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Abstract

It is estimated that more than 1 in 10 babies are born prematurely worldwide. Babies
that survive premature birth are more likely to face lifelong health-related disabilities.
By monitoring uterine contractions, labour can be detected, which assists in reducing
premature birth complications.

Several studies have been conducted on monitoring pregnant women with a high
risk of premature birth. The first study focused on home monitoring of uterine ac-
tivity versus nurses’ frequent contact with pregnant women. The second study com-
pared electrohysterography with intrauterine pressure catheter to monitor pregnant
women by recruiting 32 pregnant women in labour for a minimum of 30 minutes and
used a simple algorithm to automatically recognize uterine contractions. The third
study took randomized control trials of home uterine activity monitoring for preg-
nant women with a high risk of premature birth from 15 studies to determine if home
monitoring systems can be used to evaluate pregnancy health status. The last three
studies individually proposed the use of home mobile healthcare systems to monitor
pregnant women.

Machine learning techniques have recently been used to predict and detect prema-
ture labour. Recent studies have used machine learning classifiers such as Random
Forest and Decision Tree to categorize and recognize electrohysterography contrac-
tions with a high accuracy rate. In addition, deep learning models such as artificial
neural networks, similar to machine learning techniques, have been designed to mimic
the human brain to analyze and extract complex relationships between data.

In this research, we aim to mitigate the consequences of premature birth for preg-
nant women and the fetus by proposing a safe, simple, home-comfortable, low-cost,
and reliable monitoring framework. The system uses a non-invasive method to mon-
itor uterine electrohysterography contractions using a wireless body sensor and a
smartphone. The smartphone will analyze uterine readings, and if they contain a
premature labour pattern, a warning notification will be triggered. The framework
will have three schemes: an amplitude-frequency algorithm scheme, a machine learn-
ing algorithm scheme, and a deep learning scheme. A proof-of-concept prototype
was designed and tested for reliability, performance and power consumption using
five electrohysterography uterine contraction databases. The results show that the
schemes were able to meet the framework’s objectives.
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Chapter 1

Introduction

1.1 Overview of Premature Birth

Premature birth, which is a consequence of premature or preterm labour, is a serious

health issue for both the fetus and the mother. It can be a major pregnancy compli-

cation [1] [2] and is the most common cause of death for neonates, even with current

advanced healthcare technologies [3] [4] [5] [6] [7] [8]. Moreover, it is the leading cause

of death for children under five years [9]. Worldwide, 15 million premature births oc-

cur every year, which represents about 9.6% to 11% of total births [7] [10] [11] [12]

[13].

Premature birth is defined as birth before completing the 37th week of gestation

[5] [11] [14] [15] [16] [17]. The authors of [18] more specifically define premature birth

as between the 21st and 37th week of gestation. Another definition of premature birth

is changes in the cervix due to regular uterus contractions before the 37th week of

gestation [19] [20]. Thus, we can categorize premature birth based on gestational age

into:

• Extremely premature (<28 weeks).

• Very premature (28 to <32 weeks).

• Moderate to late premature (32 to <37 weeks).

Premature birth is also an important perinatal healthcare issue [18] [15]. Further-

more, babies who survive a premature birth are usually not fully developed, and this

can lead to short- and long-term health issues [1] [2] [13] [17] [20] [21] [22] [23] [24].

For example, premature babies can experience lifelong disabilities such as hearing and

vision loss or learning and cognitive impairments [11] [20] [23] [25]. Premature babies

can also suffer from growth impediments and mental health issues [26]. Other health

1
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issues can include respiratory, cardiovascular, and neuro-developmental impairments

[15] [18].

Premature birth can also have an economic impact on healthcare systems, health-

care providers, families, and societies [8] [15] [27] [28]. For instance, the cost of

premature births is estimated to be between $26 billion and $50 billion per year in

the United States alone [17] [23] [24] [29] and £2.95 billion per year in England and

Wales [16] [30]. After defining premature birth and its complications for the fetus,

the mother, and healthcare systems in general, we will present the premature birth

distribution worldwide in the next section.

1.2 Premature Birth Distribution Rates around the World

Premature birth is a global issue [13]. In developed countries, the premature birth

rate is between 5% and 12% and up to 40% in some developing countries [2]. When it

comes to premature birth survival rates, there is a massive gap between low-income

and high-income countries [11]. In high-income countries, almost all of the children

born prematurely under 32 weeks survive; however, in low-income countries, the lack

of a quality healthcare system contributes to the death of nearly 50% of these children.

Over 90% of extremely premature babies die in low-income countries. Figure 1.1

shows the top-ten countries with the highest number of premature births [11] [31].

Although the healthcare systems in the United States and Europe are outstanding,

the number of premature births is still high [32], with half a million premature births

every year in the United States [6] [25] [29], which is the largest group of pediatric

infants [6]. Furthermore, premature birth numbers have been increasing since 1981

from 9% to 12.7% [6] [24] [29].

Globally, 60% of premature births occur in South Asia and Africa. The rate of

premature births is estimated to be 12% in low-income countries and 9% in high-

income countries [11]. For example, in the USA, the premature birth rate is between

12% and 13% and between 5% and 9% in England and Wales [14] [16] [30] [33].

Figure 1.2 shows the countries with the highest premature birth rates for every 100
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Figure 1.1: Countries with the highest number of preterm births

live births. Finally, the risk of premature birth is higher if the family has a low income

[11]. In the next section, we will explain the causes of and the possible solutions for

premature birth.

1.3 Causes of and Solutions for Premature Birth

Determining the causes of premature birth is difficult. It can occur spontaneously for

many reasons, and the cause is usually unidentified [4] [11] [12]. However, a pregnant

woman can be diagnosed with a high risk of premature birth if she or one of her

family members has had a medical history of premature labour [9] [20].

1.3.1 Early detection and intervention in Premature Birth

Studies have shown that long distances from hospitals, such as in rural areas, are

associated with higher mortality and a lack of healthcare access [34]. Furthermore,

since it is difficult to prevent premature births, mitigating the effects and consequences

of premature births on the fetus and the mother is the best solution found so far. To

prevent premature births and to mitigate and reduce their consequences, we need a

better understanding of this issue. One of the key factors in mitigating premature
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Figure 1.2: Countries with the highest rates of premature birth per 100 live births

birth issues is the early detection of labour [5] [15] [35]. Early detection can help

provide medical intervention and achieve the best childbirth outcome and treatment

[7] [8]. Early premature birth can be detected by monitoring the symptoms of early

labour as soon as possible via the pregnant woman’s biochemical or biophysical signals

[4] [10] [28]. Furthermore, early detection helps mitigate the health risks for the fetus

and the mother and reduces the treatment cost of premature birth complications [36].

1.3.2 Developing Countries and Illiteracy

Moreover, developing countries have 95% of the world’s illiterate people [37]. We

mainly target pregnant women from developing countries, and the application should

be designed to their needs while keeping the prevalence of illiteracy in mind.

According to [38] and [39], studies suggest using graphical information and voice

feedback when designing a user interface (UI) for illiterate users. This can also sim-

plify information for illiterate users [40]. Furthermore, the minimal use of text can

make the UI intuitive for illiterate users [41]. The combination of visual, voice feed-

back and minimal text can help illiterate users easily navigate the application. These

recommendations will be applied to the framework’s application UI.
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1.4 Research Gap

As we established, premature birth is a serious health issue that threatens the life of

the mother and fetus. Several studies have been conducted on monitoring pregnant

women with a high risk of premature birth to address this issue.

The first study [22] was conducted in 1998 and focused on the home monitoring

of uterine activity for pregnant women with a high risk of premature birth versus

nurses’ frequent contact with these pregnant women.

The second study conducted in 2009 by [42] compared the use of EHG and in-

trauterine pressure catheter (IUPC) to monitor pregnant women using a simple algo-

rithm to measure uterine contractions.

In the third study, [43] conducted randomized control trials of home uterine ac-

tivity monitoring for pregnant women with a high risk of premature birth from 15

studies to determine if using a home monitoring system would give the same results

for the pregnant woman’s and fetus’s health status compared with the absence of

such a monitoring system during pregnancy.

In the fourth study [44], the authors proposed a mobile healthcare system to

monitor the health status of pregnant women with hypertensive disorders using body

sensors.

The fifth study [32] designed a telemonitoring home system called Nemo Health-

care to monitor fetal heart rate, fetal electrocardiogram, maternal heart rate, and

uterine contractions. They used body sensors to collect and send the pregnant

woman’s vital signals wirelessly to a server, where a physician could monitor the

woman’s health status.

The sixth study [45] proposed a system for monitoring the cardiotocograph signals

of the pregnant woman. The system uses sensors to collect the pregnant woman’s

vital signs and sends them to the Obstetrics-Gynecology Department Information

System (ObGyn) via smartphone for the physician to analyze.

The seventh study by [46] presented a long-term continuous and remote healthcare
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monitoring system for pregnant women during pregnancy and postpartum using in-

ternet of things (IoT). The system monitors the stress, sleeping and physical activities

of pregnant women.

The eighth study by [47] proposed a remote pregnancy risk monitoring system

using wireless body sensors (WBSs) and mobile phones. The system is non-invasive,

continuous and home-comfortable.

The ninth study by [30] used EHG to compare the performance of three classifiers:

RF, rule-based, and penalized logistic regression. RF classifier performed the best

among the three.

The tenth study by [48] classified term and preterm deliveries using EHG signals.

They extracted 12 features and used seven classifiers, where Radial Basis Function

Neural Network (RBNC) classifier performed the best.

The eleventh study by [49] proposed a new premature labour prediction algorithm

using EHG signals. They extracted eight features using six levels of wavelet packet

decomposition (WPD) and used SVM for classification.

The twelfth study by [50] used EHG and heart rate (HR) to detect labour. They

used the Bloomlife sensor to collect EHG and HR for data collection and RF for

classification.

