike signals and baseline of bbp700 were used to estimate large, fast-sinking 

POC (Briggs et al., 2011) and small, slow-sinking POC (Dall’Olmo & Mork 2014) by 

multiplying a factor of 37,537 mg C m-2 in the mixed layer and a slightly lower factor of 

31,519 mg C m-2 below (Cetinić et al. 2012; Lacour et al. 2019). The mixed layer depth is 

defined as the depth where density first increases to 0.01 kg m-3 above the reference density 

at 5 m depth.  
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4.3.2 Description of the 1D model 

I set up a one-dimensional (1D) physical-biogeochemical model which follows the 

trajectories of the BGC-Argo floats shown in Fig. 4.1 simulating the top 1500 m for float 

6901647, 2000 m for float 6901516, and 3000 m for the other floats based on the 

bathymetry. There are 600 evenly distributed vertical layers with the layer thickness 

ranging from 2.5 m to 5 m across different BGC-Argo floats. The physical model is the 

General Ocean Turbulence Model (GOTM; https://gotm.net/portfolio/), a 1D water column 

model that simulates the vertical turbulent fluxes of momentum, heat, and tracers. It is 

forced with hourly atmospheric data from the ERA5 reanalysis 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) including air 

temperature, air pressure, humidity, cloud coverage, shortwave radiation, net longwave 

radiation, precipitation, and wind speed at 10 m. To account for the absence of advection 

in the 1D model, temperature and salinity are nudged to the float observations in the top 

1000 m and to the daily reanalysis data from GLORYS (https://doi.org/10.48670/moi-

00021) below with a timescale of one day, because most of BGC-Argo profiles used are 

limited to the top 1000 m. 

The biogeochemical model used here is an updated version of the biogeochemical 

model described in Laurent et al. (2021) and is coupled to GOTM through the Framework 

for Aquatic Biogeochemical Models (FABM; Bruggeman and Bolding 2014). Since the 

biogeochemical model has been comprehensively described in Laurent et al. (2021), I will 

restrict myself to a brief description with particular emphasis on the model’s representation 

of the gravitational settling and remineralization of large detritus, which were updated. The 

model simulates two functional groups of phytoplankton (small pico-phytoplankton/nano-

phytoplankton, PS and large micro-phytoplankton, PL) and zooplankton (micro-

zooplankton, ZS and meso-zooplankton, ZL). The growth of phytoplankton is limited by 

light, temperature, and two nutrients (ammonium, NH4 and nitrate, NO3). The chlorophyll 

for each phytoplankton functional group is modelled as a separate prognostic variable 

which accounts for photoacclimation based on Geider et al. (1997).  

 

https://gotm.net/portfolio/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://doi.org/10.48670/moi-00021
https://doi.org/10.48670/moi-00021
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Table 4.3. Parameters associated with large detritus 

Descriptions (unit) symbol Values 

Ballast scheme 

Large detritus sinking velocity (m day-1) 𝑤𝐿 55 

Remineralization rate at 0°C for large detritus (m day-1) 𝑟𝐿
0 0.20 

Protection capacity of CaCO3 (mol N mol Ca-1) 𝑝𝐶𝑎𝐶𝑂3
 0.088 

Polar CaCO3:organic C production (mol CaCO3 mol C-1) 𝑓90𝑜 0.02 

Equatorial CaCO3:organic C production (mol CaCO3 mol C-1) 𝑓0𝑜 0.10 

The Si:N ratio of large phytoplankton (mol Si mol N-1) 𝑓𝑆𝑖:𝑁 1.0 

Protection capacity of opal (mol N mol Si-1) 𝑝𝑜𝑝𝑎𝑙 0.02 

Opal dissolution rate (day-1) 𝑑𝑜𝑝𝑎𝑙 0.0275 

WLin scheme 

Large detritus sinking velocity in top 100m (m day-1) 𝑤𝐿,𝑚𝑖𝑛 58 

Large detritus sinking velocity at 5,000m (m day-1) 𝑤𝐿,𝑚𝑎𝑥 200 

Remineralization rate at 0°C for large detritus (m day-1) 𝑟𝐿
0 0.15 

The biogeochemical model also simulates two functional groups of detritus, i.e., small 

detritus (DS) and large detritus (DL), which have different remineralization rates and 

sinking velocities. Small detritus is produced by the mortality of two phytoplankton 

functional groups (PS+PL) and micro-zooplankton (ZS), and sloppy grazing by two 

functional groups of zooplankton (ZS+ZL). It is assumed to sink at a slow and constant rate 

and is remineralized with a temperature-dependent rate. Large detritus is generated by the 

mortality of meso-zooplankton (ZL) and the aggregation of small detritus (DS) and micro-

phytoplankton (PL). In the previous version of this model, the large detritus was 

parameterized similarly to the small detritus except that its sinking velocity was faster. For 

this chapter, the model was updated to include two different sinking schemes, the ballast 

scheme and the WLin scheme, which aim to reproduce the increasing remineralization 

length scale with depth. Detailed descriptions of these two schemes follow in sections 

4.3.2.1 and 4.3.2.2. Model parameters were first calibrated for the ballast scheme using 

BGC-Argo data of chlorophyll, phytoplankton, and small and large POC concentrations. 
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For the model with the WLin scheme, parameters associated with large detritus were re-

calibrated (Table 4.3) and other parameters are unchanged (Table D.3). 

The biogeochemical model is initialized using a parameterization of NO3 derived from 

a machine-learning approach that relates in-situ data of NO3 to six predictor variables 

(temperature, salinity, time, longitude, latitude, and depth) from the World Ocean Database 

2013 (WOD13; Boyer et al., 2013). The resulting parameterization has been validated with 

independent data from BGC-Argo floats (see supplementary material). Since the 1D model 

does not account for advection, simulated NO3 is relaxed to profiles derived from the 

machine-learning parameterization at a time scale of 100 days.  

4.3.2.1 Ballast scheme 

The ballasting effects from minerals including CaCO3 and opal are simulated in a 

manner similar to that of Yool et al. (2011) and Stock et al. (2020). Specifically, large 

detritus is divided into two components: the mineral associated component that is assumed 

to be protected, and the remaining free component that is subject to temperature-dependent 

remineralization according to 

𝑅𝑒𝑚𝑖𝑛𝐷𝐿 = 𝑟𝐿
0 ∙ 𝑓(𝑇) ∙ (𝐷𝐿 − 𝑝𝑜𝑝𝑎𝑙 ∙ 𝑜𝑝𝑎𝑙 − 𝑝𝐶𝑎𝐶𝑂3

∙ 𝐶𝑎𝐶𝑂3),                                       (4.4) 

where 𝑟𝐿
0 (day-1) is the nominal remineralization rate of free large detritus and the actual 

remineralization rate is temperature-dependent ( 𝑓(𝑇) ) with a Q10 value of 1.9. The 

protection capacity of opal (𝑝𝑜𝑝𝑎𝑙) and CaCO3 (𝑝𝐶𝑎𝐶𝑂3
) are specified as 0.02 mol N (mol 

Si)-1 and 0.088 mol N (mol Ca)-1 based on Yool et al. (2011) and Stock et al. (2020). The 

free and protected large detritus are assumed to have a constant sinking velocity (𝑤𝐿, m 

day-1). 

Opal is synthesized by diatoms and produced through mortality ( 𝑀𝑜𝑟𝑡𝑎𝑙𝑃𝐿) and 

aggregation (𝐴𝑔𝑔𝑃𝐿) of micro-phytoplankton. Since opal is not utilized by zooplankton, 

the loss of micro-phytoplankton due to grazing by the two zooplankton groups is all 

transferred into opal such that 

𝜕𝑜𝑝𝑎𝑙

𝜕𝑡
= 𝑓𝑆𝑖:𝑁 ∙ (𝐺𝑟𝑎𝑧𝑃𝐿 + 𝑀𝑜𝑟𝑡𝑎𝑙𝑃𝐿 + 𝐴𝑔𝑔𝑃𝐿) − 𝑑𝑜𝑝𝑎𝑙 ∙ 𝑜𝑝𝑎𝑙 − 𝑤𝐿 ∙

𝜕𝑜𝑝𝑎𝑙

𝜕𝑧
.          (4.5) 
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The intracellular Si:N ratio of micro-phytoplankton (𝑓𝑆𝑖:𝑁) is fixed as 1.0 in this chapter. 

As opal is subject to dissolution, the amount of large detritus protected by opal declines 

with depth but at a much slower rate than unprotected detritus. The dissolution rate of opal 

(𝑑𝑜𝑝𝑎𝑙) is specified so that its remineralization length scale is 2000 m (Yool et al. 2011).  

There are different ways of simulating production of CaCO3; it has been related to the 

activities of coccolithophores (e.g. Stock et al. 2020; Long et al. 2021), the production of 

detritus (e.g. Yool et al. 2011; Oke et al. 2013), and the export flux at the base of euphotic 

zone (e.g. Zahariev et al. 2008). Here, CaCO3 production is parameterized as a function of 

large detritus production (𝑃𝑟𝑜𝑑DL), following Yool et al. (2011), as 

𝜕𝐶𝑎𝐶𝑂3

𝜕𝑡
= 𝑓𝐶𝑎:𝑁 ∙ 𝑃𝑟𝑜𝑑DL − 𝑤𝐿 ∙

𝜕𝐶𝑎𝐶𝑂3

𝜕𝑧
,                                                                          (4.6) 

where the rain ratio (𝑓𝐶𝑎:𝑁) between CaCO3 and detritus production is a function of latitude 

as follows 

𝑓𝐶𝑎:𝑁 = 6.625 × (𝑓90𝑜 + (𝑓0𝑜 − 𝑓90𝑜) ∙
90 − |𝑙𝑎𝑡|

90
).                                                       (4.7) 

For sake of simplicity, I assume no dissolution of CaCO3 because the lysocline is relatively 

deep. Given that the dissolution of CaCO3 is controlled by its saturation state, which is a 

function of the carbonate ion concentration, this simplification allows us to avoid 

simulating the carbonate system (i.e., DIC and TA) but may result in an overestimation of 

CaCO3 concentration below the lysocline. 

 

4.3.2.2 WLin scheme 

In the WLin scheme, the sinking velocity of large detritus is assumed to increase 

linearly with depth as  

𝑤𝐿 = 𝑤𝐿,𝑚𝑖𝑛 + (𝑤𝐿,𝑚𝑎𝑥 − 𝑤𝐿,𝑚𝑖𝑛) ∙
max(0, 𝑧 − 100)

5000
,                                                      (4.8) 

where 𝑤𝐿,𝑚𝑖𝑛  and 𝑤𝐿,𝑚𝑎𝑥  are the minimum and maximum sinking velocity of large 

detritus. This WLin model has been applied in other biogeochemical models (e.g. Aumont 
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et al. 2015; Tjiputra et al. 2020) to account for the preferential remineralization of slow-

sinking particles and the increasing proportion of fast-sinking particles implicitly. 

4.3.3 1D model results 

To facilitate model-data comparison, the BGC-Argo float data and the 1D model 

results are grouped by day of year into a daily climatology. The observed small POC is 

compared to the sum of simulated pico-/nano-phytoplankton (PS), the micro-phytoplankton 

(PL), the micro-zooplankton (ZS), and the small detritus (DS), while the observed large POC 

is compared to the sum of simulated meso-zooplankton (ZL) and large detritus (DL). In 

addition to the BGC-Argo float data, I also compare the simulated net primary production 

(NPP) to satellite estimates from three algorithms, the Vertically Generalized Production 

Model (VGPM; Behrenfeld and Falkowski 1997), the Eppley version of the VGPM model 

(Eppley; Morel 1991), and the Carbon-based Productivity Model (GbPM; Westberry et al. 

2008).  

 

Figure 4.5. Vertical profiles of chlorophyll, phytoplankton, small and large POC from the 

1D model results and BGC-Argo floats. 
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Despite the different underlying mechanisms, both model schemes reproduce well the 

large POC concentrations derived from BGC Argo data in terms of their vertical pattern 

and seasonal variability in the top 1000 m (Figs. 4.5-4.6). The simulated small POC 

concentration is lower than the observations before May and below 100 m. This is because 

the 1D models underestimate the growth of phytoplankton driven by intermittent re-

stratification early in the year (Fig. 4.6), which manifests in an underestimation of net 

primary production when compared to the VGPM- and Eppley-algorithms before May 

(Fig. 4.7). In addition, the parameterization of small POC is relatively simple when 

compared to large POC and may overestimate its attenuation below 100 m. Despite the 

discrepancies in small POC concentrations in spring, the 1D model is useful for evaluating 

the differences between the two vertical sinking schemes. 

 

Figure 4.6. Seasonal cycles of chlorophyll, phytoplankton, small and large POC from the 

1D model results and BGC-Argo floats. 
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Figure 4.7. Comparisons of net primary production between 1D model results and satellite 

estimates. 

 

Figure 4.8. Vertical profiles of total POC concentration (a, d) and POC flux (b, e) above 

and below 1000 m, as well as the sinking velocity (c) and remineralization rate (f) of large 

POC from the ballast and WLin schemes. 

The vertical profiles of POC concentration and POC flux from the two model schemes 

are compared in Fig. 4.8. Since large POC dominates the POC flux in the deep ocean, its 

remineralization rate and sinking velocity are also shown in Fig. 4.8 where the 
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remineralization rate in the ballast scheme is an average over the free and protected large 

POC. Although the distributions of POC concentration are almost identical between the 

two model schemes in the top 1000 m (Fig. 4.8a), they are very different below and their 

differences increase with depth (Fig. 4.8d). In general, the POC concentration below 1000 

m is higher in the ballast scheme because a fraction of the large POC is protected by 

minerals, i.e., CaCO3 and opal, which results in a much lower remineralization rate (Fig. 

4.8c). In addition, the vertically increasing sinking velocity in the WLin model accelerates 

the settling of large POC and removes it from the water column more rapidly than in the 

ballast scheme (Fig. 4.8f). As a result, there is a 3-fold difference in POC concentration 

(0.07 and 0.02 mg C m-3 in the ballast and WLin schemes, respectively) between the two 

model schemes at 2800 m. 

The two model schemes also have different patterns for POC flux (Fig. 4.8b, e). 

Specifically, the WLin scheme produces a higher POC flux in the top 2400 m because the 

sinking velocity of large POC is faster than in the ballast scheme. Differences in POC flux 

between the two model schemes first increase with depth with maximum differences at 

1000 m and then decrease with depth. The POC flux is similar between the two model 

schemes at 100 m with 64 mg C m-2 day-1 in the ballast scheme and 67 mg C m-2 day-1 in 

WLin scheme. The flux decreases to about 8.4 mg C m-2 day-1 and 13 mg C m-2 day-1 at 

1000 m in the ballast scheme and WLin scheme, respectively, which amounts to a 50% 

difference between the two model schemes. In general, the maximum differences in POC 

flux between the two model schemes are less distinct than in the POC concentration. 

