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ABSTRACT

Baleen whales of the Northwest Atlantic live in an urbanized ocean. They attempt a

slow recovery from commercial whaling amid threats from the infrastructure, pollution,

and shifting environmental baseline associated with human exploitation of the natural

world. Current risk mitigation strategies all rely on a comprehensive knowledge of

whale distribution, which is difficult to obtain given limited resources, a vast ocean,

and the cryptic nature of whale behaviour. This thesis strives to advance baleen whale

monitoring with passive acoustics, habitat ecology, and new technology. Chapters 2 and 3

use several different approaches to improve the quality and interpretation of data derived

from passive acoustic monitoring. Chapter 4 introduces ‘WhaleMap’, a tool for rapidly

collating and displaying whale survey results to inform dynamic research and management

activities. Chapters 5 and 6 characterize associations among baleen whale species and

their oceanographic habitat to identify priority areas and times for increased monitoring

and/or risk mitigation. Particular focus is paid to the North Atlantic right whale because

their dire conservation status motivates much of this work, but in many cases the results

apply to other baleen whale species. It is our hope that the monitoring advancements put

forward by this thesis lead directly to improved conservation outcomes that help preserve

these species for generations to come.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Large whales in the Northwest Atlantic live under constant threat. They are acutely

subjected to risk of ship strike and entanglement in fishing gear (Vanderlaan et al., 2011;

Vanderlaan and Taggart, 2007), and chronically exposed to anthropogenic noise and other

pollution from shipping- or industry-related activities (e.g., Rolland et al., 2012). Critically

endangered North Atlantic right whales (Eubalaena glacialis, hereafter ‘right whales’) are

especially vulnerable as their migration corridors run the length of the highly urbanized

eastern seaboard of the USA and Canada (e.g., Davis et al., 2017), and their population

of approximately 336 individuals (Pettis et al., 2021) is so fragile that the loss of a single

breeding female could influence the survival of the species (e.g., Fujiwara and Caswell,

2001; Kraus et al., 2005). Other species such as fin (Balaenoptera physalus), humpback

(Megaptera novaeangliea), sei (Balaenoptera borealis), and blue (Balaenoptera musculus)

whales face the same threats with more poorly understood outcomes. Furthermore, large

whales present both a physical and public image hazard to maritime commerce if they are

injured or killed by vessels, and whale-vessel collisions are likely to increase as vessel

traffic intensifies (Pirotta et al., 2019). Both Atlantic Canadians and Americans demand

sustainable maritime practices that minimize risk to whales without compromising safety

of navigation or social, cultural, ethical, and economic priorities.

There is a large and growing body of evidence to suggest that right whales, as well as

other baleen whale species, have altered their patterns of habitat use, particularly at the

northern end of their distribution (e.g., Davis et al., 2017; Simard et al., 2019; Davis et al.,

2020). Right whales no longer predictably aggregate in well-described habitats like Grand
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Manan Basin in the Bay of Fundy and Roseway Basin on the Scotian Shelf (e.g., Davies

et al., 2019), and are occurring with numbers and regularity in previously un-surveyed

areas like the southern Gulf of St Lawrence (Simard et al., 2019; Crowe et al., 2021). This

poses a significant problem to conservation efforts that have come to rely on particular

habitats to both monitor the health of and mitigate risk to the population. The gravity of

this issue was underscored in 2017 when 17 right whales were found dead, signalling the

start of a devastating and ongoing mortality event, the magnitude of which has not been

documented since these whales were actively hunted over a century ago (Daoust et al.,

2017; NOAA, 2021).

Nearly all risk mitigation and management strategies rely on knowledge of whale

distribution. Traditional visual survey methods provide the critically important information

used for population and health assessment, but they alone cannot cover the time and space

scales required to resolve range-scale distribution patterns, particularly when these patterns

appear to be changing. The dire status of right whales and other large whale species

compels us to look beyond traditional tools and take up new, complimentary approaches to

meet conservation goals.

1.2 Outline

This thesis addresses this need by providing novel advancements in passive acoustic

monitoring (PAM), habitat ecology, and technology. Chapters 2 and 3 are dedicated to

improving passive acoustics as a tool for monitoring right whales. The goal of Chapter 2

is to design an experiment that allows us to empirically measure the range over which our

near real-time acoustic monitoring platforms can effectively detect calling right whales.

Chapter 3 addresses concerns in the use of passive acoustics for right whale management by

modeling the uncertainty in acoustically- and visually-detected whales following detection.

Chapter 4 introduces a novel tool, called ‘WhaleMap’, designed to advance conservation

outcomes by collating and disseminating survey results in near real-time. Chapters 5

and 6 focus on characterizing habitat associations between baleen whales and their ocean

environments so that we may identify times and places to focus monitoring and risk

mitigation efforts. Chapter 5 is a characterization of right whale habitat in the southern

Gulf of St Lawrence informed by multi-year, vessel-based oceanographic sampling and

visual surveys. Chapter 6 uses concurrent environmental and whale acoustic presence
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data from Slocum glider deployments to evaluate how baleen whale species associate with

oceanographic habitat in the Northwest Atlantic.

1.3 Note

Several chapters have been accepted for publication (Chapter 2; accepted to the Journal of

the Acoustical Society of America), or have already been published (Chapter 3, Johnson

et al. 2020a; Chapter 4, Johnson et al. 2021). As a result, each thesis chapter has been

written as an independent manuscript. This introduces some redundancy, especially in the

introductory material of each chapter, and some minor inconsistencies arising from the

information available at the time a chapter was written, but is necessary to keep the content

of these chapters consistent with the submitted and/or published versions.
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CHAPTER 2

ACOUSTIC DETECTION RANGE OF
RIGHT WHALE UPCALLS IDENTIFIED
IN NEAR-REAL TIME FROM A MOORED
BUOY AND A SLOCUM GLIDER

2.1 Abstract

The goal of this study was to characterize the detection range of a near real-time baleen

whale detection system, the DMON/LFDCS, equipped on a Slocum glider and a moored

buoy. As a reference, a hydrophone array was deployed alongside the glider and buoy at a

shallow-water site southwest of Marthas Vineyard, Massachusetts, USA over a 4-week

period in spring 2017. A call-by-call comparison between North Atlantic right whale

upcalls localized with the array (n = 541) and those detected by the glider or buoy was used

to estimate the detection function for each DMON/LFDCS platform. The probability of

detection was influenced by range, ambient noise level, platform depth, detection process,

review protocol, and calling rate. The conservative analysis of near real-time pitch tracks

suggested that, under typical conditions, a 0.33 probability of detection of a single call

occurred at 6.2 km for the buoy and 8.6 − 13.4 km for the glider (depending on glider

depth), while a 0.10 probability of detection of a single call occurred at 14.4 km for the

buoy and 22.6 − 27.5 km for the glider. Probability of detection is predicted to increase

substantially at all ranges if more than one call is available for detection.
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2.2 Introduction

Mitigation of anthropogenic impacts on North Atlantic right whales (Eubalaena glacialis;

hereafter ‘right whales’) and other at-risk species is critical for effective conservation but

challenging given limited survey resources and the cryptic nature of whale behavior. Nearly

all risk mitigation and management strategies rely on knowledge of whale distribution

collected by monitoring surveys (e.g. Vanderlaan et al., 2011). Conventional visual survey

methods provide important information for population and health assessment, but they

alone cannot cover the time and space scales required to resolve range-wide distribution

patterns. Passive acoustic monitoring (PAM) can complement visual survey methods by

offering the ability to autonomously monitor remote areas persistently for months to years

at a time (e.g., Davis et al., 2017).

Numerous efforts have demonstrated the efficacy of PAM for right whales. Clark et al.

(2010) conducted an extensive comparison between aerial and acoustic surveys for right

whales in Cape Cod Bay and demonstrated that visual surveys detected right whales

on two-thirds of the days for which they were detected acoustically. The same authors

concluded that PAM is more reliable than visual methods for determining right whale

presence over daily timescales in Cape Cod Bay and strongly recommended that PAM

be used to inform management decisions. In a similar comparison on the southwestern

Scotian Shelf, DuretteMorin et al. (2019) reached similar conclusions and highlighted

the capacity of PAM to extend monitoring beyond visual surveys constrained by limited

resources and poor sighting conditions. Davis et al. (2017) collated and analyzed an

acoustic dataset spanning 35,600 days over 2004-2014 on 324 recorders located in the

western North Atlantic from the Caribbean to the Davis Strait and Iceland. Their analyses

documented shifts in the range-wide distribution pattern of right whales since 2010 as well

as persistent wintertime presence in most regions; observations that would not have been

possible if reliant on sporadic visual survey effort expended over the last decade.

Archival PAM data are rich in information but typically not available on timescales

required to inform risk-mitigation strategies and dynamic management of industrial activi-

ties that affect whales. The Woods Hole Oceanographic Institution (WHOI) developed a

PAM system comprised of the low-power digital acoustic monitoring instrument (DMON;

Johnson and Hurst, 2007) and an on-board detection algorithm (low-frequency detection
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and classification system; LFDCS; Baumgartner and Mussoline, 2011) that detects, classi-

fies and reports the sounds of baleen whales (right, fin, sei, blue, and humpback) in near

real-time from autonomous platforms (Baumgartner et al., 2013, 2019, 2020). The LFDCS

algorithm produces spectrograms of the audio data, removes spurious broadband noise

and continuous tonal noise and then uses a contour-following algorithm to create pitch

tracks of tonal sounds from the spectrogram. Each pitch track is classified by comparing

attributes of the pitch track to a library of call types using quadratic discriminate function

analysis. The DMON/LFDCS then sends a subset of the pitch tracks and classifications to

a land station via Iridium satellite every 2 hours where they are divided into 15-minute

analysis (tally) periods that are manually reviewed by a trained analyst for the acoustic

presence of several species, including right whales (Baumgartner et al., 2013, 2019, 2020)

The DMON/LFDCS is fully operational on Slocum gliders (Baumgartner et al., 2013,

2020) and moored buoys (Baumgartner et al., 2019). These platforms are particularly

useful for management applications as they can monitor persistently for days to years

at a time, regardless of weather conditions, at no risk to human operators, and at a rela-

tively low cost compared to conventional visual surveys. Since 2013, the DMON/LFDCS

system has been deployed on at least 50 Slocum glider and 10 moored buoy missions

in the Northwest Atlantic, amassing over 4500 days at sea, and recording over 1,500

validated right whale detections. All of these data are made available in near real-time in a

variety of ways, including email and text messages, websites (robots4whales.whoi.edu,

whalemap.org, whalesafe.com) and a mobile app (Whale Alert). The system has demon-

strated its effectiveness in several monitoring initiatives with the National Oceanic and

Atmospheric Administration (NOAA) Northeast Fisheries Science Center (NEFSC), the

US Navy, US Coast Guard, Fisheries and Oceans Canada (DFO), Transport Canada (TC),

and the Department of National Defense Canada (DND).

The LFDCS detector and validation protocol have been extensively used and quantita-

tively evaluated for right whales. Davis et al. (2017) used the LFDCS for their analysis of

archival recordings, and Baumgartner et al. (2019, 2020) recently evaluated the accuracy

of the LFDCS on the DMON for near real-time detections from moored buoys and Slocum

gliders. Baumgartner et al. (2019) found that the false positive rate for moored buoys was

0%, meaning that right whales were never detected in near real-time when they were not

acoustically present, and that the system missed right whale occurrence 27% of the time on
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daily time scales. Using the same near real-time review protocol, Baumgartner et al. (2020)

found a 0% false positive rate and an 18% missed occurrence rate for Slocum gliders on

daily time scales. The near real-time review protocol was designed to be conservative

in recognition of the high operational costs of a false detection, but it can be adjusted

depending on the application (Baumgartner et al., 2019).

As with visual surveys, PAM detection performance depends on a variety of species-,

site-, and platform-specific factors. Sound source level, background noise, propagation

conditions, receiver characteristics and detection processes all influence the probability of

detecting a call. A challenge when using detection information from many PAM systems

(including the DMON/LFDCS for science, conservation, and mitigation applications) is

the uncertainty in the relationship between the probability of detecting a whale call and

the range to a calling animal, which can lead to misinterpretation of PAM results (e.g.,

Helble et al., 2013a). The platforms on which the DMON/LFDCS has been integrated

currently relay only the position of the platform when a sound is detected, not the posi-

tion of the sound source. Determining whether positional uncertainty is tolerable for a

particular application depends on the acoustic detection range for a species of concern; for

short detection ranges (e.g., hundreds of meters), the position of the platform may be an

acceptable proxy for the position of the animal, but for large detection ranges (e.g., tens of

kilometers), lack of location specificity may limit mitigation options over short response

time scales (see Chapter 3).

The acoustic detection range of a PAM system is best described by a detection function,

which refers to the continuous relationship between the probability of detection and the

horizontal distance between a sound source and the acoustic receiver. Estimating the site-

and species-specific detection function is necessary to properly interpret and compare

PAM results (Helble et al., 2013a) and is a prerequisite of acoustic density estimation

using distance sampling methods (Buckland et al., 2004). A detection function can be

estimated empirically using measured distances to both detected and undetected calls (as

in this study), statistically by fitting a function to the distribution of distances to detected

calls (Marques et al., 2011; Harris et al., 2013), or computationally based on simulations

of some or all of the call production, propagation, and detection processes (Ksel et al.,

2011; Helble et al., 2013b; Harris et al., 2018). Each method has distinct advantages and

disadvantages (Marques et al., 2013), but if applied correctly with valid assumptions they
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can provide reliable estimates of the detection function.

The empirical approach involves measuring distances to both detected and undetected

calls, then estimating the detection function based on the proportion of calls detected at

each range using logistic regression (Buckland et al., 2006, this study) or a generalized

additive model (GAM; e.g., Marques et al., 2009). This approach is desirable because it

requires relatively few assumptions, but it is often impeded by the challenge of measuring

the distances to undetected calls. Previous studies have overcome this difficulty using

a variety of methods including deploying animal-borne acoustic tags (Marques et al.,

2009), combining visual and acoustic observations (Kyhn et al., 2012), or conducting

playback experiments (Nuuttila et al., 2018). A common approach for visual surveys is to

have observers with high-power binoculars set up trials for observers that are using the

naked eye (Buckland and Turnock, 1992). Here we employ an analogous study design by

using a multi-channel hydrophone array to set up trials for single sensor DMON/LFDCS

platforms with the goal of assessing the range-dependent accuracy of the DMON/LFDCS

for detecting right whale upcalls using a mobile (glider) and a fixed (buoy) platform.

2.3 Methods

2.3.1 Site description

From 28 Feb to 24 Mar 2017, we deployed horizontal and vertical line arrays of hy-

drophones forming an L-shaped array (hereafter ‘array’ unless otherwise specified) as

well as a DMON/LFDCS Slocum glider adjacent to an extant DMON/LFDCS buoy at a

nominal position of 41◦8.8’ N, 70◦56.7’ W, ∼15 km southwest of Nomans Land, a small

island southwest of Martha’s Vineyard, Massachusetts, USA. The water depth was ∼30 m

at the buoy. The bathymetry (from the ETOPO1 Global Relief Model; Amante and Eakins,

2009) is relatively flat and featureless to a range of ∼15 km with the notable exception

of a steep shoal near Nomans Land beginning ∼8 km northeast of the deployment site

(Figure 2.1A). The glider held station within +/- 2 km of the array for the first 2-weeks

of the study period before making longer (up to 10 km), roughly circular forays along

a predefined course away from the array for the remainder of the mission (Figure 2.1B).

The array was positioned within ∼150 m of the DMON/LFDCS buoy, with horizontal and

vertical components separated by ∼120 m (Figure 2.1C). The water column was uniformly

mixed for the duration of the study. Sea state during the study period was assessed using

8



hourly observations of significant wave height recorded at the Block Island meteorological

buoy (Station 44097) ∼10 km SW of the study site (data available from NOAA National

Data Buoy Center).

Figure 2.1: The position of the vertical line array (VLA; red circle) at A) the study site
in ∼30 m water depth 15 km southwest of Nomans Land, MA, USA, B) relative to the
trajectory of the glider (black line) from 28 Feb through 24 Mar, and C) relative to the
positions of the horizontal line array (HLA) and DMON/LFDCS buoy.

The study site was chosen because the DMON/LFDCS buoy located there was originally

deployed to monitor right whale presence in near real-time close to several US Coast

Guard gunnery ranges. This area is also of particular interest because it is targeted for

wind energy development in the near future. We chose to deploy the glider and array in

the early spring based on historical right whale presence in the region at that time of year

(Davis et al., 2017).
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2.3.2 System specifications

The glider and buoy were each equipped with DMON/LFDCS real-time PAM systems.

In addition to generating pitch tracks in real-time, the glider DMON/LFDCS recorded

audio at 2 kHz continuously while the buoy DMON/LFDCS recorded audio at 2 kHz on a

50% duty cycle (0.5 h on, 0.5 h off) due to memory constraints imposed by the year-long

deployment. The audio recorded while the glider was at the surface, approximately 12% of

the deployment, was contaminated by platform noise and not included in the analysis. Each

system generated and classified pitch tracks of tonal signals over the full 2 kHz bandwidth

and transmitted them back to shore every 2 hours. Pitch tracking was continuous on the

buoy but was suspended while the glider was at the surface. The DMON hydrophone

system had a sensitivity of -203 dB re 1 V µPa−1, gain of 33.2 dB, zero-to-peak voltage

of 1.5V, and flat frequency response between approximately 50 and 7500 Hz. Additional

details on the specifications of the PAM system on the glider and buoy are available in

Baumgartner et al. (2013, 2020) and Baumgartner et al. (2019), respectively.

The vertical component of the array (referred to as the vertical line array or VLA)

consisted of a Several Hydrophone Receiving Unit (SHRU), 4 hydrophones, multiple

environmental sensors, and a number of additional mooring components. The SHRU

was suspended several meters above the anchor and acoustic release system and sampled

the hydrophones continuously at a rate of 9765.625 Hz for the full deployment period.

The hydrophone sensitivity was -170 dB re 1 V µPa−1 and recorder gain was 26 dB.

The hydrophones and environmental sensors were secured to a 15 m wire rope that

extended from the top of the SHRU to a steel sphere suspended ∼8 m below the surface.

Hydrophones were positioned at approximately 27.4, 23, 18, and 13.4 m depth (nominal

spacing of 5 m). The environmental sensors included two temperature loggers and a

temperature-pressure logger positioned at intervals along the extent of the array to measure

the temperature profile, depth, and array tilt at 0.5 Hz throughout the deployment. All

environmental sensors operated without any detectable acoustic signature. The horizontal

component of the array (referred to as the horizontal line array or HLA) was comprised of

8 hydrophones positioned at 7.5 m intervals along a 60 m cable coated with hairy fairing.

The hydrophone sensitivity was -173 dB re 1 V µPa−1 and recorder gain was 23 dB. The

hydrophones were sampled continuously at 4 kHz using a multichannel recorder built by

Webb Research Corporation. The HLA also had a single temperature-pressure instrument
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to record bottom water properties for the full deployment. Additional details on array

specifications and configuration are provided in Johnson et al. (2020b).

2.3.3 Call detection and localization
2.3.3.1 Call detection using array

Right whale upcalls (hereafter ‘upcalls’) were chosen as the focal call for this analysis

because they are used by the LFDCS to determine right whale presence and were amenable

to localization (see Section 2.3.3.4). Upcalls are frequency modulated upsweeps from

approximately 100 to 200 Hz with a duration of ∼0.75 s (see Parks et al. 2009 for a

detailed description and discussion of upcall acoustic parameters). The full 12-channel

acoustic record from the array was decimated to 2 kHz, displayed as spectrograms and

visually/aurally reviewed for upcalls by an experienced analyst (HDJ) using Raven Pro

2.0 (Bioacoustics Research Program and Program, 2014) and consistent spectrogram

parameters (512 sample DFT, 50% overlap, Hann window) which yielded a time resolution

of 6.25 ms and a frequency resolution of 3.9 Hz. Only upcalls that were present on one or

more channels and could be confidently scored as “detected” were included in the analysis.

We assumed that the performance advantage of the array gained by the simultaneous review

of multiple channels located at different depths allowed it to serve as a suitable reference

to determine the probability of detection and the detection range of the DMON/LFDCS

single-hydrophone platforms.

2.3.3.2 Call detection using near real-time pitch track data

Pitch tracks and automated detector output for the buoy and glider were displayed chrono-

logically using custom-written software designed to mimic the interface used to validate

near real-time detection results on the DMON/LFDCS website (robots4whales.whoi.edu).

The full pitch track datasets were visually reviewed independently (i.e., without ac-

cess to the archival audio data or any other detection or localization results) by the

same experienced analyst performing call detection in the array data (HDJ) who was

also well-versed in the review of pitch track data. Pitch tracks of upcalls were scored

as “detected” or “possibly detected” depending on the confidence of the analyst fol-

lowing a similar protocol as described by Baumgartner et al. (2019)(also available at

https://dcs.whoi.edu/#procotol). In brief, upcalls scored as “detected” con-

vincingly adhered to the general time/frequency characteristics of upcalls (see above) and
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were isolated from competing noise processes, while those scored as “possibly detected”

only partially satisfied these criteria. Classification by the LFDCS was not required for a

score of “detected” or “possibly detected”.

2.3.3.3 Call detection using archival audio data

The complete archival audio records from the glider and buoy were displayed as spectro-

grams and visually/aurally reviewed chronologically for upcalls by the experienced analyst

(HDJ) also using Raven Pro 2.0. The spectrogram parameters were the same as those used

for the analysis of the array audio (512 sample DFT, 50% overlap, Hann window). Upcalls

were given a score of “detected” or “possibly detected” depending on the confidence of the

analyst. As with the pitch track analysis, the analyses of the archival audio from the glider

and buoy were done independently without access to detection or localization results from

any other platform.

2.3.3.4 Call localization

A normal mode back-propagation method (Lin et al., 2012) using the array data was

utilized to estimate range and bearing to each detected call. The method allows localization

of low-frequency signals from a single array station, as opposed to the distributed arrays

required for conventional arrival time difference methods (Cato, 1998). The technique

exploits the modal dispersion of a shallow water waveguide that is well-represented by

normal mode theory (Frisk, 1994). The vertical component of the array can be used to

spatially filter modal arrivals, the arrival time differences between which can be used to

make inferences about signal propagation (Figure 2.2). The general steps of the localization

workflow were to (1) isolate an upcall in time and frequency space using spectrograms

of the array data (see Section 2.3.3.1), (2) use a normal mode model (KRAKEN; Porter,

1992) and pseudo-inverse mode filtering to isolate the modal arrivals of the call (Figure

2.2), (3) use the estimated group velocities of each modal arrival to beamform to determine

the arrival bearing of the call, (4) use the same mode model to estimate mode structures

along the arrival path, and (5) back-propagate the received signal along the arrival path until

the back-propagated modes converged (Figure 2.3). The range with the best convergence

was used as the estimated range to the call. With this estimated bearing and range, the

position of the calling whale was calculated. For more details on the localization methods,

see Lin et al. (2012), and for an application to sei whale call localization, see Newhall et al.

(2012).
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Figure 2.2: Overview of the mode filtering procedure. Panels A through D show spectro-
grams of a right whale upcall received on each channel of the vertical line array. Panel E
shows the theoretical shapes of mode 1 (blue) and mode 2 (red) at 146 discrete frequencies
within the 80-153 Hz band. These were generated using the KRAKEN normal mode model
parameterized using site-specific conditions at the time of the right whale upcall. The
labeled stars indicate the depth of each channel of the array. The same model produced
the group velocity estimates for each mode shown in panel H. Panels F and G show
spectrograms of mode 1 and mode 2, respectively, after application of the pseudo-inverse
mode filter.
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Figure 2.3: Overview of the backpropagation and ranging procedure. Panel A shows a
normalized probability map of the backpropagation results with an arrow indicating the
most likely range to the calling whale. Panel B shows the timing and amplitude of mode 1
(blue) and mode 2 (red) as received at the vertical line array (VLA), and panel C shows the
same modes at the source after backpropagation.
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The uncertainty in the range estimates was qualitatively assessed from the produced

ambiguity surfaces (e.g., Figure 2.3A) and was estimated to be ∼1 km. The normal mode

back-propagation method for localizing long distant sound sources requires the excitation

of two or more propagating modes. The cut-off frequency for propagating mode 2 at the

study site (∼30 m water depth) was approximately 80 Hz, which prevented localization of

any distant calls with substantial energy at lower frequencies. The cut-off frequency for

propagating mode 3 was approximately 300 Hz. Thus, mode 3 was not reliably present in

all distant upcalls and therefore not used for localization.

