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ABSTRACT 

Obesity and related metabolic disorders, such as metabolic syndrome (MetS) and type 2 

diabetes mellitus (T2DM) impact the brain, particularly in the frontal lobe.  Individuals with 

severe and persistent mental illness (SPMI), such as bipolar disorder (BD), are at greater risk for 

obesity, MetS, and T2DM, and show worse outcomes than individuals without SPMI.  Structural 

and H-MRS data suggests brain changes in BD in addition to obesity, however, the findings in 

BD are more heterogenous, and this may be due to an interaction or additive effects between BD 

and metabolic conditions.  In addition, considering metabolic markers in addition to obesity and 

BD may help predict and possibly prevent worse psychiatric and somatic outcomes.   

We conducted a meta-analysis of previous research testing associations between NAA 

(N-Acetylaspartate, a biochemical metabolite found in the brain) and obesity in three regions of 

the brain (frontal lobe, hippocampus, and occipito-parietal lobe).  NAA was significantly and 

negatively associated with BMI (body-mass index) in the frontal lobe only (p = 0.00).   

Secondly, we ran several multiple regression models using age, sex, status (BD patient or 

control), BMI, waist-to-hip ratio, fasting high-density lipoprotein (HDL), fasting low-density 

lipoprotein (LDL), fasting triglycerides (TGC), fasting glucose, and fasting insulin measured in 

the frontal lobe as variables.  Participants were either patients with BD (n = 110) or healthy 

controls (n = 78).  BMI significantly predicted NAA (p = 0.042) and Cr (p = 0.032), and TGC 

also significantly predicted NAA (p < 0.002) and Cr (p = 0.008).  TGC also significantly 

predicted GPC (glycophosphocholine; p < 0.001), but only when analyzed as the sole predictor.   

This suggests that BMI and TGC, both easy to measure in an outpatient setting, may be 

an effective way of monitoring for brain-related changes in BD and obesity, in addition to 

replicating previous findings of brain alterations in obesity and BD. 
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LIST OF ABBREVIATIONS USED 

BD - Bipolar disorder, a severe mental illness that typically consists of patterns of elevated 

(manic or hypomanic) and lowered (depression) moods over an individual's lifetime. 

BMI  - Body mass index, a measure of weight that takes height into account.  Calculated using 

the formula = weight (kg)/height (meters)2 

dlPFC – dorsolateral pre-frontal cortex, an area in the frontal lobe. 

Cr - Creatine. 

GAF - Global assessment of functioning, psychiatric measure of global functioning. 

GMV - Grey matter volume in the brain. 

Glx - Glutamate. 

Gln - Glutamine. 

GPC - Glycophosphocholine. 

H-MRS - Proton magnetic resonance spectroscopy. 

HOMA-IR - Homeostatic model assessment for insulin resistance 

HDL - High-density lipoprotein. 

LDL - Low-density lipoprotein. 

MetS - Metabolic Syndrome, inter-related symptoms linked to both obesity and insulin 

resistance and typically characterized by increased adiposity around the waist, hypertension, low 

levels of HDL, high levels of TGC, (known in combination with low HDL as dyslipidemia), and 

insulin resistance.  

mI - myo-Inositol. 

NAA - N-Acetylaspartate, a biochemical metabolite found in the brain thought to represent 

neuronal health. 

NT - Neurotransmitter. 

SES - Socioeconomic status. 
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SPMI - Severe and persistant mental illness, typically refers to individuals with bipolar disorder, 

schizophrenia, and major depression. 

TCA - The citric acid cycle. 

T2DM - Type 2 Diabetes Mellitus. 

TGC - Triglycerides. 

VIF - Variable inflation factors, a measure of multicollinearity. 

WHR - Waist-to-hip ratio. 

WMG - White matter volume in the brain. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 1 INTRODUCTION  

1.1 INTRODUCTION 

Obesity and overweight are among the biggest public health challenges of our time.  

Obesity is defined as having a BMI of over 30 kg/m2, with severe obesity being a BMI over 35 

kg/m2.  Overweight refers to individuals with a BMI of between 25 and 29.9 kg/m2.  BMI, the 

most common measure used to track and measure weight, is calculated as weight in kilograms 

divided by height in metres squared (kg/m2; Twells et al., 2020).    Worldwide, 650 million 

adults were obese in 2016, and the rate of obesity has nearly tripled since 1975 (WHO, 2021;b).  

As of 2021, 13% of the world’s adult population has obesity, and 39% has overweight (WHO, 

2021;b). Obesity and overweight have been steadily increasing over the last few decades, with 

the United States reaching prevalence rates of obesity of 41.8% for men and women combined 

(Stierman et al., 2021).  Prevalence of obesity in Canada has reached 26.8% (StatsCan, 2019), 

and increased by 300% since 1985, with severe obesity increasing by 455% (Twells et al., 2020) 

and making the impacts of obesity and overweight a necessary focus of health research.  In 

addition, cases of type 2 diabetes mellitus (T2DM) have drastically increased, causing 1.5 

million deaths directly each year (WHO, 2021;a).  Obesity is a risk factor for T2DM (WHO, 

2021;b), and currently, approximately 422 million individuals worldwide are living with T2DM 

today (WHO, 2021;a).  In Canada, 13.8% of individuals living with obesity also are diagnosed 

with T2DM, compared to 2.9% of individuals with weight falling in healthy BMI range 

(StatsCan, 2019), and overall, 2.2 million Canadians live with T2DM (MHCA, 2013). 

Obesity prevalence in Canada and other countries varies by both population and location, 

and it is likely that prevalence of T2DM and metabolic syndrome (MetS; see below) vary with it.  
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For example, the proportion of adults with obesity differs by Canadian province, with 

Newfoundland and Labrador having the highest rate at 40.2%, and British Columbia the lowest 

at 25.0% (StatsCan, 2019).  Nova Scotia, the site of our data collection, has a rate of 33.7%, 

higher than the national average (StatsCan, 2019).  In addition, in many areas of Canada 

Indigenous Canadians (Inuit, Métis, and First Nations) experience higher rates of obesity in 

addition to higher rates of other health problems (PHAC & CIHI, 2011; StatsCan, 2019), and in 

the United States Black Americans also face higher rates (Stierman et al., 2021).  These 

disparities underscore the importance of investigating the impacts of obesity and T2DM on at 

risk populations.   

The presence of markers of metabolic syndrome (MetS) may be used to assess risk for 

obesity and T2DM.  MetS is characterized by a core of inter-related symptoms linked to obesity 

and insulin resistance. First defined by the WHO in 1998 during attempts to re-examine criteria 

for T2DM (Alberti & Zimmet, 1998; Huang, 2009), MetS is typically characterized by increased 

adiposity around the waist, hypertension, low levels of high-density lipoprotein cholesterol 

(HDL) and high levels of triglycerides (TGC; known in combination with high HDL as 

dyslipidemia), and insulin resistance (Alberti & Zimmet, 1998; Cornier et al., 2008; Huang, 

2009; Mitchell et al., 2013).  Although exact definitions vary by source, increased abdominal fat 

and insulin resistance have typically been considered crucial (Huang, 2009).   

1.2 SPMI AND OBESITY 

The issue of obesity is particularly pronounced in individuals with SPMI (severe and 

persistent mental illness), including bipolar disorder (BD).  SPMI typically includes BD, 

schizophrenia, and major depressive disorder.  Bipolar disorder is a mood disorder characterized 

by recurrent episodes of depression and either mania and/or hypomania (Smith et al., 2012).  
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These episodes are often separated by periods of euthymia, or relatively stable and normal 

moods.  Symptoms of mania include elevated or irritable mood, grandiosity, decreased need for 

sleep, increased talkativeness, increased sociability, agitation, increased risk-taking behaviours, 

flight of ideas, and increased distractibility (Smith et al., 2012). 

Bipolar disorder is typically categorized as either bipolar disorder type 1 (BD-1) or 

bipolar disorder type 2 (BD-II), with the former defined by the presence of mania (as opposed to 

hypomania only, as in BD-I; (Smith et al., 2012).  BD-I can sometimes include psychotic 

symptoms and individuals with BD-I are more likely to potentially require hospitalization at 

some point or points over their lifespan (Smith et al., 2012). Prevalence estimates range from 

around 1% of the population for BD-I to around 4% for the more loosely defined bipolar 

spectrum (Bijl et al., 1998; Judd et al., 2014). 

Individuals with severe mental illness (SPMI) can also face discrimination and 

difficulties accessing medical care (De Hert et al., 2011; Knaak et al., 2017) in addition to the 

inherent risks associated with their illness and treatment (Brown et al., 2010; Chen et al., 2021; 

Lawrence et al., 2013; Osborn et al., 2007a; Reininghaus et al., 2015; Saha et al., 2007), which 

may make accessing care for living with obesity and related conditions more difficult.  SPMI 

typically refers to bipolar disorder, schizophrenia, and major depression, although definitions 

differ, and here will be used to refer to bipolar disorder and schizophrenia (Zumstein & Riese, 

2020).  Specifically, evidence suggesting that individuals with SPMI receive inadequate care and 

monitoring for T2DM in comparison to other patients without mental illness (Frayne et al., 2005; 

Goldberg et al., 2007) should raise concerns about unmet needs of this population.  The cost in 

Canada of providing treatment and support for individuals with severe and persistent mental 

illness was estimated at 42.3 billion dollars in 2011, with an additional loss of 50 billion dollars 
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to the economy, numbers that are predicted to increase over the next few decades (MHCA, 

2013).  While measures of the economic cost of mental illness typically measure costs directly 

incurred by mental illness, the high level of comorbidity in this population (De Hert et al., 2009; 

Mitchell et al., 2013; Vancampfort et al., 2016) suggests that there may be additional costs of 

somatic illness and disability in this population that go unaccounted for.  The focus of our 

research, BD, is in particular often highly disabling, costly on both individual and systemic 

levels, and has a prevalence estimated at approximately 45 million individuals worldwide 

(Bessonova et al., 2020; James et al., 2018; Merikangas et al., 2011).  Targeting obesity and 

metabolic risk factors in individuals with SPMI may be one way of decreasing both cost and risk 

of mental illness while improving quality of life. 

Individuals with SPMI are also at increased risk of living with obesity and other 

metabolic disturbances (Vancampfort et al., 2016).  For example, a meta-analysis by Afzal et al. 

found the pooled prevalence of obesity in individuals with SPMI to be 25.9%, and 60.1% when 

combining obesity and overweight (Afzal et al., 2021).  Notably, prevalence rates of obesity in 

the SPMI population were highest in high-income countries (Afzal et al., 2021).  In BD 

specifically, rates of obesity have been found to reach nearly 40% in a Canadian sample (Calkin 

et al., 2009) and just over 30% in a South Korean one (Kim et al., 2009).  Obesity and 

overweight may also be an important precursor to MetS and T2DM in SPMI (Afzal et al., 2021; 

Osborn et al., 2007b).  

MetS has also  been shown to have increased prevalence and impact in individuals with 

schizophrenia (Bora et al., 2017; De Hert et al., 2008, 2009; Hagi et al., 2021; Mitchell et al., 

2013), with around 33% of patients meeting criteria (Mitchell et al., 2013; Vancampfort et al., 

2015), and up to three times higher rates than the general population (De Hert et al., 2008).  
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Increased rates of MetS are also found in BD patients (Bora et al., 2019; McIntyre et al., 2010), 

with rates of up to 30% in an American population (Fagiolini et al., 2005) and 19% in Canada 

meeting full criteria (unpublished data, as cited in McIntyre et al., 2010).  Rates of MetS have 

also been found to occur at similar rates in individuals with both schizophrenia and BD (Correll 

et al., 2008). Higher rates of specific MetS-related criteria in this population have been found, 

and nearly 70% of BD patients meet HDL limit (Correll et al., 2008). 