The implications of the two different model schemes for the distribution of respiration 

and nutrients are shown in Fig. 4.9. The respiration is defined as a reduction of the transfer 

efficiency (TE) within a unit of depth (∂𝑇𝐸/ ∂z, m-1). As shown in Fig. 4.9a, b, the 

respiration in the ballast scheme is higher within the top 500 m and slows down below. 

This implies that the ballast scheme distributes the biologically regenerated nutrients 

shallower than the WLin scheme. In this chapter, the simulated NO3 concentrations are 

similar between the two model schemes because they are relaxed to the same profile to 

account for the absence of advection in the 1D model. To diagnose the impact of respiration 

on nutrients, the nitrification rate, which produces NO3 from NH4, is shown in Fig. 4.9c. 
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Since in the 1D model, small and large POC are respired first into the NH4, and then into 

the NO3 through nitrification, this process serves as a useful diagnostic. The differences in 

nitrification between the two model schemes are similar to the differences in respiration 

(Fig. 4.9d).  

 

Figure 4.9. Vertical profiles of respiration and nitrification as well as their differences 

between the two model schemes. 

4.3.4 Sensitivity experiments 

One of research questions is whether observations of POC concentration can provide 

a unique estimate of POC flux provided the parameterization scheme is known. Since the 

structure of vertical profiles of POC concentration and POC flux is determined by the 

remineralization length scale, which is the ratio between the sinking velocity and 

remineralization rate, I conducted sensitivity experiments by perturbing these two related 

parameters simultaneously by ±25% (Table 4.4) which leaves the remineralization length 
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scale unchanged. In addition, in the model with ballast scheme, the dissolution rate of opal 

was changed to maintain its remineralization length scale as 2000 m. 

Table 4.4. Overview of sensitivity experiments 

Experiment Description 

ballast Experiment with the ballast scheme 

ballast (+25) Same as the ballast experiment except that the remineralization rate 

( 𝑟𝐿
0 ) and sinking velocity ( wL ) of large detritus as well as the 

dissolution rate of opal (𝑑𝑜𝑝𝑎𝑙) are increased by 25% 

ballast (-25) Same as the ballast experiment except that the remineralization rate 

( 𝑟𝐿
0 ) and sinking velocity ( wL ) of large detritus as well as the 

dissolution rate of opal (𝑑𝑜𝑝𝑎𝑙) are decreased by 25% 

WLin Experiment with the WLin model scheme 

WLin (+25) Same as the WLin experiment except that the remineralization rate 

(𝑟𝐿
0) and sinking velocity (𝑤𝐿,𝑚𝑖𝑛 and 𝑤𝐿,𝑚𝑎𝑥) of large detritus are 

increased by 25% 

WLin (-25) Same as the WLin experiment except that the remineralization rate 

(𝑟𝐿
0) and sinking velocity (𝑤𝐿,𝑚𝑖𝑛 and 𝑤𝐿,𝑚𝑎𝑥) of large detritus are 

decreased by 25% 

Relative changes in large POC concentration, large POC flux, and nitrification are 

shown in Fig. 4.10 for the sensitivity experiments with the ballast (±25%) and WLin (±

25%) schemes in comparison to their corresponding base cases. The results show that the 

vertical profiles of POC concentration are highly sensitive to simultaneous changes in 

remineralization rate and sinking velocity. When the remineralization rate and sinking 

velocity are increased by 25%, the POC concentration decreases by about 20%. In contrast, 

a 25% decrease in the remineralization rate and sinking velocity increases the POC 

concentration by about 33%. However, the POC flux remains unchanged because the 

remineralization length scale is fixed. Furthermore, since nitrification and NO3 are fueled 

by POC respiration, or the reduction of POC flux with depth, they do not change either. 
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Figure 4.10. Relative changes of the large POC concentration (a), large POC flux (b), and 

nitrification (c) in ballast (±25%) and WLin (±25%) sensitivity experiments when 

compared to their corresponding base cases (i.e., the ballast and WLin case, respectively). 

4.4 Discussion 

Parameterizations of vertical carbon flux in biogeochemical models are critically 

important for simulating the BCP and its role in climate change. Currently, two schemes 

with different mechanistic underpinnings for reproducing the increase of remineralization 

length scale with depth are in use. Previous studies aimed at comparing and evaluating the 

different parameterization schemes placed emphasis on their ability to reproduce sparse in-

situ observations of POC flux and climatological datasets of nutrients and dissolved 

oxygen. These studies found that the different parameterization schemes can match these 

observations equivalently well within the observational uncertainties while yielding 

different atmospheric CO2 levels (Cael and Bisson 2018; Lauderdale and Cael 2021). This 

suggests that the currently available observations of POC flux, nutrients, and dissolved 

oxygen are insufficient for distinguishing between different parameterization schemes and 

for constraining the two main parameters, sinking speed and remineralization rate, with 

sufficient accuracy. This is a well-known issue in biogeochemical modeling, referred to as 

the underdetermination problem, and common when calibrating biogeochemical models 

(Fennel et al. 2022). The only solution to this problem is to provide additional constraints 

from independent observations or mechanistic insight. This chapter seeks to evaluate the 

value that abundant proxy observations of POC concentration from profiling floats may 
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add for assessing and calibrating the vertical carbon flux parameterization in 

biogeochemical models.  

First, I described the parameterization schemes from 12 ESMs that are part of CMIP6 

and classified them into three categories (Fig. 4.2): two categories where POC is simulated 

explicitly and the increase in remineralization length scale is addressed either by decreasing 

the remineralization rate or increasing the sinking velocity, and one category where POC 

flux and ballast effects are simulated implicitly. There are large model-to-model 

differences in the vertical profiles of POC flux and transfer efficiency between the 12 

ESMs. Comparisons between the simulated POC flux and in-situ observations show that 

the GFDL-ESM4 as well as the IPSL-6A-LR and IPSL-6A-LR-INCA have the best 

agreement with observations. However, despite their similar agreement with the 

observations GFDL-ESM4, IPSL-6A-LR and IPSL-6A-LR-INCA simulate vastly 

different transfer efficiencies. This supports previous conclusions by other authors that the 

currently available observations of POC flux are not sufficient to distinguish between 

different alternative parameterization schemes (Cael and Bisson 2018; Lauderdale and 

Cael 2021). 

To isolate the influence of parameterization scheme from other sources of 

discrepancies in the ESM models, I set up a suite of 1D models to compare the two most 

common parameterizations, the ballast scheme and the WLin scheme, in the same model 

environment. Both have been widely used in large-scale biogeochemical models and 

reproduce the increase of remineralization length scale either by decreasing the 

remineralization rate or by increasing sinking velocities. Unlike previous studies that used 

observations of POC flux, nutrients, and dissolved oxygen, here the 1D models are 

calibrated using BGC-Argo float observations of POC concentration in the top 1000 m, 

where the largest vertical gradient is present.  

Comparison of the two schemes in the 1D model framework shows notable differences 

in their vertical profiles of POC flux, which also influences nutrient distributions through 

respiration. Specifically, the respiration in the deep ocean (below 500 m) is higher and 

therefore the nutrients are re-distributed deeper with the WLin scheme. This has global 

implications because deeper respiration enables the global meridional overturning 
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circulation to transport more nutrients from North Atlantic to the Southern Ocean and 

North Pacific, results in longer-term sequestration of CO2, and decreases the equilibrium 

atmospheric CO2 levels (Kwon et al. 2009; Lauderdale and Cael 2021). Lauderdale and 

Cael (2021) perturbed their exponent b by ±0.14 from a reference value of 0.84 and 

reported changes of biologically regenerated carbon in the deep ocean by up to 

approximately 20 mmol C m-3 and 50 mmol C m-3 in the Atlantic and Pacific, respectively. 

In addition, this perturbation in the respiration changed the equilibrium atmospheric CO2 

levels by -22 ppm and +25 ppm in their model simulations. The changes in respiration 

between the two 1D model schemes are even higher than in Lauderdale and Cael (2021) 

(Fig. 4.9b) and would likely result in substantial differences in nutrient distributions and 

atmospheric CO2 levels when applied to the global ocean.  

The two model schemes produced almost identical profiles of POC concentration 

within the top 1000 m but yielded substantially different predictions below, especially 

below 2000 m, because of their different underpinning mechanisms. Specifically, the POC 

concentration in the WLin scheme is lower than that in the ballast scheme because the 

relatively faster remineralization rate and sinking velocity can remove organic particles 

more easily from the water column. The influence of remineralization rate on POC 

concentration has also been discussed in Aumont et al., (2017) who compared two different 

parameterizations of vertical carbon flux. They found that POC concentration was 

underestimated below 200 m by at least one order of magnitude in the model version where 

the remineralization rate is dependent on temperature. In contrast, using the model version 

with a continuous reactivity spectrum of POC resulted in a decrease in remineralization 

rate with depth and led to an improved agreement with the observed POC concentration 

without degrading the POC flux. Both model versions used a constant sinking velocity of 

POC. The ballast scheme, which divides large POC into the free and protected components, 

is similar to the reactivity spectrum but uses a finite number of POC pools with different 

reactivities and therefore can enhance preservation of POC concentration in the deep ocean 

when compared with the WLin scheme. However, the ballast scheme and the reactivity 

spectrum reproduce the decrease of remineralization rate due to different mechanisms and 

hence their future projections of carbon sequestration have different sensitivities to climate 

change. Given the rising atmospheric CO2 levels, the dissolution of CaCO3 will be 
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shallower, which decreases the protection of POC from remineralization. As a result, the 

projected decrease of carbon sequestration will be amplified in models with the ballast 

scheme while in other models, e.g., with the reactivity spectrum, it will not. Distinguishing 

between these two parameterizations requires further investigation and is beyond the scope 

of this chapter. 

Both the ballast scheme and WLin scheme can reproduce the increase of 

remineralization length scale with depth, one by decreasing the remineralization rate and 

the other by increasing sinking velocity. The higher POC concentration in the ballast 

scheme implies that it is probably more accurate than the WLin scheme, or at least it is 

more important in explaining the increase of remineralization length scale. Since there are 

observational supports for both of the mechanistic assumptions (e.g., McDonnell et al., 

2015; Villa-Alfageme et al., 2014, 2016), it could be a combination of both in reality and 

an ideal parameterization scheme likely should incorporate these two mechanisms. 

However, for a quantitative understanding of their relative importance more observations 

are needed. Results suggest that proxy observations of POC concentration below 2000 m 

would be very valuable. Presently BGC-Argo floats are limited to the top 2000 m; however, 

an integration of backscatter sensors into the Deep Argo program, a new component of 

Argo that will sample the ocean from surface to 4000 m and even 6000 m (Roemmich et 

al. 2019) could accomplish this. Such an extension of the BGC Argo to the full depth of 

the ocean would provide important information for distinguishing between different 

parameterization schemes and promoting process-based understanding of the BCP. 

Although POC concentrations, unlike the POC flux, hold great potential for validating 

and constraining mesopelagic (200-1000 m) and deep-ocean carbon sequestration, much 

less attention has been paid so far to their usage for calibrating biogeochemical models. 

The linkage between POC concentration and POC flux requires additional assumptions or 

knowledge of sinking velocity. I conducted a suite of sensitivity experiments to evaluate 

whether observations of POC concentration can well constrain the POC flux if the model 

parameterization scheme has been determined. The sensitivity experiments show that the 

POC concentration is sensitive to simultaneous changes of remineralization rate and 

sinking velocity. This implies that observations of POC concentration can determine these 
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two related parameters independently and therefore can derive a unique estimate of POC 

flux, but the inverse is not true because the POC flux and the nutrients are almost 

unchanged. High-frequency observations of POC concentration contain information on 

remineralization rate and sinking velocity, which have been successfully derived from 

changes of POC concentration over time and depth (Briggs et al. 2011, 2020).  

In general, this chapter suggests that observations of POC concentration are valuable 

in complementing the existing sparse observations of vertical flux because they can inform 

us on the most appropriate parameterization scheme and can provide unique estimates of 

POC flux. In addition, when compared with traditional POC flux measurements (e.g., 

sediment traps and radioactive tracers), autonomous platforms (e.g., BGC-Argo floats) and 

bio-optical sensors make it more cost-effective to measure the POC concentration in high 

resolution and over extended spatial and temporal scales. Therefore, I recommend the 

usage of observations of POC concentration in addition to other observation types for 

calibration of biogeochemical models. 

 

4.5 Conclusion 

This chapter shows large model-to-model differences in the simulated vertical profiles 

of POC flux and transfer efficiency across ESMs regardless of the vertical flux 

parameterization that is used. Comparison of the two most common parameterizations, the 

ballast scheme and the WLin scheme, within an otherwise identical 1D model framework 

suggest that the WLin scheme is likely underestimating POC concentrations in the deep 

ocean, especially below 2000 m, and that the ballast scheme is probably more accurate. 

Differences in predicted POC concentrations below 2000 m suggest that it would be 

possible to better distinguish between the skill of the two schemes and evaluate their 

accuracy if backscatter measurements from BGC-Argo floats were available below 2000 

m. Sensitivity experiments suggest that observations of POC concentration can 

simultaneously constrain the remineralization rate and sinking velocity, if the 

parameterization scheme is known, and can therefore be used to derive a unique estimate 

of POC flux.  
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CHAPTER 5                                                                                                

BIOGEOCHEMICAL ARGO DATA SUGGEST SIGNIFICANT 

CONTRIBUTIONS OF SMALL PARTICLES TO THE VERTICAL 

CARBON FLUX IN THE SUBPOLAR NORTH ATLANTIC3 

5.1 Introduction 

The ocean’s biological carbon pump, a key component of the global carbon cycle, 

includes a range of processes by which 10% to 20% of global net primary production (NPP) 

is exported downward from the euphotic zone (e.g., Henson et al. 2011; Siegel et al. 2014; 

Bisson et al. 2020). However, most of this downward organic carbon flux is recycled within 

the mesopelagic zone (100 to 1000 m depth) and recirculated back to the surface within 

years to decades. Only a small fraction, estimated to vary from 5% to 40% globally 

(DeVries and Weber 2017), is sequestered in the deep ocean (>1000 m) for centuries to 

millennia (Guidi et al. 2015; Boyd et al. 2019). The ratio between the vertical flux at 100 

m and a given depth, e.g., 1000 m, is defined as the transfer efficiency of vertical carbon 

transport. Variations in the amount of organic carbon transported to and subsequently 

sequestered in the deep ocean exert a strong control on atmospheric CO2 levels (Falkowski 

et al. 1998). Accurate estimates of the strength and transfer efficiency of the vertical carbon 

flux thus are of paramount interest to climate research.  

A long-standing paradigm is that the vertical carbon flux is mainly fueled by the 

gravitational settling of large, fast-sinking particulate organic carbon (POC). This view has 

been challenged because estimates of carbon demand by heterotrophic organisms exceed 

those of organic carbon supplied by sinking, suggesting that other mechanisms may 

contribute to the vertical carbon flux (Burd et al. 2010). Recent studies have revealed 

                                                           
3 Based on: Wang, B. and Fennel, K. (2022), Biogeochemical-Argo data suggest significant contributions of 

small particles to the vertical carbon flux in the subpolar North Atlantic. Limnol 

Oceanogr. https://doi.org/10.1002/lno.12209. 