The thirteenth study by [18] proposed a system for distinguishing premature pat-

terns from term patterns using recurrence quantification analysis (RQA) and prin-

cipal component analysis (PCA). They used EHG signals from 20 pregnant women

and multiclass SVM for classification.

The fourteenth study by [51] proposed a machine learning system to detect labour

using the Bloomlife sensor. They recruited 142 pregnant women and used generalized

linear machine learning models (GLMs) for classification.

The fifteenth study by [52] classified EHG signals into term and preterm labour

using SVM and RBF kernel function for classification using 300 EHG records.

The sixteenth study by [53] proposed a highly efficient and novel approach to

classify EHG signals using only one feature. The authors used four classifiers, with
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SVM performing the best.

The seventeenth study by [54] proposed a system classifying EHG using RF clas-

sifier. The authors used 300 EHG records and extracted 31 features for classification.

The eighteenth study by [55] proposed a low computational system for detecting

premature labour using EHG. They used 300 EHG records and SVM for classification.

The nineteenth study by [56] proposed a system for monitoring the pregnant

woman’s uterine contractions and alerting her when the labour contractions start.

They used AgC12 wearable sensors for data collection. For classification, they used

five classifiers, with SVM scoring the highest.

The twentieth study by [57] proposed a system for classifying EHG signals into

pregnancy or labour based on wavelet transform, sample entropy and stacked sparse

autoencoder. They produced a 64-parameter feature vector and used a two-hidden-

layer stacked sparse autoencoder (SSAE) deep neural network with a softmax classifier

network for classification.

The twenty-first study by [58] evaluated two EHG features: contraction detection

and its corresponding delineation accuracy to detect EHG contractions using five

methods. Of the five methods, the square root mean square (RMS) performed the

best.

The twenty-second study by [59] proposed a system for identifying EHG uterine

contractions using a convolutional neural network (CNN) deep learning algorithm.

They used two databases and extracted 14,016 45-second-long EHG segments. Next,

they converted these segments to 482 X 482 pixel images to be fed to the algorithm.

The above proposed systems are costly, uncomfortable for pregnant women to

use, or require a physician to analyze the results. To overcome these limitations,

we proposed an automated, continuous, low-cost, easy-to-deploy, and reliable uterine

activity home monitoring system using a wireless body sensor and a smartphone. The

proposed system aims to mitigate the consequences of premature birth for both the

pregnant woman and the fetus and will continuously analyze EHG readings without

the need for a physician using ML and deep learning (DL) approaches, which makes
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it a fully automated system that can be easily deployed in developing countries, all

of which together form the novel contribution of this research.

1.5 Thesis Contributions

The proposed schemes listed above approached the prediction and detection of pre-

mature birth using the ML and DL models without a practical application to solve

the premature birth issue. Our proposed framework aims to apply the ML and DL

models for a real-life practical solution in the form of a smartphone application to

monitor pregnant women’s uterine EHG signals and trigger an alarm if they go into

labour.

The thesis has three major contributions. The first contribution is the use of

two mobile algorithms we designed ourselves, namely the threshold algorithm and

amplitude-frequency algorithm. The threshold algorithm uses a threshold mechanism

to determine if the pregnant woman is in labour. The amplitude-frequency algorithm

analyzes the changes in amplitude and frequency of the pregnant women’s uterine

EHG signals and triggers the alarm if the uterine activity signal has a labour pattern.

The second contribution is the use of ML algorithms to increase further the re-

liability and accuracy detection of labour patterns in the pregnant women’s uterine

EHG signals. The third contribution is the use of DL models to predict and detect

labour patterns and personalize them to each pregnant woman individually for more

accurate results.

1.6 Report Organization

The report is organized as follows. Chapter 2 discusses the monitoring of uterine con-

tractions, explains uterine EHG, introduces wireless body sensor networks (WBSNs),

and discusses home monitoring. Chapter 3 presents the related work and literature

review and discusses the research contributions and research questions. Chapter 4

discusses the research motivations, lists the research objectives and presents the de-

tails of the framework. Chapter 5 presents the threshold scheme. Chapter 6 presents
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the amplitude-frequency algorithm scheme. Chapter 7 presents the machine learn-

ing scheme. Chapter 8 presents the deep learning scheme. Chapter 9 presents the

obstetricians’ medical opinion regarding some medical aspects of the framework. Fi-

nally, chapter 10 provides the concluding remarks and scope for future work for the

proposed framework.



Chapter 2

Background

2.1 Monitoring of Uterine Contractions

As discussed in Section 1.3, the early detection approach is critical to mitigating

premature birth complications. To achieve this goal, we need to develop tools and

methods to better monitor pregnancy and detect early labour [18].

Abnormal uterine contractions are the first and most important sign in detect-

ing labour progress [35] [60] [61]. By monitoring uterine contraction activity during

pregnancy, we can assess and evaluate the progress of pregnancy and the health of

the mother and fetus in real time [35] [61] [62] [63] [64] [65]. Labour can be detected

when uterine contractions become more robust, complex, and frequent over time as

pregnant women get closer to giving birth, which makes uterine contractions a crucial

indicator for labour detection [60] [66] [67].

When it comes to premature birth, the monitoring of uterine contractions is vi-

tal for the fetus and pregnant woman’s survival. This monitoring can provide us

with vital signs of both the pregnant woman and the fetus to distinguish between

premature birth and normal birth [16]. Moreover, monitoring uterine contractions

can detect fetal risks of health distress or pregnancy complications such as uterine

rupture, tachysystole, and placental abruption that can lead to premature birth [35]

[68].

We can conclude that obstetricians monitor uterine contractions for signs of more

robust and more frequent contractions to detect early premature labour [36] [66].

Furthermore, to monitor a pregnant woman’s uterine contraction signals, we can use

a non-invasive method to collect uterine EHG readings from the pregnant woman’s

abdomen. This will be discussed in detail in the next section.

10
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2.2 Uterine Electrohysterography

Uterine electrohysterography (EHG) was developed in the 1960s [69] [70]. EHG is

defined as the bioelectrical activity signals of the uterine muscle myometrial cells [27]

[64] [71] [72] [73]. Obstetricians use three techniques to monitor and record pregnant

women’s uterine contractions:

• EHG.

• Tocodynamometer.

• Intrauterine pressure catheter (IUPC).

Of the three techniques, EHG has the advantage of being recorded externally and

non-invasively from the abdomen of pregnant women [8] [74]. Moreover, EHG is more

accurate and reliable than other techniques in monitoring uterine contractions since

it can reflect the activity of the uterine muscle, which can reduce the treatment costs

[4] [27] [33] [66] [75] [76] [77]. In addition, EHG signals can be recorded as early

as 19 weeks of the pregnant woman’s gestational age [15] [78] [79]. Furthermore,

EHG’s non-invasiveness makes it suitable for long-term pregnancy monitoring [58].

The following list summarizes the advantages of EHG:

• Non-invasive.

• Accurate.

• Reliable.

• Long-term monitoring.

• Lower healthcare costs.

Because of these advantages, EHG is a promising method for monitoring uterine

contractions and detecting premature labour [7] [10] [14] [26] [51] [63] [78] [80].

However, EHG has two disadvantages. The first disadvantage is that EHG signals’

filtration can be affected by the pregnant woman’s tissue layers’ conductivities [71].

The second disadvantage is that the quality of EHG signals can be weak and might

be affected by interference [62].
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Figure 2.1: WBSN architecture

Finally, EHG has no standards for electrode location, acquisition system, or fea-

ture analysis parameters [58]. In the next section, we will discuss the recent techno-

logical advances in WBSNs that make it easier to record EHG signals non-invasively

from the pregnant woman’s abdomen.

2.3 Wireless Body Sensor Networks

Wireless body sensor networks (WBSNs) is an emerging wireless technology with

applications in healthcare, sports, entertainment, and industry [81] [82]. One of

the WBSNs’ features is the continuous monitoring of the patient’s vital signs. This

continuous monitoring feature can help detect and lower the patient’s health risks [81]

[83], improve the patient’s overall health status [84] and aid in the self-management

of healthcare decisions [85]. Figure 2.1 shows the architecture of WBSNs. It consists

of body sensors to collect and wirelessly send vital signs from the patient’s body, a

receiver medium to collect and analyze the patient’s vital signs, and a remote server

for information storage and analysis. WBSNs have several advantages such as safety,

low cost, mobility, and continuous monitoring capabilities [31] [81] [83] [86].

Moreover, the wireless communication capability of WBSNs allows them to com-

municate with mobile devices such as smartphones. This capability will further fa-

cilitate the integration of WBSNs in healthcare systems [87]. Finally, the low cost

of WBSNs will help significantly lower the cost of any system. In the next section,



13

we will list previous studies related to monitoring, recording, or analyzing pregnant

women’s uterine contractions.

2.4 Home Uterine Monitoring

Pregnant women with a high risk of premature birth visit the hospital more often

to monitor their uterine contractions [88]. Such visits last for days or weeks in some

cases, which will take pregnant women away from the comfort of their home [32].

Moreover, such visits can be costly, stressful and risky for the health of the pregnant

woman and the fetus; for example, it can increase the risk of COVID-19 infection.

Home uterine monitoring for pregnant women has many advantages. For example,

in Denmark, pregnant women’s outpatient visits to the hospital were reduced, the

medical staff time-of-care was reduced by 75%, and pregnant women’s inpatient days

were reduced by 44% without affecting the quality of healthcare [89]. Moreover,

detecting false labour will help avoid unnecessary hospitalization and thus reduce

financial costs[7] [90]. Researchers concluded that home uterine monitoring could

help in premature birth prevention [75]. Pregnant women who used home uterine

monitoring systems were less likely to give birth prematurely [91]. Using home uterine

monitoring systems has also helped lower the number of infant admissions to neonatal

intensive care units [91]. Only about 15% of pregnant women can detect uterine

contractions, making automation a crucial feature of any home uterine monitoring

system [75].

2.5 Chapter Summary

In this chapter, we present the background of monitoring uterine contractions, uterine

electrohysterography, and wireless body sensor networks.



