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Abstract 

Lithium ion batteries are the dominant technology for energy storage, and only projected 

to grow as Electric Vehicles gain higher adoption rates. Monitoring of the state of charge 

and the degradation metrics (state of health and internal resistance growth) in lithium-ion 

batteries without destructive investigation is an important and difficult task. For this reason, 

an in-situ monitoring technique could be a useful method to determine state of charge and 

degradation metrics. Voltage relaxation is a method that could be such a monitoring 

technique.  

Voltage relaxation is the process by which operational voltage changes to a steady-state 

open-circuit voltage after current stops flowing in a battery. There are two important 

metrics with voltage relaxation: magnitude and curve shape. Magnitude is amount of 

voltage that is relaxed, where curve shape describes how it approaches steady-state open-

circuit voltage.  

Two studies were performed on three popular chemistries of lithium ion-batteries with the 

purpose of: (1) finding a battery model to accurately curve fit voltage relaxation; (2) finding 

the relationships between degradation metrics and voltage relaxation metrics; (3) determine 

methodologies for evaluation of state of charge, state of health, and internal resistance from 

voltage relaxation. 

A new model was adapted from the equivalent circuit model. It can estimate state of charge 

within 0.5% for nickel based chemistries and 2.27% for the Lithium iron phosphate (LFP) 

chemistry while achieving acceptable curve fit error. The studies showed that for nickel 

based chemistries the magnitude of voltage relaxation is a function of state of charge and 

has a useful relationship to degradation metrics. This means that if state of charge is known, 

or determined, degradation metrics can be estimated from a voltage relaxation period. 

Methodologies were created and trialed that used these relationships to determine the state 

of charge, state of health and IR from voltage relaxation periods with considerations for 

practical applications. Voltage relaxation in LFP batteries is a function of state of charge, 

but insufficient degradation was achieved to analyze degradation metrics. For this reason, 

further studies should include full cycle life of LFP batteries to find these relationships and 

determine the sensitivity required of voltage relaxation analysis of degradation metrics. 
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Chapter 1 Introduction 

Lithium-ion batteries (LIBs) are an established and growing technology with useful 

applications in diverse fields. According to the International Renewable Energy Agency, 

manufacturing capacity of LIBs for energy storage is set to quadruple from 2021 to 2025 

from 625 GWh to 2500 GWh [1]. With a valuation of roughly 50 billion USD [2] they are 

a cornerstone of the energy storage market. For energy storage technologies LIBs have 

consistently produced over 80% of all capacity since 2015, usually accounting for over 

90% [2]. One major factor is their top of class energy density, related to both volume and 

mass. They regularly achieve between 150 – 200 Wh/kg and 250 – 350 Wh/L [3]. This is 

significantly higher than any other rechargeable battery technology. Their decrease in cost 

over the past 20 years only adds to the motivation to use the technology. In 2000 the price 

was roughly 3,400 USD/kWh, while in 2019 the price was 156 USD/kWh. This is still set 

to lower as the technology continues to mature [4]. For these reasons LIBs are often the 

only reasonable choice for many applications. 

There are 3 mass market construction methods for LIBs: pouch, cylindrical, and prismatic. 

All cell construction methods operate under the same principles with sizing, capacity rating 

and thermal management being the main differences. In this thesis only cylindrical cells 

are used. For a cylindrical cell, the contents are rolled into a spiral called a jelly roll and 

put into a rigid metal cylindrical casing as shown in Figure 1. This casing acts as the 

negative terminal, with a cap that acts as the positive terminal for the cell.  

Once constructed, the cell can not be taken apart without rendering the battery inoperable. 

Meaning that all monitoring of the cell must come from external measurements such as 

temperature, or electrical properties such as voltage. This limitation is the one of the 

motivating factors for the work performed in this thesis, using an in-situ method to 

determine metrics for an LIB. 
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Figure 1: Basic cylindrical structure construction method provided from Mitch Gregory. 

Two important metrics for LIBs are State of charge (SOC) and State of health (SOH). SOC 

is a cycle-based metric for how much useful capacity is remaining until the battery can not 

output energy. SOH is a lifetime-based metric for the current total capacity of the battery 

compared to its highest achieved total capacity. Therefore, a battery that is rated at 1 Ah 

which can deliver 0.95 Ah is at 95% SOH. SOC is a cycle based metric where SOH is a 

lifetime based metric. As the battery wears through cycling and calendar ageing the 

maximum capacity will decrease, thus lowering the SOH; this is one of the effects of 

degradation.  

Degradation is the process by which the capacity of the battery decreases over time and the 

internal resistance (IR) grows. Lower capacity means the battery has less useful energy. 

Higher IR results in more heat generation, lower efficiency, and lower power capability. 

These degradation metrics can be used as health indications of the battery. SOH is more 

commonly monitored than IR growth as energy out is often the most useful property of the 

battery. For different applications the SOH value that is considered end of life (EOL) can 

vary. Most commonly, and specifically for electric vehicles (EVs), the value of 80% SOH 

is used [5] [6]. SOH is important to view against the cycle count of the battery to determine 

how quickly it is degrading. When batteries are used in real world applications, they are 

rarely cycled consistently between 100% and 0% SOC. Therefore, number of charge and 

discharge cycles is a poor metric as it is specific to the operation of the battery. SOH should 
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be compared to equivalent cycles based on nominal capacity (Ah-CycEq), how many times 

has the rated capacity been discharged from the battery. There is always a negative 

correlation between SOH and Ah-CycEq. This is shown next to an example of IR growth 

as a degradation metric in Figure 2.  

 

Figure 2: Example of typical degradation plots to evaluate SOH and IR growth 

Measuring maximum capacity requires a 1.5 day test, and IR requires a specialized charge 

and discharge control. These are not always feasible to achieve in applications where 

operational time is maximized and cost is minimized. Therefore, finding a method to 

determine degradation metrics with a simple procedure is valuable. 

Another issue that is facing LIBs is how they scale as more storage is required. To gain 

higher capacity, voltage or power output, cells must be stacked in parallel and series. This 

is different than some other energy storage technologies such as pumped hydro, and 

Vanadium redox flow batteries [7] which can increase capacity by increasing the size of 

the storage mechanism. This difference explains the tiered structure of battery packs. 

Individual cells are put into parallel and series groups called modules. Then modules are 

organized into series groups called packs as pictured in Figure 3. 
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Figure 3: Cylindrical cell LIBs scaling from cells to modules to packs 

This organization paired with the safety requirements of the LIB make monitoring an 

individual cell for failure a difficult task. Each pack requires a battery management system 

(BMS) that monitors each of the operational metrics for the pack and safety parameters for 

the modules. The BMS is required to monitor the SOC and SOH. One method that has been 

proposed to determine these metrics is voltage relaxation. 

Voltage relaxation (VR) is the process that occurs to the voltage of the battery after current 

stops flowing, where it relaxes to a steady-state open circuit voltage (SS-OCV) from an 

operational voltage. VR is commonly used as a replacement for slow rate testing to find 

initial characteristics of batteries. Using a correlation between SS-OCV and SOC, VR can 

be used to estimate SOC. It has also been shown to predict the degradation processes taking 

place in batteries [8]. VR can be used to show the SOH of the battery and could potentially 

give insight into IR growth as well. VR takes a long time to reach SS-OCV, 5 hours or 

longer depending on the chemistry of the battery. To shorten this period, battery models 

can be used to predict SS-OCV, and VR curve shape.  

In this thesis VR is studied as a method for SOC determination and SOH estimation. The 

following research questions were created to guide the studies:  
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1. How does the VR magnitude and curve shape change as a function of SOC value? 

2. What period of time is necessary for the battery to be considered fully rested at SS-

OCV? 

3. For estimating SOC, how complex must a model be, and how short can the VR 

period be, to accurately determine SS-OCV? 

4. For estimating SOH, how complex must a model be, and how short can the VR 

period be, at a sensitive SOC position to accurately capture VR magnitude and 

curve shape? 

5. Do time constants of VR curve shape change as a function of degradation metrics 

(SOH & IR growth) with a relationship that is useful to predict degradation metrics? 

6. Does VR magnitude change as a function of degradation metrics with a relationship 

that is useful to predict degradation metrics? 

The questions then inform the thesis objectives that were created: 

1. Determine a battery model that can accurately curve fit VR so that it can be 

evaluated quantitatively.  

2. Determine a methodology for estimating SOC from a VR period to the highest 

accuracy possible.  

3. Determine a methodology for evaluating degradation metrics (SOH and IR growth) 

from a VR period. 

4. Find relationships between VR metrics (magnitude and curve shape) and 

degradation metrics.  
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Chapter 2 Background 

2.1. The lithium ion cell 

2.1.1 Construction  

There are 3 primary components to the lithium ion cell, these are the negative electrode 

(Anode), the electrolyte, and the positive electrode (cathode). There are also 4, non-active, 

secondary components, the solid electrolyte interphase (SEI), separator, and current 

collectors, without which the cell could not function. Figure 4 shows how the primary 

components are arranged. Chapter 2.1.1 to 2.1.1 will describe the relevant components for 

degradation and VR comprehension.  

 

Figure 4: Graphical representation of internal view of a lithium ion cell [9] 

The basic function of the cell relies on the mass transfer of lithium ions between the 

electrodes and intercalation. Intercalation is a chemical process by which a foreign ion or 

molecule can be inserted between sheets of a host lattice material to create a semi-stable 

structure. Intercalation facilitates the half reactions, which take place in each electrode, 

typically creating the following full reaction, Eq [1]. 
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Eq [1]: 𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞 𝐜𝐞𝐥𝐥 𝐫𝐞𝐚𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐚 𝐥𝐢𝐭𝐡𝐢𝐮𝐦 𝐢𝐨𝐧 𝐛𝐚𝐭𝐭𝐞𝐫𝐲 

LiMO2 + Cn

Chg
⇌
Dis

Li1−xMO2 + LixCn 

Where MO2 is the mixed metal oxide of the positive electrode. In the case of certain 

positive electrodes such as Lithium Iron Phosphate (LFP), this would be an altered reaction 

with PO4 in place of the MO2. In the full cell reaction, a lithium ion is traveling from one 

electrode to another. During this process the lithium ion must pass through the SEI, the 

electrolyte on either side of the semi-permeable separator, through said separator, and 

finally intercalates into the opposite electrode. For the positive electrode the charge from 

the lithium ion receives a balancing electron from the current collector, which reduces the 

metal’s oxidation state creating the positive half reaction. For the negative electrode the 

balancing electron from the current collector, reduces the lithium ion creating the negative 

half reaction. The current collector is connected to the electrode and allows for travel of 

electrons to an external circuit. 

The open circuit voltage (OCV) of the cell is determined by the reduction potential of the 

positive electrode and the negative electrode with Eq [2].  

Eq [2]: Potential of the cell 

𝐸Cell
0 = 𝐸PE

0 − 𝐸NE
0  
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Figure 5: Full and half cell voltages vs capacity for a lithium ion battery 

Where 𝐸PE
0  and 𝐸NE

0  relates to the potential of the positive and negative electrode 

respectively. Figure 5 shows that these values of 𝐸PE
0  and 𝐸NE

0  change as a function of x, 

which is the ratio of lithium intercalated into the negative electrode. This variable is 

analogous to SOC, but not equivalent as x will never reach 0 or 1. The potential of the cell 

will always be lower than the positive curve as achieving a voltage lower than the baseline 

is chemically impossible for this architecture. The underlying electrochemical mechanism 

behind these curve shapes is the lithium concentration at the surface of the electrodes.  

The concentration of lithium in the electrodes is the most important behaviour of LIBs to 

understand VR of a cell. As current passes through a cell this forms a concentration gradient 

though both electrodes and electrolyte. This gradient is different for each component but is 

related to each other as they must be roughly equal at the interfaces. Picturing each 

electrode as a cylinder the 1 dimensional gradient is the concentration of lithium from the 

center to the surface. Figure 6 shows this is different from the electrolyte which is the 

concentration from one electrode to the other. 
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Figure 6: Example Li concentration throughout the cell on discharge 

These gradients are highly dependent on the current passing through the cell, and the 

health of the cell. A high current will create a larger gradient. These gradients take a 

number of coulombs to pass through the cell for them to be fully expressed. This means 

that different current rates will result in different time for gradient stabilization [17]. 

2.1.2 Positive electrode 

The positive electrode, also called the positive active material or cathode, is where the 

positive half reaction occurs. This is different than the negative electrode in that the 

reduction pair is a different metal than lithium as can be seen in the half reaction Eq [3]. 
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Eq [3]: Positive half reaction in the lithium ion cell 

Li1-xMO2(s) + x Li+ + x e- ↔ LiMO2 (s) 

The positive half reaction has M being the oxidizing metal same as the full reaction. 

Depending on the positive electrode material there is a difference in the potential of the 

half reaction. For example, LFP cells reduce the Iron from Fe3+ to Fe2+ and have a potential 

of roughly 3.5 V vs Li/Li+
.
 Figure 7 shows the reduction potential for various common 

potential positive electrode materials. 

 

Figure 7: Reduction potential of various elements versus lithium reproduced with permission from 

[10]  

From this graph the ideal positive electrode material would be a material with the highest 

specific capacity (mAh/g), how much energy can be stored per unit mass, and the highest 

potential. This explains some of the dominant chemistries that can be observed in the 

market which are highlighted. Nickel Manganese Cobalt (NMC) and Nickel Cobalt 

Aluminum (NCA) cells have a high voltage and specific capacity, and this can be seen in 

the figure. This graph also shows that LFP cells have lower capacity and voltage which 

when placed into the LiFePO4 configuration as this increases atomic mass thus lowering 
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the specific capacity, while keeping the same voltage potential of Fe2+/3+. The effect would 

be pushing the point further left as LiFePO4 is heavier than LiFeO2. 

2.1.3 Electrolyte  

The electrolyte is a key component of the lithium ion cell as it facilitates the mass transport 

of lithium ions from the one electrode to the other. To accomplish this, the electrolyte is 

usually a high molarity aqueous salt solution with different additives. The specific solution 

must be stable for the operation of the cell. When looking at the voltage range for this 

solution it must be relatively large, approximately 4.2 V in NMC cells for example. This 

selection is made more difficult with the varied temperatures where it needs to stably 

perform. The lowest temperatures being lower than -20°C and the highest being above 

60°C. This makes selecting the electrolyte a balancing act of good thermal and 

electrochemical stability while not losing performance and keeping cost low. One final 

aspect of electrolyte selection is the formation and long term evolution of the SEI.  

2.1.1 Negative electrode 

The negative electrode, also called the negative active material or anode, is where the 

negative half reaction occurs in the lithium ion cell. Lithium ions are reduced from a 1+ 

state to a neutral state, as shown in Eq [4]. 

Eq [4]: Redox reaction of a lithium ion  

Li+ + e- ↔ Li; E0 = -3.04 eV 

This redox reaction is the basis for the potential in lithium ion cells. It is common to 

reference other voltages in the context of the cell as eV vs Li/Li+. Often it is done without 

mention and simply referred to with V as was done in Figure 5. This shows the relative 

potential to this reduction which gives an easier to interpret number for the voltage of the 

final cell. Therefore, the lowest potential in the cell is the reduction of lithium, which is 0. 

To facilitate this reaction carbon sheets are used to host the lithium via intercalation, which 

gives the half reaction for the cell of: 

Eq [5]: Negative half reaction of a lithium ion cell 

 Li1-xC6 + x Li+ + x e- ↔ LiC6(s); 𝐸𝐴𝑛𝑜𝑑𝑒
0 = +0.26 eV vs Li/Li+ 
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One of the main benefits of using graphite is the low potential of the intercalation. The 

lithium is stored between each sheet of graphite. Each possible location in the stack of 

graphite that this can occur is called an intercalation site. As the lithium occupies a site it 

applies mechanical stress to the lattice, making the non occupied sites entrances compress. 

This paired with the positive charge of lithium ions repelling other lithium ions is why an 

effect on the voltage called staging occurs. Staging is easiest to notice in the voltage profile 

of the negative electrode shown in Figure 8. 