During the recovery of the horizontal component of the array (the HLA), it was immedi-

ately evident that it had moved from its initial deployment position. There were several

storm events (2 and 15 Mar), characterized by high ambient noise levels and wave heights

(Figures 2.4A, 2.4B), during which the HLA may have moved (Johnson et al., 2020b).

Precise estimates of the location of each HLA element were critical to our localization

methodology, as errors in HLA element location prevent accurate beamforming for call

bearing estimation. To correct for storm-induced movement, the HLA elements were

re-localized several times using known vessel noise emitted from the WHOI coastal re-

search vessel Tioga during cruises in the area (after Morley et al. 2009; details in Johnson

et al. 2020b). These analyses provided evidence that several of the array elements moved

negligible distances (< 2 m) in the storm event on 2 Mar, and substantial distances (up to

∼15 m) in the storm event on 15 Mar. We did not correct for movement during the first

storm. For the second storm on 15 Mar, we assumed that the array movement occurred at

the beginning of the day, such that bearings to calls localized from 15 through 23 Mar (n

= 368) were computed using the post-storm array position (Figure 2.4C). Since we were

able to update the array element locations to account for storm-induced movement, the

HLA beamforming results were considered reliable throughout the deployment.

2.3.4 Signal and noise level estimation

Acoustic data were calibrated using technical specifications of the recording systems as

described by Merchant et al. (2015). Signal level, noise level and signal-to-noise ratio

(SNR) were estimated for each call on the glider and buoy. The signal level was defined as

the median power spectral density (PSD; dB re 1 µPa2 Hz−1) within the time-frequency

“bounding box” of the call assigned during manual review of the audio data. The noise

level was determined by calculating the median PSD within the same frequency and
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Figure 2.4: A) Power spectral density (dB re 1 µPa2 Hz−1) of channel 1 of the horizontal
line array computed from 1-s time segments averaged to 1-hr resolution via the Welch
method. B) Hourly observations of significant wave height from the Block Island meteoro-
logical buoy ∼10 km SW of the study site. C) Daily counts (calls per day) of right whale
upcalls detected in the array audio (white bars; n = 1485), the buoy pitch tracks (black
bars; n = 414), and the glider pitch tracks (blue bars; n = 886), as well as numbers of calls
that were successfully localized (grey bars; n = 541).
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duration of the call at each timestep within a 30 s audio snippet centered on each call, and

then selecting the lowest median PSD of this 30-second period. This was done to avoid

including transient impulsive signals in the noise level estimate. The median PSD for both

the signal and noise levels was calculated by computing a spectrogram (2000 sample DFT,

50% overlap, Hann window), collating all the time-frequency cells within the bounding

box, and extracting the median from the distribution. The SNR (in dB) was defined as the

difference between the signal level and noise level. Signal levels that were contaminated

by transient impulsive sounds were rejected and not used to calculate SNR.

2.3.5 Platform detection probability

The array was used as the reference for comparison between the DMON/LFDCS single

hydrophone platforms. For each call detected and localized on the array, a score of zero

was assigned if the call was not detected and one if the call was detected in the pitch track

data generated by the DMON/LFDCS on the buoy. The same scoring protocol was applied

to the DMON/LFDCS on the glider. This scoring protocol was used for both the pitch

tracks that were available in near real-time and the archival audio that was available after

platform recovery. Two separate analyses were conducted for the pitch track data to inform

how the review protocol affects the probability of detection. These protocols differed

in their treatment of calls scored as “possibly detected”. The first used a conservative

protocol in which the “possibly detected” calls were treated as if they were scored as

“not detected”. This protocol was designed to minimize false detections at the expense

of increased missed detections. It has been extensively employed on deployments in the

NW Atlantic (Baumgartner et al., 2019) and is therefore the primary focus of this study.

The second was a precautionary protocol in which the “possibly detected” pitch tracks

were treated as if they were “detected”. This protocol was designed to minimize missed

detections at the expense of increased false detections. The archival audio data were

only scored using the conservative protocol; there were too few calls scored as “possibly

detected” in the review of the archival audio data (n = 5 for the buoy; n = 3 for the glider)

to justify a protocol comparison.

The detection probability of the DMON/LFDCS single hydrophone platforms, Ps(R),

at range R was defined as follows:

Ps(R) = Ns(R)/Na(R) (2.1)
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where Ns(R) is the number of localized calls detected by the single-hydrophone platform

(i.e., the buoy or the glider) at range R and Na(R) is the total number of localized calls

at range R. Critically, the detection probability of the DMON/LFDCS platforms was

evaluated using only calls that were first detected and localized by the array. This approach

assumes that each system is analyzed independently and that the single-hydrophone

platforms are not used in localization, both of which are valid here. It also assumes that

the detectability of localized calls is representative of the detectability of all calls. This

assumption is likely violated. Localization typically requires higher SNR than detection

(e.g., Thode et al., 2012), which appears to also be the case in the present study (Figure

A.9). Consequently, the results presented here represent an estimate of the upper bound

of the detection function of each single hydrophone system in this environment. The true

detection function will likely be reduced depending on the underlying source level and

depth distributions of the calls.

Detection functions for each DMON/LFDCS platform were quantified using logistic

regression analysis. The series of detected/not-detected scores was used as the dependent

variable. Candidate models were constructed using various combinations of detection

range, noise level, and glider depth as independent variables. The glider depth term

was used in the glider analysis only and was expressed in a parabolic form based on

the observed relationship between glider depth and proportion of calls detected (Figure

A.4). The influence of autocorrelation in detected calls was deemed minimal based on a

preliminary analysis using generalized estimating equations with a first order autoregressive

covariance structure implemented with the geepack package in R (Hjsgaard et al., 2006).

SNR was not used as a model covariate because it was correlated with both range and noise

level. The most parsimonious model was selected using Akaike Information Criterion

(AIC). Wald’s Tests were used to evaluate the contribution of each independent variable to

the overall model. Drop-in-deviance tests were used to compare among models. Separate

logistic regressions were conducted for the buoy and the glider using scores from (1) pitch

tracks scored using the conservative protocol (2) pitch tracks scored using the precautionary

protocol, and (3) archived audio (i.e., a total of 6 logistic regressions were conducted). The

fitted logistic regressions were used to estimate the probability of detecting a localized

call at a given range, noise level, and glider depth, and also used to compute the effective

detection radius (EDR) as described by Buckland et al. (2004). For all undetected calls,
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we also examined the buoy and glider audio and pitch track records to determine why they

were not detected by the analyst and DMON/LFDCS, respectively.

All analyses were conducted using MATLAB (The Mathworks Inc.) and R (R Core

Team, 2019) programming languages. Analyses in R were conducted using the oce (Kelley

and Richards, 2020), shiny (Chang et al., 2020), and tidyverse (Wickham et al., 2019)

packages, and visualizations in R were created using the ggplot2 package (Wickham, 2016).

2.4 Results

2.4.1 Call detection and localization

A total of 1485 right whale upcalls were detected by the array between 28 Feb and 24

Mar. The DMON/LFDCS on the glider and buoy pitch tracked (i.e., detected) 886 and

414 right whale upcalls, respectively, during the same period. Calls occurred throughout

the monitoring period but were especially abundant on 08 March and from 17 through

19 March (Figure 2.4C). Of the calls detected on the array, 36% (541 of 1485) could be

confidently localized such that the back-propagated modes converged at a single range.

There were several calls with potential broad-side bearing ambiguity, but range estimates

using either bearing were consistent, likely owing to the relatively uniform bathymetry at

the site, so these calls were retained in the analysis. The spatial distribution of localized

calls was not uniform; most calls originated from the area south of the DMON/LFDCS

buoy and the array (Figure 2.5). The distances to localized calls from each platform ranged

from 0.4 to 30.1 km on the glider (median = 5.3 km), and from 0.3 to 29.7 km on the buoy

(median = 6.2 km). Noise levels associated with calls ranged from 83.9 to 108 dB re 1

µPa2 Hz−1 (median = 99.4 dB re 1 µPa2 Hz−1) on the glider and from 85.2 to 110 dB re 1

µPa2 Hz−1 on the buoy (median = 98.9 dB re 1 µPa2 Hz−1). The depth of the glider at the

time of call reception ranged from 0.62 to 32.0 m with a median of 13.6 m (Figure 2.6).

2.4.2 Platform detection probability

For the buoy, the proportion of localized calls detected using pitch tracks and the conser-

vative protocol generally decreased with range (Figure 2.6A); 55.0% of localized calls

within 5 km (111/202) were detected while 21.1% of localized calls between 15 and 40

km (4/19) were detected. The proportion of localized calls detected also decreased with

noise (Figure 2.6C); 46.0% of localized calls received in noise levels below 100 dB re
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Figure 2.5: The spatial distribution of localized right whale upcalls that were either
detected (grey circles) or not detected (blue crosses) by the buoy (panel A; n = 541) or
the glider (panel B; n = 426) in the near real-time pitch track record using a conservative
protocol. The red circle at the origin indicates the location of the array. Analogous results
using a precautionary protocol or archival audio are available in Appendix A.
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Figure 2.6: Distribution of ranges (A and B), noise levels (C and D, glider depths (E
and F) and signal-to-noise ratios (SNR; G and H) from the buoy (left column) and glider
(right column) of right whale upcalls localized by the array (n = 541 buoy, n = 426 glider)
and detected via near real-time pitch track analysis using the conservative protocol. Total
number of localized calls are shown in grey and localized calls detected in near real-time
are shown in red in each bin. The black line shows the proportion of localized calls
detected in bins with more than 5 calls. Analogous results using the precautionary protocol
or archival audio are available in Appendix A.
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1 µPa2 Hz−1 (64/139) were detected, while 24.0% of localized calls received in louder

noise conditions (24/100) were detected. A SNR of more than 3 dB was required to detect

at least 50% of localized calls (Figure 2.6G). Calls were missed for a variety of reasons:

of the 541 localized calls, 46.6% were missed due to absent or poor pitch tracks, 4.6%

were missed due to interfering biological sounds (i.e., humpback whale song), 5.7% were

missed due to interfering non-biological sounds (e.g., platform noise, ship noise), and 3.9%

were missed due to analyst error in scoring the pitch tracks (Table 2.1; Figure 2.7A).

Table 2.1: Results from manual scoring of glider and buoy pitch track records of calls
localized by the array using a conservative protocol (total number of calls = 541). Here n
refers to the number of calls, while % is the percentage of total localized calls available for
detection (i.e., does not consider excluded calls).

The logistic regressions for the buoy were conducted using the 239 localized calls

for which archival audio were available and noise levels could be calculated. The most

parsimonious logistic regression model and subsequent significance testing provided

evidence that the probability of detecting localized calls was negatively related to both

range and noise level for all analyses (Table 2.2). In average noise conditions (100 dB re 1

µPa2 Hz−1), the fitted regression suggested that a probability of detection of 0.5 (95% CI:

0.385-0.613) occurred at 2.3 km and the effective detection radius was 8.3 km (Figure 2.8;
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Figure 2.7: Proportion of localized calls assigned to each score category based on a
conservative review of the near real-time pitch track data as a function of range from the
buoy (panel A) and glider (panel B). Colors indicate the proportion of calls of a given
score in 2-km range bins, while the number of calls in each bin is shown above each
bar. Definitions of each category are provided in Table I. Analogous results using the
precautionary protocol or archival audio are available in Appendix A.
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Table 2.3). In low noise conditions (95 dB re 1 µPa2 Hz−1) the range to a probability of

detection of 0.5 increased to 7.6 km. A probability of detection of 0.5 was not achieved at

any range in high noise conditions (Figure 2.8).

For the glider, many localized calls (n = 115) occurred during periods when the glider

produced acoustic noise during activation of the buoyancy pump during profiling inflections

(typically 30 s every 3.5 min in 30-35 m depths for the glider used in this study) or electrical

noise during satellite communications at the sea surface (typically 10-15 min every 2-

2.25 h, or ∼12% of the deployment). The LFDCS recognizes these periods of noise and

terminates pitch tracking during them. As calls during these periods were not available for

detection and therefore not useful in determining our assessment of the effect of range on

the accuracy of the DMON/LFDCS, they were excluded from the analysis. The distribution

of these excluded calls was uniform with respect to range. The proportion of the remaining

426 localized calls detected using the pitch tracks and the conservative protocol decreased

with range (Figure 2.6B); 51.6% of localized calls within 5 km (95/184) were detected

while 18.8% of localized calls between 15 and 40 km (3/16) were detected. There was a

parabolic relationship between the proportion of calls detected and glider depth, with the

greatest proportion of calls detected at mid depths and lower proportion detected near the

surface and bottom (Figures 2.6F, A.4). This was not explained by the proportion of time

spent at depth, which was relatively uniform for 0-25 m. The influence of noise on the

empirical proportion of detected calls was not obvious for the pitch track analyses (Figure

2.6D), but increasing noise was associated with a decrease in the proportion of detected

calls for the archival audio analysis (Figure A.3F) and the proportion of detected calls

increased with SNR in all analyses (Figures 2.6H, A.5). An SNR of more than 5 dB was

required to detect at least 50% of localized calls (Figure 2.6G). Calls were missed for a

variety of reasons: of the 426 available calls, 36.6% were missed due to absent or poor

pitch tracks, 9.6% were missed due to interfering biological sounds, 11.2% were missed

due to interfering non-biological sounds and 0.9% were missed due to analyst error in

scoring the pitch tracks (Table 2.1; Figure 2.7B).

The most parsimonious logistic regression models for the glider provided evidence that

the probability of detecting localized calls was related to range, noise level, and glider

depth for all analyses (Table 2.2). At an average noise level (100 dB re 1 µPa2 Hz−1) and

glider depth (15 m), the fitted regression suggested that a probability of detection of 0.5

24



Table 2.2: Selection and statistical evaluation of candidate logistic regression models
describing the probability of detection of the glider and buoy. The logistic regressions used
scores as the dependent variable derived from pitch track analysis with a conservative pro-
tocol, pitch track analysis with a precautionary protocol, and archival audio analysis. The
full models (highlighted in grey) were the most parsimonious for all analyses. Formulae
for each candidate model are provided below the table.
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Figure 2.8: Estimated probability of detection of localized right whale upcalls as a
function of range to the buoy (black lines) and glider at a depth of either 15m (blue lines)
or 30m (red lines) at low (95 dB re 1 µPa2 Hz−1; left column), average (100 dB re 1 µPa2

Hz−1; middle column), and high (105 dB re 1 µPa2 Hz−1; right column) noise levels based
on the conservative (top row) or the precautionary (middle row) analyses of near real-time
pitch track data, or based on the manual review of archival audio (bottom row). The fitted
regression models are shown as solid lines, while the 95% confidence intervals are shown
as shaded regions. An alternate representation of these data showing the influence of noise
levels by platform is available in Appendix A.
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Table 2.3: The ranges (in km) for a given probability of detecting a right whale upcall
from the glider or the buoy estimated from the most parsimonious logistic regression
models (Table 2.2). Noise was fixed at an intermediate value of 100 dB re 1 µPa2 Hz−1.
Glider depths were set to either 15 or 30 m. The bottom row shows the effective detection
radius (EDR) computed using a 40 km truncation range.

(95% CI: 0.430-0.569) occurred at 6.8 km and the effective detection radius was 15.2 km

(Figure 2.8; Table 2.3). In low noise conditions (95 dB re 1 µPa2 Hz−1) the range to a

probability of detection of 0.5 increased to 9.0 km, while in high noise conditions (100

dB re 1 µPa2 Hz−1) the range decreased to 4.5 km (Figure 2.8). Results for analogous

analyses of the pitch tracks using the precautionary protocol and of the archived audio

recordings from the glider and buoy are available in the supplementary material (Appendix

A).

2.5 Discussion

2.5.1 Estimating and reporting detection range

Several previous efforts have succeeded in ranging and localizing baleen whale calls

for purposes such as density estimation (e.g., Harris et al., 2013), call attribution (e.g.,

Baumgartner and Fratantoni, 2008), or measuring noise impacts (e.g., Thode et al., 2020).

Few studies have attempted to quantify the probability of detecting localized calls. To our

knowledge, this is the first study to empirically derive a detection function for right whales,

and as such, there is a paucity of other observations available for comparison. Laurinolli

et al. (2003) localized tonal right whale calls to a maximum range of approximately 29 km

in the Bay of Fundy, and Thode et al. (2017) observed a maximum range to a North Pacific

right whale (Eubalaena japonica) upcall of approximately 30 km in the Bering Sea. These

27



observations are similar to the maximum range of a localized call from our study (∼30

km), but greater than the observed maximum detection range of the DMON/LFDCS on

the glider or buoy (∼20 km). The estimated probability of detection at 30 km is low, but

non-zero, so it is possible that we did not have a large enough sample size to detect a call

at 30 km. Tennessen and Parks (2016) used a modeling approach to estimate a maximum

propagation distance of approximately 16 km for a right whale upcall in optimal noise

conditions (85 dB re 1 µPa2 Hz−1) in the Bay of Fundy. This is lower than the maximum

detection ranges observed in our study and in the Laurinolli et al. (2003) study. The

reasons for such discrepancies are unclear, which highlights the challenges in simulating

detection range.

Clark et al. (2010) conducted an excellent study of right whale upcalls in Cape Cod Bay,

a shallow habitat similar to our study area, and they stated that the “acoustic detection area

was reliably found to be within a range of approximately 9 km (5 nmi) from a recorder”

(Clark et al., 2010, p. 842). The comparability of our observations to this acoustic

detection range estimate depends on the definition of “reliably”. If the definition of the

acoustic detection range is the range at which the probability of detecting a calling whale is

0.5 (i.e., “reliable” is defined as a 1 in 2 chance of detection), then our range estimates are

shorter than those of Clark et al. (2010). However, if we define the detection range as the

range at which the probability of detecting a calling whale is 0.33 (i.e., “reliable” is defined

as a 1 in 3 chance of detection), then our detection range estimates are similar to those of

Clark et al. (2010). Finally, if Clark et al. (2010) were reporting a maximum detection

range, then our maximum estimated detection range of more than 30 km exceeds the

detection range that they reported. We present this comparison to highlight something that

is likely obvious, but perhaps underappreciated: the use of a single number for detection

range is an incomplete description of the area that is effectively monitored by a passive

acoustic system. From our study, we estimated that whales calling at >20 km can be

detected in near real time by the DMON/LFDCS system carried aboard either a glider or a

buoy, but the chances of a calling whale being detected at those distances are low. The

detection function, or the curve describing the range-dependent probability of detection

(Figure 2.8), is a near-complete description of the site-, environment- and species-specific

detection range of a PAM system. Efforts should be made to estimate and report the

detection function whenever possible, as it provides a vastly more accurate and appropriate
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description of a system’s detection range than a single number.

2.5.2 Factors influencing detection range

Our results indicate that other covariates in addition to range, such as noise level and plat-

form depth, play an important role in the probability of detecting a call. The performance

of both DMON/LFDCS platforms was significantly reduced in louder noise environments.

The buoy was especially sensitive to noise, where an increase of 10 dB re 1 µPa2 Hz−1

translated to a nearly 50% reduction in the probability of detecting a call at 5 km, compared

to a 20% reduction on the glider. These results emphasize the importance of considering

the impact of noise on the interpretation of PAM results, which, if left unaccounted for,

can introduce artificial trends in detection results (e.g., Helble et al., 2013a).

The improved probability of detection and reduced sensitivity to noise of the glider

relative to the buoy is likely due in large part to differences in platform depth, and, by

extension, transmission loss. Transmission loss refers to the decrease in acoustic intensity

due to spreading or attenuation as a sound propagates. During March (i.e., prior to

the onset of stratification), transmission loss generally varies parabolically with depth

in this environment, with the lowest values in the middle of the water column and the

highest values near the top and bottom boundaries (Figure 2.9). This agrees well with

the distribution of detections versus glider depth, where a higher proportion of calls were

detected when the glider was located in the middle of the water column rather than near the

surface or the bottom (Figures 2.6F, A.4). When the glider depth covariate was fixed at 15m,

the depth stratum with minimum transmission loss (Figure 2.9), the logistic regressions

suggested the performance of the glider was consistently better than that of the buoy. In

contrast, when the glider depth covariate was fixed to a value of 30 m, the same depth as

the hydrophone on the buoy, the logistic regressions suggested that the performance of the

platforms was nearly identical (Figure 2.8). Thus, the regular vertical profiling of the glider

through regions of low transmission loss at intermediate depths confers a performance

improvement relative to the buoy.

The probability of detection also varied depending on the data source (real-time pitch

tracks versus archival audio), platform and detection protocol. The probability of detecting

a call was lower using near real-time pitch track data compared to archival audio data. This

is not surprising given that pitch tracks are an abstraction of the audio and do not possess

all of the cues that an analyst would use to confidently detect and classify a call. Inspection
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Figure 2.9: Depth distribution of transmission loss estimated using the KRAKEN normal
mode model parameterized with a 100 Hz frequency source at 15m depth, two propagating
modes, and environmental conditions consistent with those of the study site. Transmission
loss estimates were computed at each point in a grid with 250 m range and 0.5 m depth
resolution to a maximum range and depth of 35 km and 35 m, respectively, and then
aggregated into 5 m depth bins.
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of spectrograms and aural review of audio by an experienced analyst is considered the

gold standard for detecting marine mammal calls in passive acoustic monitoring data (e.g.,

Baumgartner and Mussoline, 2011). The difference between the audio and pitch track

results indicates the cost of relying on an automated detector and not directly reviewing the

audio; improvements could potentially be made by either upgrading the existing detection

system or using a different detector (e.g., Simard et al., 2019; Kirsebom et al., 2020).

These differences are most pronounced at close ranges. The majority of the undetected calls

within 5 km of both platforms were not detected because of poor pitch tracks, meaning that

the pitch tracks were present but could not be confidently classified by the analyst because

of poor shape or low amplitude. Poorly formed pitch tracks from close range calls could

be due to competing biological- and platform-related noise processes, receiver depth, or

variation in source levels (Parks and Tyack, 2005). A higher proportion of close-range calls

was missed by the glider due to the presence of competing biological signals (humpback

whale song). As with right whale calls, these signals may have been more detectable on the

glider owing to its vertical profiling through depth strata characterized by low transmission

loss.

Our results demonstrate that the detection function of a given platform changes depend-

ing on the analysis protocol. The near real-time detection protocol currently used with

DMON/LFDCS gliders and buoys is conservative by design in recognition of the high

costs associated with triggering a management measure based on a false-positive detection

(Baumgartner et al., 2019). This protocol can be relaxed to reduce missed detections

at the expense of allowing false positives. This would represent a more precautionary

management approach. We examined the use of a precautionary protocol where right

whale calls that were scored as “possibly detected” were considered “detected” in the

estimation of the detection function. We found that employing a precautionary protocol

increased the real-time probability of detection by approximately 15% at close ranges

(≤10 km; Supplement A; Figure 2.8). In other words, the call detection protocol directly

influences the detection range of a platform and thus must be designed with care and

implemented with consistency.