Chapter 3

Related Work and Literature Review

3.1 Overview of Studies on Monitoring Pregnant Women

Studies on monitoring pregnant women have been proposed since the 1990s. Some

studies have focused on the health of the pregnant woman and her fetus, while others

have focused on technical solutions that provide healthcare feedback to pregnant

women. Moreover, in both developed and developing countries, digital healthcare

platforms have been developed to assist pregnant women during the pregnancy period

[92]. This section will give an overview of the studies that have focused on monitoring

pregnant women or helping pregnant women have a safe and healthy birth.

The authors of [61] proposed a remote monitoring platform based on Virtual

Instrument. The platform collects and records uterine contraction pressure from the

pregnant woman using the pressure sensor. The recorded data are then sent to a

personal digital assistant (PDA) wirelessly via Bluetooth. Next, the PDA sends the

data to a server for a physician to diagnose and provide telemedicine services to

the pregnant woman. The platform was experimentally validated in Jinhua People’s

Hospital, Jinhua Zhejiang, China. The authors concluded that the platform is better

in terms of cost and convenience than the traditional monitoring mode.

Another author [93] proposed a system for monitoring fetal heart sounds passively

and extracting the fetal heart rate. The system consists of a portable stethoscope to

record fetal heart sound signals, a smartphone to upload data, a server for data storage

and analysis and fetal heart rate extraction algorithms. The fetal heart signals were

recorded from eight pregnant women at 37th to 40th weeks of gestational age. The

proposed system varied about 10% in comparison to the Doppler monitor method.

The authors of [94] developed flexible concentric ring electrodes for recording

14
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EHG signals from the pregnant woman’s abdominal surface. They tested and com-

pared the electrodes’ temporal and spectral parameters with the conventional bipolar

EHG recordings’ parameters. The experimental results for both bipolar concentric

(BC)-EHG records obtained with the new flexible TCR electrode showed that uter-

ine electrical activity was increasing. Moreover, the BC-EHG signal showed similar

spectral characteristics compared to conventional bipolar EHG recordings, but with

smaller, lower-frequency content.

[95] proposed a home-based patient telemonitoring system. This system is an

extension of their previously proposed obstetrical surveillance system that provides

home-comfort monitoring sessions. The proposed system requires the patient to be

actively involved in the monitoring process with built-in intelligence procedures for

online signal analysis.

The authors of [96] designed a Pregnancy-induced Hypertension (PIH) monitoring

system based on a mobile communication technology by combining wireless network

technology and non-invasive hemodynamic monitoring technology. The system aims

to monitor pregnant women’s hemodynamic parameters in real time. The system also

provides comprehensive technical means and solutions for the dynamic prediction of

PIH. The system consists of three parts:

• general packet radio service network (GPRS).

• Hospital monitoring center.

• Portable monitoring terminal with two features:

– Collect, store and deliver maternal blood parameters.

– Display tests and feedback results in real time.

To test the system, the authors chose ten random cases of pregnant women for moni-

toring in a hospital’s obstetrics and gynecology clinic. The experimental results show

that the system is capable of monitoring blood flow parameters dynamically. The sys-

tem also provides effective diagnoses and technical support for forecasting, prevention

and treatment for the PIH.

The authors of [97] proposed a design and prototype for the mMamee mHealth
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solution platform. The platform aims to monitor and assess the daily environmental

exposures affecting the health of pregnant women. The mMamee platform has the

following three distinct characteristics:

1. A smartphone application for self-reporting and monitoring of the medical con-

dition, environmental and lifestyle habits of pregnant women in the form of

easy-to-follow questionnaires via a user-friendly graphical user interface (GUI).

2. Measuring various ambient conditions via streams of urban sensing data.

3. A backbone architecture for integrating these two heterogeneous information

sources.

The platform combines the user’s descriptive input and urban sensing measurements.

A client-server architecture is then used to collect and analyze data.

A fetus movement detector was developed by [98]. The detection is done by

wrapping the pregnant woman’s abdomen with an air-pressurized bag with a pressure

sensor. The sensor detects the force exerted against the uterus wall in any direction.

The sensor’s signal is then processed and uploaded to cloud services for real-time

monitoring and remote access.

The authors of [92] investigated the use of Baby+, an application for supporting

pregnant women in Pakistan. The application helps pregnant women keep track of

pregnancy conditions. The application was designed to meet the needs of pregnant

women in the Pakistani context. The results show that pregnant women were pleased

with the application’s design and functionality and how the assisting tools helped

them manage the pregnancy health status in the region.

The author of [99] proposed a hybrid approach to monitor pregnant women’s

health to protect them from possible future health risks. The system predicts risks

based on pregnant women’s physiological parameters to control, manage, maintain,

and prevent severe health complications. The hybrid approach scored an accuracy of

0.98.
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The authors in [100] used positive force measurement (PFM) to effectively filter

out non-uterine contraction readings. The author designed a novel wearable device

for the monitoring of uterine contractions. The proposal aims to improve accuracy

and avoid unnecessary signal interference from shaking. The device sends the signal

to a smartphone via Bluetooth. The data are then uploaded to the cloud. The ex-

perimental results showed that the system could allow pregnant women to accurately

detect uterine contractions without interference from shaking or noise.

The authors of [101] proposed an application to non-invasively monitor the heart

rate of the fetus. The application also detects pregnancy abnormalities by sending

vital parameters such as the heart rate of the pregnant woman, the heart rate of the

fetus and blood pressure to a hospital database.

[102] proposed a system to reduce the mortality rate in children by tracking the

pregnant woman from the early stage of pregnancy until the child turns five years

old. Pregnant women’s health conditions, fetus growth, and child vaccinations are

monitored and tracked to ensure their safety and to prevent fatal diseases. The system

stores information on the cloud in real time for easy and cost-effective accessibility

and quality medical care.

The authors in [103] aimed to optimize the performance of the C4.5 classifica-

tion algorithm in predicting risk levels during pregnancy using a standardized and

appropriate data format. The C4.5 decision trees classification algorithm achieved an

accuracy rate of 0.947, which indicates that optimized results are achievable with the

standardization procedure.

The authors from [104] proposed a non-invasive and multi-parameter system for

telemonitoring and assessing both the mother and the fetus’s health status during

pregnancy and labour. They developed a prototype called feto-maternal care unit

(FMCU) that uses several biomedical sensors to collect vital data from the pregnant

woman such as the maternal respiration rate, maternal body temperature, abdominal

electrocardiogram (ECG), fetal movement, photoplethysmogram (PPG) and phono-

cardiogram (PCG). For data acquisition and transmission, the authors used national
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instruments (NI) myRIO, which is connected wirelessly to a personal computer (PC)

running NI LabView software for signal visualization, processing and data logging in

real time. For preprocessing, decomposition and the feature extraction process, the

author used advanced signal processing algorithms such as Empirical empirical mode

decomposition (EMD), variational mode decomposition (VMD), empirical wavelet

transform (EWT), and fast independent component analysis (FastICA). Finally, the

authors developed an Android-based smartphone application to synchronize data to a

cloud, where experts can access the data for analysis and diagnosis. The preliminary

experimental results showed that the prototype could continuously record multiple

physiological parameters with excellent reliability and accuracy.

The authors of [79] analyzed and compared EHG characteristics and their variabil-

ity between contraction and non-contraction in labour groups and non-labour groups.

Twenty women with a singleton pregnancy were recruited at the Department of Gy-

necology and Obstetrics, Peking Union Medical College Hospital, Beijing. To record

EHG signals, the author used Monica AN24 (Monica Healthca‹re Ltd. Nottingham,

UK). Each recording was 30 minutes long. The authors found no significant difference

between the term labour group and non-labour group in terms of EHG characteristics.

Therefore, the non-contraction of EHG signals had similar characteristics in these two

groups.

The authors in [105] presented a solution based on ontology to profile pregnant

women with possible pregnancy risks. They used an ontology and medical database

from maternity hospitals in Timisoara (Bega) to create profiles of women, focusing

on cases with problems and high potential risks using a Visual Studio.Net application

and Protégé (an open-source tool). The cloud-based application uses ontology to

create pregnant women’s profiles using links between the characteristics of pregnant

women, medical histories, and disease and possible problems that may occur during

pregnancy. The application is still in the testing stage at Bega Hospital.

A remote monitoring model for pregnant women was proposed by [106]. The

model is built on current diagnostic methods and is intended to be used without
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direct medical involvement. To do so, the model will solve the following tasks:

• Develop a functional monitoring system.

• Rapid fetal assessment using a description of the information and intellectual

control flows.

• Assess the model’s adequacy.

The author of [107] proposed a mobile-based health care monitoring system for

periodically sending messages to pregnant women in rural areas. When the pregnant

woman is registered and checked up, she will be given periodic counselling and re-

minders for safe and easy delivery. She will also be provided with guidelines for a

healthy and hygienic baby delivery. These guidelines will stay with her until the baby

is two years old. This will educate the pregnant woman on a healthy pre-delivery and

post-delivery period, which will contribute to the healthy growth of babies in rural

areas.

The author in [108] proposed a mobile personal monitoring system for pregnant

women. The system will have multiple channels to record and analyze maternal and

fetal abdominal ECG, photoplethysmogram and contractile activity of the uterus.

The system will allow interaction between the pregnant woman and the doctor to

increase the effectiveness of medical support.

The authors of [109] outlined a system that uses the IoT to monitor pregnant

women in rural areas. The system aims to facilitate the receiving of health care for

the first 500 days of their baby’s life and positively improve pregnant women’s lives.

The system’s prototype consists of a heart rate sensor and smartphone application

for wireless data transmission to the analysis platform.

The authors of [110] proposed a system designed to aid illiterate pregnant women

in rural areas. The author conducted interviews with 11 doctors and 25 pregnant

women from urban and rural areas to identify their needs at a public hospital in

Sialkot, Pakistan. The system is designed to be easily used in the rural areas of de-

veloping countries. The results showed that the system provided essential information

and recommendations to pregnant women and improved their doctors’ routine visits.
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The authors from [111] proposed a mobile device framework for primary health-

care delivery using three primary healthcare services based on the population’s high

mortality rate. The chosen services are diagnosis, assistance and immunization mod-

ules. The diagnosis and assistance decision support system frameworks are already

implemented with a preliminary disease symptom data model in a knowledge base.

