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Abstract

Underwater communication from a source underwater to a destination in air is a

challenging problem. Acoustic waves underwater cannot cross the interface to the

air while electromagnetic waves are attenuated due to the conductivity of water. In

this work, the use of magnetic induction is investigated. Specifically, to cross the

air-water boundary, a detailed derivation of the magnetic induction between two coils

is introduced: one underwater and the other, above the surface. This new model is

compared to a simpler model given by Wait. A circuit analysis is performed on both

a transmitter coil underwater and a receiver coil in the air. The ratio of the induced

voltage of the receiver over transmitter current as a function of frequency is analyzed

in order to find the optimal frequency at a given coil separation. The addition of

a passive repeater between the coils is also investigated to determine if it improves

performance. This is found to be true only when the repeater is ten times the size of

the antenna coils, or when the repeater is very close.

To further verify the model a transmitter and receiver circuit is designed and

constructed. Then tests are performed in the lab in air to verify that the system

works. Sinusoidal signals are applied to the transmitter and are then measured at

the receiver in order to measure the mutual inductance. The attenuation between the

transmitter and receiver coil is compared with the theory. A similar test is deployed

in the Dalhousie Aquatron. The experiments agree with the theory for distances up

to 1.6 meters, after which a noise floor is reached.

ix
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Chapter 1

Introduction

1.1 Motivation

Marine biologists, climatologists, and marine based industries are among the many

fields that rely upon timely, reliable data gathered underwater. However, underwater

communication has proven to be challenging problem. It is a very important problem

to solve since these fields are vital to maintaining a healthy marine environment and

are worth billions in revenue to coastal economies.

Currently, one can place a buoy on the surface to relay the underwater signal to

the air. However, this approach is problematic for long term data collection due to

cost and the risk of external variables which may tamper with the data. For example,

climate change is increasing the frequency and severity of storm surges and tropi-

cal windstorms. Surface instruments are also vulnerable to watercraft and marine

life strikes. Additionally, this approach is more costly because additional equipment,

with its own power source, is required to relay the data.

Ideally, one would want to transmit data directly from underwater equipment

across the air-water interface. While communication between two nodes in air or un-

derwater is mature, sending signals between a node under the sea surface to a receiver

antenna in the air remains challenging.

To date, the efforts have focused primarily on two methods to enable peer-to-peer

wireless communication; acoustic and electromagnetic radiation. Electromagnetic ra-

diation, which includes radio waves commonly used in air-to-air links, is not feasible

since the conductivity of sea water decreases the radiation intensity at an exponential

rate [2]. This makes electromagnetic signals impractical at distances of more than

10 meters underwater. Acoustic radiation travels very far underwater, but there are

1
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other challenges. First, acoustic noise from ships and wind must be taken into ac-

count. Second, there is significant multipath fading, especially in narrow channels.

But the greatest disadvantage is that underwater sound is not able to cross the air-

water boundary [3]. Indeed, the surface acts as a perfect reflector for underwater

sound waves and thus makes it impossible for use as a underwater-to-air communica-

tion tool.

There have been improvements in using acoustic waves to communicate from the

water to air. [4, 5] verified the idea of using sonar to make visible ripples on the

surface that can then be detected via radio frequency in the air, a process called

transnational acoustic-RF communication or TARF. But this technology is still in its

infancy and it is susceptible to noise on the surface of water.

1.2 Problem Statement

As an alternative to the above two communication methods, this thesis explores the

viability of magnetic induction as a potential vehicle for data transmission. Specifi-

cally, in this proposal, two inductors are employed; an underwater transmitter, and

a receiver in the air (figure 1.1). Underwater equipment is used to apply a waveform

to the transmitter coil and record its output. The data is a set of sinewaves which

create a changing magnetic field, and further induces a current in an air inductor.

Unlike acoustic waves, this method of communicating have the advantage of being

able to cross the air-water boundary. It is less susceptible to noise, and has no multi-

path fading. When compared with electromagnetic signals, magnetic induction is less

affected by the conductivity of sea water. The only drawback for magnetic induction

is that the near-field strength of the signal is reduced by the cube of the distance.

However, this would be a significant improvement over the use of electromagnetic

waves which experience exponential decay.

The objective of this thesis is to develop a new mathematical model to calculate

the mutual inductance between a coil underwater and another in air. The purpose

is to develop a tool to assist engineers in designing underwater to air communication
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Figure 1.1: Model for an MI system as part of a complete underwater acoustic system.
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systems using magnetic induction. Specifically, the goal is to develop a model that

can be used to optimize the operating frequency of the MI link.

In this work, a mathematical model is developed based upon Maxwell’s equations.

Then a Python script is written to compare the new mathematical model with models

in the literature where mutual inductance is employed in either an air-air or water-

water context. A circuit is designed and built to test the proposed model. The tests

are conducted in the UWStream lab in air and at the Dalhousie Aquatron in air-

water, both at Dalhousie University. A second Python program is written to process

the data so that test results are compared with the intended results.

In the model, circular coils with multiple turns were represented by a current den-

sity vector field with a sinusoidal current at a fixed frequency. Maxwell’s equations

in the frequency domain were used to derive the magnetic field from current density.

The model includes a complex permitivity in Maxwell’s equations, based on the con-

ductivity of the water.

Prior to obtaining the mutual inductance in air-water, the magnetic field are found

for water only. To simplify Maxwell’s equations, a vector potential is introduced to

reduce the four equations to one. To solve the equation, cylindrical coordinates are

chosen to take advantage of the presence of azimuthal symmetry in the system. This

simplifies the vector potential equation to a scalar equation. Then a series of integral

transforms are used to find the scalar solution. This solution is significant because it

can be used to find the magnetic field in water.

The magnetic field solution is then extended to cross the air-water interface. This

is done by representing the magnetic field as a superposition of cylindrical waves.

The boundary conditions in air-water are then applied to get the magnetic field in

air. Mutual inductance can now be calculated by applying Faraday’s law to find the

flux of the magnetic field across the receiver coil.

The mutual inductance model is compared to research published by Gibson and
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Wait’s model [6, 7], which treated the coils as magnetic dipoles. This comparison

is undertaken by the development of a Python program which plotted the mutual

inductance from both models as a function of frequency for a transmitter coil at a

depth of 19 meters and a receiver at a height of 1 meter.

A circuit transformer model is adopted to find the voltage ratio of an air-water

coil antenna link. The proposed mutual inductance model was applied as a parameter

in the circuit analysis. Plots of the ratio of the receiver voltage to transmitter current

were obtained to determine the optimal frequency to resonate the system at a given

coil separation.

In [2], Domingo proposed a series of passive repeater coils to increase the receiver

induced voltage. In this work, the proposed model is extended to examine the value

of including a repeater and identify the conditions, if any, where their use results

in improved performance. This is undertaken through the development of another

Python program and compared with measurements to confirm the validity.

All equipment is characterized prior to the experiments to confirm that limitations

identified though the data sheets are accurate, and that all equipment are functioning

within expected parameters. The proposed model is then tested experimentally both

in the air and at the Dalhousie Aquatron. The results are expected to demonstrate

to viability of mutual induction as a mode of water-air data transmission.

1.3 Current State-of-the-Art

Use of mutual induction for underwater communication goes back to the second world

war; however one of the earliest published work on mutual induction for underwater-

to-air communication was by Durrani [8], who modeled the coils as dipoles. Durrani

found the magnetic field in terms of Sommerfield integrals which is consistent with

more recent publications shown in this section. [9] increased popularity in the idea of

underwater MI communication. However interest in mutual inductance to cross the

air-water boundary started to grow significantly around 2012 when Domingo’s work

was published.
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In this section, the most prominent work on MI is presented. Section 1.3.1 dis-

cusses Domingo’s analysis of the transmission loss from mutual induction and how

it compares with other communication methods. Section 1.3.2 briefly summarizes

the theory by Guo et. al. if both coils are underwater. In section 1.3.3, the mutual

induction from Gibson and Wait are presented. Section 1.3.4 summarizes the work

by Watson on using a finite-difference time domain approach to find the induced volt-

age. Other publications on underwater magnetic communication are found in section

1.3.5.

1.3.1 Domingo’s model in water

In [2] , Domingo studies the transmission loss of a near-field transmission model inside

both fresh water and sea water consisting of two circuits with coils that can transmit

power via mutual induction. The author models the system using an equivalent two-

port network to determine the transmission loss between the coils as a function of

the frequency of operation as well as the number of turns of the coils. The mutual

inductance that Domingo uses is given by [10]:

M =
µ0πNTXNRXα

2
TXα

2
RX

2
√︁

(α2
TX + d2)

. (1.1)

Here, NTX , NRX are the number of turns of the coils, αTX , αRX are the coil radii,

and d is the distance between the coils. The author studies at frequencies that are

small enough (less than 10 kHz) so that M can be modeled as in (1.1). Using this

model for the mutual inductance, Domingo found the path loss under no conductiv-

ity, then added a factor of PLα to account for the conductivity of water. By fixing

the transmitter at a depth of 4.5 m, the receiver at a height of 1 m, and the number

of turns in both coils to 1000, the author plots the path loss as a function of both

frequency (from 0 to 2 kHz) and coil radius (from 0 to 2 m). The loss is greatest for

smaller coils (around 50-60 dB) and for smaller frequencies. However for larger coils,

the loss is frequency-independent and is approximately 10 dB.

Domingo compares these results with electromagnetic waves (EM) and acoustic

waves. When transmitting EM waves with antennas at the same distances as in the
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MI case, a 50-500 MHz signal has a path loss of 50-70 dB for freshwater and 1000-4000

dB for saltwater. Meanwhile the path loss for acoustic waves depends on the channel

depth rather than than the conductivity. For shallow water, the loss is approximately

6-10 dB when the frequency is 1-10 kHz. In deeper water, the loss is 50 dB.

Domingo also introduces the idea of a series of passive coils between the MI an-

tennas to act as a waveguide for the magnetic fields to decrease the transmission loss.

By placing multiple coils equally spaced and all co-linear, the author finds that in

freshwater at a frequency of 500 Hz and at a distance of 500 m, the path loss drops

from 120 dB to 40-50 dB if the repeaters are 4.5 m apart. In seawater, the path

loss improves by approximately 60 dB. However the MI is only better than acoustic

communication when the distance is less than 50 m.

As an extension of Domingo’s work, [11], focuses on increasing the bandwidth of

an MI underwater communication system to enable better signal transmissions at 1

MHz.

1.3.2 Guo et. al complete model for both coils underwater

Guo, Sun, and Wang [12] present a complete model for the mutual inductance be-

tween two coils where both are submerged underwater. Their focus is a water-water

communication system with air-water and water-floor boundaries, both of which af-

fect the magnetic field. The authors use [13] as a reference for their formulae for the

magnetic field of a coil oriented either co-planar to the surface or perpendicular to

it. While Guo, Sun, and Wang do not demonstrate how they got their results, they

do derive some approximations when the point at which one measures the field r is

much larger than both the coil and the depth from the surface. They find that the

fields are proportional to ejkr/r2. They also show how a lateral wave from the surface

can propagate the magnetic field much further than the direct field from the source

due to conductivity.

The authors compare their model with both a COMSOL simulation and a lab ex-

periment where they use an aquarium to transmit power between two coils. For the
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simulation, they plot the magnetic field strength vs distance from the coil at different

frequencies between 10 kHz and 10 MHz, where the coil is 50 cm deep, has 5 turns

with radius of 5 cm, and a current of 1 A passes through. The authors’ equations

and COMSOL simulation are in agreement. The fields strength decreases quickly up

to 2 m at which point the decrease slows down. The field strength also gets smaller

with increasing frequency.

In Guo, Sun, and Wang’s lab test, two 10 cm square coils with 8 turns each are

placed in an aquarium. They measure the induced voltage as a function of the sepa-

ration between the coils (up to 1 m) and compare the results with both their model

and with COMSOL. They find that the experimental results are misaligned from both

their theoretical predictions and the COMSOL simulations by as much as 5 dB. They

suggest that this is due to the limitation of an aquarium when representing infinite

water. The models and COMSOL expect that the mediums are infinite, where as

an aquarium is a small channel which acts as a waveguide. A proper analysis of the

magnetic field in a small tank is required to verify this claim.

Guo et. al. also analyze the effect of a randomly oriented coil in the system,

which is an important consideration in the real world deployment of an MI system

underwater.

1.3.3 Gibson and Wait’s approximation

In [6], Gibson analyzes a magnetic induction system for use in deployment in sub-

terrain communication. Their work is relevant to this inquiry because the ground

is also a conductor which can affect the strength of the magnetic field induced by

two coils. The author’s objective is to find an optimal frequency of operation for a

two-coil magnetic induction system at a given distance, which is important in min-

ing applications where miners must communicate to crew members on the surface.