Individuals with SPMI also appear to have an increased risk of T2DM, with Kim et al. 

finding that 43.5% of BD inpatients were hyperglycemic, and 4.3% on anti-diabetic medications 

(2009) and Fagiolini finding that 8.6% of patients with BD had either high levels of fasting 

glucose or were on anti-diabetics (Fagiolini et al., 2005).  Levels of T2DM were found to reach 

11.3% in individuals with SPMI (Vancampfort et al., 2016), and individuals with BD, in 

particular, may have up to a threefold greater risk of T2DM (McIntyre et al., 2005).   

Why are the rates of obesity and related metabolic alterations so high in SPMI?  One 

reason could be obesogenic medications. The use of anti-psychotic medication is highly 

associated with weight gain, with the highest risk coming from clozapine (Mitchell et al., 2013).  

Individuals with SPMI are also more likely to be sedentary than the general population (Osborn 

et al., 2007b; Vancampfort et al., 2012),  have greatly increased rates of smoking (Dickerson et 

al., 2013), and have less healthy diets (Osborn et al., 2007b), all of which may also contribute to 

risks associated with T2DM, MetS, and obesity. Individuals with SPMI may also have lower 

levels of health literacy with regards to healthy exercise, obesity prevention, and cardiovascular 

risks (Osborn et al., 2007b). Regardless of the reasons for high co-occurrence of SPMI and 

obesity, it is highly relevant to look at the marked consequences of this comorbidity. 
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Obesity, MetS, and T2DM all carry health risks, but those health risks may be amplified 

in individuals with SPMI.  Individuals with SPMI have a mortality rate approximately two and a 

half to three and a half times higher than the general population (Brown et al., 2010; Osborn et 

al., 2007a; Reininghaus et al., 2015; Saha et al., 2007), and life expectancy shortened by ten to 

twenty years in comparison to individuals without SPMI (Chen et al., 2021; Lawrence et al., 

2013).  Among the many causes of this premature and excessive mortality the foremost for 

individuals with SPMI are cardiovascular causes, which can be directly related to obesity, 

metabolic syndrome, and diabetes.  For example, nearly 80% of excess deaths in individuals with 

SPMI appear to be caused by physical comorbidities, with cardiovascular problems being one of 

the more significant factors in mortalities (Brown et al., 2010; Lawrence et al., 2013).  Obesity 

and T2DM are also associated with increased mortality rates in SPMI (Brown et al., 2010; Chen 

et al., 2021; Saha et al., 2007), with the standardized mortality ratio (SMR) for T2DM being six-

times higher in individuals with SPMI (Brown et al., 2010), and a Taiwanese study finding that 

the presence of comorbid T2DM in inpatients with BD increased mortality risk by 40%. In 

addition to increased mortality, obesity and related conditions have also been linked to worsened 

psychiatric symptoms and outcomes in individuals with SPMI.  Higher BMI has been linked to 

lower scores on the global assessment of functioning (GAF) scale in individuals with BD (Calkin 

et al., 2009).  Reduced GAF scores were also found in BD patients with T2DM-related metabolic 

markers (such as increased insulin resistance) in comparison to patients with only BD (Hajek et 

al., 2015). Importantly, MetS appears to be associated with greater depressive symptoms and 

suicidality (McIntyre et al., 2010), reduced treatment response (Fagiolini et al., 2003; McIntyre 

et al., 2010), increased disability (Calkin et al., 2009; Hajek et al., 2005), more manic and 
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depressive episodes (Fagiolini et al., 2003), increased chronicity (Calkin et al., 2009; Hajek et 

al., 2005) and decreased time from treatment to recurrence (Fagiolini et al., 2003).  

The risks of obesity in SPMI also appear to differ by sex.  Afzal et al. found increased 

rates of obesity in women with schizophrenia in comparison to men, but did not find a difference 

between rates of obesity in men and women with BD (2021).  Elias et al., investigating cognitive 

functioning in the presence of obesity and hypertension in individuals without SPMI, found 

significant impairment in men but not in women (2003).  Men with BD are also more likely to 

have high blood pressure and high TGC than women (McIntyre et al., 2010), and a Dutch study 

found an eightfold higher rate of MetS in men with BD in comparison to women (de Jong et al., 

2018), however, women with BD have been found to have a higher chance of having obesity in 

comparison to men (Baskaran et al., 2014).  These results suggest that obesity may have differing 

impacts on and outcomes from obesity in individuals with SPMI. 

Finally, evidence suggests that obesity and MetS are also negatively associated with 

cognitive functioning in general and especially in SPMI populations.  Bora et al. found that BD 

patients with obesity or overweight had significantly worse executive functioning and processing 

speed, in addition to global impairment (2017).  In patients with schizophrenia and MetS, 

memory, attention, processing speed, and verbal learning tasks, in addition to global functioning, 

showed impairment in comparison to individuals with schizophrenia but no MetS (Bora et al., 

2019; Hagi et al., 2021).  T2DM in individuals with schizophrenia was associated with global 

cognitive functioning as well, but only in male patients (Bora et al., 2019), and obesity was 

found to be associated with visual learning impairment (Hagi et al., 2021).  Executive 

functioning impairment has also been found in non-SPMI elderly individuals with T2DM and 
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increased BMI as well, and severity and length of illness of T2DM had a dose-dependent 

response on that impairment (Mallorquí-Bagué et al., 2018).  

Why is it that a mostly peripheral disorder, such as obesity, has such an impact on 

psychiatric and cognitive outcomes? Potentially this is related to the brain being one of the target 

organs for obesity-related damage. Evidence of associations between BMI and brain structure, 

including decreased grey matter volume (GMV) in particular, has been well replicated including 

large studies and meta-analyses.  Regions of interest implicated in research on obesity included 

frontal regions and in particular the prefrontal-cortex (PFC; Kolenič et al., 2020; Willette & 

Kapogiannis, 2015; Willeumier et al., 2011) and medial orbitofrontal-cortex (OFC; Marqués-

Iturria et al., 2013), the cerebellum (Kolenič et al., 2020), the temporal lobe (García-García et al., 

2019; Janowitz et al., 2015; Willette & Kapogiannis, 2015), lower GMV in sub-cortical 

structures (Dekkers et al., 2019; Janowitz et al., 2015; Willette & Kapogiannis, 2015), and 

overall GMV (García-García et al., 2019; Janowitz et al., 2015; Willette & Kapogiannis, 2015).  

In addition, altered WM microstructure was found, if less consistently (Dekkers et al., 2019), 

along with alternations in WM tracts (Mazza et al., 2017).  Many of these regions, including the 

subcortical regions in particular (Hajek et al., 2009; Hajek et al., 2012; Hibar et al., 2016), are 

also implicated in BP (Hallahan et al., 2011; Hibar et al., 2017), however, heterogeneity in the 

results of structural differences in BD complicates interpretation. 

More research is now focusing specifically on the interplay between obesity, SPMI and 

brain structure. For example, Mazza et al. (2017) and Kuswanto et al. (2014) found more 

frequent alterations in white matter (WM) tracts in BD patients with higher BMIs in diffusion 

tensor imaging (DTI;(Kuswanto et al., 2014; Mazza et al., 2017). Several studies found 

decreased white matter volume (WMV) in BD and obesity (David J. Bond et al., 2011, 2014) and 
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mixed findings for GMV in BD and obesity, but only found decreased GMV and not WMV in 

participants without BD and obesity (David J. Bond et al., 2011, 2014).  Reduced cortical 

thickness was negatively correlated with BMI in BD patients in the frontal lobe and PFC, OFC, 

and caudal anterior cingulate cortex (ACC) (Islam et al., 2018; Soares & Law, 2009).  Finally, 

research directly investigating brain changes in obesity and BD has found that one-fifth of the 

association between BD and increased ventricle size was moderated by BMI (McWhinney et al., 

2021), but that sub-cortical areas associated with BD such as the basal ganglia, hippocampus, 

and thalamus did not appear to be affected (McWhinney et al., 2021).  Increased ventricular size 

has also been found in obesity (Isaac et al., 2011).  Hippocampal volumes, already reduced in 

individuals with BD, were found to be even further reduced in individuals with BD and 

comorbid insulin resistance (IR), glucose intolerance (GI), or T2DM (Hajek et al., 2014), as well 

as obesity (Bond et al., 2017).  There is, however, another brain-imaging modality that has been 

given less attention than structural imaging and may help provide some insight into changes in 

both obesity and BD.  While there have been studies on BD using this modality (Cecil et al., 

2002, 2003; Hajek et al., 2008; Hajek et al., 2012; Liu et al., 2017; Moore et al., 2000; Yildiz-

Yesiloglu & Ankerst, 2006), the intersection between BD and obesity has been studied less using 

proton magnetic resonance spectroscopy, which I will introduce below. 

1.3 - H-MRS AND METABOLITES OF INTEREST 

Structural imaging research in obesity and BD-related investigations is commonly cited, 

but another form of imaging evidence pertinent to this area is proton magnetic resonance 

spectroscopy (H-MRS) evidence.  Rather than taking high-resolution images of the brain as in 

*magnetic resonance imaging (MRI), H-MRS measures the levels of metabolites in a defined 

voxel in the brain, and evidence is biochemical (Buonocore & Maddock, 2015; Ross & Bluml, 
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2001).  This measurement is achieved through a phenomenon known as nuclear magnetic 

resonance (NMR; Buonocore & Maddock, 2015; Ross & Bluml, 2001). 

Metabolites, biochemicals created by the breakdown or usage of resources by the body, 

are measurable using H-MRS and related MRS imaging such as P-MRS (phosphorus MRS).  

The high specificity of voxel placement in MRS means that very small biochemicals (smaller 

than 0.1 mM; Ross & Bluml, 2001) can be readily measured in vivo with relative precision to 

region.  While at least 70 neurochemicals can be measured using MRS, only small molecules 

that can be manipulated by the magnetic spin created by NMR can be studied with this technique 

currently (Ross & Bluml, 2001).  Since metabolic rates in the brain change with dysfunction and 

damage, in addition to the processes of both healthy aging and dementia, measuring metabolite 

levels can provide insight into both the structure of the brain on a cellular level and the functions 

of those cells and interactions between them (Lin & Rothman, 2014).   

In H-MRS the presence of a net magnetic moment, or a “dipole”, is what is being 

measured. The net magnetic moment is the energy difference between nuclei aligned with or 

against an external magnetic field, and that dipole is what MRS is measuring (Buonocore & 

Maddock, 2015).  Nuclei have intrinsic spin due to the spin of protons and neutrons in the 

nucleus, which creates overall spin as long as there is an odd number of protons, neutrons, or 

both.  If the numbers are even, the spin cancels out, since protons tend to pair up with protons 

spinning in the opposite direction if they are present (Buonocore & Maddock, 2015).   