An algorithm was developed by [112] to estimate the conduction velocity (CV)

and direction of EHG bursts propagation occurring during uterus contractions. The

authors also performed CV measurements on EHG signals before delivery. Seven

pregnant women were recruited for EHG recording, and all of them gave birth within

24 hours of recording.

The authors of [113] presented a smart bracelet for monitoring pregnant women

who suffer from preeclampsia, high blood pressure and cardiac diseases. The bracelet

sends the heart rate and NN intervals via Bluetooth to a smartphone. Ten people

were recruited to test the bracelet. The bracelet achieved an accuracy of 0.92 for the

heart rate in comparison to the classical blood pressure device.

The authors from [114] highlighted pregnant women’s complications by applying

a random forest approach to predict hypertensive disorders. The aim of using this

classification method is to reduce maternal and fetal mortality by helping to predict

and diagnose risks.

The authors of [85] presented a study on the use of wearable technologies by

pregnant women with type one diabetes (T1D). The wearable technologies in the

study are the FreeStyle Libre™ interstitial glucose monitor, Fitbit activity tracker

and a blood pressure monitor. The participants were asked to maintain physical

activity to keep their blood pressure normal and keep a food diary via self-reporting

using the smartphone camera to take pictures to determine the type and portions

of food. The collected data will be processed using statistical and computational

analysis before providing feedback using machine learning algorithms on the need for

insulin or carbohydrates to maintain euglycemia.

The authors of [115] proposed a mobile application to record pregnant women’s
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mobility and read the weight of a scale using image processing. The authors discussed

the user experience using a user experience questionnaire (UEQ) from 30 pregnant

women. The results indicate that five out of six dimensions of UEQ were considered

to be above average, and the novelty and efficiency of the application need major

improvement.

The authors of [116] proposed a system for online real-time pregnancy mapping

to monitor pregnant women. The system consists of three parts:

1. Develop a mobile application for pregnant women to record their mobility.

2. Develop a web-based interface for healthcare providers such as doctors and

nurses.

3. Evaluate the user experience.

To evaluate the user experience, the authors used a UEQ with 26 questions in six

dimensions. Moreover, in-depth interviews were conducted to understand user be-

haviour. The authors reported the following scores: Attractiveness of 0.83, pragmatic

quality of 1.13 and hedonic quality of 1.25 of a range between -3 and 3. The scores

are above average, except for hedonic quality, which is considered good. Therefore,

the user experience needs massive improvements.

The authors in [117] proposed a multi-channel uterine electromyography (EMG)

patch prototype for monitoring premature birth. The authors reported that, on

average, nine significant peak points were observed in premature births and four in

normal births for a monitoring window of ten minutes. To test the prototype, the

authors obtained real uterine EMG data from the pregnant women. They compared

the fast fourier transform (FFT) plots for uterine EMG signals for normal and uterine

contraction states. They found that FFT spectral energy is significantly higher in the

contraction state in the low-frequency band under 0.1 Hz.

[118] proposed a healthcare system using IoT to continuously monitor and eval-

uate maternal stress during pregnancy. They used an online k-means algorithm to

determine the stress level using real-time heart rate measurements. Furthermore, they

designed a proof of concept to evaluate the accuracy of the system. They conducted

a case study by recruiting 20 pregnant women and monitoring them for six months
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of pregnancy and one month postpartum. The authors reported a 71.75% accuracy

rate on a validation dataset. The data from the 20 recruited women examined the

performance using a 10-fold validation Random Forest and obtained an accuracy rate

of 97.9%.

The authors in [119] developed a cloud-based application to help pregnant women

and deprived children. Any pregnant woman can join the website for medical aid.

Physicians can also use the website for remote medical aid. Finally, the system will

be free of charge to support low-income families.

The authors in [120] proposed the i-bracelet machine learning system to predict

the onset of preeclampsia for pregnant women. The algorithm will use blood pressure

medical data as well as the age and weight of the pregnant woman for prediction.

The authors used an electronic bracelet with a sensor for data collection. The sensor

collects and calculates the systolic and diastolic blood pressure values and sends them

wirelessly to the i-bracelet system.

The authors reported an accuracy rate of 0.8, a sensitivity rate of 0.925 and a

specificity rate of 0.72.

A web-based application was proposed by [121] to non-invasively and continu-

ously monitor the health condition of pregnant women. The application can detect

any anomalies in the pregnant women’s heart rate variability (HRV) parameters that

can lead to complications. The collected HRV parameters are compared with the

suggested normal range to determine if there are any anomalies. The application

connects pregnant women and doctors. Finally, if the application detects any anoma-

lies, it will trigger an alarm with the option for the pregnant woman to share the

report with a remote doctor.

The authors in [122] proposed a reference big data architecture to facilitate adap-

tive health monitoring. The architecture consists of a mobile device for pregnant

women, body sensors, cloud and a terminal for health professionals/researchers. More-

over, the architecture can adapt to changes in health needs by analyzing health ob-

servations and providing specific health monitoring needs for pregnant women using
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ambiance awareness. Furthermore, additional analysis is conducted to continuously

evaluate risk factors and contact healthcare providers in case of emergency or pre-

dicted risks. The architecture monitors the mobile device to optimize the monitoring

session and adapt it to ensure the system’s high availability. Finally, healthcare

providers can use the terminal to perform the following:

• Communication.

• Big data analysis.

• Data visualization.

• Real-time querying/monitoring.

• Reports.

The authors from [123] proposed a mobile system to monitor pregnant women

with a high risk of hypertension using sensor networks. The system uses a Naïve

Bayes classifier to classify hypertensive disorder to assist physicians in emergencies.

The authors recruited 25 pregnant women for data collection. The classifier achieved

an accuracy rate of 0.8, a specificity rate of 0.9444 and a sensitivity rate of 0.4286.

The authors of [124] proposed to develop a simulator of fetal movements. The

simulator can accurately reproduce real fetal movements.

The authors from [125] proposed a two-step method for detecting imminent labour

as follows:

1. Automatically segment the contractions by analyzing the non-linear correlation

between the EHG signals.

2. Classify the extracted contractions using Gaussian mixture models (GMM)

based on features extracted from the segmented bursts.

The study used a database with 68 EHG records of premature births collected in

France between 2017 and 2018. The system scored an accuracy rate of 0.762, a

specificity rate of 0.763 and a sensitivity rate of 0.807.
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Figure 3.1: Summary of the literature review structure

3.2 Literature Review

This section will divide the literature review into two perspectives: medical and com-

puter science perspectives. Medical studies on premature birth focus on the effec-

tiveness of uterine activity monitoring of pregnant women’s health status. Computer

science studies focus on the technical side of the system, such as improving the quality

of WBSNs signal filtration, signal classification, and the monitoring of uterine muscle

activities. Figure 3.1 visualizes the structure of the literature review studies.

3.2.1 Studies on Premature Birth

We outline three studies that focus on the medical perspective:

The first study was conducted in 1998 [22]. It compared the effectiveness of the

home monitoring of uterine activity for pregnant women with a high risk of premature

birth with nurses’ frequent contact with these pregnant women. The authors’ goal
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was to determine if the home monitoring of uterine activity would lower the prema-

ture birth rate. They randomly recruited 2422 pregnant women with a high risk of

premature birth. The pregnant women received information about premature birth

symptoms and signs, and they were then divided into three groups according to the

following conditions:

• Weekly contact with a nurse.

• Daily contact with a nurse.

• Daily contact with a nurse and home monitoring of uterine activity.

For the home monitoring group, pregnant women were provided with Corometrics

600, a uterine monitoring device. The device records, stores, and sends information

on uterine contractions to a central receiver to be diagnosed immediately. The women

were asked to do a one-hour monitoring session in the morning and evening.

The study was well-constructed due to the adequate number of recruited patients

and the organization of the three groups. The system was set up to monitor uterine

contractions twice a day with the involvement of a nurse. This study aimed to observe

if there was a difference in pregnancy progress when the pregnant woman was home

monitored and determine if home monitoring can help prevent premature birth. The

authors concluded that there were no differences in the outcome of the pregnancy

between the three groups. They also found that the second and third groups had

more unscheduled visits to the hospital.

This system, however, had the following drawbacks:

• Expensive due to the price of the monitoring device.

• Involvement of medical staff.

• Restricts pregnant women’s movement while they are connected to the monitor.

The second study was conducted in 2009 by [42]. The study compared the use

of EHG with IUPC to monitor pregnant women. The authors recruited 32 pregnant

women in labour to record EHG and IUPC at the same time for a minimum of 30 min-

utes. They used a simple algorithm to automatically recognize uterine contractions.

The algorithm extracted the amplitude and duration of uterine peaks.

The authors concluded that EHG is accurate in detecting uterine contractions
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with a sensitivity rate of 94.5%. However, the authors did not provide results on

the false positive rate (FPR) (i.e. uterine contractions that occurred but were not

detected). In addition, the study is not cost-effective, as it requires hospital equipment

and medical staff for monitoring, and pregnant women need to be hospitalized to be

monitored. Furthermore, the monitoring is done at the time of birth, which does not

make it suitable for monitoring pregnant women at any gestational age.

The third study was conducted in 2017 on the effectiveness of the home monitor-

ing of uterine activity on the health of pregnant women with a high risk of premature

birth and premature babies [43]. The authors aimed to determine if using a home

monitoring system would lead to the same outcomes for the pregnant woman’s and

fetus’s health status if such a monitoring system was absent during pregnancy.

The authors studied randomized control trials of home uterine activity monitoring

for pregnant women with a high risk of premature birth from 15 studies. The au-

thors compared the care of pregnant women with and without home uterine activity

monitoring and with and without patient education programmes.