Gibson applies an equation from Wait [7], which gives the magnetic field from a coil

underground in the vertical direction (i.e. perpendicular to the boundary). When
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the coil is small enough to be modelled as a dipole:

HGibson =
NTXITXα

2
TX

2d3

∫︂ ∞

0

x3e
−
(︂

x z
d
+
√

x2+j2πµ0hfσ
)︂

x+
√︁

x2 + j2πµ0hfσ
J1

(︂

x
s

h

)︂

dx (1.2)

The radius for the coil is αTX with turns NTX . The transmitter is at a depth d

underground. The conductivity is σ and the frequency of operation is f .

Gibson creates MATLAB simulations of the induced voltage on a receiver coil by

a magnetic field given by (1.2) from a transmitter underground at a depth from 50 m

to 1 km and a ground conductivity of 0.01 S/m. For 50 m, the optimal frequency is

approximately 100 kHz and the voltage is approximately -30 dB. At 1 km deep, the

optimal frequency is only 200 Hz and the induced voltage is approximately -160 dB.

1.3.4 Watson’s finite-difference time domain simulations

Watson [14] models the air-underwater coil system by using finite-difference time

domain (FDTD) simulations for the induced electric and magnetic fields. The author

places the coils only 1 to 4 meters apart to reduce the extensive computational labour

required to run the simulations and to operate at a short range frequencies of 5 kHz

to 5 MHz. The current of the transmitter is fixed to 1 A, and the induced voltage in

the receiver is evaluated and compared to Gibson and Wait’s prediction. In all four

different distance configurations, the simulations are in agreement with Gibson and

Wait.

In order for the FDTD to yield accurate results, the size of the Yee cells have to be

smaller than the wavelength of the field, which is inversely proportional to frequency.

Thus the computational complexity becomes greater at larger frequencies. The author

had to wait three days to simulate the communication system at the 1-10 MHz range.

This is a disadvantage as the FDTD method. It’s advantage is that it can analyse

any waveform, not just sinewaves. The simulations can thus simplify the analysis of

more arbitrary signals.
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Figure 1.2: Simulation results using Watson’s finite-difference time domain (FDTD)
model compared to Gibson and Wait.
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1.3.5 Other Publications

The reason for attenuation in a conducting medium is due to the presence of eddy

currents. In [15], a methodology to analyse these eddy currents and their effect on

the communication system is described. The authors modeled a conducting system

with a series of coils in a non-conducting medium and developed a circuit model for

the complete system. They followed up with experiments.

More recently, [16] also developed and tested an air-water MI communication

system. Again, dipoles were assumed and they derived a similar result to Gibson

and Wait using Hertz potentials. The authors performed an experiment where they

transmitted frequency-shift keying signals.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, a detailed derivation of the mutual

induction between a coil underwater and another in the air is obtained though the fol-

lowing steps. First, Maxwell’s equations are simplified in terms of a vector potential.

Then the potential is solved for a coil in an infinite medium. This gives rise to the

fields in an infinite medium. This is followed with an extension to cross the air-water

boundary using boundary conditions. Finally, the mutual induction is derived, and

the end, a circuit model is developed.

In Chapter 3, an overview of the testing equipment is presented, followed by an

explanation of three experiments undertaken to test the model which forms the basis

of this thesis. The first is an air test in the lab to measure the mutual inductance as

a function of distance. The second tests a claim in chapter 2 that a capacitor added

to the receiver will improve the signal measured near a given resonance frequency.

The third is conducted at the Dalhousie Aquatron to confirm that the MI air-water

model works, and is in agreement with the proposed theory.

Chapter 4 begins with the methodology and a detailed data analysis. The the

results of the three experiments are then presented and discussed.
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Chapter 5 concludes the thesis with a summary of findings and offer suggestions

for future inquiries and explorations.



Chapter 2

Derivation of the Mutual Inductance and Circuit Analysis

In this chapter, the mathematical models for the electromagnetic fields by a coil car-

rying a sinusoidal current at a given frequency are derived for the cases of air, water,

and air-water. Then these fields are used to obtain a complete frequency-dependent

formula for the mutual inductance. The formula is applied to a circuit system.

Section 2.0 presents a brief summary of the notation used in this chapter; then, in

section 2.1, Maxwell’s Equations in Air and Water are summarized and used to derive

a vector potential which is easier to use to solve for the fields. Two methods to solve

the vector potential are given in sections 2.2 (Green’s function) and 2.3 (Transforms),

the latter being a new method. In section 2.4 the magnetic fields are extended to

cross the air-water interface. The mutual induction in three scenarios are found and

presented in section 2.5 along with suitable approximations. Finally, in section 2.6,

a detailed analysis of the circuits associated to the coils are presented and how the

mutual inductance affects the circuits is discussed.

2.0 Notation

In the rest of this work, the following notation is adopted:

• (x, y, z) are used to denote Cartesian coordinates,

• (s, ϕ, z) are used for cylindrical coordinates (s2 = x2 + y2, tanϕ = y/x), and

• (r, ϕ, θ) are used for spherical coordinates (r2 = x2 + y2 + z2, tan θ = s/z).

• The vector r = xx̂+ yŷ+ zẑ represents a point relative to a given origin where

we want to calculate a field.

• Unit vectors x̂, ŷ, ẑ, ŝ, ϕ̂, r̂, θ̂ are oriented in the direction of increasing value of

the coordinate of the same letter.

13
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• The differential operator ∇ is used to denote the divergence div(V) = ∇ •V,

the curl curl(V) = ∇×V, and the Laplacian lapl(V) = ∇2V. Their meanings

are given in Appendix A.

The electric and magnetic fields used in this text are E and H respectively, in-

stead of E and B since that is the standard in Electrical Engineering. Note that for a

general medium B = µ0(H+M), where M is a magnetization field that is induced by

current sources. Since this text only considers air and water, which are not magnetic

mediums, M = 0 and thus B = µ0H.

Recall that ϵ0 = 8.85 × 10−12 A2 s4/kg m3 is the permittivity of free space, also

µ0 = 4π × 10−7 kg m/A2 s2 is the permeability of free space, and c = 1/
√
ϵ0µ0 =

3.00× 108 m/s is the speed of light in free-space.

2.1 Maxwell’s Equations in Air and Water

In this section the Maxwell equations are used to derive a simpler equation, in terms

of a vector potential A, that will give the electric and magnetic fields for an arbitrary

current source. This simpler equation will be solved for a coil in the next section.

Section 2.1.1 goes over this derivation and section 2.1.2 makes a comment on the

wavenumber which is a new quantity that appears once the equation for A is found.

2.1.1 Derivation of the Vector Potential Equation

In this section, the vector potential A is defined and derived. For this purpose,

Maxwell’s equations describing the relationship between the fields E, H and the

sources ρ, J will be utilized

The time dependant Maxwell’s equations in any non-magnetic medium are given
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as [17]:

∇ •D(r, t) = ρ(r, t) (2.1a)

∇× E(r, t) = −µ0
∂H

∂t
(r, t) (2.1b)

∇ •H(r, t) = 0 (2.1c)

∇×H(r, t) = J(r, t) +
∂D

∂t
(r, t) (2.1d)

See Appendix A for a review on the meaning of divergence and curl. Here, ρ(r, t)

is the electric charge density and J(r, t) is the current density. The relationship

between H and J is illustrated in figure 2.1. D(r, t) is a vector field, often called

the electric displacement field, that depends on E(r, t). The relationship between D

and E depends on the nature of the medium. In the case of air, the relationship is

simply D(r, t) = ϵ0E(r, t). In a frequency-dependent and isotropic linear media, the

relationship in the frequency domain is

D(r, f) = ϵ(f) E(r, f) (2.2)

Figure 2.1: Drawing of the current density J and its relation to H as described in
equation (2.1).

where ϵ(f) is the permittivity of the medium. This occurs when the induced electric

field in the medium depend on the frequency of the source and is independent on
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location. In air, ϵ(f) = ϵ0 and in water (provided f is no larger than 6 GHz according

to [1], see Figure 2.2), ϵ(f) is given by:

ϵwater(f) = ϵw + j
σ

2πf
(2.3)

For water, ϵw = 81ϵ0 and σ = 4 S. In this work, it is assumed that the medium is

either air, water, or both separated by a boundary.

Figure 2.2: Plot of the permitivity versus frequency of sea water at 14◦C given by [1].
The dotted red line is the approximation σ/2πf with σ = 3.61 S/m seen in equation
(2.3)

In a frequency-dependent and isotropic media (like air and water), it is best to

express Maxwell’s equations (2.1) in the frequency domain. This can be done using

the Fourier transform. Specifically, the frequency dependent magnetic field can be

obtained from H(r, t):

H(r, t) =

∫︂ ∞

∞
H(r, f)ej2πftdf. (2.4)

The E, D, ρ, and J are also obtained using the Fourier transfom. Also, in this

work it is assumed that there are no free charges (i.e. ρ = 0) since the sources that

are used are coils which are current sources only. Note that due to the continuity



17

equation of charge (∇ • J = −∂ρ
∂t
), this means that the current density must have a

divergence of zero. Thus (2.1)) and ((2.2)) reduce to:

∇ • E(r, f) = 0 (2.5a)

∇× E(r.f) = −j2πfµ0H(r, f) (2.5b)

∇ •H(r, f) = 0 (2.5c)

∇×H(r, f) = J(r, f) + j2πfϵ(f) E(r, f) (2.5d)

In this text, from now onwards, the functional dependence of r and f will be

assumed and will no longer be specified). To solve (2.5), the vector potential, A =

A(r, f), is introduced via the following two relations:

∇×A = µ0H (2.6)

∇ •A = 0 (2.7)

As derived in [17], Eqs.(2.6) and (2.7) satisfy Eq.((2.5)) provided the following

two conditions are true and the charge density is zero:

E = −j2πfA (2.8a)

∇2A+ k2A = −µ0J (2.8b)

Here, k2 = 4π2f 2µ0ϵ is the wavenumber which depends on both the frequency and

the medium. A visual representation of these equations are given in figures 2.3 and

2.4. Equation (2.8b) is used to get the vector potential A, given a current density

vector J. Then (2.6) and (2.8a) are used to find H and E from A.

The vector potential are solved using two methods. In Section 2.2, equation

(2.8b) are solved using the Green’s function, whereas, in Section 2.3 equation (2.8b)

are solved by decomposing A as a superposition of waves.

2.1.2 Note on the Wavenumber k

In air, the wavenumber k is simply:

ka =
2πf

c
, (2.9)
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A

E

Figure 2.3: Visual representation the relationship between E and A given by equation
(2.8a). E and A are parallel.

A

H

Figure 2.4: Visual representation the relationship betweenH andA given by equation
(2.6). A circulates around H. The right-hand rule gives the orientation.

where c is the speed of light. However in water, the wavenumber is a complex number.

Using k2 = 4π2f 2µ0ϵ and ϵ from equation (2.3), one obtains:

kw = Kw + jκw (2.10a)

Kw =
9
√
2πf

c

⌜

⃓

⃓

⎷

√︄

1 +

(︃

σ

162πϵ0f

)︃2

+ 1 (2.10b)

κw =
9
√
2πf

c

⌜

⃓

⃓

⎷

√︄

1 +

(︃

σ

162πϵ0f

)︃2

− 1 (2.10c)

In (2.10), Kw determines the wavelength of 2π/Kw and effectively the speed of

2πf/Kw. Meanwhile, κw is a measure of the attenuation. By definition, the skin

depth, 1/κw, determines when a wave travelling in the water has its amplitude re-

duced by a factor of 1/e.

Since the frequencies used are less than 1 GHz, in salt water σ ≫ ϵw2πf , the



19

wavenumber can be approximated as:

Kw ≈ κw ≈
√︁

πfσµ0 (2.11)

Thus the far-field (i.e. Kwr ≫ 1), which is where radiation occurs, and the atten-

uation regime (i.e. κwr ≫ 1), which means the signal decays exponentially, always

apply.

2.2 Solution using Green’s Function

In this section, the magnetic field of a coil in both air and water is solved using Green’s

function. This method is found in elementary texts in electrodynamics [17, 18]. The

advantage of this method is that the solution has an intuitive interpretation and is

easier to simplify in extreme distances relative to the wavenumber. However this

solution is not ideal when a boundary is introduced.

2.2.1 General Form

Equation (2.8b) can be decomposed into three equations in terms of the Cartesian

components:

∇2Ax + k2Ax = −µ0Jx (2.12a)

∇2Ay + k2Ay = −µ0Jy (2.12b)

∇2Az + k2Az = −µ0Jz (2.12c)

Here, the solution for the x-component is demonstrated. Similar procedure can be

used for the other two components.