Measuring the dipole of nuclei in biological molecules allows for the creation of a 

magnetic resonance spectrum, the outcome of H-MRS imaging.  MR spectra are images 

generated based on the signals of protons (or whichever molecule is being used to measure the 

dipoles) and represent temporal frequencies of the biological molecules being imaged on the 
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horizontal axis, with amplitude on the vertical (Buonocore & Maddock, 2015).  To compare 

frequencies between metabolites, a zero frequency (the Lamor frequency of a reference molecule 

at the correct field strength) is established, and other metabolites are represented on spectra in 

terms of the chemical shift (typically in parts per million, ppm) from this zero frequency 

(Buonocore & Maddock, 2015). The Lamor frequency of the same atom changes based on the 

molecule it is in.   H-MRS spectra create distinctive peaks representing the interaction between 

metabolite frequency and amplitude generation that can be interpreted and compared across 

multiple sessions of data collection, with consistent methods.  For example, NAA typically has 

its major peak found at around 2.0ppm (Ross et al., 2011). 

While MRS can be performed using molecules other than hydrogen (e.g., 1H1), the use of 

protons is most common because they are present in higher concentrations in biological 

substances.  Alternatives include 23NA11 and 39K19, however, the nuclei must have intrinsic spin, 

and lower concentrations than hydrogen are present for every other atom.  Low concentration 

means that scans require bigger voxels and longer scans, and therefore H-MRS is the most 

frequently used (Buonocore & Maddock, 2015).  Specific sequences of excitation and rotation 

are also followed during imaging, and while others exist, the most frequently used is the PRESS 

sequence (Point REsolved Spectroscopy; Bottomly, 1984, 1987; Buonocore & Maddock, 2015). 

Imaging done with rodents reveals around 20 different measurable metabolites in the 

brain, and human research suggests that with high-field tomography the neurochemicals possible 

to detect is similar (Duarte et al., 2014).  These metabolites include creatine (Cr/Cre), y-

aminobutyrate (GABA), glutamine (Gln), glutamate (Glu), glucose (Glc), myo-inositol (mI/Ins), 

N-acetylaspartate and N-acetylaspartyl glutamate (NAA and NAAG), choline-compounds such 

as glycophosphocholine (GPC; Buonocore & Maddock, 2015; Duarte et al., 2014).  Metabolite 
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levels vary by region of the brain (e.g. NAA decreases with age in the hippocampus and 

striatum, but not the cortex), by sex, and, as previously mentioned, during the aging process 

(Duarte et al., 2014).  For example, creatine decreases with age and levels vary by gender 

(Duarte et al., 2014).  

One of the most studied metabolites is N-acetylaspartate (NAA), an accepted marker of 

neuronal health reduced in significant brain injury such as strokes as well as other brain traumas 

(Ross & Bluml, 2001; Ross et al., 2011).  NAA is the acetylated version of the amino acid 

aspartic acid (i.e., an acetyl group is added to aspartic acid), and is represented chemically by 

C6H9NO5.  NAA is also an osmolyte, a substance that controls osmotic pressure in biological 

materials such as human cells, and also plays a role in the glutamate/glutamine cycle (Bak et al., 

2006; Clark et al., 2006).  Evidence suggests that NAA is a source of acetyl-CoA, a molecule 

that provides an acetyl group in the citric acid cycle (TCA; Bak et al., 2006; Clark et al., 2006).  

The citric acid cyle produces α-ketoglutarate, which is used for the synthesis of glutamate, the 

main excitatory neurotransmitter (NT; Bak et al., 2006; Clark et al., 2006).  NAA has been 

considered a neuronal marker of viability, however, recent evidence shows that NAA is also 

found in the precursor cells of oligodendrocytes, a type of glial cells that specialize in 

myelination (Ross & Bluml, 2001; Ross et al., 2011).  This finding is supported by the presence 

of NAA in both WM and GM in the brain, and by the finding that NAA is reduced with neuronal 

loss, but also axonal loss (Ross & Bluml, 2001; Ross et al., 2011).   

Levels of NAA are also reduced by high glucose levels in T2DM and are increased with 

surgical weight loss (Daniele et al., 2020).  Adults doing endurance training have also been 

found to have higher levels of NAA (Gonzales et al., 2013).  While existing evidence has 

suggested a negative relationship between BMI and NAA in some areas of the brain (Gazdzinski 
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et al., 2008; Gazdzinski et al., 2010), not all studies have shown a relationship (Caravaggio et al., 

2018; Lee et al., 2020a). Decreased NAA is also associated with increased HbA1C (glycated 

hemoglobin, or blood sugar) levels in the PFC in individuals with T2DM (Sahin et al., 2008). A 

recent meta-analysis also found lowered levels of NAA in individuals with schizophrenia, and 

even in those only at high-risk for schizophrenia (Whitehurst et al., 2020).  NAA can also be 

affected by diet (Auer et al., 2015; Setkowicz et al., 2015).  Due to relative ease of imaging (in 

comparison to other metabolites) and the association with neuronal loss, NAA has been the 

frequent subject of neuroscientific studies.  The association with SPMI and BMI makes it highly 

relevant to this study.  Notably, decreased levels of NAA in individuals with schizophrenia were 

found in the frontal lobe, temporal lobe, hippocampus, and thalamus (Whitehurst et al., 2020), 

similar to evidence of structural changes in both SPMI and obesity.  In addition to the association 

between decreased NAA and increased A1C levels in the PFC in T2DM (Sahin et al., 2008), 

lower NAA has also been found to be associated with frontal, parietal, and temporal areas 

(Gazdzinski et al., 2008). 

However, NAA isn’t the only metabolite of interest in SPMI and obesity.  Compounds 

including choline, for example, such as glycophosphocholine (GPC), are involved in the 

breakdown and synthesis of biological membranes and have been found to be elevated in T2DM 

(Gazdzinski et al., 2018; Wu et al., 2017) and in individuals with insulin sensitivity (Caravaggio 

et al., 2018).  Choline is very common (present in 50%) of phospholipids, which make up cell 

membranes and are involved in the breakdown and creation of cells (Jao et al., 2009; Ross et al., 

2011).  However, phospholipids are too bulky to be visualized in H-MRS except in the case of 

trauma or extreme duress such as that caused by brain tumours, in which case it is hypothesized 

that choline may separate from the larger molecules (Jao et al., 2009; Ross et al., 2011).  
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Increased choline levels are used with neuroinflammation, tumours, and post-stroke.  Choline 

also plays an important role as part of myelin sheaths in the brain as sphingomyelin, and 

increased levels of choline may also represent damage to myelin (Jao et al., 2009). 

Creatine is another metabolite of note - in particular, because it is often used in a ratio 

with the metabolite of interest, with the assumption that creatine is “neutral”.  However, creatine 

levels in the brain may change with trauma, hypoxia, stroke, and other neurological injuries.  It 

also has been shown to increase with age (Chang et al., 2002; Tibbo et al., 2013) and change 

with illness (Chang et al., 1996), and levels of creatine (Cr) differ between neurons and glial 

cells in the brain (Brand et al., 1993). In addition, Tibbo et al. found that creatine levels were 

significantly associated with age only in individuals with schizophrenia, but not in healthy 

controls (2013), which means age could potentially be a confounding factor in H-MRS studies 

that do not control for it.  Since evidence suggests that creatine levels are associated with factors 

such as age and health, and are not, in fact, neutral, alternatives to measuring metabolites using a 

ratio to creatine, such as measuring levels using water suppression, are often used (Buonocore & 

Maddock, 2015; Jansen et al., 2006). 

Glutamate, the main excitatory NT of the brain, can also be measured using H-MRS.  

Unlike most NTs, which are too bulky to be measured by H-RMS, both glutamate and the main 

inhibitory NT, GABA, can be measured.  However, measurement of glutamate can be 

complicated by overlap on spectrums between glutamate and glutamine when measured by 

machines with low-strength magnets, resulting in them frequently being reported together as Glx 

(Buonocore & Maddock, 2015; Ross & Bluml, 2001).  Altered levels of glutamate have been 

reported in T2DM (Sinha et al., 2014) and may be correlated with insulin sensitivity (Caravaggio 

et al., 2018) and BMI (Gazdzinski et al., 2010;a).  In addition, altered levels of glutamate, 
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glutamine, abnormalities in the glutamate/glutamine cycle have been documented in individuals 

with schizophrenia in H-MRS data (Marsman et al., 2013). 

Finally, myo-insositol (mI) has also been associated with the breakdown of myelin in the 

brain, and is both an osmolyte (Ross & Bluml, 2001), and part of the phosphatidylinositol (PI) 

cycle.  Dysfunction of the PI cycle has been hypothesized to be part of the mechanism of BD, 

and one potential theory for lithium’s effectiveness in BD is the inositol-depletion theory, which 

suggests that part of this effectiveness is due to increased update of mI caused by lithium 

(Silverstone et al., 2005).Research utilizing magnetic resonance spectroscopy data (H-MRS) has 

found reduced levels of NAA in the brain with obesity and overweight individuals without SPMI 

in some (Bond et al., 2017; Gazdzinski et al., 2008; Gazdzinski et al., 2010b), but not all studies 

(Caravaggio et al., 2018; Heikkilä et al., 2008; Lee et al., 2020b), suggesting a need for analysis 

at the meta-analytic level. In addition, there is very little research specifically investigating MRS 

correlates of obesity/metabolic alterations and SPMI. Dysglycemia in BD patients is associated 

with reduced NAA levels (Hajek et al., 2015), as was increased BMI in BD patients, but only 

when analyzed independently of controls (Bond et al., 2017).  Increased BMI in BD patients, but 

not controls, is associated with altered levels of glutamine/glutamate (Glx; Bond et al., 2016).  

Interestingly enough, myo-inositol (mI), phosphocreatine, and choline levels were reduced in 

individuals with BD, but increased with overweight or obesity (Bond et al., 2017).   In a unique 

investigation, Gonzales et al. (2013) also found results suggesting that regular aerobic exercise 

was also associated with increased NAA levels. 

Increased levels of Glx and glutamine (Gln), as well as choline, were also found in BD 

patients but not in HC by Scotti-Muzzi et al. (Scotti-Muzzi et al., 2021).  Chitty et al. (2013), in a 

meta-analysis of H-MRS BD research, also found significantly increased Glx in frontal areas in 
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individuals with BD, as well as increased Glx in the ACC that was approaching significance (p = 

0.064;).  Chitty et al. also reported significant heterogeneity among studies, which could 

potentially affect effect sizes of findings (2013).  Some of this heterogeneity could also be due to 

the impacts of differing medications on metabolites.  The presence of mood stabilizers impacted 

levels of Glx and Glu (Scotti-Muzzi et al., 2021), and a study looking at the impact of lithium 

found that while BD patients initially had significantly increased mI and choline levels in the 

ACC in comparison to controls, neither metabolite was significant after six weeks on lithium 

(Soeiro-de-Souza et al., 2021).  Furthermore, choline levels remained high in BD lithium non-

responders (Soeiro-de-Souza et al., 2021).  The considerable heterogeneity in results suggests the 

need for more investigation into metabolite levels in BD patients with obesity and related 

metabolic markers. 

Research into brain metabolites is a non-invasive way of studying brain changes and 

differences in population and has the advantage of being spatially specific.  Both obesity and 

SPMI are associated with brain changes, and H-MRS provides a method to measure biochemical 

metabolites in the at-risk population of individuals with SPMI and obesity in vivo and in areas of 

the brain.  Improving our understanding of metabolic differences in obesity and SPMI may also 

help predict unwanted outcomes and potentially, even assist in prevention. 