 

https://doi.org/10.1002/lno.12209
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important contributions from small, slow-sinking POC to vertical carbon flux (Dall’Olmo 

and Mork 2014; Omand et al. 2015; Baker et al. 2017). In addition to its relatively slow 

gravitational settling, small POC can be injected into greater depths by different physical 

and biological processes (Boyd et al., 2019) that are episodic and localized and thus hard 

to measure (Llort et al. 2018; Resplandy et al. 2019). Recent advances with autonomous 

platforms and biogeochemical sensors now enable POC observations at high spatial and 

temporal resolution (Biogeochemical-Argo Planning Group 2016; Roemmich et al. 2019; 

Chai et al. 2020). The vertical flux of small POC at the base of euphotic zone has been 

estimated previously from BGC-Argo observations by assuming that it equals the seasonal 

accumulation of small POC within the mesopelagic zone during the transition period from 

winter to summer (e.g., Dall’Olmo and Mork 2014; Bol et al. 2018). However, the seasonal 

accumulation is a result of multiple processes. Besides the vertical flux from the upper 

layer, small POC can be supplied by the fragmentation of large POC within the 

mesopelagic zone (Giering et al. 2016; Baker et al. 2017; Briggs et al. 2020) and is partly 

remineralized. Overlooking these factors may introduce errors into estimates of the vertical 

carbon flux and the relative contributions of small POC. 

The vertical transfer efficiency is even more poorly constrained. Some studies put 

forward the idea that it is higher in low latitude regions and decreases to high latitudes 

(Henson et al. 2012; Guidi et al. 2015), while others suggest the opposite latitudinal pattern 

(Marsay et al. 2015; Weber et al. 2016; DeVries and Weber 2017). The large uncertainty 

in estimates of the transfer efficiency is due to the scarcity of in-situ observations and a 

lack of mechanistic understanding of the controlling processes. The transfer efficiency is 

determined by a competition between local processes (i.e., remineralization and 

fragmentation) and vertical transfer (incl. sinking, subduction, and mixed layer deepening) 

of POC. Many studies have revealed that the remineralization rate is highly variable 

geographically and is modulated by local environmental factors, e.g., temperature and 

oxygen (Weber et al. 2016; Laufkötter et al. 2017; Kheireddine et al. 2020). Fragmentation 

has been suggested as the single most important process controlling the loss of large POC 

(Briggs et al., 2020; Giering et al., 2014). Hence, a better quantification of remineralization 

and fragmentation can improve our understanding of the transfer efficiency. 
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To address these issues, I present a method for estimating the vertical flux of large and 

small POC using observations of backscattering and dissolved oxygen from BGC-Argo 

floats. This method, an extension of the model of Dall’Olmo and Mork (2014), explicitly 

accounts for remineralization and fragmentation of organic particles. I apply this method 

to evaluate the vertical carbon flux due to different mechanisms and its transfer efficiency 

in the subpolar North Atlantic, while explicitly accounting for remineralization and 

fragmentation for the first time. Results show that the gravitational sinking flux of large 

POC is the most important mechanism and the most effective pathway for long-term 

sequestration. Small POC is transported out of the euphotic zone and can also contribute 

significantly to the vertical carbon flux at 600 m since it is produced by fragmentation of 

large POC in the mesopelagic zone.  

5.2 Material and methods 

5.2.1 BGC-Argo floats 

This chapter uses measurements of oxygen and backscattering at 700 nm (bbp700; 

unit: m-1) from BGC-Argo floats in the subpolar North Atlantic (Fig. 5.1). The baseline 

and spike signals were decoupled from the raw bbp700 profiles following Briggs et al. 

(2011). The instrument noise was removed from the spike signals and added to the baseline 

following Briggs et al. (2020). The resulting baseline and spike signals are used as a proxy 

of small, slow-sinking POC (Dall’Olmo and Mork 2014) and large, fast-sinking POC 

(Briggs et al. 2011), respectively. POC concentrations (Fig. 5.2) were obtained from these 

proxy measurements by using a factor of 37537 mg C m-2 in the mixed layer, defined here 

as the depth where density first exceeds 0.125 kg m-3 plus the reference density at 5 m 

depth (Hennon et al. 2016), and a slightly lower factor of 31519 mg C m-2 below (Cetinić 

et al. 2012; Lacour et al. 2019). A background value, defined as the median of the baseline 

between 950 and 1000 m (Lacour et al. 2019) was first subtracted before estimating the 

small POC. 
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Figure 5.1. Trajectories of BGC-Argo floats that measured both oxygen and backscattering 

(gray and colored lines). The colors show one-year segments that were used in the analysis. 

The floats’ WMO numbers are 6901485 (float A), 6901486 (float B), and 6901523 (float 

C). The large gray circles indicate where in-situ measurements of vertical carbon flux at 

100 m are available. 

As shown in Fig. 5.1, floats can move large horizontal distances over the course of 

their deployment and thus encounter different physical and biogeochemical regimes and 

different mesopelagic remineralization rates and export fluxes. To minimize this effect, I 

divided each float trajectory into several one-year segments (from January to December; 

Fig. 5.2) and estimated the vertical flux for each segment. As float C (WMO number 

6901523) was influenced by a relatively low-oxygen water mass from July to December 

2014, the corresponding segment was defined from May 2013 to May 2014 but is referred 

to as C-2013 (Fig. 5.2). 
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Figure 5.2. The vertical distributions of small slowing-sinking POC (mg C m-3), large fast-

sinking POC (mg C m-3), dissolved oxygen (mmol O2 m
-3), and AOU (mmol O2 m

-3) from 

each float segment. The mixed layer depth is shown by the black solid lines. 

 

5.2.2 POC flux due to different mechanisms 

In this chapter, I extend the approach of Dall’Olmo and Mork (2014) to explicitly 

account for remineralization and fragmentation. As shown in Fig. 5.3, the small POC 
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within the mesopelagic zone can be supplied by the downward transport from the upper 

layers. At the same time, it will be remineralized to consume oxygen and be produced by 

the fragmentation of large POC. To estimate the vertical flux of small POC, it was 

integrated over progressively deeper parts of the mesopelagic zone (𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡), in units 

of mg C m-2, with 100 𝑚 ≤ 𝑧 ≤ 900 𝑚 ; please see Table E.1 for parameters and 

abbreviations used in this chapter) as follows: 

𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡) = ∫ 𝑃𝑂𝐶𝑆(𝑧, 𝑡)𝑑𝑧,     

900

𝑧

                                                                                 (5.1) 

Assuming no small POC flux at the base of mesopelagic zone at 900 m and that the carbon-

specific remineralization rate of small POC (𝑟𝑠, day-1) and the fragmentation rate of large 

POC (𝑑𝐿, day-1) are constant, the temporal evolution of 𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡) is then given by: 

𝜕𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡)

𝜕𝑡
= 𝑆900(𝑧, 𝑡) − 𝑟𝑠 ∙ 𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡),                                                               (5.2) 

where 𝑆900(𝑧, 𝑡) (mg C m-2 day-1) represents the supply of small POC including the total 

carbon flux at depth 𝑧 due to different mechanisms (𝑡𝑜𝑡𝐹𝑠(𝑧, 𝑡), mg C m-2 day-1) and the 

vertically integrated fragmentation flux below depth 𝑧 (𝑖𝐹𝑟𝑎𝑔900(𝑧, 𝑡), mg C m-2 day-1), 

or: 

𝑆900(𝑧, 𝑡) = 𝑡𝑜𝑡𝐹𝑠(𝑧, 𝑡) + 𝑖𝐹𝑟𝑎𝑔900(𝑧, 𝑡),                                                                             (5.3) 

𝑖𝐹𝑟𝑎𝑔900(𝑧, 𝑡) = ∫ 𝑑𝐿 ∙ 𝑃𝑂𝐶𝐿(𝑧, 𝑡)𝑑𝑧,     
900

𝑧

                                                                        (5.4) 

Following Briggs et al. (2020), the fragmentation was assumed to be proportional to large 

POC (𝑃𝑂𝐶𝐿(𝑧, 𝑡)) and refers to a net effect of aggregation and fragmentation.  

As stated above, the remineralization rate (𝑟𝑠) was assumed to be constant. Although 

it is dependent on temperature and will be slowed by low oxygen, given the relatively 

constant temperature profiles and abundant oxygen within the mesopelagic zone in the 

study region (Fig. E.2), this is a reasonable assumption.  
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Figure 5.3. A schematic illustrating the processes considered, i.e., downward transport of 

small and large POC into the deep ocean (a), remineralization (b), and fragmentation of 

large POC into small POC (c). The open circles in panel (b) refer to small and large POC 

that was removed from the water column due to remineralization.   

I further assumed that the supply 𝑆900(𝑧, 𝑡)  is constant in time between two 

consecutive sampling dates and therefore can be estimated as (see Appendix E for detailed 

derivation): 

𝑆900(𝑧) =
𝑟𝑠 ∙ (𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡1) − 𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡0)𝑒−𝑟𝑠∆𝑡)

1 − 𝑒−𝑟𝑠∆𝑡
,                                                  (5.5) 

where 𝑡0 and 𝑡1 are two adjacent sampling times which can be between 1 and 11 days apart, 

and are typically within 50 km (Fig. E.3), ∆𝑡 is the time interval between them. When 

remineralization and fragmentation are neglected (i.e., 𝑟𝑠 = 0, 𝑑𝐿 = 0), Eq. 5.5 simplifies to 

the equation used by Dall’Olmo and Mork (2014), meaning that the vertical flux of small 

POC is equivalent to the accumulation rate of 𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡) (see Appendix E).  

Small POC can be transported through various mechanisms including gravitational 

settling, vertical mixing, and downward circulation components (Resplandy et al. 2019). 

So far, no assumption was made about the nature of the vertical flux (𝑡𝑜𝑡𝐹𝑠(𝑧, 𝑡) includes 

all possible mechanisms). The gravitational sinking flux of small POC (𝐺𝑟𝑎𝑣𝐹𝑆(𝑧, 𝑡), mg 

C m-2 day-1) can be estimated by multiplying its concentration and sinking velocity as: 

𝐺𝑟𝑎𝑣𝐹𝑆(𝑧, 𝑡) = 𝑤𝑠 ∙ 𝑃𝑂𝐶𝑆(𝑧, 𝑡),                                                                                               (5.6) 
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Then the gravitational sinking flux of large POC can be estimated similarly. Finally, the 

difference between 𝐺𝑟𝑎𝑣𝐹𝑆(𝑧, 𝑡)  and 𝑡𝑜𝑡𝐹𝑆(𝑧, 𝑡)  can be attributed to other downward 

transport mechanisms as: 

𝑜𝑡ℎ𝑒𝑟𝐹𝑆(𝑧, 𝑡)  = 𝑡𝑜𝑡𝐹𝑆(𝑧, 𝑡) − 𝐺𝑟𝑎𝑣𝐹𝑆(𝑧, 𝑡).                                                                        (5.7) 

5.2.2.1 Remineralization rate  

Remineralization rates of small and large POC were estimated using oxygen 

observations below the mixed layer. The rate of change of subsurface oxygen can be 

written as: 

𝜕𝑂2(𝑧, 𝑡)

𝜕𝑡
= −1.45 ∙ 𝑅𝑒𝑠𝑝(𝑧, 𝑡) − 𝑢⃗⃗ ∙ 𝛻𝑂2(𝑧, 𝑡) + 𝛻(𝜅 ∙ 𝛻𝑂2(𝑧, 𝑡)),                              (5.8) 

where the respiration (𝑅𝑒𝑠𝑝(𝑧, 𝑡)) is scaled by 1.45 to convert between carbon and oxygen 

(Anderson and Sarmiento 1994). After neglecting physical advection (𝑢⃗⃗ ∙ 𝛻𝑂2(𝑧, 𝑡)) and 

diffusion (𝛻(𝜅 ∙ 𝛻𝑂2(𝑧, 𝑡))) similar to Hennon et al. (2016), the oxygen change rate was 

integrated over time and related to the small and large POC as: 

∆𝑂2(𝑧, 𝑡)

1.45
= ∫ 𝑟𝑒𝑠𝑝(𝑧, 𝑡)𝑑𝑡 = −𝑟𝑠 ∙ ∫

𝑃𝑂𝐶𝑆(𝑧, 𝑡)

12
𝑑𝑡 − 𝑟𝐿 ∙ ∫

𝑃𝑂𝐶𝐿(𝑧, 𝑡)

12
 𝑑𝑡 .             (5.9) 

To remove the influence of temperature and salinity changes, the oxygen concentration 

was replaced by the Apparent Oxygen Utilization AOU(𝑧, 𝑡) (mmol O2 m-3) which is 

defined as the oxygen deficit relative to its saturation: 

∆𝐴𝑂𝑈(𝑧, 𝑡)

1.45
= 𝑟𝑠 ∙ ∫

𝑃𝑂𝐶𝑆(𝑧, 𝑡)

12
𝑑𝑡 + 𝑟𝐿 ∙ ∫

𝑃𝑂𝐶𝐿(𝑧, 𝑡)

12
 𝑑𝑡 .                                           (5.10) 

The factor 12 is to convert POC concentration from mg C m-3 into mmol C m-3. To follow 

the movement of water masses, I divided the mesopelagic zone into 20 isopycnal levels. 

Sensitivity tests showed that the number of isopycnal levels has little influence on the 

results. I then tested a range of parameter values for 𝑟𝑠 and 𝑟𝐿 by calculating the root-mean-

square-error (RMSE) between the observed and fitted ∆𝐴𝑂𝑈(𝑧, 𝑡) (Fig. 5.4). The optimal 

values can be estimated by minimizing the RMSE. To account for the uncertainty, all 
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values with an RMSE within 0.1 mmol O2 m
-3 of the minimal RMSE were considered as 

likely values (Table 5.1, Fig. 5.4). 

Table 5.1. A list of modelled key parameter values and vertical carbon fluxes due to 

different mechanisms at 100 and 600 m. The standard deviations are given in parentheses. 