First, the current density can be represented as a 3-dimensional point source as:

Jx(r) =

∫︂

All Space

Jx(r
′)δ3(r− r′)d3r′ (2.13)

Then, Green’s function, Gx(r− r′), can be expressed as:

Ax(r) =

∫︂

All Space

Jx(r
′)Gx(r− r′)d3r′ (2.14)
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Substitute (2.13) and (2.14) into (2.12a) to get:

∇2Gx(r− r′) + k2Gx(r− r′) = −µ0δ
3(r− r′) (2.15)

The structure of this equation does not change if r− r′ is replaced by r, such that:

∇2Gx(r) + k2Gx(r) = −µ0δ
3(r) (2.16)

To solve (2.16), note that when r ̸= 0, the right-hand side is zero. The solution in

this case is of the form:

Gx(r) = C
ejkr

r
+D

e−jkr

r
, r = ||r|| > 0 (2.17)

where C and D are constants that are to be determined. Note that the first term is an

outwards moving wave from the origin that decays to zero at infinity (when accounting

for the possible complex form of k) whereas the second term grows to infinity at

increasing distances from the origin. Thus on physical grounds, it is required that

D = 0. To find C, substitute (2.17) back into (2.16) and evaluate a volume integral

over a sphere of a radius of any size to find that C = µ0/4π. Therefore:

Gx(r) =
µ0

4π

ejkr

r
(2.18)

Substitute this into (2.14) to get:

Ax(r) =
µ0

4π

∫︂

All Space

Jx(r
′)
ejk||r−r

′||

||r− r′||d
3r′ (2.19)

Similar equations exist for Ay and Az. Recombining the three solution to get the

vector form:

A(r) =
µ0

4π

∫︂

All Space

J(r′)
ejk||r−r

′||

||r− r′||d
3r′ (2.20)

This last expression shows how to calculate A if one knows the value of J every-

where in space.

2.2.2 Solution for a Coil

As shown in Figure 2.5, the current density of a N -turn coil centered at the origin,

parallel to the xy plane, and of radius α, provided the thickness of the coil is much

smaller than the radius, is:
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y

z

x

α

I

r = sŝ+ zẑ

ϕ

Figure 2.5: Coil configuration

J(s, ϕ, z) = NIδ(s− α)δ(z)ϕ̂ (2.21)

where I is the current. In Cartesian coordinates:

Jx = −NIδ(s− α)δ(z) sinϕ (2.22a)

Jy = NIδ(s− α)δ(z) cosϕ (2.22b)

Jz = 0 (2.22c)

Note that Az = 0. Also by symmetry, A(r, ϕ, θ) = A(r, 0, θ) Substitute (2.22) into

(2.20) and, after some simplifications:

A(r, θ) =
µ0NIα2

4π
ϕ̂

∫︂ 2π

0

cosϕ′ejk
√

r2+α2−2rα cosφ′ sin θ

√︁

r2 + α2 − 2rα cosϕ′ sin θ
dϕ′ (2.23)

This equation can be further simplified if the condition r ≫ α is assumed. Then

using Taylor expansion in α/r:

[r2 + α2 − 2rα cosϕ′ sin θ]−1/2 =
1

r

[︃

1 +
α

r
cosϕ′ sin θ +O

(︃

α2

r2

)︃]︃

(2.24)

ejk
√

r2+α2−2rα cosφ′ sin θ = ejkr
[︂

1− jkα cosϕ′ sin θ +O
(︂α

r

)︂]︂

(2.25)
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(2.23) simplifies to:

A =
µ0NIα sin θ

4r
ejkr

(︂α

r
− jkα

)︂

ϕ̂ (2.26)

The distinction between the near-field and far-field is more apparent with (2.26). In

the near-field (kr ≪ 1):

A =
µ0NIα2 sin θ

4r2
ϕ̂ (2.27)

This is the same vector potential from a static magnetic dipole. There is no frequency

dependence nor any attenuation. The vector potential is inversely proportional to the

square of the distance, r, from the coil. In the far-field (kr ≫ 1):

A = −j
kµ0NIα2 sin θ

4r
ejkrϕ̂ (2.28)

Here, ||A|| is now proportional to f . In air, ||A|| falls off by 1/r. However in water,

there is exponential drop-off with distance (e−κwr/r).

2.3 Solution using Transforms

An alternative solution using transforms is presented here in detail. Here, the use

of Fourier and Hankel transforms are used to find the vector potential in (2.8b).

This results in a more complex expression for the vector potential, but this version is

needed when the air-water boundary is introduced. This is a new technique developed

for this thesis and is derived with the aid of [13].

2.3.1 General Procedure

It is known from (2.23) that A has only a ϕ-component and has asymutal symmetry,

i.e. A(s, ϕ, z) = A(s, z)ϕ̂(ϕ). If (2.8b) is decomposed in cylindrical components

instead of Cartesian, one can ignore both the As and Az equations. Also set all

partial derivatives with respect to ϕ to be zero. The result will be (see equation

A.12):

∂2A

∂s2
+

1

s

∂A

∂s
− 1

s2
A+

∂2A

∂z2
+ k2A = −µ0NIδ(s− α)δ(z) (2.29)

(Here, Jφ = NINIδ(s− α)δ(z) as stated in (2.21))
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First, the order-1 Hankel transform in the s-coordinate is evaluated. The order-1

Hankel transform is defined by:

Ā(ks, z) = H1 [A] =

∫︂ ∞

0

A(s, z)J1(kss)s ds (2.30)

The corresponding inverse transform is:

A(s, z) = H−1
1

[︁

Ā
]︁

=

∫︂ ∞

0

Ā(ks, z)J1(kss)ks dks (2.31)

One can show that:

H1

[︃

∂2A

∂s2
+

1

s

∂A

∂s
− 1

s2
A

]︃

= −k2
sĀ (2.32a)

H1

[︃

∂2A

∂z2

]︃

=
∂2Ā

∂z2
(2.32b)

H1 [δ(s− α)] = αJ1(ksα) (2.32c)

After applying the order-1 Hankel transform on (2.29), one obtains a new equation

in terms of Ā(ks, z) with only derivatives in z:

− k2
sĀ+

∂2Ā

∂z2
+ k2Ā = −µ0αNIJ1(ksα)δ(z) (2.33)

Now a Fourier transform in the z-coordinate is applied in order to eliminate the other

partial derivative:

A(ks, kz) = F
[︁

Ā
]︁

=

∫︂ ∞

−∞
Ā(ks, z)e

−jkzz dz (2.34a)

Ā(ks, z) = F−1 [A] =
1

2π

∫︂ ∞

−∞
A(ks, kz)e

jkzz dkz (2.34b)

Note that:

F
[︃

∂2ā

∂z2

]︃

= −k2
zA (2.35a)

F [δ(z)] = 1 (2.35b)

Equation (2.33) now becomes after a Fourier transform:

− k2
sA− k2

zA+ k2A = −µ0αNIJ1(ksα) (2.36)

Or more simply:

A(ks, kz) =
µ0αNIJ1(ksα)

k2
s + k2

z − k2
(2.37)
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Now inverse transforms are taken to get back A(s, z):

Ā(ks, z) = F−1 [A]

=
1

2π

∫︂ ∞

−∞
A(ks, kz)e

jkzz dkz

=
µ0αNIJ1(ksα)

2π

∫︂ ∞

−∞

ejkzz dkz
k2
s + k2

z − k2
(2.38)

It should be noted that for the integral in (2.38), the poles kz = ±Kz (where

Kz ≡
√︁

k2 − k2
s) can be real numbers if k is real (i.e. no conductivity like in air).

This makes the integral undefined. To avoid this problem, it will be assumed that k is

always complex and then, if necessary, let Im(k) → 0 after the integration is complete.

The integral in (2.38) can be evaluated by extending the variable of integration

kz to be a complex number kz̃ = kz +k′
z and interpreting (2.38) as a contour integral.

The following contours are defined:

l[−R,R] = {kz| −R ≤ kz ≤ R}, Line along the real axis from −R to R. (2.39a)

Γ(R) = {Rejt| 0 ≤ t ≤ π}, Semicircular arc centerd at the origin with

radius R. Oriented counter-clockwise (2.39b)

C (R) = l[−R,R] + Γ(R), Total closed contour (2.39c)

Figure 2.6 shows a plot of the contours that will be used to solve the integral in (2.38).

Rewrite the integral in (2.38) as:

∫︂ ∞

−∞

ejkzz dkz
k2
z −K2

z

= lim
R→∞

∫︂ R

−R

ejkzz dkz
k2
z −K2

z

= lim
R→∞

∫︂

l[−R,R]

ejkz̃z dkz̃

kz̃
2 −K2

z

= lim
R→∞

(︄

∮︂

C (R)

ejkz̃z dkz̃

kz̃
2 −K2

z

−
∫︂

Γ(R)

ejkz̃z dkz̃

kz̃
2 −K2

z

)︄

= lim
R→∞

∮︂

C (R)

ejkz̃z dkz̃

kz̃
2 −K2

z

− lim
R→∞

∫︂

Γ(R)

ejkz̃z dkz̃

kz̃
2 −K2

z

(2.40)



25

kz

k′
z

−R R

jR

l[−R,R]

Γ(R)

kz̃ = kz + jk′
z

C (R) = l[−R,R] + Γ(R)

Figure 2.6: Contour plot, C (R), used to evaluate the integral in . C (R) consists
of a linear path from −R to R (denoted l[−R,R]) and a counter-clockwise oriented
semicircle from R back to −R (denoted Γ(R)). The red curves are where the poles
kz̃ = ±Kz = ±

√︁

k2 − k2
s are located.
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The first integral in (2.40) can be solved using the residue theorem. As R → ∞, the

pole kz̃ = Kz ≡
√︁

k2 − k2
s will be inside the contour.

lim
R→∞

∮︂

C (R)

ejkz̃z dkz̃

kz̃
2 −K2

z

= 2πj Resk̃z=Kz

(︄

ejkz̃z

kz̃
2 −K2

z

)︄

= j
πejKzz

Kz

(2.41)

Meanwhile, for the second integral:

lim
R→∞

∫︂

Γ(R)

ejkz̃z dkz̃

kz̃
2 −K2

z

= lim
R→∞

∫︂ π

0

ej(Rejt)z(jRejt dt)

(Rejt)2 −K2
z

= lim
R→∞

j

R

∫︂ π

0

e−zR sin t ej(zR cos t−t)

1− K2
ze

−j2t

R

dt (2.42)

As long as z ≥ 0, this integral goes to zero as R → ∞. Putting these results back

into (2.40):
∫︂ ∞

−∞

ejkzz dkz
k2
z −K2

z

= j
πejKzz

Kz

, if z ≥ 0 (2.43)

To find the solution in the case of z < 0, a similar procedure is used except the

semicircular is chosen to be Γ′(R) = {Re−jt | 0 ≤ t ≤ π} instead of Γ(R), which

would be below the kz-axis in figure 2.6. The other pole k̃z = −Kz would be used

instead for the residue theorem. The result would be:

∫︂ ∞

−∞

ejkzz dkz
k2
z −K2

z

= j
πe−jKzz

Kz

, if z < 0 (2.44)

The two results can be combined into one by replacing z with |z|:
∫︂ ∞

−∞

ejkzz dkz
k2
z −K2

z

= j
πejKz |z|

Kz

(2.45)

When substituting back into (2.38):

Ā(ks, z) = j
µ0αNIJ1(ksα)e

jKz |z|

2Kz

(2.46)

Finally, the inverse order-1 Hankel transform, is taken:

A(s, z) = H−1
1

[︁

Ā
]︁

= j
µ0αNI

2

∫︂ ∞

0

ks
Kz(ks)

J1(ksα)J1(kss)e
jKz(ks)|z|dks (2.47)
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Remember that Kz =
√︁

k2 − k2
s . This integral cannot be simplified further without

making suitable assumptions to approximate the integral. Note that the denomina-

tor in (2.47) will be zero in the case when the coil is in air. If that is the case, one

needs to split the integral in two parts in order to properly evaluate numerically (2.47)

By rewriting (2.47) in spherical coordinates instead of cylindrical and assuming

that r =
√
s2 + z2 ≫ α, one get:

A(s, z) = j
µ0α

2NI

4r2

∫︂ ∞

0

x2ej cos θ
√
k2r2−x2

√
k2r2 − x2

J1(x sin θ)dx (2.48)

(The substitution x = ksα was made). This equation agrees with the near-field (2.27)

and far field (2.28) equations when the assumptions of kr ≪ 1 and kr ≫ 1 are made

respectively.

The general magnetic and electric field formulas can now be found from (2.47)

using µ0H = ∇×A and E = −j2πfA. The magnetic field is:

H = Hsŝ+Hzẑ (2.49a)

Hs =
NIα

2

∫︂ ∞

0

ksJ1(ksα)J1(kss)e
jKz |z|dks (2.49b)

Hz =
jNIα

2

∫︂ ∞

0

k2
s

Kz

J1(ksα)J0(kss)e
jKw|z|dks (2.49c)

Kz =
√︁

k2 − k2
s (2.49d)

The electric field is:

E = πµ0NIαf

∫︂ ∞

0

ks
Kz

J1(ksα)J1(kss)e
jKw|z|dk (2.50)

Assuming z > 0, (2.49) and (2.50) can be rewritten as:

E =

∫︂ ∞

0

Ei(k)J1(kss)e
jKzzϕ̂ dks (2.51a)

H =

∫︂ ∞

0

Ei(ks)

2πµ0f

[︁

KzJ1(kss)e
jKzz ŝ+ jkJ0(kss)e

jKzzẑ
]︁

dks (2.51b)

where Ei(k) = πµ0NIαf k
Kz

J1(ksα) exp(jKwd). These equations show explicitly the

wave structure. This will be important in the next section.
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2.4 Solution with the Air-Water Interface

In this section, the solutions for the magnetic will be extended to account for an

air-water boundary as shown in Figure 2.7.

y

z

x

α

I

z = dWater

Air

Figure 2.7: Air-water coil configuration

Maxwell’s equations are linear in E and H. Therefore the general solution to (2.5)

in a given medium can be written as a linear combination of a homogeneous solution

and a particular solution:

E = Ehomo + Epart (2.52a)

H = Hhomo +Hpart (2.52b)

Hhomo and Ehomo will solve (2.5) with J = 0.