 

Figure 8: Voltage profile of a graphitic negative electrode with staging effect graphics adapted from 

[11]  

Lithium is intercalated into the site where insertion energy is at a minimum. From the 

effects mentioned earlier this results in the stages that are shown on the upper right of the 

figure. It takes less energy to occupy a filled site compared to entering a new site, stretching 

the lattice, and being repelled by like charges of the neighboring occupied sites. Since the 

potential of the negative electrode is determined by the surface concentration of lithium the 
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voltage of the negative electrode and cell has this staircasing effect on the profile as the 

cell is charged or discharged.  

When fully charged, SOC is 100%, there will be the maximum of lithium ions in the 

negative electrode and the potential of the cell will be at a maximum due to this. When 

fully discharged, SOC is 0%, the potential will be at a minimum. The potential of the 

negative electrode will increase as the SOC decreases due to the low potential of the 

reduction pair. This is represented graphically in Figure 9. This figure also shows that the 

positive electrode has the opposite effects of the negative electrode for charge and 

discharge.  

 

Figure 9: Schematic of charge and discharge of a lithium ion battery from the perspectives of the anode 

and cathode. (Not real curve shapes.) Reproduced from [12] 

2.1.2 Solid electrolyte interphase 

The SEI is a component of the battery which is not present during the construction of the 

cell. The SEI is created upon first lithiation cycle, of the negative electrode. The SEI is a 

passivating film layer between the negative electrode and the electrolyte. Assuming the salt 

in the electrolyte is LiPF6, the most common option, the SEI is constructed initially from 

LiF and Lithium Ethylene Dicarbonate (LEDC). Over time the LEDC will decompose into 

other compounds the SEI will grow, and more Lithium will be absorbed. This is shown in 

Figure 10. 
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Figure 10: SEI formation reproduced from [13] 

Should the electrolyte be chosen differently a similar process will occur. The compounds 

will be different, and the evolution will be different as well, but the effects on performance 

will be analogous.  

The evolution of the SEI leads to increased resistance for a lithium ion being transported 

from one electrode to another, and a decrease in available lithium inventory, lowering the 

overall capacity since the growth is facilitated by compounds which require lithium to 

form. [13] 

With these drawbacks it would seem logical to prevent the SEI from forming, however 

there are significant benefits to the SEI forming. First is that the SEI shields the highly 

reactive graphite anode from the electrolyte as it increases in lithium content. Next, the SEI 

decreases the voltage range that the electrolyte must be stable at by increasing the lowest 

voltage it will experience. Without these benefits the performance of the cell would 

decrease or be non-functional without an SEI. For these reasons the goal in cell creation is 

to have the best long term evolution of the SEI possible, minimal growth, but not to 

eliminate it.  

2.2. Performance metrics 

Once constructed, the lithium ion cell can not be taken apart for investigation and continue 

to operate. This is because it is not stable in a high energy state when exposed to air. The 

cell contents will react with air and can cause an explosion. Therefore, there are limited 
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methods of monitoring the battery. There exist three groups of performance metrics for 

LIBs which can be used to monitor a battery; these are primary performance, secondary 

performance, and battery defined metrics as can be seen in Figure 11. 

 

Figure 11: Performance metrics graphic 

Primary metrics are the simplest group containing 3 measurements that can be made on the 

battery. These are the voltage, current, and temperature. These are primary because these 

are indepedantly measured while operating the battery. The voltage and current are 

measured from the positive to the negative current taps, or from the positive cap to negative 

casing for cylindrical cells. Temperature is ideally measured as the surface temperature of 

the cell, however for many applications must be positioned further away for pack 

construction considerations. All primary metrics are used to then calculate the secondary 

metrics of the LIB, thus the naming convention. 
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Secondary metrics can not be directly measured as they are functions of the primary 

metrics, or compound functions of primary and other secondary metrics. Secondary metrics 

are often what is examined for absolute terms of performance. These are metrics such as:  

• Power, calculated by current multiplied by voltage; 

• Energy, integration of power with respect to time can be charge or discharge; 

• Energy efficiency, ratio of discharge energy to charge energy; 

• Capacity, the integration of current with respect to time can be charge or discharge; 

• Ah Throughput, Total capacity cycled through battery can be charge or discharge; 

•  IR, calculated by quickly pulsing the current to watch the change in voltage;  

• Coulombic efficiency, ratio of discharge capacity to charge capacity. 

These metrics work well when examining a singular battery over its lifetime or can be 

useful for monitoring multiple batteries which should have the same performance. 

Battery defined metrics are the final group of performance metrics and are often the most 

insightful. This is because they relate directly to the specific battery that is being tested and 

are defined by initial values or specifications from the specification sheet. They are: 

• SOC, amount of usable capacity relative to maximum capacity; 

• SOH, maximum capacity relative to initial capacity; 

• IR Growth, IR of battery relative to initial IR; 

• Ah-CycEq, total discharge Ah divided by rated capacity.  

 Th reason these metrics are useful is best exemplified by Ah-CycEq. This metric gives a 

good measurement of how long a battery has been used and makes different chemistries 

comparable. If an LFP cell and an NMC cell have the same discharge Ah throughput (D-

AhT) it appears they should have comparable results. The Ah-CycEq shows that the LFP 

cell has had more than twice the number of cycles as it has less rated capacity. The 

difference is only shown in the battery defined metric of Ah-CycEq. This is the ideology 

with all battery defined metrics, to show how primary and secondary metrics compared 

between batteries. 
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Lab testing equipment is made to monitor most or all of these metrics. They are calculated 

by the battery testing software used and arranged into timeseries data. For real world 

applications this is not always feasible. The monitoring hardware may not be able to 

perform these calculations or measurements. Data logging capabilities required for 

accurate coulomb counting, monitoring small currents for long periods, often are not 

included in BMS. Therefore, the BMS can not account for small parasitic loads that are 

applied over the time scale of weeks. This is a principle motivating factor for this thesis. If 

a non-intrusive, relatively simple algorithm can be implemented into a BMS or equivalent 

to determine some of these metrics, that has value to the producer and end user by 

accounting for these weaknesses. 

2.3. State of charge estimation  

State of charge refers to the remaining dischargeable coulombs in relation to the total 

capacity of a battery. This means that at 0% state of charge the battery will have no useable 

capacity left. Determination of SOC seems to be a simple case but in reality, there is no 

perfect method of SOC determination for an application. Thus, the engineering decision of 

acceptable drawbacks must be made.  

2.3.1 Coulomb counting  

The first method and often the ideal approach is coulomb counting. Coulomb counting is 

the process of monitoring the current and integrating with respect to time. Starting a battery 

at 100% SOC the discharge amp hours can counted relative to the total capacity of the cell 

to determine the SOC. This method works well even with charge and discharge occurring 

before a 100% is reached again as lithium ion cells are nearly 100% coulombically 

efficient. Equipment is required that can monitor the amperage of cells and store that data, 

which is commonplace for most applications. This is a common SOC estimation in many 

applications for its simplicity and low requirement of equipment. 

As discussed previously accounting for small parasitic currents requires precise equipment 

which is not worth the investment for most applications. Another problem with coulomb 

counting comes with the question of what the capacity of the battery is. One solution would 

be to use the rated capacity from the manufacturer. As the cell ages the real capacity will 
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decrease while the SOC is still calculated from the original capacity. This means that the 

estimation of SOC will always be higher than reality and the low voltage limit will be hit 

while still being at mid-range SOC. This can be countered in one of two ways. First the D-

AhT can be monitored over the life of the battery. The D-AhT can be related to a 

characteristic curve supplied from the manufacturer, which gives an estimate of where the 

  p    y  h   d b   n r      n     y       n . Th    mpr      h  r       b   d   n’  w rk 

when the degradation that occurs is different than what was experienced on average from 

the manufacturer. As degradation is a complex process divergences from this curve are 

expected as the operating scheme or application needs are different than a lab environment. 

Second, a reference performance test can be run where a full discharge and charge cycle is 

obtained. By charging to full state of charge, discharge to 0% and charging back to 100% 

the true maximum capacity of the cell can be known. This maximum capacity can be used 

with coulomb counting for the best estimation of SOC. The issue is that this method is not 

feasible for many applications. For personal devices the time required to perform this test 

would be too long and impact the daily use. For commercial applications it could be 

performed but would reduce the operational time, which is not often acceptable as well. 

This means that performing a reference performance test is a niche solution to the problems 

of coulomb counting. 

2.3.2 Open circuit voltage 

As shown in Chapter 2.1 the SS-OCV is directly related to the energy remaining in a cell. 

The SS-OCV of a battery can then be related to the SOC through the relationship which is 

determined on a per cell basis with a cycle at the start of life. Relating SS-OCV to SOC 

requires performing a pseudo-OCV test as outlined by Barai et. al [14]. The pseudo-OCV 

test is a low rate cycle that produces a voltage profile representative of OCV vs SOC.  

This method for evaluation of SOC is more accurate than coulomb counting as it is not 

highly dependent on the degradation of the cell. Ideally SS-OCV could be determined 

during regular operation. This is not feasible because it takes a long time to relax to SS-

OCV from an operational voltage. Research into the settling time has stated times as long 

as 24 hours with most claiming roughly 5 hours. [15] [16] [17]. This long period of time 

often is what limits the use of SS-OCV for SOC determination. 
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2.4. Degradation of the lithium ion cell 

One of the main drawbacks to LIBs is their degradation. Their performance degrades as 

they progress in calendar age and cycle count. 

2.4.1 Effects on performance  

As mentioned there are two main effects on performance from degradation. These are the 

loss of capacity, and the increase of IR. SOH is the battery defined metric that has been 

used to quantify degradation of the capacity, and IR growth can be monitored from DC or 

AC techniques in % resistance growth.  

Capacity degradation has immediate and measurable effects on the operation of the cell for 

any use case. It is the primary degradation that is monitored over the lifetime of the battery. 

Capacity degradation should be how cells fail, as it is unavoidable, and it results in the 

longest life of the battery.  

IR growth is a more insidious degradation effect than capacity degradation. It is harder to 

detect and therefore often viewed secondary to capacity degradation. IR will affect many 

different aspects of the battery performance. First the cell will lose energy efficiency, 

creating more waste heat as a by-product. This heat generation can cause the battery to 

degrade faster, and in extreme cases lowers the rate that can be safely run at. IR growth 

also increases the time to charge. This is because  f Ohm’    w from the current passing 

through the battery will increase the terminal voltage of the cell. This causes the constant 

current (CC) phase of a constant current / constant voltage charge to terminate earlier. This 

early termination causes the slower constant voltage (CV) phase to fill the remaining 

capacity. 

Diagnosing IR in an application can also be difficult. If IR on a pack level is not being 

monitored there are many other components in the system which could cause similar effects 

but be reversable, such as high resistance contacts. This compounds with IR diagnostics 

requiring a specialized charge discharge control or increase in cost of the BMS. If IR could 

be monitored with minimal interference to the end user, this would be beneficial as a low 

cost and impact alternative.  
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2.4.2 Degradation causes, mechanisms, and modes  

The mechanisms of LIB degradation are numerous and complex, they can promote other 

mechanisms, and only show in one of two effects. They can be categorized into four 

distinctions: cause, degradation mechanism, degradation mode, and effect seen in Figure 

12.  

 

Figure 12: Degradation mechanism flow chart reproduced from [18] 

Starting from the right, the two effects were previously mentioned as capacity degradation 

(Capacity Fade) and IR growth (Power Fade). These are directly caused by the degradation 

modes. If there is a loss of lithium inventory in the cell less can be intercalated and the 

capacity of the cell is decreased. This is the same reason that a loss of electrode material 

will cause capacity fade, less ions can be intercalated. When the active material becomes 

damaged more energy is required for a lithium ion to travel through cell. This extra energy 

can be represented as an electric resistance with a real and imaginary component, this is an 

increase in IR. 

Often times these degradation causes are unavoidable for the application. For example, 

lithium intercalation causes mechanical stress on the lattices, which is one of the 

degradation causes. Furthermore, the best temperature for operation of the cell is at 40°C, 

what would be considered high temperature. As applications become more defined, they 
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can be the driving factor for how the cell has degraded. Take for example a battery used in 

an EV versus grid storage. The EV will experience more variability in temperature and 

power consumption, but the grid storage battery will be constantly cycling, meaning the 

mechanical stress on the      r d ’  lattice will be more of a factor over the same amount 

of time. These two batteries will degrade differently. Even if there is no usage of the battery 

degradation still occurs. Calendar ageing is a well studied effect [19] [20]. It is a minor 

factor compared to degradation from use, but important to recognize that the health of the 

battery is always lowering even when in rest.  

2.4.3 Degradation considerations  

SOH and IR growth are battery defined metrics to compare beginning of life (BOL) to 

present operations, making the understanding of the degradation process imperative to 

high quality operation of an LIB.  

Degradation is a complex process of multiple causes and mechanisms with interplay 

between them influencing two observable effects, capacity degradation and IR growth. 

Degradation is unavoidable as regular usage or storage of a battery will progress it. 

Similar to monitoring performance metrics there is a difference between monitoring in a 

lab environment versus an application. The lab environment can hold certain factors 

constant such as temperature and pressure. The monitoring of primary performance metrics 

is high quality from the battery testing systems. Once a battery has failed it can be 

destructively tested for the specific degradation that has occurred. These are luxuries not 

afforded to most real world applications. For these reasons determining the SOH and IR 

growth with simple tests that any monitoring system can perform would be a valuable 

contribution to the field.  

2.5. Single cycle battery models 

Battery modeling is an important task to improve the performance and prediction of metrics 

for all applications. The fact that there is no dominant model for all batteries shows that 

each application must make simplifications and assumptions guided towards their end goal. 

This is because of differences between individual cycles introduced from degradation. One 

cycle to another may have minor differences, but 100 cycles will have different model 
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coefficients and require alterations because of that. To complicate this further there are 

variables which effect SOH and IR growth that can only be known after destructive 

investigation. Therefore, no model can be made that has all pertinent information of the 

battery for a model. A concession must be made, and different models are optimized for 

different purposes.  

This thesis requires monitoring the degradation and to use VR to examine how the battery’  

characteristics will change as a function of SOH or SOC. For this reason, lifecycle models 

are not used, which estimate the SOH based on usage and calendar life. Single cycle battery 

models are used. These can accurately predict the behaviour of the cell for a charge or 

discharge cycle. Single cycle models are useful as they can be adapted by altering their 

coefficients to account for degradation. Therefore, if the m d  ’  coefficients are fit, after 

some cycling, degradation can be determined and monitored from how these coefficients 

change. This is different as the degradation determination is a secondary effect of the model 

compared to lifecycle models for which require knowing the history of the battery.  

Among single cycle battery models there are various forms. Ungurean et al. [21] 

summarized that there are three overarching types of battery models for individual cycle 

performance, these are: 

• Electrical  

• Electrochemical  

• Mathematical 

2.5.1 Electrical models 

The electrical model of a battery is a simple but effective tool to show how a battery will 

interact in an electrical system. It uses basic circuit components, resistors, capacitors, and 

a capacity dependant ideal voltage source to show the dynamic voltage and current 

behaviour of a battery. The basic form of this model can be seen in Figure 13. 
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Figure 13: Equivalent circuit model of a lithium ion battery 

The equivalent circuit model (ECM) is commonly used in industry for its adaptable 

simulation of a cycle. The main benefit of this model is the simplicity of it. An ECM only 

requires information that is readily available from cycling data. This is because the model 

coefficients are determined by curve fitting of data from a previous cycle. For simulations 

it is computationally simple relative to other battery models and integrates easily. There 

are no alterations based on the chemistry used, making it adaptable and easy to translate 

results from one chemistry to another. Since it can be curve fit to any cycle the previous 

history of the battery is not required to be known, and it can be adapted as the battery 

degrades. 

The main drawback is that it does not represent the electrochemical effects on the battery, 

therefore interpretation of results is required for that to be achieved. Furthermore, the 

higher accuracy required causes more issues to consider. The model becomes more 

accurate by increasing the number of RC circuits. This increases the complexity, further 

obfuscates the electrochemical meaning of each component. With these considerations in 

mind the ECM should be optimized for the least number of RC circuits required. 