The real-time detection rates reported here are much lower than those previously pre-

sented for the glider (Baumgartner et al., 2013, 2020) or buoy (Baumgartner et al., 2019)

(i.e., the missed detection rates in this study are higher than previously reported). In this
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study, pitch tracks were reviewed on a call-by-call basis to determine if individual localized

calls were detected or not detected by the glider or buoy. In contrast, the near real-time

validation protocol operates on nominal 15-minute “tally periods” to determine whale

occurrence (Baumgartner et al., 2013, 2019, 2020). The tally period approach is more

robust to missing occasional calls when individual whales are calling repeatedly within a

tally period. For example, if the probability of missing a single call is 0.5, the probability

of missing 3 calls in a row is reduced to 0.125 (0.5 x 0.5 x 0.5 = 0.125) if the calls are

independent. The probability of detecting at least 1 of those 3 calls is 0.875 (1 - 0.5 x 0.5

x 0.5 = 0.875). As a simple thought experiment, we can apply this logic to the per-call

detection functions determined in this study to illustrate how the probability of detection

may change when considering multiple calls within a given time period. The assumption of

independence of calls is almost certainly violated due to correlation in a number of factors

(e.g., calling behavior, background noise levels, interference from other species), so the

probabilities of detection in this thought experiment are likely overestimated. However, the

key concept is that the detection function of a given platform changes based on the number

of calls available for detection in a given period. If the assumption of independence were

not violated, for example, attempting to detect one of two available calls in average noise

conditions on the buoy increases the range to the 0.5 probability of detection from 2.3

to 7.1 km, while attempting to detect one of 5 or 10 available calls increases this range

to 12.8 or 16.8 km, respectively (Figure 2.10). The probability of detection of a single

call in a tally period is dependent on the number of calls that are available; however, it is

nearly impossible to know the number of calls that are available for detection in a tally

period, particularly when calling rates likely vary widely depending on location, time of

year, whale density and whale behavior. Consequently, the probability of detection results

reported here for single calls (i.e., attempting to detect one of one available call; Figure

2.8) should be considered a minimum estimate that is likely improved substantially, but by

an unknown amount, by using a tally period approach when the goal of monitoring is to

assess right whale occurrence over time scales that are longer than instantaneous (i.e., the

goal is not to detect every call at all times, but to detect occurrence over, say, daily time

scales).
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Figure 2.10: Results of a thought experiment showing the probability of detecting one of
a given number of available right whale upcalls as a function of range to the buoy based
on the conservative analysis of near real-time pitch track data and a fixed noise level of
100 dB re 1 µPa2 Hz−1. Each line shows the probability of detecting one call out of 1,
2, 3, 5, or 10 available calls during a fixed period of time. This analysis relies upon the
unlikely assumption that calls are detected independently, so the probabilities of detection
are likely overestimated (see text). Results from all combinations of platform, data source
and protocol are available in Appendix A.
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2.5.3 Assumptions and caveats

We chose to calculate the detection function empirically to avoid making assumptions

about the source (e.g., source depth, level, frequency), environmental (e.g., ambient or

platform noise level), or detector characteristics (e.g., detection threshold). A potential

source of bias in our approach is that each call used to estimate the detection functions

of the buoy or glider first had to be detected and localized on the array. Results from

a simple simulation suggest that the methodology employed here is robust to implicit

bias introduced by imperfect array detection and localization (Appendix A). We also

assumed that the detection functions were logistically monotonic and thus well-represented

by the logistic regression model. There was a slight increase in the proportion of calls

detected beyond 10 km, but this was driven by a very small number of calls, so we do

not consider this assumption to be violated (Figures 2.6A, 2.6B, A.2). We also used

generalized additive models (GAMs) to estimate the probability of detection (not shown)

and found that the shapes of the resulting functions were well represented with logistic

functions. The detection function may take on non-monotonic shapes in more complex

propagation environments (e.g., Helble et al., 2013b), but this is unlikely in the relatively

range-independent conditions of this study site.

Our analysis only considers calls that were available for detection by the glider or

buoy, meaning they were received when each platform was actively monitoring. The buoy

produced pitch tracks continuously but only recorded audio 50% of the time. In contrast,

pitch track and audio data were not available approximately 12% of the time for the glider

due to noise associated with surfacing or inflecting. We configured the glider to surface

and inflect at this rate to facilitate shallow water navigation and the reporting of detection

results every ∼2 h, but these parameters can be adjusted depending on the environment and

monitoring objectives. We do not make an effort to correct for differences in duty cycling

between platforms. Scientists or regulators seeking to employ the DMON/LFDCS on one

of these platforms for a particular application should consider the relative differences in

monitoring effort between platforms in mission planning.

The single-station ranging method we employed does require some assumptions to be

made about signal transmission and the propagation environment. The assumptions include

range-independent sound speed and bottom type, and the assumption that the propagation

of the calls was well-approximated by normal mode theory. These assumptions are likely
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justified, as numerous studies have demonstrated the efficacy of normal mode ranging

of low-frequency signals in shallow water environments (DSpain et al., 1997; Thode

et al., 2000; Wiggins et al., 2004; Thode et al., 2006; Munger et al., 2011; Abadi et al.,

2014; Bonnel et al., 2014; Thode et al., 2017). We made efforts to account for variation

in bathymetry by using a range- and bearing-dependent backpropagation method. The

array- and glider-based environmental sensors revealed that the water column was entirely

mixed throughout the study, so depth-varying sound speed was unlikely to contribute to

ranging error. Conventional long-baseline array localization methods would require similar

simplifying assumptions about the propagation environment (e.g., uniform bathymetry,

constant sound speed).

Our analysis made no attempt to quantify the likelihood that a right whale will produce

a call; the probability of detection examined here assumes a call is already available to be

detected. Call types, rates, depths, and spectral characteristics (e.g., frequency, amplitude)

vary depending on the time of day, season, location, environment, behavior, and individual.

Some of this variability has been characterized for right whales (e.g., Parks et al., 2011a,b),

but small sample sizes have often precluded range-wide characterization.

Future efforts should be made to improve array detection and localization to increase

sample size. We did not attempt to quantify the probability of detection for the array, but

the success rate for localizing calls of 36% (541 of 1485) was similar to the success rate

of Laurinolli et al. (2003) for loud tonal sounds in the Bay of Fundy using traditional

cross-correlation and time difference of arrival methods and was substantially higher than

in other studies (e.g., Cummings and Holliday, 1986). Many detected calls could not be

localized owing to noise on one or more VLA or HLA channel(s) that prevented accurate

mode filtering or beamforming, respectively. Improvements in array design and mooring

configuration to reduce platform noise, as well as noise-adaptive filtering and beamforming

algorithms could be pursued to increase localization success rates.

The results presented here are specific to the conditions in the area and at the time of

our study. They provide an indication of how these PAM systems might perform in similar

conditions, but caution is warranted when applying our results to other areas or times.

Many efforts must be made to characterize variability in the source, background noise,

and transmission conditions before detection probability estimates can be generalized.

That said, these results have already been applied to inform dynamic management of
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right whales; preliminary versions of the detection functions derived here were used to

parameterize a modeling effort that suggests whale movement causes visual and acoustic

detections to provide equally uncertain estimates of whale location on dynamic manage-

ment timescales (Chapter 3; Johnson et al., 2020a). We anticipate and hope that the results

presented here will also prove useful for refining management policies in the USA and

Canada as both countries have recently committed to using near real-time PAM to trigger

management measures.

2.6 Conclusions

Our primary motivation for this work was to improve conservation outcomes for right

whales by using an effective and reliable near real-time passive acoustic monitoring

system. One such system, the DMON/LFDCS, has been operational for several years

but has only recently been used to inform dynamic management measures owing partly

to uncertainty in the acoustic detection range. We were able to successfully address

uncertainty by conducting a dedicated study using a multi-channel reference hydrophone

array to empirically quantify the probability of detecting localized right whale upcalls

from autonomous DMON/LFDCS platforms in different noise conditions. Our results

provide a near-complete description of both near real-time and archival performance of

both monitoring platforms for a shallow water site. We quantify the impact of noise

conditions and platform depth on performance and provide evidence that the profiling

glider gains an advantage over the buoy by occupying depth strata characterized by low

transmission loss. We also demonstrate how the detection range is influenced by the review

protocol, where a more conservative protocol effectively reduces the detection range of

the system. Our analysis was conducted on a call-by-call basis and therefore provides a

minimum estimate of the platform detection range that can be increased by considering

multiple calls. All the results presented here are specific to the conditions in the area and

at the time of our study and caution is required to apply them more broadly.

Given its economy and performance, we anticipate near real-time PAM will become

even more widely used in the future. We recommend that new systems quantify and report

their performance (e.g., Baumgartner et al., 2019, 2020) before being used operationally

for management, and that the detection function should be characterized (this study) to

inform mitigation applications. Furthermore, we encourage visual survey teams to conduct
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and report similar analyses, as they are subject to many analogous detection challenges.

Such analyses are difficult but illuminating; they can aid in the proper interpretation of the

survey results, allow the standardization and inter-comparison of survey methodologies,

and identify issues or sources of bias. More thorough evaluation of both acoustic and

visual survey performance will help us determine which survey methodology is optimal

for a particular application, how they can better complement one another, and how to best

consolidate and compare these data sources for management and research purposes.
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CHAPTER 3

ESTIMATING RIGHT WHALE
LOCATION UNCERTAINTY FOLLOWING
VISUAL OR ACOUSTIC DETECTION TO
INFORM DYNAMIC MANAGEMENT

3.1 Abstract

The United States and Canada employ dynamic management strategies to improve con-

servation outcomes for the endangered North Atlantic right whale (Eubalaena glacialis).

These strategies rely on near real-time knowledge of whale distribution generated from

visual surveys and opportunistic sightings. Near real-time passive acoustic monitoring

(PAM) systems have been operational for many years but acoustic detections of right

whales have yet to be incorporated in dynamic management because of concerns over

uncertainty in the location of acoustically detected whales. This rationale does not consider

whale movement or its contribution to location uncertainty following either visual or acous-

tic detection. The goal of this study was to estimate uncertainties in right whale location

following acoustic and visual detection and identify the timescale at which the uncertainties

become similar owing to post-detection whale movement. We simulated whale movement

using an autocorrelated random walk model parameterized to approximate three common

right whale behavioral states (traveling, feeding, and socializing). We then used a Monte

Carlo approach to estimate whale location over a 96-h period given the initial uncertainty

from the acoustic and visual detection methods and the evolving uncertainties arising from

whale movement. The results demonstrated that for both detection methods the uncertainty
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in whale location increases rapidly following the initial detection and can vary by an order

of magnitude after 96 h depending on the behavioral state of the whale. The uncertainties

in whale location became equivalent between visual and acoustic detections within 24 to

48 h depending on whale behavior and acoustic detection-range parameterization. These

results imply that using both visual and acoustic detections provides enhanced information

for the dynamic management of this visually and acoustically cryptic and highly mobile

species.

3.2 Introduction

United States (U.S.) and Canadian government agencies have implemented a variety of

management measures in an effort to improve conservation outcomes for the endangered

North Atlantic right whale (Eubalaena glacialis; hereafter ‘right whale’). One such

strategy is dynamic management, which broadly refers to risk-mitigation actions within

defined areas in response to near real-time whale detections in those areas. Such actions

are designed to reduce risk from the two primary sources of right whale mortality: vessel

strike and fishing-gear entanglement (Knowlton and Kraus, 2001).

In U.S. waters, the National Oceanic and Atmospheric Administration (NOAA) can

establish dynamic management areas (DMAs) on a case-by-case basis around persistent

aggregations of right whales. The DMAs set a voluntary speed limit of 10 kt for vessels

≥20 m length that remains active for 15 d or until the risk of vessel strike is deemed

reduced (NOAA, 2019). There are currently no mechanisms in place for dynamic fishery

management to reduce right whale entanglement risk in U.S. waters.

DMAs are monitored as frequently as possible, but because they are voluntary, NOAA

has no mandate to conduct regular surveillance or enforce compliance. The aerial survey

team at the Northeast Fisheries Science Center typically patrols DMAs at least weekly and

DMAs are kept active as long as an aggregation persists within. NOAA has also estab-

lished the Right Whale Sightings Advisory System to collect, validate, and communicate

opportunistic visual detection reports by others that may also be used to establish a DMA

(RWSAS, 2019).

Canadian governmental agencies instituted dynamic management for the first time in

2018, motivated by the 2017 unusual mortality event (UME) wherein 12 right whales were

found dead in the southern Gulf of St Lawrence (Daoust et al., 2017; Davies and Brillant,

39



2019). Large areas of the Gulf of St Lawrence were subject to dynamic management

in 2019 (TC, 2019). These included several zones associated with traffic separation

schemes in the Honguedo Strait and Jacques-Cartier Passage wherein the visual detection

of a single right whale triggered a mandatory 15 d, 10 kt speed limit for vessels 20 m

length. There were also several large areas subject to dynamic and mandatory closures

of fixed-gear fisheries (primarily snow crab, Chionoecetes opilio, and lobster, Homarus

americanus). A single right whale visually detected in such areas triggered a 15-d closure

of a number of 10’x10’ grid cells in the vicinity of the detection. Affected fishers were

given a predetermined period (nominally 48 h) to recover gear from these closed areas.

Right whales visually detected outside these management areas also triggered fisheries

closures on a case-by-case basis (DFO, 2019).

Transport Canada (TC) and Fisheries and Oceans Canada (DFO) are responsible for

mitigating vessel-strike and gear-entanglement risk, respectively, to right whales in Cana-

dian waters. In 2019 TC conducted weekly aerial surveys of those sections of the shipping

corridors subject to dynamic management. Failure to survey within a week (e.g., due to

weather, maintenance) triggered a precautionary area closure until a visual monitoring

survey was completed. DFO could not guarantee any regular visual monitoring of areas

subject to dynamic fisheries closures. Preliminary reports from 2018 and 2019 indicated

that DFO achieved a total of 1-3 dedicated visual surveys of such areas during the 6-week

snow crab fishing season (Chapter 4; Johnson et al., 2021). Both DFO and TC incorporate,

and act upon, validated (i.e., verified by an expert) visual detections provided by various

governmental and non-governmental agencies. The collation and dissemination of all

available near real-time right whale monitoring and detection data in Atlantic Canada

(visual and acoustic) occurs via WhaleMap (Chapter 4; Johnson et al., 2021).

Maintaining visual monitoring effort within and beyond known right whale habitats is a

consistent challenge for dynamic risk-mitigation management and right whale conservation

in general. Over the last several decades archival passive acoustic monitoring (PAM) has

emerged as a powerful tool for efficient, safe, and persistent monitoring of right whales

over time and space scales that are much greater than those achieved using conventional

(aircraft and vessel) visual detection methods (e.g., Davis et al., 2017). While most PAM

applications are archival (meaning that all data are archived on the monitoring platform),

technologies that transmit detection information in near real-time have been in use for
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at least a decade (Spaulding et al., 2009). For example, the Woods Hole Oceanographic

Institution has developed a near real-time PAM system that has been operational in variety

of ocean regions using two autonomous platforms: Slocum electric gliders (Baumgartner

et al., 2013, 2020, ; hereafter ‘ocean gliders’) and moored buoys (Baumgartner et al.,

2019). The performance of this system has been well characterized, and it has a false

positive rate near or equal to zero for several baleen whale species, including right whales

(e.g., near real-time right whale sounds are never erroneously reported as present when

such sounds are not present in the acoustic record; Baumgartner et al., 2019, 2020). Since

2014, ocean gliders and buoys equipped with this system in the northwest Atlantic have

logged ∼4700 days at sea with ∼1500 definitive right whale acoustic detections (Chapter

4; Johnson et al., 2021). Although such detections have been used on numerous occasions

to inform research efforts, visual surveys and military operations, they have never been

used directly to trigger dynamic management in either U.S. or Canadian waters.

These near real-time passive acoustic detection systems are currently not capable of

acoustically localizing a detected call. They report the position of the acoustic platform

when a call is detected, not the position of the whale. Because many low-frequency baleen

whale calls can propagate long distances underwater (kms to 10s of km) there can be large

uncertainty in the reported position of a near real-time acoustic detection. This uncertainty

has often been cited as the primary rationale for not using near real-time acoustic detections

to inform management decisions.

This rationale omits an important consideration: whale movement. There is always some

delay - typically 24 h or more - between a whale detection and associated management

action. The reported position of a visually detected whale is initially precise but becomes

more and more uncertain as time passes and the whale moves. Thus, the whale location

when first visually detected is an inaccurate estimate of where the whale will be located

when the management action goes into effect. The reported location of an acoustically

detected whale has low specificity (typically estimated as the location of the passive

acoustic instrument +/- the acoustic detection range), yielding a similarly inaccurate

estimate of where the whale will be located when the management action goes into effect.

While both methods of detection have location uncertainties over management time scales,

visual detections to date have been assumed, without documented foundation, to have

lower uncertainty than acoustic detections for management purposes. Here we assess this
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assumption by first simulating right whale movements after visual and acoustic detection

and then comparing the temporal evolution of location uncertainties between the two

methods.

3.3 Methods

We simulated individual whale movements using a modified version of the autocorrelated

random walk model of van der Hoop et al. (2012). In brief, the model relied on placing

a simulated whale at a given location, selecting an initial movement direction, and then

simulating the movement trajectory by iteratively applying a swimming speed and turning

angle at each model time step over a specified period. Initial movement direction was

randomly selected from a uniform distribution between 0◦ and 360◦. Swimming speed was

randomly selected at each time step from a uniform distribution between 0 and 1.23 m s−1,

following Baumgartner and Mate (2005). The autocorrelated random walk was achieved

by expressing the turning angle as the rate of change in direction (turning rate), where

turning angles were constrained to a given angle per decametre (dam) travel. We used

three different parameterizations of turning rate based on observations from Mayo and

Marx (1989) to approximate movement patterns associated with three behavioral states;

traveling (5.3◦ dam−1), feeding (19.3◦ dam−1), and socializing (52.5◦ dam−1). A model

time step of 2.5 s was chosen to simulate high resolution movements. A duration of 96 h

for each model simulation was chosen to encompass the range of dynamic-management

response times observed in Canadian waters. Figure 3.1 illustrates trajectories of a single

simulation for a whale for each of the three behavioral states over a 24 h period.

We used a Monte Carlo approach to estimate the uncertainty in whale location over a

96 h period following visual and acoustic detection based on 100,000 realizations of each

simulated whale behavior. Location uncertainty was calculated as the distance between the

reported location and the true (simulated) whale location over time. The reported location,

which was equivalent to the reported location of a visual detection or the location of a

passive acoustic detector, was placed at the origin of a Cartesian grid. For visual detections,

we assumed that the initial uncertainty in the reported position was small because most

dedicated right whale visual survey protocols require the survey platform to approach

the detected whale to confirm species, number, behavior, and position, as well as other

information. As such, the true initial location of a visually detected whale was calculated
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Figure 3.1: Example tracks (trajectories) of simulated right whales exhibiting traveling,
feeding, and socializing behaviors over a 24 h period.
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relative to the reported location with a range chosen randomly from a uniform distribution

of 0 - 100 m and a bearing chosen randomly from a uniform distribution of 0◦ - 360◦,

resulting in an initial uncertainty of 0 - 100 m.

The uncertainty in the location of an acoustic detection is typically much greater than

that associated with visual detections and is not well described. We used a logistic curve

to model three different detection functions with a 50% probability of detection at 5, 10,

and 15 km to represent short-, medium-, and long-range detection scenarios, respectively

(Figure 3.2). The short- and medium-range estimates followed observations from typical

coastal sites near Cape Cod (Clark et al., 2010, Chapter 2) as well as model-based estimates

from Tennessen and Parks (2016), while the long-range detection scenario was based on

observations in the central Bay of Fundy (Laurinolli et al., 2003) and maximum detection

ranges near Cape Cod (Chapter 2). The true initial location of an acoustically detected

whale was calculated relative to the reported location with a range chosen randomly

from the detection range logistic curve and a bearing chosen randomly from a uniform

distribution of 0◦ - 360◦.
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Figure 3.2: Acoustic detection functions used in the simulations to represent short (dotted
line), medium (dashed line), and long (solid line) range detection scenarios.
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Simulation results were based on 12 model runs, each with 100,000 realizations of a

simulated whale that encompassed the combinations of the behavioral (traveling, feeding,

socializing) and acoustic detection range (short, medium, and long) parameterizations.

Simulated whale positions were used to calculate location uncertainties as the straight-line

distance (range) from the estimated initial location at the center of the Cartesian grid at

hourly intervals.

The difference in location uncertainty between visual and acoustic detections was

evaluated using pairwise comparisons. We first simulated a trajectory and then defined the

starting point based on either visual or acoustic detection uncertainty as described above.

The difference in location uncertainty, r, at time t was calculated as follows:

r(t) = rv(t)− ra(t) (3.1)

where rv and ra were the ranges from the origin to the visual and acoustic whale locations,

respectively, at time t. This was applied for all trajectories and time steps. We then

calculated the proportion of positive r values at each time step to estimate the probability

of a visual detection providing a location estimate with an uncertainty greater than that of

an acoustic detection (see Figure B.1 for a schematic). All analysis was conducted using

the R programming language R Core Team (2019). Visualizations were produced using

the ggplot2 package (Wickham, 2016). The R code used for this analysis is available from

GitHub: https://github.com/hansenjohnson/rw_sim.

3.4 Results

Model results demonstrated that whale movement contributed to a rapid increase in

whale location uncertainty following detection and the magnitude of this uncertainty was

dependent on the movement behavior of the whale. Median uncertainty in visually detected

whale location after 96 h, which was almost entirely driven by movement, was 103 km

(interquartile range, IQR: 69 km) for traveling whales, 28 km (IQR: 21 km) for feeding

whales, and 10 km (IQR: 8 km) for socializing whales (Figure 3.3). Location estimates

derived from visual and acoustic detections for each behavior were qualitatively similar

over time scales of days (Figures 3.3, B.2).

Location uncertainties for the visual and acoustic detection methods converged over
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Figure 3.3: Evolution of location uncertainty after visual or acoustic detection of right
whales in traveling, feeding, or socializing behavioral modes over the 96 h model period.
Color indicates the location probabilities per 5 x 5 km grid cell. Columns show the time
(in hours) since detection. Rows indicate the detection method (visual or acoustic) and
simulated whale behavior (traveling, feeding, or socializing). The center of the domain
(0,0) indicates the reported position of the detection. The acoustic data were generated
using the medium detection range parameterization. Data for the other detection range
parameterizations are not shown. The map provides an indication of the approximate
spatial scale of the location uncertainty estimates.
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time, and convergence was generally faster with higher displacement behaviors (travelling)

and shorter acoustic detection range parameterizations. The differences between visual and

acoustic location uncertainties never exceeded the maximum acoustic detection range, and

the average difference approached zero over time (Figure 3.4A). Within 24 h there was a 10

- 47% chance that the acoustic detection provided a more accurate location estimate than a

visual detection, with the larger values again associated with shorter acoustic detection

ranges and higher displacement behaviors (Figure 3.4B).

Computing the probability that a simulated whale would remain within a given radius of

its initial reported position provided a means of evaluating the efficacy of potential dynamic

management strategies implemented on different time/space scales in habitats dominated by

particular behaviors. This probability decreased with time, higher displacement movement

behaviors, and smaller radii. There was a less than 10% chance of a traveling whale

remaining within a ≤25 km radius of its reported position after 24 h, regardless of detection

method. The probability of a whale remaining within 5 km of its reported position dropped

below 10% in less than 24 h for traveling and feeding whales, and in approximately 96

h for socializing whales. In contrast, the probability of a feeding or socializing whale

remaining within 25 km of the reported position after 24 h was 71-92% or 91-100%,

respectively. This decreased slightly for socializing whales but dropped to below 50% for

feeding whales after 96 h. In these cases, acoustic and visual methods produced similar

estimates with better agreement in shorter detection range scenarios.

3.5 Discussion

Our results provide a reminder of the considerable mobility exhibited by North Atlantic

right whales, and how their mobility contributes to a rapid expansion in location uncertainty

following visual or acoustic detection. Our results also highlight the influence of the whales

behavioral state on mobility and thus the post-detection uncertainty in whale location.

Whales in the simulated traveling mode moved a maximum of ∼200 km from their

initial detection location over the 96 h study period, an order of magnitude greater than

whales simulated in a socializing behavior mode. Baumgartner and Mate (2005) observed

that right whales are capable of traveling ∼80 km d−1, nearly twice that simulated here.

Conversely, there is evidence that right whales, particularly those exhibiting feeding or

social behavior, may remain within a relatively small area (1 to 10 km radius) over several
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(a)

(b)

Figure 3.4: Differences in whale location uncertainties between visual and acoustic
detection methods over the 96 h model period. The columns indicate acoustic detection
range parameterizations (long-, medium-, and short- range). In panel (a), rows show the
modeled movement behaviors (traveling, feeding, and socializing) and each dark grey solid
line represents the range difference time series for a single simulated track (n=100,000).
The solid and dashed black lines show the average and standard deviation of the range
differences, respectively. The zero-difference line is emphasized in light grey. Panel
(b) shows the probability of obtaining greater whale location uncertainty from a visual
detection versus an acoustic detection.
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days (e.g., Baumgartner and Mate, 2005).