In light of heterogeneity and conflicting results in imaging studies investigating BD, we 

focused on important knowledge gaps and provided the following original contributions. Firstly, 

we meta-analyzed previously published MRS findings on the association between NAA and 

obesity. Secondly, we analyzed MRS data from a large sample of individuals with BD, who were 

phenotyped for obesity and related metabolic alterations and compared these findings with 

control subjects who were otherwise healthy.   
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CHAPTER 2 – ORIGINAL RESEACH: META-ANALYSIS 

INTRODUCTION 

While there are a large number of studies investigating brain metabolites in relation to 

obesity using H-RMS (Bond et al., 2011, 2016; Caravaggio et al., 2018; Chenji et al., 2021; 

Gazdzinski et al., 2010a; Kaur et al., 2017; Lee et al., 2020), a meta-analysis in this area has yet to 

be performed.   

In addition, considering the small sample size in many of the included studies and the 

replication crisis in psychiatry and psychology, there is a need to quantitatively combine these 

results to understand if individual findings of associations between obesity and brain metabolites 

(such as NAA) are genuine findings.  Meta-analysing previous data will also provide better 

understanding of the brain regions that might be more predictive of high BMI. 

Finally, while our meta-analysis is not primarily about the effect of BD on biochemical 

brain metabolites (see: Chapter 3), understanding the impacts of obesity on brain chemistry will 

also help researchers and clinicians, as well as patients, understand the risks of having both BD 

and obesity. 

2.1 METHODS 

2.1 Study Selection 

Studies were considered for inclusion if they 1) compared levels of NAA in an 

overweight or obese group to a group with normal weight, or 2) measured the correlation 

between levels of NAA in a sample that ranged in weight from normal to overweight or obese.  
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We included studies with a mixture of clinical and non-clinical populations if they met one of 

those two criteria.  This inclusion was done for practicality given the small number of studies 

that met our criteria, and additionally to ascertain if a relationship existed between overweight or 

obesity and levels of NAA in the brain across populations. 

Following the PRISMA guidelines (Page et al., 2021), the initial search was done on 

PubMed on December 12th, 2021, and consisted of ‘obesity AND brain AND “spectroscopy,” 

delivering 141 results.  Several other searches were performed (including “H-MRS” and other 

terms) but only duplicate or clearly unrelated articles returned, so no articles were identified 

through original searches.  In addition, informal searching for relevant citations was employed 

by investigators scanning articles found via the search process.  This informal search process 

revealed no new relevant articles.  Multiple reviewers were involved with the article review 

process to ensure the inclusion and exclusion criteria were applied correctly. 
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 Figure 1 - Study Selection Process Illustrated 

 

Note: Graphic illustrating the 3 stages of the search process. 

 

2.2 Exclusion Criteria 

Exclusion criteria included research on non-proton-MRS (such as P-MRS), MRS 

research on non-humans or other parts of the body, H-MRS research that did not include NAA as 
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a measure of interest, and studies that exclusively looked at metabolite levels in children since 

NAA levels are decreased in infancy (Brand et al., 1993).  In contrast, NAA levels remain 

relatively stable with aging (Chang et al., 1996). Inclusion criteria were kept broad to capture as 

many potentially relevant studies as possible, given the lack of meta-analyses published in this 

area.  We did not restrict the search by date, and the articles included in the meta-analysis ranged 

in publication date from 2008 (Gazdzinski et al., 2008) to 2021 (Chenji et al., 2021).    

2.3 Statistical Collection 

As previously mentioned, the data collected varied across clinical populations, e.g., 

patients with major depressive disorder, bipolar disorder.  To compare varying groups across 

multiple studies we compared the overweight or obese group to the healthy weight group, 

regardless of other conditions represented in that population.  For example, for Coplan et al.,   we 

compared NAA levels between the group with MDD and “normal”-weight to those with MDD 

with overweight or obesity (Coplan et al., 2014).  Because of this, the total number of 

participants in the original paper is more for some data than the of number of participants 

included in the final meta-analysis.  Papers that included only a “normal” weight group and an 

overweight/obese group were also included.   

Studies included in the meta-analysis presented the statistics necessary for our analysis in 

varied ways.  For example, one study gave NAA levels between groups only in graphical format 

(Heikkilä et al., 2008), and to obtain values for this data the graph was manually measured, and 

values calculated from those measurements.  Other studies included provided only the statistic 

calculated (e.g. R2, p-value, etc.).  Those statistics we either included as-is or converted into a 

usable statistic, depending on the values initially provided.  Some studies included raw 

metabolite values or ratios. 
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Statistics that had to be converted for inclusion in the meta-analysis were converted using 

Google Sheets, a free Microsoft-Excel like online program, and Microsoft Excel.  Conversions 

performed include calculating t-inversions using p-values and degrees of freedom and 

calculating Cohen’s d using t-values and number of participants.  It was also sometimes 

necessary to convert the standard effect or standard deviation of a value from one to another, and 

to calculate confidence intervals.  Whenever possible values were used in their original form and 

not converted. 

When interpreting results, we used a random effects model (rather than a fixed effects 

model) to acknowledge that effect sizes found by this meta-analysis only represent the sample 

populations measured and not all potential populations. 

2.4 Data Inclusion 

Outcomes recorded for the meta-analysis were limited to the measurement of NAA in the 

frontal, occipito-parietal lobes, or the hippocampus.  Previous investigations have found stronger 

evidence of volumetric differences in obesity or overweight in areas of the frontal lobe (such as 

the PFC) than in other areas of the brain (García-García et al., 2019; Marqués-Iturria et al., 2013; 

Willeumier et al., 2011), therefore, this was a logical region to concentrate on.  There was also 

prior evidence that NAA levels and other metabolite levels are altered in T2DM (Sahin et al., 

2008) in the frontal cortex.  With regards to structural evidence, as previously mentioned, the 

hippocampus is another area that has been linked to volumetric changes in obesity and 

overweight (Dekkers et al., 2019).  Finally, the occipital-parietal lobes were included as an 

outcome because of the availability of studies measuring NAA in obesity and overweight in 

those areas.  While several other studies measured NAA in various subcortical areas, the data 

was too heterogenous to reliably compare. 
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Deliberation over which areas of the brain to include was also influenced by the paucity 

of research measuring NAA in individuals with overweight or obesity, that is to say, we initially 

included all data regardless of the area of the brain the analysis was done on.   We eventually 

excluded sub-cortical areas during the process due to lack of sufficient data in corresponding 

areas to analyze in a meaningful way.   

Other variables recorded included magnet strength (1.5T or 3T), inclusion of obese 

individuals in comparison to overweight individuals, ratio used to measure metabolite levels 

(creatine or water), matrix, voxel size, resolution of voxel, ratio of female to male participants, 

mean age of participants, and mean BMI.  Demographic variables collected were heterogenous.  

However, because of the small number of studies included the heterogeneity of data among 

studies, and missing values in these variables for many studies, demographic analyses were not 

performed.  Statistics included in the original article (f-value, z-score, etc.) are shown in the table 

detailing included studies. 

2.5 Statistical Analysis  

The statistical computation for the meta-analysis was performed using Comprehensive 

Meta-Analysis Lite v3 (Comprehensive Meta-Analysis, 2021).  Statistical conversions were 

performed in either Microsoft Excel or Google Sheets, with the exception of confidence intervals 

that were calculated using Dr. Wuensch’s add-on for SPSS (Wuensch, 2021) along with SPSS 

v.27.  We recorded all statistics from the original manuscripts, and then all statistics were 

converted into Cohen’s d, which were then used to complete a random effects meta-analysis 

comparing the differences between groups.  We also collected other relevant information from 

the manuscripts such as confidence intervals, standard deviation and standard error, and 

demographic statistics, which were also used in meta-analysis.  In addition, the RStudio build 
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2021.09.2 was used to calculate a funnel plot to check for publication bias (RStudio Team, 

2020). 

Table 1 Table 2 - Table of Included Articles 
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Note: Citations for table are as follows: 

Frontal: (Caravaggio et al., 2018; Gazdzinski et al., 2008; Gazdzinski et al., 2010a; 

Heikkilä et al., 2008; Lee et al., 2020) 

Hippocampal: (Bond et al., 2017; Chenji et al., 2021; Coplan et al., 2014) 

Occipito-Parietal:(Gazdzinski et al., 2018; Gonzales et al., 2012; Haley et al., 2013; 

Kaur et al., 2017) 

ROI: refers to region of interest; MPFC, medial pre-frontal cortex; DLPLC, dorsolateral 

prefrontal cortex. MDD-O? MDD-N?  HC?  

2.6 HYPOTHESES  

Our hypotheses were based on previous research showing decreased levels of NAA in the 

frontal lobe in individuals with both SPMI and T2DM (Hajek et al., 2015) and the implications 

of frontal lobe abnormalities in obesity research (Kolenič et al., 2020; Marqués-Iturria et al., 

2013; Willette & Kapogiannis, 2015; Willeumier et al., 2011); temporal lobe (García-García et 

al., 2019; Janowitz et al., 2015; Willette & Kapogiannis, 2015); and subcortical structures 

(Dekkers et al., 2019; Janowitz et al., 2015; Willette & Kapogiannis, 2015). 

1) NAA would be negatively associated with BMI (as BMI rose, NAA would fall) for the 

frontal lobe analysis. 

2) NAA would be negatively associated with BMI in the hippocampus. 

3) NAA would be negatively associated with BMI in the occipito-parietal lobes. 
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2.7 RESULTS 

2.7.1 Frontal Lobe 

Out of the five studies included in the frontal lobe analysis three used a sample of healthy 

controls (Caravaggio et al., 2018; Gazdzinski et al., 2008).  Other studies included compared 

individuals with and without obesity with a particular condition or trait with one control group 

and obese group consisting of men only (Heikkilä et al., 2008), one using previously alcohol-

dependent men after one-month of abstinence (Gazdzinski et al., 2010a), and the last using  

population of individuals with T2DM for both groups (Lee et al., 2020). In total these studies 

included 230 individuals (see: Table 1). 

Results of the meta-analysis suggested that levels of NAA were significantly lower in the 

frontal lobes of individuals with overweight or obesity in comparison to those of normal weights.  

Five studies were included in this analysis, and the point estimate using a random effects model 

was -0.32 (95% CI -0.49 to -0.16) with p < .001.  Since I2 was not significant (p = 0.16) we could 

potentially interpret the results using a fixed effects model, however, erring on the side of 

caution and using a random effects model acknowledges that this data comes from samples 

representing a population and not the population itself. 

While two of the five studies were published with the same first author only two years 

apart (Gazdzinski et al., 2008; Gazdzinski et al., 2010a), the sampling was unique, with one 

sample consisting of alcohol-abusing males (Gazdzinski et al., 2010a), and the other, healthy 

middle-aged adults (Gazdzinski et al., 2008).   

There was a suggestion of publication bias (e.g. the Egger test was approaching statistical 

significance, p = 0.06) when we generated a funnel plot for our results.  While this may partially 
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be due to the small number of studies available for inclusion in our meta-analysis, it should be 

taken into consideration when interpreting the results.  

 

Figure 1 – Meta-Analysis Funnel Plot 

 

Note: Funnel plot for the frontal region meta-analysis. 

Figure 2 - Frontal Lobe 
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Note: Results of the meta-analysis of the studies looking at the frontal lobe.  Analyzed in 

Comprehensive Meta-Analysis Lite v.3 (Borenstein et al., n.d.). Favours “A” refers to 

significantly lower levels of NAA. 