2.5.2 Electrochemical models 

Electrochemical models are powerful tools to examine the theoretical and practical 

function of LIBs. They are based on electrochemical principles to predict the function of a 

cell with a high degree of accuracy. Their main benefit over other models is that they 
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represent the electrochemical process. There is no single accepted form of an 

electrochemical model as there is with the equivalent circuit model being the most common 

for electrical models. This is because the purposes of electrochemical models are often 

varied. 

 They can be used to simulate the impedance of a cell for impedance spectroscopy [22] 

They can be used as single particle models to create an accurate SOC estimation throughout 

cycling [23]. They can even be used to determine SOH of a cell and can show trends with 

its lifecycle. This method is similar to how it is accomplished for the electrical model as 

well by monitoring how coefficients change as a function of Ah cycle equivalents.  

With such powerful models there are drawbacks, and this comes in the complexity of the 

model. Since the models are based on the chemical processes in the cell these are often 

represented as a partial differential equation (PDE). Then these PDEs are only 

representative for one area of the cell or one period of time. For an example Figure 14 

shows the process of estimating the impedance of the cell from theory to final results.  
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Figure 14: Example of electrochemical model from first principles to final simulation adapted from 

[24] 

This process is for a 2 dimensional particle analysis. The path that an ion would travel is 

shown with each interface being examined for its impedance to this process. Then, these 

impedances are given electrical circuit allegories, which are then used to create an 

impedance of the cell that performs well at various frequencies. The drawback for 

electrochemical models like this is that they require a good understanding of the entire cell 

and significant processing power as they require use of multiple PDEs and then curve 

fitting.  

These models quickly grow in scale and complexity as the requirements of the model 

increase in number. It is important to stress that Figure 14 only models the impedance of 

the cell and does not account for the concentration gradients of Li throughout the cell. This 

reduced scope is one method of making the electrochemical model feasible for real world 

applications. The alternative is to simplify the processes involved. The issue is that as the 

processes are simplified, they are then not completely representative of the electrochemical 

process. The benefit of using an electrochemical model is having the model coefficients be 

a direct representation of the battery. Without consideration these models can be overly 

complex without significant benefit to real world applications. When used correctly they 

 

 

 

 

 

                                     
                                 
                       
                                     
                                    

                  



26 

 

are powerful and precise models that give insights no other model can for the internal 

workings of a cell.  

2.5.3 Mathematical models 

Mathematical models can fall into two main distinctions, analytical and stochastic. First 

analytical mathematical models are constructed from the real workings of the cell. They do 

not necessarily represent the electrochemical function of the cell, but certain approaches 

use basic physical equations to start their models. A common analytical mathematical 

model is the Kinetic Battery Model (KiBaM), shown in Figure 15.  

 

Figure 15: KiBaM graphic showing fluid equivalent battery system 

Here the battery is conceptualized as a are two wells and an outlet. The load is supplied 

liquid, which is analogous to electrons, at a rate I from the first well with available charge 

q1. The first well is then supplied by the second well q2. There is the impedance to flow in 

the form of R0 and k’. Each well has a capacity denoted by c and c – 1. From this 

interpretation of a battery a system of equations can be created that represents the function 

of the cell with acceptable accuracy. This model is extremely adaptable, it was originally 

created in 1993 by Manwell et al. [25] for lead acid cells and is still used today for LIBs.  

Next, a stochastic model is a model where there is little relation to the real kinetics of 

lithium ions but are very quick at evaluating possible states in which the battery could be. 

An example of this type of battery model is to use a discrete Markov chain to model battery 

states. A discrete Markov chain is a stochastic process where there are a number of states 

which can be accessed from a previous state. There is a probability assigned to the 
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transition from one state to another, and this is only based on the current state. The previous 

behaviour of the battery has no effect on what the probabilities are. For batteries these 

states are values of SOC, and each time step the battery either recovers a small amount of 

SOC, remains constant, decreases a various amount of SOC. A discrete Markov chain was 

first proposed by Chiasserini et al. [26] and their proposed version can be seen in Figure 

16 

 

Figure 16: Discrete Time Markov Chain of an LIB reproduced from [26] 

They claimed that roughly 4×10
6
 states should be included for the numerical computation 

of the model. When parametrized correctly this model has a maximum deviation of 4% and 

average of 1%. This comes from a discharge cycle where the magnitude of current is 

changing over the discharge.  

Mathematical models are strong tools that can reduce the prerequisite knowledge required 

to have a high quality battery model for a single cycle. They do not function well with 

battery ageing mechanics and require a reference test to parametrize them as the battery 

ages. These models are often optimized to run quickly and for their specifically designed 

applications are top of class. When comparing to other models they have their clear niche 

and use case.  

2.6. Voltage relaxation  

Open circuit VR is an electrochemical process that occurs after current passing through a 

battery is interrupted. The voltage relaxes back to SS-OCV from an operational voltage as 
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shown in Figure 17. SS-OCV was defined as the voltage settling within 1 mV. This was an 

achievable value for the monitoring equipment used. Figure 17 also shows the difference 

between VR magnitude and IR voltage drop. IR voltage drop is the instantaneous voltage 

drop that occurs from ohmic resistance of the cell, this is not included as part of the VR 

curve. This is made relevant as it must be distinct from VR magnitude. VR magnitude is 

the amount of voltage evolution between the IR drop and SS-OCV. Should IR voltage drop 

be included this will skew the relationship to match the IR vs SOC profile. Finally, the 

curve shape is shown in the figure as well.  

 

Figure 17: Voltage relaxation curve labeled with points of interest, data for this curve taken from tests 

performed in this thesis 

Should this curve shape be predicted with high accuracy it could be used to determine the 

SS-OCV without having to perform the full process. From Chapter 2.3.2 we know that with 

SS-OCV the SOC can be estimated to a high degree of quality. This would be an in-situ 

monitoring technique that could alleviate the main issue with using SS-OCV to estimate 

SOC. VR has great potential to use as a high quality estimation for SOC. This is one of the 

motivating factors for this work, to determine the length of time required to have an 
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accurate SOC estimation. One issue with this technique is the VR curve shape is difficult 

to estimate. 

VR curve shape is more complicated than a first viewing would suggest. From Figure 17, 

VR curve shape appears to be an exponential decay function progressing to SS-OCV after 

the IR drop. Figure 18 shows that by changing to a logarithmic time scale, the curve is 

more complicated than a single exponential. This is because of the electrochemical effects 

that are occurring in the battery which cause this curve shape.  

 

Figure 18: Curve Shape of VR shown to compare single exponential error 

This relaxation process occurs since there is a gradient of lithium ions through both 

electrodes that will reduce to a minimum energy state after a partial charge or discharge. 

This is shown in Figure 19. As time progresses from open circuit to fully rested, shown in 

the figure as time scale a and b, the surface concentration will change. Note that both 

variables are arbitrary positive integers, where a is much less than b. Voltage is determined 
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by the surface concentration of lithium ions in an electrode, so when the gradient flattens 

out the voltage at the battery terminals will change as well.  

Using this framework, the real driving factor for VR magnitude and curve shape can be 

seen. The magnitude of change in the surface concentration is analogous to the VR 

magnitude. The leveling of the concentration gradient is how the VR curve shape results 

from the electrochemical process. Therefore, if a higher current is passed through the 

battery, a higher concentration gradient will be induced, there be higher VR magnitude and 

a different curve shape.  

The magnitude and shape of VR have been used for electrochemical evaluation of the 

battery. Skrob et al. [27] observed there are two primary response domains in VR 

corresponding to fast (0-2 minutes), and slow (0.3-3.0+ hours). The fast domain is 

dependent on the preceding current magnitude, positive electrode thickness, and 

electrochemical active area. The slow domain is dependent on preceding current 

magnitude, a minimum coulombic transfer (Ah amount) and the positive electrode health. 

Consequently, short current pulses of less than 30 s are not typically useful for VR 

investigation.  
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Figure 19: Voltage relaxation pictured in an electrode. 
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As the battery becomes worn and aged the coulombic capacity will decrease and the 

electrode particle radius will increase. This will cause the lithium ion diffusion rate to 

decrease and change both the VR magnitude and curve shape [15]. From this research it 

can be reasoned that battery health determinants can be found from VR investigation. They 

should be first observed in the fast domain, and then later in the slow domain as the SOH 

decreases further. These changes should be measurable from the monitoring equipment 

that Li-ion batteries use. Making a strong case to characterize this growth and examine 

from an operational point of view how these metrics of VR magnitude and curve shape can 

be used to determine both the SOH.  



32 

 

Chapter 3 Literature review 

The purpose of this literature review is two-fold. First is to determine what the state of the 

art is for techniques and approaches to evaluating VR. If the field has reached a consensus, 

how does it address the issues that come from investigating VR. The second purpose is to 

have a comprehensive understanding of the 4 research objectives of this thesis.  

VR is a relatively new research topic, as most are in LIBs, where a majority of the work 

performed has been completed within the past 10 years. There is limited research into VR 

studies for the specific purpose of SOC estimation and SOH evaluation, meaning this is an 

area that could be contributed to from this thesis. There are more studies into methods of 

how to characterize VR and use it as an alternative to a pseudo-OCV test.  

This review is organized by the model which was used to evaluate VR as this is an effective 

way to section off different fundamental approaches. 

3.1. Equivalent circuit model for VR  

The ECM is the most common model that is used in VR investigations. It uses basic circuit 

components, resistors, capacitors and an SOC dependant voltage source to model the 

behaviour of an LIB. 

Not all studies use the same ECM, they can vary such as the fitting method, or the 

complexity of the model; i.e. how many RC circuits are used. Tran et al. [28] investigated 

the performance of different ECM complexities as a VR model on NMC, NCA, LFP, and 

LMO batteries. They use ECMs with 1 RC, 2 RCs, and 1 RC with a hysteresis term to 

compare error for a given chemistry. This hysteresis term is not given an equivalent circuit, 

simply a term which is summed to the equation. They run a reference performance test on 

the batteries followed by a pseudo-OCV test, then end with a pulse-rest test. They allow 

for a 30 minute rest after a charge pulse and a 60 minute rest after a discharge pulse. The 

ECM is then used to model a general driving profile for EV applications along with a 

constant current cycle. The root mean squared error (RMSE) is then calculated. These error 

values are as low as 6 mV to as high as 18 mV for a given chemistry and model. They 
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claim that for modeling LFP and NCA batteries the ECM should have 1 RC with a 

hysteresis term, where NMC and LMO should only use 1 RC.  

Lin et al [15] show how temperature, age, and relaxation period change the OCV vs SOC 

relationship through VR investigation. Two tests were performed on NMC and LFP cells 

at various temperatures and SOHs, a pseudo-OCV test run at a 20 hour rate and another 

with VR periods of 2 hours. This data was then fit to a 1 RC model using an H∞ and Kalman 

filter to predict coefficients. It was found that should the temperature be below 10°C that 

VR will take longer to reach SS-OCV and that VR methods outperform a pseudo-OCV 

test. It was also found that SOC could be predicted using this method in real time and 

operates at different SOH and ambient temperature. They claim that the VR method for 

characterizing a cells OCV vs SOC relationship was superior in terms of time required 

unless at low temperature (< 10°C). 

Petzl et al. [16] examine the difference between a pseudo-OCV test to a VR 

characterization for the purpose of finding the SOC vs OCV relationship similar to Lin et 

al [15]. They use a 2 RC model to extrapolate short rests to find an estimation of SS-OCV. 

After a 30 minute rest with a 5% SOC increment in charge until fully charged and then 

discharge. VR was shown to be a better representation for the SS-OCV vs SOC relationship 

than a 40 hour rate pseudo-OCV test. They show that using a 24 minute rest and 1% 

increase in SOC incremental voltage incremental capacity (dV/dQ) characteristics can be 

found to a higher quality than a 40 hour rate pseudo-OCV test. They claim that using a 6 

minute rest VR can be extrapolated to within 4 mV of the SS-OCV of a 5 hour rest.  

Li et al [29] investigated VR as a replacement of the pseudo-OCV test and for finding the 

SOC. The study was performed on LFP and NMC batteries. They use an ECM with 5 RC 

pairs to determine SS-OCV. They require multiple rests to characterize their model, first a 

24 hour rest then 5 hour rests at 25%, 45%, and 85% SOC approaching from charge and 

discharge. This calibrates their model and results in a maximum error of 0.4% in SS-OCV 

estimation. They claim this set of tests can be used o find the OCV vs SOC curve while 

saving 52% of time from the original pseudo-OCV test which takes 72 hours.  

Qian et al [8]. use a 2 RC ECM model to predict SOH of NMC batteries. They use VR over 

the lifetime of a cell to determine that there is a correlation between VR magnitude and 



34 

 

cycle count for two different voltage levels and directions of current. Then the cells are 

investigated with X-ray diffraction and half cell testing to confirm the cause of degradation. 

From this a VR algorithm is proposed for in-situ investigation of SOH.  

Fang et al. [17] propose how to use an ECM model on VR to perform SOH investigations. 

They degraded NCA and NMC LIBs until 650 charge discharge cycles were reached via a 

1 hour rate cycle. Every 100 cycles a calibration test was performed where the cell would 

charge or discharge 5% of SOC from bottom to top to bottom of charge. After each 5% 

increment in SOC a 2 hour VR period would occur where data was collected. An ECM 

with up to 3 RC circuits was used with one alteration. An α  nd β   rm w r   n r d   d 

into the definition of the time coefficient as can be seen in Eq [6].  

Eq [6] 

 𝑉𝑛𝑒
−

𝑡
𝜏𝑛  ;  𝜏𝑛 =  α𝑡 + 𝛽 

The definition of this time coefficient was a linear r      n      m  wh r  α     h     p   nd 

β     h   ff   . This is different from convention as the time coefficient is normally a 

constant value known as the time constant. The α  nd β terms were curve fit for all the 

trials performed. They were monitored as a function of SOC and SOH. It was shown that 

    h  b    r       d  h r  w       n r    n r      n α  nd β with a 3% error in SOH from 

a well trained model.  

 

3.2. Electrochemical model for VR investigation 

Secondly there is an electrochemical model which uses theoretical principles and equations 

to create specialized models of LIBs. Hu et. al [30] uses partial differential equations based 

on electrochemical principles. They modeled VR periods from 10 to 138 minutes at 

temperatures of 10°C and 40°C over a wide of range of SOC. They propose a schedule of 

short charge and discharge pulses to achieve SS-OCV faster than regular VR. They suggest 

it works by balancing the concentration of lithium in the positive electrode, electrolyte, and 

negative electrode via precise charge and discharge pulses. Because they are pulsing 

quickly the behavior can only be modeled by the more computationally complex models. 
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They claim the model can estimate SS-OCV within 2 mV while saving 33% to 78% of the 

procedure time depending on the cell temperature. They claim a 2 mV error would give an 

error of estimation of 4% SOC for a LFP cell. 

Schindler et al. [22] investigated the possibility of using VR analysis with an ECM in 

conjunction with impedance spectroscopy for detecting lithium plating on the negative 

electrode. Equations based on Arrh n   ’   w were used to predict the impedance 

spectroscopy results. LFP cells from A123 were operated under conditions to promote 

lithium plating on the negative electrode to occur. A 5 hour VR period was analyzed via 

differential voltage analysis and compared to trials with a small current in the opposite 

direction of the current before relaxation. These tests were used in conjunction with 

impedance spectroscopy to show trends in the differential voltage profile during VR were 

shown to accurately determine lithium plating.  

3.3. Mathematical model for VR investigation  

Finally, there is a purely mathematical model which predicts the function of the battery by 

finding an equation that represents the voltage and current dynamics. A linear ordinary 

differential equation was used by Pei et al. [31] on LFP and lithium manganese oxide 

(LMO) cells. This equation was curve fit to four tests which approached various SOC 

values from charge and discharge. The VR period lasted for 24 hours, though only the first 

60 minutes are shown. They show that for LMO batteries this model is valid for all SOC 

values, and that for LFP it is only valid for certain regions since there is more sensitivity 

required to make SOC estimations. They make an important distinction of current polarity, 

charge or discharge, being a factor to VR characteristics. As shown by Skrob et al. [27] 

there is a weak relationship between current polarity and the shape of the voltage vs time 

curve during relaxation. This relationship, while not as dominant as other factors, is shown 

to be significant for curve fitting, and so must consider the polarity of current before the 

relaxation period. 