In most cases, our study demonstrates that whale movement obfuscates the initial

differences in uncertainty between visual and acoustic detection methods such that the two

provide equally uncertain estimates of whale location on dynamic management timescales.

This is perhaps not surprising given that the spatial extent of daily right whale movement

(∼80 km d−1; Baumgartner and Mate, 2005) is of the same order as the maximum acoustic

detection range (∼30 km radius; Laurinolli et al., 2003, Chapter 2). The rate and extent

of convergence between location uncertainties from visual and acoustic detections are

governed by the acoustic detection range and the type of movement behavior. Shorter

detection ranges and greater displacement-movement behaviors lead to faster convergence.

A simple concept that emerges from our analyses is that an acoustically detected whale

is just as likely to move toward the reported position as it is to move away. In contrast,

a visually detected whale will almost certainly move away from the reported position

over time. This appears to explain the more rapid expansion of location uncertainties for

visually versus acoustically detected whales over the ∼24 h period following the initial

detection. From a management perspective, it also appears to demonstrate the folly of

considering right whale detections as static points on a map instead of as location estimates

that have rapidly expanding uncertainty over time.

Our analysis focuses on the detection information used to trigger dynamic management

strategies. The specifics of these strategies are beyond the scope of this paper, but our

movement simulations provide some insights into which general strategies may be most

effective. Dynamic management is only successful if the whale that triggers a response

remains within the managed space over a time scale that is sufficient to allow risk mitigation

to be implemented. Thus, successful risk-management strategies must incorporate the rapid

expansion in location uncertainties if the elected strategy is to be effective. Focusing on

small areas (e.g., ≤5 km radius) is demonstrably illogical. This is perhaps best illustrated

in the left-most column of Figure 3.5, where there is only a maximum 50% chance that a

whale will remain within the 5 km radius management area for a ∼24 h period. Unless

there is considerable (e.g., environmental or behavioral) reason to believe the whales will

remain within, or frequently revisit, a small area such as above, or management measures

are implemented near-instantaneously, it is unlikely that such management measures will

prove effective. Similarly, spatial dynamic management in migratory corridors where
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whales are persistently traveling is unlikely to be successful when reliant on either visual

or acoustic detection methods given the extent of location uncertainty that arises from

whale movement. For example, one could implement a protective area of 25 km radius

around a detection and have a ∼10% chance that a traveling whale remains within that

area after ∼24 h (Figure 3.5). Seasonal management of larger areas would likely be more

effective in such regions.
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Figure 3.5: The probability a right whale detected acoustically or visually in a given
behavioral state was within a given radius of the reported position over the 96 h model
period. Columns indicate radii about the reported position (5, 10, 15, and 25 km) used
in the probability calculation. Rows show the modeled movement behaviors (traveling,
feeding, and socializing).

Dynamic management is likely to be most effective when applied to large (>10 km

radius) areas dominated by feeding or socializing. Acoustic and visual detections provide

similar information in those conditions, though acoustic detections have higher uncertainty

when detection ranges are long, such as in deep waters (>100 m) with low ambient noise
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levels (e.g., Laurinolli et al., 2003). Areas that have been monitored using near real-time

passive acoustics, including south of Cape Cod, the Great South Channel, the Boston

shipping lanes, Roseway Basin, and the southern Gulf of St Lawrence are more likely to

fall into the short- to medium-range detection scenarios (e.g., Tennessen and Parks, 2016).

We emphasize that this modeling study is not an attempt to faithfully depict reality.

Rather, it attempts to provoke a critical reflection on dynamic management strategies and

the data used to trigger them. We rely upon several simplifying assumptions to model

uncertainty in reported whale position, especially for acoustically detected whales. Whale

movement is a complex behavior mediated by a wide array of poorly constrained factors.

The model we used here is greatly simplified. It does not, for example, attempt to include

the influence of any physical (e.g., hydrodynamic conditions, water temperature, stratifica-

tion, depth), biological (e.g., conspecifics, prey) or anthropogenic (e.g., shipping) factors

on whale movement. However, we intentionally chose parameterizations of movement

behaviors and acoustic detection ranges that would allow us to capture realistic extremes of

location uncertainty; more complicated movement behaviors or the selection of a different

acoustic detection range parameterization should produce location uncertainties that fall

within these extremes, and therefore the conclusions of our study would remain the same.

This work only considers a whale once it has been detected; comparing acoustic versus

visual detectability is beyond the scope of this study (see Clark et al. 2010 for such a

study). This work also only applies to single whales, as near real-time acoustic density

estimation of ephemerally vocalizing species from a single-hydrophone platform is not

currently feasible. The thresholds used to characterize the convergence between visual and

acoustic location uncertainties are somewhat subjective because there is no established

method for quantifying acceptable uncertainty in data used for management purposes. We

have attempted to address that subjectivity by providing multiple metrics and displaying

the results in a variety of different ways and invite readers to draw their own conclusions.

We encourage further studies that focus on constraining the major sources of uncertainty

mentioned here: variability in behavioral state and acoustic detection range. Whale

behavior studies are limited and insufficient to construct substantiated behavioral budgets

across habitats, seasons, and demographics; these budgets are essential for effective

management (Kenney et al., 2001). Efforts are underway to constrain acoustic detection

range for near real-time PAM platforms, but this, as with movement behavior, is difficult to
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constrain as it varies widely across the time and space domains within which right whales

are known to occur. We also urge the research and management communities to measure

compliance with dynamic management efforts and to quantify the effective risk reduction

associated with these efforts. Furthermore, it is essential that management strategies be

developed in a transparent, scientifically supported manner so that they can be understood,

evaluated and improved upon by affected industries, researchers, and the general public.

Our analyses demonstrate the equivalence of acoustic and visual detection information

in a range of conditions and provide compelling evidence that near real-time acoustic

detections are relevant and useable for dynamic risk management. We suggest that the most

effective dynamic management strategies would cover large areas, be fully implemented

quickly, and target habitats where right whales are typically engaged in low-displacement

behaviors (e.g., toward the bottom-right of Figure 3.5). In such circumstances, visual and

acoustic detection methods can be used interchangeably. Many such areas are covered

occasionally, at best, by visual surveys and could stand to gain tremendously from the

efficiency and persistence of near real-time PAM from autonomous platforms.
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CHAPTER 4

WHALEMAP: A TOOL TO COLLATE
AND DISPLAY WHALE SURVEY
RESULTS IN NEAR REAL-TIME

4.1 Statement of Need

Baleen whales of the Northwest Atlantic live in a highly urbanized ocean. Their recovery

from commercial whaling is impeded by anthropogenic risks from ocean industry, pollution,

and climate change. Effective research, conservation and risk-reduction action requires near

real-time knowledge of whale distribution measured using various methods including visual

surveys from vessels or planes or acoustic surveys from autonomous platforms. The rapid

collation and dissemination of whale detections and survey effort is critical but challenging

given the number and variety of survey organizations and methodologies at work along the

east coast of the US and Canada. There are long term databases for whale survey data, such

as that maintained by the North Atlantic Right Whale Consortium (narwc.org), and crowd-

source reporting tools (e.g., Whale Alert) but ‘WhaleMap’ is the only dedicated system

specifically designed to collate and display all available near real-time whale detections

and survey effort. Use cases vary widely. For example, ‘WhaleMap’ is currently used

by: government managers to design and implement risk-mitigation strategies, members of

military or industry to plan safe operations, researchers to coordinate survey efforts and

explore patterns in whale distribution, and members of the general public to learn about

and follow along with whale conservation activities.

‘WhaleMap’ was designed with several specific goals:

• Incorporate whale detection and survey effort from all survey methods in near
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real-time

• Allow survey teams to easily contribute and retain complete control over their data

• Provide the latest data in an accurate, user-friendly, and publicly accessible format

• Operate transparently using open-source tools and with limited supervision

Critically, ‘WhaleMap’ does not:

• Perform any quality-control, or take responsibility for the veracity of information

contributed

• Provide a long-term database for survey results

• Allow access to raw or processed data without approval from the data originator

4.2 System

The ‘WhaleMap’ system workflow can be separated into data processing and visualization

components (Figure 4.1). The following provides a brief overview of each. Additional

details as well as specific references to all software used is available in the source code doc-

umentation (available at https://github.com/hansenjohnson/WhaleMap)

4.2.1 Data processing

Survey teams provide ‘WhaleMap’ access to a remote repository of their choice (e.g.,

Google Drive, Dropbox) where they upload their survey data. The ‘WhaleMap’ curator

writes a custom script to extract the detection and effort data from each survey team and

convert it to a common ‘WhaleMap’ format. This method eases the burden on the survey

teams by allowing any team to submit data in nearly any format, provided the format is

consistent and well-documented. This is essential for rapid data collection, as survey teams

in the field typically lack the time and resources to reformat their data.

A scheduled job regularly clones the data from the remote repositories onto the ‘WhaleMap’

server and uses a makefile to dynamically and efficiently process the data from each plat-

form and coerce it into a common format. Formatting errors in a remote data repository

are automatically flagged and the contributor is notified. This ensures that any changes
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Figure 4.1: Conceptual overview of WhaleMap data processing and display

55



to the raw survey data quickly propagate through the entire system, which allows survey

teams to retain complete control of their data and perform quality control as needed. It

also guarantees that the ‘WhaleMap’ always contains the latest available information.

4.2.2 Visualization

Once the survey data are processed, they are visualized using two different methods. The

first is the construction of self-contained HTML summary maps containing sufficient infor-

mation to satisfy most casual viewers (typically the last 14-days of survey results). These

can be conveniently embedded in various webpages (e.g., whalemap.org) and browsed

without requiring server-side processing. These maps are dynamically regenerated as

the final step in the data processing workflow, so they always contain the latest avail-

able information. The second visualization method is an interactive online application

(whalemap.org/whalemap). This provides users with numerous tools with which to filter

the latest processed data. The selected data are displayed in several formats including an

interactive map, interactive timeseries plot, and table of summary statistics.

4.3 Conclusions

Since its launch in 2018, ‘WhaleMap’ has been constantly refined and optimized to better

serve the overall goal of providing a common source for all near real-time whale survey

data in the Northwest Atlantic. It has demonstrably improved conservation outcomes for

endangered whales in this region by optimizing research activities, facilitating dynamic

risk-mitigation measures, and engaging with the ocean industry and the public. ‘WhaleMap’

has also already been cited in several scientific publications (e.g., Gervaise et al., 2021;

Koubrak et al., 2021; Baumgartner et al., 2020; Kowarski et al., 2020). We are not aware

of any equivalent software in existence. It is our hope that ‘WhaleMap’ continues to serve

the conservation community in perpetuity, and that this system can be readily adapted to

benefit other regions facing similar conservation challenges.
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CHAPTER 5

RIGHT WHALE HABITAT IN THE
SOUTHERN GULF OF ST. LAWRENCE

5.1 Abstract

The distribution of North Atlantic right whales has shifted in the last decade, perhaps

best exemplified by the decreased use of several well-characterized habitats in the Gulf of

Maine and Scotian Shelf and an increased occupancy of a relatively unknown habitat in the

southern Gulf of St. Lawrence (GSL). The goal of this study was to characterize right whale

feeding habitat in the GSL region. We conducted opportunistic oceanographic sampling

during daylight hours from visual survey vessels in the presence and absence of right

whales in July and August over three years (2017 - 2019). Oceanographic stations (n = 115)

were typically comprised of a depth-integrated oblique ring net tow that was preceded and

followed by a vertical profile with a conductivity-temperature-depth (CTD) instrument and

optical plankton counter (OPC; 2018/2019 only). Small copepods (e.g., Centropages spp.,

Psuedocalanus spp.) were numerically dominant at all stations. Of the Calanus species, C.

finmarchicus was typically most abundant but C. hyperboreus comprised the majority of

total Calanus biomass based on their abundance and relative body size. Relevant physical

and biological variables were derived at each station and logistic regressions were used to

quantify right whale habitat associations. Results suggested a higher probability of right

whale presence was associated with a thick bottom mixed layer comprised of relatively

warm saline water, and abundant patches of late-stage Calanus near the seafloor. These

results offer insights into the quantity of the prey and quality of the GSL as a right whale

foraging habitat and the associated implications for right whale recovery.
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5.2 Introduction

North Atlantic right whales (Eubalaena glacialis; hereafter ‘right whales’) satisfy their

energetic demands by ram filter feeding on small zooplankton. Their fine baleen imposes

a limit on the smallest prey items that they can ingest and is thought to have a filtration

efficiency similar to a 333-micron mesh net (Mayo et al., 2001). The hydrodynamic

drag generated by baleen when the whale opens its mouth imposes energetic limits on

swimming speed (van der Hoop et al., 2019). Slow swimming speeds while foraging

(∼1.1 m s−1; van der Hoop et al., 2019) allow large, mobile zooplankton to evade capture

(e.g., Fleminger and Clutter, 1965). Thus, right whales are optimized to feed on a narrow

size range of zooplankton (nominally 0.5 - 10 mm; Mayo et al., 2001) and rely entirely on

external bio-physical mechanisms to aggregate these zooplankton into dense, energy-rich

patches.

Zooplankton sampling in the presence of feeding right whales in numerous habitats

in the Gulf of Maine and Scotian Shelf provides compelling evidence that right whales

target superabundant patches (typically in excess of 103 copepods m−3 measured as water-

column integrated abundance) of late stage (stage 4 or 5 copepodites; C4, C5) Calanus

finmarchicus (Murison and Gaskin, 1989; Beardsley et al., 1996; Baumgartner et al.,

2003b; Baumgartner and Mate, 2003; Baumgartner et al., 2017; Baumgartner and Mate,

2005). These zooplankton are likely desirable prey because they contain energy-rich lipid

reserves and are highly susceptible to physical aggregation mechanisms, particularly while

in a dormant life-history stage known as diapause (Baumgartner and Tarrant, 2017). For

example, process studies in the Bay of Fundy and Roseway Basin show that dense layers

are formed via the interaction of copepod behavior and environmental conditions, such as

tidal advection, bathymetric constraints, and the bottom mixed layer (Baumgartner et al.,

2003b; Davies et al., 2014).

Despite their apparent proclivity for late-stage C. finmarchicus , right whales are capable

of feeding on other taxa. They have been observed skim feeding on surface patches

dominated by smaller calanoid copepods, namely Psuedocalanus spp. and Centropages

spp., in Cape Cod Bay during winter (Mayo and Marx, 1989). Records from commercial

whaling off the coast of Scotland suggest that right whales were foraging on euphausiids

(Collett, 1909). Southern right whales (Eubalaena australis) have also been observed

surface feeding at fast swimming speeds (>7 knots) on Antarctic krill (Euphausia superba
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Hamner et al., 1988). There is anecdotal evidence of right whales feeding near abundant

patches of hydrozoans and decapod larvae (in Mayo et al., 2001). Though there is little

direct evidence, presumably right whales could also target Arctic Calanus species, namely

Calanus glacialis and Calanus hyperboreus. These are large energy-rich copepods that are

abundant at higher latitudes within the historical right whale range (Monsarrat et al., 2015)

and are preyed upon by bowhead whales (Balaena mysticetus) using a similar foraging

mechanism (e.g., Fortune et al., 2020).

Right whale distribution began to shift around 2010. Occurrence declined in most of

the known habitats in the Gulf of Maine (Davis et al., 2017; Davies et al., 2019) with the

notable exception of Cape Cod Bay where occurrence has increased (Mayo et al., 2018).

There is evidence that these shifts broadly coincide with climate-induced changes to ocean

circulation that reduced the availability of C. finmarchicus in the Gulf of Maine (Record

et al. 2019), as well as with anomalously low climatological Calanus spp. abundance in

most regions of the NW Atlantic (Sorochan et al., 2019). The reduction in Calanus has

been linked to low calving rates (Meyer-Gutbrod et al., 2021). The shift in right whale

distribution led to increased whale occurrence in regions with unmitigated risks from

vessel strike and fishing gear entanglement, such as the southern Gulf of St. Lawrence

(GSL). The combined effect of the reduction in calving rates and increased risk exposure

has been proposed as the major barrier to species recovery (Meyer-Gutbrod et al., 2021),

though these issues are likely further exacerbated and complicated by additional stressors

(Moore et al., 2021).

Right whales have been sporadically observed in the GSL for many years (Brown et al.,

2009), but their occurrence in the GSL began to increase substantially beginning in about

2015 (Simard et al., 2019). The increase in whale abundance and unmitigated risks from

vessel strikes and fishing gear entanglements precipitated catastrophic mortality events

in 2017 and 2019 in which a total of 21 right whales (∼6% of the current population)

were found dead in the GSL (Pettis et al., 2021). These events initiated unprecedented

surveillance and risk mitigation efforts in the region. From 2017 through 2019 nearly

the same ∼40% of the population, or ∼140 individuals, have been documented in the

GSL each summer (Crowe et al., 2021). The majority of the whale detections occur in

the southern portion of the GSL, specifically the section of continental shelf bounded by

deep Laurentian Channel to the north, Prince Edward Island to the south, the Magdalen
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islands to the east and New Brunswick/Quebec to the west. Right whale detections can

occur throughout this region, though tend to concentrate in the western portion (Chapter 4;

Johnson et al., 2021).

Several studies have made efforts to characterize aspects of right whale foraging habitat

in the GSL. Plourde et al. (2019) developed a spatial climatology of Calanus in Cana-

dian waters that successfully identified known habitats (e.g., Roseway Basin) as well as

the southern GSL as potentially suitable habitats. Sorochan et al. (2019) characterized

interannual variation in several regional timeseries of Calanus abundance and discovered

negative anomalies in many subregions, including in the southern GSL, over the last ten

years. They also found that the climatological abundance in the southern GSL was greatest

at the Shediac Valley station, in relatively close proximity to the approximate center of

the distribution of right whale detections. Brennan et al. (2019) combined a spatial clima-

tology with a dynamic transport model to explore mechanisms of Calanus transport and

availability, as well as to improve estimates of Calanus spatial distribution. They found

that advection from upstream sources in the western GSL was likely a major contributor of

Calanus abundance in the southern GSL region. Further extension of this work contrasted

Calanus availability in warm versus cold years, with cold years associated with circulation

patterns that increased Calanus retention within the southern GSL (Brennan et al., 2021).

Gavrilchuk et al. (2021) improved upon the right whale bioenergetic model developed by

Plourde et al. (2019) to show evidence of highly variable habitat suitability in the southern

GSL, with generally declining habitat quality since 2014. They suggested that biomass in

the southern GSL may be insufficient to support the energetic costs of reproduction, which

in turn may contribute to the recent decline in calving rates.

All of these studies made use of climatological observations to inform their modeling or

empirical efforts. While climatological Calanus abundances can be used to predict right

whale presence (Pendleton et al., 2009), broadscale background zooplankton sampling

does not necessarily reflect prey available to right whales (Baumgartner et al., 2007).

Further, much of these climatological data were derived from depth integrated net samples

which do not provide information on the vertical distribution of Calanus. Right whales are

known to target thin layers of dense Calanus, and abundances taken in close proximity to

a feeding right whale can be several orders of magnitude greater than those collected in

a right whale habitat without whales present (Baumgartner et al., 2003b). In this study
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we conducted the first oceanographic sampling in close proximity to right whales in the

southern GSL to address the following questions: 1) What is the primary prey of right

whales in the Gulf of St. Lawrence?, and 2) What are the temporal and spatial relationships

among right whale presence, prey, and environmental conditions?

5.3 Methods

5.3.1 Site description

Oceanographic sampling and visual survey efforts were conducted in the southern Gulf

of St. Lawrence (GSL) in July and August each year from 2017 through 2019. A 15-m

motor yacht, M/V Shelagh I, was used in 2017 and a 21-m fishing vessel, F/V Jean-Denis

Martin, was used in 2018 and 2019. The summertime ocean circulation of the southern

GSL is dominated by the Gaspé Current (GC), a buoyancy driven, unstable coastal jet that

contributes to the mean eastward component of the cyclonic circulation of the GSL (Sheng,

2001). Upon reaching the tip of Gaspé, the GC can either remain attached to the coast

and turn south into the southern GSL, or it can detach from the coast and continue along

the southern margin of the Laurentian Channel. These dynamics are primarily influenced

by freshwater runoff from the St. Lawrence Estuary and wind events. Typically, higher

runoff and weaker winds in spring (April-June) favor the coastal attachment of the GC,

which contributes to stronger southward flow into the southern GSL (Brennan et al., 2021).

Bathymetry in the southern GSL region is relatively shallow (75 - 150m) and uniform with

the notable exception of the Shediac Valley, which begins at the shelf break and shoals

southward roughly in parallel with the western coastline (Amante and Eakins, 2009, Figure

5.1).

5.3.2 Data collection
5.3.2.1 Right whale surveys

The primary objective of each research cruise was to conduct photographic identification

(hereafter ‘photo-ID’) surveys of right whales in the southern GSL. Vessel-based right

whale photo-ID survey methodology has been developed and refined over nearly 40 years

(Brown et al., 2007). Contrary to conventional line-transect sampling, right whale photo-ID

surveys do not provide systematic coverage of a survey region. Instead, the survey platform

seeks aggregations of right whales and attempts to photograph identifiable callosity (Payne
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Figure 5.1: Study region (dashed line) in the southern Gulf of St. Lawrence, Canada.
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and Dorsey, 1983) and/or scarring (Kraus, 1990) patterns of each individual. These photos

are submitted into the NARWC Catalog (Hamilton et al., 2007) for subsequent analyses.

In addition to photographic documentation, the team also collected biological samples,

such as biopsies and feces, and provided disentanglement support.

5.3.2.2 Oceanographic sampling

Oceanographic surveys were conducted on an opportunistic, non-interference basis with

the visual surveys and in favorable weather conditions (less than Beaufort 7). A sampling

station was conducted during morning, noon, and evening each survey day when conditions

allowed. The data collected at each station changed slightly after 2017 when we began

using a larger vessel with enhanced oceanographic sampling capabilities.

In 2017 a sampling station was comprised of a CTD cast to measure water column con-

ductivity and temperature followed by a net tow to sample the depth-integrated zooplankton

biomass, abundance, and community composition. The CTD casts were conducted with

a Seabird SBE 37 MicroCat CTD programmed to sample at 0.5 Hz. Zooplankton were

collected from vertical hauls with a 0.75-m diameter ring net with 333-micron mesh size.

A depressor weight was fitted to the cod end to maintain the vertical orientation of the net

during the tow. A flow meter was positioned off center of the net opening and used to

record volume filtered. The CTD was also attached in-line with the net above the bridle to

record the depth-time series of the haul. A Vemco V16 pressure transmitter was attached

to the CTD and monitored from the vessel with a VR100 receiver to measure both the

CTD and net depth in real time without the use of a conductive cable.

Sampling in 2018 and 2019 was expanded to include the use of a profiling Optical

Plankton Counter (OPC; Focal Technologies Inc.) and Seabird-19 CTD housed in an

aluminum cage. Each station was comprised of a full depth oblique net tow that was

immediately preceded and followed by a vertical cage profile. Net tows were conducted

using a 1-m diameter ring net with 200-micron mesh. A depressor weight was fitted to

the net bridle to maintain the horizontal orientation of the net opening during the oblique

tow. For all net tows, vertical (2017) or oblique (2018-19), efforts were made to achieve

a maximum net depth within ∼10 m of the sea floor. The cage was lowered vertically

through the water column at ∼0.5 m s−1 to a depth of ∼5 m above the sea floor. The

same Vemco system from 2017 was used to monitor the cage and net depth in real time,

as a conductive cable was not available. Either a Seabird SBE 37 or RBR Concerto was
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attached in-line with the net above the bridle to record the depth-time series of the haul.

Net tows were achieved at every station, but the operational limits for the cage were

substantially lower than that of the net, so cage profiles were not conducted at several

stations.

Figure 5.2: Spatial and temporal distribution of sampling effort in 2017 (left column),
2018 (center column), and 2019 (right column). The red and grey dots on the maps indicate
stations where whales were present or absent, respectively. The total number of stations
each year as well as the number with whale presence is indicated in the upper left of each
map panel. The lower panels show the count of CTD (white), Cage (OPC/CTD; grey), and
net (black) sampling events each day.