 A-2014 B-2014 B-2015 B-2016 C-2013 

𝒓𝑺 (day-1) 0.05 (0.01) 0.06 (0.02) 0.03 (0.01) 0.06 (0.01) 0.10 (0.02) 

𝒘𝑺 (m day-1) 4.42 (1.37) 5.78 (1.66) 1.84 (0.40) 6.04 (1.10) 6.66 (1.42) 

𝒍𝑺,𝒓 (m) 92.25 92.73 68.28 102.08 67.48 

𝒓𝑳 (day-1) 0.12 (0.07) 0.10 (0.06) 0.11 (0.02) 0.08 (0.03) 0.11 (0.06) 

𝒅𝑳 (day-1) 0.12 (0.04) 0.12 (0.03) 0.01 (0.00) 0.01 (0.00) 0.23 (0.05) 

𝑨𝑳 (day-1) 0.25 (0.03) 0.22 (0.03) 0.12 (0.02) 0.08 (0.03) 0.34 (0.02) 

𝒘𝑳 (m day-1) 87.18 (11.33) 78.62 (10.49) 28.58 (3.96) 32.92 (10.30) 59.54 (3.79) 

𝒍𝑳 (m) 354.11 359.84 245.46 399.36 177.65 

The vertical carbon fluxes at 100m (unit: g C m-2 yr-1) 

totF 58.12 (2.85) 63.35 (3.24) 35.75 (1.57) 59.18 (2.86) 74.05 (7.09) 

GravFL 36.73 (4.77) 40.10 (5.35) 23.00 (3.19) 22.13 (6.92) 38.75 (2.47) 

GravFS 13.21 (4.10) 17.04 (4.89) 5.84 (1.27) 21.47 (3.92) 23.18 (4.94) 

OtherFS 8.19 (2.21) 6.20 (1.77) 6.90 (1.17) 15.58 (2.94) 12.12 (3.30) 

iFrag 16.27 (5.05) 16.09 (4.62) 1.99 (0.43) 1.60 (0.29) 29.77 (6.34) 

The vertical carbon fluxes at 600m (unit: g C m-2 yr-1) 

totF 9.93 (0.84) 11.99 (1.62) 4.42 (0.35) 6.94 (1.27) 7.25 (0.42) 

GravFL 8.53 (1.11) 12.15 (1.62) 3.43 (0.48) 5.18 (1.62) 6.98 (0.44) 

GravFS 2.64 (0.82) 2.25 (0.65) 0.39 (0.09) 1.63 (0.30) 2.85 (0.61) 

OtherFS -1.24 (0.51) -2.41 (0.65) 0.60 (0.07) 0.14 (0.09) -2.58 (0.57) 

iFrag 2.90 (0.90) 3.73 (1.07) 0.31 (0.07) 0.29 (0.05) 6.35 (1.35) 
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Figure 5.4. The RMSE of different remineralization rates for small (𝑟𝑠) and large POC (𝑟𝐿). 

The black dots represent the RMSE minima and the black contour lines include all values 

within 0.1 mmol O2 m
-3 of the minimum. 

5.2.2.2 Remineralization length scale 

Assuming a constant sinking velocity (𝑤𝐿, m day-1) and net attenuation rate (𝐴𝐿, day-

1) of large POC, the temporally averaged vertical profile of large POC can be represented 

by:  

𝑃𝑂𝐶𝐿(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑃𝑂𝐶𝐿(100)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑒𝑥𝑝 (−𝐴𝐿

𝑧 − 100

𝑤𝐿
) ,                                                                                    (5.11) 

where 𝑃𝑂𝐶𝐿(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the temporally averaged large POC concentration at depth 𝑧 (noting that 

𝑧 = 100 m defines the base of euphotic zone). The net attenuation rate of large POC is the 

sum of the remineralization rate (𝑟𝐿, day-1) and the fragmentation rate (𝑑𝐿, day-1), i.e., 

𝐴𝐿 = 𝑟𝐿 + 𝑑𝐿 .                                                                                                                             (5.12) 

Therefore, the remineralization length scale of large POC ( 𝑙𝐿 = 𝑤𝐿/𝐴𝐿 , m) can be 

estimated by fitting the temporally averaged vertical profile of large POC to Eq. 5.11 (Fig. 

5.5, Table 5.1).  
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Figure 5.5. The vertical profiles of large POC and their fitting curves of each float segment.  

Likewise, by assuming a constant sinking velocity (𝑤𝑆, m day-1) and remineralization 

rate (𝑟𝑆, day-1) for small particles, the remineralization length scale of small POC (𝑙𝑆(𝑧) =

𝑤𝑆/𝐴𝑆(𝑧), m) is modulated by the fragmentation rate (𝑑𝐿) and the ratio of large to small 

POC (Fig. 5.6) as follows (see Appendix E for detailed derivation) 

1

𝑙𝑆(𝑧)
=

1

𝑙𝑆,𝑟
−

1

𝑙𝑆,𝑟
∙

𝑑𝐿

𝑟𝑠
∙

𝑃𝑂𝐶𝐿(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑃𝑂𝐶𝑆(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
.                                                                                         (5.13) 

To solve Eq. 5.13, the temporally averaged vertical profiles of small and large POC are 

divided into 100 m vertical bins. Within each vertical bin, the ratio between large and small 

POC (𝑃𝑂𝐶𝐿(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/𝑃𝑂𝐶𝑆(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) is estimated and the remineralization length scale (𝑙𝑆(𝑧)) is 

obtained by fitting the temporal averaged vertical profile of small POC to Eq. E.19. As a 

result, the remineralization length scale when fragmentation is not considered ( 𝑙𝑆,𝑟 =

𝑤𝑆/𝑟𝑆, m) can be derived from the inverse of regression intercept shown in Fig. 5.6. The 
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ratio between fragmentation and remineralization rate of small POC ( 𝑑𝐿/𝑟𝑠 ) can be 

obtained by dividing the regression slope by the intercept. 

 

Figure 5.6. Relationships between the remineralization length scale of small POC and the 

ratio of large POC to small POC 

Since Eq.s 5.11 and 5.13 do not apply during periods of deep winter mixing, only 

profiles from May to October were used. Also, observations from below 600 m were not 

used because the small POC concentrations are not distinguishable from zero and would 

introduce large uncertainties when calculating their remineralization length scale (𝑙𝑆(𝑧)). 

5.2.3 Comparisons with in-situ and satellite-based vertical flux 

In-situ 234Th-based measurements of the vertical carbon flux at 100 m are obtained 

from the supplement of Henson et al. (2019) (locations shown in Fig. 5.1) and are averaged 

into the monthly climatology. Given that the 234Th-based fluxes are typically interpreted as 

an integrated measurement over several days to weeks prior to the sampling (Buesseler et 

al. 2006) and the derived flux based on the BGC-Argo float data are average fluxes over 

two consecutive sampling times (1-11 days), the 234Th-based fluxes will be compared with 
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my estimates of the total carbon flux at 100 m which have been smoothed using a 24-day 

filter because the half-live of 234Th decay is 24 days.  

In addition, a compilation of satellite-derived vertical flux estimates at 100 m including 

two net primary production (NPP) algorithms and four estimates of the flux-to-NPP ratio 

is used for comparison. The NPP estimates, namely the Vertically Generalized Production 

Model (VGPM, Behrenfeld & Falkowski, 1997) and the Carbon-based Production Model 

(CbPM, Westberry et al., 2008), are obtained from Oregon State University  

(http://sites.science.oregonstate.edu/ocean.productivity/index.php). The flux-to-NPP ratio 

is determined by four commonly used algorithms. Specifically, the algorithm from Dunne 

et al., (2005) is based on sea surface temperature (SST) and NPP (or surface chlorophyll), 

which hereafter is named as Dunne_NPP (or Dunne_CHLA). To maximize the data 

availability, they used all data of new production, the net community production, and the 

sinking flux from in-situ sediment traps and 234Th-based method. The algorithm from 

Henson et al., (2011) relies on observations from Laws et al., (2000) to predict the f-ratio 

(the ratio of new production to total production) based on SST and hereafter is referred to 

as Laws. These three algorithms have been widely used to represent the net community 

production, which is equivalent to the flux of organic carbon under steady state. Finally, 

the SST-based algorithm is formulated from 234Th-based measurements by Henson et al., 

(2011) (hereafter Henson). Therefore, all of these satellite algorithms will be compared to 

my estimates of total vertical carbon flux at 100 m. 

To calculate the flux-to-NPP ratio, the daily-averaged SST is obtained from Advanced 

Very High Resolution Radiometer (AVHRR; Martin et al., 2012) and the monthly-

averaged surface chlorophyll is provided by the Ocean-Colour Climate Change Initiative 

project (OC-CCI; Sathyendranath et al., 2018). All these satellite data are averaged into an 

annual climatology and grouped into 12 degrees bins (~100 km) before calculating the 

vertical carbon flux (Fig. E.4). 

5.3 Results 

The annually averaged vertical carbon fluxes at 100 and 600 m due to gravitational 

settling and other mechanisms, and the fragmentation flux are shown in Fig. 5.7 and Table 

http://sites.science.oregonstate.edu/ocean.productivity/index.php
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5.1 for each float segment. The estimates of key parameters, e.g., the remineralization rate, 

the fragmentation rate, and the sinking velocity, are also shown in Table 5.1. The total 

vertical flux (totF) is the sum of the different downward transport mechanisms; it does not 

include the fragmentation flux (Fig. 5.7a, f). The annually averaged totF varies from 

35.75±1.57 to 74.05±7.09 g C m-2 yr-1 at 100 m (Fig. 5.7a, Table 5.1), which is in general 

higher than the Henson-algorithm (Fig. E.5g, h) possibly because this algorithm 

underpredicted the large uncertainties of carbon flux in high latitudes (Henson et al. 2011). 

After excluding the Henson-algorithm, my results are similar with CbPM-based estimates 

of 47.36 to 71.31 g C m-2 yr-1 (Fig. E.5a, c, e) but lower than the VGPM-based ones of 

76.36-114.83 g C m-2 yr-1 (Fig. E.5b, d, f). In addition, comparisons with the in-situ 234Th 

fluxes also suggest that my estimates are in a reasonable magnitude (Fig. E.6). At 600 m, 

totF decreases to between 4.42±0.35 and 11.99±1.62 g C m-2 yr-1 (Fig. 5.7f, Table 5.1). 

The transfer efficiency, defined here as the flux ratio between 600 and 100 m, ranges from 

10±1% to 19±3%. 

 

Figure 5.7. Annually averaged vertical carbon flux due to gravitational settling and other 

mechanisms, and fragmentation of large to small POC from each float segment at 100 and 

600 m. The orange lines represent the mean values while the colored boxes represent +/- 

one standard deviation. The upper and lower error bars represent maximum and minimum 

values. 
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At 100 m, the gravitational sinking flux of large POC (GravFL) is 22.13±6.92 to 

40.10±5.35 g C m-2 yr-1, which accounts for more than 60% of totF in three of the five float 

segments, 53±7% in C-2013, and 37±11% in B-2016 (Fig. 5.7b). At 600 m, the relative 

contribution of large POC increases to more than 70% due to its relatively higher transfer 

efficiency (15%-30%).  

The gravitational settling of small POC (GravFS) accounts for 16±4% to 36±7% of 

totF at 100 m and 9±3% to 40±10% at 600 m (Fig. 5.7c, h). The vertical flux of small POC 

due to other mechanisms (OtherFS; Fig. 5.7d) including vertical mixing and downward 

transport contributes less (10±3% to 26±5%). This flux attenuates quickly to about 0 at 600 

m. In addition to transport from above, fragmentation (iFrag) is also a source of small POC 

within the mesopelagic zone and supplies small POC at a rate comparable to the total 

vertical flux of small POC (totFS) in some float segments, i.e. A-2014, B-2014, and C-2013 

(Fig. 5.7e). 

To account for the uncertainties of each mechanism, I defined the coefficient of 

variation as the ratio between standard deviation and mean. As shown in Fig. 5.7, the 

uncertainty of totF is usually lower than that of each component. Except for C-2013, the 

coefficient of variation at 100 m varies from 13% to 31% for the GravFL and from 18% to 

31% for the GravFS but is only 5% for totF. The uncertainty of totF grows with increasing 

depth. At 600 m, the coefficient of variation for totF varies from 8% to 18% (Fig. 5.7f), a 

1.6 to 3.6-fold increase from 100 m. 

5.4 Discussion 

5.4.1 Importance of remineralization and fragmentation 

To the best of my knowledge, this is a first observation-based study to estimate the 

annual vertical carbon flux due to different mechanisms that explicitly accounts for 

remineralization and fragmentation. Previous studies which estimated the vertical flux of 

small POC assumed that its seasonal accumulation (i.e., during the winter-to-summer 

transition period) within the mesopelagic zone is due only to transport from upper layers 

(e.g., Dall’Olmo and Mork 2014; Bol et al. 2018; Kheireddine et al. 2020). Although there 

are differences in the details of these previous algorithms, this assumption was made in all 
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of them. Some studies suggested that this seasonal flux can contribute more than 20% of 

the total vertical flux at the base of euphotic zone in high latitudes (e.g., Bol et al., 2018; 

Dall’Olmo et al., 2016). However, this simple estimate is likely biased by neglecting the 

remineralization and fragmentation, and will confound our understanding of the relative 

contributions from small and large POC. For instance, if I estimated the annual vertical 

flux of small POC (totFS) at 100 m in my data set while neglecting the fragmentation (𝑑𝐿 =

0), it would increase by over 70% in three of five float segments, i.e. A-2014, B-2014, C-

2013 (Fig. 5.8), indicating that the fragmentation flux can be as important as the vertical 

flux of small POC. Although its importance has been acknowledged previously (e.g., 

Dall’Olmo and Mork 2014; Baker et al. 2017; Briggs et al. 2020), the fragmentation has 

not been subtracted when estimating the vertical flux of small POC and is indeed double 

accounted (Boyd et al. 2019). Neglecting fragmentation and remineralization (𝑑𝐿 = 𝑟𝑆 =

0) will markedly decrease the estimate of annual vertical flux of small POC. As shown in 

Fig. 5.8, it would range from -3.34 to 1.52 g C m-2 yr-1 at 100 m and very different from 

my estimates that consider remineralization and fragmentation. This is because the 

majority of small POC flux is remineralized in the mesopelagic zone. Although the part 

that is being remineralized does not contribute to the accumulation of small POC, it 

provides substantial energy to the heterotrophic metabolism in the mesopelagic zone, and 

neglecting it underestimates the contributions of small POC to the mesopelagic 

metabolism. Therefore, quantifying remineralization and fragmentation is important when 

estimating the vertical flux of small POC. Given their key roles in flux attenuation, 

knowing these two rates also improves our understanding of the transfer efficiency of the 

biological carbon pump. 

 

Figure 5.8. Annually averaged vertical flux of small POC (totFS) at 100 m from each float 

segment when considering remineralization and fragmentation (circles), when neglecting 
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fragmentation (squares), and when neglecting both remineralization and fragmentation 

(triangles). The error bars represent the mean values and +/- one standard deviation. 

In addition, by calculating the remineralization rate, the fragmentation rate, and other 

associated parameters (e.g., sinking velocity), I decoupled the vertical carbon flux due to 

different mechanisms and compared their relative contributions. In previous studies, the 

seasonal accumulation of small POC was attributed to variations of mixed layer depth and 

its derived flux was referred to as mixed layer pump (e.g., Dall’Olmo and Mork 2014; Bol 

et al. 2018; Kheireddine et al. 2020). However, this seasonal accumulation of small POC 

is a combination of multiple processes. Apart from remineralization and fragmentation, 

which have been addressed above, small POC can be transferred into the mesopelagic zone 

by different mechanisms, e.g., gravitational settling, vertical mixing, and downward 

circulation components (Stukel et al. 2017, 2018; Resplandy et al. 2019). Results show that 

the gravitational sinking flux of large POC is the dominant vertical carbon flux. At the 

same time, small POC supplements the total flux significantly at 100 m through 

gravitational settling and other mechanisms.  