A mathematical analysis was done by Konz et al. [32] to identify lithium plating on the 

negative electrode through analysis of the VR curve shape. This was done by taking the 

derivative with respect to time of the VR profile. This would result in a peak, which 
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presents in the first 10 minutes of charge, that could be used with a basic mathematical 

model to quantify the plating severity. They showed that curve shape was dependent on 

the preceding current, SOC of rest, and lithium plating on the negative electrode. This is 

another indication of using VR for health analysis of an LIB. 

3.4. Outcomes of literature review  

3.4.1 Motivation for thesis objectives  

The first objective is to determine a model which can accurately curve fit VR and account 

for changes between tests. There is no consensus on the specific model to use though the 

ECM has the most common. Even among this architecture there are significant variations. 

These variations make comparison of results in the field difficult as researchers have to 

base results on accuracy of the model and justify their model instead new findings and 

outcomes. For this reason, having a specific model that can be widely applied while 

retaining accuracy is valuable to the VR field.  

The second objective is to estimate the SOC of the battery. Estimating the SOC is a difficult 

task for reasons outlined in Chapter 2. The time required is prohibitive as most of the 

literature agrees that 2-5 hours is required for an accurate estimation. This limits the 

applications where estimating SOC via VR is useful or feasible. EVs are an attractive area 

for this research to continue as a vehicle will often remain parked for hours. There exist 

some significant gaps in the literature here:  

• The rest time used to determine SS-OCV can vary significantly from 2 mins to 

greater than 24 hours;  

• No study mentions the separation of the IR voltage drop from the VR so it is 

unknown if this is being included in their curve fitting;  

• The chemistries are often limited in studies with groups testing only one of the 

NCA, NMC, or LFP chemistries.  

Because of this an investigation into how long a VR period is required could be impactful 

to consolidate future methods.  
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The third objective is to find a methodology to evaluate SOH and IR growth. There have 

been correlations found between evolution of VR characteristics (magnitude and curve 

shape), SOH, and IR growth [17] [8] [15] . There exist gaps in the literature here as there 

is no consistent methodology for SOH determination. Often tests are not performed at EOL 

conditions and therefore only capture a portion of the relationship. Having a study that can 

fully validate a methodology from BOL to EOL would be impactful. 

The fourth and final thesis objective is to find and validate the findings of other research 

groups with the methodology created by the third objective. Should there be strong 

correlations between these VR metrics and degradation metrics validating them would 

serve as a contribution to the field.  

3.4.2 Model architecture decision 

From review of the literature, it is clear that the ECM is the most commonly used model. 

This is because of its adaptability, accuracy, computational simplicity, and familiarity. It 

can be easily altered to fit the required use case by adding more RCs or adding additional 

terms such as a hysteresis term. ECMs can be used with discrete time steps or can be 

functions of continuous time. The results from both models are similar and comparable for 

VR. The accuracy of the ECM is lower than an electrochemical or mathematical model but 

has been shown to produce reputable results from the studies reviewed. The VR field of 

study has reached a consensus on the ECM to be the primary model architecture used for 

good reasons: 

• It does not require full history of the battery 

• It is adaptable to different chemistries 

• Curve fitting is well documented and uses common methods 

• Computationally simple relative to other options 

 The ECM will be explored further and analyzed for the objectives of the thesis. 
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Chapter 4 Methods 

Portions of this chapter have been published in the following article:  

Theuerkauf, D.; Swan, L. Characteristics of Open Circuit Voltage Relaxation in Lithium-Ion Batteries for the Purpose of 

State of Charge and State of Health Analysis. Batteries 2022, 8, 77. https://doi.org/10.3390/batteries8080077 [33] 

And have been reproduced under MDPI licensing agreement (see Appendix A). 

David Theuerkauf is the principal researcher and author of the article. He conducted the research as part of his MASc. 

He received supervision and guidance from his supervisor Dr. Lukas Swan, together they carried out the work, wrote the 

article, and communicated with the editor of the journal. Minor grammatical and content changes have been made to 

integrate the article within this thesis and incorporate the latest literature. 

The Lithium-ion cells in this study were chosen from common high quality manufacturers. 

These cells were then tested on a battery testing system with procedures to achieve the 

thesis objectives. There were two studies performed to evaluate the research questions. 

Data from these procedures was captured and analyzed in MATLAB with a new voltage 

relaxation model based on an ECM.  

4.1. Lithium ion cells  

The lithium ion cells used in this experiment are high-quality commercially available 

cylindrical cells of the size format 18-65 (18 mm diameter, 65 mm length). The three cells 

chosen are pictured next to each other in Figure 20.  

 

 
Figure 20: photograph of NCA, NMC, and LFP cells used in the studies. 
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All cells have graphitic negative electrodes, but different positive electrode materials which 

is how they are distinguished, they are: 

• Panasonic NCR18650B (Nickel Cobalt Aluminum {NCA}positive electrode) 

• LG Chem INR18650B4 (NMC positive electrode) 

• Lithum Werks APR18650m1B {LFP} p             r d ; “n n ph  ph   ”) 

All cells have been designed for and deployed in a variety of applications including power 

tools, medical devices, EVs, E-bikes, and uninterruptable power supplies. Cells were 

purchased from reputable vendors and tested to verify they met capacity specifications. 

These cells are representative for their specific chemistry. A total of 12 cells were used, 4 

from each chemistry. The first study used 1 cell from each chemistry where the second 

used 3. Their specifications of coulombic capacity, power capability, and cycle life are 

shown in Table 1. For their full specification sheet see Appendix C. 

Table 1: Specifications of cells 

Specification NCA NMC LFP 

Capacity (Ah) 
3.2 2.6 1.1 

Nominal voltage (V) 
3.6 3.7 3.3 

Voltage range (V) 
2.50-4.20 2.75-4.20 2.00-3.60 

Max Continuous Discharge Rate (C-rate; 
hour rate) 

2; 0.5 2; 0.5 27; 0.037 

Max Continuous Charge Rate (C-rate; hour 
rate) 

0.5; 2 1; 1  3.6; 0.28 

Cycles to 80% of original capacity  
250 300 4000 
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4.2. Battery testing system  

A Battery Testing System (BTS) is required for to cycle the batteries and measure the 

results. This BTS must measure the voltage, current, change in time, and temperature of 

the cells to a high degree of accuracy. The Arbin instruments BT2000 was chosen for its 

specifications and capabilities as can be seen in Table 2. Note that full scale range (FSR) 

is in both directions of charge and discharge for current. 

 

 

The Arbin is a 3 Channel 2000W power cycler (20 V / ±100 A). It is a high quality system 

that has all the capabilities required for this testing. There are 3 main channels for testing, 

one for each chemistry. It has 16 auxiliary voltage and temperatures which is more than 

enough to capture all the additional data required of cell voltage and temperature. The 

auxiliary channels can be assigned individually to one or multiple channels, meaning a 

consistent ambient temperature can be measured for all batteries. The software used to 

monitor the measurements for alarms and store the data on the local computer is MITS 

PRO 4.32.  

There are some considerations that were kept in mind for testing on the Arbin. First is that 

the current requirement from a test is important. The Arbin has three measurement levels 

for the current. These are high (100 A/ -100 A), medium (2 A/ -2 A), and low (0.1 A/ -0.1 

Table 2: Arbin BT2000 specifications 
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A) current settings. Each range has their own monitoring circuit with a different the 

specified accuracy due to the difference in FSR.  

Calibration was performed on the Arbin to ensure that it would meet requirements of the 

test or specification of the machine. For calibration a professionally calibrated Fluke-289 

digital multi-meter, was used as a true measurement device since it has superior accuracy 

for the voltage than the Arbin A full calibration report of the Fluke calibration is provided 

in Appendix D. The 289 was calibrated by the company Land and Sea on the 23rd of 

October 2021, with suggested recalibration on the 23rd of October 2024. The Fluke 289 

was used to evaluate the calibration quality of the Arbin.  

The process of calibration is such: Initial validation; Calibration; Secondary validation. 

Initial validation describes the previous state of the battery testing system, calibration alters 

the state, then secondary validation monitors how it changed. Error charts of before 

calibration and after calibration were created for voltage and current. Error in these charts 

is in percentage of FSR as defined by the specifications of the machine. There is also a line 

for what the manufacturer claimed as achievable by specification. Since voltage is 

important for this thesis it is shown in Figure 21. 

 

Figure 21: Calibration results of the Arbin II 
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From this figure we can see that calibration had the intended effect of reducing the 

percentage error of each channel or maintaining specification. Channels 1 and 2 had 

impeccable accuracy after calibration, while channel 3  mpr   d b   d dn’  achieve 

specification. Channel 3 was calibrated multiple times, and these were the best results 

received. Compared to the other battery testing systems in the lab it is still superior with 

this calibration. To determine the impact of this difference an analysis into the required 

sensitivity was performed. 

VR magnitude is known from the literature review performed in Chapter 3 to be on the 

scale of 50 mV which is 0.25% of FSR. When this compared to the highest inaccuracy of 

0.02% it shows that the calibration achieved should be sufficient. Having an order of 

magnitude lower inaccuracy relative to magnitude of measurement was deemed to 

acceptable for the required tests.  

The current and temperature measurement also passed the calibration test of the machine. 

The full data for these can be seen in Appendix E. 
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4.3. Test set up 

With the battery testing system chosen, calibrated, and validated a test set up was created 

to facilitate the 2 investigations. For the first investigation there were single cell tests with 

the set up seen in Figure 22 

Here the cells were placed into a 4 wire cell holder with attached T-type thermocouple. 

The current leads are large and have good contact with positive and negative terminals. 

The voltage lead   r   n  h    n  r  f  h  p               p  nd n            n ’  b   . Th   

allows for a consistent and repeatable voltage measurement. The temperature sensor is 

attached with electrical tape, and a small portion of thermal insulation tape over the sensor. 

This allows for better measurement of the cell temperature, while being small enough to 

not insulate the cell in any significant way.  

 

Figure 22:Test set up for a single cell 
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For the second test set up all the cells were tested in 3P groups. For this investigation a new 

test set up was created and shown in Figure 23. 

 

The cells are parallelized from the wire harnesses and not a bus bar, or nickel strip. This is 

done for load balancing purposes. When a bus bar is introduced the placement of the BTS 

leads can load the cells unevenly. To alleviate this concern all the cells are placed into 

simple 4 wire cell holders, and connected via wires of consistent length, so that all cells of 

Figure 23: 3 parallel cells test set up as a diagram (top) and photograph (bottom) 
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the group have roughly similar measurement impedance. Next all the batteries are attached 

to metal back plate. This acts not only as structure but a conductive heatsink since there is 

increased heat generation. Finally, the temperature sensors are attached to the center cell 

only. This is because all cells are experiencing the same conditions and are conducting heat 

to each other. Therefore, in the case of a failure this temp sensor will read the value and 

end before catastrophic failure.  

4.4. Test schedules for first study 

4.4.1 Reference performance test  

A Reference Performance Test (RPT) was created to evaluate the maximum discharge 

capacity of the cells. All the batteries in this study were run on an RPT twice to have 

confidence that they met specification. All specification sheets for the cells are available 

in Appendix C. As seen in Table 3: Reference performance test schedule the RPT runs the 

battery at their suggested rate by the specification sheet for charge and discharge. It then 

performs CV phase for end of charge before the cycle is started again, until 3 cycles have 

completed.  

Table 3: Reference performance test schedule 

 

The BTS monitors the temperature for safety control along with the voltage and current for 

data analysis and safety control. The 3 cycles in an RPT each have a purpose. The first is 

for capacity assurance as charging to 100% SOC removes any effects of starting the battery 

Step Type Control parameters Description 

1 Rest 30 s and cell temperature < 30°C Ensuring safe operations 

2 CC Discharge 0.5 C to low voltage value  As defined by spec sheet 

3 Rest 30 s and cell temperature < 30°C  

4 CC Charge 0.5 C to high voltage value As defined by spec sheet 

5 CV Charge 0.5 C / high voltage for 1 hour 1 hour results in lower currents than spec 

sheet requires  

6 Rest 30 s and cell temperature < 30°C  

7 Loop From Step 2 to 6 for 3 Loops 1st charge cycle is for capacity assurance        

2nd charge cycle is for thermal acclimation     

3rd charge cycle is for results to be used  
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at partial SOC and not receiving the maximum discharge capacity. The second cycle is for 

thermal acclimation, batteries have improved performance at higher temperatures, 

therefore ensuring that the cells have reached a thermal equilibrium before results are 

measured is important. Finally, results are taken from the third cycle to have the highest 

quality and confidence that they represent the consistent operation of the cell. By 

performing these 3 cycles every time the results are comparable and give a good 

comparison for the maximum discharge capacity of the battery. Once a battery has been 

run through the initial RPTs and meets specification it is then ready for the analysis testing.  

4.4.2 Three hour voltage relaxation at 10% SOC increments 

The 3 hour VR test was used to evaluate VR and SS-OCV at various SOC values. As seen 

in Table 4, the test begins by fully charging the battery. It then discharges in 10% SOC 

increments, each followed by a 3 hour relaxation. Once the low voltage limit is reached, 

the battery charges in 10% SOC increments, each followed by a 3 hour relaxation, until the 

high voltage limit is reached. This test takes more than 60 hours to complete and is not 

feasible for a vast majority of applications due to this time constraint. This allows the study 

to find where the best position in SOC would be for a real application. The end of constant 

current charge is dictated by a voltage limit. Should the rate or IR increase it will reach this 

voltage limit earlier in the SOC range limiting where can be evaluated as the cell degrades.  

Table 4: Three hour voltage relaxation test schedule 

Step 
Type Control parameters Description 

1 
Rest 30 s and cell temperature <= 30°C Initial data 

2 
CC Charge 2 hour rate to high voltage limit As defined by specification sheet 

3 
CV Charge hold voltage for 1 hour 1 hour results in lower currents than 

specification sheet requires  

4 
Rest 30 s and cell temperature <= 30°C  

5 
CC Discharge 2 hour rate for 10% rated coulombic 

capacity 
Discharge 10% SOC  

6 
Rest 3 hour rest Collecting VR data  

7 
Jump To Step 5 until low voltage value is reached Discharging to low SOC for 9 data points 

8 
CC Charge 2 hour rate for 10% rated capacity Charge 10% SOC  

9 
Rest 3 hour rest Collecting VR data  

10 
Jump To Step 8 until high voltage limit is reached Charging to high SOC for 9 data points 

11 
Rest 30 s rest End rest  

 
 

One outcome for the first study was to show the relationship between VR magnitude and 

SOC. Another outcome was to confirm that 60% SOC had the highest VR magnitude, as 
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suggested in literature [34]. This also determines what SOC value will be used in the 24 

hour test should it be different from literature as the SOC with the highest VR magnitude 

is ideal for that test. 

4.4.3 Twenty four hour voltage relaxation 

The 24 hour VR test was created to evaluate VR at the SOC value with highest VR 

magnitude. The test schedule is shown in Table 5. Here the battery is fully discharged to 

hit a low baseline. Once this is reached it is charged to the optimal SOC for VR magnitude. 

Since there is a 24 hour rest this limits the number of rests that can occur to finish the study 

in a reasonable time frame. Therefore, only one rest can occur and picking an optimal SOC 

is important. This value was determined by the results of the 3 hour voltage relaxation test.  

Table 5: Twenty-four hour VR test schedule 

Step Type Control parameters Description 

1 Rest 30 s and cell temperature <= 30°C Initial data 

2 CC Discharge 2 hour rate to low voltage limit As defined by spec sheet 

3 Rest 30 s and cell temperature <= 30°C  

4 CC Charge 2 hour rate for optimal rated capacity Charge to optimal SOC (LFP = 66%; NCA, 
NMC = 45%) 

5 Rest 30 minute rest Collecting VR data 

6 Rest 23 hour 30 minute rest Collecting VR data 

The purpose of this test is to determine the period required to reach SS-OCV. It will also 

distinguish how long is required for high VR model accuracy, and the required complexity 

of the model for SOC and SOH investigations.  