5.3.3 Data processing
5.3.3.1 Whale occurrence

Whales were considered present if at least 1 right whale was photographed within +/- 0.5

km of the average position of an oceanographic station and within +/- 1 h of the initiation

of sampling. These minimum distance and time thresholds were chosen to compensate

for the typical time-space mismatch between the visual and oceanographic surveys. They

reflect the finest scale sampling that could be consistently achieved with our study design.

Statistical analyses were repeated using several different distance and time thresholds to

evaluate the sensitivity of our results to the definition of right whale presence (Appendix C).

Whales were considered absent from a station if survey effort was recorded but no whales
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were sighted within +/- 5 km of the station or +/- 5 h of the initiation of oceanographic

sampling. These higher minimum thresholds were chosen to ensure whale absence at

the time of sampling. Stations without recorded survey effort, or with whales sighted

at intermediate distances and/or times, were omitted from subsequent presence/absence

analyses.

5.3.3.2 Zooplankton

Zooplankton samples from all tows were removed from the net and filtered through a

333-micron sieve. In samples with sufficient biomass (more than ∼50 g), a subsample was

collected and immediately frozen in liquid nitrogen. The total wet weight of these samples

was corrected by adding the wet weight of an average subsample. The total abundance was

not corrected, as we did not measure species-specific abundance or biomass of the cryovial

samples. The remaining sample was preserved in 4% formalin solution buffered with

calcium carbonate. After each cruise, individual zooplankton in representative aliquots

of each sample were counted and identified to lowest possible taxa and life cycle stage.

Samples were then filtered and weighed wet to determine bulk biomass. All zooplankton

processing methods were consistent with those used for the Atlantic Zonal Monitoring

Program (AZMP), which are described in greater detail in (Mitchell et al., 2002). The 128

taxa that were identified from net samples were reclassified into 16 groups summarized

in Table 5.1. Classifications were performed using the World Register of Marine Species

(WoRMS; Horton et al., 2021) and the package taxize (Chamberlain and Szcs, 2013) in R

(R Core Team, 2020). Net tows that did not traverse at least 85% of the water column, as

inferred from the CTD attached to the net bridle, were excluded from subsequent analyses.

Biomasses of late-stage C. finmarchicus , C. hyperboreus and C. glacialis were estimated

from net-derived abundances using average individual dry weights previously measured in

the region (as in Sorochan et al., 2019). A conversion factor of 297 µg ind−1 was used for

both C. finmarchicus and C. glacialis, while 1725 µg ind−1 was used for C. hyperboreus

(Plourde et al., 2019).

5.3.3.3 CTD

Instrument-specific calibrations were applied to convert raw CTD data into common

engineering units of pressure (decibar), temperature (Celsius) and conductivity (Siemens

per meter). The downcast portion of each CTD profile was manually selected. Outliers
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Table 5.1: Zooplankton classification
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were removed using a median filter with a 51-point window. The data were then smoothed

by fitting a Local Polynomial Regression (LOESS) curve with a span of 0.12. Smoothed

downcasts were visually compared to raw data to confirm that only outliers and depth

inversions were rejected. Data were averaged in 1-m depth bins. Both casts at the same

station were averaged to compute a single downcast at each station. In rare cases where

dedicated CTD or cage profiles could not be conducted, the same data processing was

applied to compute a water column profile from the CTD attached to the net bridle. CTD

casts that did not traverse at least 85% of the water column were excluded from subsequent

analyses. The surface mixed layer thickness was defined as the depth to the maximum

buoyancy frequency, a metric indicative of the strength of stratification. The bottom mixed

layer thickness was defined as the height from the maximum CTD depth to a density

change of -0.05 kg m−3 (as in Baumgartner et al., 2003b). All oceanographic calculations,

including derivation of water column practical salinity (hereafter ‘salinity’), potential

density (kg m−3; hereafter ‘density’) and buoyancy frequency, were computed using the

oce package in R (Kelley and Richards, 2020).

5.3.3.4 Optical plankton counter

OPC data were processed using similar methods as those described by Baumgartner (2003).

The downcast of each OPC profile was manually selected. Records containing extreme

depths, depth inversions, slow descent rates (<0.3 m s−1), or excessive light attenuance

(>1800 digital counts) were removed. The volume filtered in each timestep was computed

as the area of the OPC tunnel (0.02 m by 0.25 m) multiplied by the change in depth.

Profiles were computed by summing the particles of a given size range in 5-m depth bins.

Depth bins in which the volume filtered was less than 50% of the theoretical volume of the

bin (i.e., area of the OPC x 5 m) were rejected. We estimated the wet weight, Wwet (mg),

of the OPC-filtered particles using:

Wwet =
4

3
π

(
ESD

2

)3

p (5.1)

where ESD is the equivalent spherical diameter of the particle (mm) measured by the

OPC, and p is the particle density (mg m−3) which we assumed was equal to 1 mg mm−3

(Suthers et al., 2006; Fortune et al., 2020). Biomass profiles were computed by dividing

the sum of the mass of particles in each depth bin by the volume filtered. OPC casts that

did not traverse at least 85% of the water column were excluded from subsequent analyses.
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All processing was conducted using the opcr package in R (Johnson, 2021).

5.3.4 Logistic regression

Several physical and biological variables were derived for each station (Table 5.2). Bathy-

metric depth, derived from the ETOPO1 dataset (Amante and Eakins, 2009), was selected

as right whales and/or C. finmarchicus have been associated with deep basins in the Bay

of Fundy (Murison and Gaskin, 1989; Michaud and Taggart, 2011) and Roseway Basin

(Baumgartner et al., 2003b; Davies et al., 2013). The standard deviation in the bathymetric

depth within a 5 km radius of each station was used a proxy for bathymetric slope, which

has been found to play a role in forming Calanus aggregations in Roseway Basin (Davies

et al. 2013). The water density at the surface and bottom were chosen to characterize

associations with water masses, specifically the Gaspé Current at the surface or the warm,

saline Atlantic water at depth. Surface and bottom mixed layer thicknesses were included

to evaluate the influence of the vertical structure of the water column. Biological metrics

from both the net and OPC were used to resolve several aspects of Calanus availability.

The 1 - 2.5 mm ESD size class in 5-m depth bins were used for OPC biomass measure-

ments, as this size class best represented Calanus abundance (Appendix C). Stations from

all years and months were combined to increase sample size. Separate logistic regressions

were fit with each habitat variable as the independent variable and the series of whale

presence/absence scores as the dependent variable to characterize the relationship between

each habitat variable and the probability of whale presence.

All analyses were conducted in R using the oce, shiny (Chang et al., 2020), and tidyverse

(Wickham et al., 2019) packages unless otherwise noted. Visualizations were created using

the ggplot2 (Wickham, 2016), ggspatial (Dunnington, 2021), and patchwork (Pedersen,

2020) packages.

5.4 Results

5.4.1 Net

Depth-integrated zooplankton abundances derived from net sampling were highly variable.

The samples tended to be numerically dominated by small copepods. Small calanoid

copepods (e.g., Psuedocalanus spp., Centropages spp.; Table 5.1) were the most abundant

known right whale prey. Median abundance of small calanoid copepods at whale present
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stations was 374 ind m−3 (Q1-Q3: 57-1079 ind m−3), which was 43% greater than the

median abundance at whale absent stations (261 ind m−3; Q1-Q3: 66-710 ind m−3).

Late-stage C. finmarchicus abundances were 78 ind m−3 (Q1-Q3: 43-208 ind m−3) and

75 ind m−3 (Q1-Q3: 41-126 ind m−3) at whale present and absent stations, respectively.

The abundances of C. hyperboreus were of a similar magnitude, but median abundance

at whale present stations (68 ind m−3; Q1-Q3: 30-101 ind m−3) exceeded abundance at

whale absent stations (24 ind m−3; Q1-Q3: 10-51 ind m−3). C. glacialis were relatively

rare, with abundances typically less than 10 ind m−3 (Figure 5.3a). Median biomass (total

wet weight) was 0.47 g m−3 (Q1-Q3: 0.22 - 0.81 g m−3) at whale present stations, which

was nearly double the biomass at whale absent stations (0.23 g m−3; Q1-Q3: 0.14-0.35 g

m−3; Figure 5.3b).

Figure 5.3: Panel a) shows the abundance of zooplankton group in the presence (red
bars; n = 20) and absence (grey bars; n = 27) of right whales. Definitions of each of these
zooplankton groups are provided in Table 1. Panel b) shows the biomass (total wet weight)
of net contents (note that biomass was not available for one whale present station, so n =
19).
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Small calanoid copepods (e.g., Psuedocalanus spp., Centropages spp.) comprised the

greatest proportion of calanoid copepod abundance at all stations, followed by C. fin-

marchicus, C. hyperboreus, and C. glacialis. The proportions of each of these groups

were indistinguishable between whale present and absent stations (Figure 5.4a). Conver-

sion from abundance to biomass using individual-specific dry weights revealed that C.

hyperboreus typically comprised the majority of calanoid biomass. The relative biomass

contribution of C. hyperboreus was slightly (∼10%) greater and substantially less variable

at whale present stations than whale absent stations (Figure 5.4b). Biomass contributions

by small copepods and C. glacialis were low (≤ 5%). The contribution from C. finmarchi-

cus was typically 15 - 30% at whale present stations compared to 15 - 50% at whale absent

stations.

5.4.2 CTD and Optical Plankton Counter

Averaged OPC profiles revealed peaks in particle abundance near the surface (5 - 15m)

and near the bottom (85 - 100m) in whale present stations (Figure 5.5a). Conversion

to biomass and review of the size-frequency distribution of particles indicated that the

near-surface peak was lower in biomass (Figure 5.5b) and driven by small (<1.5 ESD)

particles (Figure 5.5c). In contrast, larger particles (>1.5 ESD) were much more abundant

in the near-bottom peak (Figure 5.5c), which contributed to the relatively large biomass

below 80m at whale present stations (Figure 5.5b). Comparison between the net and OPC

revealed that the abundances of late-stage C. finmarchicus , C. hyperboreus, and Calanus

were best represented by the 1 - 2, 1.5 - 3 and 1 - 3 mm ESD size classes, respectively

(Appendix C). The CTD data revealed a three-layer system characterized by a variable

and relatively warm, fresh surface layer, cold intermediate layer, and a stable warm, saline

layer below ∼60 m. The highest OPC-derived particle biomass was associated with the

deep layer (Figure 5.6).

5.4.3 Logistic regression

Depth and bottom density were significantly and positively associated with whale presence

(Table 5.2). They were also highly correlated (Figure C.5). Bottom roughness was also

significantly and positively associated with whale presence. Bottom mixed layer thickness

was positively associated with right whales, such that whale presence was more likely

with increasing thickness of the bottom mixed layer. Right whale presence was positively
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Figure 5.4: Proportion of (a) abundance and (b) biomass of calanoid copepods collected
from ring net samples in the presence (red; n = 20) and absence (grey; n = 27) of right
whales. Only late-stage (>C3) were considered for Calanus spp. Biomass (total dry
weight) was estimated from abundance using individual dry weight conversions (13.3 µg
ind−1 for small copepods; 297 µg ind−1 for C. finmarchicus and C. glacialis; 1725 µg
ind−1 for C. hyperboreus). See Table 5.2 for a definition of small copepods.
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Figure 5.5: The median (solid line) and interquartile range (shaded region) of OPC-derived
particle abundances from stations where whales were present (red; n = 23) or absent (grey;
n = 20). Panel a) shows the vertical distribution of particles in the 0.8 - 3 mm Equivalent
Spherical Diameter (ESD) size range and 5-m depth bins. Panel b) shows the estimated
biomass of particles in Panel a). Panel c) shows the size distribution of particles in 20-meter
depth strata and 0.2-mm ESD size bins.
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Figure 5.6: OPC-derived particle abundances in stations with whales present (red; n = 23)
or absent (black; n = 20) in temperature-salinity space. The vertical and horizontal bars
represent interquartile range of temperature and salinity values, respectively, and intersect
at the median. The sizes of the filled circles correspond to the median particle biomass
in 5-m depth bins (from Figure 5.5). Grey contour lines indicate density (kg m−3 - 1000)
isopycnals. Panel a) shows depths from 0-100 m while panel b) provides a detailed view
of depths >40 m. The plot area of panel b) is indicated with a dashed line on panel a).
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associated with both the wet weight of the net tow as well as the maximum OPC biomass

in the bottom 15 m. Although the regression coefficient was positive when examining right

whale presence among the abundance of C. hyperboreus and the maximum OPC biomass,

there was only modest evidence of an actual association (p = 0.078 for C. hyperboreus, p

= 0.081 for OPC max; Table 5.2). The positive associations among whale presence and

depth, bottom roughness, bottom mixed layer width, and the maximum OPC biomass in

the bottom 15 m were significant regardless of the definition of whale presence. In contrast,

associations among whale presence and bottom density, surface mixed layer thickness, C.

hyperboreus abundance, net biomass, and maximum OPC biomass were more sensitive to

the definition of whale presence (Appendix C).

5.5 Discussion

Our data suggest that right whales in the southern Gulf of St Lawrence in summer (July

- August) are associated with a deep (80 - 100m), abundant (> ∼500 ind m−3) layer

of large zooplankton, the biomass of which is likely dominated by late-stage (primarily

C4) C. hyperboreus. These are the first observations of right whales apparently targeting

late-stage C. hyperboreus, which confirms what previous studies have assumed based

on knowledge of right whale foraging ecology and zooplankton climatological sampling

and/or simulations (Brennan et al., 2019, 2021; Plourde et al., 2019; Sorochan et al., 2019;

Gavrilchuk et al., 2021). This clearly distinguishes the southern GSL from previously

studied right whale feeding habitats on the Scotian Shelf (Roseway Basin; Davies et al.,

2014; Baumgartner et al., 2003b), Bay of Fundy (Murison and Gaskin, 1989; Baumgartner

et al., 2003a,b; Michaud and Taggart, 2011), and Great South Channel (Beardsley et al.,

1996) in which stage C5 C. finmarchicus was the focal prey, as well as Cape Cod Bay where

whales tend to feed on smaller calanoid copepods in late winter (Mayo and Marx, 1989).

Though the opportunistic nature of our observations prevents more rigorous statistical

analyses, our results provide insights into the biophysical mechanisms responsible for

aggregating right whale prey in this habitat and spark numerous questions to be explored

in more detail in the future.

There are several differences between C. hyperboreus and C. finmarchicus that have

important implications for right whale foraging. Though their energy densities are similar

(Davies et al., 2012), a single adult C. hyperboreus is up to six times larger (by mass) than

75



Table 5.2: Results of single-variable logistic regressions of right whale occurrence and
a given habitat variable. Sample size (n) varied as not all variables were available at all
stations. The coefficient indicates the direction and magnitude of the association, while p
provides the p-value of a drop-in-deviance test comparing the full and null models. The ∗
and grey highlighting indicates significance at α = 0.05.
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an adult C. finmarchicus. For this reason, it is misleading to directly compare abundances

of these taxa, or, for example, Calanus spp. abundances among the southern GSL and other

right whale habitats. Using abundance to define feeding thresholds was appropriate and

common practice in habitats strongly dominated by C. finmarchicus , but in habitats like the

southern GSL with a more mixed assemblage of Calanus spp. it is preferable to conduct

comparisons using biomass, or, ideally, energy content. To illustrate this concept, we

provide a simple comparison between samples collected near right whales in the southern

GSL (this study) and in the Bay of Fundy (BOF) in 1999-2001 (Baumgartner et al., 2003b,

Figure 5.7). Calanus abundances in the BOF are nearly an order of magnitude greater than

those in the GSL and driven almost entirely by C. finmarchicus while the GSL abundance

is almost equally split between C. finmarchicus and C. hyperboreus. Upon converting to

biomass, the low overall abundance in the GSL is heavily compensated by the larger size

of C. hyperboreus such that the total biomass estimates from each site are of the same

order of magnitude.

Another important consideration when interpreting zooplankton data from a right whale

habitat is the distinction between climatological, or baseline, abundance, such as those

determined via systematic zooplankton sampling programs, versus abundance from sam-

ples collected in proximity to right whales. The thin, dense patches of Calanus on which

right whales forage may be more likely to form when baseline zooplankton levels are

high (Pendleton et al., 2009), but this baseline is not necessarily representative of the prey

available to right whales (Baumgartner et al., 2007, 2003b). Climatological abundance

estimates, such as those developed by Sorochan et al. (2019), are extremely valuable tools

to understand long term (e.g., decadal) variability in habitat quality, but should not be

used to infer absolute energy available to right whales. For example, the median biomass

estimate of Calanus spp. in net samples we collected in the southern GSL in the absence

of right whales (∼5000 mg m−2) was five times higher than the climatological average at

the Shediac valley station (∼1000 mg m−2; Sorochan et al., 2019), while the samples we

collected in the presence of right whales (∼14000 mg m−2) was an order of magnitude

larger than the climatological average.

Brennan et al. (2019) concluded that the accumulation of Calanus in the southern GSL

occurs primarily through the transport of active stages via the Gaspé Current and their

local transition into diapause. In all study years (2017-2019), the environmental conditions,
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Figure 5.7: The abundance and estimated biomass of late-stage (C4-C6) C. finmarchicus
(red), C. hyperboreus (black), C. glacialis (blue) and sum total of all three species (Calanus
spp.; grey) collected using depth-integrated net tows near right whales in the southern Gulf
of St Lawrence (GSL) in 2017-2019 (this study; n = 20) and the Bay of Fundy (BOF; n =
20) in 1999-2001 (Baumgartner et al., 2003b).
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namely high runoff from the St. Lawrence Estuary and relatively low wind stress, favored

the coastal attachment of the GC and subsequent transport and retention of Calanus

to and within the southern GSL (Brennan et al., 2021). This suggests that the dense

layer of Calanus near the bottom that we observed is formed via GC transport and local

vertical migration, rather than by an intrusion of warm, saline water from the Laurentian

Channel. The apparent association between OPC-derived biomass and the deep water

mass is therefore likely not indicative of the source of Calanus, as has been documented in

Roseway Basin (Davies et al., 2014), though this hypothesis needs additional support from

further study.

Bottom mixed layer depth appears to play an important role in several right whale

feeding habitats, including the southern GSL, but through different mechanisms. A

positive association between the thickness of the bottom mixed layer and whale presence,

as we have documented in the southern GSL, has also been observed in the Bay of

Fundy. Baumgartner et al. (2003b) proposed that a thick bottom mixed layer promotes

the formation of a thin, dense layer of C. finmarchicus in relatively close proximity to the

surface where it is more available for predation by right whales. This appears to contrast

the dynamics in Roseway Basin, where a deeper 1026 isopycnal, in combination with tidal

currents and the basin margin, functions to concentrate C. finmarchicus (Davies et al.,

2014). This is not a perfect comparison as the two studies did not define the bottom

mixed layer in the same way and Davies et al. (2014) did not relate their results to whale

presence, but the apparent contrast between these results highlights the complexity and

habitat specificity of these aggregation mechanisms. It would seem that the dynamics in

the southern GSL are more similar to those in the Bay of Fundy, where a thick bottom

mixed layer makes Calanus more available to surface-bound right whales. If this were

the case, we would expect occasional profiles where we vertically sample through the

layer. This was not readily apparent in our dataset, perhaps owing to near-bottom sampling

limitations described in more detail below, but has been observed by others collecting

similar data in the region (K Sorochan, personal communication).

There was little evidence to support the possibility that right whales were targeting other,

non-calanoid zooplankton prey. The net data did not reveal any alternative taxa in sufficient

abundance and/or biomass to warrant consideration as a substantial prey resource. That

said, the abundances of the small calanoid copepods is substantial, at times exceeding the
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feeding threshold suggested for Cape Cod Bay (1000 individuals m−3; Mayo and Marx,

1989). It is possible that right whales supplement their foraging on large Calanus spp.

with consumption of these smaller copepods. Another possibility is that right whales are

preying upon taxa that are large and mobile enough to evade capture by our sampling

equipment. Perhaps the most likely candidate would be euphausiids, on which right whales

in other regions are known to feed (Collett, 1909; Hamner et al., 1988) and are abundant

in the GSL (e.g., McQuinn et al., 2015). Further study is required to explore these and

other potential alternative foraging strategies in greater detail.

Our study was only possible because we were able to conduct oceanographic and prey

field sampling on an opportunistic, non-interference basis with ongoing visual surveys.

This resulted in a non-systematic sampling design that was unbalanced and biased towards

times and places with known whale presence. This renders us unable to conduct robust

temporal or spatial comparisons and warrants precautionary treatment of the p-values of the

logistic regression analysis. We would consider it inappropriate to apply these statistical

relationships in a predictive capacity, especially in other regions. The use of a platform of

opportunity (i.e., pleasure or fishing vessel) also posed challenges for oceanographic data

collection, chief among which was our inability to consistently sample in close proximity

(within ∼10 m) to the sea floor. We sought to mitigate this limitation by only including

profiles that traversed at least 85% of the water column, but in most cases the very bottom

5-10% of the water column (typically ∼2 - 10 m) remained unsampled. As a consequence,

we are likely systematically underestimating the abundance of the deep zooplankton layer

that right whales are likely feeding upon. Right whales regularly dive to the sea floor across

habitats (Baumgartner et al., 2017), and in some habitats are commonly observed with

mud-covered heads (Hamilton and Kraus, 2019). This under sampling could be mitigated

in future studies by using nets designed to interact with the bottom (e.g., tucker trawls),

employing active acoustic sensors, and/or improving the real-time depth reporting of the

profiling systems (e.g., monitor instrument depth using conductive cable).

Our results compliment numerous recent and ongoing efforts to better characterize the

habitat and feeding ecology of right whales in the southern GSL. We provide evidence

that right whales are targeting a mixed assemblage of late-stage C. finmarchicus and

C. hyperboreus concentrated near the bottom primarily within the Shediac Valley. Our

Calanus biomass estimates are considerably higher than those derived from systematic
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sampling in the absence of right whales, which must be considered when assessing habitat

suitability and the ability of right whales to meet their energetic needs. Future efforts

ought to expand the temporal and spatial extent of sampling, ideally using a systematic

framework that is more conducive to the development of rigorous statistical associations

between oceanographic conditions and right whale presence. These efforts should employ

modified sampling methods that facilitate the enumeration of the near-bottom zooplankton

community, and perhaps include a biologging component to characterize right whale

movement within the prey field. Such studies may allow for the development of short term

(weeks to months) predictive models of right whale occurrence and distribution within the

southern GSL that could be employed to better inform dynamic management measures

and improve conservation outcomes.
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CHAPTER 6

USING OCEAN GLIDERS TO
CHARACTERIZE BALEEN WHALE
HABITAT IN THE NORTHWEST
ATLANTIC

6.1 Abstract

Characterizing baleen whale habitat is challenging, in part, because of the difficulty in

obtaining sufficient spatially and temporally concurrent in situ observations of the whales

and local oceanographic conditions. We collected a multi-year series of concurrent acoustic

whale detections and high-resolution oceanographic measurements from Slocum ocean

gliders to evaluate how baleen whales associate with and partition their habitat. The focal

habitat was Roseway Basin, a relatively small (30x60 km), shallow (<180 m) basin located

∼40 km seaward of SW Nova Scotia, Canada. Data were collected from 13 fall (Aug -

Nov) glider surveys of the Basin over an eight-year period (2014 - 2021). Gliders were

equipped to collect full-depth profiles of salinity and temperature as well as audio to detect

and classify whale sounds in near real-time. Analysis of the whale detections revealed

spatial, diel, and within-season patterns in detection rates that varied by species. Whale

occurrence and a suite of oceanographic variables were computed in 20-km grid cells in

each month and year of the study (n = 267). Descriptive and statistical (logistic regression)

analyses were used to explore potential associations between the occurrence of each species

and depth, topographic relief, water column stratification, current speed, and bottom mixed

layer width and density. Results suggested strong, positive associations among fin, sei,
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and right whale occurrence and depth. They also provided evidence that right whale

occurrence in Aug-Sep was associated with well-stratified water columns overlying thick,

dense bottom mixed layers, consistent with conditions previously demonstrated to have

a role in aggregating their copepod prey at depth in shelf basins. Though exploratory,

our results demonstrate the potential use of profiling gliders for making inferences about

baleen whale habitats.