For the solutions (2.49) and (2.50), one can show that ||H|| → 0 and ||E|| → 0 as

r → ∞. Thus these are valid solutions if the coil is in a medium, air or water, that
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extends to infinity in all directions, since we can simply set Hhomo = 0 and Ehomo = 0.

This is a unrealistic scenario, but if other mediums are far enough away, this gives a

valid approximation for the fields of a coil.

However, if a second medium is close enough to the coil to have significant impact

on the field, (2.49) and (2.50) are not sufficient solutions as in this case Hhomo and

Ehomo cannot be zero. The boundary will introduce an additional ’reflective’ compo-

nent.

First a general structure of Ehomo and Hhomo is derived while maintaining the

assumption of cylindrical symmetry. Let m be an index to indicate which medium.

m = 0 for air and m = w for water. The general structure of the homogeneous

solution in a given medium with permittivity ϵm is found by solving (2.5) with p = 0

and J = 0, which is equivalent to finding a family of solutions to the wave equations:

∇2Ehomo + k2
mEhomo = 0 (2.53a)

∇2Hhomo + k2
mHhomo = 0 (2.53b)

k2
m = (2πf)2ϵmµ0 (2.53c)

Equation (2.51) implies that cylindrical transverse-electric waves (i.e. cylindrical

waves where E are parallel to the boundary) are the only non-zero solutions to the

wave equations for a coil that at a depth d in the water and is parallel to the boundary.

Ehomo =

∫︂ ∞

0

Em(ks)J1(kss)e
jKm

z zϕ̂ dks (2.54a)

Hhomo =

∫︂ ∞

0

Em(ks)

2πµ0f

[︁

Km
z J1(kss)e

jKm
z z ŝ+ jkJ0(kss)e

jKm
z zẑ
]︁

dks (2.54b)

Here Km
z =

√︁

k2
m − k2

s and km is the wavenumber for either air (m = 0) or water

(m = w). The coefficients Em(k) for m = 0 and m = w must be found via the

boundary conditions.

Since the air has no sources, E and H are only given by the homogeneous solution

(2.54) with m = 0. In the water (i.e. z < 0), E and H are given by combining (2.54)



30

with m = w and (2.51):

E =

∫︂ ∞

0

[Ei(k) + Ew(k)] J1(kss)e
jKw

z zϕ̂ dks (2.55a)

H =

∫︂ ∞

0

Ei(k)− Ew(k)

2πµ0f

[︁

Kw
z J1(kss)e

jKw
z z ŝ+ jkJ0(kss)e

jKw
z zẑ
]︁

dks (2.55b)

The boundary conditions can be found from the integral form of Maxwell’s equa-

tions. They are summarized here for a boundary at z = 0:

Ewater
⊥ ϵw = Eair

⊥ ϵ0 (2.56a)

Ewater
|| = Eair

|| (2.56b)

Hwater = Hair (2.56c)

Apply this to get the following relations:

Ew(k) = Ei(k)
Kw(k)−K0(k)

Kw(k) +K0(k)
(2.57)

E0(k) = Ei(k)
2Kw(k)

Kw(k) +K0(k)
(2.58)

Substitute these equations back into (2.55) and (2.54) to get the complete solution

for the H-field in air (z > 0):

H = NIα

∫︂ ∞

0

ks
Kw

z +K0
z

J1(ksα)e
jKw

z d
[︂

K0
zJ1(kss)e

jK0
zz ŝ+ jksJ0(kss)e

jK0
zzẑ
]︂

dks

(2.59)

2.5 Mutual Induction

In this section, mutual inductance is defined (subsection 2.5.1) and its formula is

derived for two coils in a single medium (subsection 2.5.2), and in air-water (subsection

2.5.3) just like in figure 2.8. The relationship between mutual induction and the

induced voltage in the receiver is discussed in subsection 2.5.4. Finally, a comparison

with Wait and Gibson is presented in subsection 2.5.5.

Subscripts TX and RX are added to denote parameters for the transmitter or

receiver coils respectively.
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y

z

x

Transmitter
αTX

I

ReceiverαRX

z = d

z = d+ h

Water

Air

Figure 2.8: Air-water coil configuration for use in deriving the mutual inductance.
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2.5.1 Mutual Inductance Definition

Mutual induction is defined as:

M(f) =
µ0Φcoil

ITX

(2.60)

where Φcoil is the magnetic flux across the coil and is given by:

Φcoil =

∫︂∫︂

coil cross-section

H • da (2.61)

This equation can be written in a simpler form if A is known by using µ0H = ∇×A

and Stoke’s theorem:

Φcoil =
1

µ0

∫︂

coil

A • dl (2.62)

Equation (2.62) can be used when there is only one medium, since the vector potential

is known via equation (2.47).

2.5.2 Mutual Induction in a Single Medium

To obtain the mutual inductance of two coils in the same medium (air or water),

substitute A with (2.47) and integrate over the receiver coil NRX times. Set s = αRX

and z = d, the distance between the coils. If one defines the constant term,

M0 =
πµ0NTXNRXαTXαRX

d
(2.63)

and the MI ratio function,

M (Ω, x, y) = j

∫︂ ∞

0

t√
Ω2 − t2

J1(xt)J1(yt)e
j
√
Ω2−t2dt (2.64)

the mutual inductance is:

M = M0M

(︂

kd,
αTX

d
,
αRX

d

)︂

(2.65)

where k = k0 for air and k = kw(ω) for water. This formula can take a simpler form if

suitable conditions are met. In the limit kd ≪ 1 (or Ω ≪ 1), Equation (2.64) reduces

to:

M (Ω, x, y) ≈ M (0, x, y) =

∫︂ ∞

0

J1(xt)J1(yt)e
−tdt (2.66)
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If also αTX , αRX ≪ d, M ≈ xy/2 and:

M ≈ πµ0NTXNRXα
2
TXα

2
RX

2d3
(2.67)

This is the near-field dipole approximation obtained by calculating the mutual in-

duction to equation (2.27). The strength of the mutual induction in this scenario

is inversely proportional to the distance cubed, regardless of the conductivity of the

medium.

Alternatively, one can start with the assumption that αTX , αRX ≪ d to simplify

(2.64):

M (Ω, x, y) ≈ xy

4
M̄ (Ω) (2.68a)

M̄ (Ω) = j

∫︂ ∞

0

t3√
Ω2 − t2

ej
√
Ω2−t2dt (2.68b)

In the limit Ω ≪ 1 (i.e. kd ≪ 1), M reduces to equation (2.67) as expected. If

instead Ω ≫ 1 (i.e. kd ≫ 1):

M̄ (Ω) ≈ −2jΩejΩ (2.69)

This reduces the mutual inductance to become:

M ≈ −j
πµ0kNTXNRXα

2
TXα

2
RX

2d2
ejkd (2.70)

This is the far-field result from calculating the mutual induction to equation (2.28).

In air where k is real, M is inversely proportional to the square of the distance due to

field radiation. However in water, k is complex which makes M decay exponentially

due to the conductivity of water. This suggests that when setting up a loop MI sys-

tem, one wants to remain in the near-field to avoid conductivity losses.

To quickly verify the approximations derived above, a numerical evaluation of the

reduced MI ratio function M̄ (Ω) in air with coil separation d = 20 meters with the

near and far-field limits are shown in figure 2.9. This plot shows that the near-field

approximation applies if the frequency is less than 200 kHz and the far-field applies

when the frequency is greater than 10 MHz.
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Figure 2.9: Plot of the reduced MI ratio function M̄ (Ω) defined from equation (2.68a)
in air with the near-field and the far-field radiation approximation. The distance
between the coils is d = 20 m

2.5.3 Mutual Induction with an Air-Water Interface

Since the magnetic field of the air-water configuration is known (equation (2.59)) and

not the vector potential, equation (2.61) is applied to find the mutual inductance. In

this case, the transmitter is at a depth d and the receiver is at a height h. Define

M0 as in equation (2.63), except replace d with d + h. Also define the new MI ratio

function:

M (Ωw,Ω0, x, y,H ) = 2j

∫︂ ∞

0

tJ1(xt)J1(yt)
√︁

Ω2
w − t2 +

√︁

Ω2
0 − t2

e

(︂

1
1+H

√
Ω2

w−t2+ H

1+H

√
Ω2

0−t2
)︂

dt

(2.71)

Then the mutual induction becomes:

M = M0M

(︃

kw(d+ h), k0(d+ h),
αTX

d+ h
,
αRX

d+ h
,
h

d

)︃

(2.72)

This reduced to (2.65) when kw = k0 and h = 0. If |kw|(d+h) ≪ 1 and k0(d+h) ≪ 1

equation (2.71) reduces to (2.66) as if there is no medium. Thus the influence on the

water conductivity and the boundary only applies in the far field.
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If it can be assumed that the coils are far apart from each-other (αTX , αRX ≪
d+ h), then M can be replaced with:

M (Ωw,Ω0, x, y,H ) ≈ xy

4
M̄ (Ωw,Ω0,H ) (2.73a)

M̄ (Ωw,Ω0,H ) = j

∫︂ ∞

0

t3
√︁

Ω2
w − t2 +

√
Ω2 − t2

e

(︂

1
1+H

√
Ω2

w−t2+ H

1+H

√
Ω2

0−t2
)︂

dt

(2.73b)

As expected, this equation reduces to the near-field model (2.67) with d replaced with

d + h when |Ωw| = |kw|(d + h) ≪ 1 and Ω0 = k0(d + h) ≪ 1. In the opposite limit

|kw|(d+ h) ≫ 1 and k0(d+ h) ≫ 1, one gets a different far-field model:

M ≈ −j
πµ0k

2
wk

2
0NTXNRXα

2
TXα

2
RX

2(kw + k0)(kwh+ k0d)2
ej(kwd+k0h) (2.74)

This model reduces to the far-field model in only one medium (equation (2.70)) if

kw = k0 and h = 0. Since kw is complex, this model has exponential decay with the

depth d of the transmitter, but not with the height h of the receiver which behaves

as an inverse squared relation as if there is radiation. Thus the fields decay in the

water but then acts like a radiation field when they cross the boundary to the air.

Note that from equation (2.3), |ϵw| =
√︁

812ϵ20 + (σ/2πf)2 ≥ 81ϵ0 ≫ ϵ0 which

implies that |kw| ≫ |k0|. Thus there exists a third intermediate-field when 1/|kw| ≪
d + h ≪ 1/k0 (or |Ωw| ≫ 1 and Ω0 ≪ 1). In this new intermediate-field, the mutual

induction from (2.72) can be approximated by:

M ≈ −j
πµ0kwdNTXNRXα

2
TXα

2
RX

(d+ h)3
ejkwd (2.75)

Note that the receiver coil height h behaves like a ’near-field’ with the inverse cube,

but the transmitter depth d behaves like a ’far-field’ with the exponential decay term.

A sample plot of the reduced MI ratio function M̄ from equation (2.73a) versus

frequency for a transmitter of depth d = 19 meters and a receiver of height h = 1 meter

(thus d+ h = 20 meters) is shown in figure 2.10 along with all three approximations

presented in this section. The near-field applies as long as f < 1 kHz after which the

decay from the conductivity of water takes in effect. Both the intermediate-field and

the far-field in this scenario are indistinguishable and both model the system when

f > 4 MHz.
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Figure 2.10: Plot of the reduced MI ratio function M̄ (Ωw,Ω0,H ) defined from equa-
tion (2.73a) in air with the near-field, the far-field, and the intermediate-field approx-
imations. The TX depth is d = 19 m and the height h = 1 m.

2.5.4 Induced Voltage

When analysing the effect of the mutual inductance, what is important is the induced

voltage on the receiver from the changing magnetic field created from the transmitter.

In the frequency domain, the relationship between the induced voltage Vind in the

receiver from a transmitter with fixed current ITX is:

Vind(f) = −j2πfMIIX (2.76)

Here, M is the mutual inductance. If the system is in a medium with conductivity,

then M is a complex number and is a function of frequency f . The real part of M

is responsible for power delivery from the transmitter to the receiver whereas the

imaginary part behaves like an extra impedance term which dissipates power.

As f → 0, Vind → 0 as one would expect since there would be no induction

with static currents. In air-water, the exponential decay also ensures that as f →
∞, Vind → 0 as well. Therefore there is a frequency where the induced voltage is at a
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maximum. This maximum would depend on the coil separation d, h and is predicted

to get smaller as the separation is larger.