Small POC is not an efficient contributor to long-term carbon sequestration. Based on 

Eq. 5.13, if there is no fragmentation, the remineralization length scale of small POC (𝑙𝑆,𝑟) 

varies from about 70 to 100 m (Fig. 5.6, Table 5.1). This implies that after escaping the 

surface layer, a vast majority of small POC is remineralized leaving only a tiny fraction 

(<1%) that can reach the lower mesopelagic zone at 600 m. As a result, the GravFS will 

only account for less than 1% in four of five float segments and about 2±1% in B-2016 of 

the total flux at 600 m. However, the transfer efficiency (from 7% to 20%) and the relative 

contributions (from 9±3% to 40±10%) of GravFS are much higher. This is partly because 

fragmentation supplies small POC along its pathway of gravitational settling and prolongs 

its actual remineralization length scale, emphasizing again that fragmentation is an 

important source of small POC within the mesopelagic zone (Table 5.1). Small POC can 

also be directly injected to below 600 m but this contribution to the annual flux is small 

(Table 5.1).  



 110 

5.4.2 Uncertainty assessment 

The uncertainties of individual mechanisms shown in Fig. 5.7 are large because the 

two remineralization rates (𝑟𝑠  and 𝑟𝐿) are interdependent and thus difficult to constrain 

simultaneously. Both of them lead to a decrease in oxygen (Fig. 5.3b), therefore an increase 

in one remineralization rate can be compensated by the decrease in the other, while 

resulting in similar oxygen respiration. Once the remineralization length scale is 

determined, the estimates of GravFS and GravFL will change proportional to 𝑟𝑠  and 𝑟𝐿, 

respectively. This issue is referred to as underdetermination and happens because this 

model is complicated in terms of what can be constrained by the observations, although it 

is simple when compared to nature. Therefore, more independent observations that contain 

new information and prior knowledge of controlling processes that can be used to fix some 

parameters, e.g., the sinking velocity and remineralization rate, would provide additional 

constraints and reduce the uncertainties of each mechanism. For instance, the sinking 

velocity of particles can be measured by imaging techniques (see review by Giering et al. 

2020) and the emergence of imaging sensors which can be deployed on profiling floats 

(e.g., the miniaturized Underwater Vision Profiler; Picheral et al. 2022) are promising to 

provide a global monitoring of sinking velocity. Finally, since reverse changes in 

remineralization rates largely cancel each other out when estimating totF, its uncertainty is 

smaller than that of the individual mechanisms.  

The uncertainty of totF grows with increasing depth because the transfer efficiency 

varies across different mechanisms. GravFL is most efficient. Its dominance increases with 

depth while the relative contributions from other mechanisms decrease. Therefore, a better 

characterization of the relative contributions from each mechanism is key to better 

constrain the transfer efficiency of totF. 

It has been suggested that uncertainty in the conversion from backscatter to POC could 

introduce significant uncertainties in derived estimates (Bol et al. 2018). I found that 

estimates in the remineralization rates are indeed affected by changes in the conversion 

while the vertical flux estimates themselves are not. For instance, the POC/bbp slope in the 

conversion from Stramski et al. (2008, 53607 mg C m-2 at the wavelength of 555nm) is 

over 50% higher than the slope from Cetinić et al., (2012) which I used below the mixed 
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layer (assuming a spectral dependence of 0.41 or bbp(λ)~ λ-0.41). In my calculations, 

increasing/decreasing the POC/bbp slope by 50% will lead to an inverse change in the two 

remineralization rates but leaves carbon fluxes due to each mechanism unchanged. This is 

because the slope of the POC/bbp conversion does not change the relative vertical profiles 

or the remineralization length scales of small and large POC (Figs. 5.5 and 5.6). For a given 

respiration rate, POC concentrations and remineralization rates change in reverse directions 

when the slope of the POC/bbp conversion is altered (Eq. 5.10). This will yield proportional 

changes in sinking velocities and fragmentation rate to remineralization rates but leave the 

resulting fluxes unchanged. Nevertheless, the parallel cruises are encouraged for 

calibrating proxy measurements from autonomous platforms such as the BGC-Argo floats 

and for estimating the parameter values, e.g., the remineralization rate, the fragmentation 

rate, and sinking velocity. 

Finally, the respiration quotient which describes the molar ratio between oxygen and 

POC consumed during respiration will introduce additional uncertainties into the estimates 

of the vertical carbon flux. In this chapter, the respiration quotient of POC is fixed at 1.45 

based on Anderson and Sarmiento (1994) who suggested little variability across different 

depth and basins. However, a distinct latitudinal gradient was reported in a recent study 

(Moreno et al. 2020), possibly driven by a shift in molecular compositions of the POC in 

different ecosystem communities. 

5.4.3 Variability between float segments 

As shown in Fig. 5.7, there is no significant discrepancy of totF at 100 m among three 

float segments, i.e. A-2014, B-2014, and B-2016. However, the similar totF at 100 m 

results from different contributions of each mechanism, which in turn leads to diverging 

transfer efficiencies of totF. For instance, GravFL is much higher in A-2014 and B-2014 

(Fig. 5.7). As shown in Fig. 5.6, the ratio of large to small POC (𝑃𝑂𝐶𝐿/𝑃𝑂𝐶𝑆) is almost 

constant with depth in A-2014 and B-2014 but increases significantly with depth in the B-

2016. Given that remineralization will remove small POC preferentially while the 

fragmentation tends to redistribute mass from large to small POC, fragmentation is likely 

more important in A-2014 and B-2014. This increases the net attenuation rate (𝐴𝐿, based 

on Eq. 5.12), the sinking velocity ( 𝑤𝐿 ), and the GravFL simultaneously (Table 5.1). 
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Nevertheless, the differences in 𝑃𝑂𝐶𝐿/𝑃𝑂𝐶𝑆  ratios could be also explained by other 

processes that are not considered in this simple model, e.g., depth-dependent 

remineralization, fragmentation, and sinking velocities. 

5.4.4 Caveats and limitations 

In this chapter, I assumed constant remineralization and fragmentation rates. However, 

previous studies suggested that these rates depend on temperature and oxygen to explain 

the latitudinal patterns of the transfer efficiency and the slow attenuation in the oxygen 

minimum zones (Weber et al. 2016; Laufkötter et al. 2017; Weber and Bianchi 2020). 

Therefore, my method is appropriate in regions with low temperature variations and replete 

in oxygen and can be extended to other regions by accounting for the temperature- and 

oxygen-dependence (see Appendix E). Other environmental factors that can change the 

remineralization rate, e.g., the ecosystem structures, are difficult to explicitly consider in 

such a simple model. However, this model is a start to decouple the vertical carbon flux 

due to different mechanisms based on BGC-Argo floats and the constant remineralization 

and fragmentation rates can be interpreted as the averaged rate. 

In addition, I have assumed that lateral advection can be ignored. Whenever lateral 

advection introduces water masses with different age and AOU, this will introduce biases 

in the remineralization rate estimates. Therefore, I removed float segments with obvious 

intrusion of water masses. 

Finally, my estimates of the remineralization rate, fragmentation rate, and sinking 

velocity are consistent with several estimates using other methods. Briggs et al. (2020) 

applied a different method to BGC-Argo float data from the north Atlantic and Southern 

Ocean and obtained the sinking velocity (58-100 m day-1) and fragmentation rate of large 

particles (0.03-0.27 day-1). My estimates are similar, except in B-2015 and B-2016 (Table 

5.1), which are lower than theirs. Measurements from a suite of marine snow catchers 

deployed from 25-600 m depth in the subpolar and polar Atlantic yielded median 

concentrations of small and large POC of 5.5 mg C m-3 and 0.07 mg C m-3, respectively, 

and fluxes of 99.0 mg C m-2 day-1 and 14.1 mg C m-2 day-1 (Baker et al. 2017). The weighted 

average sinking velocity of POC can then be estimated as about 20 m day-1, which is close 
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to my estimates from 9 to 18 m day-1. A recent study by Durkin et al. (2021) estimated the 

carbon flux of nine different sinking particle classes using imaging techniques and also 

suggested that small particles contributed less to the modelled total flux except that their 

contribution (5±3%) in samples with high fluxes (2-20 mmol C m-2 day-1, which is 

equivalent to 8.76-87.6 g C m-2 yr-1) is much lower than my estimates. However, 

comparisons between different methods are difficult because the definition of small/large 

particles varies and there is no consensus as to the particle size that is represented by the 

baseline and spike signals of backscattering. The baseline signals have been interpreted as 

representative of particles with a diameter of 0.2-20 μm (Dall’Olmo and Mork 2014; 

Lacour et al. 2019), <100 μm (Briggs et al. 2020), and even <150 μm (Giering et al. 2020). 

 

5.5 Conclusions 

In this chapter, I estimated vertical carbon flux, its transfer efficiency between 100 and 

600 m, and the relative contributions of different mechanisms to the flux from BGC-Argo 

profiles of backscattering and dissolved oxygen by explicitly accounting for 

remineralization and fragmentation. Results show that on annual timescales in the subpolar 

North Atlantic, the gravitational sinking flux of large POC is the dominant mechanism and 

most efficient in surpassing flux attenuation within the mesopelagic zone. However, small 

POC are also transported out of the euphotic zone via different mechanisms and can make 

a large contribution to the flux at 600 m due to the fragmentation of large POC in the 

mesopelagic zone. Without the continuous supply from fragmentation, small POC would 

be fully remineralized before reaching the lower mesopelagic zone at 600 m. In addition, 

this chapter also shows the importance of remineralization and fragmentation to the 

estimates of the vertical flux of small POC. 

In general, this method can well constrain the total vertical flux at 100 m but has larger 

uncertainties in each mechanism and therefore in estimating the transfer efficiency of the 

total flux. More independent observations and prior knowledge of the controlling 

processes, e.g., sinking velocity, remineralization rate, and fragmentation rate, can help 

reduce these uncertainties. 
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CHAPTER 6                                                                                                

CONCLUSIONS  

The ocean’s BCP is fundamentally important as it can sequester carbon in the deep 

ocean and control atmospheric CO2 levels but remains poorly characterized. Conventional 

methods of observing the vertical flux of organic matter, by sediment traps and radioactive 

tracers, are limited in their spatiotemporal coverage because of the effort and cost involved 

and hence insufficient to constrain the BCP. In addition, some mechanisms driving the 

BCP, e.g., the mixed layer pump and the eddy subduction pump, are likely not well sampled 

by these techniques due to their localized and episodic nature. The deployment of BGC-

Argo floats in recent years has provided numerous profile observations of key 

biogeochemical properties in the global ocean and opens opportunities for better 

understanding the marine ecosystem including the BCP. Therefore, the potential value and 

new applications of BGC-Argo observations for understanding the BCP warrant further 

exploration. 

My thesis is motivated by these facts and aims to explore potential applications of 

BGC-Argo data for improving estimates and our mechanistic understanding of the BCP by 

exploring synergies between BGC-Argo float data and biogeochemical models, as well as 

comprehensive data analyses of the high frequency BGC-Argo observations. Specifically, 

a suite of optimization experiments was conducted using different combinations of satellite 

chlorophyll and profiling observations (i.e., chlorophyll, phytoplankton, and POC) from 

five BGC-Argo floats in the Gulf of Mexico, by which the additional benefits of BGC-

Argo floats in reducing model errors due to the poorly known parameters were evaluated 

(Chapter 2). Then a multivariate physical-biological data assimilation scheme was applied 

to the coupled physical-biological model, of which the biological parameters have been 

optimized in Chapter 2, to reduce model uncertainties inherited from stochastic processes, 

e.g., the Loop Current and the Loop Current eddies. An alternative light parameterization 

scheme that has been calibrated a priori by the BGC-Argo observations was also applied 
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and the data assimilation experiments repeated. Results show that a well-calibrated model 

with accurate parameterization schemes is important to the success of data assimilation 

(Chapter 3). This finding motivated me to investigate to what extent the BGC-Argo float 

data could help in distinguishing different alternative parameterization schemes of POC 

flux, which have been reported to fit the sparse in situ observations of POC flux 

equivalently well but produce different atmospheric CO2 levels (Chapter 4). Finally, a new 

method based on a mass balance of POC and dissolved oxygen was introduced to evaluate 

the relative contributions of small versus large particles to the BCP in the subpolar North 

Atlantic when taking effects of remineralization and fragmentation into consideration 

(Chapter 5). 

6.1  Major findings 

The major findings of my thesis and their significance are summarized below for each 

of the research questions posed in Chapter 1. 

(1) What is the value of BGC-Argo profiles for parameter optimization (Chapter 2)? 

As parameter optimization in 3D models is computationally expensive, the biological 

parameters are optimized in a 1D model version and then used to perform 3D simulations. 

The optimization experiments show that the use of optimal 1D parameters, with a few 

modifications, improves the skill of the 3D model. Parameters that are only optimized with 

respect to satellite surface chlorophyll cannot reproduce the subsurface distribution of 

biological properties. Adding profiles of chlorophyll in the parameter optimization yields 

significant improvements for surface and subsurface chlorophyll but does not well capture 

subsurface distributions of phytoplankton and POC because the parameter that controls the 

chlorophyll-to-phytoplankton-carbon ratio is not well constrained in that case. Using all 

available observations leads to significant improvements of both observed (chlorophyll, 

phytoplankton, and POC) and unobserved (e.g., primary production and carbon export flux 

at 200 m) variables. These results highlight the significant benefits of BGC-Argo 

observations for parameter optimization and model calibration, not only because of their 

abilities to provide subsurface measurements but also to observe multiple independent 

properties simultaneously. 
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(2) Can data assimilation of satellite observations in combination with a priori model 

calibration by BGC-Argo profiles improve 3D distributions of biological 

properties (Chapter 3)? 

The data assimilation results show that assimilating satellite data improves model 

representation of major circulation features, i.e., the Loop Current and Loop Current 

eddies, which translate into an improved 3D distribution of temperature and salinity. The 

multivariate assimilation also improves the agreement of subsurface nitrate through its tight 

correlation with temperature, but the improvements in subsurface chlorophyll are modest 

initially due to suboptimal choice of the optical parameterization scheme. Repeating the 

assimilation run by using an alternative light parameterization that has been calibrated a 

priori by BGC-Argo observations greatly improves the subsurface distribution of 

chlorophyll. Given that, so far, the abundance of BGC-Argo profiles in the Gulf of Mexico 

and elsewhere is still insufficient for sequential assimilation, with only a few exceptions, 

even sparse BGC-Argo observations can provide substantial benefits for biological data 

assimilation. These sparse profiles enable a priori model tuning. Updating 3D biological 

properties in a model that has been well calibrated is an intermediate step toward full 

assimilation of BGC Argo data. 

(3) Do BGC-Argo float data add information when assessing the predictive skill of 

alternative vertical carbon flux parameterizations (Chapter 4)? 