The study was well-designed and well-analyzed. The authors evaluated the trials

for inclusion and risks of bias and reviewed data for accuracy. They collected and

analyzed data from 6008 patients. The authors found that pregnant women who used

home monitoring of uterine activity were less likely to have a premature birth at less

than the 34th week of pregnancy. The authors also found that babies born prematurely

to women that used the home monitoring of uterine activity system were less likely

to need to stay in the neonatal intensive care unit. However, pregnant women using

the home monitoring of uterine activity had more unscheduled antenatal visits.

3.2.2 Technologies for Premature Labour Monitoring

We outline three studies that focus on the technologies for monitoring pregnant

women, thirteen studies on using ML algorithms and one study on using DL al-

gorithms:
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Monitoring Pregnant Women

The first study by [44] proposed a mobile healthcare system to monitor the health

status of pregnant women with hypertensive disorders using body sensors. Their

system uses the Naïve Bayes classifier model to support decision making for physi-

cians. To evaluate the system, the authors experimented with 25 pregnant women.

Even though there was a slight improvement in the clinical condition of the pregnant

women, 84% of the pregnant women did not improve. The performance analysis of

the classifier showed an accuracy of 0.8.

The second study by [32] proposed the use of Nemo telemonitoring healthcare

for home signals monitoring of the fetal and maternal heart rate, uterine contractions,

and fetal electrocardiogram. The system consists of the Nemo Healthcare system

sensors, web server, and web application. The Nemo Healthcare system sensors collect

the vital signs of the pregnant woman in real time and send them wirelessly to the web

server via the Internet. The physician can then monitor and diagnose the pregnant

woman’s health status via the web application. Pre-defined data were used to evaluate

the system to simulate the signals. Although it is a well-designed system, it requires

a server and physician to monitor the results, which can be expensive and would

require physicians to contribute their time to monitor and analyze the results.

The third study by [45] proposed a system to monitor the pregnant woman’s

cardiotocograph signals. The proposal consists of three components:

• The Obstetrics-Gynecology Department Information System (ObGyn).

• Android-based application.

• Smart sensors to collect vital signs from the pregnant woman.

The smart sensor collects and analyzes data and sends an alarm to a smartphone,

relaying the alarm to the ObGyn system for a physician to monitor the results. The

system was validated by applying it to ten pregnant women; however, the authors did

not provide any details regarding system validation results. Similar to the previous

system designed by [32], this design can be expensive to implement, and the physicians

must contribute their time to monitoring the results.
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textbfIn the fourth study the authors presented a long-term continuous and remote

healthcare monitoring system for pregnant women during pregnancy and postpartum

using IoT by [46]. The system monitors the stress, sleeping and physical activities

of pregnant women. Moreover, the collected data from pregnant women are stored

and analyzed remotely and accessed by health providers at any time. Furthermore,

the authors integrated artificial intelligence (AI) methods for data analysis such as

deep learning-based quality assessment of data, personalized modelling, missing data

imputation and anomaly detection. The authors recruited 28 women with high-

risk pregnancies via advertisements in maternity clinics in Southwestern Finland and

social media in 2019. Pregnant women were monitored during the pregnancy period

and three months postpartum.

The authors designed the system to be adequate for monitoring more than one

specific health issue for a long time and collecting different types of data. However,

the system may not be comfortable for pregnant women since they have to wear

three different types of WBSs. The system can also be expensive to set up due to

the need for three WBSs, access to the Internet and servers for data storage and

analysis, making the system not suitable for developing countries or remote rural

areas. Besides, the system requires the efforts of a medical professional to analyze

the data. Moreover, no uterine contraction signals analysis feature was added to the

system design, even though they play a crucial role in pregnancy status assessment.

The authors also did not provide information or evaluation regarding the machine

learning or deep learning methods they used.

The authors of the fifth study [47] proposed a remote pregnancy risk monitor-

ing system using WBSs and mobile phones. The system is non-invasive, continuous

and home-comfortable. It uses the Internet to connect pregnant women to healthcare

providers. Moreover, the system analyzes data using the SVM algorithm and provides

data visualization for the healthcare provider to monitor the status of the pregnant

women.

The system needs several WBSs to collect data, a server to store and analyze data,
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Internet access and a medical professional to analyze the data. Together, this make

the system expensive to deploy in developing countries or remote rural areas. Fur-

thermore, the use of several WBSs could make it uncomfortable for pregnant women

to use. The authors also claim that the collected medical data can be understood

by other non-medical personnel, which raises the issue of the medical data being in-

terpreted by someone with no medical background. The authors also claim that the

system prevents complicated pregnancy risks such as stillbirth or premature birth

without providing solid evidence to support this claim.

Moreover, the authors did not provide any information on or evaluation of the

SVM algorithm. Furthermore, the authors did not specify if the data used in the

evaluation are actual or simulated data. In addition, the authors did not provide

information about the uterine contractions analysis.

Machine Learning Studies

The first study by [30] compared the performance of three classifying algorithms:

the RF classifier, Rule-based classifier and Penalized Logistic Regression classifier.

They used the Term-Preterm EHG database [126] from PhysioNet [127]. They ex-

tracted four features:

• RMS.

• Median frequency (MDF).

• Peak frequency (PF).

• Sample entropy.
The RF classifier had the best performance with a specificity of 86%, sensitivity of

97%, AUROC of 94% and mean square error rate of 14%. No accuracy rate, FPR or

false negative rate (FNR) were reported.

The second study by [48] proposed a system for classifying term and preterm

deliveries using uterine EHG. They used the Term-Preterm EHG database [126] from

PhysioNet [127] and extracted the following 12 features for classification:

• Integrated EMG.

• Mean absolute value of EMG.
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• Simple square integral of EMG.

• Wavelet length of EMG signal.

• Log detector of EMG signal.

• RMS of EMG signal.

• Variance of EMG.

• Difference absolute standard deviation value of EMG signal.

• Maximum fractal length of EMG signal.

• Average amplitude change of EMG signal.

• PF of EMG signal.

• MDF.

The authors used seven advanced artificial neural network classifiers. RBNC per-

formed the best with 90% accuracy, 85% sensitivity, 80% specificity, 90% area under

the ROC curve (AUC), and a 17% mean error rate. No results were reported on the

FPR and FNR.

The third study by [49] proposed a new algorithm to use to predict premature

labour for women with a high risk of premature labour using term and preterm EHG

signals. They used the Term-Preterm EHG database [126] from PhysioNet [127]. The

author extracted the following eight features using six levels of WPD:

• Fractal dimension.

• Fuzzy entropy.

• Interquartile range.

• Mean absolute deviation.

• Mean energy.

• Mean Teager-Kaiser energy.

• Sample entropy.

• Standard deviation.

SVM was used to classify uterine EHG signals into term and preterm and reported

an accuracy of 96.25%, sensitivity of 95.08%, and specificity of 97.33%.

The fourth study by [50] proposed a method for labour detection using both

EHG and fetus HR. They used a Bloomlife wearable sensor to collect uterine EHG
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and FHR from 37 pregnant women (19 labour and 18 non-labour). The extracted

features are:

• RMS.

• Normalized range.

• Mean crossing rate.

• Power of the EHG signal.

• Mean HR.

The authors then summarized the features in terms of the mean and standard de-

viation over 20-minute windows into the power of the EHG and the frequency and

amplitude of the main peak. They used the RF classifier and achieved an accuracy

of 79% for EHG only, 81% for HR only and 87% for both. No results were reported

for FPR and FNR.

The fifth study by [18] proposed a system to distinguish between premature and

term birth patterns using RQA and PCA. They used EHG signals from 20 pregnant

women with a risk of premature birth between the 24th and 28th weeks of pregnancy.

The authors used Support Vectors Machine classifications (multiclass SVM) to train

the classifiers with the following five parameters:

• Recurrence Rate.

• Determinism.

• Laminarity.

• Entropy.

• Recurrence Period Density Entropy.

The accuracy of the classification was 83.32%. On the other hand, the authors

did not report other essential results, such as FPR and FNR, on how the classifiers

performed.

The sixth study by [51] proposed a machine learning model to non-invasively

detect labour in unsupervised free-living settings using a Bloomlife wearable body

sensor device. The proposed model has two phases. In the first phase, the researchers

used data collected under supervised laboratory settings to develop artifact and labour
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probability estimation models. They combined EHG and HR data collected at differ-

ent gestational ages and showed a high accuracy in identifying artifacts and labour.

In the second phase, they deployed the models on 142 pregnant women from week 22

to delivery. Pregnant women had an average of seven hours of data. The authors used

the GLMs with the following features extracted over 16-second windows before being

summarized in terms of mean and standard deviation over windows of 20 minutes:

• RMS of the EHG signal.

• Normalized range of the EHG signal.

• Mean crossing rate of the EHG signal.

• Power of the EHG signal.

• Frequency and amplitude of the main peak.

• Mean HR .

The authors concluded that within the last 24 hours of pregnancy, labour probability

is consistently higher than in any other gestational weeks. The authors recruited

an adequate number of pregnant women for the study; however, the proposed sys-

tem cannot be applied for monitoring premature labour since it can detect labour

only 24 hours before delivery, and premature labour can occur spontaneously at any

pregnancy week. Furthermore, the authors did not provide any results on accuracy,

sensitivity, specificity, false positive (FP) or false negative (FN) rates.

The seventh study by [52] proposed a system using SVM classifier with RBF

kernel function to classify EHG signals into term and preterm delivery. The Term-

Preterm EHG database [126], which contains 300 records, from PhysioNet [127] was

used in the study. The authors used the autoregressive model (AR) for feature extrac-

tion and used the particle swarm optimization (PSO) algorithm to find the optimal

features. The authors did not list the selected features. The authors reported a

97.1% accuracy rate, 95% sensitivity, and 99% specificity. No results were reported

regarding FPR or FNR.