Define the function F (f) by:

F (f) =

⃓

⃓

⃓

⃓

2πf
M(f)

M0

(d+ h)2

αTXαRX

⃓

⃓

⃓

⃓

(2.77)

Thus |Vind/ITX | = F (f) and can be interpreted as a normalized voltage-to-current

ratio. This is plotted as a function of frequency in figure 2.11 using equation (2.72) for

the mutual inductance with the receiver at a height h = 1 meter and the transmitter

at depths d = 10, 25, 50, and 100 meters. One can see that the frequency of operation

to maximize Vind/ITX gets smaller very quickly as the transmitter coil goes deeper

underwater.

Figure 2.11: Plot of the normalized induced voltage over transmitter current F

function defined in equation (2.77) versus frequency for a fixed RX coil height of
1 meter and various TX coil depths.
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2.5.5 Comparison with Gibson’s Results

In this section, the model from Wait and Gibson [6] will be compared with the full

mutual inductance model derived in equation (2.72):

MGibson =
πµ0NTXNRXα

2
TXα

2
RX

2d3

∫︂ ∞

0

x3e
−
(︂

xh
d
+
√

x2+j2πµ0hfσ
)︂

x+
√︁

x2 + j2πµ0hfσ
dx (2.78)

In this situation, the receiver coil is placed 1 meter above the surface and the trans-

mitter coil is 19 meters deep underwater. Both the new model and Wait’s model for

the magnetic induction agree with the near-field model at frequencies much less than

1 kHz. The new model begins to decay much sooner than Wait-Gibson model, which

remains constant until approximately 1 MHz before it begins to decay exponentially.

This suggests that the Wait-Gibson model does not apply to this air-water antenna

system.

Figure 2.12: Plot of Magnetic Induction in air-water from equation (2.72) and from
Wait’s (2.78).
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2.6 Circuit Analysis

In this section, circuits for the transmitter (subsection 2.6.1) and receiver (subsection

2.6.2) are included to analyze the voltage ratio expected using the models for the

mutual inductances above. It is assumed that the mutual inductance is given by the

models described by equations (2.65-2.72), depending on what medium the coils are

in. Subsection 2.6.3 investigates the influence of a capacitor added to the receiver.

Finally, subsection 2.6.4 briefly discuses whenever a passive repeater can improve the

voltage ratio.

2.6.1 Transmitter Circuit Model

The goal of the transmitter circuit is to have as close as possible to a frequency-

independent relationship with the current ITX powered in the circuit. This is be-

cause the power transferred to the receiver is directly proportional to the current in

the transmitter. At large frequencies, the self-inductance of the coil behaves like a

large impedance and reduces the maximum possible current.

The circuit diagram for the transmitter is given in figure 2.13. All components

are chosen to be in series. The TX coil is assumed to have a self-inductance LTX and

a parasitic resistance RTXpar. The coil is powered by a voltage source which will be

assumed to be sinusoidal with amplitude Vin and frequency f . A fixed resistor RTX

is added to measure the current and to influence the current profile as will be shown

shortly.

It is assumed that the coils are far enough apart such that the induction from the

receiver back to the transmitter is negligible. Thus the equation for the transmitter

circuit is:

Vin − (RTX +RTXpar + j2πfLTX)ITX = 0 (2.79)

Solving for ITX gives:

ITX =
IDC
TX

1 + j f
fcut

(2.80)

where the DC limit current is defined by IDC
TX = Vi/(RTX + RTXpar) and the cut-off

frequency is fcut = (RTX + RTXpar)/2πLTX . The relationship between the current
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Vin

RTXpar

LTX

RTX

Figure 2.13: Circuit diagram for the transmitter coil.

and the frequency is a low-pass filter with the maximum possible current being IDC
TX

and the cutoff frequency being fcut. Because of the presence of parasitic resistance in

the coil, the DC current limit can be no larger than Vi/RTXpar. By increasing RTX ,

the maximum current goes down, but the cutoff frequency increases which means one

can operate at larger frequencies. Figure 2.14 demonstrates the relationship between

ITX with f and how RTX affects the shape of the plot.

Frequency f (log)

Current |ITX | (log)
IDC
TX

Low RTX

fcut

IDC
TX

High RTX

fcut

Figure 2.14: Plot showing the relationship between the amplitude of the transmitter
current |ITX | with frequency and how it is affected by the presence of a resistor RTX .
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2.6.2 Receiver Circuit Model with no Capacitor

In the following, a receiver with a load resistance RRX is considered and the analysis

conducted of how a transmitter with current ITX induces a voltage across the load

Vout. Figure 2.15 shows the circuit diagram of a receiver coil in series with a load

resistance. The coil receives an induced voltage −j2πfMITX from the transmitter,

but has an impedance from its self-inductance LRX and parasitic resistance RRXpar.

LRX

RRXpar

RRX Vout

Figure 2.15: Circuit diagram for the receiver coil.

The load voltage Vout is related to the receiver current IRX in two ways:

Vout = RRXIRX (2.81a)

Vout = −j2πMITX − (j2πLRX +RRXpar)IRX (2.81b)

Define the voltage across the transmitter fixed voltage to be VRTX
= RTXITX .

Solving for Vout and the divide by VRTX
to get the voltage ratio V (f):

V (f) =
Vout

VRTX

=
jfA

1 + j f
fl

(2.82)

where the constant term A (in units of seconds) is defined by:

A =
2πMRTX

1 +
RRXpar

RRX

(2.83)

and the frequency term fl is defined by:

fl =
RRX

2πLRX

(︃

1 +
RRXpar

RRX

)︃

(2.84)
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As figure 2.16 shows, V is a high-pass filter with cutoff-frequency fl and maximum

value of flA. If f ≪ fl, the voltage ratio is linear with frequency whereas if f ≫ fl,

the voltage ratio is fixed at the maximum value. Ideally one wants RRX = 0, but

that is unrealistic as one wants to connect a load to the system. If possible, choose

frequencies larger than fl.

Frequency f (log)

Voltage Ratio |V | (log)

flA

fl

Figure 2.16: Plot showing the relationship between the amplitude of the voltage ratio
V from equation (2.82) with frequency.

The key observation to make is that the constant A, which determines the max-

imum voltage ratio, is proportional to the mutual inductance M . One can measure

M from the maximum of V .

2.6.3 Receiver Circuit Model with a Capacitor

To improve the measured voltage, one can consider adding a capacitor CRX in parallel

to the load. The new circuit diagram looks like figure 2.17: The load is now ZRX =

RRX ||(1/j2πfLRX). Replace RRX with ZRX in equation (2.81 to obtain the new

voltage ratio:

V (f) =
Vout

VRTX

=
jfA

1− f2

f2
0
+ j f

fl

(2.85)

This equation looks like (2.82) except it now has a new term in the denominator. A

is the same as in (2.83). However fl is now defined by:

fl = 2π
1 +

RRXpar

RRX

LRX

RRX
+RRXparCRX

(2.86)
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LRX

RRXpar

RRX VoutCRX

Figure 2.17: Circuit diagram for the receiver coil with a capacitor in parallel.

The resonance frequency is given by:

f0 =
1

2π

√︄

1 +
RRXpar

RRX

LRXCRX

(2.87)

Near the resonance frequency the voltage ratio will be larger than if no capacitors are

present. However at frequencies far away from the resonance frequency, the voltage

ratio is smaller. Thus adding a capacitor is useful if there is a specific frequency in

particular one wants to operate.

2.6.4 Repeater Circuit

Domingo [2] proposes to use a sequence of passive repeater coils in between the an-

tenna arrays in order to create a waveguide for the induced magnetic fields and thus

improve the performance. But having too many repeater coils defeats the purpose of

having a coil antenna system. Thus the feasibility of using a single repeater coil is

investigated.

Consider a repeater coil a distance dr above the transmitter and thus d−dr below

the receiver as in figure 2.18. The repeater coil has a radius αr and has Nr turns.

Under what conditions does the repeater help with the transmission loss?

It should be noted that the repeater cannot be a simple coil with no components.
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y

z

x

Transmitter
αTX

I

ReceiverαRX

Repeater
αr

z = d

z = d+ h

z = dr

Water

Air

Figure 2.18: Air-water repeater configuration.
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Lr

Cr

Rr

Figure 2.19: Circuit diagram for the repeater coil.

Faraday’s law states that the voltage in the repeater will always be 180◦ out of phase

relative to the transmitter. If there are no capacitors in the repeater, the current

in the repeater will also be 180◦ out of phase and thus creates a magnetic field that

reduces the field of the transmitter. Therefore a capacitor is needed in the repeater

to change the phase.

The circuit for the repeater is given by figure 2.19. The self-inductance is Lr, the

capacitance is Cr, and the resistor is Rr (which is simply the resistance of the wire).

Define Zr = Rr + j2πfLr − j/2πfCr.

Denote MTR for the mutual inductance between the transmitter and the receiver,

MTr for the mutual inductance between the transmitter and the repeater, and MrR

for the mutual inductance between the receiver and the repeater. The circuit equation

for the repeater is:

− ZrIr − j2πfMTrITX − j2πfMrRIRX = 0 (2.88)

The circuit equation for the receiver, now with a repeater, becomes:

− ZRXIRX − j2πfMTRITX − j2πfMrRIr = 0 (2.89)

Here, ZRX = j2πfLTX + 1
1

RRX
+j2πfCRX

. If ITX is fixed and VRTX
= RTXITX is how
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to measure the current, the new voltage ratio is:

VWith Repeater(f) =
RTX(−4π2f 2MTrMrR − j2πfZrMTR)
(︂

1
RRX

+ j2πfCRX

)︂

(ZrZRX + 4π2f 2M2
rR)

(2.90)

This reduces to the old voltage ratio with capacitors from equation (2.85) if |Zr| → ∞
(i.e. the repeater becomes an open circuit).

To verify if the repeater makes a difference or not, a numerical contour plot of

the ratio of equation (2.90) with (2.85) as a function of both the repeater position

dr between the antenna coils and the repeater coil radius αr is created. The distance

between the TX and RX is chosen to be 25 meters and the frequency is fixed to 1 kHz

since figure 2.11 suggest that 1 kHz gives the best performance for antenna coils 25

meters apart. Cr, CRX are chosen to resonate the system at 1 kHz, and the resistances

are chosen to be: RTX = 1Ω, Rr = 0.1Ω, RRX = 1kΩ. Knowledge of Lr is not needed

since at resonance the impedance from Lr will be cancelled by Cr. LRX needs to be

known and will be related to parameters to the RX coil. The value of LRX will be

estimated using the following formula from [19]:

LRX = µ0N
2
RXαRX

[︃

ln

(︃

8αRX

aRX

)︃

− 2

]︃

(2.91)

Here, aRX is the radius to the wire used. It is chosen to be 1 mm. At 1 kHz frequency,

the system is in the near-field and the properties of the mediums can be ignored.

The contour plot of the ratio of voltage ratios (2.90) with (2.85) is given in figure

2.20. If the repeater is around the same size or smaller than the antenna coils, there is

no difference. For a change in the voltage ratio, the repeater must be at least 10 times

larger than the antenna coil, and be very close to the transmitter. If the repeater

is further away, it must be 100 times larger and no further than half-way between

the coils. If the repeater is too close to the receiver, the voltage ratio is worse than

having no repeater.

In conclusion, the use of a single passive repeater is not practical since either the

coil would have to be very close to the transmitter to improve the power transfer

(which could be easily achieve by increasing the turn ratio of the antenna coils), or

the coil must unreasonably large.
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Figure 2.20: Contour plot (in decibels) of the ratio VWith Repeater/VNo Repeater from
equations (2.90) and (2.85) as a function of the ratio of repeater distance to antenna
distance and the ratio of repeater radius to transmitter radius.



Chapter 3

MI Link Measurements

This chapter provides an overview of the equipment and how it was used in the

experiments. Section 3.1 details the equipment, section 3.2 explains how the mutual

induction measurements were performed in air at the lab, and section 3.3 presents

the setup at the Dalhousie Aquatron for the air-water test.

3.1 Equipment

The equipment consisted of a transmitter coil, a receiver coil, an impedance ana-

lyzer, resistors, capacitors, power supplies, a power amplifier, a signal generator, an

oscilloscope, a low-noise amplifier, and an inverting amplifier.

3.1.1 Transmitter and receiver coils

The transmitter coil is shown in figures 3.1 and 3.2. There are three independent

coils that are mutually orthogonal, which allows the choice of orientation to induce

a magnetic field. All coils are wrapped around a green plastic shell with groves to

hold the coils in place. A larger black plastic shell is made to cover and seal the

coil from water with a small opening for the wires. The transmitter wires are long

and covered by a thick cable to protect them from water. Each coil is color coded

blue, green, or yellow, to mark which pair of wires correspond to which coil. Colored

green and yellow tapes on the exterior shell help find the correct orientation and

the corresponding wire with the same color. The blue wire corresponds to the coil

oriented along the seal.

The coils have a diameter of 13 centimeters and have approximately 35 turns.