6.2 Introduction

Baleen whales filter feed on dense, ephemeral patches of low trophic level prey (Goldbogen

et al., 2017). Their survival depends on reliably finding and effectively exploiting these

aggregations, the dynamics of which are governed by a variety of cryptic biophysical

processes (Durham and Stocker, 2012). Characterizing the associations between baleen

whales and their ocean environment can reveal insights into their ecology, improve our

understanding of the physical proxies of zooplankton availability, and ultimately inform

whale risk mitigation (Baumgartner et al., 2017). The latter is particularly salient given

the conservation status of many large baleen whale populations, coupled with intensifying

risks from human activities and climate change.

Quantifying these ecological associations is challenging because of the difficulty in

obtaining sufficient spatially and temporally concurrent observations of the whales and

oceanographic conditions. Typical correlative habitat models rely on environmental

covariates collected at different time/space scales, often restricted to the ocean surface, that

may not be representative of the oceanographic process responsible for prey aggregation

(Redfern et al., 2006). A common example is the combination of remote-sensed dynamic

variables (e.g., sea surface temperature) with results from sightings surveys. This is often

because fine-scale habitat sampling is too resource-intensive to conduct over time and

space scales required to develop rigorous statistical relationships. While these approaches

can generate relatively accurate predictions, they are likely unable to resolve many of the

processes that whales, and their prey, may be responding to (Palacios et al., 2013).

Autonomous platforms have great potential for addressing this knowledge gap, as

they are becoming more commonly used in oceanographic research and can often be

configured to monitor both whale occurrence and oceanographic habitat persistently over

large temporal and/or spatial scales. Profiling ocean gliders (hereafter ‘gliders’) are
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especially desirable autonomous platforms for this application, as they are acoustically

quiet and collect high resolution observations throughout the full water column. Passive

acoustic monitoring (PAM) from gliders has been employed to monitor for a wide range of

marine mammal species (Baumgartner et al., 2014; Kusel et al., 2017; Cauchy et al., 2020;

Fregosi et al., 2020; Verfuss et al., 2019; Baumgartner and Fratantoni, 2008; Moore et al.,

2007). Several systems are capable of transmitting survey results in near real-time (within

a few hours) while the glider is still at sea (Kowarski et al., 2020; Klinck et al., 2012;

Baumgartner et al., 2013), facilitating the use of these platforms for dynamic planning of

research and management activities. One such system, the DMON/LFDCS, is commonly

deployed on Slocum gliders (Teledyne Webb Research; Baumgartner et al., 2013, 2020)

and moored buoys (Baumgartner et al., 2019) to monitor for baleen whales, especially the

endangered North Atlantic right whale (Eubalaena glacialis; hereafter ‘right whale’). Since

2014, the DMON/LFDCS has been deployed on over 75 glider missions, amassing nearly

4000 days at sea and over 500 days with right whale detections (robots4whales.whoi.edu).

These detections are relayed to managers in both the US and Canada where they are used

to inform risk mitigation measures (Chapter 4; Johnson et al., 2021).

To date, near real-time monitoring of right whales has been the primary motivation

for many of these deployments. While achieving this, gliders are also monitoring for the

presence of other species as well as collecting large quantities of hydrographic observations.

These oceanographic data can provide useful ecological context for whale detections

(Aniceto et al., 2020; Burnham et al., 2021). The primary objective of this work is to

conduct an exploratory analysis using the concurrently collected environmental and whale

occurrence data from glider deployments to evaluate how baleen whale species associate

with oceanographic habitat.

6.3 Methods

6.3.1 Site description

The focal habitat was Roseway Basin, a relatively small (30 x 60 km), shallow (<180 m)

basin on the Scotian Shelf located ∼40 km seaward of SW Nova Scotia, Canada (Figure

6.1). Variation in the hydrography is dominated by seasonal warming and cooling as well

as inputs from the Nova Scotia Current (NSC) and Warm Slope Water (WSW) intrusions.

The NSC, a buoyancy-driven coastal current, delivers relatively cool, fresh water from
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the Gulf of St Lawrence predominately to the upper layer (30-50 m) of the water column.

Intrusions of WSW contribute to relatively warm, saline water below 100m (Dever et al.,

2016). Studies of right whale occurrence (Brown et al., 2007) habitat (Baumgartner et al.,

2003b) and vessel strike risk (Vanderlaan et al., 2008; Vanderlaan and Taggart, 2009)

informed the implementation of an Area to Be Avoided (ATBA) by the International

Maritime Organization (IMO) in the Basin, followed shortly by the designation of the same

region as a right whale critical habitat area (DFO, 2010). Fin (Balaenoptera physalus),

humpback (Megaptera novaeangliea), sei (Balaenoptera borealis), and blue (Balaenoptera

musculus) whales have also been sighted and acoustically detected in Roseway Basin

(Davis et al., 2020; Johnson et al., 2021), though their habitat associations have not been

studied in detail.

Figure 6.1: The Roseway Basin study site off Nova Scotia, Canada. Color indicates depth
contours (in meters) derived from the GEBCO bathymetric dataset. The dashed line shows
the Roseway Basin ATBA. The solid black lines show the grid of 20 km diameter hexagons
(n = 20) used in the habitat analysis.
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6.3.2 Data collection

Data were collected from 13 Slocum glider surveys of Roseway Basin in the late summer

and early fall (August - November) over an eight-year period (2014 - 2021). Our study area

encompassed a roughly 100 x 100 km region (42.7◦ to 43.6◦ latitude and -65.8◦ to -64.6◦

longitude) approximately centered on the ATBA. Slocum gliders are small (∼1.5 meter

long) battery-powered, buoyancy-driven autonomous vehicles that profile the water column

at slow vertical (0.1-0.2 m s−1) and horizontal (15-20 km d−1) velocities for missions

lasting weeks to months in duration. They surface at regular intervals (typically every 2

- 6 h) to determine their position, transmit data and receive new mission commands via

satellite. The specific configuration of each glider varied by mission, but at minimum

all gliders were equipped with a (either pumped or unpumped) calibrated Conductivity-

Temperature-Depth (CTD) sensor to measure temperature and salinity profiles, and a PAM

system to detect and classify baleen whale vocalizations. The gliders were programmed

to conduct cross-basin transits of the region approximately perpendicular to the axis of

the SE basin margin, but strong tidal currents introduced considerable tortuosity in the

tracklines. Logistical constraints caused interannual variability in platform availability and

temporal survey coverage. A CTD malfunction rendered the environmental data on the

2017 survey unusable, so this deployment was not included in the habitat analyses (Figure

6.2; Table 6.1).

6.3.3 Data processing
6.3.3.1 Whale detection data

Each glider was equipped with a PAM system comprised of the low-power digital acoustic

monitoring instrument (DMON; Johnson and Hurst, 2007) and an on-board detection

algorithm (low-frequency detection and classification system; LFDCS; Baumgartner and

Mussoline, 2011). The DMON recorded audio at 2 kHz continuously with a hydrophone

sensitivity of -203 dB re 1 V µPa−1, gain of 33.2 dB, zero-to-peak voltage of 1.5V, and

flat frequency response between approximately 50 and 7500 Hz. The LFDCS algorithm

running on board the DMON facilitated near real-time baleen whale detection and classifi-

cation. In brief, the LFDCS produces spectrograms of the audio data, removes spurious

broadband noise and continuous tonal noise and then uses a contour-following algorithm to

create pitch tracks of tonal sounds from the spectrogram. Each pitch track is classified by

comparing attributes of the pitch track to a library of call types using quadratic discriminate
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Figure 6.2: (a) Spatial and (b) temporal distributions of effort from Slocum glider surveys
(n = 13) of Roseway Basin from 2014 through 2021. The colors distinguish the first (red)
and second (black) surveys in a given year. The points in panel (a) show the average
glider position within a ∼15 min acoustic analysis (tally) period. The bathymetric scale
is consistent with that of Figure 6.1. Environmental data were not available for the 2017
mission, so it was not included in the habitat analysis.
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Table 6.1: Summary of Slocum glider missions (n = 13) in Roseway Basin from 2014
through 2021. Days indicates the number of days in which both whale detection and
environmental data were collected. Dist, Profiles, and Tally provide the total along-track
survey distance (km), total number of glider profiles, and the total number of tally periods
analyzed for whale detections, respectively. The species columns show the number of days
in which each species was detected.
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function analysis. When the glider surfaces, a subset (8 kB h−1) of the pitch track and

classification data are transmitted to a land station via Iridium satellite where they are

divided into ∼15-minute analysis (tally) periods that are manually reviewed by a trained

analyst for the acoustic presence of several species, including right, fin, sei, and humpback

whales. Over daily timescales the system has a false detection rate of 0% and a missed

detection rate of 17 to 24% (Baumgartner et al., 2020). See Baumgartner and Mussoline

(2011) for more information on the LFDCS and Baumgartner et al. (2013, 2020) for

system performance from Slocum gliders.

This analysis protocol was used to determine the acoustic occurrence of four baleen

whale species (fin, humpback, right, and sei whales) in near real-time for all glider

deployments in this study. For each species, tally periods marked as “present” or “absent”

were given a numeric score of 1 or 0, respectively. Tally periods marked “possible” were

considered not detected and given a score of 0. The number of tally periods, cumulative

duration of tally periods, number of tally periods with detections of each species, proportion

of detected tally periods of each species, and species occurrence scores (0 = not detected,

1 = detected) were computed for each survey day and within each 20-km grid cell for the

habitat analysis (see below).

6.3.3.2 Glider data

Glider science and engineering data from each deployment were extracted from the raw

binary format and merged using a common timestamp. The glider CTDs were typically

sampled at either 0.5 or 1 Hz. Spurious (i.e., non-physical) values for time, position,

temperature, salinity, and pressure were removed. Ascending profiles were isolated based

on a dive/climb state variable recorded by the glider. Profiles with fewer than 30 points, a

maximum depth of less than 10 m, a minimum depth of greater than 15 m, depth intervals

exceeding 5 m, or those that traversed less than 75% of the full water column, were

excluded from subsequent analyses. Temperature and salinity profiles were decimated

into 1-m depth bins and smoothed using a centered 9-point moving average. The potential

density anomaly (kg m−3 - 1000; hereafter ‘density’) was computed for each smoothed

profile. The profiles were then visually reviewed to confirm successful profile isolation

and quality control. Unless otherwise noted, all oceanographic quantities were computed

using the oce package (Kelley and Richards, 2020) in R (R Core Team, 2020).
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6.3.3.3 Habitat data

A goal of this work was to use glider-derived environmental data and acoustic detections

to make inferences about whale habitat. These data are collected over very different

scales: a glider profile is usually collected over a few hundred meters (horizontally), while

baleen whale calls in a continental shelf environment are commonly detected at scales of

kilometers to tens of kilometers (Chapter 2). Thus, the first step towards characterizing

whale-habitat associations was to define an appropriate spatial and temporal scale over

which to compare the environmental and detection data. We imposed a regular hexagonal

grid over the study area and aggregated whale detection and habitat data within each cell.

A cell diameter of 20 km was selected based on average detection ranges of right whales

(Chapter 2). This grid resolution also balanced statistical constraints, where preliminary

analysis suggested models constructed using smaller cell sizes showed signs of residual

autocorrelation for all species, while the use of larger cell sizes reduced sample size, spatial

resolution and statistical power. In an effort to reduce potential bias arising from uneven

sampling, we only included cells in the analysis that had been surveyed in at least one year

in both the early (August - September) and late (October - November) months of the study

(n = 20).

Several habitat variables were computed within each grid cell (Table 6.2). The average

water depth (depth) and standard deviation of the water depth (depth sd), an index of

topographic relief, were calculated within each grid cell using GEBCO digital bathymetry

at 30 arcsecond resolution (accessed from https://download.gebco.net/). Both

water depth and topographic relief were included as environmental variables given their

many established links to baleen whale distribution (Redfern et al., 2006). Dynamic

variables were computed for each profile, and the median value for all profiles within a

given month and year were assigned to each cell. Surface stratification (surf strat) was

defined as the difference in average density between the 5-10m and 45-50m depth strata.

Stratification strength was included for its potential role in zooplankton aggregation and

previous associations with right whales (Woodley and Gaskin, 1996; Baumgartner and

Mate, 2005). It is also highly correlated with sea surface temperature, which has been

commonly related to the distribution of many cetacean species (Redfern et al., 2006), as

well as sea surface temperature gradient, which Baumgartner et al. (2003b) linked with

right whale spatial distribution. The bottom mixed layer width (bml width) was defined
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as the height from the maximum profile depth to a density change of -0.05 kg m−3, and

the bottom mixed layer density (bml density) was the average density within this depth

stratum. We included bottom mixed layer width based on a previously documented positive

association with right whale presence in Roseway, where a thicker bottom mixed layer

brought dense patches of Calanus finmarchicus found at the top of the bottom mixed layer

closer to the surface where they were more easily exploited by right whales (Baumgartner

et al., 2003b). Results of Chapter 5 suggest a similar mechanism in the GSL. The density

of the bottom mixed layer was included to resolve hydrographic variability from flushing

events or slope water intrusions. Using CTD and echosounder data from one of the Slocum

glider surveys presented here (Survey 3; Table 6.1), Ruckdeschel et al. (2020) observed

a significant fresh water flushing event throughout the basin in October 2015 which was

associated with a significant reduction in zooplankton backscatter. The depth-integrated

horizontal current velocity (current v) was computed for each glider segment (interval

between surfacings) on board the glider during the mission based on the offset between

the measured glider position and the glider position predicted using dead reckoning

(see Appendix of Dever et al., 2016). It was considered as an environmental variable

owing to previous associations between tidal current magnitude and the concentration

of zooplankton along the SE margins of the basin (Davies et al., 2013), and because of

its apparent spatial variability as evidenced by the increasing tortuosity of glider tracks

towards the western edge of the study area (Figure 6.2).

Table 6.2: Description of environmental variables used in the habitat analysis
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6.3.4 Statistical analyses
6.3.4.1 Diel detection rates

Diel patterns of detection rates of each species were investigated based on previously

described linkages with baleen whale foraging behavior (Baumgartner and Fratantoni,

2008). The sunAngle() function from the oce package was used to determine the solar

altitude (in degrees above the horizon) and azimuth (in degrees eastward of north) at the

time and position of each tally period from the full dataset. These fields were then used to

sort detections into four light regimes: dawn (-12◦ < altitude < 0◦ and azimuth < 180◦),

day (altitude > 0◦), dusk (-12◦ < altitude < 0◦ and azimuth > 180◦), and night (altitude

< -12◦). The detection rate (number of tally periods with detections / total tally periods)

was computed within each light regime on every day for which there were detections. To

facilitate comparison among days, the detection rates for each light regime and day were

adjusted by subtracting the daily average detection rate. The results were not normally

distributed so Kruskal-Wallis tests followed by Dunn’s multiple comparisons tests (with

Bonferroni adjustment) were used to compare detection rates among light regimes for

each species. These tests were implemented using the dunn.test() function in the dunn.test

package (Dinno, 2017) in R.

6.3.4.2 Habitat associations

The association between whale presence and each environmental variable was assessed

using logistic regression. Whale occurrence was expressed as 1 if whale acoustic presence

was manually validated in at least one tally period within a grid cell unit, and 0 if tally

periods were reviewed and no presence was detected. The general form of the logistic

regression is as follows:

logit(π) = β0 +

p∑
i=1

βiVi (6.1)

where the logit of the probability of species occurrence, π, is modeled as a linear function

of the predictor variables, Vi, and β0 is the intercept, βi are the model coefficients, and

p is the number of predictor variables. There were a number of practical considerations

that were also weighed during model construction. The first was the issue of overfitting,

wherein an overly complex model (i.e., one that contains too many parameters) artificially

conforms to the underlying data and produces inaccurate results. As a general rule, at least
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10 observations of both presence and absence are necessary for each model term (Hosmer

et al., 2013). Right and humpback whales were less commonly detected (61 and 54 survey

units), which restricted model design for these species to a maximum of five or six terms.

A second consideration was the potential for correlation among independent variables, as

multicollinearity can also generate unreliable model estimates (Hosmer et al., 2013).

With these considerations in mind, several sets of models were constructed to evaluate

the effect of a single variable on whale occurrence while attempting to control for other

sources of variability. The simplest model set contained a single independent variable and

a term, effort, containing the number of tally periods per grid cell to correct for variation in

acoustic monitoring effort. It was structured as follows:

logit(π) = β0 + β1(effort) + β2(V ) (6.2)

Several of the environmental variables were correlated with depth (Appendix D.5), which

can confound the results. To account for the influence of depth, a second set of models

including depth was constructed as follows:

logit(π) = β0 + β1(effort) + β2(V ) + β3(depth) (6.3)

Unconstrained temporal variation can also confound model results. To account for the

influence of time on detection rates, a categorical variable was added to represent each

month. These are included in the model as three dummy variables (Sep, Oct, Nov), each

taking a value of 0 or 1 to represent a given month (e.g., August is represented as: Sep = 0,

Oct = 0, Nov = 0). The model took the following form:

logit(π) = β0 + β1(effort) + β2(V ) + β3(Sep) + β4(Oct) + β5(Nov) (6.4)

Which was expanded as follows with the addition of a term for depth:

logit(π) = β0+β1(effort)+β2(V )+β3(Sep)+β4(Oct)+β5(Nov)+β6(depth) (6.5)
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The previous two models have 6 and 7 terms, respectively, which raises concern of overfit-

ting, particularly for the less commonly detected species (right whales and humpbacks).

To reduce the number of model terms while still resolving some of the temporal variability,

we developed another set of models where the month terms were replaced with a single

categorical variable, late, representing each half of the study period (late = 0 for August-

September, and late = 1 for October-November). These terms allow comparison between

the first and second halves of the study period. A set of models were formed with this new

term:

logit(π) = β0 + β1(effort) + β2(V ) + β3(late) (6.6)

which were further expanded to include depth as follows:

logit(π) = β0 + β1(effort) + β2(V ) + β3(late) + β4(depth) (6.7)

All the terms in the previous formulations are additive. This allows the strength (model

intercept) of an association to change, but the direction of the association (model slope)

remains constant. A set of models was developed to assess whether or not the direction of

a habitat association changed between the first and second half of the study period:

logit(π) = β0 + β1(effort) + β2(V ) + β3(late) + β4(V xlate) (6.8)

where the categorical variable for time, late, was expressed as an interaction with the

variable of interest, V . This set was expanded once again with a depth term as follows:

logit(π) = β0 + β1(effort) + β2(V ) + β3(late) + β4(V xlate) + β5(depth) (6.9)

Monthly anomalies of environmental variables in each cell (value in each cell was sub-

tracted from the average value of all cells in that month across all years) were computed

prior to model fitting. This aided in model fitting and coefficient interpretability, though

the analysis was repeated without centering and the same models emerged as significant

(not shown). Models including depth terms (Equations 6.3, 6.5, 6.7, 6.9) produced similar

results when fitted with the results of a principal components analysis of the variable of
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interest and depth, suggesting their results are robust to multicollinearity (not shown). All

models only consider temporal trends within the August - November period. We made no

attempt to explicitly quantify or account for interannual variability due to the heterogeneity

in annual sampling effort and relatively short timeseries; as such, we pooled data by month

across years.

These models were implemented using the glm() function in the stats package in R.

Model assumptions (independence of residuals, linearity of predictor variables, absence of

multicollinearity, and lack of strong outliers) were assessed graphically, supplemented with

computation of the variance inflation factor (using the vif() function in the car package

(Fox and Weisberg, 2019) in R) to check for multicollinearity and Box-Pierce tests (using

the Box.test() function in the stats package in R) to identify autocorrelation in the residuals

at lag 1. Preliminary analyses suggested a potentially quadratic relationship between

whale occurrence and current v, so current v was included in all models as a second

order polynomial (i.e., expressed as current v + current v2). These analyses also revealed

significant autocorrelation in the residuals of models with fin whales. We successfully

mitigated autocorrelation via subsampling, using only every third data point for fin whale

models. This reduced sample size (number of absences = 31) substantially increased the

risk of overfitting for models with more than 3 terms (i.e., model sets 2-8). The significance

of each model was evaluated using drop-in-deviance (likelihood ratio) tests between the

full model and a reduced version lacking the variable of interest (i.e., the term β(V )). The

significance of individual model terms was assessed using Wald’s tests.

Unless indicated specifically above, all analyses were conducted in R using various

utility functions from tidyverse (Wickham et al., 2019), lubridate (Grolemund and Wickham,

2011), and sf (Pebesma, 2018), while visualizations were implemented using ggplot2

(Wickham, 2016), ggspatial (Dunnington, 2021), and patchwork (Pedersen, 2020) packages.

6.4 Results

6.4.1 Whale detections

The 13 glider surveys amassed 530 days at sea, travelled over 14,000 km, and collected

over 14,000 full depth profiles. They also transmitted 26,550 tally periods containing

242 days of pitch track data. Near real-time analysis of these pitch track data determined

presence of fin, humpback, right and sei whales on 389, 83, 71, and 133 days, respectively
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(Table 6.1).

Figure 6.3: Timeseries of the daily detection rates of each species (rows) pooled across all
years, computed as the number of tally periods with detections divided by the total number
of tally periods for each calendar date.

6.4.1.1 Fin whales

On average, fin whales were detected on nearly every calendar day and consistently present

in > 20% of tally periods per day after mid-October (Figure 6.3). In some years it was

not uncommon for fin whales to be detected nearly continuously (>90% daily detection

rate) over multiple days (Figure D.1). Detections were spatially concentrated in the central

and southern portion of the study area in August, then shifted eastward and intensified

for the remainder of the period. Fin whale detections were consistently absent from the

northwest coastal portion of the study area, and less commonly observed along the western
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Figure 6.4: Spatial detection rates (computed as the number of detected tally periods
divided by the total number of tally periods per species, grid cell, and month across years)
of each species (rows) and survey month (columns) in 20 km (diameter) hexagonal grid
cells. The hexagonal cells outlined in black are used for the habitat analysis. The dashed
polygon denotes the Roseway Basin ATBA. Grey cells indicate areas with survey effort
but no detections.
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Figure 6.5: The mean (+/- standard error) adjusted detection rate (proportion of detected
tally periods per hour) for each species (rows) by the (a) hour of day (local time) or (b)
light regime from all glider surveys.
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and southern margins of the study area later in the period (Figure 6.4). A Kruskal-Wallis

rank sum test provided inconclusive evidence of variation in detection rates of fin whales

among light regimes (KW = 7, p = 0.06, Figure 6.5).

6.4.1.2 Humpback whales

Humpback whales were only detected during two tally periods in late August and spo-

radically in September. Daily detection rates increased and became more consistent in

mid-October but remained relatively low (<10%). The spatial extent of detections also

increased substantially in October and November relative to the earlier months, with most

detections occurring within the ATBA. Humpback detection rates varied by light regime

(KW = 60.5, p < 0.001), with significantly higher rates at night relative to dawn, day, or

dusk (p < 0.001; Dunn’s multiple comparison test; Figure 6.5).

6.4.1.3 Right whales

Daily detection rates of right whales were highest (∼10%) in August (Figure 6.3), driven

primarily by a single 2015 deployment (Figure D.3). Right whales were detected spo-

radically throughout the season, with lowest occurrence in October. The minimum and

maximum monthly spatial extent of detections occurred in October and September, respec-

tively. Though the spatial extent of detections varied from month to month, occurrence was

most consistent along the SE margin of the deepest portion of the basin (eastern margin of

the ATBA; Figure 6.4). There appears to be substantial interannual variability in detection

rates, though this is difficult to characterize given temporal and spatial variation in survey

effort (Figure D.4). Right whale detection rates varied by light regime (KW = 23, p <

0.001). Detection rates during dawn hours were significantly lower than those during day

or night. Detection rates at dusk were variable, but significantly higher than those during

the day (p <= 0.001; Dunn’s multiple comparison test; Figure 6.5).