4.5. Test schedules for second study  

4.5.1 Reference performance test  

The purpose of the RPT is to have an accurate measurement of the capacity of the cell as 

it ages. For this reason, the RPT used to characterize the cells for the first study is used for 

this test schedule. Internal resistance test  

IR was monitored as the cell aged for the purpose of finding any correlation between VR 

metrics and IR growth. To achieve this the following test schedule was created as can be 
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seen in Table 6. Here the battery is pulsed from a constant current phase at a 2 hour rate to 

a 1 hour rate, doubling the current, for 30 seconds. This allows for determination of the 

voltage change per current increase which gives IR. This is done for 10% increments of 

SOC in charge and discharge.  

Table 6: Internal resistance test schedule 

Step Type Control parameters Description 

1 CC Charge High voltage limit Charge to full SOC 

2 CC/CV Charge 1 hour hold Charge to full SOC 

3 CC Discharge 2 hour rate rate for 12 minutes or until low voltage 

limit 

Discharge 10% SOC  

4 CC Discharge 1 hour rate pulse for 30 seconds or until low 

voltage limit 

Discharge pulse to find IR  

5 Rest Rest 30 seconds at low voltage limit. Rest before switching it charge 

6 CC Charge 2 hour rate for 12 minutes or until high voltage 

limit 

Charge 10% SOC 

7 CC Charge 1 hour rate pulse for 30 seconds or until high 

voltage limit 

Charge pulse to find IR 

8 Rest 30 s rest End rest 

 

4.5.2 Voltage relaxation test  

After the first study there was an interest in watching to see if the profile of VR vs SOC 

would change as a function of SOH or IR growth. To accomplish this the same 3 hour rest 

schedule was used at the various Ah-CycEq.   

4.5.3 Degradation test  

The goal and purpose of the degradation test was to cycle the cells as much as possible. 

Fifty cycles were set to be performed on the battery in approximately 3 days as can be seen 

in Table 7.  
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Table 7: Degradation test schedule 

Step Type Control parameters Description 

1 Rest 30 s and cell temperature <= 30°C Initial data 

2 CC Discharge  1.5 hour rate until low voltage limit Discharging to low SOC 

3 Rest 30 s and cell temperature <= 30°C Rest to switch from discharge to charge 

4 CC Charge 1.5 hour rate until high voltage limit Charging to high SOC 

5 Jump To Step 1 until 50 cycles Repeating cycle 50 times 

6 Rest 30 s rest End rest 

Fifty cycles was chosen as this would theoretically use 10% of the rated cycles of the NCA 

cells from the specification sheet. To achieve this in the smallest time frame possible, the 

fastest rate was chosen that would not endanger the batteries to fail catastrophically. A 1.5 

hour rate was chosen for each battery chemistry. This rate was slightly above the suggested 

allowable rate for the NCA cells, but not to the level that promotes unrealistic degradation. 

The 1.5 hour rate is below the suggested rate for the NMC, and LFP cells. This means that 

the cells will degrade less per cycle and gives the ability to see small changes in SOH from 

VR.   

4.6. Data capture  

Experimental data is captured from the Arbin and put into a proprietary “.res” format. This 

is processed until it becomes a “.mat” format results output from MATLAB via the process 

found in Figure 24. 
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Degradation tests require no alteration and are imported to MATLAB for cycle 

visualization purposes. IR tests require one analysis before they are compiled into an Excel 

spreadsheet for analysis of trends. 

VR data requires more processing for curve fitting. The VR period is separated from the 

normal cycle to remove the initial instantaneous IR voltage drop. This is done by taking 

the first data point immediately following the open circuit condition as the start of the 

timeseries since the IR voltage drop is immediate at open circuit. Due to the limitations of 

            

             

          
       

          
       

          
      

        
      

           
        
       

           
       

           
      

           
       

             
        
      

               
       
       

             

      
             

          

      
                  

      
                

       

  

   

  

   

      
             

        
      

Figure 24: Data flow from BTS to MATLAB analysis and summary of results 
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the battery cycler the first datapoint is 0.1 s after the IR drop. After this a curve fit is 

performed via a script. This script outputs a results file that has useful information for three 

different outputs of the data processing. All MATLAB analysis scripts are available in the 

Appendix F. 

4.7. Mathematical analysis of voltage relaxation 

4.7.1 Novel battery model architecture and coefficient determination  

The model chosen was the ECM as expressed in Chapter 3. The standard ECM for a battery 

was altered for ease of fitting the VR curve shape and estimating SS-OCV since there is no 

need for modeling an entire cycle. These changes have not been made in any of the 

reviewed literature and are considered a research contribution to improve VR studies going 

forward. Since these alterations are novel, it is renamed to the Voltage Relaxation ECM 

(VR-ECM) as can be seen in Figure 25. 

The alterations made were an additional ideal voltage source with each RC pair and a 

removal of the series resistance R0, which is responsible for the IR voltage drop in the 

original model. The ideal voltage sources are fit with the RC values for each VR period. In 

open circuit conditions the RC pairs in the VR-ECM will always be charging, whereas the 

Figure 25: Standard equivalent circuit model and proposed VR-ECM of an LIB with its response 

to open circuit conditions  
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standard model will always have them discharging. These changes are primarily for SS-

OCV determination which has impacts on curve fitting accuracy. For each model the 

definition of 𝑉𝑠 is different. In the standard model it represents the SS-OCV, whereas in the 

VR model it represents the terminal voltage at open circuit. Both models have the same 

initial equation for V  rm n  , the voltage that appears at the battery terminals, Eq [7. Note 

that t = 0 is when the open circuit condition is applied and thus 𝑅0 does not factor into the 

voltage equation for relaxation, which starts at t = 0+. Therefore, it was removed in the VR 

model.  

Eq [7] 

𝑉terminal = 𝑉s + ∑𝑉RC,𝑝

𝑛

𝑝=1

 @ 𝑡 =  + 

  

In, Eq [7] 𝑉RC,𝑝 is the voltage of each RC pair as a function of time. These terms are 

summed with 𝑉𝑠 for the total voltage of the battery. As shown Figure 25 the initial value of 

voltage for each RC can be inverted to represent these curve shape approaching from 

discharge or charge. For the standard model the RC circuits are charged with a voltage that 

is negative relative to 𝑉  rm n   at t = 0+. For the VR model the ideal voltage source polarity 

is reversed. With the original model the RC pairs will operate via Eq [8] compared to the 

VR model where they operate via Eq [9]. 

Eq [8]: Voltage of an RC pair in the ECM  

𝑉RC,𝑚 =  𝑉𝑚𝑒
−

𝑡
𝜏𝑚  ;  𝜏𝑚 = 𝑅𝑚𝐶𝑚 

Eq [9]: Voltage of an RC pair in the VR-ECM 

𝑉RC,𝑛 = 𝑉𝑛 ( − 𝑒
−

𝑡
𝜏𝑛) ;  𝜏𝑛 = 𝑅𝑛𝐶𝑛 

For both Eq [8] and Eq [9] 𝜏 is the time constant of the RC pair. Between Eq [8] and Eq 

[9] V has a different definition. For Eq [8] 𝑉𝑚 represents the initial value of the RC pair as 

𝑉RC will decay to 0 as time approaches infinity. Eq [9] has 𝑉𝑛 represent the final value of 

the RC pair since as time approaches infinity the value of the equation will be 𝑉𝑛. This 
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difference is what changes the meaning of the series voltage source 𝑉𝑆 as well, which has 

significant consequence. First, if Eq [8] is substituted into Eq [7] 𝑉s is the SS-OCV. This 

means that any curve fitting using this equation will take close to the final value of the data 

set as the SS-OCV. Using Eq [8], the standard model, is limited to long relaxations where 

the final value of the dataset is as close to SS-OCV as possible. An incorrect SS-OCV 

would misrepresent the long term effects on the battery. Next, Eq [9] is substituted into Eq 

[7] to produce Eq [10].  

Eq [10]: Full definition of Vterminal in the VR-ECM 

𝑉terminal = 𝑉s + ∑𝑉𝑝 ( − 𝑒
−

𝑡
𝜏𝑝)

𝑛

𝑝=1

 for 𝑡 =  + 

𝑉𝑆 is now the initial value of the battery at t = 0+ instead of the SS-OCV. This makes the 

SS-OCV value the sum of all RC pairs voltage, 𝑉RC,𝑝, and the series voltage source, 𝑉S. 

This was shown graphically in Figure 25. This way, when curve fitting SS-OCV can be 

larger or smaller than the final value of a dataset since it is not assumed to be 𝑉S and 

dependent on multiple coefficients. This is the primary reason that the standard model was 

changed to the VR model for better curve fitting on VR datasets.  

To curve fit Eq [10] the values of the coefficients { 𝑉S,𝑉1, 𝜏1, 𝑉2, 𝜏2 ,… , 𝑉𝑛, 𝜏𝑛} are iterated. 

The Levenberg Marquardt algorithm was chosen as it can perform fitting over the large 

time constant ranges while being quick to solution. This fitting technique for non-linear 

functions minimizes error based on the sum of the residuals squared. It is an interpolation 

between the Gauss-Newton algorithm and gradient descent method. The Levenberg-

Marquardt algorithm is dependant on initial values and can be susceptible to ending in local 

minima should the initial value be poorly estimated. To alleviate this concern 5 initial 

values were used which were bound from 0 to half VR magnitude for the voltage terms 

and spanning 3 orders of magnitude for the time constants. Initial values were estimated 

by scaling previous estimations that produced a low error.  

4.7.2 Assessing model inaccuracy impacts on SOC and SOH 

To assess the model accuracy for SOC estimation and SOH evaluation 2 metrics are 

required. First, is the estimated settling time (EST) of a model. EST is the amount of time 
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that it will take for the RC circuit with the largest time constant to reach 98% of steady 

state. A value of 98% was chosen as it is equal to 5 time constants and after this point there 

is little evolution of the profile remaining. Second, Root mean squared deviation (RMSD) 

was evaluated and put in percentage of the VR magnitude, as shown in Eq [11] to evaluate 

goodness of fit.  

Eq [11] 

𝑅𝑀𝑆𝐷 % =

√∑  𝑉̂t rmi a ,𝑑 − 𝑉t rmi a ,𝑑 2
𝐷
𝑑=1

𝐷
𝑉𝑅mag itud 

  

In Eq [11] 𝑉̂terminal,𝑑 is the estimation of 𝑉t rmi a ,𝑑 at a given datapoint d, and D is equal 

to the total number of datapoints. This allows for an understanding of not only how good 

the fit is relative to the VR magnitude, but how it can change with different numbers of RC 

circuits.  

For SOC estimation, SS-OCV will be found from the model and used to find SOC from 

the OCV vs SOC relationship found from previous lab studies performed on these cells. 

To determine the possible error the profile is examined for the smallest magnitude slope. 

This is important as it will produce a worst-case scenario of highest error in SOC estimation 

for an SS-OCV prediction. The RMSD is multiplied by the VR magnitude to find the 

possible voltage difference between modeled and measured SS-OCV. RMSD is used to 

calculate the SS-OCV error as it represents average deviation over the full data fit. This 

means that theoretically the SS-OCV prediction could be inaccurate by the RMSD 

percentage. In all cases of this study the RMSD calculated error is higher than or equal to 

the difference observed for all trials, so it is a conservative estimate. This voltage difference 

is then added and subtracted from the OCV value where the smallest slope occurs to 

produce an estimate of the SOC range each SS-OCV value could represent. Figure 26 

shows this SOC error band visually along with the process. For practical applications, I 

propose that the error of SOC should be 0.5% or less. This level of measurement makes 

the limiting factor of accuracy the measurement equipment and not the process.    
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Figure 26: Pseudo OCV vs SOC with inset showing SOC error determination 

For SOH evaluation it is important to have good VR curve representation in an appropriate 

projection period, so both EST and RMSD are used. EST is a pass-fail metric to show when 

the model predicts the profile will stop evolving and compare this to measured data 

obtained from the 24 hour test. If the modeled EST value is too high, the long term effects 

of VR are being misrepresented. RMSD shows how good the curve fit is for the captured 

data and minimizing this indicates the model is adequately capturing the VR trend. 

4.7.3 Assessing correlation of variables 

To determine the correlation between different metrics such as: IR; capacity; VR 

magnitude; and VR curve shape; visual inspection can give insight, but quantitative 

assessment is required. To find relationships between these variables Pearson correlation 

coefficients were used to determine if there was correlation between variables. A Pearson 

correlation coefficient is defined by the mathematical equation in Eq [12] 

Eq [12]: Pearson correlation coefficient 

𝑟 =  
∑ 𝑥i − 𝑥̅  𝑦i − 𝑦̅ 

√∑ 𝑥i − 𝑥̅ 2 𝑦i − 𝑦̅ 2
 

This value of r can range from 1 to −1 with higher magnitude values being more correlated 

and lower magnitude values being less correlated. If r is positive then there is positive 

correlation between the variables, as one increases the other increases as well. The same 

hold true for negative values and correlations.  
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After correlations are assessed, the variables are assessed by a goodness of fit to a linear 

interpolation of the data. This is done to show if there is a simple relationship that can be 

used between them. This R2 value represents how good the fit to the linear relationship is. 

The reason both correlation and goodness of fit are required is to assess if there is a useful 

relationship between variables. Figure 27 shows that should there only be high R2
 or good 

correlation, cases a and b, there is no useful relationship that could be used to predict either 

variable. In case a any x value leads to the same y value. In case b there is no certainty that 

an x value is related to a y value. In case c however, knowing one variable leads to a 

reasonable estimation of the other.  

 

Figure 27: Importance of correlation and R2 for useful relationship 



57 

 

Chapter 5 Investigation of Voltage Relaxation for Cell 

Parameterization  

Portions of this chapter have been published in the following article:  

Theuerkauf, D.; Swan, L. Characteristics of Open Circuit Voltage Relaxation in Lithium-Ion Batteries for the Purpose of 

State of Charge and State of Health Analysis. Batteries 2022, 8, 77. https://doi.org/10.3390/batteries8080077 [33] 

And have been reproduced under MDPI licensing agreement (see Appendix A) 

David Theuerkauf is the principal researcher and author of the article. He conducted the research as part of his MASc. 

He received supervision and guidance from his supervisor Dr. Lukas Swan, together they carried out the work, wrote the 

article, and communicated with the editor of the journal. Minor grammatical and content changes have been made to 

integrate the article within this thesis and incorporate the latest literature. 

5.1. Purpose  

The purpose of this study is to determine methods for SOC estimation and SOH evaluation. 

Most commonly, the VR is used to estimate SS-OCV and correlate to SOC, via a lookup 

table. Some studies evaluate at singular SOC points which are not consistent, and do not 

account for the changing shape of VR curves at different SOC values. Other studies use a 

range of SOC values approaching from charge and discharge. The length of relaxation can 

be from 6 minutes to 24 hours, with claims of being fully rested at any of these values. The 

modeling techniques are different, and even similar models used different curve fitting 

methods. This makes it difficult to compare or contrast the findings of these studies or 

translate them into useful or practical applications for assessing SOC or SOH of a battery.  

This leads to four research questions to improve the consistency of VR studies: 

1. How does the VR magnitude and curve shape change as a function of SOC value? 

2. What period of time is necessary for the battery to be considered fully rested at SS-

OCV? 

3. For estimating SOC, how complex must a model be, and how short can the VR 

period be, to accurately determine SS-OCV? 

4. For estimating SOH, how complex must a model be, and how short can the VR 

period be, at a sensitive SOC position, to accurately capture VR magnitude and 

curve shape? 

 

To be practical for use in applications some guidelines can be established: 

1. The model should capture the dynamic behavior of the voltage curve while being 

computationally simple to curve fit.  
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2. VR for SOH evaluation will likely be implemented during charge as most 

applications have specific demands during discharge that prohibit long open circuit 

conditions. For example, EV and mobile devices are often left unattended while 

charging thus presenting a VR opportunity. 