By comparing different parameterization schemes for vertical carbon flux from 12 

ESMs that are part of CMIP6, this chapter reveals the large model-to-model variability in 

simulated POC flux and transfer efficiency across the ESMs. These differences lead to 

substantially different atmospheric CO2 levels. Comparison between the ballast and WLin 

schemes in the same 1D model framework shows distinctly different simulated POC 

concentrations below 2000 m and suggests that it is possible to distinguish between the two 

model schemes by expanding backscatter measurements to the full ocean depth. In 

addition, the sensitivity experiments show that the observations of POC concentration can 

derive a unique estimate of POC flux. In the contrast, observations of POC flux cannot 

determine the POC concentration.  
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(4) What are the relative contributions from small and large particles to deep carbon 

sequestration (Chapter 5)? 

On annual timescales, the gravitational settling of large organic particles is dominating 

the vertical carbon flux through the mesopelagic zone in the subpolar North Atlantic. 

However, small particles contribute significantly to the vertical carbon flux at 100 m, via 

gravitational settling and other mechanisms, and at 600 m since they can be produced by 

the fragmentation within the mesopelagic zone. In addition, this chapter also shows the 

importance of remineralization and fragmentation to the estimate of vertical carbon flux of 

small particles. Finally, the large uncertainties in the estimates of carbon flux due to 

different mechanisms can be translated into uncertainties in carbon sequestration and be 

reduced by more independent observations of the controlling processes. 

6.2  Future work 

This thesis has explored the potential applications and shown the great benefits of 

BGC-Argo floats to improve estimates of the BCP. However, all these applications rely on 

the conversion from backscatter coefficient to POC concentration using empirical 

relationships, which are controlled by particle composition and thus vary by geographic 

location, the depth, and season. For instance, a depth dependent POC/bbp slope was applied 

in Briggs et al., (2011) and Bol et al., (2018) to account for the preferential remineralization 

of organic matters without proportional reduction in the backscatter coefficient. In this 

thesis, I applied a constant POC/bbp slope in chapters 2 and 3.  Although in chapters 4 and 

5, two distinct slopes were used above and below the mixed layer depth, this slope kept 

constant within each of these two layers. This introduces uncertainties into estimates of 

POC concentration and processes associated with the BCP that should be evaluated 

comprehensively. In addition, parallel cruises are encouraged for collecting concurrent 

measurements of POC concentration from different depth and seasons to better constrain 

the POC/bbp slopes.  

Although the availability of BGC-Argo float data is increasing rapidly, profile 

observations of biogeochemical properties are still insufficient for 3D data assimilation 

except in a few specific regions with high float densities, e.g., the Mediterranean Sea 

(Cossarini et al. 2019) and the Southern Ocean (Verdy and Mazloff 2017). Chapter 3 has 
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shown that even sparse BGC-Argo float data can provide substantial benefits for biological 

data assimilation by a priori reducing model systematic errors such as inappropriate model 

parameterization and inaccurate parameters. This method can be an intermediate step 

toward full assimilation of BGC-Argo float data. In addition, the present BGC-Argo float 

data can be expanded by machine learning techniques. For instance, a neural network-

based method has been developed to infer the vertical distributions of backscatter from the 

satellite estimates and T-S profiles (Sauzède et al. 2016). Motivated by the applications of 

assimilating synthetic salinity observations from temperature and T-S climatological 

relationships into the model before abundant salinity observations were available (Huang 

et al. 2008), machine learning can be used to provide synthetic profiles of biogeochemical 

properties from other observation types that are currently more abundant, e.g., the satellite 

estimates and T-S profiles collected by Argo floats. Impacts of assimilating these synthetic 

profiles deserve to be assessed. 

Previous studies have shown a projected declining trend in the globally integrated 

carbon export flux out of the euphotic zone over the 21st century yet with a large 

disagreement on the magnitude across different ESMs (Laufkötter et al. 2016; Henson et 

al. 2022). In addition to the carbon exported out of the euphotic zone, carbon sequestration 

is also controlled by the transfer efficiency which represents the net effects of vertical 

transport and local respiration of organic carbon after escaping the surface layer. Chapter 

4 has shown large model-to-model variability in the current vertical profiles of POC flux 

and transfer efficiency across ESMs that are used by the CMIP6 due to different 

parameterization schemes and other model discrepancies. This will introduce additional 

uncertainties to predict the ocean’s response to climate changes. Therefore, future studies 

should be conducted to investigate the impact of these model discrepancies on the 

projection of the BCP. 
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APPENDIX B  

 

 

B.1.  References for observations of carbon export fluxes in Fig. 2.10 
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and 234Th data from the Gulf of Mexico, GEOCHEMICAL JOURNAL, 38(6), 601–
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Gong, G.-C., Pinckney, J. L., Long, R. A. and Wei, C.-L.: Comparative evaluation of 

sediment trap and 234Th-derived POC fluxes from the upper oligotrophic waters of 

the Gulf of Mexico and the subtropical northwestern Pacific Ocean, Marine Chemistry, 

121(1), 132–144, doi:https://doi.org/10.1016/j.marchem.2010.03.011, 2010. 

Passow, U.: Sediment trap (Kiel 21- trap, KUM) particle flux measurements, Gulf of 

Mexico, August 2010 to October 2011., Distributed by: Gulf of Mexico Research 

Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, 

Texas A&M University-Corpus Christi. doi:10.7266/N7MK69V2., 2016. 

Passow, U.: Sediment Trap (raw data) - Green Canyon, Gulf of Mexico, 1260m, April 16, 

2012 - September 4, 2012., Distributed by: Gulf of Mexico Research Initiative 

Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M 

University-Corpus Christi. doi:10.7266/N7PN93PS., 2017a. 

Passow, U.: Sediment Trap (raw data) - Green Canyon, Gulf of Mexico, 1260m, September 

10, 2012 - April 30, 2013., Distributed by: Gulf of Mexico Research Initiative 

Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M 

University-Corpus Christi. doi:10.7266/N7JW8BXM., 2017b. 

Passow, U.: Sediment Trap (raw data) - Mississippi Canyon, Gulf of Mexico, 1040m, June 

28, 2012 - September 8, 2012., Distributed by: Gulf of Mexico Research Initiative 

Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M 

University-Corpus Christi. doi:10.7266/N7F47M6M., 2017c. 
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Passow, U.: Sediment Trap (raw data) - Mississippi Canyon, Gulf of Mexico, 1540m, 

September 18, 2015 - September 12, 2016., Distributed by: Gulf of Mexico Research 

Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, 

Texas A&M University-Corpus Christi. doi:10.7266/N71C1V8T., 2017d. 

Passow, U. and Giering, S.: Sediment Trap (raw data) - Atwater Valley, Gulf of Mexico, 

1040m, April 16, 2012 - April 11, 2013., Distributed by: Gulf of Mexico Research 

Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, 

Texas A&M University-Corpus Christi. DOI: 10.7266/N7H993KF., 2017a. 

Passow, U. and Giering, S.: Sediment Trap (raw data) - Atwater Valley, Gulf of Mexico, 

1040m, June 5, 2013 - April 15, 2014., Distributed by: Gulf of Mexico Research 

Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, 

Texas A&M University-Corpus Christi. doi:10.7266/N7CJ8BVQ., 2017b. 

Passow, U. and Giering, S.: Sediment Trap (raw data) - Atwater Valley, Gulf of Mexico, 

1040m, May 6, 2014 - April 20, 2015., Distributed by: Gulf of Mexico Research 

Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, 

Texas A&M University-Corpus Christi. doi:10.7266/N7416VD0., 2017c. 

Passow, U. and Giering, S.: Sediment Trap (raw data) - Green Canyon, Gulf of Mexico, 

1260m, April 23, 2015 - April 15, 2016., Distributed by: Gulf of Mexico Research 

Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, 

Texas A&M University-Corpus Christi. doi:10.7266/N7BR8QKF., 2017d. 

Passow, U. and Giering, S.: Sediment Trap (raw data) - Green Canyon, Gulf of Mexico, 

1260m, June 8, 2013 - April 15, 2014., Distributed by: Gulf of Mexico Research 

Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, 

Texas A&M University-Corpus Christi. doi:10.7266/N7CR5RQT., 2017e. 

Passow, U. and Giering, S.: Sediment Trap (raw data) - Green Canyon, Gulf of Mexico, 

1260m, May 4, 2014 - April 20, 2015., Distributed by: Gulf of Mexico Research 

Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, 

Texas A&M University-Corpus Christi. doi:10.7266/N7VT1QGS., 2017f. 

Passow, U. and Giering, S.: Sediment Trap (raw data) - Mississippi Canyon, Gulf of 

Mexico, 1040m, October 9, 2013 - September 15, 2014., Distributed by: Gulf of 

Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte 

Research Institute, Texas A&M University-Corpus Christi. doi:10.7266/N7XK8CZS., 

2017g. 
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Passow, U. and Giering, S.: Sediment Trap (raw data) - Mississippi Canyon, Gulf of 

Mexico, 1040m, September 12, 2012 - September 12, 2013., Distributed by: Gulf of 

Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte 

Research Institute, Texas A&M University-Corpus Christi. doi:10.7266/N79C6VHB., 

2017h. 

Passow, U. and Giering, S.: Sediment Trap (raw data) - Mississippi Canyon, Gulf of 

Mexico, 1040m, September 22, 2014 - September 15, 2015., Distributed by: Gulf of 

Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte 

Research Institute, Texas A&M University-Corpus Christi. doi:10.7266/N78W3BQJ., 

2017i. 

Passow, U. and Sweet, J.: Sediment Trap (raw data) - Mississippi Canyon, Gulf of Mexico, 

1630m, September 12, 2012 - September 12, 2013., Distributed by: Gulf of Mexico 

Research Initiative Information and Data Cooperative (GRIIDC), Harte Research 

Institute, Texas A&M University-Corpus Christi. doi:10.7266/N7W66J7K., 2017. 

 

 



 130 

 

Figure B.1. Time series of surface chlorophyll measurements from floats (a) and 

corresponding satellite matchups from OC-CCI (b). (c) Comparisons of 30-points 

smoothed surface chlorophyll between floats, OC-CCI, and corrected satellite estimates 

from OC-CCI.  
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Figure B.2. (a) Regression analysis of 30-point smoothed surface chlorophyll between OC-

CCI and floats; (b) histogram of ratio of 30-point smoothed surface bbp700 between OC-

CCI and floats.  

 

 

 

Figure B.3. Time series of matching-up surface bbp700 from floats (a) and OC-CCI (b).  
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Figure B.4. Empirical relations of temperature-NO3 (a) derived from World Ocean Atlas, 

density-chlorophyll (b), density-phytoplankton (c), and density-POC (d) derived from the 

median vertical profile of floats  

 

 

 

 

 

Figure B.5. Observed and simulated seasonal cycles of surface chlorophyll from the 

Mississippi delta and the central gulf. Gray shades represent the interquartile ranges of 

satellite estimates. Positions of the Mississippi Delta and the central gulf are shown in Fig. 

2.1.  
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Figure B.6. Observed (black error bars) and simulated (colored lines) vertical profiles of 

chlorophyll (a), phytoplankton (b), and POC (c).  
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Figure B.7. (a) Monthly time series of SST from model outputs and GHRSST for the deep 

ocean of GOM. (b-i) SST climatology derived from the GHRSST and model outputs during 

2011-2015.  

 

 

Figure B.8. Point-by-point comparisons between measured and simulated temperature (a) 

and salinity (b) in the Gulf of Mexico during 2011-2015. In-situ observations are from the 

USGODAE Argo GDAC profiles (available at https://www.usgodae.org//cgi-

bin/argo_select.pl) and the BGC floats in Chapter 2.  

 

 

https://www.usgodae.org/cgi-bin/argo_select.pl
https://www.usgodae.org/cgi-bin/argo_select.pl
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Figure B.9. Point-by-point comparisons between the measured and simulated vertical 

profiles of temperature (a), salinity (b), and density (c) during 2011-2015. In-situ 

observations are from the USGODAE Argo GDAC profiles (available at 

https://www.usgodae.org//cgi-bin/argo_select.pl) and the BGC floats from Chapter 2.  

 

 

 

 

Figure B.10. Comparisons of 5-year (2010-2015) mean eddy kinetic energy (EKE) based 

on AVISO sea level anomalies (available at http://marine.copernicus.eu) and model results.  

 

 

https://www.usgodae.org/cgi-bin/argo_select.pl
http://marine.copernicus.eu/
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APPENDIX C  

 

Figure C.1. Empirical relations of temperature-NO3 derived from World Ocean Atlas in 

the Gulf of Mexico. Colors indicate the number of observations within each bin.  

 

 

 

Figure C.2. Vertical profiles of chlorophyll (a), phytoplankton (b), and POC (c) from 

BOEM floats and model experiments.  
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Figure C.3. Correlations of improvement between zeta and temperature, salinity, and NO3  

 

 

 

Figure C.4. The root mean square difference (RMSD) of temperature from each BOEM 

profile between two data assimilative runs, DAsat and DAargo (indicated by the color). 

The x-axis represents days of each BOEM profile after each data assimilation cycle and 

the y-axis represents distance to the nearest Argo profile  
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APPENDIX D  

D.1. The machine-learning model to estimate NO3 

A machine-learning model is developed to construct the three-dimensional 

distributions of NO3 in the North Atlantic (Fig. D.1), which aims to support the setup of 

the 1D model in chapter 4 and the future development of a regional 3D model, e.g., by 

providing the initial and open boundary conditions. Although there have been previous 

studies to estimate nutrients based on machine-learning models (e.g., Bittig et al., 2018; 

Sauzède et al., 2017), in those dissolved oxygen is required as a model input in addition to 

the sampling information (i.e., location, depth, and time) and physical observations (i.e., 

temperature and salinity). One common practice for providing initial and dynamic, open-

boundary conditions for a physical model is to nest it into a data-assimilative global 

circulation model (e.g., Feucher et al., 2019; Ridenour et al., 2019; Xue et al., 2013; Yu et 

al., 2019). Motivated by this, dissolved oxygen was removed from the predictors in my 

machine-learning model so that it can be applied to data-assimilative circulation models to 

provide dynamically consistent initial and open boundary conditions of biogeochemical 

properties.  

A regression learner toolbox, provided by MATLAB, is used to estimate the NO3 

based on longitude, latitude, depth of measurements, the day of year (doy), as well as 

temperature and salinity. This toolbox contains a wide range of regression models 

including different versions of linear regression models, regression trees, support vector 

machines, and Gaussian process regression models. I tested all these regression models and 

selected the bootstrap-aggregated ensemble of regression trees (Bagged Trees), which is 

often accurate but computationally expensive and memory intensive.  

Since the first day of a year is similar to the last day from a seasonal perspective, the 

doy was transformed using a sine function following Sauzède et al., (2015, 2017) to 

account for its periodic features: 

doy = sin (
𝑑𝑜𝑦 × 𝜋

182.625
),                                                                                                              (D. 1) 
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where the constant of 182.625 days is the half of 365.25 days every year. Observations 

used to build the machine-learning model are provided by concurrent measurements of 

temperature, salinity, and NO3 from the World Ocean Database 2013 (WOD13; Boyer et 

al., 2013) in the North Atlantic (Fig. D.1). Only those data where all the measured variables 

have the ‘WODflag’ of 0 (equivalent to accepted data) will be used. In coastal regions, the 

relationship between NO3 and environmental factors is usually different due to the river 

input and other factors. Therefore, I limited observations to the open ocean (depth > 1000 

m). In addition, the observations in semi-enclosed and enclosed marginal seas, e.g., the 

Gulf of Mexico and the Mediterranean Sea, were removed. As a result, more than 12000 

profiles were available, of which the majority (80%) are used as the training data and the 

remaining profiles (20%) as the testing data (Fig. D.1). To evaluate the performance of the 

machine-learning model, the predicted NO3 concentrations are compared with observations 

from both the training data and testing data. As shown in Fig. D.2, the overall performance 

of this machine-learning model to predict the observed NO3 is robust with only a few data 

points diverging from the 1:1 line. 