2.7.2 Hippocampus 

Available studies compared individuals with obese or overweight with normal weight 

individuals from somewhat heterogenous groups, including BD patients (Bond et al., 2017), 

major depressive disorder patients (MDD; Chenji et al., 2021), and patients with generalized 

anxiety disorder (GAD; Coplan et al., 2014). In total these studies included 152 individuals (see: 

Table 1). 

Results of the meta-analysis suggested that levels of NAA in hippocampus were 

comparable between individuals with overweight or obesity and normal weights.  Three studies 

were included in this analysis, and the point estimate using a random effects model was - 0.08 

(95% CI -0.39 to 0.22) with p = 0.59.  Again, since I2 is not significant (p = 57.77) we could 

potentially interpret the results using a fixed effects model, however, erring on the side of 

caution and using a random effects model acknowledges that this data comes from samples 

representing a population and not the population itself.     

As there were no significant differences between the groups, there was no need to test for 

publication bias.  
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Figure 3 - Hippocampus 

 

Note: Results of the meta-analysis of the studies looking at the hippocampus.  Analyzed in 

Comprehensive Meta-Analysis Lite v.3 (Borenstein et al., n.d.).  Favours “A” refers to 

significantly lower levels of NAA. 

2.7.3 Occipital-Parietal Lobes 

Sample populations were less heterogenous for this analysis, including mostly healthy 

controls (Gazdzinski et al., 2018; Gonzales et al., 2012; Kaur et al., 2017) and one sample 

including some individuals with components of metabolic dysfunction (such as hypertension; 

Haley et al., 2013).  In addition, three out of the four samples only included adults from the age 

of 40 to 60 years old (Gonzales et al., 2012; Haley et al., 2013; Kaur et al., 2017). In total these 

studies included 202 individuals (see: Table 1). 

Results of the meta-analysis suggested that levels of NAA in occipital-parietal lobes were 

comparable between individuals with overweight or obesity and normal weights.  Four studies 
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were included in this analysis, and the point estimate using a random effects model was -0.170 

(95% CI -.34 to .20) with p = 0.95.  Again, since I2 is not significant (p = 51.36) we could 

potentially interpret the results using a fixed effects model, however, erring on the side of 

caution and using a random effects model acknowledges that this data comes from samples 

representing a population and not the population itself.     

As there were no significant differences between the groups, there was no need to test for 

publication bias.  

Figure 4 - Occipital-Parietal 

 

Note: Results of the meta-analysis of the studies looking at the occipital-parietal lobes.  Analyzed 

in Comprehensive Meta-Analysis Lite v.3 (Borenstein et al., n.d.).  Favours “A” refers to 

significantly lower levels of NAA. 
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2.8 DISCUSSION 

The main finding of this meta-analysis was that, at least across the frontal lobe, NAA 

appears to be decreased with obesity.  However, the results for the hippocampus and occipital-

parietal lobes were both non-significant, suggesting that perhaps, as some of the structural 

evidence of brain changes in obesity suggests (Kolenič et al., 2020; Marqués-Iturria et al., 2013; 

Willette & Kapogiannis, 2015; Willeumier et al., 2011), the impact of obesity is higher in the 

frontal lobe than the other areas analyzed. 

However, this interpretation should be made with the caveat that there was very little 

spatial consistency between locations within each of our three analyses.  The frontal lobe is a 

large and heterogenous area of the brain, and further investigation may reveal sensitivities to 

obesity in particular areas, but not others. Still, the finding of significant decreases in frontal lobe 

NAA in association with obesity are an important contribution to the neurobiological impacts of 

obesity on the brain and should be followed up with more spatially precise research.  

Unfortunately, many of the studies included in this meta-analysis were nonspecific with regards 

to the voxel placement and specifying the location of the voxel used should be included in future 

research in this area. 

Interestingly, the hippocampus and occipital-parietal lobes showed more heterogeneity in 

findings, with some studies reporting positive, and others, negative, associations between obesity 

and NAA. The meta-analyses revealed no significant result for either hippocampus or occipital-

parietal lobes and understanding if this result was confounded in some way or truly 

representative is highly relevant.  For example, the paper by Gonzalez et al. included in the meta-
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analysis, which showed a trend for positive association between BMI and NAA, included 

participants with (treated) metabolic comorbidities (Gonzales et al., 2012).  Chenji et al. had a 

younger population in comparison to Bond et al., with an average participant age of  18.5 years 

to Bond et al.’s approximately 23 years (Bond et al., 2017; Chenji et al., 2021); however, while 

at a period of rapid change this difference may or may not be significant.  In addition, Chenji et 

al.’s sample had a 2:1 ratio of women to men in the high BMI condition, while Bond et al.’s 

sample was sex-matched (Bond et al., 2017; Chenji et al., 2021).   

Finally, due to the limited number of published results in this area, some of the studies 

included in the meta-analysis compared NAA between individuals with obesity or overweight 

and normal weight in a particular group of interest, such as major depressive disorder (Coplan et 

al., 2014) and generalized anxiety disorder (Chenji et al., 2021).  While this was also true of the 

studies included in the frontal lobe analysis, which did find a significant association between 

obesity and NAA, it is possible that the conditions included in the hippocampal and occipital-

parietal analyses affected NAA in a manner that cancelled out a true effect.  There may also have 

been a region by condition interaction.  This suggestion is in keeping with mixed findings in 

structural research in sub-cortical areas such as the hippocampus (Bond et al., 2017; Hajek et al., 

2014; McWhinney et al., 2021).  Finally, it is also possible that obesity negatively predicts NAA 

in the frontal lobes but not the hippocampus or the occipito-parietal lobes.  Obesity has been 

found to have structural effects in the PFC, the OFC, and reduce cortical thickness in the frontal 

lobe, supporting this possibility (Islam et al., 2018; Soares & Law, 2009).  Whatever the source 

of this heterogeneity in findings, it should be further explored in future research. 

Another source of heterogeneity came from the values used to calculate significance.  

Most studies included the raw metabolite values or raw metabolite ratio either in the published 
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article or in the supplemental data.  In this case, we preferentially used the raw values, taking 

into consideration the method of normalization used.  Typically, MRS data is normalized using 

creatine levels in the same voxel as a reference metabolite, expressed in a ratio with the 

metabolite of interest.  Alternatively, metabolite levels can be normalized using the water 

suppression level in the same voxel (Buonocore & Maddock, 2015). While representing 

metabolite values in ratio with creatine is common, there are some potential problems associated 

with this practice.  Using a ratio of creatine to the metabolite of interest means that if creatine 

levels are abnormal, the whole ratio will be inaccurate, but the presentation will not reveal which 

metabolite is responsible for the inaccuracy or even that an inaccuracy has occurred.  Given 

evidence that creatine levels can change with illness and age (Chang et al., 1996, 2002) and 

aren’t constant as had been assumed, makes this practice potentially problematic (Gruber et al., 

2003; Öngür et al., 2009).  Creatine levels also appear to be up to two to three times as high in 

astrocytes (a form of glial cells) than in neurons (Brand et al., 1993).  Jansen and colleagues have 

suggested that using absolute metabolite values using water suppression instead of ratios may be 

a more accurate representation (Jansen et al., 2006). 

One other potential source of heterogeneity was the discrepancy in magnet strengths 

between MRI machines used for imaging.  Studies included used both 1.5T and 3T MRI 

machines, and one study included data measured by both 1.5 and 3T MRI machine (Coplan et 

al., 2014).  Importantly, Coplan also found that hippocampal NAA levels were significantly 

greater in the 1.5T collection group in comparison to the 3T collection group (2014).  While this 

could be an issue of study bias unique to these collection sites, it could also indicate a larger 

problem in comparing or statistically combining the data collected on 1.5T and 3T MRIs. We 

addressed this by using the random effect models and treating site as the random variable.  
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Another potential source of heterogeneity comes from the lack of statistical consideration 

for different ratios of volume between gray matter, white matter, and cerebral spinal fluid (CSF) 

across studies.  Most studies did not include this in their analysis, with only two in the frontal 

meta-analysis correcting for this ratio (Caravaggio et al., 2018; Gazdzinski et al., 2010a), none in 

the occipital-parietal analysis, and one study in the hippocampal analysis (Bond et al., 2017).  

Therefore, there was some heterogeneity among included studies, so results could be affected by 

partial volume which would be a form of systematic bias.  Finally, one last minor 

methodological inconsistency lies in the program used to analyze data.  While most used 

LCModel, several studies (Coplan et al., 2014; Gazdzinski et al., 2008; Heikkilä et al., 2008) 

used other programs such as MATLAB.  There were too few studies using alternative programs 

to specifically address these issues in the meta-analysis.  

Several articles mentioned hypotheses that returned non-significant values and neglected 

to provided statistics or raw metabolite levels.  For example, Bond et al. included an F-value and 

p-value for the significant negative association between NAA and obesity in the lower left 

hippocampus, but only mentioned that the lower right hippocampus did not meet significance 

without providing exact statistics (Bond et al., 2017).  Not only does this potentially skew the 

results of this meta-analysis (although we only included left hippocampal data in the analysis for 

all three studies), but it also suggests the potential presence of publication bias in the research 

that has been published (Bradley et al., 2020). It is imperative to report results for all hypotheses 

even if they are not statistically significant, as this then allows others to meta-analyse the 

findings.  
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CHAPTER 3 ORIGINAL RESEARCH - HALIFAX STUDY 

3.1 INTRODUCTION 

Our meta-analysis showed that there was evidence obesity impacts NAA levels in the 

frontal lobe, validating the need for research specifically analysing the intersection between 

obesity, related metabolic markers (such as TGC, HDL, etc), and BD.  Given the stigma, 

difficulties accessing healthcare, increased morbidity, and increased mortality rates discussed in 

BD, understanding how obesity affects this high-risk group is key to eventually predicting and 

preventing worse psychiatric and somatic complications in this population. 

3.2 HYPOTHESES 

Prior to beginning data analyses, we formed several hypotheses based on previous 

structural and H-MRS data covered in our literature-review and the results of the previously 

analyzed meta-analysis.  Evidence considered includes the frequently found finding of decreased 

NAA with conditions that affect the brain (Ross & Bluml, 2001; Brian Ross et al., 2011), 

including T2DM (Daniele et al., 2020; Hajek et al., 2015; Sahin et al., 2008) and increased BMI 

(Gazdzinski et al., 2008; Gazdzinski et al., 2010a), structural evidence that obesity and related 

metabolic markers impacts the brain (Dekkers et al., 2019; García-García et al., 2019; Janowitz 

et al., 2015; Marqués-Iturria et al., 2013; McWhinney et al., 2021; Willette & Kapogiannis, 

2015; Willeumier et al., 2011), and finally, evidence that the impact of MetS and obesity (Bora et 

al., 2017; Bora et al., 2019; Calkin et al., 2009; Hagi et al., 2021; Kolenic et al., 2018; 

McWhinney et al., 2021; Mitchell et al., 2013) may impact individuals with SPMI in unique or 

increased ways.  
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Our primary hypothesis was that higher BMI would be associated with 1) decreased 

NAA, 2) increased GPC, and 3) decreased Cr in both patients and controls, with stronger 

association in patients 

We also wanted to explore which of the BMI-related biochemical metabolic changes would be 

associated with the MRS metabolites, and if waist-to-hip ratio was a more sensitive predictor 

than BMI.  Therefore, our secondary analysis included the following: 

1) Lower NAA in the frontal lobe will also be associated with higher BMI, HOMA-IR 

(homeostatic model assessment for insulin resistance; Wallace et al., 2004), fasting LDL, fasting 

triglycerides (TGC), and fasting glucose (glycosylated hemoglobin test; hbA1C), and with lower 

fasting HDL in patients with BD and controls.  However, we hypothesize that there will be a 

stronger association in patients with BD than controls. 