The eighth study by [53] proposed a novel and highly efficient approach that

uses one feature to classify EHG signals. It is based on the centroid frequency, a single

time-varying feature extracted using spectral analysis. They used the Term-Preterm
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EHG database [126] from PhysioNet [127]. The authors used four classification al-

gorithms. SVM performed the best with a 99.74% accuracy rate, 99% sensitivity,

and 99% F score (F). They used only one feature that is used in the classification

algorithms, which could imply a bias in the results since EHG signals have several

features that could change how the algorithm would classify the signals. Furthermore,

no FPR and FNR were reported.

The ninth study by [54] proposed a study to evaluate EHG signals for term

and preterm delivery recognition using the RF classification algorithm. They used

the Term-Preterm EHG database [126], which contains 300 records, from PhysioNet

[127]. Thirty-one features were extracted with time domain, frequency domain, time-

frequency domain and nonlinear analysis such as:

• RMS.

• Autocorrelation zero-crossing.

• PF.

• MDF.

• Mean frequency (MNF).

The authors reported an accuracy of 93%, sensitivity of 89%, specificity of 97%, and

AUC of 80%. However, neither FPR nor FNR was reported.

The tenth study by [55] proposed a low computational and efficient algorithm

to detect premature labour using EHG signals. The authors used the Term-Preterm

EHG database (TPEHGDB) with 300 datasets of pregnant women’s EHG signals.

Two hundred sixty-two of these datasets are from term delivery and 38 are from

premature delivery. The authors also used EMD for features extraction and RMS of

the first two intrinsic mode function (IMF) of decomposed EHG signals as features.

SVM was used for classification.

The authors reported an accuracy rate of 99.5%, sensitivity rate of 98.9% and

specificity rate of 99.3%. It should be noted that the authors did not provide any

results on the FPR and FNR. Moreover, the achieved rates could have some bias

towards the term or premature datasets because, from what we learned from research

papers, each woman’s EHG is different and detecting premature labour is highly
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complex. More rates such as FPR and FNR could clear these viewpoints. Finally,

the rates are from one small database only; hence, more testing on other available

databases is required.

The eleventh study by [56] proposed a system to monitor pregnant women’s

uterine EHG signals and alert them when the initial contractions of labour occur. The

system consists of AgC12 wearable electrodes, EHG data captured by the electrodes

and a smartphone application, and the pregnant woman’s details to alert the health-

care provider. The authors used the Term-Preterm EHG Database (TPEHGDB) with

300 datasets to extract features and classify the term and preterm datasets using the

following machine learning classifiers: SVM, Naïve Bayes classifier, K-NN classifier,

Gradient Boost and Decision Tree.

The SVM performed the best, with an accuracy rate of 96%, a specificity rate

of 94% and a sensitivity rate of 92%. Naïve Bayes performed the worst, with an

accuracy rate of 85%, a specificity rate of 84% and a sensitivity rate of 80%. There

was no reporting of FPR or FNR. The datasets are relatively small, and more testing

is needed with available databases.

The twelfth study by [57] proposed a novel method to classify EHG signals into

pregnancy or labour signals. They built their method based on wavelet transform,

sample entropy and stacked sparse autoencoder. The authors used the Icelandic

16-electrode Electrohysterogram Database [128] of PhysioNet [127]. To produce a

64-parameter feature vector, the authors applied the following steps:

1. Perform, using db1, 3-level wavelet decomposition of a time series.

2. Compute level-3 approximation coefficients of a time series.

3. Compute the sample entropy of detail coefficients at levels 1, 2 and 3.

The authors extracted 150 pregnancy EHG samples and 150 labour EHG samples.

For training, 100 feature vectors were randomly chosen, and the other 50 feature

vectors were used for testing. A two-hidden-layer SSAE deep neural network with

a softmax classifier network was chosen to automatically classify EGH signals. The

SSAE algorithm was compared with two widely used classification algorithms: the

extreme learning machine (ELM) and SVM. The results show that SSAE performed
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the best, with 90% accuracy, 92% sensitivity and 88% specificity. However, there

were no results reported for the FPR and FNR. Furthermore, the number of datasets

for training and testing is too low (300 in total), which can cause biases or overfitting.

More datasets are needed to further confirm and generalize the results.

The thirteenth study by [58] proposed a methodology to automatically detect

EHG contractions using signal envelope features. They evaluated two main features:

contraction detection and its related delineation accuracy using the following five

methods:

1. Wavelet energy.

2. Teager energy.

3. RMS.

4. Squared RMS.

5. Hilbert envelope.
The authors used the Icelandic 16-electrode Electrohysterogram Database [128]

of PhysioNet [127]. They selected datasets of gestational age between 29 and 41

with 20 subjects, which represent 16% of the datasets. From those 20 subjects, the

authors obtained 2383 contractions. The five methods were then applied to detect

contractions using the associated energy bursts as a feature with a sample window of

70 seconds.

Of the five methods, the squared RMS gave the best results with an accuracy

rate of 97.15% for contractions detection and 89.43% for delineation. Furthermore,

the paper is very well explained; however, no specificity or sensitivity rates were

given. Moreover, the authors talked about the FPR in the abstract; however, they

reported the same rates in the results section as FNR, not FPR. Another issue is that

the datasets are too small, which can cause biases or overfitting. There are other

available datasets the authors could use to further confirm and generalize the results.

Deep Learning Studies

The study by [59] used CNN to identify uterine contractions in EHG signals from

two databases. The first database is the Icelandic 16-electrode Electrohysterogram
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database [128] from PhysioNet [127]. The second database was collected by recruit-

ing 20 pregnant women with singleton pregnancies at the Department of Gynecology

and Obstetrics, Peking Union Medical College Hospital, Beijing. The authors cre-

ated 14,016 45-second-length segments from the first database: 7008 with uterine

contractions and 7008 without uterine contractions. The segments with the uterine

contractions were extracted based on the uterine contractions’ peak corresponding

with the tocodynamometer signals from the same database. The author extracted a

total of 308 segments from the second database: 154 with uterine contractions and

154 without uterine contractions. All EHG segments were saved and normalized by

resizing to 482 X 482 pixel images.

Furthermore, CNN’s ability to recognize uterine contractions was evaluated using

five-fold cross-validation using the first database. The CNN model was then applied

to the second database for testing the model. The results for the first database are

98% accuracy, 87% sensitivity, 93% specificity, 92% AUC, FP value of 121 and FN

value of 903. For the second database, there was 93% accuracy, 88% sensitivity, 97%

specificity, 87% AUC, FP value of 5 and FN value of 18. The study is well written and

designed. The authors were able, to an extent, to increase the input datasets to the

CNN models from the first database since the size of EHG data from pregnant women

is hard to collect in large quantities to use in deep learning approaches. However, the

authors did not provide any information on the average recording time; hence, more

testing is needed to evaluate the proposed approach’s ability to detect if a pregnant

woman is in labour. Furthermore, the proposed approach needs tocodynamometer

signals, which will make it more expensive and unusable in home-monitoring scenarios

due to the high demand for medical devices and medical staff for data collection.

3.3 Literature Review Comparision and Research Questions

Table 3.1 summarizes the proposed studies and their limitations. The "ease of use"

and "designed for developing countries" criteria were added to the comparison ta-

ble based on the studies recommendations in Section 1.3.2. These two criteria are
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Proposed systems Continuous Mobility Home comfortable Use of EHG Designed for premature birth Auto. (no physician)
Dyson et al. [22] X X
Jacod et al. [42] X

Urquhart et al. [43] X X
Rodrigues et al. [44]

Vermeulen-Giovagnoli et al. [32] X X X
Ni et al. [45] X X X

Idowu et al. [30] X X
Fergus et al.[48] X X

Acharya et al. [49] X X
Altini et al. [50] X

Borowska et al. [18] X X
Altini et al. [51] X

Hoseinzadeh and Amirani [52] X X
Degbedzui and Yüksel [53] X X

Peng et al. [54] X X
Shahbakhti et al. [55] X X
Sheryl Oliver et al. [56] X X X

Chen et al. [57] X
Esgalhado et al. [58] X

Hao et al. [59] X
Sarhaddi et al. [46] X X

Veena and Aravindhar [47] X X

Table 3.1: Summary of the related work studies

reflected on the framework’s application UI.

As can be seen from the table, most of the proposed systems are costly, uncomfort-

able for pregnant women to use, or need a physician to analyze the results. Moreover,

none of them is designed for developing countries, which is where most premature

births occur.

To overcome these limitations, we propose an automated, low-cost, easy-to-deploy,

and reliable home uterine EHG activity monitoring system for pregnant women with

a high risk of premature birth using WBSNs. The proposed system also aims to

mitigate the consequences of premature birth for the pregnant woman and the fetus.

The proposed system will continuously analyze EHG readings without the need for a

physician using ML and DL approaches. Furthermore, the proposed system will be

suitable for use in developing countries due to its low budget. The following list is

the advantages of the framework:

• Reduce the system cost to be affordable for developing countries.

• Eliminate the need for a physician for continuous monitoring.

• System design suitable for low-end smartphones.

• Integrating the smartphone with ML and DL for an accurate and fast pregnancy

health status decision.
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3.3.1 Research Questions

As concluded in Section 1.3, preventing premature births is difficult; however, labour

itself is detectable. Moreover, the health of the pregnant woman and the fetus is the

central issue in premature birth alongside the financial burden that comes afterward.

Therefore, we need a system that continuously monitors the uterine contractions of

the pregnant woman and detects if she is in labour, which would allow for the early

detection of premature birth and provide a chance for medical intervention that can

reduce premature birth outcomes. This analysis leads us to the following research

questions:

RQ1: Will the use of WBSNs and smartphones to continuously monitor uterine

contractions of pregnant women at a high risk of premature birth lower the outcomes

of premature birth?

RQ2: Will the use of ML and DL algorithms improve the detection and prediction

of labour for pregnant women with a high risk of premature birth?

3.4 Chapter Summary

This chapter discussed the related work and literature review of previous studies in

monitoring pregnant women for both medical and computer science fields. We also

presented the research contributions and research questions. In the next chapter, we

will present our previously proposed system.