6.4.1.4 Sei whales

Sei whales were infrequently detected in August (only 4 days in 2015; Figure D.4). Daily

detection rates tended to increase from September through November (Figure 6.3). Similar

to fin whales, the distribution of sei whale detections encompassed the entire study area

with the exception of the NW margin along the coast (Figure 6.4). Sei whale detections

varied by light regime (KW = 40, p < 0.001). They were highest during day, low at night,

and variable during dawn and dusk (Figure 6.5).
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6.4.2 Habitat associations
6.4.2.1 Whale occurrence in survey units

Across all years, survey effort was conducted in 30 grid cells in August, 70 in September,

70 in October, and 97 in November (total of 267; Figure 6.6). These surveys transmitted

4,478 h (187 d) of pitch track data divided into 19,578 tally periods, all of which were

analyzed in near real-time. This amounted to an average of 73 +/- 68 (mean +/- standard

deviation) tally periods and 16.7 +/- 15.8 h of pitch tracks per cell. The gliders collected

12863 profiles over the same period, with an average of 48 +/- 46 profiles per cell. Spatial

and temporal patterns in whale occurrence (presence/absence) in grid cells followed

similar patterns to detection rate (Figure 6.4). Fin whales were detected in 68.5% of cells

(183/267), humpbacks in 22.8% (61/267), right whales in 20.2%, and sei whales in 36.7%

(98/267). There appeared to be interannual variability in the occurrence of some species,

but this was difficult to assess given the heterogeneity in survey effort (Figure 6.6).

6.4.2.2 Environmental data

The median depth and depth sd of each grid cell was 114.7 (Q1-Q3: 98.7-134.9) m

and 16.4 (Q1-Q3: 10.4-19.7) m, respectively, with depth ranging from 36 - 160 m and

depth sd from 2 - 28 m. The distribution of depth and depth sd was similar across months,

suggesting consistent sampling with respect to bathymetry. The median stratification

strength was 1.4 (Q1-Q3: 1.0-2.0) kg m−3 and decreased from August to November at

an approximate rate of -0.4 kg m−3 month−1. The median bottom mixed layer width was

18.8 (Q1-Q3: 10.9-26.8) m over the full study period and was about 6 m thicker in the first

half of the period (Aug/Sep; median 21.8 m) than in the second (Oct/Nov; median 15.9 m).

The median density of the bottom mixed layer was 25.9 (Q1-Q3: 25.6-26.2) kg m−3, with

skewed distributions in October and November driven primarily by a fresh water flushing

event in 2015 (described in Ruckdeschel et al., 2020). The depth integrated current ranged

from 0.01 to 0.48 m s−1 with a median of 0.23 (Q1-Q3: 0.15-0.29) m s−1.

6.4.2.3 Descriptive analysis

Qualitative comparisons of the distribution of environmental variables in grid cells where

whales were acoustically detected to the distribution of all observations in a given month

revealed possible associations that could inform and corroborate statistical modelling. Fin,

right, and sei whales tended to occur in cells with deeper and less variable bathymetry than
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Figure 6.6: Distribution of glider survey effort and whale occurrence in each month (Aug
Nov; columns) and year (2014-2021; rows) in 20 km (diameter) hexagonal grid cells in
Roseway Basin. Colored points indicate the acoustic presence of a given whale species
within a grid cell. Cells with survey effort (white) were included in the habitat analysis,
while cells without effort (grey) were not. The extent of these grid cells within the study
area is shown in Figure 6.1. 101



average in all months (Figure 6.7). Right whales were present in cells with higher surface

stratification in each month, despite the seasonal decrease in stratification. The number

of cells with humpback detections in August was low (n = 2) but occurred in shallower

depths with lighter bottom densities than average. Right whale occurrence was apparently

associated with a thin bottom mixed layer in September and a thick bottom mixed layer in

November. The bottom mixed layer density in cells with right whale detections was well

above average in August and more variable, perhaps even below average, in November. Sei

whales were consistently detected in cells with below average bottom mixed layer density

in August and September. Occurrence appeared to be associated with slightly elevated

current speeds for each species in August, October and November, but not in September

(Figure 6.7).

6.4.2.4 Logistic regression analysis

Logistic regression analysis provided evidence of associations among environmental

variables and the occurrence of fin, right and sei whales (Tables 6.3, 6.4; Figure 6.8).

Similarity of drop-in-deviance test results among models fit using month and two-month

time intervals suggested that the coarser time resolution was successfully accounting for

the major sources of temporal variability. For sei whale models, the addition of a depth

covariate removed the significance of bml width, bml density, and current v, suggesting

that the significance of each of these terms was driven by their correlation with depth (Table

6.3). The significant model in set 8 showing an influence of bml density on humpback

occurrence is disproportionately influenced by a single detection in very light waters in

August, and as such should be treated with caution. The occurrence of fin, right and sei

whales was positively associated with depth such that the probability of detection was

higher in above-average depths (Tables 6.3, 6.4; Figure 6.8). The effect of depth was

indistinguishable between the first and second halves of the study period for right whales,

but significantly stronger in the second half of the study period for sei whales. Right

whale occurrence was consistently associated with above-average surface stratification in

both the first and second half of the study period. In contrast, their relationship to bottom

mixed layer width and density appeared to change between the first and second halves of

the survey period. Occurrence in the first half of the study period was associated with a

thinner, denser bottom mixed layer, and a thinner, fresher bottom mixed layer in the second

half of the study period. There is evidence that the association with bml density, but not
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Figure 6.7: The distribution of environmental variables from grid cells in which a given
whale species was detected (colored boxplots) compared to the median (red bar) and
distribution (grey violin plots) of values from all grid cells in each month. The violin
plots show a mirrored kernel density estimate, or essentially a smoothed histogram, of
the distribution of all cells in each month. Definitions of each environmental variable
are available in Table 6.2. For the boxplots, the lower, middle and upper horizontal lines
provide the first, second, and third quantiles, respectively. The whiskers are drawn in either
direction to a maximum of 1.5 times the interquartile range, with points outside that range
plotted individually.
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bml width, was driven by the late-season flushing event in 2015 (Table D.1). There was

limited evidence that depth sd or current v was associated with whale occurrence, though

drop-in-deviance test p-values in model sets 1-6 hinted at a potentially weak relationship

to sei whale occurrence (Table 6.3).

Table 6.3: Results (p-values) of drop-in-deviance tests of eight sets of logistic regression
models. Model sets 1-8 were constructed with Equations 6.2-6.9 in the text, respectively,
and evaluated against models of the same form but lacking the variable of interest. The
number of cells with whale presence and absence are given in N1 and N0, respectively.
Descriptive names are provided under each set to convey key differences among sets.
Significance (*) was evaluated at α = 0.05. Grey values indicate models that likely suffer
from overfitting (fewer than 10 observations of presence and absence per model term).
Additional information for significant models in are provided in Table 6.4.
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Table 6.4: Parameters of significant models identified from drop-in-deviance tests (see
Table 6.3), where Error is the standard error of the Estimate of a given Coefficient. Model
sets 1, 5, and 8 were fit using equations 6.2, 6.6, and 6.9. The p-value shows results of the
Walds test of each coefficient, with significance (*) evaluated at α = 0.05.
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Figure 6.8: Selected results of the logistic regression analysis of whale-habitat associ-
ations over the full study period (all months; black) or in the first half (early; Aug-Sep;
red) versus second half (late; Oct-Nov; blue) of the study period. Panel a shows the
relationship between depth and the probability of fin whale detection over the full study
period (corresponds to model set 1, fit with Equation 6.2). Panels b and c show the additive
effects of survey time (early or late) and depth on the probability of right and sei whale
detection, respectively. Similarly, panel d shows the additive influence of time and surface
stratification on right whale detection. Models in panels b-d were from set 5 (fit with
Equation 6.6). Panels e and f show the interactive effects of time and (e) bottom mixed
layer width or (f) bottom mixed layer depth on right whale detections (corresponds to
model set 8, fit with Equation 6.9). The solid lines show the model fit and the shaded
region indicates the 95% confidence limits. The jittered points show the raw data used to
construct the regressions. Values of environmental variables are expressed as anomalies
from the monthly average across all years. Definitions of each environmental variable are
available in Table 6.2. Model comparison results and parameters are available in Tables
6.3 and 6.4, respectively. 106



6.5 Discussion

6.5.1 Right whales

While a sharp decline in sightings rates in the last decade is suggestive of a change in the

importance of Roseway Basin to right whales, our results indicate that right whales are

sporadically present in the Basin throughout the fall. This corroborates and extends recent

analyses by Durette-Morin (2021) and Davis et al. (2017) that revealed year-round right

whale presence in the Basin. The occurrence of right whales in the late fall and early winter

and their acoustic detection in near real-time is especially notable from a conservation

perspective given the challenges (e.g., weather, visibility) of conducting regular visual

surveys at that time of year, compounded with risk of entanglement and vessel strike in the

region (Vanderlaan et al., 2008; van der Hoop et al., 2012). It further demonstrates the

utility of an autonomous platform for conducting persistent surveys in adverse conditions.

Right whales were most consistently detected along the SE margin of Roseway Basin.

This agrees with findings from Davies et al. (2014) that suggest the combined influence of

slope water intrusions, tidal advection, and bathymetric constraints function to concentrate

Calanus finmarchicus along this margin of the basin. It also aligns with the highest sighting

probability derived from vessel-based surveys of the region (Davies et al., 2014). These

findings suggest that glider-based PAM is capable of resolving spatial associations at scales

of approximately the same order of magnitude of the expected maximum detection range

(∼30 km; Chapter 2).

The increased detection of right whale calls in twilight hours reported here is consistent

with findings from Wilkinson Basin (Mussoline et al., 2012) and for periods of the year

with high vocal activity in Massachusetts Bay (Morano et al., 2012). In the central Gulf

of Maine, Bort et al. (2015) documented a bimodal diel pattern of upcalls with peaks at

both dawn and dusk. Mellinger et al. (2007) reported no diel pattern at a site located in

our study area (on the SE margin of Roseway Basin), and an increase in calling during

daylight hours at a site in Emerald Basin (approximately 150 km eastward of Roseway).

Their analysis omitted crepuscular periods (dawn and dusk) and compared between light

and dark hours. We also found no statistically significant difference between light and dark

hours (Figure 6.5).

The biological significance of diel patterns in vocal behavior is unknown for right whales.

There is evidence that changes in calling rates are linked to behavioral states, where calling
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is higher during socializing and lower during foraging (Parks et al., 2011a). In other baleen

whale species, diel patterns have been associated with foraging activity (Baumgartner and

Fratantoni, 2008, see below). The apparent spatial and temporal variation in diel patterns

is perhaps indicative of specific behaviors. Improved understanding of the mechanisms

behind diel periodicity may permit the use of broadscale PAM networks to elucidate

behavior and inform more effective management.

Comparison of the right whale detections with local hydrography from the glider

provided evidence of time-varying associations among right whale occurrence and the

bottom mixed layer, where the odds of right whale presence early in the study period

increased with a shallow, dense bottom mixed layer. The association with a dense bottom

mixed layer early in the study period is expected based on work from Davies et al. (2014)

showing evidence of a strong positive correlation between the water mass density and

Calanus finmarchicus energy density in the deep Basin. Our findings conflict with those

of Baumgartner et al. (2003b) for Roseway and the Bay of Fundy, as well as to those

from Chapter 5 for the Gulf of St Lawrence, in which there was evidence of a positive

association between whale occurrence and bottom mixed layer width (i.e., whale presence

was more likely when the bottom mixed layer was thick). A potentially confounding factor

is that the inflection depth of the glider (∼8 m above the sea floor) prevented us from

sampling as close to the sea floor as is typically achieved with CTD casts. A possible

explanation for the discrepancy is that the zooplankton layer can be either concentrated on

the interface of the bottom mixed layer, as suggested by Baumgartner et al. (2003b), or

within it, as suggested by Davies et al. (2014). If above it, a thicker bottom mixed layer

would aid in the formation of a discrete, dense layer close to the surface where it can be

readily exploited. If within it, a thicker bottom mixed layer would dilute the zooplankton

concentration. Though the dynamics of patch formation are not well-understood, the

position of the Calanus is likely a function of their physiological state (e.g., active or in

diapause), the density of the surrounding seawater (and associated impact on copepod

buoyancy), and local hydrodynamic forcing (Baumgartner and Tarrant, 2017).

Previous studies of right whale habitat in Roseway have been restricted to the summer

months. This study is the first to demonstrate changes in the strength of these associations

late into the fall. The change over time may reflect a shift in the factors affecting right

whale distribution and/or right whale calling behavior. It is difficult to assess the cause of
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this trend as the fall is an especially dynamic period, but it was notably absent in the habitat

associations of other species. It is also possible that the reason for the change is driven

primarily by behavioral factors, such as a transition from foraging into travelling states,

but this is speculation based loosely on observed seasonality in right whale distribution

patterns (Brown et al., 2007).

We also observed strong evidence that right whale presence was associated with a

positive anomaly in stratification strength, and that this relationship persisted over time as

the upper water column destabilized. Baumgartner et al. (2003b) tested for and did not find

evidence of a similar relationship to stratification strength in Roseway, but Baumgartner

and Mate (2005) observed that right whales equipped with satellite tags tended to visit

areas characterized by high surface stratification. Right whales are known to feed on

surface and near-surface layers of copepods in other habitats, such as Cape Cod Bay (Mayo

and Marx, 1989). Within Roseway, perhaps right whales are associated with times and

places of relatively high stratification and reduced vertical mixing because these conditions

are more likely to result in the formation of dense aggregations of copepods. Though

speculative, the differences in habitat associations observed here and in the early 2000’s

suggest that right whales are using this habitat differently than they have in the past, which

may be the result of a substantial decline in the availability of late-stage Calanus across

the region (Sorochan et al., 2019; Record et al., 2019).

6.5.2 Fin whales

Fin whale calling was extraordinarily prolific and detections were nearly constant within

the deep Basin, especially later in the study period. The signal we used to detect fin whale

presence, repeated sequences of the 20-Hz pulse, is considered song and suspected to

be produced solely by males as part of a reproductive display (Croll et al., 2002). It is

highly seasonal, and some evidence suggests it is not produced in association with feeding

behavior (Romagosa et al., 2021). It also has the potential to propagate long distances,

perhaps up to 100 km in the deep ocean (Stafford et al., 2007), which is approximately

the scale of our study area. The abundance of song on every deployment in this dataset

suggests that Roseway Basin plays a potentially important role in fin whale reproduction.

This is reinforced by findings from Davis et al. (2020) that show fin whales are detected

year-round in Roseway Basin. Though beyond the scope of this study, detailed analysis

of the song structure, namely the inter-pulse-interval, could identify the population of the
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singer(s), which could prove useful for population assessment and management (Delarue

et al., 2009).

The same factors that likely make fin whale song an effective reproductive display

impose significant barriers to using song to infer habitat associations, particularly over

small spatial scales. Modelling efforts were compromised by high autocorrelation and

the rarity of absences. That said, some interesting patterns emerged from our analyses.

The first is the near-complete absence of fin whale detections in the coastal shallows in

the NW of the study area. This absence is most pronounced in November where areas

without detections were only separated by ∼50 km from areas where detections were

nearly constant. The most likely explanation is that fin whales avoid shallow areas. It

is also likely that the shoaling bathymetry increases transmission loss of fin whale calls,

effectively restricting calls to deeper water (Jensen et al., 2011). Perhaps both factors

are at play, as fin whales seeking to advertise their reproductive status over a large range

would likely avoid, or at least avoid vocalizing within, areas characterized by reduced

propagation range.

6.5.3 Sei whales

The spatial and temporal patterns of sei whale detections were similar to those of fin whales.

This includes the seasonal increase in detection rate and the nearly complete absence of

detections in the NW portion of the study area near the coast. That said, sei whale calling

was much less prolific, and, though the spatial extent of the region with detections in

October / November was comparable to that of fin whales, the spatial detection rates were

much lower.

The downsweep call used to identify sei whales has been linked to both foraging

and song behavior. Baumgartner and Fratantoni (2008) documented diel patterns in

call rate in close association with the diel vertical migration of zooplankton prey. One

possible explanation the authors provide is that vocalizations were reduced at night while

whales were foraging on zooplankton near the surface and increased during the day when

the migrating layer was deep and whales engaged in social behaviors. Tremblay et al.

(2019) observed these downsweeps produced in association with other calls in a structure

consistent with that of song. Our analysis did not distinguish between potential song or

non-song. That said, our observation of the same diel pattern as described by Baumgartner

and Fratantoni (2008) provides circumstantial evidence that sei whales were engaged in
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foraging behavior.

The intermediate detection rates and reduced autocorrelation also facilitated more

detailed habitat analyses than was possible with fin whales. The results provided evidence

of a positive association with depth that strengthened in the second half of the study period.

This was consistent using time resolutions of one and two months. The cause of this

trend is difficult to determine, but could be ecological (e.g., the transition to a different

foraging strategy) as sei whales are perhaps the most general predators of the baleen whales

considered here, capable of foraging on copepods, krill, and schooling fish (Prieto et al.,

2012). The shift could also be behavioral, particularly given the evidence that the same call

type can be produced in association with foraging (Baumgartner and Fratantoni, 2008)

as well as in patterned bouts consistent with song (Tremblay et al., 2019). An additional

confounding factor in these analyses, and perhaps a reason for the similarity between

sei and fin whale associations with depth, is that their low-frequency, high amplitude

vocalizations likely propagate over even greater ranges in deep areas (Jensen et al., 2011).

6.5.4 Humpback whales

Humpback occurrence was determined based on the presence of song. The sparse detec-

tions in September followed by the increase in October coincides exactly with the timing

of the transition from the production of song fragments to full song described by Kowarski

et al. (2021). They attribute the timing of song onset to critical changes in photoperiod. The

timeseries suggests coincident increases in sei and fin detection rates. Though speculative,

the apparent synchronization of this increase could be due in part to photoperiod. It could

also be a result of interannual variation in detections and/or effort, or a host of additional,

unresolved factors.

Similar to Kowarski et al. (2018), humpback detections occurred predominately during

evening and night hours. The reasons for the diel pattern are unknown. Given the relatively

low numbers of humpback whale detections, as well as the potentially confounding effects

of using song as a detection cue, it is perhaps not surprising that the habitat analysis did not

reveal any robust associations between humpbacks and their environment. Furthermore,

our model was designed to target hydrographic processes known to aggregate right whale

prey. These are likely less effective prey proxies for piscivorous humpbacks, as the

distribution and abundance of the schooling fish they prey upon may be decoupled from or

less influenced by these physical properties and dynamics (Hazen et al., 2009).
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6.5.5 Challenges and caveats

Though the use of gliders for passive acoustic monitoring is well-established (Baumgartner

et al., 2020; Klinck et al., 2012), the use of these platforms to make habitat inferences

is in its infancy. We therefore consider our habitat analyses as exploratory and sought

to conduct them in such a way as to overcome several of the challenges inherent to this

dataset. The first potential issue is the use of acoustic detections as a measure of whale

presence. Call production by baleen whales is highly variable, behaviorally mediated, and

typically poorly described (e.g., Parks et al., 2011a). While some calling behaviors may

relate directly to foraging or habitat quality, others are likely produced in an unrelated

context, serving to, for example, advertise reproductive status or maintain long range group

cohesion during migration (Payne and Webb, 1971; Clark and Ellison, 2004). There is

evidence that several species vocalize less frequently while foraging (Baumgartner and

Fratantoni, 2008; Parks et al., 2011a). That said, baleen whales are mobile predators with

high energy demands whose distribution must at some point be correlated with that of their

prey (Palacios et al., 2013).

Variability in detection range poses another challenge for interpreting whale presence.

Detection range varies by source (species), environment, noise level, glider depth, and

analysis protocol (Chapter 2). Further, the area being monitored is almost certainly an

order of magnitude larger than the area over which environmental data are being collected,

leading to a time/space mismatch in occurrence and environmental data. Accounting for

this mismatch of scales is not trivial. We pursued a variety of other different definitions of

survey units (e.g., trackline segments, time-averaged glider position) before selecting a

monthly gridding approach as the most suitable for retaining as much data and resolution as

possible while addressing the temporal and spatial correlation structure and the significant

heterogeneity of survey effort. A more comprehensive analysis in the future would evaluate

the sensitivity of these results to the choice of grid size, and perhaps even optimize the grid

sizing for each species based on the autocorrelation structure and/or estimated detection

range. An alternative approach would be to apply an amplitude threshold to species

detections, such that only loud calls presumably originating at close ranges from the glider

would be considered in the analysis. This was not feasible in our exploratory analysis given

that we determined acoustic occurrence using pitch track analysis of tally periods, rather

than on a call-by-call basis. A further limitation with this approach is that the occurrence
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of some species, especially humpback and right whales, was relatively rare. Rejecting

additional calls under an amplitude threshold would likely further reduce sample size

and statistical power. A more nuanced alternative to a threshold approach could be to

include amplitude as a model covariate. All of the archived audio for these deployments is

available, so such analyses could be conducted in the future.

Our overall goal was to evaluate the ecological importance of specific physical features

to baleen whales, rather than develop a predictive model of whale occurrence. This is an

important distinction that informed our choice of statistical approach. We chose to avoid

stepwise variable selection from a large, multivariate model, as the ecological influence of a

selected variables can become difficult to explain, and the resulting p-values are potentially

compromised by the selection process (Palacios et al., 2013). Similarly, we avoided the use

of other “black box” modelling approaches in favor of the ecologically interpretable results

of the logistic regression (Redfern et al., 2006). We conducted preliminary analyses using

Generalized Additive Models so as to avoid making any assumptions about the functional

form of the relationship among the predictor and response variables. We found this ap-

proach was limited by its inability to readily resolve interactions among predictor variables.

The results of our analysis demonstrate the importance of resolving these interactive effects.

This makes ecological sense, as baleen whale foraging and the dynamics that aggregate

their prey are almost certainly mediated by the complex interaction of multiple factors

(e.g., Hazen et al., 2009). The next step in our modelling procedure would be to increase

the number of explanatory variables to represent additional processes/features, especially

those of relevance for rorqual foraging, and to use those results to inform the careful

construction of multivariate models to address specific hypotheses about whale-habitat

associations.

Though we made efforts to thoroughly evaluate and address all the underlying assump-

tions of the logistic regression analysis, the significance levels of our tests should be

interpreted with caution. Repeated hypothesis testing raises the multiple comparisons

problem, wherein the likelihood of erroneous results increases with the number of tests

conducted. This can be controlled by using a single, multivariate model, which would be a

logical next step for this analysis (Hosmer et al., 2013). Another mitigation measure is to

increase the significance (i.e., α) level proportionally to the number of models run, referred

to as a Bonferroni adjustment. In our case the Bonferroni adjusted significance level for
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a given species and model set would be 0.008 (0.05 / 6 models). At this level, observed

associations between right whales and depth, bml density, and bml width would no longer

be significant. We opted to use the uncorrected p-values to avoid missing ecologically

relevant relationships with small effect sizes, but suggest that precautionary treatment of

these values is warranted. That said, the relationships that emerged from the statistical

analyses were also evident in the raw data (Figure 6.7), instilling confidence in both the

statistical approach and results.

6.6 Conclusions

We gathered a large dataset of passive acoustic and hydrographic observations using

autonomous vehicles and conducted an analysis of baleen whale occurrence and potential

habitat associations in Roseway Basin. Our results provide insights into the spatial

and temporal distribution of each species’ acoustic occurrence within the habitat and

corroborate previously documented diel vocalization patterns. Though challenging to

account for the mismatch of observational scales and behaviorally mediated acoustic

behavior, our results identified right whale habitat associations that align with those that

have been established previously. The high-resolution, fine-scale, vertical sampling of

the Slocum glider provided insights into whale associations with subsurface features that

would not have been possible using traditional remote-sensed data, nor feasible using

shipboard methods. These platforms have great potential for helping to move the study of

cetacean habitat associations beyond correlative analyses by elucidating the underlying

biophysical mechanisms that influence species distribution.
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CHAPTER 7

CONCLUSIONS

The original focus of this thesis was on the use of gliders to make inferences about whale

habitat and inform their conservation. In order to effectively make use of acoustic detection

information from gliders, we first had to overcome one of the pervasive challenges in the

field of passive acoustic monitoring: detection range. This led to the study described in

Chapter 2, where we empirically derived the probability of detecting right whales from

gliders and buoys as a function of range, noise level, platform depth, analysis protocol,

and the number of calls considered. Including the influence of these other covariates was

particularly insightful, often in ways that were not immediately obvious or intuitive. In the

case of the glider, for example, platform depth exerted a stronger influence on detection

range than noise level. For either platform, the use of protocols that are precautionary

and/or capable of considering multiple calls can increase detection range dramatically.