2) Higher GPC in the frontal lobe will be associated with higher HOMA-IR, fasting LDL, 

fasting triglycerides (TGC), and fasting glucose (glycosylated hemoglobin test; hbA1C), and 

with lower fasting HDL in both patients with BD and controls.  However, again, we hypothesize 

that this association will be stronger in patients with BD than controls. 

3) Lower Creatine in the frontal lobe will be associated with higher HOMA-IR, fasting 

LDL, fasting triglycerides (TGC), and fasting glucose (glycosylated hemoglobin test; hbA1C), 

and with lower fasting HDL in both patients with BD and controls.  Again, we hypothesize that 

this association will be stronger in patients with BD than controls. 

4) Effects of individual metabolic markers will be smaller than the effect of BMI. 

5) Waist-to-hip ratios will show associations in the same directions as BMI. 
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3.3 METHODS 

3.3.1 Recruitment 

This was a retrospective study of BD patients (n = 110) and healthy controls (n = 78) 

recruited from the Nova Scotia Health Authority (NSHA) Mood Disorders Clinic and control 

subjects recruited through advertisement.  This study was approved by the Ethics Committee of 

Nova Scotia Health Authority and all included participants signed informed consent. 

3.3.2 Inclusion/Exclusion Criteria 

Patients with BD were required to 1) have the diagnosis of bipolar I or II disorder made 

by a psychiatrist; and 2) be at least 18 years of age. Patients were excluded if they had 1) a 

diagnosis of an organic mood disorder; 2) a mood disorder not otherwise specified; or 3) more 

than one lifetime course of electroconvulsive therapy or electroconvulsive therapy within the last 

6 months. The neuropsychiatrically healthy, euglycemic participants were excluded if they had 

1) a personal history of psychiatric disorders; or 2) T2DM. Participants from any group were 

excluded if they 1) met any magnetic resonance imaging (MRI) exclusion criteria; 2) suffered 

from substance abuse disorder in the last 12 months; had a history of 3) neurodegenerative 

disorders; or 4) cerebrovascular disease/stroke, to avoiding possible confounding neuronal 

changes. 

3.3.3 Data Collection 

To measure body mass index (BMI), we measured weight and height and calculated BMI 

using the following formula: = weight (kg)/height (meters)2.  Waist circumference was also 
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measured, and waist-to-hip ratio calculated for all participants.  All participants had bloodwork 

performed for measurement of metabolic markers (fasting plasma glucose, fasting serum insulin, 

fasting triglycerides, fasting HDL, and fasting LDL).  Insulin resistance was calculated using the 

homeostatic model assessment-insulin resistance (HOMA-IR) equation: HOMA-IR = fasting 

plasma glucose (FPG;mmol/L) 3 fasting serum insulin (FSI; μU/mlL)/22.5 (Hajek et al., 2014).  

The HOMA-IR is a method of calculating insulin resistance, and was used because it has been 

shown to have a high degree of correlation with the euglycemic clamp method and is an accepted 

measure of insulin resistance (Hajek et al., 2014; Katsuki et al., 2001; Wallace et al., 2004).   

3.3.4 MRI Methods 

All magnetic resonance acquisitions were performed with a 1.5 Tesla General Electric 

Signa scanner (General Electric Medical Systems, Fairfield, Connecticut) and a standard 

quadrature head coil. After a localizer scan, a T1-weighted spoiled gradient recalled scan was 

prescribed (flip angle = 40 °, echo time = 5 msec, repetition time = 25 msec, field of view = 24 

cm x 18 cm, matrix = 256 x 160 pixels, number of excitations = 1, no interslice gap, 124 images, 

1.5 mm thick), followed by one single volume (20 x 20 x 20 mm) proton magnetic resonance 

spectroscopy acquisition with a probe point resolved spectroscopy sequence and the whole 

gradient mode (echo time = 30 msec, repetition time = 2000 msec, 320 acquisitions, 2500 Hz 

spectral bandwidth, 2048 data points). We acquired unsuppressed water and water sup- pressed 

spectra from the same location. The unsuppressed water signal was used for eddy current 

compensation and for metabolite quantification. 
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3.3.5 Voxel Placement 

The spectroscopic region of interest (ROI) was prescribed blind to subject status in the 

left dorsolateral prefrontal cortex (PFC), using previously validated methods (Hajek et al., 2012; 

Hajek et al., 2008).  The MRI sequences used to measure H-MRS data had a repetition time (TR) 

of 30 ms and a time-to-echo (TE) of 2000 ms.  The matrix was 256 by 160 pixels, with a 

thickness of 1.5mm.  The field of view (FOV) was 24 mm by 18 mm.  Scans on the coronal 

plane were placed with the inferior border ending above the cingulate cortex (CC), and those on 

the medial-lateral plane were placed halfway from the border of the hemisphere, with care taken 

to avoid pockets of cerebral spinal fluid (CSF).  As the meta-analysis previously covered 

suggested, in addition to the research cited showing alternations associated with obesity in the 

frontal lobe (Kolenič et al., 2020; Marqués-Iturria et al., 2013; Willette & Kapogiannis, 2015; 

Willeumier et al., 2011), the frontal lobe appears to be an area of interest in obesity in addition to 

BD.   

Figure 5 - Sample Voxel Placement 
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Note: Sample placement of the voxel in the dlPFC (dorsolateral prefrontal cortex) of a 

participant. 

3.3.6 Spectral Analysis 

We quantified metabolite levels with a linear combination model of in vitro spectra 

(LCModel version 6.1; http:// s-provencher.com/pages/lcmodel.shtml) using previously validated 

methods (Provencher, 2001). The method employs a basis set of concentration-calibrated model 

spectra of individual metabolites including lipids and macromolecules, as listed below.  As in our 

previous studies, we controlled for partial volume averaging effect by estimating the tissue type 

composition of the spectroscopic ROI.  This was done by performing tissue-type segmentation 

using AFNI software (Cox, 1996), and using previously published criteria (Gispert et al., 2004). 

tringent quality criteria for assessment of spectral profiles were also adhered to (Hajek et al., 

2008; Hajek et al., 2012).  These included full-width at half maximum (FWHM) < 08 ppm; 

signal-to-noise ratio (SNR) of the whole spectrum fit ≥ 8, as reported by LCModel; randomly 

distributed noise; and absence of artifacts, or signal splitting for NAA, GPC, Cr in the MRS 

spectra. To ensure reliability of measurement, the estimated standard deviations for NAA, GPC, 

and creatine expressed in percent of the estimated concentrations had to be less than 15%. As the 

use of ratios to other metabolites, especially Cr, has previously been questioned (Gruber et al., 

2003; Öngür et al., 2009), we reported metabolite levels in institutional units relative to water 

peak. The above-described methods meet all of the quality benchmarks suggested for MRS 

studies (Öngür, 2013). 
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Figure 6 - Sample Spectrum and Quality Control 

 

 

Note: Sample spectral analysis of a participant showing peaks for differing metabolites, with 

NAA at approximately 2.0ppm, Cr at approximately 3.0ppm, GPC at 3.2ppm, and mI at 

approximately 3.6ppm.  Quality control measures are listed in the right-hand column. 

3.3.7 Statistical Analyses 

All statistical analyses were performed in RStudio 2021.09.2; Build 382 (RStudio Team, 

2020). 

Our analytical plan included the following steps, all performed as regression or multiple 

regression models: 1) in separate models we investigated associations between age, sex, status, 

BMI, and individual H-MRS metabolic markers, using each variable as the sole predictor. 2) To 
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test our main hypotheses (decreased NAA, increased GPC, decreased Cr in individuals with BD 

and obesity) we ran a model including BMI, status (BD patient or control), age and sex as 

predictors and individual MRS metabolites as dependent variables.  3) We investigated whether 

waist-to-hip ratio (WHR) on its own (as a sole predictor) or in combination with BMI predicted 

individual metabolites while controlling for age, sex, status. 

For the metabolic markers we performed the following analyses. 4) First, we ran a 

multiple regression model controlling for age and sex and including all the biochemical 

measures, i.e., fasting TGC, LDL, HDL, Insulin, Glucose. 5) For any biochemical measures, 

which were associated with the MRS metabolites, we then ran a separate model including the 

specific biochemical measure, BMI and controlling for age and sex. This was done to evaluate 

whether BMI or the biochemical measures were more sensitive predictors. 6) Finally, we tested 

for interactions and included them where relevant. In line with our a-priori hypotheses, this 

approach allowed us to identify variables significantly associated with MRS metabolites and to 

test whether their effects were additive. 

3.4 RESULTS 

There were no differences between grey matter or white matter proportion in the ROI 

between the groups, furthermore, neither GMV nor WMV were associated with BMI, so we did 

not include either as covariates.  Multicollinearity was not a concern, because the highest VIF 

(variable inflation factors, a measure of multicollinearity) was 1.70.  Residuals were normally 

distributed, as confirmed by the Kolmogorov-Shapiro test. 
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Table 3 - Halifax Study Demographics 

 

Demographics 

 Status     

 Controls  BD   
N 78  110   

  SD  SD p 

Age (M) 39.16 13.85 48.54 14.54 <0.001* 

Sex (%F) 29 37.2 49 44.5 0.39 

GAF (M) 90.84 7.08 74.81 12.48 <0.001* 

BP (Sys; M) 114.91 13.04 121.17 13.23 0.002* 

BP (Dia; M) 75.2 9.72 77.69 9.82 0.102 

BMI (M) 26.28 4.74 29.22 5.58 <0.001* 

WTH ( M) 0.82 0.09 0.93 0.07 <0.001* 

T2DM (%YES) 4 8.3 13 19.1 0.177 

HBP (%YES) 2 4.2 21 31.3 0.001* 

THYROID 

(%YES) 3 7.5 24 38.1 0.001* 

IR (%YES) 24 30.8 46 41.8  
Education     0.067 

Employment     <0.001* 

Marriage     0.057 

 

Note: M and SD are used to represent mean and standard deviation, respectively. * 

Indicates significant p (e.g., p < 0.05).  GAF is the global assessment of functioning score; BP 

Sys refers to systolic blood pressure; BP diastolic blood pressure; WTH refers to waist-to-hip 

ratio in cm; T2DM specifies if the participant has been diagnosed with T2DM; thyroid (%YES) 

refers to the percentage of participants with a diagnosed thyroid disorder; IR (% YES) refers to 

the percentage of participants with insulin resistance; employment categorized participants as 

unemployed, disabled, full-time, part-time, retired, or student; education similarly categorized 

participants as having some high-school, less than high-school, a high-school diploma, 

bachelor’s degree, community college, or a post-graduate degree based on highest level of 
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education achieved; and finally marriage refers to the participants marriage status as either 

single, married, divorced, or widowed. 

 

Table 4 - BD-Specific Demographics 

 

    BD (SD) 

Age Onset (M)   23.51 9.31 

Duration Illness 

(M)  

 

22.86 12.31 

Age 1st Adm. (M)   28.98 12.28 

Episodes (M)   15.94 23.16 

Psychotic Symptoms 

(%YES)  

 

0.45  
Lifetime Suicide Attempt (%YES)  0.26  
Lifetime ECT 

(%YES)  

 

0.1  

Note: M and SD are used to represent mean and standard deviation, respectively. * 

indicates a significant p-value (e.g., p < 0.05). Age 1st Adm. refers to the age the patient was first 

admitted to hospital.  Psychotic symptoms (%YES) is the percentage of patients who have 

experienced psychotic symptoms, lifetime suicide attempt (%YES) is the percentage of patients 

who have experienced a suicide attempt over their lifetime, and lifetime ECT (YES%; 

electroconvulsive therapy) is the percentage of patients who have experienced being treated with 

ECT over their lifetime. 