The impedances of the three coils were measured using a Hewitt-Packard 4192A LF

Impedance Analyzer (figure 3.3), and are summarized in Table 3.1, Table 3.2, and

48
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Figure 3.1: Image of the transmitter with the exterior open.

Figure 3.2: Image of the transmitter with the exterior closed. The yellow and green
tapes show the coil orientations.
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Table 3.3.

Figure 3.3: Image of the Hewitt-Packer 4192A LF Impedance Analyzer used to mea-
sure the impedances of all coils and capacitors.

The receiver coil is shown in figure 3.4. It is a single coil wrapped around green

plastic housing, and similar to transmitter, the signal travels a long water-resistant

cable. Since the receiver will not be underwater, an external case is not needed.

The impedance is measured with the same impedance analyzer as in figure 3.3. The

resulting data is shown in table 3.4.

3.1.2 Resistors and Capacitors

There are three independent copies of the circuit designed as in figure 2.13, which

allows each transmitter coil to operate independently of one another. The resistors in

each circuit are all at 5 Ohms and are designed to carry a current of 1 to 2 Amperes

without risk of damage due to a large heatsink to dissipate the heat. The location of

the power amplifier is also shown.

The receiver circuit is designed to replicate figure 2.17. The resistances are each

5 Ohms or 120 Ohms and a capacitor can be added in parallel. Also shown is the
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f (kHz) |Z|(Ω) θ (raians) R(Ω) X(Ω) L(µH)
1.0 4.9 0.352 4.60 1.69 269
1.6 5.3 0.532 4.57 2.69 267
2.5 6.2 0.743 4.57 4.19 267
4.0 8.1 0.971 4.57 6.61 266
6.3 11 1.16 4.39 10.1 255
10 17 1.30 4.55 16.4 261
16 27 1.40 4.59 26.6 265
25 42 1.45 5.06 41.7 265
40 67 1.49 5.41 66.8 266
63 110 1.51 6.68 110 277
100 170 1.52 8.63 170 270
160 310 1.53 12.6 310 308
250 640 1.54 19.7 640 407

Table 3.1: Table of the impedance values of the TX coil labeled green. The frequency
is f , the impedance is Z = |Z| exp(jθ) = R + jX, and the self-inductance is L.

f (kHz) |Z|(Ω) θ (radians) R(Ω) X(Ω) L(µH)
1.0 4.9 0.347 4.61 1.67 265
1.6 5.3 0.525 4.59 2.66 264
2.5 6.2 0.735 4.60 4.16 265
4.0 8.1 0.964 4.62 6.65 265
6.3 11 1.15 4.49 10.0 254
10 17 1.30 4.55 16.4 261
16 27 1.39 4.89 26.6 264
25 42 1.45 5.06 41.7 265
40 67 1.49 5.41 66.8 266
63 110 1.51 6.68 110 277
100 170 1.52 8.63 170 270
160 310 1.53 12.6 310 308
250 650 1.54 20.0 650 414

Table 3.2: Table of the impedance values of the TX coil labeled yellow. The frequency
is f , the impedance is Z = |Z| exp(jθ) = R + jX, and the self-inductance is L.
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f (kHz) |Z|(Ω) θ (raians) R(Ω) X(Ω) L(µH)
1.0 4.7 0.359 4.40 1.65 263
1.6 5.1 0.541 4.37 2.63 261
2.5 6.0 0.752 4.38 4.10 261
4.0 7.9 0.980 4.40 6.56 261
6.3 11 1.17 4.29 10.1 256
10 17 1.31 4.38 16.4 261
16 27 1.40 4.59 26.6 265
25 41 1.46 4.53 40.7 269
40 66 1.49 5.33 65.8 262
63 100 1.51 6.08 99.8 252
100 170 1.52 8.63 170 270
160 300 1.53 12.2 300 298
250 620 1.54 19.1 620 395

Table 3.3: Table of the impedance values of the TX coil labeled blue. The frequency
is f , the impedance is Z = |Z| exp(jθ) = R + jX, and the self-inductance is L.

Figure 3.4: Image of the Receiver.
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f (kHz) |Z|(Ω) θ (raians) R(Ω) X(Ω) L(µH)
1.0 3.6 0.553 3.06 1.89 301
1.6 4.2 0.779 2.99 2.95 294
2.5 5.6 0.995 3.05 4.70 299
4.0 8.0 1.18 3.05 7.40 294
6.3 12 1.32 2.98 11.6 294
10 19 1.41 3.04 18.8 298
16 30 1.46 3.32 29.8 297
25 47 1.50 3.32 46.7 298
40 75 1.52 3.81 74.9 298
63 120 1.53 4.89 120 303
100 190 1.53 7.75 190 302
160 330 1.54 10.2 330 328
250 610 1.54 18.8 610 388

Table 3.4: Table of the impedance values of the RX coil. The frequency is f , the
impedance is Z = |Z| exp(jθ) = R + jX, and the self-inductance is L.

series of operational amplifiers in order to measure the signal.

The choice of capacitor in the receiver is 15 µF which allows for a resonance

frequency of 8 kHz. The capacitor value is verified using the impedance analyser.

Tables 3.5 gives the measured impedance of the capacitor using the HP impedance

analyzer in figure 3.3.

f (kHz) |Z|(Ω) θ (radians) R(Ω) X(Ω) C(µF)
1.0 110 -1.56 1.19 -110 1.45
1.6 66 -1.55 1.37 -66.0 1.51
2.5 42 -1.55 0.873 -42.0 1.52
4.0 26 -1.54 0.801 -26.0 1.53
6.3 17 -1.52 0.863 -17.0 1.49
10 11 -1.49 0.888 -11.0 1.45
16 6.6 -1.45 0.795 -6.55 1.52
25 4.2 -1.39 0.755 -4.13 1.54

Table 3.5: Table of the impedance values of the 15 µF capacitor used to resonate at
8 kHz. The frequency is f , the impedance is Z = |Z| exp(jθ) = R + jX, and the
capacitance is C.
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3.1.3 Power supply, power amplifier, and signal generator in the

transmitter

The purpose of the power amplifier is to provide a consistent current in the range of

1 A, regardless of what source is used to generate sinewaves. A Figure 3.5, and ??

the power amplifier (APEX EVAL68 rev. B) used for this experiment. It is chosen

because it provides linear amplification for an output current as high as 1 Amp in

the frequency band of interest. A RIGOL DP832A DC power supply is used to

power the circuit and the RIGOL DG4162 signal generator is used to apply the

transmitter with a sinewave at a given frequency. The power amplifier accept a DC

power supply voltage of ±15 Volts, and can accept a peak-peak voltage from the

signal generator of up to 5 Volts and a frequency less than 25 kHz, after which the

power amplifier introduces nonlinear signals in the circuit. The internal resistance of

the power amplifier varies between 3 to 5 Ohms depending of the frequency.

Figure 3.5: Image of the APEX EVAL68 rev. B power amplifier used to boost the
current in the transmitter.

3.1.4 Receiver Amplifiers

The readings of the voltage across the load resistance in the receiver is very small.

Thus a series of operational amplifiers are used to increase to voltage in order to

measure the signal from the receiver coil.
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The first operational amplifier is a LT1167 low-noise amplifier with a external

resistor Rg of 60 or 120 Ohms, depending on the amount of gain needed. The formula

for the gain is given in the data sheet [20]; however it is more accurate to measure

the gain directly across the whole chain as will be discuss later.

The second and third (not used) operational amplifiers are LM741 amplifiers con-

figure as inverting amplifiers with an expected gain of 50 each.

The actual gain of the complete amplification chain is measured and recorded in

table 3.6 where the low-noise amplifier has an Rg of either 60 or 120 Ohms. For Rg =

120 Ohm, the gains are consistently around 72 dB when the frequency is no less than

25 kHz, but depends linearly to 60 dB at 120 kHz. When Rg = 60 Ohm, the gain

started at 74 dB for 1 kHz and rose to 105 dB at 15 kHz, but then dropped to 63 dB

at 120 kHz.

3.1.5 Oscilloscope

Figure 3.6 shows the Agilent Technologies InfiniVision DSO-X 3034A digital oscil-

loscope used to get the sinewaves across the whole system. The green signal is the

voltage across the transmitter resistance RTX which is used to measure the current

in the transmitter. The blue signal is the voltage output of the receiver coil with the

gains from the both the low-noise amplifier and the inverting amplifier. All data is

recorded on a USB stick in a CSV (i.e. comma separated) file that can be opened

with any spreadsheet software.

3.1.6 Summary

A summary of the order of operation is given in figure 3.7. The circuits are represented

in figures 2.13 and 2.17. The signal generator sends a sinewave of a fixed frequency to

a power amplifier which powers the transmitter circuit and coil. Power is sent from

the transmitter to the receiver by mutual induction. The induced voltage is amplified

with a low-noise amplifier followed by an inverting amplifier.
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Frequency (kHz) Gain for Rg = 120Ω (dB) Gain for Rg = 60Ω (dB)
1 73.0 74.2
2 73.2 76.5
3 73.4 78.8
4 73.5 80.9
5 73.5 82.8
6 73.5 84.7
7 73.5 86.4
8 73.4 88.1
9 73.4 89.8
10 73.3 91.5
15 73.0 105
20 72.8 96.6
25 72.3 90.5
30 71.8 86.6
40 70.5 81.9
50 69.5 78.3
60 68.4 75.3
70 67.1 72.8
80 65.8 70.5
90 64.5 68.4
100 63.2 66.6
110 61.8 64.9
120 60.5 63.6

Table 3.6: Table of the measured gains in the chain of receiver amplifiers.

Figure 3.6: Image of the Agilent Technologies InfiniVision DSO-X 3034A digital
oscilloscope used to record the signals. The green signal comes from resistor RTX and
the blue signal comes from the receiver after the chain of operational amplifiers
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Figure 3.7: Schematic of the equipment.

3.2 Air Tests in the Lab

To ensure that the system works as expected, two experiments are performed in air

at the UWStream lab. A wooden cart shown in figure 3.8 is made to easily move the

receiver at a given distance from the transmitter. Wood is chosen for the cart instead

of metal to minimize the risk that conducting material may affect the measurements.

The receiver is tied to a vertical piece of wood screwed on the edge of the cart.

The transmitter coil and all of the equipment are fixed on a table and placed as far

away from both coils as possible. The circuit in the receiver is also placed on the table.

The experiments in the lab comprise of two tests. In test 1 (subsection 3.2.1), the

mutual induction is measured for various coil distances and then compared with the

models. In test 2 (subsection 3.2.2), the distance is fixed and a capacitor is added to

verify the claim that a capacitor in the load improves the received signal.

3.2.1 Test1 - Verify Mutual Inductance Formula

The objective of this experiment is to verify the mutual inductance from formula

(2.66) where the system is in the near field, but when the coils can be close together.
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Figure 3.8: Image of the wooden cart used to perform air tests.

To do so, one measures the mutual inductance M for multiple coil distances d up to

4 meters and plots it against the expected curve from equation (2.68a).

Since the coil radius αTX = αRX = α = 6.5 cm and the turn ratios NTX = NRX =

N = 35 are the same for this and subsequent experiments, the formula from (2.66)

will be rewritten as follows:

M = M0
¯ I

(︂α

d

)︂

(3.1a)

M0
¯ = πµ0N

2α (3.1b)

I (x) = x

∫︂ ∞

0

J2
1 (xt)e

−tdt (3.1c)

Note that when α ≪ d (or x ≪ 1), I (x) ≈ x3/2 and hence M becomes the near-field

dipole approximation from equation (2.67). Since α = 6.5 cm, it is expected that M

is inversely proportional to d3 when d ≫ 20 cm.

To measure the mutual inductance at a fixed distance, the transmitter is powered

with a sinewave current of a given frequency and the voltage across the transmitter

resistor RTX and in the receiver are measured. This is repeated for multiple other fre-

quencies between 1 and 25 kHz spread out in a logarithmic scale. This gives a profile

of the voltage ratio V as a function of f similar to equation (2.82). A least-squares

fit using equation (2.82) is applied to calculate the constant term A, which then can

be used to obtain the mutual inductance M . The load resistance RRX in this series
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Name Symbol Value
Distances d Between 0.16 m and 4 m
Frequencies of Operation f 1 kHz to 25 kHz
Transmitter Radius αTX 6.5± 0.5 cm
Receiver Radius αRX 6.5± 0.5 cm
Number of Turns in Transmitter NTX 35± 6
Number of Turns in Receiver NRX 35± 6
Transmitter Resistance RTX 5 Ω
Receiver Resistance RTX 10 Ω
Transmitter Impedance from Self-Inductance ZLTX

See Table 3.1
Receiver Impedance from Self-Inductance ZLRX

See Table 3.4
Mutual Inductance M Equation (3.1a)

Table 3.7: Summary of the parameters used in the mutual inductance measurements
in the air.

of tests is chosen to be 10Ω to ensure that fl = 7.4 kHz, which is within the range of

frequencies and thus the profile will look like figure 2.16.