3. The model must function over the complete SOC operating range. 

4. A consistent SOC for SOH estimation must be chosen to maximize VR magnitude 

sensitivity and curve shape changes for estimating SOH. 

5.2. Results and discussion 

5.2.1 VR magnitude vs SOC 

Results of the 3 hour VR test for each battery chemistry are the left column of plots in 

Figure 28. Discharge values are shown in gray and charge values are shown in red. The left 

column of Figure 28 shows the terminal voltage profile vs SOC, throughout the discharge 

and charge cycle. The SS-OCV after a 3 hour VR period is also included as a circle point 

for each VR.  

All discharge SS-OCV are lower than charge SS-OCV, illustrating voltage hysteresis in 

the battery. Substantial voltage profile changes occur at the beginning and end of discharge 

and beginning of charge, which is common in all LIBs. The SOC at which the charge 

control changes from constant current to constant voltage can be seen as the horizontal line 

portion of the terminal voltage plot. No SS-OCV points are given during the constant 

voltage charge phase since it would have a different current before relaxation making 

results non-comparable. 

The right column of Figure 28 shows the calculated VR magnitude vs SOC for both 

discharge and charge. From the research questions and guidelines established, it is known 

that the VR magnitude should be maximized. Figure 28 clearly shows varying VR 

magnitude depending on both battery chemistry and SOC, suggesting an optimal SOC 

value for VR magnitude can be identified.  
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Figure 28: VR from operational profile as a function of SOC with values post discharge current shown 

in gray and values post charge current shown in red 

NCA and NMC chemistries show similarities for terminal voltage profile, SS-OCV trends, 

and VR magnitude. A final charge VR magnitude datapoint is not obtained for the NCA 

chemistry at high SOC due to earlier exit of the constant current phase from reaching the 

high voltage limit. This shows why high SOC values on charge are not be selected due to 
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IR growth inhibiting a comparable VR as the battery wears. There is a local peak of VR 

magnitude while charging at low SOC for NCA. This should also not be selected as 

capacity loss from battery wear could inhibit it being captured appropriately. Both 

chemistries have local VR magnitude peaks at approximately 45% SOC on the charge, and 

at 15% and 55% on discharge. The VR magnitude at 45% SOC on charge is therefore 

suggested for use in assessing SOH and for the 24 hour VR of both NCA and NMC.  

LFP shows different characteristics to NCA and NMC. First, it has a much smaller constant 

voltage phase than either the NMC or NCA. It is noteworthy that high SOC on charge and 

low SOC on discharge are the peaks of VR magnitude. This is correlated to the IR of the 

battery, however the test method ensured that these values were not biased by the IR 

voltage drop. High SOC values on charge may have high VR magnitude, but they should 

not be selected as IR growth may inhibit obtaining a comparable VR at this SOC as the 

battery wears since it will be in constant voltage instead of constant current. Instead, a local 

maximum of VR magnitude on charge can be identified at 65% SOC, and this value is 

suggested for use in assessing SOH and for 24 hour VR test of LFP.  

5.2.2 VR shape and SS-OCV  

Results of the 24 hour VR test are shown in Figure 29. Note that each battery approaches 

open circuit while charging to the SOC value with highest VR magnitude: 45% for NMC 

and NCA, and 65% for LFP. The batteries then enter open circuit and relax. The vast 

majority of VR magnitude occurs within minutes, so an inset plot of log time in seconds is 

given to provide better resolution. The profile of VR is more complicated than the linear 

time graph would suggest. For the time periods of 1E0–3E2 s (up to 5 minutes) and 1E3–

1E4 s, (up to roughly 3 hours), these voltage profiles have the shape of exponential 

functions. They exhibit a clear lead in, linear region and fade to constant value that 

exponentials have when plotted in a semi-log plot. There is a cross over period in between 

them of 1E2–1E3 s (approximately 2 minutes to 16 minutes). During this period, there is 

only a linear portion observed in log time with no lead in or fade to constant. Finally for 

the time period greater than 1E4 s (roughly 3 hours), there is little change in the voltage 

profiles.  
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Figure 29: Twenty-four Hour Relaxation shown on a linear and logarithmic scale of NMC, NCA, and 

LFP chemistries 

NCA and NMC have similar voltage values due to their nickel based positive electrode 

material. There are three notable comparisons between the batteries. First, the NCA battery 

starts at a substantially higher voltage, but by 3E1 s approaches the voltage value of NMC. 

Second, the NCA and NMC exhibit similar VR during time period 3E1 to 2E3 s. Third, the 

NCA voltage substantially declines at 4E3 s and crosses below the value of NMC. 

The NMC battery achieves 98% of its SS-OCV value within 7E3 s (roughly 2 hours) and 

reach steady state at 2E4 s (roughly 5 hours). This is different from NCA which does not 

reach a SS-OCV value. There was concern that a parasitic current applied to the batteries 

by the voltage mea  r m n  (16 b  ; 10 MΩ) could be slowly discharging the battery and 

influencing this. To investigate this the NCA cell was tested again but was normally 

physically disconnected from the voltage measurement circuit. Voltage leads were re-

attached only temporarily to take a measurement at 1 s, 10 s, 100 s, 30 minutes, 3 hours, 

and 24 hours. This verification test produced identical results, indicating that this VR is an 

effect of the battery and not a function of the applied voltage measurement circuit.  
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The LFP battery achieves 98% of its SS-OCV value within 2 hours which is comparable 

to the NMC battery. It takes slightly longer at 4.6 hours to reach SS-OCV. LFP initially 

appears similar to the other chemistries in terms of its VR curve shape. There is a similar 

profile until 2E2 s with a clear lead in and linear region. However, after this time it lacks 

the visible inflections, points demonstrated by both NCA and NMC. This would suggest 

that simpler VR equivalent circuit model may be all that is required when modeling this 

chemistry.  

From the guidelines the shortest VR period is preferable if the model can accurately capture 

the curve. A relaxation period of 3 hours is sufficient to achieve above 98% of the SS-OCV 

for SOC estimation from the captured data for NMC and LFP batteries. This means that 

there will be a small amount of voltage evolution that would occur after the rest period is 

finished. A relaxation period of 3 hours would also be reasonable to find the characteristics 

of the VR curve shape for fitting applications. This period represents all the significant VR 

curve shape data. For NCA batteries further investigation is required into their long-term 

effects as it continues to evolve and does not settle on a SS-OCV, even after 24 hours. 

5.2.3 Model complexity 

Curve fitting of the 24 hour relaxation data for the different chemistries was performed 

using the VR equivalent circuit model. Eq [10] was curve fit for RC circuit counts ranging 

from 𝑛 =    to   . Example results are shown for n = 1, 3, 5 in Figure 30. They were then 

evaluated for their goodness of fit, also shown in Figure 30 as RMSD in the lower right 

plot.  
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Figure 30: Equivalent circuit model curve fit for models employing 1, 3, or 5 RC circuits, along with 

the overall RMSD error for models ranging from 1-6 RC circuits 

From these graphs it is clear that as n increases there is improvement to the RMSD of the 

model, albeit with diminishing returns. A difference in modeled and measured curves for 

the 1 and 3 RC models is noticeable, while the 5 RC model is almost indistinguishable 

from the measured results by visual inspection. Most of the VR curve shape can be captured 

with only 2 RC circuits as shown from the from large drop in RMSD between the 1 and 2 

RC models. This makes sense because the profile in the semi-log Figure 29 inset is 

predominantly two exponential decays. The improvements to fitting after this point are 

based on capturing the transition period between these RCs.  

The fact that RMSD is still improving after 3 RC circuits prompted investigation into the 

effects of each individual RC circuit onto the total profile. This is shown in Figure 31 for 

the 𝑛 =  3, 4, and 5 RC models for the NMC batteries. In these graphs the error shown on 

the secondary y-axis is calculated as the difference between the measured value and the 
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modeled value. This allows for visual inspection of the important differences in the 

modeled and measured curves. A vertical dashed line is included for each circuit 

representing the time it reaches 98% of its steady state value. This percentage was chosen 

for the same reasons as EST. When discussing this figure 𝑛 RC means the model and circuit 

𝑉RC,𝑝 refers to voltage magnitude attributable to a specific RC pair of the model. 

 

Figure 31: Impact of each RC circuit in a model on the VR profile for NMC batteries for 3, 4, and 5 

RC circuit models 

I  th  3 RC mod  , 𝑉RC,1 𝑉RC,2 a d 𝑉RC,3 line up with the 3 linear regions observed on the 

semi-log plot, explaining why there is such significant improvement to the accuracy from 
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the 1 to 2 to 3 RC models. It also explains the marginal improvements after this point as 

most of the behavior is captured with 3 RCs. These marginal improvements better represent 

the real electrochemical function which dictate the profile as it is not simply exponential 

decay functions.  

It is important to recognize how the RC circuits resolve from the 5 RC to the 3 RC model. 

When changing from the 5 RC to 4 RC model, 𝑉RC,5 and 𝑉RC,4 appear to resolve into a 

single 𝑉RC. This new 𝑉RC has a time constant between the previous ones, and a higher 𝑉𝑛 to 

account for the magnitude of both. When changing from the 4 RC to 3 RC model, the lower 

time constant circuits 𝑉RC,3 and 𝑉RC,2 appear to resolve. During these changes all RCs time 

constants migrate closer together to account for the simplification of the crossover period. 

5.2.4 Quantifying inaccuracy impacts on SOC and SOH 

Table 8 uses the RMSD technique given in Chapter 4 to determine the potential SOC error 

for each chemistry and n RC model. The n RC model at which minimum SOC error or 

0.5% is reached is bordered. NCA and NMC can both use the 3 RC model as it reaches the 

suggested SOC accuracy of 0.5%. LFP should use the 4 RC model where it reaches 

minimum SOC error of 2.27% which is well above the suggested 0.5%. The flatter voltage 

profile of LFP drastically increases sensitivity to error when using OCV to SOC 

relationship. If SOC is required to be lower than this for an application then VR may not 

be applicable for LFP batteries. 

Table 8: SOC error for various complexity of RC equivalent circuit model 

  Chemistry 

n RC model NCA  NMC LFP 

1 5.26% 6.67% 20.53% 

2 0.57% 0.99% 6.80% 

3 <0.5% <0.5% 4.87% 

4 <0.5% <0.5% 2.27% 

5 <0.5% <0.5% 2.27% 

6 <0.5% <0.5% 2.27% 
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Table 9 shows RMSD and EST for each chemistry and n RC model. For NCA the RMSD 

reaches a minimum at the 5 RC model. However, the modeled EST is 85.35 hours, which 

is well beyond the testing information of 24 hours. As SS-OCV was not reached for NCA 

it is unknown what value of modeled EST signifies overfitting, but that it should be longer 

than 24 hours. Testing VR beyond 24 hours could be used to verify this finding. 

For NMC and LFP Table 9 shows improvement in RMSD until the 6 RC model. However, 

the EST of this model is 6.95 and 5.36 hours, respectively, which are both substantially 

beyond the measured EST of 3 hours. This EST metric discredits both the 5 and 6 RC 

model and instead the 4 RC model with appropriate EST is selected (and bordered). 

Table 9: EST and RMSD for each tested chemistry and number of RC circuits in the model 

Chemistry: NCA   NMC   LFP   

n RC model RMSD  EST RMSD  EST RMSD  EST 

1 9.59% 0.15 hours 7.84% 0.16 hours 4.99% 0.13 hours 

2 1.14% 1.22 hours  0.94% 2.26 hours 1.43% 0.34 hours 

3 0.62% 4.73 hours 0.36% 2.98 hours 0.62% 2.36 hours 

4 0.40% 5.36 hours 0.16% 3.43 hours 0.45% 4.04 hours 

5 0.23% 85.35 hours 0.15% 6.95 hours 0.36% 5.36 hours 

6 0.23% 83.90 hours  0.37% 26.60 hours 0.37% 44.34 hours 

 

5.3. Outcome 

After examination of state of the art it was determined that there existed a gap for the 

improvement consistency between VR studies. This gap was defined with 4 research 

questions concerning: The SOC values relationship to VR magnitude and curve shape; The 

period of time required for resting; The complexity of model required for SOC estimation; 

The complexity of model required for SOH evaluation. With 4 guidelines to restrict scope 

for practical applications a VR methodology was trialed on multiple chemistries of LIB. 

A 3 hour VR with 10% SOC increments in charge and discharge and a 24 hour VR at a 

specified SOC was created to evaluate the research questions. From these tests the data was 

curve fit using a VR specialized equivalent circuit model to best capture the VR curve 
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shape and minimize error in SS-OCV estimation. These curve fits were evaluated in terms 

of RMSD and SOC error. Differing amounts of RC circuits were modeled to determine the 

required complexity. Curve fitting was performed over the range of SOC values received 

to determine curve shape differences which could indicated SOC values for SOH 

evaluation.  

From this group of tests there were good results found. First, the relationship between SOC 

and VR magnitude was found for each chemistry. There are trends that are present and 

from these and the guidelines, a highest point of VR magnitude can be found. For NCA 

and NMC this is 45% SOC. For LFP this is 65% SOC. Next it was determined that NCA 

does not relax completely over a 24 hour period. This was confirmed with secondary tests 

where confounding variables were taken away and the only influence was the internal 

workings of the battery. NMC and LFP both require 5 hours to be fully rested, but 

functionally can be claimed rested at 3 hours for curve fitting.  

Using the VR equivalent circuit model 3 and 24 hour tests were curve fit. These were 

performed at various SOC and complexity. From these investigations it was found that 

error decreased significantly from 1 to 2 to 3 RC circuit models. For the purposes of SOC 

estimation within 0.5% accuracy, it was found that NCA required a 3 RC model, NMC 

required a 2 RC model, and LFP required a 4 RC model. For the purposes of SOH 

estimation, it was found that all batteries required a 4 RC model. 
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Chapter 6 Investigation of degradation via voltage 

relaxation 

6.1. Purpose 

The second study was performed to determine the relationship between VR characteristics 

and degradation metrics for the 3 chemistries in a 3P configuration. Capacity, IR, and VR 

were tested, then followed with an accelerated degradation test. During the study 7 sets of 

tests were performed on the NCA, NMC, and LFP batteries over 3 months. Relationships 

between VR metrics and degradation metrics were quantified by Pearson correlation 

coefficients and linear interpolations to determine if VR could accurately estimate SOH 

and IR. The following research questions guide this study: 

1. Do time constants of VR curve shape change as a function of degradation metrics 

(SOH & IR growth) with a relationship that is useful to predict these degradation 

metrics. 

2. Does VR magnitude change as a function of degradation metrics with a relationship 

that is useful to predict these degradation metrics. 

With that in mind there were some practical guidelines to limit the scope to a realistic use 

case.   

1. VR for SOH evaluation will likely be implemented during charge as most 

applications have specific demands during discharge that prohibit long open circuit 

conditions. 

2. VR relaxation period should be as short as possible while maintaining good 

accuracy.  

3. SOC should be calculated based on most recent maximum Ah capacity 

measurement as this gives most accurate SOC measurements while coulomb 

counting. 

4. The SOC chosen for future investigations should be where the relationship is easiest 

to predict from having the largest changes in the VR metric. 
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6.2. Degradation results 

After the set of tests performed, the batteries were found to have significant differences in 

their degradation. Their results however were consistent between degradation metrics. For 

example, the NCA battery had both the highest IR growth and capacity lost. The pertinent 

overall results are that the NCA battery failed completely, the NMC battery degraded a 

measurable amount and the LFP battery degraded minorly. 

6.2.1 Capacity degradation  

The batteries capacity degradation shows the large difference between the useful life of 

each battery chemistry. Each set of tests was labeled with the SOH value and Ah-CycEq 

from the RPT performed in that set. To make subsequent results presentation and 

discussion more clear test numbers will be given to explain these metrics. Table 10 shows 

the results which are then represented graphically in Figure 32. The top plot shows the 

maximum discharge capacity of the battery versus the AhCyc-Eq. Notice that each battery 

starts with a different amount of capacity, and the important observation is the reduction 

relative to the initial capacity, as shown in the bottom plot. 