 

3.4.1 NAA Results 

When analyzed independently, in separate models (e.g. as the sole predictors), we found 

a negative association (β = -0.019) between NAA and age (F(1,186)=61.47, p < 0.001), BMI (β = 

-0.027, F(1,183)=13.09, p < 0.001), status (β = -0.319, F(1,186)=14.88, p < 0.001), but not sex 

(F(1,186)=2.30, p = 0.131). 
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In a multiple regression model containing status, BMI, as well as age and sex as 

variables, NAA remained significantly and negatively associated (β = -0.014) with BMI 

(F(1,180)=4.20, p = 0.042).  The status of the participant (i.e., either BD or control) was not 

found to be significant (F(1,180)=2.29, p = 0.132).  Finally, age, again, remained significant and 

negatively associated (β = -0.017) with NAA (F(1,180)=41.98, p < 0.001).  There was no 

significant interaction effect between status and BMI (F(1,179)=0.01, p = 0.943) so we did not 

include the interaction in our models.   

Waist-to-hip ratio also significantly negatively (β = -0.936) predicted NAA on its own 

(F(1,132)=22.26, p < 0.001), but this effect was lost when controlling for status, age, and sex, 

unlike BMI (F(1,129)=1.88, p = 0.173). 

With regards to individual biochemical markers, TGC was associated with NAA 

(F(1,135)=8.73, p = 0.004) when controlling for age and sex. Other metabolic markers included 

in the analysis such as LDL, HDL, Glucose, and Insulin were not significant.  TGC remained a 

significant and negative predictor of NAA (β = -0.164) when controlling for age, sex, and BMI 

(F(1,132)=4.11, p = 0.027). 

 

 

Table 5 - NAA - Variables of Interest (Basic Predictor Models) 

 

Variable of 

Interest 

Degrees of 

Freedom 

F-Value Estimate p-Value 

Model 1     

Status 1,186 14.88 -0.319 < 0.001* 

Age 1,186 61.47 -0.019 < 0.001* 

Sex 1,186 2.30 -0.130 0.131 

BMI 1,183 13.09 -0.027 < 0.001* 

Waist-2-Hip 1,132 22.26 -2.408 < 0.001* 

Model 2     
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Fasting HDL 1,133 1.33 0.18 0.253 

Fasting LDL 1,133 0.10 -0.02 0.754 

Fasting Glucose 1,150 0.11 -0.02 0.742 

Fasting Insulin 1,141 0.83 0.00 0.363 

Fasting TGC 1,134 9.61 -0.19 < 0.002* 

 

Note: * indicates significant p-value. Status marks patient and control groups. Status, 

age, sex, BMI, and waist-2-hip are sole predictors.  In Model 2, Fasting HDL, LDL, glucose, 

insulin, and TGC are corrected for age and sex.  Bonferroni correction not performed for 

models, see: full models in Table 3.2.  Coefficient estimate for sex is for “male”, and for status is 

“patient”. 

 

 

Table 6 NAA - Variables of Interest (Full Predictor Models) 

 

Variable of 

Interest 

Degrees of 

Freedom 

F-Value β p-Value 

Model 3     

Status 1,180 2.29 -0.120 0.132 

Age 1,180 41.98 -0.017 <0.001* 

Sex 1,180 2.21 -0.110 0.138 

BMI  1,180 4.20` -0.014 0.042* 

Model 4     

Waist-to-Hip 1,129 1.88 -0.936 0.173 

Model 5     

Fasting HDL 1,132 1.77 0.152 0.185 

Fasting LDL 1,132 0.027 0.048 0.871 

Fasting Glucose 1,1116 0.192 0.035 0.662 

Fasting Insulin 1,140 0.0028 -0.000 0.929 

Fasting TGC 1,132 4.11 -0.164 0.027* 

 

Note: * indicates significant p-value. Model 3 contained status, age, BMI, and sex.  

Model 4 (only used to analyze waist-to-hip) contained waist-to-hip, while controlling for status, 
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age, and sex.  Model 5 contained either fasting HDL, LDL, glucose, insulin, or triglycerides, 

along with age, sex, and BMI.  Coefficient estimate for sex is for “male”, and for status is 

“patient”. 

 

Figure 7 – NAA Graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BMI by NAA, Grouped by Status TGC by NAA 

Boxplot of BMI by Status 
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3.4.2 GPC Results 

When analyzed independently, in separate models (e.g. as the sole predictors), we found 

a positive association (β = 0.059) between GPC and status (F(1, 184)=4.82, p = 0.029) indicating 

that individuals with BD had significantly higher GPC than controls, a positive association (β = 

0.004) with age (F(1,184)=16.56, p < 0.001), with sex (β = 0.069, F(1,184)=6.73, p = 0.01), but 

not BMI.  

In a multiple regression model containing status, BMI, as well as age and sex as 

variables, GPC remained significantly and positively associated (β = 0.003) with and age 

(F(1,180)=13.61 p < 0.001), and sex (β = 0.064, F(1,180)=6.11, p = 0.014), with males and older 

participants having higher GPC than females and younger participants.  BMI remained non-

significant, and status was also non-significant. 

Waist-to-hip ratio did positively predict (β = 0.046) GPC in the sole predictor model 

(F(1,132)=22.26, p < 0.001), but this effect was lost when controlling for status, age, sex, and 

BMI. 

With regards to individual biochemical markers, TGC was positively associated (β = 

0.036) with GPC (F(1,134)=27.19, p < 0.001) when controlling for age and sex.  However, no 

metabolites significantly predicted GPC when analyzed in a full model controlling for age, sex, 

and BMI. 

 

 

 

 

 



57 
 

Table 7 - GPC - Variables of Interest (Basic Predictor Models) 

 

Variable of Interest Degrees 

of Freedom 

F-

Value 

β p-Value 

Model 1     

Status 1,184 4.82 0.059 0.029* 

Age 1,184 16.56 0.004 <0.0001* 

Sex 1,184 6.73 0.069 0.010* 

BMI 1,181 1.79 0.003 0.182 

Model 2     

Waist-2-Hip 1,130 8.85 0.046 0.003 

Fasting HDL 1,131 0.00 -0.011 0.993 

Fasting LDL 1,137 0.78 0.014 0.378 

Fasting Glucose 1,148 0.71 0.011 0.401 

Fasting Insulin 1,139 0.68 0.000 0.411 

FastingTriglyceride 1,134 27.19 0.036 < 0.001* 

 

Note: * indicates significant p-value. Status marks patient and control groups. Status, 

age, sex, BMI, and waist-2-hip are sole predictors.  In Model 2, Fasting HDL, LDL, glucose, 

insulin, and TGC are corrected for age and sex.  Bonferroni correction not performed for 

models, see: full models in Table 4.2. Coefficient estimate for sex is for “male”, and for status is 

“patient”. 
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Table 8 - GPC - Variables of Interest (Full Predictor Models) 

 

Variable of 

Interest 

Degrees of 

Freedom 

F-Value β p-Value 

Model 3     

Status 1,178 0.55 0.021 0.461 

Age 1,178 13.61 0.003 <0.001* 

Sex 1,178 6.11 0.064 0.014* 

BMI  1,178 0.09 0.001 0.763 

Model 4     

Waist-to-Hip 1,127 0.00 -0.003 0.990 

Model 5     

Fasting HDL 1,130 0.00 0.000 0.978 

Fasting LDL 1,134 0.80 0.000 0.371 

Fasting Glucose 1,147 0.02 -0.000 0.893 

Fasting Insulin 1,138 0.43 0.000 0.514 

Fasting 

Triglyceride 

1,130 0.06 0.000 0.815 

 

Note: * indicates significant p-value. Model 3 contained status, age, BMI, and sex.  

Model 4 (only used to analyze waist-to-hip) contained waist-to-hip, while controlling for status, 

age, and sex.  Model 5 contained either fasting HDL, LDL, glucose, insulin, or triglycerides, 

along with age, sex, and BMI. Coefficient estimate for sex is for “male”, and for status is 

“patient”. 
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Figure 8 - GPC Graphs 
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3.4.3 Cr Results 

When analyzed independently, in separate models (e.g. as the sole predictors), we found 

a positive association (β = 0.006) between Cr and age (F(1,186)=12.46, p < 0.001), but no 

association between Cr and status, sex, BMI, or waist-to-hip ratio. 

In a multiple regression model containing status and BMI as well as age and sex as 

variables, Cr remained significantly and positively associated (β = 0.008) with age 

(F(1,180)=17.01, p < 0.001).  In addition, BMI was significantly negatively associated (β = -

0.011) with Cr (F(1,180)=4.68, p = 0.032),.  Status and sex were not significantly associated with 

Cr. 

Waist-to-hip ratio still failed to predict Cr in a model controlling for status, age, sex, and 

BMI. 

With regards to individual biochemical markers, Cr was negatively associated (β = -

0.188) with TGC (F(1,135)=19.19, p < 0.001) when controlling for age and sex and other 

biochemical variables.  Only TGC predicted Cr, with a negative association (β = -0.135), when 

analyzed in a full model controlling for age, sex, and BMI (F(1,132)=14.91, p < 0.001). 
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Table 9 - Cr - Variables of Interest (Basic Predictor Models) 

 

Variable of 

Interest 

Degrees of 

Freedom 

F-Value β p-Value 

Model 1     

Status 1,186 0.25 -0.028 0.621 

Age 1,186 12.46 0.006 <0.001 

Sex 1,183 0.00 -0.030 0.59 

BMI 1,183 2.49 -0.008 0.121 

Waist-2-Hip 1,132 0.601 0.278 0.439 

Model 2     

Fasting HDL 1,133 2.75 0.079 0.111 

Fasting LDL 1,139 0.37 -0.019 0.565 

Fasting Glucose 1,150 1.33 -0.042 0.250 

Fasting Insulin 1,143 3.97 -0.001 0.048* 

Fasting 

Triglyceride 

1,135 19.19 -0.188 <0.001* 

 

Note: * indicates significant p-value. Status marks patient and control groups. Bonferroni 

correction not performed, see Table 5.2.. Coefficient estimate for sex is for “male”, and for 

status is “patient”. 

 

Figure 9 - Cr - Variables of Interest (Full Predictor Models) 

 

Variable of 

Interest 

Degrees of 

Freedom 

F-Value β P-Value 

Model 3     

Status 1,180 1.13 -0.063 0.288 

Age 1,180 17.01 0.008 <0.001* 

Sex 1,180 0.01 -0.018 0.753 

BMI  1,180 4.68 -0.011 0.032* 

Model 4     

Waist-to-Hip 1,129 1.56 -0603 0.213 

Model 5     

Fasting HDL 1,132 0.55 -0.011 0.461 

Fasting LDL 1,136 0.10 0.027 0.748 

Fasting Glucose 1,149 0.44 -0.030 0.506 

Fasting Insulin 1,140 2.63 -0.000 0.107 
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Fasting 

Triglyceride 

1,132 14.91 -0.135 <0.001* 

 

Note: * indicates significant p-value. Model 3 contained status, age, BMI, and sex.  