Once a series of values of M are obtained for various distances d, the dataset is

plotted and compared with equation (3.1a). Another least-squares fit can be pre-

formed to get M0
¯ which can be compared to the expected value in (3.1b).

Table 3.7 summarises the parameters used for the the first test.

3.2.2 Test2 - Capacitor Performance

This experiment tests the premise in section 2.6.3 that a capacitor CRX added to the

receiver in parallel increases the voltage ratio near the resonance frequency given by

f0 = 1/2π
√
LRXCRX . The capacitor chosen is the 15 µF given in table 3.5 which

allows the receiver to resonate at 8 kHz.

The distance is fixed to be 1 meter. Two sets of voltage measurements are taken

as a function of frequency. The first set has the capacitor added and the second set

will not. For the set with no capacitor, the dataset is compared with equation (2.82).

However since the load resistance is now RRX = 240 Ω, the cutoff frequency fl is less

than the frequencies of operation and thus V ≈ Af . For the case of the capacitor

added, equation (2.85) is used.
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Table 3.8 summarises the parameters used for the the second test.

Name Symbol Value
Distances d 1 m
Frequencies of Operation f 1 kHz to 25 kHz
Resonance Frequency f0 8 kHz
Transmitter Radius αTX 6.5± 0.5 cm
Receiver Radius αRX 6.5± 0.5 cm
Number of Turns in Transmitter NTX 35± 6
Number of Turns in Receiver NRX 35± 6
Transmitter Resistance RTX 5 Ω
Receiver Resistance RTX 240 Ω
Transmitter Impedance from Self-Inductance ZLTX

See Table 3.1
Receiver Impedance from Self-Inductance ZLRX

See Table 3.4
Impedance from Capacitance ZC See Tables 3.5
Mutual Inductance M Equation (3.1a)

Table 3.8: Summary of the parameters used in the voltage ratio measurements with
a capacitor.

3.3 Air-Water Tests in the Dalhousie Aquatron

This test is performed at the Dalhousie Aquatron on May 2021. Its objectives are

to confirm that a signal can be received from a coil underwater, and verify that the

mutual inductance agrees with the theory (equation (3.1a)). Figure 3.9 shows a dia-

gram of the setup on the water. Figure 3.10 shows a photo taken of the setup.

The tanks of water contain a pontoon that was used to move the system away

from the walls to minimize the effects from boundaries. The system consists of two

wooden sticks tied to the pontoon with rope. The use of any metal are kept to a

minimum to avoid magnetic noise in the system. The sticks are placed next to each

other. One is anchored next to the pontoon and can not be moved, while the other

can be moved vertically to change the distance between the transmitter and receiver.

In this test, the transmitter is lowered 1 meter. The receiver is placed on the fixed

stick 1 m above the water surface. The transmitter is placed at the bottom of the

movable stick. To keep the transmitter level, a weight is tied onto the transmitter as
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Figure 3.9: Diagram of the Aquatron test setup.

Figure 3.10: Photograph of the Aquatron test setup.
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shown in figure 3.11.

Figure 3.11: Closer look at the underwater transmitter with a weight tied onto.

The electrical equipment is placed on the shore, and connected by wire to both

the transmitter and receiver as seen in figure 3.12. The same schematic from figure

3.7 applies here.

Table 3.9 summarises the parameters used for the measurements in the Aquatron.

Since the frequencies of operation are below 25 kHz for the test, the system is in the

near-field and thus the conductivity of water has no effect. Equation (3.1a) is used

to estimate the mutual inductance. Distances are fixed and a capacitor is used to

resonate at 8 kHz.

As in the air experiments, a series of voltage measurements in the receiver (with

gains) and the fixed transmitter resistance RTX are recorded for a given frequency

between 1 and 25 kHz. The resulting voltage ratio plot vs frequency should resemble

equation (2.85). A least-squares fit is used to determine the mutual inductance and

then compared with equation (3.1a).
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Figure 3.12: Image of the equipment used to power the transmitter and measure the
receiver.

Name Symbol Value
Transmitter depth below the boundary d 1.0± 0.1 m
Receiver height above water h 1.0± 0.1 m
Resonant Frequency f0 8 kHz
Frequencies of Operation f 1 kHz to 25 kHz
Transmitter Radius αTX 6.5± 0.5 cm
Receiver Radius αRX 6.5± 0.5 cm
Number of Turns in Transmitter NTX 35± 6
Number of Turns in Receiver NRX 35± 6
Transmitter Resistance RTX 5Ω
Receiver Resistance RTX 240Ω
Transmitter Impedance from Self-Inductance ZLTX

See Table 3.1
Receiver Impedance from Self-Inductance ZLRX

See Table 3.4
Impedance from Capacitance ZC See Table 3.5
Mutual Inductance M Equation (3.1a)

Table 3.9: Summary of the parameters used in the Dalhousie Aquatron measurements.



Chapter 4

Results and Discussion

In this chapter, an analysis of the data for both air and Aquatron trials is performed

and the results are discussed. Section 4.1 details how the collected sinewave measure-

ments are processed to obtain voltage ratios, which are used to perform least-square

fits to find the mutual inductance. The section 4.2 presents and discusses the data

obtained from the first experiment in the air (subsection 3.2.1) where the mutual in-

ductance is measured versus distance. Section 4.3 discusses the results for the second

test (subsection 3.2.2) where a capacitor is added. Finally section 4.4 goes over the

findings from the Aquatron experiment.

4.1 Data Analysis

This section presents how the data collected from an oscilloscope is used and the

mutual induction tests are processed to obtain a series of plots of voltage ratios vs

frequency. These plots are then fitted to equations (2.82) and (2.85) to measure the

mutual induction.

The oscilloscope records two voltages of the system as a function of time and

outputs as a CSV file. The name of the file is of the format ”f XXXpXkHz.csv”

where the X’s are replaced with the frequency in kilohertz of the AC signal sent by

the signal generator to the system (the ”p” represents the decimal point). These

files are grouped in a series of directories named via the test name followed by the

parameters used (i.e. distance value or if a capacitor is used). Figure 4.1 shows

visually how the data is stored.

In each CSV file there are three columns of data. Figure 4.2 is an example of how

each CSV file is structured. The first column is the time at which the oscilloscope

took a voltage measurement. The second column is the voltage across the fixed
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Figure 4.1: Image representation of the directory structure used to store the measured
voltages.

resistor RTX . The last column is the measured voltage in the receiver after passing

through the two amplifiers. The peak-to-peak voltage for each of the voltage columns

is evaluated in order to make voltage ratio plots. This is done by passing each CSV

into a Python code that does basic signal process on the columns.

Figure 4.3 illustrates how the code takes the waves and gets a peak-to-peak volt-

age. The signal is first passed through a Butterworth bandpass filter to remove any

noise. Such a filter needs a upper and lower cutoff frequency. The script can get the

frequency of operation directly from the CSV filename and then take ±1% of that

value for the cutoffs. This leaves a clean wave, but with artifacts at the start time val-

ues and thus the code only takes the latter part of the filtered signal. A least-squares

sine function fit of the form V (t) = A sin(Bt+C)+D is applied to the filtered signal

with A,B,C, and D the constants to be calculated. The relevant constant needed is

A which is the half of the peak-to-peak voltage. 4.4 shows a sample process of the

filtering and curve-fitting. Once each peak-to-peak voltage is found, it returns the

ratio of the two.
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Figure 4.2: Sample view of a CSV file containing the measured voltages from the
oscilloscope.

Figure 4.3: Flowchart of the process of taking the voltages measured from a CSV file
to a peak-to-peak voltage.

4.2 Results of Air Test 1 - Mutual Induction vs Distance

In this section, the results of experiment 1 from subsection 3.2.1 are presented, fol-

lowed by a discussion of the findings.
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Figure 4.4: Sample image of the analysis of the measured signals. A bandpass filter
is used followed by a best-fit sinewave.

4.2.1 Results

To proceed, the steps are to first fix a distance d and measure the voltages to obtain

the voltage ratio as a function of frequency. This is then repeated for multiple dis-

tances. As demonstration, the following shows the plot for the voltage ratio at d = 1

m.

Table 4.1 shows a sample dataset for the voltage ratios measured for a coil sepa-

ration of 1 m. Figure 4.5 shows the resulting plot along with the best-fit curve using

equation 2.82. Using the data from table 3.7, the expected cutoff frequency is fl = 7.4

kHz. The best-fit gives fl = 7.3 ± 0.1 kHz, which is within the expected value. The

best-fit value for the constant A from equation (2.83) is A = (2.2 ± 0.1) × 10−5 ms,

which gives rise to a mutual inductance of M = 29± 4 nH.

After repeating for multiple distances, the measured mutual inductances are pre-

sented in table 4.2 and the plot is shown in figure 4.6. The theoretical value for the

mutual induction given by equation (3.1a) is also shown in the plot.
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Frequency (kHz) Voltage Ratio (dB)
1.0 -93.6
1.3 -91.1
1.6 -89.5
2.0 -87.6
2.5 -85.8
3.2 -83.9
4.0 -82.3
6.3 -79.6
7.9 -78.6
10 -77.7
13 -77.1
16 -76.8
20 -76.1
25 -76.6

Table 4.1: Sample voltage ratio data obtained for a mutual induction system with
the coils 1 m apart.

Figure 4.5: Sample plot of the voltage ratio vs frequency obtained from the mutual
induction system with coils separated 1 m apart.
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Distance (m) Mutual Inductance (nH)
0.16 ± 0.01 4200 ± 600
0.20 ± 0.01 2600 ± 400
0.25 ± 0.01 1500 ± 200
0.32 ± 0.02 830 ± 100
0.40 ± 0.02 390 ± 60
0.50 ± 0.02 220 ± 30
0.63 ± 0.03 110 ± 20
0.79 ± 0.04 57 ± 7
1.00 ± 0.05 29 ± 4
1.30 ± 0.06 13 ± 2
1.60 ± 0.07 6.3 ± 1
2.00 ± 0.08 6.3 ± 1
2.50 ± 0.09 4.5 ± 0.7
3.20 ± 0.10 2.8 ± 0.4
4.00 ± 0.12 2.2 ± 0.3

Table 4.2: Table with the measured mutual inductances as a function of distance.

Figure 4.6: Plot of the measured mutual inductance as a function of distance in the
first experiment (subsection 3.2.1) along with the expected curve given by equation
(3.1a).
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4.2.2 Discussion

First note that for the voltage ratio plot for d = 1 m as shown in figure 4.5, the profile

behaves like a high-pass filter with cutoff frequency of 7.4 kHz. This is the expected

result and is consistent with all of the other distances.

Figure 4.6 shows that the mutual inductance follows the correct trend that the

theory (equation (3.1a)) predicts for distances up to 1.6 m. The relationship of M

being proportional to 1/d3 is seen in the data between 0.32 and 1.6 meters. Thus

for coils of α = 6.5 cm, it is reasonable to use equation (2.67) or (2.70) depending

on how far away the coils are, or if the frequency is large enough. The model does

overestimate the measured values below 1.6 m, but is still within the expected error

range. The primary cause of error for the model is from the number of turns N of the

coils. Since in this experiment M is proportional to N2, a miscount of the number of

turns can cause significant errors in the mutual induction.

At distances of 2 m or above, the measured M is significantly over what the

model predicts. The reason for this is clear when investigating the measured voltages

at these distances. Figure 4.7 shows a sample voltage reading from the receiver for

d = 4 m and f = 10 kHz. The noise floor distorts the signal too much for a filter

to recover the signal properly. This suggests that at distances larger than 2 m, one

should perform the mutual induction tests in a more open area where there are fewer

electrical disturbances than presents is in the lab. Therefore, due to the limitations

in the testing environment, the results for d ≥ 2 m are inconclusive.

4.3 Results of Air Test 2 - Capacitor in the Receiver

In this section, the results of the test 2 from subsection 3.2.2 is presented and dis-

cussed where the distance between the coils are fixed at 1 meter. Instead of measuring

M , this test verifies the claim in equation (2.85) that adding a capacitor CRX in par-

allel to the load resistance RRX improves the reading in the oscilloscope near the

resonance frequency of f0 = 1/2π
√
LRXCRX .
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Figure 4.7: Plot of the measured voltage across the receiver (with gains) at d = 4 m
and f = 10 kHz along with the least-square fit to the filtered sinewave.
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4.3.1 Results

Note that unlike in the first test, the load resistance is now RRX = 240 Ω. This means

that when there is no capacitor, the cutoff frequency fl from (2.82) is 80 kHz. This

is beyond the 25 kHz limit in the testing equipment and thus equation (2.82) can be

approximated as:

V (f) = Af (4.1)

Therefore in a log-decibell plot, the voltage ratio will look like a straight line with

slope of 1.

Figure 4.8 shows the measured voltage ratios as a function of frequency along with

the fitted curve from equation (4.1). The constant is A = 3.5± 0.1 milliseconds.

Figure 4.8: Plot of the voltage ratio in test 2 (subsection 3.2.2) with no capacitor
along with the best-fit function from equation (4.1).