I also used the BGC-Argo float data of NO3 which are collected across a wide range 

of ecosystems in the North Atlantic to conduct independent validation (Fig. D.1). In 

addition, particular attention is paid to the study region in Chapter 4 (60o W, 42o N ~ 10o 

W, 66o N) which is represented by the black box in Fig. D.1. In general, the agreement 

between the predicted NO3 and the BGC-Argo float data is satisfactory since most of the 

data points are concentrated along the 1:1 line and the R2 values (> 0.94) are high (Fig. 

D.2). Comparisons of the observed NO3 and its predicted counterpart from this machine-

learning model and the CANYON-B in Bittig et al., (2018) are shown for three BGC-Argo 

floats that were deployed in my study domain and one float that moves across the 

subtropical North Atlantic (Fig. D.1). As shown in Figs. D.3-D.6, this machine-learning 

model can well reproduce the vertical distributions of NO3. With respect to the float 

6901485 and the float 6901515 in the Labrador Sea and Irminger Sea, the CANYON-B in 

Bittig et al., (2018) performs better because the dissolved oxygen used provides additional 

information. 
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Table D.1. The POC fluxes (mg C m-2 day-1) and transfer efficiency (TE, in unit of %) at 

different depth from the 12 ESMs  

Model name 
POC flux 

(100m) 

POC flux 

(1000m) 

TE 

(1000m) 

POC flux 

(3000m) 

TE 

(3000m) 

CESM2 87.96 10.67 12.14 0.49 0.56 

CESM2-FV2 93.14 11.63 12.49 0.56 0.60 

CESM2-WACCM 91.52 11.20 12.23 0.53 0.58 

CESM2-WACCM-FV2 88.79 10.98 12.37 0.55 0.62 

GFDL-CM4 190.39 21.12 11.09 4.19 2.20 

GFDL-ESM4 78.53 8.51 10.84 3.52 4.48 

IPSL-CM5A2-INCA 62.20 21.40 34.40 8.10 13.02 

IPSL-CM6A-LR 54.55 14.22 26.08 6.07 11.14 

IPSL-CM6A-LR-INCA 58.77 16.54 28.14 6.87 11.69 

MPI-ESM-1-2-HAM 34.78 4.33 12.46 0.88 2.52 

MPI-ESM1-2-HR 35.37 3.83 10.83 0.72 2.05 

MPI-ESM1-2-LR 31.84 3.43 10.79 0.64 2.00 
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Table D.2.  The fitted Martin curve equation of simulated transfer efficiency from each 

ESM, as well as the RMSE and correlation coefficient (Corr) between the fitted and 

simulated transfer efficiency. 

ESMs Martin curve equation RMSE Corr 

CESM2 y=1.07(depth/100)-0.96 1.51 0.98 

CESM2-FV2 y=1.07(depth/100)-0.96 1.49 0.98 

CESM2-WACCM y=1.07(depth/100)-0.96 1.49 0.98 

CESM2-WACCM-FV2 y=1.07(depth/100)-0.96 1.44 0.98 

GFDL-CM4 y=1.12(depth/100)-0.92 0.59 0.97 

GFDL-ESM4 y=1.07(depth/100)-0.90 0.27 0.99 

IPSL-CM5A2-INCA y=1.10(depth/100)-0.57 0.20 0.98 

IPSL-CM6A-LR y=1.03(depth/100)-0.64 0.29 0.99 

IPSL-CM6A-LR-INCA y=1.06(depth/100)-0.62 0.28 0.99 

MPI-ESM-1-2-HAM y=1.06(depth/100)-0.92 0.56 0.99 

MPI-ESM1-2-HR y=1.06(depth/100)-0.97 0.60 0.99 

MPI-ESM1-2-LR y=1.06(depth/100)-0.97 0.59 0.99 
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Table D.3. Parameters for the 1D biogeochemical model used in Chapter 4 

Descriptions  symbol Values Unit 

Nutrient 

Radiation threshold for nitrification inhibition 𝐸0 0.0095 W m-2 

Light intensity for half-saturated nitrification 

inhibition 

𝑘𝐸 0.1 W m-2 

Maximum nitrification rate  𝑛𝑚𝑎𝑥 0.2 d-1 

Phytoplankton 

Half saturation concentration of NO3 for PS  𝑘𝑁𝑂3𝑃𝑆
 0.5 mmol N m-3 

Half saturation concentration of NH4 for PS 𝑘𝑁𝐻4𝑃𝑆
 0.5 mmol N m-3 

Half saturation concentration of NO3 for PL 𝑘𝑁𝑂3𝑃𝐿
 2.0 mmol N m-3 

Half saturation concentration of NH4 for PL 𝑘𝑁𝐻4𝑃𝐿
 2.0 mmol N m-3 

Maximum growth rate at 0°C for PS 𝜇𝑃𝑆

0  0.69 d-1 

Maximum growth rate at 0°C for PL 𝜇𝑃𝐿

0  4.0 d-1 

Initial slope of the instantaneous growth rate for PS 𝛼𝑃𝑆
 0.065 (W m-2)-1 d-1 

Initial slope of the instantaneous growth rate for PL 𝛼𝑃𝐿
 0.04 (W m-2)-1 d-1 

Mortality rate at 0°C for PS 𝑚𝑃𝑆

0  0.06 d-1 

Mortality rate at 0°C for PL 𝑚𝑃𝐿

0  0.15 d-1 

Maximum chlorophyll to carbon ratio for PS 𝜃𝑃𝑆

𝑚𝑎𝑥 0.04 mg Chl (mg C)-1 

Maximum chlorophyll to carbon ratio for PL 𝜃𝑃𝐿

𝑚𝑎𝑥 0.04 mg Chl (mg C)-1 

Sinking velocity for phytoplankton 𝑤𝑃 0.1 m d-1 

Small Detritus 

Remineralization rate at 0°C for small detritus 𝑟𝑆
0 0.06 d-1 

Sinking velocity for small detritus 𝑤𝑆 2.0 m d-1 

Aggregation rate 𝜏 0.1 d-1 

 

(To be continued) 
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Descriptions  symbol Values Unit 

Zooplankton 

Maximum grazing rate at 0°C of ZS on PS 𝑔𝑍𝑆𝑃𝑆

0  7.0 d-1 

Maximum grazing rate at 0°C of ZS on PL 𝑔𝑍𝑆𝑃𝐿

0  3.8 d-1 

Maximum grazing rate at 0°C of ZL on PS 𝑔𝑍𝐿𝑃𝑆

0  2.8 d-1 

Maximum grazing rate at 0°C of ZL on PL 𝑔𝑍𝐿𝑃𝐿

0  2.0 d-1 

Maximum grazing rate at 0°C of ZL on ZS 𝑔𝑍𝐿𝑍𝑆

0  4.0 d-1 

Maximum grazing rate at 0°C of ZL on DS 𝑔𝑍𝐿𝐷𝑆

0  7.0 d-1 

Inhibition coefficient for ZS grazing on PL 𝜓𝑍𝑆𝑃𝐿
 3.010 (mmol N m-3)-1 

Inhibition coefficient for ZL grazing on PS 𝜓𝑍𝐿𝑃𝑆
 3.010 (mmol N m-3)-1 

Inhibition coefficient for ZL grazing on DS 𝜓𝑍𝐿𝐷𝑆
 3.010 (mmol N m-3)-1 

Zooplankton grazing half saturation of ZS on PS  𝑘𝑍𝑆𝑃𝑆
 1.2 (mmol N m-3)2 

Zooplankton grazing half saturation of ZL on PS  𝑘𝑍𝐿𝑃𝑆
 1.2 (mmol N m-3)2 

Zooplankton grazing half saturation of ZS on PL  𝑘𝑍𝑆𝑃𝐿
 0.5 (mmol N m-3)2 

Zooplankton grazing half saturation of ZL on PL  𝑘𝑍𝑆𝑃𝑆
 0.5 (mmol N m-3)2 

Zooplankton grazing half saturation of ZL on ZS  𝑘𝑍𝐿𝑍𝑆
 1.2 (mmol N m-3)2 

Zooplankton grazing half saturation of ZL on DS  𝑘𝑍𝐿𝐷𝑆
 0.5 (mmol N m-3)2 

Assimilation efficiency for ZS 𝛽𝑍𝑆
 0.75 unitless 

Assimilation efficiency for ZL 𝛽𝑍𝐿
 0.75 unitless 

Excretion rate due to basal metabolism at 0°C for ZS 𝑙𝑍𝑆

0  0.1 d-1 

Excretion rate due to basal metabolism at 0°C for ZL 𝑙𝑍𝐿

0  0.2 d-1 

Maximum rate of assimilation related excretion at 

0°C for ZS 

𝐸𝑍𝑆

0  0.1 d-1 

Maximum rate of assimilation related excretion at 

0°C for ZL 

𝐸𝑍𝐿

0  0.2 d-1 

Mortality rate at 0°C for ZS 𝑚𝑍𝑆

0  0.05 d-1 

Mortality rate at 0°C for ZL 𝑚𝑍𝐿

0  0.08 d-1 
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Figure D.1. The geographic distributions of profiles from the WOD13 that are used to 

build the machine-learning model and the BGC-Argo floats that are used for independent 

validations. Colored lines represent the four BGC-Argo floats in Figs. D.3-D.6. The black 

box represents the study region in Chapter 4 (60o W, 42o N ~ 10o W, 66o N). 
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Figure D.2. Comparisons of the predicted NO3 with observations from the training dataset, 

the testing dataset, and the BGC-Argo float data in the North Atlantic and the study domain 

in Chapter 4 (60o W, 42o N ~ 10o W, 66o N). 
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Figure D.3. The vertical distributions of observed temperature, salinity, and NO3 as well 

as the predicted NO3 by my machine-learning model and the CANYON-B in Bittig et al., 

(2018) following the float 5903594. 
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Figure D.4. The same as Fig. D.3 except for float 6901485. 
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Figure D.5. The same as Fig. D.3 except for float 6901515. 
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Figure D.6. The same as Fig. D.3 except for float 5904479. 
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Figure D.7. The simulated (blue) and fitted (black) transfer efficiency from each ESM. 
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APPENDIX E  

E.1.  Derivation of small POC flux 

The temporal evolution of 𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡) is represented by:  

𝜕𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡)

𝜕𝑡
= 𝑆900(𝑧, 𝑡) − 𝑟𝑠 ∙ 𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡).                                                              (E. 1) 

The general solution to this first order non-homogeneous linear differential equation is 

𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡) = 𝑒−𝑟𝑆𝑡 ∙ (∫ 𝑒𝑟𝑆𝑡 ∙ 𝑆900(𝑧, 𝑡)𝑑𝑡 + 𝐶1),                                                      (E. 2) 

where 𝐶1 is an integration constant. Since this equation will be applied to only short time 

intervals between consecutive sampling dates, I now assume that 𝑆900(𝑧, 𝑡) is constant in 

time. Then 

𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡) = 𝑒−𝑟𝑆𝑡 ∙ (∫ 𝑒𝑟𝑆𝑡 ∙ 𝑆900(𝑧)𝑑𝑡 + 𝐶1) 

                           =  𝑒−𝑟𝑆𝑡 ∙ (
𝑆900(𝑧)

𝑟𝑆
∙ ∫ 𝑒𝑟𝑆𝑡 ∙ 𝑑𝑟𝑆𝑡 + 𝐶1)                        

                           =  𝑒−𝑟𝑆𝑡 ∙ (
𝑆900(𝑧)

𝑟𝑆
∙ (𝑒𝑟𝑆𝑡 + 𝐶2) + 𝐶1)                          

                           =  𝑒−𝑟𝑆𝑡 ∙ (
𝑆900(𝑧)

𝑟𝑆
∙ 𝑒𝑟𝑆𝑡 +

𝑆900(𝑧)

𝑟𝑆
∙ 𝐶2 + 𝐶1)            

                           =  𝑒−𝑟𝑆𝑡 ∙ (
𝑆900(𝑧)

𝑟𝑆
∙ 𝑒𝑟𝑆𝑡 + 𝐶(𝑧))                                       

                           =  
𝑆900(𝑧)

𝑟𝑆
+ 𝐶(𝑧) ∙ 𝑒−𝑟𝑆𝑡,                                                                            (E. 3) 
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where 𝐶2 is an integration constant and 𝐶(𝑧) =
𝑆900(𝑧)

𝑟𝑆
∙ 𝐶2 + 𝐶1 is a coefficient which is 

independent of time. To determine the coefficient  𝐶(𝑧), I substitute 𝑡0 = 0 and 𝑡1 = ∆𝑡 

into Eq. E.3 as follows: 

𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡0) =

𝑆900(𝑧)

𝑟𝑆
+ 𝐶(𝑧),                                                                                         (E. 4) 

𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡1) =

𝑆900(𝑧)

𝑟𝑆
+ 𝐶(𝑧) ∙ 𝑒−𝑟𝑆∆𝑡,                                                                          (E. 5) 

and then subtract Eq. E.5 from Eq. E.4 and isolate 𝐶(𝑧) which yields 

𝐶(𝑧) =
𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡0) − 𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡1)

1 − 𝑒−𝑟𝑆∆𝑡
.                                                                            (E. 6) 

Hence, the solution between two sampling steps (𝑡0 ≤ 𝑡 ≤ 𝑡1) is 

𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡) =

𝑆900(𝑧)

𝑟𝑠
+ 𝑒−𝑟𝑠𝑡 ∙

𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡0) − 𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡1)

1 − 𝑒−𝑟𝑠∆𝑡
                           (E. 7) 

Finally, I substitute 𝑡1 = ∆𝑡 into Eq. E.7 to find 𝑆900(𝑧) according to  

𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡1) =

𝑆900(𝑧)

𝑟𝑠
+ 𝑒−𝑟𝑠𝑡 ∙

𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡0) − 𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡1)

1 − 𝑒−𝑟𝑠∆𝑡
                          (E. 8) 

and the source of small POC is 

𝑆900(𝑧) =
𝑟𝑠 ∙ (𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡1) − 𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡0)𝑒−𝑟𝑠∆𝑡)

1 − 𝑒−𝑟𝑠∆𝑡
.                                                 (E. 9) 

When the remineralization and fragmentation can be ignored (𝑟𝑠= 0 day-1, 𝑑𝐿= 0 day-1), the 

source of small POC becomes 

𝑙𝑖𝑚
𝑟𝑠→0

𝑆900(𝑧)  = 𝑙𝑖𝑚
𝑟𝑠→0

𝑟𝑠 ∙ (𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡1) − 𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡0)𝑒−𝑟𝑠∆𝑡)