Model 4 (only used to analyze waist-to-hip) contained waist-to-hip, while controlling for status, 

age, and sex.  Model 5 contained either fasting HDL, LDL, glucose, insulin, or triglycerides, 

along with age, sex, and BMI. Coefficient estimate for sex is for “male”, and for status is 

“patient”. 

Figure 10 - Cr Graphs 
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3.5 DISCUSSION 

While high BMI did significantly predict lower levels of NAA, it did not predict lower 

levels of GPC, and only predicted lower levels of creatine when correcting for age, sex, and 

status.  In addition, despite our hypotheses and the possibility that waist-to-hip ratio may be a 

more robust predictor than BMI, when analyzed in the full models and not only as a sole 

predictor, waist-to-hip did not predict NAA, GPC, or Cr levels.   

We found that BMI was associated with NAA and Cr in the frontal lobe. This was in 

keeping with previous studies that found volumetric differences in frontal regions in obesity 

(Kolenič et al., 2020; Marqués-Iturria et al., 2013; Willette & Kapogiannis, 2015; Willeumier et 

al., 2011).  While there is greater heterogeneity found in previous structural imaging research in 

BD in comparison to obesity, the combination of increased psychiatric and somatic 

complications found in BD that is comorbid with obesity, along with the evidence implicating 

similar areas of brain change between BD and obesity, confirms that further research into this 

connection is necessary.  

We did not find an association between GPC and BMI, which is in contrast with Bond 

(2017), however, this may be partially explained by the fact that Bond et al. found opposing 

evidence with regards to the association of BMI and GPC in individuals with BD and obesity. 

They found a positive relationship between BMI and GPC in that higher BMI predicted higher 

levels of GPC, but they also found a negative relationship between BD and GPC with GPC 

predicting lower levels of GPC (Bond et al., 2017).  This may partially explain our non-

significant findings; however, we did control for status in our model.  The finding may be 

genuinely non-significant, and replication of this analysis in future studies may help clarify the 

discrepancy. 
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In light of the associations between Cr and sex and NAA and age, is the importance of 

controlling for these variables is a further consideration. Failing to control for age and sex in 

previous research may also explain some of the heterogeneity of previous H-MRS findings in 

obesity and BD.  There may be an interaction between sex or age and BMI as well, which itself 

may be different in people with SPMI (as suggested by Bond et al., 2017 results) .   

Interestingly enough, the blood metabolic markers analyzed did not predict any of our MRS 

metabolites, with the exception of fasting triglycerides.  TGC was associated, as expected, 

negatively with NAA, positively with GPC in the sole predictor model only, and negatively with 

creatine.  TGC may well be a more sensitive measure of the potential impact of MetS on the 

brain than other metabolic markers based on our findings and should be further investigated for 

specificity and sensitivity.  Based on our results it is not, however, a stronger predictor than BMI. 

Measuring TGC levels and BMI among individuals with SPMI could also potentially identify 

patients at higher risk of brain-related changes due to obesity and MetS. Previous research has 

also found that dyslipidemia or obesity in BD predicted decreased NAA (Bond et al., 2017; 

Hajek et al., 2015).  In addition, non-MRS research shows associations between dyslipidemia 

and obesity (Correll et al., 2008), dyslipidemia and MetS (De Hert et al., 2009), and dyslipidemia 

and T2DM (Bora et al., 2019; Hajek et al., 2015) in BD, so TGC may be a simple way to 

measure risk.   
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4.1 CHAPTER 4  

4.1 CONCLUSIONS 

Our MRS analysis of a sample of patients with BD and obesity also serves to replicate 

previous findings of alterations in brain-imaging in these populations in comparison to healthy 

controls.  This additional replication of brain changes makes previous results more robust, and 

also potentially makes BMI another easily measurable way to predict brain changes in both BD 

and obesity.   The suggestion that BMI may predict brain changes in obesity was also further 

replicated by our meta-analysis, which revealed a significant association between obesity and 

decreased levels of NAA in the frontal lobe.   

  In addition, the implication of significance in the frontal lobe could potentially suggest 

that changes to the brain preceded obesity, and the resulting impact on cognitive functioning 

(e.g. planning, impulse control) contributed to or caused weight gain.  However, we cannot 

determine causality from our study. 

Changes to the frontal lobe preceding obesity could also be a potential mechanism for 

obesity, which then impacts the frontal lobe in return.  Another potential mechanism could be 

T2DM-related and obesity-related damage to the brain caused by insulin resistance (Hajek et al., 

2014).  Insulin resistance appears to contribute to systemic inflammation and increased levels of 

cytokines (Wisse, 2004), and systemic inflammation, in turn, is associated with increased 

mortality from cardiovascular causes (Jefferson et al., 2007).  In individuals with SPMI 

medications that impact weight and insulin resistance those factors likely also contribute to 

obesity (Mitchell et al., 2013), in addition to lifestyle factors such as lack of exercise, smoking, 

and unhealthy diets (Dickerson et al., 2013; Nazareth, et al., 2007; Osborn et al., 2007b; 
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Vancampfort et al., 2015).  Because of the importance of the frontal lobe in cognitive 

functioning, these potential mechanisms could also be bidirectional as well, causing a positive 

feedback loop.  Overall, our findings suggest that BMI and TGC may be an effective way of 

measuring obesity-related brain changes in both populations with SPMI and in the general 

population.  Both BMI and TGC are relatively easy to measure on an outpatient basis and might 

be used to alert clinicians to potentially brain-altering effects of obesity and MetS on their 

patients.  Increasing BMI and TGC levels may also be an objective way for clinicians to 

communicate the potential health risks of obesity and individual blood metabolic markers to 

patients before more severe outcomes occur, given the evidence of worsened psychiatric, 

cognitive, and somatic outcomes, in addition to increased mortality rates associated.  This early 

warning could enable the implementation of strategies to manage those risks early.  Measuring 

BMI and blood metabolic markers is both easy to do in outpatient treatment and cost-effective. 

Early alerts of worsening physical health are an especially important consideration given 

the many potential health impacts of obesity, health impacts that appear carry a higher burden in 

individuals with BP and other forms of SPMI with regards to both physical and mental health.  In 

addition to facing greater physical and mental health challenges with obesity, individuals with 

SPMI also may difficulty in accessing healthcare for obesity and related findings of T2DM and 

MeTs.  These factors all suggest that early intervention is key, and effective predictors of brain 

damage may be one way of providing that early intervention. Prevention may help mitigate some 

potential risk factors associated with BD and obesity, such as poor health literacy around diet and 

exercise, barriers to accessing tools to assist with healthy eating and exercise, less monitoring by 

clinicians for somatic issues, and medication effects, by addressing increasing BMI or TGC early 

on. 
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This is especially relevant because some research suggests the brain changes suggested 

by our evidence may be reversible.  For example, regular aerobic exercise has been found to 

increase levels of NAA (Gonzales et al., 2013), and NAA can also be affected by dietary changes 

(Auer et al., 2015; Setkowicz et al., 2015).  However, some of the most important research 

examines direct interventions on obesity.  For example, intra-gastric balloon surgery has been 

found to normalize levels of myo-inositol in obese individuals (Gazdzinski et al., 2018).  Levels 

of NAA can also be lowered with surgical weight loss (Daniele et al., 2020).  And most relevant 

of all to our second study is the finding that lithium is neuroprotective in BD, with individuals on 

it showing higher levels of NAA than those not on it (Hajek et al., 2012; Moore et al., 2000).  

These initial findings suggest that interventions could be clinically useful and a valuable use of 

resources in treating individuals with BD and obesity. 

Despite our robust results, our MRS analysis had some limitations.  For example, our 

data was collected on a 1.5T scanner, and a stronger signal may have been possible to collect 

with a 3T MRI machine.  However, when data collection began for this project 1.5T was the 

most typical magnet strength.  In light of our prospective data analysis presented in this paper, 

we do not want to switch to a stronger magnet in the middle of ongoing data collection.  In 

addition, 1.5T was sufficient to measure the metabolites analysed, and our results showed several 

relevant findings with good face validity.  However, since 3T has better accuracy and few 

drawbacks for conducting H-MRS research, use of a 3T machine in future studies may be 

helpful. 

Our data also included a broad age range, which may be especially relevant given the 

significant associations we found between all three MRS metabolites and age.  However, we did 
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account for the effects of age in most of our analyses, with the exception of the sex, status, BMI, 

and waist-to-hip sole predictor models. 

Lastly, unfortunately, we were unable to measure glutamate reliably in the imaging 

available.  While this would have been interesting, considering previous findings linking 

alternations in glutamate to BD (Bond et al., 2016), and can hopefully be addressed by future 

studies, it would have made our study less feasible.  3T imaging should be considered, when 

possible, for future research. 

In the future, longitudinal research into obesity, BD, and related biochemical blood 

markers and MRS metabolites should be conducted.  Unfortunately, because our data was cross-

sectional and not longitudinal, we were unable to provide evidence about causality or 

directionality in any of our results.  This may be an important area of investigation given the 

potential to predict future brain changes in obesity and BD.  If obesity and increased TGC 

precede worse outcomes in brain changes as obesity often precedes development of MetS and 

T2DM, that knowledge could provide valuable tools to mitigate future risks via preventative 

measures.  If this is possible, it would present the opportunity to potentially prevent further brain 

changes before they occur, which is rare in psychiatry.  However, reverse causality is also a 

possibility, and MRS metabolite levels may be found to precede obesity and related conditions in 

some or all circumstances.  Finally, as obesity is associated with many brain imaging outcomes 

in spectroscopy, it also should be controlled for in future H-MRS research to provide a clear 

understanding of the mechanisms at play in this relationship.  Previous investigations may also 

be interpreted in light of this association. 

The results of both the meta-analysis and the MRS analysis both suggest that working 

jointly on physiological symptoms in SPMI in addition to psychiatric ones is of great 
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importance.  Individuals with SPMI face increased physical health problems and higher mortality 

rates than the general population, however, they also face significant problems accessing care for 

physical health problems, including T2DM.  Increasing access to resources such as registered 

dieticians and occupational therapists or recreation therapists may also help increase the ability 

of individuals with SPMI to prevent increasing BMI or developing MetS or T2DM. 

Psychiatrists and other clinicians working with individuals with SPMI may also be able 

to pass on benefits of this research and related findings, especially once further replication has 

been undergone, by sharing the conclusions with their patients.  Health literacy was an area 

Osborn noted as a potential risk for outcomes such as obesity in SPMI populations (Osborn et al., 

2007b).  Regular exercise may also prevent decreases in NAA (Gonzales et al., 2013).  Knowing 

the potential risks of increasing BMI on physiological brain health and long-term psychiatric 

outcomes may provide motivation to patients to lose weight or prevent further weight gain, if 

presented in a non-judgemental manner.  Increasing evidence of those risks may also help 

physicians and other health professionals gain funding to address obesity, MetS, and T2DM in 

individuals with SPMI.  Likelihood of brain changes could potentially be addressed through 

simple bloodwork and calculation of BMI, which is much less resource-intensive than MRI 

scans.   

In conclusion, our meta-analysis found that obesity was related to decreased NAA in the 

general population in frontal regions, and our MRS analysis confirmed that obesity was related 

to altered levels of NAA, GPC, and Cr, again in frontal regions, in a population of patients with 

BD.  Both analyses were highly novel and in an area of psychiatric research that has the potential 

to provide great benefits to our scientific understanding of obesity, especially in SPMI, and 

effective interventions for negative outcomes in this population. 
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