For the case with a capacitor, Figure 4.9 shows the measured voltage ratios as a

function of frequency along with the fitted curve from equation (2.85). The constant

is A = 3.0±0.2 milliseconds, which is very close to the same value in the no capacitor
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scenario. Using the formulas, the predicted resonance frequency and cutoff frequencies

are f0 = 7.2 kHz and fl = 15 kHz. The best-fit gives f0 = 6.8±0.2 kHz and fl = 15±2

kHz, which matches the theoretical predictions within the error tolerances.

Figure 4.9: Plot of the voltage ratio in test 2 (subsection 3.2.2) with a capacitor along
with the best-fit function from equation (2.85).

Finally, the two plots are compared. Figure 4.10 is the result of dividing the data

from figure 4.9 by figure 4.8. This plot determines if the capacitor has an improvement

on the measured voltage ratio.

4.3.2 Discussion

As figure 4.10 demonstrates, the capacitor does improve the voltage ratio near the

resonance frequency by about 6 dB. At frequencies f ≪ f0 and fl, the curve levels

off. This is to be expected when comparing equations (2.82) with (2.85). In both

cases, V is proportional to f and thus should cancel when taking their ratios. At

large frequencies f ≫ f0 and fl, VnoCaps is a constant, but VCaps is proportional to

1/f hence the drop-off shown in figure 4.10 beyond the resonance frequency.
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Figure 4.10: Plot of the ratio of figure 4.9 to figure 4.8.

The curve stays within 1 dB from the maximum within 500 Hz from the peak.

Decreasing RRX would increase the peak at the expense of a shorter bandwidth. The

choice of 240 Ω seems to be a reasonable one.

4.4 Aquatron Results

In this section, the voltage ratio obtained from the Aquatron is presented and dis-

cussed. It is noted that the same capacitor as in the lab test 2 is used, and that the

case of Rg = 120 Ω is used in the low-noise amplifier.

Figure 4.11 gives the resulting measured voltage ratios of the test in the Aquatron

along with the theoretical prediction using equation (3.1a) to calculate M and (2.85)

to get the curve. Tow fitted functions are shown; the dashed black curve uses all of

the data points, whereas the dashed blue curve excludes the last two points which

appears questionable.

The expected curve is only about 2 dB over the measured data, which corresponds
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Figure 4.11: Plot of the measured voltage ratio obtained from the Aquatron along
with two best-fit functions and the predicted result.

to a mutual inductance of M = 13 nH. Using the fitted functions, M = 10± 2 nH for

the fit with all points and M = 8 ± 1 nH for the better fit with the last two points

removed. This suggest that the model from equation (3.1a) is accurate for a air-water

coil system with the transmitter underwater at a single depth value of 1.5 m. More

depths are needed to conclusively show that the model works. However, the results

thus far are promising, and merit further exploration.

For the other parameters, the cutoff frequencies fl are 11 ± 1 kHz for the ’bad’ fit

and 16 ± 2 kHz for the ’good’ fit. The predicted value is 15 kHz and thus the good

fit is closer. The resonance frequencies f0 are 8.7 ± 0.6 kHz for the ’bad’ fit and 7.8

± 0.2 kHz for the ’good’ fit. The theory predicts 7.2 kHz, which is close to the result

from the ’good’ fit.



Chapter 5

Conclusion

5.1 Conclusion

This thesis explores a new mathematical model for the determination of mutual in-

ductance in communication systems deployed in an air-water context. The proposed

model provides more accuracy than other models based on numerical simulations

and comparisons with known approximate models in extreme frequencies and/or dis-

tances. The new model is also faster to compute than simulating the fields directly

from Maxwell’s equations as it only requires evaluating a single integral as opposed

to numerically solving a system of partial differential equations. Under given condi-

tions, the general model derived can be approximated to simpler known equations.

The experimental results verify the model at the near-field for air context and suggest

it works as well in water. Experimental verification for the far-field in an air-water

context is not accomplished due to the restrictions for distances and frequencies in

the testing environment.

The model also gives the best frequencies to operate at a given TX depth. As

shown in subsection 2.5.4, the optimal frequency for maximum induced voltage at a

fixed transmitter current gets smaller very quickly which makes MI communication

more difficult at greater distances. The maximum itself also gets significantly smaller

with increasing coil separation. Referring to figure 2.11, for 100 m, the best frequency

is approximately 50 Hz, which significantly limits the channel capacity. Improvements

to this simple coil antenna model must be proposed to allow a higher frequency of

operation at distances greater than 50 m.

On a related note, this thesis uses the proposed model to investigate the possibility

of adding a passive repeater coil to improve performance. Such a coil is placed in

between the transmitter and receiver and the best location and size are determined
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and compared with no repeater. The finding of this thesis indicates that adding a

single passive repeater is not a good method for improving the performance of signal

transmission. The analysis indicates that the repeater must be 10 times the size of

the other coils, or must be close to the other coils.

5.2 Future Work

The results of this inquiry are promising and support additional research in four areas.

First an error and noise analysis to mitigate potential sources of error in a MI system.

Second, conduct an ocean trial to overcome the limitations present at the Dalhousie

Aquatron. Additionally, other signals and coil configurations should be explored.

The error analysis should consider three factors. First, coil misalignment should

be examined. [21] has already made extensive analysis for coils in air. This research

should be extended to a study of coil misalignment in an air-water context. Second,

the noise present in the equipment used in MI communication should be quantified

in order to develop mitigation strategies. Third, an extensive analysis of external

magnetic interference should be conducted. Potential sources to investigate include

the earth, ships, water current, marine life and sea floor.

An ocean trial would enable testing the proposed MI model at greater distances

than provided in the Aquatron. A depth of 20 meters is more useful to real world

deployment of MI communication systems. An ocean environment will allow one to

determine the maximum distance or frequency beyond which the attenuation due to

conductivity takes place.

Once a successful error analysis is completed and sea trails of MI are conducted,

research into employing other signals can follow. In particular, digital signals such as

phase-shift keying would be useful to investigate. This would include a study on the

channel capacity of the MI communication system.

Finally, there are other possible coil configurations to consider. Examples include,

the use of multiple active transmitters in an array, and the use of a multiple-input
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multiple output (MIMO) setup. While the use of a repeater was not found to be useful,

the use of metal surfaces near the transmitter to improve the system performance

could be explored.



Appendix A

Vector Calculus Review

A scalar field is a function that takes a spatial position (x, y, z) and possibly time t

and returns a real number. The charge density ρ(x, y, z, t) of an object is an example

of a physical quantity that can be modeled as a scalar field. By contrast, a vector

field is a rule that accepts a coordinate (x, y, z) and possibly time t and returns a

vector at that coordinate. Electric E(x, y, z, t) and magnetic H(x, y, z, t) fields are

examples of vector fields.

Vector fields obey the same operations as regular vectors (addition ’+’, scalar

multiplication, negation ’−’, dot product ’•’, cross product ’×’) provided that the

operation is done with matching coordinates (i.e. V(x, y, z, t)+U(x, y, z, t) is ok, but

V(x, y, z, t) +U(x′, y′, z′, t′) is not).

Unit vector fields based on the Cartesian coordinates x̂, ŷ, ẑ are defined to have

unit length and are oriented towards the increasing value of the corresponding coor-

dinate. An arbitrary vector field V(x, y, z, t) can be written as follows:

V(x, y, z, t) = Vx(x, y, z, t)x̂+ Vy(x, y, z, t)ŷ + Vz(x, y, z, t)ẑ (A.1)

Here, Vx, Vy, Vz are scalar fields called the components of V. They represent the

contributions of V that are oriented in the corresponding coordinate. Similar unit

vectors exist for cylindrical (s, ϕ, z) and spherical (r, ϕ, θ) coordinates. The position

vector r = xx̂+ yŷ + zẑ is defined to denote the point (x, y, z) as a vector field.

There are three major differentiation operations in vector calculus. All three can

be represented in terms of the following operator:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(A.2)
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This is not a vector field, but can be treated as one to easily reconstruct the following

three operations:

A.1 The gradient

The gradient of a scalar field f(r) creates a vector field defined as:

grad(f)(r) = ∇f(r) =
∂f(r)

∂x
x̂+

∂f(r)

∂y
ŷ +

∂f(r)

∂z
ẑ (A.3)

At a point r, the orientation of ∇f(r) gives direction of fastest rate of increase of f(r)

and the rate of change in that direction is |∇f(r)|. Possible minimum and maximum

points of f(r) are located where ∇f(r) = 0.

Equation A.3 gives the gradient in Cartesian components. In cylindrical compo-

nents:

∇f(r) =
∂f(r)

∂s
ŝ+

1

s

∂f(r)

∂ϕ
ϕ̂+

∂f(r)

∂z
ẑ (A.4)

And in spherical components:

∇f(r) =
∂f(r)

∂r
r̂+

1

r sin θ

∂f(r)

∂ϕ
ϕ̂+

1

s

∂f(r)

∂θ
θ̂ (A.5)

An arbitrary vector field V is called irrotational if there exist a scalar field f(r)

such that V(r) = −∇f(r). Electric fields from static charges is an example of an

irrotational field since the electric potential V is related by E = −∇V . Section A.2

gives a condition on when a vector field is irrotational. All of the information of an

irrotational field can be described by its corresponding scalar field.

A.2 The curl

The curl of a vector field V gives another vector field defined as:

curl(V)(r) = ∇×V(r) =

(︃

∂Vz(r)

∂y
− ∂Vy(r)

∂z

)︃

x̂+

(︃

∂Vx(r)

∂z
− ∂Vz(r)

∂x

)︃

ŷ

+

(︃

∂Vy(r)

∂x
− ∂Vx(r)

∂x

)︃

ẑ (A.6)
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Corresponding versions for cylindrical and spherical components can be found in [18].

|∇ ×V(r)| gives how much V(r) ’circulates’ around the point r. The orientation

of ∇×V(r) is given by the right-hand rule.

Points where ∇ × V(r) = 0 are where there is no circulation. Note that, for

a scalar field f(r), it is always true that ∇ × ∇f(r) = 0. Thus if ∇ × V(r) = 0

everywhere, then V(r) is irrotational and thus there is a scalar field f(r) such that

V(r) = −∇f(r).

A.3 The divergence

The divergence of a vector field V gives a scalar field defined as:

div(V)(r) = ∇ •V(r) =
∂Vx(r)

∂x
+

∂Vy(r)

∂y
+

∂Vz(r)

∂z
(A.7)

Corresponding versions for cylindrical and spherical components can be found in [18].

∇ •V(r) gives the flux per unit area of V(r) across an infinitesimally small box

centered at r. If ∇•V(r) > 0, more vectors V diverge away from r. If ∇•V(r) < 0,

more vectors V converge towards r. If ∇ •V(r) = 0, the point r is not a sink nor a

source for V(r).

Note that ∇• (∇×V(r)) = 0 for any vector V(r). Thus if ∇•U(r) = 0 for some

vector U(r), then there is a vector V(r) such that U(r) = ∇×V(r).

A.4 The Laplacian

The Laplacian is a second-order differential operator that is defined in terms of the

previous three operators. Is it defined for both a scalar field and a vector field.

For a scalar field f(r), the Laplacian is given by:

Lapl(f(r)) = ∇2f(r) = ∇ •∇f(r) (A.8)
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In Cartesian coordinates:

∇2f(r) =
∂2f(r)

∂x2
+

∂2f(r)

∂y2
+

∂2f(r)

∂z2
(A.9)

Corresponding formulas for cylindrical and spherical coordinates can be found in [18].

For a vector field V(r), the Laplacian is defined by:

Lapl(V(r)) = ∇2V(r) = ∇(∇ •V(r))−∇× (∇×V(r)) (A.10)

In Cartesian Coordinates:

∇2V(r) = (∇2Vx(r))x̂+ (∇2Vy(r))ŷ + (∇2Vx(r))ŷ (A.11)

Thus the Laplacian of a vector field can be found by computing the Laplacian of its

Cartesian components, which are scalar fields and thus one can use equation (A.9).

The formulas for cylindrical and spherical coordinates are much more complex and

can be found in [18]. The formula for cylindrical coordinates is given here as it is

used in this thesis. If V(r) = Vs(r)ŝ+ Vφ(r)ϕ̂+ Vz(r)ẑ, then:

∇2V(r) =

(︃

∂2Vs(r)

∂s2
+

1

s

∂Vs(r)

∂s
− 1

s2
Vs(r) +

1

s2
∂2Vs(r)

∂ϕ2
− 2

s2
∂Vφ(r)

∂ϕ
+

∂2Vs(r)

∂z2

)︃

ŝ

+

(︃

∂2Vφ(r)

∂s2
+

1

s

∂Vφ(r)

∂s
− 1

s2
Vφ(r) +

1

s2
∂2Vφ(r)

∂ϕ2
+

2

s2
∂Vs(r)

∂ϕ
+

∂2Vφ(r)

∂z2

)︃

ϕ̂

+

(︃

∂2Vz(r)

∂s2
+

1

s

∂Vz(r)

∂s
+

1

s2
∂2Vz(r)

∂ϕ2
+

∂2Vz(r)

∂z2

)︃

(A.12)
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