This has key implications for the interpretation of PAM results, especially as PAM becomes

an increasingly popular tool for making inferences about marine mammal distribution.

The fieldwork for Chapter 2 concluded in the spring of 2017. Within the next few

months, right whale mortalities in the Gulf of St Lawrence would skyrocket, signalling the

beginning of a conservation crisis that demanded new tools to address. Dynamic risk miti-

gation became critical. Near real-time passive acoustic monitoring offered another source

of dynamic information on whale occurrence, but interpreting these results, particularly

as they relate to sightings, was not straightforward. To address this, we used preliminary

detection range estimates from Chapter 2 to parameterize a simulation that quantitatively

compared the uncertainty in acoustic and visual survey results on dynamic management
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timescales (Chapter 3). We found that, when accounting for whale movement, the esti-

mates of whale location derived from acoustic and visual methods become equally, and

substantially, uncertain with about 1 to 2 days following a detection. The combined results

of Chapters 2 and 3 were instrumental in the decision by Fisheries and Oceans Canada and

Transport Canada to begin using near real-time acoustic detections interchangeably with

visual survey results to trigger dynamic risk mitigation measures in Atlantic Canada.

The right whale mortality crisis and demand for dynamic management prompted a huge

surge of survey effort. There was no infrastructure in place to collate and disseminate the

results of these surveys in an effective way. This led to the development of WhaleMap

(Chapter 4). What began as an informal, in-house tool has grown to become the definitive

source of near real-time survey results for the entire east coast of the US and Canada, where

it directly facilitates the implementation of nearly all dynamic management measures.

Though not an academic product, per-se, WhaleMap provides another tool to advance

baleen whale conservation via an improved understanding of their distribution, and in that

sense is closely linked to the body of work put forward in this thesis.

In an effort to better understand the underlying mechanisms responsible for the apparent

increased occupancy of the Gulf of St. Lawrence by right whales, rather than merely

reporting it, we began conducting opportunistic oceanographic sampling from vessels

running visual surveys (Chapter 5). Through a combination of hydrographic, net, and

optical sampling, we provide evidence that right whales are feeding on a mixed assemblage

of late-stage Calanus finmarchicus and Calanus hyperboreus at the bottom of the water

column. The contribution of C. hyperboreus appears to be an especially important and

distinguishing aspect of this foraging habitat, as their larger body size may compensate

for the relatively low Calanus abundance observed in the GSL compared to other right

whale habitats. This work has complimented other ongoing habitat analyses in the region

by providing the first prey samples collected in close proximity to right whales and lays

the groundwork for more detailed study of the dynamics that influence the distribution and

abundance of right whale prey, and, by extension, right whales, within this important and

high-risk habitat.

In Chapter 6, the prevailing themes of passive acoustic monitoring and habitat ecol-

ogy are combined to revisit the initial goal of evaluating the use of acoustic gliders to

make inferences about whale habitat. The analysis of a long (8 year) timeseries of glider
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deployments in Roseway Basin revealed new insights in the temporal and spatial distri-

bution of baleen whale acoustic occurrence. Exploratory comparisons, both descriptive

and statistical, of acoustic occurrence and glider-derived environmental variables provide

evidence of right whale habitat associations that have been documented previously and

are ecologically interpretable. Though exploratory, these results suggest that autonomous

platforms can be effective tools for studying baleen whale ecology. Given the proliferation

of autonomous platforms in oceanographic research, we anticipate this will be an area of

substantial growth and insight in the coming years.

In summary, the body of work put forward by this thesis advances passive acoustic

monitoring, habitat ecology and conservation of baleen whales in the Northwest Atlantic.

It is our hope that these efforts will contribute to the effective research and management of

these species for years to come.
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APPENDIX A

SUPPORTING INFORMATION FOR
CHAPTER 2

A.1 Precautionary analysis of real time pitch tracks

Numerous pitch tracks resembled right whale upcalls but were not completely convincing,

so they were scored as “possibly detected” (n = 79 for the buoy; n = 54 for the glider). The

main text of this chapter presents results acquired using a conservative protocol in which

the pitch tracks scored as “possibly detected” were treated as “not detected”. This protocol

is designed to minimize false detections at the expense of increased missed detections. We

opted to focus on this protocol in the main text as it has been extensively employed on all

previous deployments in the NW Atlantic (e.g., Baumgartner et al., 2019). An alternative

approach is to use a precautionary protocol that treats calls scored as “possibly detected” as

“detected”. This is intended for a science or mitigation application that seeks to minimize

missed calls at the expense of false detections.

In our study, employing a precautionary protocol caused the probability of detecting

localized calls to increase for both the buoy and the glider across all ranges, but especially

at close range (Figures 2.8, A.7). For the buoy in average noise conditions (100 dB re 1

µPa2Hz−1), the fitted regression suggested that a probability of detection of 0.5 (95% CI:

0.427-0.571) occurred at 5.8 km. For the glider in average noise (100 dB re 1 µPa2Hz−1)

and depth (15 m) conditions, the fitted regression suggested that a probability of detection

of 0.5 (95% CI: 0.400-0.602) occurred at 12.3 km (Figures 2.8, A.7).

Pitch tracks were labeled as “possibly detected” for several reasons. The primary cause

was poorly formed pitch tracks; these were responsible for 58% and 44% of pitch tracks
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being scored as “possibly detected” for the buoy and glider, respectively (Table A.1). For

the glider, 35% of “possibly detected” pitch tracks were missed because of humpback

whale song, many of which occurred at very close ranges. In contrast, song was only

implicated in 15% of the pitch tracks that were labeled as “possibly detected” for the buoy.

Approximately 19% of “possibly detected” pitch tracks were caused by human error in the

buoy analysis, compared to only 6% in the glider analysis (Table A.1; Figure A.6).

A.2 Analysis of archival audio

The goal of our study was to quantify the range-dependent accuracy of the DMON/LFDCS

on board an ocean glider and moored buoy. The DMON/LFDCS provides near real-

time acoustic presence estimates by producing an abstraction of the raw acoustic signal

in the form of pitch tracks that can then be transmitted back to shore for review. The

article outlines a number of analyses to evaluate the performance of the near real-time

DMON/LFDCS. Here we repeat those analyses for the archival audio data recorded on the

DMON. The difference in performance between the pitch track and archival audio results

provides an indication of the cost, or the reduction in system performance, associated with

the review of pitch tracks alone (i.e., without the aid of spectrograms or audio) in near real

time.

The 541 localized calls were used to determine the probability of detection for each

platform based on the manual review of archival audio data. The spatial distribution of

localized calls for this analysis was non-uniform (Figure A.1). Because the DMON on the

moored buoy recorded on a 50% duty cycle, audio was not available for approximately half

(301/541) of all localized calls; analysis of the archival audio from the buoy was conducted

using the 240 localized calls for which audio was available. The proportion of localized

calls that were detected decreased with range (Figure A.2); 87% of localized calls within

5 km (67/77) were detected while 43% of localized calls between 15 and 40 km (3/7)

were detected. Calls were missed for a variety of reasons: 9.1% were missed because they

were faint or absent from the spectrogram, 1.7% were missed due to interfering biological

sounds (i.e., humpback whale song), 0.8% were missed due to interfering non-biological

sounds (e.g., other platform noise, ship noise), and 10% were missed due to human error in

reviewing the audio data (Table A.1; Figure A.6). For the buoy in average noise conditions

(100 dB re 1 µPa2Hz−1), the fitted regression suggested that a probability of detection of
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0.5 (95% CI: 0.328-0.673) occurred at 13.2 km.

For the glider, the 114 localized calls that were excluded from the near real-time analysis

due to platform noise were also excluded from the archival audio analysis. The proportion

of the remaining 427 localized calls that were detected decreased with range (Figure A.2);

79.9% of localized calls within 5 km (147/184) were detected while 37.5% of localized

calls between 15 and 40 km (6/16) were detected. Calls were missed for a variety of

reasons: 15.2% were missed because they were faint or absent from the spectrogram, 1.4%

were missed due to interfering biological sounds (i.e., humpback whale song), 5.4% were

missed due to interfering non-biological sounds (e.g., other platform noise, ship noise), and

9.6% were missed due to human error in reviewing the audio data (Table A.1; Figure A.6).

For the glider in average noise (100 dB re 1 µPa2Hz−1) and depth (15 m) conditions, the

fitted regression suggested that a probability of detection of 0.5 (95% CI: 0.365-0.635)

occurred at 15.8 km (Figure A.7).

Table A.1: Diagnostic scores associated with calls labeled as “possibly detected” during
manual review of glider and buoy pitch track records of calls localized by the array. Here
n refers to the number of calls, while % is the percentage of total calls labeled as “possibly
detected” on each platform (54 for the glider, 79 for the buoy).

A.3 Simulation to evaluate methodology

A potential source of bias in our approach is that each call used to estimate the DMON/LFDCS

detection function first had to be detected and localized by the array. We developed a
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Table A.2: Results from manual scoring of glider and buoy archival audio records of
calls localized by the array (total number of calls = 541). Here n refers to the number of
calls, while % is the percentage of total localized calls available for detection (i.e., does
not consider excluded calls).
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Figure A.1: The spatial distribution of localized right whale upcalls that were either
detected (grey circles) or not detected (blue crosses) by the buoy (top row; n = 541) or the
glider (bottom row; n = 426) in each analysis (shown in columns). The red circle at the
origin indicates the location of the array. Panels A and B are shown in Figure 2.5 in the
main text.
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Figure A.2: Distribution of ranges from each platform (shown in columns) to right whale
upcalls localized by the array and detected in a given analysis (shown in rows). Total
numbers of localized calls in 2-km bins are shown in gray and localized calls detected
in near real-time are shown in red. The black line shows proportions of localized calls
detected in 2-km bins with more than 5 calls. Panels A and B are shown in Figure 2.6 in
the main text.
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Figure A.3: Distribution of noise levels for each platform (shown in columns) associated
with right whale upcalls localized by the array and detected in a given analysis (shown in
rows). Total numbers of localized calls in 2-dB bins are shown in gray and localized calls
detected in near real-time are shown in red. The black line shows proportions of localized
calls detected in 2-dB bins with more than 5 calls. Panels A and B are shown in Figure 2.6
in the main text
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Figure A.4: Distribution of glider depths associated with right whale upcalls localized by
the array and detected in a given analysis (shown in columns). Total numbers of localized
calls in 5-m bins are shown in gray and localized calls detected in near real-time are shown
in red. The black line shows proportions of localized calls detected in 5-m bins with more
than 5 calls. Data in panel A are shown in Figure 2.6 in the main text.
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Figure A.5: Distribution of signal-to-noise ratios (SNR) for each platform (shown in
columns) associated with right whale upcalls localized by the array and detected in a given
analysis (shown in rows). Total numbers of localized calls in 1-dB bins are shown in
gray and localized calls detected in near real-time are shown in red. The black line shows
proportions of localized calls detected in 1-dB bins with more than 5 calls. Panels A and B
are shown in Figure 2.6 in the main text.
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Figure A.6: Proportion of localized calls assigned to each score category based on analyses
of the near real-time pitch track data or archival audio as a function of range from the
platform. The platform and analysis are shown at the right of each plot. Colors indicate
the proportion of calls of a given score in 2-km range bins, while the number of calls in
each bin is shown above each bar. Definitions of each category are provided in Tables 2.1,
A.1, and A.2. Panels A and B are shown in Figure 2.7 in the main text.
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Figure A.7: Estimated probability of detection of localized right whale upcalls as a
function of range to the buoy (left column) and glider at a fixed depth of 30 m (center
column) or 15 m (right column) at low (blue lines), medium (black lines), and high (red
lines) noise levels based on in a given analysis (rows). The fitted regression models are
shown as solid lines, while the 95% confidence intervals are shown as shaded regions. An
alternate representation of these data directly comparing each platform is shown in Figure
2.8 in the main text.
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Figure A.8: Results of a thought experiment showing probability of detecting one of
multiple available right whale upcalls as a function of range to the buoy (left column) and
glider at a fixed depth of 30 m (center column) or 15 m (right column) based on a given
analysis (shown in rows) using a fixed noise level of 100 dB re 1 m−2. Each colored line
shows the probability of detecting one call out of 1, 2, 3, 5, or 10 available calls during
some fixed time period. This analysis relies upon the unlikely assumption that calls are
detected independently, so the probabilities of detection are likely overestimated (see main
text). Panel A is shown in Figure 2.9 in the main text.
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Figure A.9: The signal-to-noise (SNR) level (in dB) for calls that were detected and not
localized (n = 863; black) versus those that were detected and successfully localized (n
= 513; red) on the array. SNR was calculated on the array channel in which the call was
detected using the method described in the main text. Calls with SNR above 10 dB (n =
101) were assumed contaminated by impulsive noise and not included. The inset shows the
histogram of the raw data in 0.25 dB bins, while the main plot shows the smoothed (kernel
density) estimates overlayed to facilitate comparison. The median SNR of detected calls
was 2.3 dB (IQR: 2.7 dB), compared to a median of 2.6 dB (IQR: 2.3 dB) for localized
calls. Results of a Mann-Whitney U test failed to reject the null hypothesis that both
distributions are equal (p = 0.112)
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simple simulation to determine if the empirically derived DMON/LFDCS detection func-

tion was influenced at all by the processes of array detection or array localization. The

simulation was implemented in several steps. First, we specified a known array detection

function, array localization function, and DMON/LFDCS detection function (Figure A.10).

We assumed that the detection probabilities decreased as a logistic function with range, and

that the probability of detection by the array was higher than that of the DMON/LFDCS

platform. The probability of localization was fixed at 0.36 across all ranges. We also

tested several range-dependent probability of localization functions but found that these

had minimal effect on the end result (not shown).

Next, we generated a distribution of 10,000 calls in Cartesian space with the monitoring

platforms located at the origin. The spatial distribution of calls was either uniform (e.g.,

Figure A.11a), or clustered (not shown). The array detection function (Figure A.10a) was

applied to all 10,000 calls in the model domain to generate a distribution of array-detected

calls (Figure A.11). The probability of localization (Figure A.10b) was then applied to

each of these array-detected calls to determine the subset that were successfully localized

(Figure A.12). The DMON/LFDCS detection function (Figure A.10c) was applied to

all 10,000 calls in the model domain to generate a distribution of calls detected by the

DMON/LFDCS (Figure A.13). Thus, each of the 10,000 simulated calls had 3 binary

scores associated with it: (1) Sarray was 1 if detected by the array or 0 if not detected by the

array, (2) Sloc was 1 if detected and localized by the array, 0 if detected by the array but not

localized by the array, or 0 if not detected by the array, and (3) SDMON was 1 if detected

by the DMON/LFDCS or 0 if not detected by the DMON/LFDCS. The localized calls that

were detected (Sarray = 1, Sloc = 1 and SDMON = 1) or not detected (Sarray = 1, Sloc = 1

and SDMON = 0) by the DMON/LFDCS (Figure A.14) were used to fit a logistic regression

to empirically derive the DMON/LFDCS detection function, which was then compared to

the specified DMON/LFDCS detection function (Figure A.15). The specified and derived

detection functions were indistinguishable in the presented simulation (Figures A.10-A.15),

as well as in several other simulations (not shown; e.g., clustered distribution of 10,000

calls, increasing or decreasing probability of localization with range), suggesting that our

methodology is robust to any bias introduced by imperfect detection and localization by

the array.
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Figure A.10: The specified (a) detection function of the array, (b) localization function of
the array, and (c) detection function of the DMON/LFDCS.

Figure A.11: A uniform distribution of simulated calls (n = 10,000) detected (black,
Sarray = 1) or not detected (grey, Sarray = 0) by the array in (a) Cartesian space or (b)
tallied in 1-km range bins. The detection function of the array is shown in Figure A.10a.
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Figure A.12: The distribution of all simulated calls detected by the array (see Figure
A.11), including those not successfully localized (grey, Sarray = 1, Sloc = 0) and those that
were successfully localized (black, Sarray = 1, Sloc = 1) in (a) Cartesian space or (b) tallied
in 1-km range bins. The localization function of the array is shown in Figure A.10b.

Figure A.13: The same uniform distribution of simulated calls (n = 10,000) as in
Figure A.11 detected (black, SDMON = 1) or not detected (grey, SDMON = 0) by the
DMON/LFDCS in (a) Cartesian space or (b) tallied in 1-km range bins. The detection
function of the DMON/LFDCS is shown in Figure A.10c.
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Figure A.14: The distribution of all simulated calls detected and localized by the array
(see Figure A.12), including those that were not detected (grey, Sarray = 1, Sloc = 1,
SDMON = 0) and those that were detected (black, Sarray = 1, Sloc = 1, SDMON = 1) by the
DMON/LFDCS in (a) Cartesian space or (b) tallied in 1-km range bins.

Figure A.15: The specified DMON/LFDCS detection function (grey; also in Figure A.10c)
compared to the estimated detection function (blue) derived by fitting a logistic regression
to the simulated data shown in Figure A.14 (i.e., Sarray = 1, Sloc = 1, SDMON = 0 or 1).
The shading indicates the 95% confidence intervals of the logistic regression.

135



APPENDIX B

SUPPORTING INFORMATION FOR
CHAPTER 3

Figure B.1: Illustration of the method used to calculate the difference in visual and
acoustic whale location uncertainty. The grey and black solid lines show the same track
with the start point chosen according to visual or acoustic detection, respectively. Dashed
lines indicated how acoustic (ra) or visual (rv) range was calculated between a track
position at time t and the center of the Cartesian grid (0,0). Note that the schematic is not
drawn to scale.

136



Figure B.2: Evolution of location uncertainty after visual (blue) and acoustic (red)
detection for right whales in traveling, feeding, or socializing behavioral modes over the
96 h model period. Columns indicate acoustic detection range parameterizations (long-,
medium-, and short- range). Rows show the modeled movement behaviors (traveling,
feeding, and socializing). Solid lines indicate the median straight-line distance from the
reported detection location. Shaded regions show the interquartile range. The y-axis is
scaled to highlight differences between detection methods rather than among behaviors.
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APPENDIX C

SUPPORTING INFORMATION FOR
CHAPTER 5

C.1 Definition of right whale presence

Establishing right whale presence or absence at each station was critical to several of our

analyses. This required defining appropriate time and space scales over which to associate

sightings events with each station. We began by measuring the minimum distance from the

average station position to a sighting (on the same day), as well as the minimum time offset

from the initiation of sampling at a station to a sighting. We then defined whale presence

using a range of minimum time (0.25, 0.5, 1, 2.5, 5 h) and distance (0.25, 0.5, 1, 2.5, 5

km) thresholds. We repeated the logistic regression analysis using whale presence defined

using every combination of time and distance thresholds. Results indicate that some

habitat associations were sensitive to the definition of presence (i.e., significant in some

cases but not others; ctd bottom density, ctd sml depth, net late chyp conc, net mass,

opc mass max) while others were not (i.e., always significant; sounder depth, bathy sd,

ctd bml width, opc mass deep max; Table C.1).

C.2 Comparison of net- and OPC-derived Calanus
abundance

We compared the abundance of late-stage C. finmarchicus, C. hyperboreus, and Calanus

spp. (C. finmarchicus, C. hyperboreus, C. glacialis) to OPC-derived particle abundances

in ten size classes to determine which OPC size class best represented the abundance of
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Table C.1: Summarized results of logistic regressions of habitat associations using
different definitions of right whale occurrence. Whale presence was defined as a confirmed
sighting within a minimum distance (column 1) and time (column 2) from an oceanographic
station. The p-values from a drop-in-deviance test are shown below the habitat variables,
with * indicating significance at 0.05. The model used in the main text and described in
Table 2 is highlighted in grey.
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each group. We achieved this by (1) selecting all stations with net and OPC data (n = 66),

(2) restricting the OPC profile to the maximum depth achieved by the net, (3) computing

the depth-integrated particle abundance in all 10 size classes (1 - 1.5, 1 - 2, 1 - 2.5, 1 - 3,

1.5 - 2, 1.5 - 2, 1.5 - 2.5, 1.5 - 3, 2 - 2.5, 2 - 3, 2.5 - 3 mm equivalent spherical diameter;

ESD), (4) and comparing to the net-derived abundances of C. finmarchicus (Figure C.1), C.

hyperboreus (Figure C.2), and Calanus spp. (Figure C.3). In addition to visualizing the

agreement graphically, we also calculated Spearman’s rank correlation and residual sum

of squares, with the net abundance and OPC abundance treated as actual and predicted,

respectively (Figure C.4). Though there was some ambiguity, results suggested that the

abundances of late-stage C. finmarchicus, C. hyperboreus, and Calanus spp. were best

represented by the 1 - 2, 1.5 - 3 and 1 - 3 mm ESD size classes, respectively.
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Figure C.1: Net-derived abundances of late-stage (C4, C5) C. finmarchicus copepodites
and adults compared to OPC-derived abundances of particles from ten different size classes
(in mm ESD; shown above each panel). The residual sum of squares (RSS) and Spearman’s
rank correlation (ρ) is indicated in each panel.

141



Figure C.2: Net-derived abundances of late-stage (C4, C5) C. hyperboreus copepodites
and adults compared to OPC-derived abundances of particles from ten different size classes
(in mm ESD; shown above each panel). The residual sum of squares (RSS) and Spearman’s
rank correlation (ρ) is indicated in each panel.
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Figure C.3: Net-derived abundances of late-stage (C4, C5) Calanus (C. finmarchicus + C.
hyperboreus) copepodites and adults compared to OPC-derived abundances of particles
from ten different size classes (in mm ESD; shown above each panel). The residual sum of
squares (RSS) and Spearman’s rank correlation (ρ) is indicated in each panel.
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Figure C.4: The Spearman’s rank correlation (a) and residual sum of squares (b) for
comparisons among depth-integrated abundances derived from multiple OPC particle size
classes and net tows. The correlation (in panel a) and sum of squares (in panel b) results
are indicated by the color of each bar, and also shown in text above each bar. The vertical
extent of each bar indicates the OPC particle size range compared to the net abundance.
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Figure C.5: Spearman’s rank correlation matrix of habitat variables.
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APPENDIX D

SUPPORTING INFORMATION FOR
CHAPTER 6

Table D.1: Logistic regression results after removing data from Oct/Nov 2015 to evaluate
the influence of that flushing event on observed whale-habitat associations. Definitions
and descriptions are analogous to Table 6.3 in the main text.
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Figure D.1: Fin whale detection rates in (a) time and (b) space over the full study during
the Aug - Nov period in each year from 2014-2021. Panel (a) shows the daily detection
rate (proportion of detected tally periods per day) over time. Light grey shading indicates
times without survey effort. The bottom panel (b) shows the location of the glider during
all detected tally periods (red circles) in each year. The black line shows the path of the
glider. 147



Figure D.2: Humpback whale detection rates in (a) time and (b) space over the full study
during the Aug - Nov period in each year from 2014-2021. Panel (a) shows the daily
detection rate (proportion of detected tally periods per day) over time. Light grey shading
indicates times without survey effort. The bottom panel (b) shows the location of the glider
during all detected tally periods (red circles) in each year. The black line shows the path of
the glider. 148



Figure D.3: Right whale detection rates in (a) time and (b) space over the full study during
the Aug - Nov period in each year from 2014-2021. Panel (a) shows the daily detection
rate (proportion of detected tally periods per day) over time. Light grey shading indicates
times without survey effort. The bottom panel (b) shows the location of the glider during
all detected tally periods (red circles) in each year. The black line shows the path of the
glider. 149



Figure D.4: Sei whale detection rates in (a) time and (b) space over the full study during
the Aug - Nov period in each year from 2014-2021. Panel (a) shows the daily detection
rate (proportion of detected tally periods per day) over time. Light grey shading indicates
times without survey effort. The bottom panel (b) shows the location of the glider during
all detected tally periods (red circles) in each year. The black line shows the path of the
glider. 150



Figure D.5: Spearmans rank correlation of habitat variables, location (lat, lon), and the
detection rate (number of detections / number of tally periods) of each species per grid
cell. The * indicates significant correlations at a level of 0.05.
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