Chapter 4

Research Focus

4.1 Motivation

With practical and cost-effective care, researchers suggest that over three-quarters of

babies born prematurely could be saved [11]. Furthermore, researchers have suggested

that premature birth rates could be lowered by improving the care of pregnant women

before, during, and after pregnancy [11] [19] [21] [43] [88]. Therefore, there is a crucial

need for an automated approach to non-invasively, continuously and reliably monitor

pregnant women at a high risk of premature birth [32] [74]. Such an approach can

help mitigate the consequences of premature birth and thus provide better healthcare

for both the pregnant woman and the fetus [35] [51]. Furthermore, with over three

billion smartphone users worldwide, the use of smartphones to deliver healthcare

services and solutions has been increasing in recent years [92].

4.2 Objectives

We propose an automated framework for monitoring pregnant women with a high risk

of premature birth using WBSNs and a smartphone with the following objectives:

• Continuously monitor uterine contractions.

• Reliably record uterine contractions.

• Accurately analyze and detect if the pregnant woman is in labour.

• Being fully mobilized: The pregnant woman can be monitored from the comfort

of her home.

• Being cost-effective: Affordable to be deployed in developing countries.

• Easily installed and used.

• Effectively consume WBSNs’ and smartphone’s resources.
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Building upon these objectives, we will present in detail our proposed framework in

the next section.

4.3 Framework Overview

As established in Chapter 1, premature birth has serious health issues for both the

pregnant women and the fetus with an infant mortality rate of 85%. It can also

lead to lifelong health complications for surviving infants. Furthermore, healthcare

systems and families suffer from a substantial economic burden by having to take care

of surviving babies.

Currently, there is no permanent treatment to prevent premature birth. There-

fore, the best treatment is to prevent or mitigate the consequences of premature

birth through early detection using monitoring systems [19]. Authors have suggested

monitoring uterine contractions as a solution to reduce the health and economic con-

sequences of premature birth. The monitoring system must be automated and reliable

in order to evaluate pregnancy progression and detect labour [6] [21] [71]. Further-

more, the monitoring of uterine contractions has been proven to be an efficient method

for detecting labour [23] and allows a significant percentage of pregnant women to

give birth at term, which means such monitoring will help pregnant women with a

high risk of premature birth avoid or mitigate premature birth-related health and

economic issues [75].

Uterine contractions change during pregnancy [75]. The changes in uterine con-

tractions occur as frequency spikes increase over time when the pregnant woman is

going into labour. Extracting data on such spike frequencies will lead to the effi-

cient detection of labour [78]. Moreover, uterine contraction frequencies are higher

for pregnant women who deliver prematurely and start earlier than pregnant women

who deliver at term [75].

To use uterine contractions’ EHG in predicting and detecting premature birth,

we need to extract uterine contractions’ quantitative parameters from EHG readings

[1] [64] [42]. Specifically, we need to extract two contraction parameters used by
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obstetricians to evaluate pregnancy progress [35] [60] [64]:

• Amplitude.

• Frequency.
Over time, the intensity of uterine contractions increases when the pregnant

woman gets closer to labour [90]. In particular, uterine contractions become more

frequent with larger amplitudes [33]. Measuring the changes in these readings as they

get more intense over time will enable us to detect labour. In the next section, we

will describe our framework based on monitoring EHG characteristics.

4.3.1 Framework

The two main challenges associated with premature birth are detection and prediction

[1]. Therefore, based on the advantages of WBSNs listed in Section 2.3 and the

parameters extracted from EHG signals, we propose an automated wireless home

uterine monitoring framework to use to detect when a pregnant woman with a high

risk of premature birth is in labour using WBS and a smartphone.

The WBS will be attached non-invasively to the pregnant woman’s abdomen us-

ing bipolar electrodes to collect uterine contraction information in the form of EHG

signals and send them wirelessly to a smartphone via Bluetooth. The smartphone

will then analyze the received data from the WBS for 30 minutes. The 30-minute

monitoring period was chosen based on the two studies conducted by [33] and [90],

which generally mimics how obstetricians monitor pregnant women before deciding if

they are going into labour. After the 30-minute monitoring period, the smartphone

will trigger a warning if the pregnant woman’s EHG readings resemble consistent

patterns of uterine contraction spikes (i.e. she is in labour).

The framework is fully portable and hence will not restrict the pregnant woman

from moving around freely. The pregnant woman can also be monitored while she is

in the comfort of her home. Moreover, due to the low cost of the WBS, the framework

will be deployable and affordable for use in developing countries. Furthermore, there

is no need for obstetricians to contribute their valuable time to continuously analyze

results and determine if the pregnant woman is in labour as the smartphone will do
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Figure 4.1: Framework’s proposed schemes

the analysis automatically. To the best of our knowledge, there is no mobile uterine

activity system designed to detect premature labour with the advantages mentioned

earlier in Section 4.2.

The framework consists of three proposed schemes to analyze uterine EHG signals:

1. Designing our mobile algorithms with two approaches:

(a) Threshold algorithm.

(b) Amplitude-frequency algorithm.

2. Using machine learning algorithms.

3. Using deep learning algorithms.

Figure 4.1 shows the framework’s proposed schemes. Each scheme will be explained

in detail in the following chapters.
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4.4 Chapter Summary

In this chapter, we presented the motivation and listed the objective of the research.

We also presented the framework’s three schemes. The framework is designed to

be portable, cheap, and reliable. Finally, we will explain each scheme in a separate

chapter. The next chapter will discuss the threshold algorithm scheme presented

previously in the research aptitude defence (RAD).



Chapter 5

Threshold Algorithm Scheme

5.1 Introduction

In this scheme, we used a threshold to determine the number of contractions every

ten minutes in a half-hour period. Our first paper entitled "Framework to monitor

pregnant women with a high risk of premature birth using sensor networks" [129] was

published from this scheme. In the next section, we will present the scheme in detail.

5.2 Proposed Scheme

As established in Chapter 1, premature birth has severe health impacts on pregnant

women and babies. Babies born prematurely can have long-life health complications.

Therefore, we designed an algorithm to detect if a pregnant woman with a high risk

of premature labour is in labour based on a predefined threshold. The system is

continuous, home-comfortable, cost-effective, and reliable. We designed a proof-of-

concept smartphone prototype application to collect and analyze EHG readings and

trigger a warning if the result of the analysis of the readings is above a predetermined

threshold.

5.3 Scheme implementation

We designed and implemented a proof-of-concept prototype application using Java

programming language for the Android operating system (OS). The programming

platform was the Android Studio version. The application was deployed and tested

on an Asus Nexus 7 tablet.
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The application will continuously analyze the dataset inputs for uterine contrac-

tions. Each monitoring session will last for 30 minutes. Each 30-minute session will

be divided into three 10-minute phases. During each 10-minute phase, the application

will count uterine contraction readings above a predefined criterion. At the end of

the 30-minute session, the application will calculate the average of the contraction

readings counted in the three 10-minute periods (30 minutes). If the average is equal

to or above 5, a warning will be triggered to notify the pregnant woman. Figure 5.1

shows the flow chart of the system, where:

• Contractions count (Contr).

• 30-minute session counter check (CC).

• Retrieved uterine contraction reading (RUCR).

• Threshold (TH).

• Start time (Ts).

• End time (Te).

5.3.1 Scheme User Interface

In total, the proposed prototype has four interfaces. The recommendations from the

studies in Section 1.3.2 were applied to the application’s UI as follows:

• We used green and red colours for visual representation, similar to the traffic

lights, to be globally and easily recognized and interpreted by illiterate users.

• We used minimal text to represent the functions of the buttons.

• We used colours and voice feedback in the warning interface for easy recognition

by illiterate users.

The first one is the main interface at the beginning of the application. On this

interface, there are three options: start monitoring, exit application, and show the

electrohysterogram wave plot. Figure 5.2 shows the main interface.

When the user clicks on the start monitoring button, the monitoring process will

begin with two options. The first option will be monitoring without showing the

electrohysterogram wave plot (i.e., the electrohysterogram wave plot option checkbox

is unchecked). In this case, the screen will switch to the monitoring screen as shown



46

Figure 5.1: Threshold scheme flowchart
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Figure 5.2: Application main interface - Threshold scheme

in figure 5.3. There is only one button on this screen that will cancel the monitoring

process and go back to the main screen.

The second option will be monitoring while showing the electrohysterogram wave

plot (i.e., the electrohysterogram wave plot option checkbox is checked). The wave

plot screen will start, as shown in figure 5.4.

In both options, the application will be continuously analyzing uterine contraction

readings. After finishing data analysis, the warning interface will be triggered, as

shown in figure 5.5 with an alarm sound. The mute button will stop the alarm sound,

end data analysis, and return to the main interface.

5.4 Data Selection and Preprocessing

To test the application, we used a uterine contraction signals dataset of pregnant

women from PhysioNet [127]. The database we used was the Icelandic 16-electrode

Electrohysterogram (EHG) Database [128]. Figure 5.6 shows a sample of the uterine

contraction readings database.

The Icelandic 16-electrode Electrohysterogram (EHG) Database [128] has 45 record-

ings of pregnant women performed between 2008 and 2010. Each recording consists
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Figure 5.3: Application monitoring interface - Threshold scheme

Figure 5.4: Application wave plot interface
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Figure 5.5: Application alarm interface - Threshold scheme

Figure 5.6: Uterine contraction readings data sample
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Figure 5.7: Data noise at the beginning of the readings

of 16 datasets of uterine contractions readings labelled from EHG1 to EHG16. We

arbitrarily chose the EHG1 dataset from the ice001_l_1of1 recording to be our sim-

ulation data.

The beginning of the dataset contains noisy data. These noisy data can negatively

affect the outcome of the simulation. Figure 5.7 shows the electrohysterogram of

the beginning of the dataset readings where the noise data exist. To avoid such

an outcome, we selected the readings with fewer noise data (i.e., removed the first

readings where the noisy data exist).