Table 10: SOH for each chemistry and test set 

Test 

Number 

NCA NMC LFP 

 SOH Ah-CycEq NMC Ah-CycEq LFP Ah-CycEq 

1 100.0%   5.0 100.0%   5.0 100.00%  5.2 

 
2  92.6%  45.8 99.9%  48.2  99.99% 56.0 

3  81.3%  79.7 99.0%  90.6  99.97% 108.3 

4  73.7% 108.4 98.1% 131.4  99.59% 161.0 

5  62.8% 133.9 96.2% 171.7  99.23% 213.4 

6  58.4% 156.4 94.6% 210.9  99.07% 264.8 

7  54.4% 179.3 90.8% 248.4  98.88% 317.0 
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The NCA battery experiences the largest degradation of capacity in the least number of 

cycles. This was anticipated, the rated cycle life was 500 cycles however the battery 

reached less than 200 before it failed. The test on the NCA battery failed from a rapid 

increase in temperature which triggered a temperature alarm shown in Figure 33. This rise 

in temperature would have resulted in thermal runaway should the test have continued.  

Figure 32: Degradation plot of Capacity vs cycles and SOH vs cycles 
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Figure 33: Final RPT of the NCA battery where failure due to thermal runaway occurred  

Figure 33 shows the current increased during the CV phase, because of the heat generated 

during the charge cycle. This heating rate caused a large decline in the IR of the battery 

since at higher temperatures the cell less electrochemical resistance to the lithium ions 

moving. The lower IR increased the current, creating a feedback loop since heat generation 

is a square relationship with current compared to a linear relationship with resistance. This 

failure is significant as these batteries would be dangerous to operate again. The batteries 

were evaluated from BOL to EOL in the investigation, making the results more impactful 

since they represent the full spectrum of usable health. 

The NMC and LFP batteries experienced significantly less SOH degradation over the 

study, with NMC losing 10%, and LFP losing 2%. Note that all batteries were run for the 

same period of time, and the difference in Ah-CycEq is from the higher SOH batteries 

experiencing more Ah throughput relative to their rated capacity.  
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6.2.2 IR degradation 

Figure 34 shows that the NCA battery had significant growth of IR over the lifespan for 

both charge and discharge IR. Note that after test 4 the current pulse was changed to allow 

for more data points to be captured. This had no effect on the IR as it was accounted for in 

data analysis. On charge and discharge there is a growth by a factor of roughly 1.9 from 

test 1 to the test 7 for a given SOC.  

Figure 35 shows that the NMC batteries showed measurable increase in IR as well. They 

started with an initial IR that was higher than NCA but grew at a slower rate. The IR has 

grown by a factor of roughly 1.4 on charge and discharge. It is important to observe that 

the growth was equivalent on charge and discharge as this shows that degradation was 

likely equal between the positive and negative electrode. If one had disproportionate 

degradation, there would be an increase in IR for either charge or discharge. The magnitude 

of IR growth was anticipated as the capacity degradation was also less severe than the NCA 

battery. As degradation progresses it is anticipated that both IR will grow, and capacity 

will decrease as explained in Chapter 2. 

 
Figure 34: IR degradation results of NCA batteries for charge and discharge 
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Figure 35: IR growth on charge and discharge for NMC battery 

The LFP batteries showed minimal change in their IR as can be seen in Figure 36. They 

follow the same trend with some small variation between tests, but no significant change.  

 

Figure 36: IR growth on charge and discharge for LFP battery 

Note that LFP can capture more of the SOC range on charge and discharge since it does 

not end the CC until later in SOC. This shows the characteristic, that all LIBs have, of 
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highest IR at high and low SOC. The initial test has the largest values of IR which then 

decrease to the values observed for the rest of testing. As shown from Rangom et. al [35] 

the first set of cycles on an LIB has a measurable effect on the particle size. If the negative 

electrodes were run at a slow rate, they would have higher SEI particle size. The batteries 

in this study were purchased in 2019 and only been characterized when they first arrived, 

measured for IR, mass, and voltage. Therefore, the SEI would not have had any cycling to 

reduce the larger particles from mass transport of lithium, and the SEI would grow during 

this time as shown from Barré et al. [19] . This is thought to be captured in the LFP results 

since there is minimal change in IR over the lifespan of the battery, but high IR on the first 

test. Once the battery had been sufficiently cycled after the degradation schedule there was 

less resistance to the lithium ions being transported to either side since the larger particle 

size of the SEI would have broken down into smaller particles from the mass transport of 

lithium ions. I believe that this occurred for all of the batteries tested but is only visible on 

LFP since it had no large change in IR. This is the electrochemical reasoning for why this 

has occurred, but this claim cannot be confirmed without disassembly and dissection of the 

battery after the first IR test. 

For the batteries of the nickel-based chemistry, as the capacity decreased the IR increased. 

If a relationship or correlation is found between VR metrics and either of these metrics it 

has high probability to also be true for the other metric. However, it does make 

distinguishing causes between SOH and IR growth harder, and potentially unfeasible. This 

is an area for future investigation.   

6.3. VR results  

After degradation metrics were examined from an RPT and IR test, the VR test was 

performed to evaluate the research questions. As the tests progressed and the SOH of the 

batteries decreased, this changed the positions in SOC that VR would occur at. This is 

because Ah was used as a control parameter and a set amount of Ah results in a different 

amount of SOC if the total capacity is lower. In the case of NCA this had a measurable 

impact as there was almost a 50% decrease in capacity as can be seen in Figure 37. 
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Figure 37: VR tests for NCA cells at 100% SOH and 54.4% 

For NCA, the test takes 60 hours at BOL compared to the roughly 37 hours at EOL. The 

number of data points is lower as well, where BOL achieves 8 VR periods EOL only 

achieves 4. This has an important insight for a proposed schedule. It must consider the 

capacity of the battery to reach an SOC for VR investigation.  

Using a 4 RC VR-ECM for each chemistry the VR period was curve fit for every test. This 

resulted in finding the VR magnitude and time constant for each RC circuit. From the curve 

fit RMSD and EST values were calculated used to determine that a fit was valid. This 

ensured that differences came from curve shape and not process. Each VR was assigned 

the SOC and test number at which it occurred, test number being analogous to SOH as 

shown in Table 10. These allow for useful sorting of the data. VR results can be sorted by 

test number to show how the VR vs SOC profile changes as a function of degradation 

metrics as can be seen in Figure 38 on the left plot. VR results can be sorted by SOC to 

show how VR metrics change at a specific SOC value as a function of degradation metrics, 

shown on the right. 
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Figure 38: Different sorting of VR results to show features, exemplified from NCA results 

6.3.1 NCA 

In Figure 39 the time constants for NCA had no strong trends with SOH or IR. All of the 

time constants stayed within an order of magnitude. This was deemed acceptable as each 

time constant is an order of magnitude different from the others and these fits achieve low 

RMSD, and accurate EST. The only RC and SOC range that showed any consistent trend 

was RC 4 between 40-50% SOC. It increases in value but does not follow any consistent 

form of growth, so this is not a useful relationship. This lack of trends is in opposition to 

what was expected from the literature review. Time constants were said to be correlated to 

degradation metrics [8] [15] [17]. These studies claim that there should be a trend of the 

time constants increasing as the SOH decreases which has a consistent and predictable 

relationship. From the literature it is known that one of the features of the VR curve shape 

is from lithium plating on the negative electrode. Some of these studies were predicting 

this specific degradation mode and induced it in their methods. It could be that this specific 

degradation mode is what causes an increase in time constant, and these cells did not 

experience much lithium plating. This is a theoretical claim and must be confirmed through 

testing. To resolve this difference in results a new study is suggested into how inducing 

specific degradation modes in LIBs changes VR metrics and evaluating them after EOL to 

confirm degradation modes. 
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Figure 39: Modeled time constants for each RC circuit for NCA battery 

The VR magnitude of each RC circuit was sorted into SOC ranges of 10% as shown in 

Figure 40. There is clear trend that as the battery ages there is an increase in the VR 

magnitude for almost every circuit at every SOC. Only one of the circuits does not show 

this behaviour at two ranges, RC 4 between 40% SOC and 60% SOC. RC 4 is the long 

term RC which for NCA is known to be not fully representative as expressed in Chapter 

5.3 long term evolution is missed. For this reason, the VR magnitude of the entire model 

was plotted against the SOC and sorted via test number, shown in Figure 41 
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Figure 40: VR magnitude for each RC circuit of NCA battery 

 



79 

 

Figure 41: VR Magnitude of NCA cells vs SOC for all tests 

From this Figure 41 the relationship is clear. As the cell increased in age the VR magnitude 

increased for every SOC range. It increased by a factor of 3.5 to 4.0 depending on the SOC. 

A small variation of growth means there is likely a consistent trend between the data. The 

magnitude of growth is a large and, more importantly, a measurable change in VR 

magnitude. The increase was consistent across the tests, further improving the viability of 

VR for SOH determination. This effect is also shown when the VR magnitude is plotted 

against the SOH and IR as in Figure 42.  

There is an apparent linear relationship between the VR magnitude and SOH, as well as 

the VR magnitude and IR for all SOC ranges. To confirm this a quantitative assessment 

was necessary. A Pearson correlation coefficient was used to confirm the negative and 

positive correlation between SOH and IR growth respectively. They were evaluated versus 

a linear interpolation of the data for a coefficient of determination. Table 11 shows that this 

was done for each SOC range. 

 

 

 

 

    

   

    

   

    

   

                   

 
 
  

  
  
  
  

   

 

    

   

    

   

    

   

             
       

     

     

     

     

     

     

Figure 42: VR magnitude of NCA cells vs. SOH and IR 
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Table 11: Results of Correlation and R2 of VR magnitude and degradation characteristics for NCA 

batteries 

SOC range Pearson Correlation Factor R2 

 
SOH & VR IR & VR SOH & VR IR & VR 

10-20 -0.934 0.977 0.956 0.956 

20-30 -0.988 0.999 0.999 0.998 

30-40 -0.989 0.996 0.999 0.990 

40-50 -0.966 0.993 0.9179 0.988 

50-60 -0.946 0.947 0.901 0.901 

60-70 -0.963 0.996 0.888 0.992 

The correlation factor between VR magnitude and both degradation metrics is close to 1 

and −1. This means there is a high correlation between these variables. Next the R2 value 

is high for each SOC range as well. Meaning a linear approximation could estimate the 

relationship between both SOH and VR magnitude as well as IR growth and VR 

magnitude. This relationship is SOC dependant as well which is important to recognize in 

an application setting. 

6.3.2 NMC 

The time constants of NMC, shown in Figure 43, have some distinguishable trends 

compared to the NCA trials. Between 30% to 50% SOC there appears to be a general 

increase in the value for all for the RC pairs apart from RC4 between 40% to 50%. Apart 

from this all the other ranges for RCs show grouping within an order of magnitude with no 

distinguishable trend. It is interesting to note that RC3 and RC4 between 40% to 50% has 

a much higher values than any of the other SOC range and variability between tests. This 

could be impacted by the higher VR magnitude at this range as found from the first study.  
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Figure 43: NMC time constants 

Apart from these two observations there are no other consistent trends for the NMC battery. 

To quantify the trends the same analysis of correlation factor and R2
 was performed on the 

time constants. The results are shown in Table 12. 

Table 12: Correlation and R2 analysis of time constants for NMC 

RC number 30-40 % SOC 40-50 % SOC 

 
Pearson Correlation Factor  R2 Pearson Correlation Factor   R2 

 SOH 

-0.988 

-0.989 

IR SOH 

-0.988 

-0.989 

IR SOH 

-0.988 

-0.989 

IR SOH 

-0.988 

-0.989 

IR 

1 -73.25% 57.37% 0.99 0.99 -74.55% 79.65% 0.99 0.99 

2 -91.26% 78.32% 0.18 0.19 -82.03% 90.22% 0.20 0.21 

3 -93.07% 84.50% 0.05 0.05 -73.50% 83.35% 0.015 0.02 

4 -80.28% 95.98% <0.01 <0.01 16.71% 11.34% 0.01 <0.01 
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Its clear that there is some correlation between the time constants and the age of the battery 

between 30-50% for almost all the RCs, but none are as strongly correlated as the VR 

magnitude. If these are to be impactful for predicting SOH or IR, they should have both 

high correlation and R2 values. Only RC circuit 1 has high R2, but the correlation is too 

low to be able to use this relationship. For these reasons it does not seem feasible to estimate 

SOH or IR from observing the time constants for the VR-ECM. This is also different from 

literature in the same way as the NCA battery.  

The VR magnitude does show a similar trend to the NCA batteries. The total VR magnitude 

increases with cycle count as can be seen in Figure 44. There is less growth overall than 

with the NCA battery, which is expected as it experienced less degradation. The VR 

magnitude increased a factor of between 1.3 and 1.5 times the original value. This is 

slightly higher than the NCA batteries for the equivalent SOH degradation. The largest 

increase in VR magnitude occurs between 50 and 60 SOC. Should this band of SOC have 

a useful relationship it should be used for degradation evaluations in the future. 
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Figure 44: NMC VR Magnitude 

As the relationship is similar to the NCA batteries the same analysis was performed on the 

NMC batteries to determine if there was linear growth between VR magnitude and 

degradation metrics. These results are shown in Table 13. 

Table 13: Results of Correlation and R2 of VR magnitude and degradation characteristics for NMC 

batteries 

SOC range Correlation Factor R2 

 
SOH & VR IR & VR SOH & VR IR & VR 

10-20 -0.899 0.959 0.996 0.998 

20-30 -0.947 0.977 0.998 0.999 

30-40 -0.965 0.938 0.999 0.998 

40-50 -0.945 0.953 0.999 0.999 

50-60 -0.929 0.969 0.995 0.998 

60-70 -0.975 0.965 0.998 0.998 

As can be seen from the table there is again strong correlation both positive and negative 

between VR magnitude and degradation metrics. Furthermore, the relationship is highly 
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linear with R2 values that are near 1. This means that knowing the VR magnitude should 

lead to accurate prediction of SOH and IR for NMC batteries.  

6.3.3 LFP 

The modeled time constants for LFP tests show a similar variability to that seen in the other 

two chemistries pictured in Figure 45. With LFP experiencing minimal degradation in 

capacity or IR growth, this means that the variability is from the differences from each test 

and the modeling method. This modeling method is based on a mathematical process so 

the exact same test will always produce the same results. There is some variability, but all 

within one order of magnitude and does not seriously alter curve shape, RMSD.  

 

Figure 45: LFP modeled time constants  

 It is interesting to note that the variability in time constant is dependant on the SOC. This 

would make sense as the VR curve shape changes as a function of SOC and could be easier 
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to model. The spread of possible time constants seems to be highest at the middle SOC 

range. This is further in agreement with the trend seen in the NMC battery as well.  

The VR magnitude of the LFP battery as the cycle count increases remains consistent. This 

is expected as again the LFP battery experienced minimal degradation. It should be noted 

that test 1 is higher for the VR magnitude as well as the IR. This correlated with higher IR 

on the first test as well. This does make sense if VR and IR were correlated as we have 

seen with the previous two chemistries. 

 

 

Figure 46: VR magnitude for LFP 

As the results are tightly grouped a correlation or linear interpolation on the data would not 

have usable results as shown in Table 14 with the sensitivity of VR investigation. 
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Table 14: Correlation and R2 of LFP VR results 

SOC Correlation Factor R2  

 IR & VR SOH & VR IR & VR SOH & VR 

10 0.35 0.01 0.99 0.99 

20 0.28 -0.19 0.99 0.99 

30 0.84 0.67 0.99 0.99 

40 0.65 0.52 0.99 0.99 

50 0.91 0.70 0.99 0.99 

60 0.84 0.60 0.99 0.99 

This data is not impactful since only BOL is being considered. The Pearson correlation 

factor shows that these are not correlated, which I anticipate to be from the minimal change 

being below the sensitivity threshold for this technique. The difference in VR magnitude 

is a maximum of approximately 10 mV over a change of 2% SOH. The first VR magnitude 

being higher than subsequent tests has a large affect on the results at this scale. This data 

is below the sensitivity threshold for VR analysis which could be an area for exploration 

in the future. LFP batteries have high cycle life count and a study that uses VR over the 

entire lifespan of an LFP battery would be insightful to confirm the results of this thesis 

and examine the sensitivity of VR analysis.   