1 − 𝑒−𝑟𝑠∆𝑡
 

                         = 𝑙𝑖𝑚
𝑟𝑠→0

𝑟𝑠 ∙ 𝑒𝑟𝑠∆𝑡 ∙ (𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡1) − 𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡0)𝑒−𝑟𝑠∆𝑡)

𝑒𝑟𝑠∆𝑡 − 1
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                         = 𝑙𝑖𝑚
𝑟𝑠→0

𝑟𝑠

𝑒𝑟𝑠∆𝑡 − 1
∙ 𝑙𝑖𝑚

𝑟𝑠→0
𝑒𝑟𝑠∆𝑡 ∙ 𝑙𝑖𝑚

𝑟𝑠→0
(𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡1) − 𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡0)𝑒−𝑟𝑠∆𝑡) 

                         = 𝑙𝑖𝑚
𝑟𝑠→0

𝑟𝑠

𝑟𝑠∆𝑡
∙ (𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡1) − 𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡0)) 

                         =
𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡1) − 𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡0)

∆𝑡
,                                                          (E. 10) 

and the vertical flux becomes 

𝑙𝑖𝑚
𝑟𝑠→0
𝑑𝐿→0

𝑡𝑜𝑡𝐹𝑠(𝑧) = 𝑙𝑖𝑚
𝑟𝑠→0

𝑆900(𝑧) − 𝑙𝑖𝑚
𝑑𝐿→0

∫ 𝑑𝐿 ∙ 𝑃𝑂𝐶𝐿(𝑧, 𝑡)𝑑𝑧
900

𝑧

 

                          =
𝑖𝑃𝑂𝐶𝑆

900(𝑧, 𝑡1) − 𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡0)

∆𝑡
 .                                                        (E. 11) 

E.2.  Remineralization length scale of small POC 

The budgets of small and large POC are:  

𝜕𝑃𝑂𝐶𝑆(𝑧, 𝑡)

𝜕𝑡
= −𝑟𝑆 ∙ 𝑃𝑂𝐶𝑆(𝑧, 𝑡) + 𝑑𝐿 ∙ 𝑃𝑂𝐶𝐿(𝑧, 𝑡) + 𝑤𝑆 ∙

𝜕𝑃𝑂𝐶𝑆(𝑧, 𝑡)

𝜕𝑧
  

                        = − (𝑟𝑆 − 𝑑𝐿 ∙
𝑃𝑂𝐶𝐿(𝑧, 𝑡)

𝑃𝑂𝐶𝑆(𝑧, 𝑡)
) ∙ 𝑃𝑂𝐶𝑆(𝑧, 𝑡) + 𝑤𝑆 ∙

𝜕𝑃𝑂𝐶𝑆(𝑧, 𝑡)

𝜕𝑧
,              (E. 12) 

and 

𝜕𝑃𝑂𝐶𝐿(𝑧, 𝑡)

𝜕𝑡
= −𝑟𝐿 ∙ 𝑃𝑂𝐶𝐿(𝑧, 𝑡) − 𝑑𝐿 ∙ 𝑃𝑂𝐶𝐿(𝑧, 𝑡) + 𝑤𝐿 ∙

𝜕𝑃𝑂𝐶𝐿(𝑧, 𝑡)

𝜕𝑧
  

                          = −(𝑟𝐿 + 𝑑𝐿) ∙ 𝑃𝑂𝐶𝐿(𝑧, 𝑡) + 𝑤𝐿 ∙
𝜕𝑃𝑂𝐶𝐿(𝑧, 𝑡)

𝜕𝑧
,                                     (E. 13) 

where 𝑟𝑆 and 𝑤𝑆 represent the remineralization rate and sinking velocity of small POC; 

𝑟𝐿, 𝑑𝐿, and 𝑤𝐿 represent the remineralization rate, the fragmentation rate, and the sinking 

velocity of large POC. Therefore, the net attenuation rate of small (𝐴𝑆) and large POC (𝐴𝐿) 

can be estimated as: 



 154 

𝐴𝑆(𝑧, 𝑡) = 𝑟𝑆 − 𝑑𝐿 ∙
𝑃𝑂𝐶𝐿(𝑧, 𝑡)

𝑃𝑂𝐶𝑆(𝑧, 𝑡)
,                                                                                           (E. 14) 

𝐴𝐿 = 𝑟𝐿 + 𝑑𝐿 .                                                                                                                           (E. 15) 

Assuming that the net attenuation rate of small POC is constant in time, it can be 

represented by： 

𝐴𝑆(𝑧) = 𝑟𝑆 − 𝑑𝐿 ∙
𝑃𝑂𝐶𝐿(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑃𝑂𝐶𝑆(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
.                                                                                                  (E. 16) 

Dividing the Eq. E.16 by sinking velocity of small POC (𝑤𝑆), yields 

𝐴𝑆(𝑧)

𝑤𝑆
=

𝑟𝑆

𝑤𝑆
−

𝑟𝑆

𝑤𝑆
∙

𝑑𝐿

𝑟𝑆
∙

𝑃𝑂𝐶𝐿(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑃𝑂𝐶𝑆(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
,                                                                                        (E. 17) 

1

𝑙𝑆(𝑧)
=

1

𝑙𝑆,𝑟
−

1

𝑙𝑆,𝑟
∙

𝑑𝐿

𝑟𝑆
∙

𝑃𝑂𝐶𝐿(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑃𝑂𝐶𝑆(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
,                                                                                        (E. 18) 

where 𝑙𝑆 is the actual remineralization length scale of small POC (𝑙𝑆 = 𝑤𝑆/𝐴𝑆, m) and can 

be estimated by fitting the vertical profiles of small POC within each 100m bin as 

𝑃𝑂𝐶𝑆(𝑧 + 100)

𝑃𝑂𝐶𝑆(𝑧)
= 𝑒𝑥𝑝 (−

100

𝑙𝑆(𝑧)
).                                                                                       (E. 19) 

The parameter 𝑙𝑆,𝑟  is the remineralization length scale when fragmentation is not 

considered (𝑙𝑆,𝑟 = 𝑤𝑆/𝑟𝑆, m).  

E.3. To account for temperature- and oxygen-dependence 

When accounting for the temperature- and oxygen-dependence on remineralization 

rate, the equation of POC respiration becomes: 

∆𝑂2(𝑧, 𝑡)

1.45
= ∫ 𝑟𝑒𝑠𝑝(𝑧, 𝑡)𝑑𝑡         

                   = − ∫
𝑟𝑠 ∙ 𝑓𝑇(𝑧, 𝑡) ∙ 𝑓𝑂2

(𝑧, 𝑡) ∙ 𝑃𝑂𝐶𝑆(𝑧, 𝑡)

12
𝑑𝑡 
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                       − ∫
𝑟𝐿 ∙ 𝑓𝑇(𝑧, 𝑡) ∙ 𝑓𝑂2

(𝑧, 𝑡) ∙ 𝑃𝑂𝐶𝐿(𝑧, 𝑡)

12
 𝑑𝑡 ,                                                 (E. 20) 

where 𝑓𝑇(𝑧, 𝑡) and 𝑓𝑂2
(𝑧, 𝑡) are temperature- and oxygen-dependence functions. 

In addition, the temporal evolution of small POC inventory will be: 

𝜕𝑖𝑃𝑂𝐶𝑆
900(𝑧, 𝑡)

𝜕𝑡
= 𝑆900(𝑧, 𝑡) − ∫ 𝑟𝑠 ∙ 𝑓𝑇(𝑧, 𝑡) ∙ 𝑓𝑂2

(𝑧, 𝑡) ∙ 𝑃𝑂𝐶𝑆(𝑧, 𝑡)𝑑𝑧
900

𝑧

.              (E. 21) 

However, this equation cannot be resolved analytically. Therefore, I will divide the water 

column into a couple of vertical layers (Fig. E.1). Within each vertical layer (e.g., the kth 

layer), the small POC can be supplied by the vertical carbon flux from the upper layer (e.g., 

𝑡𝑜𝑡𝐹𝑆(𝑘, 𝑡)) and will be also transported into the lower layer (e.g., 𝑡𝑜𝑡𝐹𝑆(𝑘 + 1, 𝑡)). In 

addition, the small POC concentrations can be changed by remineralization and 

fragmentation. Therefore, the temporal evolution of small POC inventory within the kth 

vertical layer is: 

𝜕𝑃𝑂𝐶𝑆(𝑘, 𝑡) ∙ Δ𝑧(𝑘)

𝜕𝑡
  = 𝑁𝑆(𝑘, 𝑡) − 𝑅𝑠 ∙ 𝑃𝑂𝐶𝑆(𝑘, 𝑡) ∙ Δ𝑧(𝑘),                                       (E. 22) 

where 𝑃𝑂𝐶𝑆(𝑘, 𝑡) is the small POC concentrations within the kth vertical layer, Δ𝑧(𝑘) is 

the thickness, 𝑁𝑆(𝑘, 𝑡) is the net source of small POC within the kth vertical layer, which 

includes the vertical carbon flux of small POC into ( 𝑡𝑜𝑡𝐹𝑆(𝑘, 𝑡) ) and out of 

(𝑡𝑜𝑡𝐹𝑆(𝑘 + 1, 𝑡)) the kth vertical layer and the fragmentation flux of large POC (𝑑𝐿 ∙

𝑃𝑂𝐶𝐿(𝑘, 𝑡) ∙ Δ𝑧(𝑘)): 

𝑁𝑆(𝑘, 𝑡) = 𝑡𝑜𝑡𝐹𝑆(𝑘, 𝑡) − 𝑡𝑜𝑡𝐹𝑆(𝑘 + 1, 𝑡) + 𝑑𝐿 ∙ 𝑃𝑂𝐶𝐿(𝑘, 𝑡) ∙ Δ𝑧(𝑘),                         (E. 23) 

where 𝑅𝑠 is the net remineralization rate: 

𝑅𝑠 = 𝑟𝑠 ∙ 𝑓𝑇(𝑧, 𝑡) ∙ 𝑓𝑂2
(𝑧, 𝑡).                                                                                                    (E. 24) 

Assuming that the vertical carbon flux of small POC and the environmental factors (e.g., 

temperature, oxygen, and large POC concentrations) are constant between two consecutive 
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sampling times, the net source of small POC will be also constant and can be resolved 

similarly as Eq.s E.1-E.9: 

𝑁𝑆(𝑧) =
𝑅𝑠 ∙ (𝑃𝑂𝐶𝑆(𝑧, 𝑡1) − 𝑃𝑂𝐶𝑆(𝑧, 𝑡0)𝑒−𝑅𝑠∆𝑡)Δ𝑧(𝑘)

1 − 𝑒−𝑅𝑠∆𝑡
 .                                              (E. 25) 

By assuming the boundary conditions that there is no vertical carbon flux of small POC 

out of the mesopelagic zone, the vertical carbon flux of small POC is: 

𝑡𝑜𝑡𝐹𝑆(𝑛) = 𝑁𝑆(𝑛) − 𝑑𝐿 ∙ 𝑃𝑂𝐶𝐿(𝑛) ∙ Δ𝑧(𝑛)                                                                      (E. 26) 

into the bottom layer (nth grid) and is: 

𝑡𝑜𝑡𝐹𝑆(𝑘) = 𝑁𝑆(𝑘) + 𝑡𝑜𝑡𝐹𝑆(𝑘 + 1) − 𝑑𝐿 ∙ 𝑃𝑂𝐶𝐿(𝑘) ∙ Δ𝑧(𝑘)                                        (E. 27) 

in other vertical layers. 
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Table E.1. Summary of parameters and abbreviations used in Chapter 5 

Symbol Description Units 

Variables 

𝑃𝑂𝐶𝑆 Small POC concentration mg C m-3 

𝑃𝑂𝐶𝐿 Large POC concentration mg C m-3 

𝑖𝑃𝑂𝐶𝑆
900 The vertical integration of small POC from 900m mg C m-2 

𝑖𝑃𝑂𝐶𝐿
900 The vertical integration of large POC from 900m mg C m-2 

𝑂2 Dissolved oxygen concentration mmol O2 m
-3 

𝐴𝑂𝑈 The Apparent Oxygen Utilization mmol O2 m
-3 

Parameters 

𝑟𝑆 Carbon specific remineralization rate of small POC  day-1 

𝑟𝐿 Carbon specific remineralization rate of large POC  day-1 

𝑑𝐿 Carbon specific fragmentation rate of large POC  day-1 

𝐴𝑆 Carbon specific net attenuation rate of small POC day-1 

𝐴𝐿 Carbon specific net attenuation rate of large POC day-1 

𝑤𝑆 Sinking velocity of small POC m day-1 

𝑤𝐿 Sinking velocity of large POC m day-1 

𝑙𝑆 Remineralization length scale of small POC m 

𝑙𝑆,𝑟 Remineralization length scale of small POC when 

fragmentation is not considered 

m 

𝑙𝐿 Remineralization length scale of large POC m 

Fluxes 

𝑡𝑜𝑡𝐹 The total vertical carbon flux  mg C m-2 day-1 

𝑆900 The supply of small POC mg C m-2 day-1 

𝑡𝑜𝑡𝐹𝑠 The total vertical carbon flux of small POC mg C m-2 day-1 

𝑂𝑡ℎ𝑒𝑟𝐹𝑆 The carbon flux of small POC due to other mechanisms mg C m-2 day-1 

𝐺𝑟𝑎𝑣𝐹𝑆 The gravitational sinking flux of small POC mg C m-2 day-1 

𝐺𝑟𝑎𝑣𝐹𝐿 The gravitational sinking flux of large POC mg C m-2 day-1 

𝑖𝐹𝑟𝑎𝑔 The integrated fragmentation flux mg C m-2 day-1 
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Figure E.1. A schematic to show the processes controlling the small POC concentrations 

within each vertical layer 
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Figure E.2. The vertical profiles of temperature (orange) and oxygen (yellow) from each 

float segment. The shadow areas represent the standard deviation. 

 

 

Figure E.3. The cumulative probabilities of the time interval (days) and distance (km) 

between two consecutive sampling times of BGC-Argo floats that I used 
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Figure E.4. The spatial distributions of net primary production (NPP), surface chlorophyll, 

and sea surface temperature from satellite data. The 1,000 m isobath is represented by the 

gray line. 
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Figure E.5. The spatial distributions of satellite derived carbon flux at 100m (g C m-2 yr-

1). The 1,000 m isobath is represented by the gray line. The spatial mean (standard 

deviation) of the carbon flux over the deep ocean (depth>1,000m) are shown in each panel. 
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Figure E.6. Time series of the vertical carbon flux due to different mechanisms (left 

column) and comparisons between the estimated total carbon flux at 100 m and the monthly 

climatology of 234Th-derived carbon fluxes (right column). The time series of otherFS and 

totF are smoothed by a 24-day running mean because of the episodic features in the mixed 

layer pump and eddy subduction pump and to make them more directly comparable to the 
234Th-based fluxes. 
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