6.4. Outcomes 

The goal of this study was to determine if VR metrics could be related to degradation 

metrics in a meaningful way to predict these degradation metrics from a VR analysis. The 

following outcomes were received from the study 

(1) It was found that VR magnitude changes as both a function of SOH and IR. These 

variables are highly correlated for NCA and NMC. The relationship between VR 

magnitude and these degradation metrics is linear for a given SOC band with a high 

degree of confidence. From this relationship VR magnitude can be used to estimate 

SOH and IR growth.   

(2) Modeled VR time constants do not change and / or cannot be used to estimate SOH 

or IR growth in contrast to other research r ’ findings for NCA and NMC batteries.  

As VR magnitude can be used to determine degradation metrics his means that VR is a 

valid methodology for performing in-situ SOH investigations.  
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This study showed potential improvements by: 

(1) Including LFP batteries examined over their lifetime to confirm results and 

investigate the sensitivity of VR would be useful.  

(2) Inducing particular degradation modes in the batteries to examine if they can be 

identified from VR metrics. This could bridge the differences between this study 

and the other studies in the field.  
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Chapter 7 Conclusions & Recommendations 

LIBs are a cornerstone of the energy storage market which is only set to grow in the coming 

years. To get the best performance out of them monitoring must be performed to understand 

the SOC, SOH and IR. This is not an easy process and improvements are explored in the 

current research. VR is a method that could have benefits as an in-situ monitoring 

technique. Understanding VR and its various relationships can lead to prediction of SOC, 

SOH, and IR growth. A methodology was developed to perform these predictions.  

Three chemistries of LIBs from reputable manufacturers were investigated in 2 studies. 

These batteries were tested and monitored for voltage, current and temperature at a polling 

rate of 0.1s for VR periods. This data was imported to MATLAB for model curve fitting 

via the Levenberg-Marquardt method with a specialized VR-ECM model for improved 

results. These results were compiled and analyzed to answer the research questions posed 

and achieve the thesis objectives. These major finding are shown in 7.1 and 7.2. From the 

investigation of these studies a list of recommendations was created for future work to 

improve on this thesis. 

7.1. Outcomes from thesis objectives 

(1) A novel battery model was created based on the equivalent circuit model to evaluate 

VR. This is the VR-ECM which can accurately model VR magnitude and curve 

shape.  

(2) The study from Chapter 5 showed that using the VR-ECM with either 3 or 4 RCs 

depending on the chemistry, and a 3 hour rest, would result in the highest accuracy 

for SOC determination. For NCA and NMC batteries this could be estimated within 

0.5% of SOC. For LFP batteries SOC could be estimated within 2.27% for a worse 

case scenario.  

(3) The study from Chapter 5 showed that using the VR-ECM with 4 RCs could 

represent curve shape and show differences as a function of degradation metrics. 

This was tested in the study from Chapter 6 where a methodology was trialed to 

examine SOH and IR growth in relation to VR characteristics. This trial had 

positive results showing the value in the methodology. 
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(4) Relationships between VR magnitude and degradation metrics were found for NCA 

and NMC batteries with a high degree of correlation. The relationship between 

these variables is linear and can be used to estimate SOH or IR growth if the SOC 

and VR magnitude are known for a VR rest. LFP batteries were cycled but did not 

achieve the same degradation as they degrade slowly. 

7.2. Findings from research questions 

The following findings were gained from exploring the research questions: 

(1) It was found that the VR magnitude and curve shape changes as a function of SOC, 

but that VR magnitude has a distinguishable trend that the point of highest 

sensitivity can be found from. 

(2) It was found that NCA batteries require more than 24 hours to rest completely. For 

NMC and LFP batteries 5 hours will suffice to capture all the curve shape in the 

dataset, but shorter can be achieved if model curve fitting occurs. 

(3) It was found that to estimate SOC to the highest quality possible a 3 hour rest period 

is required with a 3 RC model for NCA and NMC batteries. For LFP a 4 RC model 

is required with the same rest period.  

(4) It was found that to estimate SOH a 3 hour rest with a 5 RC model would be 

sufficient for NCA. For NMC and LFP a 4 RC model would be sufficient.  

(5) Modeled VR time constants do not change and / or cannot be used to estimate SOH 

 r IR  r w h  n   n r         h r r    r h r ’ f nd n   f r  CA  nd  MC b    r   .  

(6) It was found that VR magnitude changes as both a function of SOH and IR. These 

variables are highly correlated for NCA and NMC. The relationship between VR 

magnitude and these degradation metrics is linear for a given SOC band with a high 

degree of confidence. From this relationship VR magnitude can be used to estimate 

SOH and IR growth.   

7.3. Recommendations  

From performing these studies and learning about VR certain recommendations were found 

to improve the quality of future studies and investigations.  
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1. A study should be performed into the long term relaxation of NCA batteries to find 

how long they take to fully relax. It is proposed that relaxation should occur at 45% 

SOC for upwards of 85 hours to begin and increase should the battery not be fully 

relaxed by then. 

2. Extend the 2nd study to capture the full life cycle of LFP. This will confirm the 

results and allow for an analysis of required sensitivity for VR magnitude to be used 

to estimate SOH and IR growth. 

3. Examine how different configurations of parallel and series cells effect the VR. 

There is concern that characteristics of a poor performance cell could be masked 

by other cells. Does a 1P battery have the same VR characteristics as a 36P battery? 

This could have useful applications for EVs and balancing circuits. 
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Appendix D Fluke 289 Calibration Sheets 
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Appendix E Arbin Calibration Sheets 
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Appendix F MATLAB scripts 

Import Script: 

%The purpose of this script is to import xlsx files to matlab 
clear; 
close all;  
 
%absolute path on the local computer to the folder containing the files to 
%import and their names. 
Path = "C:\Users\rando\Dalhousie University\RESL Jaza Batt Chg Mdl - 
General\David Thesis\RawData\PS_NCA"; 
FileNames =  ["DT_PS_NCR18650B_P2_T30_Deg_1S_3P"; 
              "DT_PS_NCR18650B_P2_T31_RPT_1S_3P"; 
              "DT_PS_NCR18650B_P2_T32_Deg_1S_3P"]; 
              "DT_PS_NCR18650B_P2_T33_VRvsSOC_1S_3P"]; 
 
i=0; 
while(i < size(FileNames,1)) 
    %increment cycle count  
    i=i+1; 
    % Full path for file indexed i 
    FullPath = Path + "\" + FileNames(i,1); 
 
    
    %headers and variable types of each column 
    Names = 
["DateTime","Test_Times","Cycle_Index","Step_Index","Step_Times","CurrentA","V
oltageV","PowerW","Discharge_CapacityAh","Charge_CapacityAh","Discharge_Energy
Wh","Charge_EnergyWh","AuxTemp1C","AuxTemp2C"]; 
    VarTypes = 
["datetime","double","double","double","double","double","double","double","do
uble","double","double","double","double","double"]; 
    %making the spreadsheet the table t 
    opts = 
spreadsheetImportOptions('VariableNames',Names,'Sheet','Data',"VariableTypes",
VarTypes,'DataRange','A:N',"ImportErrorRule",'omitrow'); 
    t = readtable(FullPath,opts); 
     
    %Saving each of the columns individually, this could probably be done 
    %better but it works 
    clearvars -except t Path FileNames i ;  
    DateTime = t.DateTime; 
    Test_Times = t.Test_Times; 
    Cycle_Index = t.Cycle_Index; 
    Step_Index = t.Step_Index; 
    Step_Times = t.Step_Times; 
    CurrentA = t.CurrentA; 
    VoltageV = t.VoltageV; 
    PowerW = t.PowerW; 
    Discharge_CapacityAh = t.Discharge_CapacityAh; 
    Charge_CapacityAh = t.Charge_CapacityAh; 
    Discharge_EnergyWh = t.Discharge_EnergyWh; 
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    Charge_EnergyWh = t.Charge_EnergyWh; 
    AuxTemp1C = t.AuxTemp1C; 
    AuxTemp2C = t.AuxTemp2C; 
     
    clearvars t; 
    %Saving it in the local directory with the same name  
    save(FileNames(i,1)+".mat",'-mat'); 
    %setting up for next loop 
    clearvars -except Path FileNames i ;  
          
 
end 
 

Data Slicer script: 

%The purpose of this script is to separate VR periods into individual 
%datafiles   
clear all; 
close all; 
%Input from operator  
DataFile = "DT_PS_NCR18650B_P2_T24_VRvsSOC_1S_3P"; 
load (DataFile); 
% loop variables 
i=0; 
loopsze = size(Cycle_Index,1); 
 
restCount = zeros(25,1); % how many datapoints are in a rest 
restIndex = []; % value of those data points  
 
RN = 0; % Number of rests that have occurred 
 
%Getting each rest and the data index that they occur at 
while(i< loopsze) 
    i=i+1;  
    if((Step_Index(i,1) == 14) ||(Step_Index(i,1) == 15)) 
        if (Step_Index(i-1,1) == 13)      
            %updating rest number 
        RN = RN+1; 
        end 
        restCount(RN,1) = restCount(RN,1)+1; 
        restIndex(restCount(RN,1),RN) = i; 
    end  
end 
 
%Altering Loop variables for next loop 
i = 0; 
loopsze = RN; 
 
 
%Populating the rest variables and saving them  
while (i < loopsze) 
    %Iterating for each rest 
    i = i + 1; 
    j = 0; 
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    %Creating a value table based off how many data points there are 
    size = restCount(i,1); 
    ValueTable = zeros(size,2); 
 
    %Populating the Value Table 
    while(j < size) 
        j=j+1; 
        %Voltage at index 
        ValueTable(j,1) =abs(VoltageV(restIndex(j,i),1)-
VoltageV(restIndex(1,i),1)); 
        %Time at index 
        ValueTable(j,2) = Test_Times(restIndex(j,i),1) - 
Test_Times(restIndex(1,i),1); 
         
    end 
     %Ah Value for the rest  
     ValueTable(1,3) = abs(Charge_CapacityAh(restIndex(j,i),1) / 
Discharge_CapacityAh(restIndex(j,i),1)); 
     %Saving full data invloved with calcs 
     save(DataFile + "_Rest_" + string(i)) 
end 
%Cleaning up the Rest data files  
 
%Only keeping the vars required for looping 
clearvars -except DataFile RN; 
i = 0; 
loopsze = RN; 
 
%Removing excess data from the .mat files 
while (i<loopsze) 
i=i+1;  
load(DataFile + "_Rest_" + string(i)) 
clearvars -except i loopsze DataFile ValueTable 
save(DataFile + "_Rest_" + string(i)) 
end 

Curve Fitting script: 

%The purpose of this script is to curve fit every VR period with a 4RC model 
clear; 
close all; 
 
%------Required Input from operator------% 
DataFile = "DT_PS_NCR18650B_P2_T24_VRvsSOC_1S_3P"; 
Type = "PS"; 
% initial values 
x0 = [0, 0.03,1.35,0.02,17.5, 0.053,125,0.005,1000]; 
%----------------------------------------% 
 
%Selecting for Cap Variable 
switch Type  
    case "PS" 
        capIndex = 1; 
    case "LG" 
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        capIndex = 2;  
    case "LW" 
        capIndex = 3;  
end  
%Cap Variable 
%  1 -> PS; 2 -> LG; 3 -> LW 
CapAh = [3.2*3; 2.6*3; 1.1*3]; 
 
%Loading first rest  
load(DataFile+"_Rest_1"); 
 
%Function for curve fitting  
fun = @(x,xdata) x(1) + x(2)*(1-exp(-(xdata/x(3)))) + x(4)*(1-exp(-
(xdata/x(5)))) + x(6)*(1-exp(-(xdata/x(7))))+ x(8)*(1-exp(-(xdata/x(9)))); 
 
% bounds on the fitting 
ub = [ 0.00000001, 0.1, 50, 0.07, 200,  0.05,1000, 0.100, 20000]; 
lb = [-0.00000001,   0,  0,    0,   0,      0,  0,     0, 0]; 
%initiate Vars 
vars = [];  
 
k = 0; 
 
while (i <= loopsze) %loopsze is from the data file  
load(DataFile + "_Rest_" + string(i)); 
 
[xa,ra] = lsqcurvefit(fun,x0,ValueTable(:,2),ValueTable(:,1),lb,ub); 
%Not including the failure that occurs each test  
    %Populating the vars  
    vars(i+1-k,[1:9]) = xa; 
    vars(i+1-k,(size(xa,2)+1)) = ra; 
    vars(i+1-k,(size(xa,2)+2)) = ValueTable(1,3); 
    %Showing the curve 
    semilogx(ValueTable(:,2),fun(xa,ValueTable(:,2))); 
    hold on; 
    ylim([0,0.15]); 
i=i+1; 
end 
 
clearvars -except vars DataFile ub lb 
save (DataFile+"_SimOut"); 
 

IR analysis Script: 

% the purpose of this script is to analyse IR from a .mat file 
clear all; 
close all; 
% For operations these are the only things that need to be changed. 
FileName = "DT_LW_APR18650M1B_P2_T27_IR_1S_3P"; 
Type = "LW"; 
%------------------------------------------------------------------ 
switch Type  
    case "PS" 
        currIndex = 1; 
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    case "LG" 
        currIndex = 2;  
    case "LW" 
        currIndex = 3;  
end  
load (FileName); 
%converting the seconds timeseries to hours 
Hours = Test_Times/3600; 
 
%loopvars  
loopsze = size(CurrentA,1); 
i = 0; 
b = 0; 
c = 0; 
 
%outputs initialization  
inits_Chg = []; 
finals_Chg = []; 
AhT_Chg = []; 
inits_Dis = []; 
finals_Dis = []; 
AhT_Dis = []; 
 
%Current Variable 
%  1 -> PS; 2 -> LG; 3 -> LW 
DeltaI = [2.4; 3.9; 1.65]; 
 
 
%Getting correct data point for Delta V to calc IR 
while(i<loopsze) 
    i = i + 1;  
   %Discharge IR 
     if(Step_Index(i,1) == 7 ) 
         % Delta V at start of pulse 
         if( Step_Index(i-1,1) == 6 ) 
             b = b + 1; 
            inits_Dis(b,1) = VoltageV(i-1,1); 
          % Delta V at end of pulse 
         end 
            finals_Dis(b,1) = VoltageV(i,1); 
            AhT_Dis(b,1) = abs(Discharge_CapacityAh(i,1)-
Charge_CapacityAh(i,1)); 
          
    %Charge IR  
    elseif(Step_Index(i,1) == 10) 
        % Delta V at start of pulse 
        if( Step_Index(i-1,1) == 9) 
            c = c + 1; 
            inits_Chg(c,1) = VoltageV(i-1,1); 
        % Delta V at end of pulse 
        end         
            finals_Chg(c,1) = VoltageV(i,1); 
            AhT_Chg(c,1) = abs(Discharge_CapacityAh(i,1)-
Charge_CapacityAh(i,1)); 
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    end 
end 
 
%Calcs 
deltaV_Dis = abs(inits_Dis - finals_Dis); 
deltaV_Chg = abs(inits_Chg - finals_Chg); 
 
SoC_Dis = 1 - (AhT_Dis ./ abs(max(Discharge_CapacityAh))); 
SoC_Chg = 1 - (AhT_Chg ./ abs(max(Discharge_CapacityAh))); 
 
% Delta V / Delta I = mOhms  
R_Dis = 1000* deltaV_Dis/DeltaI(currIndex,1); %currIndex is dependant on the 
type variable  
R_Chg = 1000* deltaV_Chg/DeltaI(currIndex,1);  
 
%Showing Results 
plot(SoC_Chg,R_Chg); 
hold on; 
plot(SoC_Dis,R_Dis); 
 
xlim([0,1]); 
xlabel("State of Charge"); 
ylabel("Resistance (m\Omega) "); 
 
clearvars -except FileName R_Chg R_Dis SoC_Chg SoC_Dis; 
save(FileName + "_RESULTS") 

 

 

 