Finally, the dataset used in the simulation has a list of 99467 uterine contraction

readings in millivolt (mV).

5.4.1 Data Analysis

In general, the system data analysis is divided into three 10-minute phases and a

30-minute session. At the end of the 30-minute session, the simulation will either

trigger a warning or not depending on the output result. The details of each phase

are as follows:

10-minute phase

The first phase consists of three sub-phases. Each sub-phase lasts for 10 minutes.

During each sub-phase, the program retrieves and counts uterine contraction readings

from the database. The program also draws each reading on x and y axes to simulate
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a real-time chart of the uterine contractions. Algorithm 1 illustrates the 10-minute

phase.

Algorithm 1 10-minute Phase
Require: RUCR from the dataset
1: repeat
2: start Ts
3: retrieve RUCRi
4: set x axis = RUCRi
5: set y axis = i
6: draw point (x,y)
7: if RUCR >= 5.7 then
8: Contr++
9: end if

10: start Te
11: if Ts− Ts >= 10 then
12: CC++
13: end if
14: i++
15: until CC = 3

30-minute phase

This is the second phase of the uterine contraction readings analysis. Each simulation

session will last for 30 minutes. At the end of the session, the application will calculate

and analyze the average of the uterine contraction readings count over the three 10-

minute phases. If the average is equal to or above 5, the application will trigger

a warning. Otherwise, no warning will be triggered. Algorithm 2 illustrates the

calculation and analysis of the uterine contractions for each 30-minute session.

Algorithm 2 30-minute Session
Require: 30-minute session counter check CC
1: if (Contr/3) >= 5 then
2: return true {trigger warning}
3: else
4: return false {no warning}
5: set Contr = 0, CC = 0, i = 0
6: end if
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5.5 Evaluation Methodology

A proof of concept was implemented in the Java programming language to evaluate

the proposed scheme. A dataset from the Icelandic 16-electrode Electrohysterogram

database [128] was used to test the implementation.

The dataset we used was the ice001_l_1of1 dataset. The dataset has a list of

99467 uterine contraction EHG readings in mV of a pregnant woman in labour. The

following aspects will be used to evaluate the proposed scheme:

• Threshold’s false positive rate.

• central processing unit (CPU) Memory performance.

• Power consumption.

5.5.1 Threshold’s false positive rate

To detect a uterine contraction occurring in the dataset, we need to choose a thresh-

old. If a reading from the dataset is equal to or above the threshold, this reading is

considered a uterine contraction. Moreover, since each patient has a different thresh-

old for uterine contractions detection [74], we can modify the application based on

the patient’s threshold preferences. The threshold we chose was 5.7 mV.

According to [74], the threshold is selected based on the false positive rate. To

evaluate the selected threshold accuracy in detecting the occurrence of a uterine

contraction, we will calculate the false positive rate of the threshold.

5.5.2 CPU and Memory performance

As we mentioned in Chapter 4, the proposed scheme should be cheap and reliable. In

addition, our proposed scheme is deployed on a smartphone that has limited resources.

For these reasons, we need to evaluate the simulation of the proposed scheme in terms

of CPU and memory consumption. The simulation should efficiently consume CPU

and memory resources to be deployed even on cheap, lower-end smartphones.
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Finally, we will use the Android Monitor tool from the Android Studio platform

to analyze the CPU and memory consumption.

5.5.3 Power consumption

The simulation should efficiently consume the smartphone’s power resources. This

will also make the proposed scheme deployable on high-end as well as low-end smart-

phones. To perform the power consumption analysis, we will use a tool called Battery

Historian.

5.6 Results

In this section, we present the results of the evaluation methodology for the scheme.

The aspects covered in this section will be the threshold false positive rate, CPU and

memory performance, and power consumption. The application was running for 30

minutes during the testing and triggered a warning at the end of the 30 minutes.

Figure 5.8 shows the application running time at the beginning and the end of the

monitoring session with a triggered warning.

5.6.1 Threshold and false positive rate

We chose the threshold of 5.7 mV from the possible thresholds listed on the record

we chose from the dataset. Table 5.1 shows the contractions count for the thresholds.

Threshold mV Count of Contractions
from the Application

6.0 0
5.9 0
5.8 16
5.7 82
5.6 901
5.5 2278

Table 5.1: Thresholds contractions count

As we mentioned in Section 5.5, the research outcomes of [74] suggest that the
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(a) The beginning

(b) The end

Figure 5.8: application running time at the beginning and the end of the monitoring
session
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Threshold mV False Positive Rate
6.0 0 %
5.9 0 %
5.8 0 %
5.7 3.79 %
5.6 0.22 %
5.5 0.32 %

Table 5.2: Thresholds false positive rate

threshold is to be chosen based on its false positive rate. Our choice of 5.7 mV as a

threshold has a false positive rate of 3.79%. Table 5.2 shows the false positive rate

for the thresholds.

5.6.2 CPU and Memory performance

We analyzed the application’s CPU and memory performance at the beginning, the

middle, and the end of the application running time (i.e., the warning was triggered).

As seen in Figure 5.9, the application at the beginning uses about 60% of the CPU

and allocates a maximum of 26.64 MB out of 1.80 GB of the device’s memory.

The X axis is the running time on both the memory and CPU charts. The Y axis

is "Memory Size" on the memory chart and "Usage Percentage" on the CPU chart.

After 10 minutes of running time, the application used 40% of CPU power and used

the same amount of memory (26.64 MB). Figure 5.10 shows the CPU and memory

usage in the middle of the application running time.

Figure 5.11 shows the end of the application’s running time. CPU consumption

is still the same with 40% usage until the 30-minute period where we notice a slight

increase due to the warning being triggered. Memory usage is also still the same,

with 26.64 MB.

5.6.3 Power consumption

The device has a battery capacity of 3448 mAh. As seen in Figure 5.12, the application

took 30 minutes from start to finish. During execution time, the device screen was
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Figure 5.9: The beginning of the application’s running time

Figure 5.10: The middle of the application’s running time
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Figure 5.11: The end of the application’s running time

on and the charger was off. The application consumed between 103.44mAh (3%) and

137.92mAh (4%) of the battery charge.

Figure 5.13 shows the complete analysis of the application battery consumption.

The screen bar shows that the screen was on all the time. The Audio bar shows that

the warning was not triggered until the end of the 30 minutes. The device temperature

was 24.4 ◦C (75.9 ◦F). Finally, the "charging on" bar shows that the device was not

charging while the application was running.

5.7 Discussion

This chapter will discuss the results of the proposed scheme’s simulation and how the

proposed scheme met the goals set in Chapter 4.
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(a) Start

(b) End

Figure 5.12: Battery status at the beginning and the end of the application’s running
time

Figure 5.13: The full analysis of the application’s battery consumption
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5.7.1 Threshold and false positive rate

Each pregnant woman can has a specific threshold. Our analysis results indicate that

5.7 mV has the optimum false positive rate of 3.79%, and that is why we chose this

value from the dataset to be our threshold. As shown in Table 5.1, any value lower

than 5.7 mV will result in very high contraction counts, which will always result in a

warning whether there is labour or not. With 5.8 mV as a threshold, the contractions

count is low, which will result in no warning. That contradicts the dataset properties,

indicating that the pregnant woman was in labour at the time of recording. Finally,

any result above 5.8 mV will result in no contraction counts.

In Table 5.2, we can notice that, other than 5.7 mV, all the thresholds have low

false positive rates. However, we can not choose them since these thresholds already

contradict the dataset properties mentioned in the previous paragraph. For these

reasons, 5.7 mV as a threshold is the optimum choice.

5.7.2 CPU and Memory performance

CPU performance

Regarding CPU performance, the application initially used up to 60% of CPU power.

This relatively high usage is due to the preparation of the large number of uterine con-

traction readings (99,467 readings) from the dataset before the start of contractions

monitoring. The dataset is large, especially when we deploy it on the Android OS’s

limited resources. However, this peak decreases to 40% after the dataset is prepared.

The application then works smoothly until the end where a warning is triggered. This

40% usage is justified since the application kept the device screen on, and the device

temperature was average throughout execution time during the application running

time. This indicates that the CPU was running efficiently.

Memory performance

The application allocates 26.64 MB out of 1.80 GB of the device’s memory. This is

about 1.44% of the memory usage, which is considered low, especially if it is deployed
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on other devices with lower hardware specifications.

5.7.3 Power consumption

Power consumption results show that the application consumed 4% of the battery’s

charge. Considering that the screen was always on and the device temperature was

average, we can conclude that it efficiently consumes battery charge.

5.7.4 Results implication on the threshold algorithm scheme

Although the threshold algorithm scheme met the goals described in Chapter 4, we

need to make sure the system design can be generalized to other uterine contraction

EHG databases. Moreover, a threshold has to be chosen for each pregnant woman,

which adds more setup time for the system. Thus, we need to elevate the system

design and make it able to analyze EHG readings of pregnant women without in-

dividually assigning thresholds to each pregnant woman. In the next chapter, we

will present the amplitude-frequency algorithm scheme to automatically read and an-

alyze EHG readings of pregnant women without the need for assigning thresholds

individually.

5.8 Chapter Summary

This chapter presented the threshold algorithm scheme to monitor pregnant women

with a high risk of premature birth based on a predefined threshold. We showed the

system design and implementation, evaluation results and discussed the pros and cons

of the scheme design. In the next chapter, we will present the amplitude-frequency

algorithm scheme in detail.



Chapter 6

Amplitude-frequency Algorithm Scheme

6.1 Introduction

In this scheme, we extracted EHG signals’ amplitude and frequency features over a

30-minute monitoring session and used them in determining if the pregnant woman

is in labour. From this scheme, our second journal paper entitled "Automated uterine

contractions pattern detection framework to monitor pregnant women with a high risk

of premature labour" [130] was published in the journal "Informatics in Medicine

Unlocked". In the next section, we will present the scheme in detail.

6.2 Proposed Scheme

As mentioned before, it is challenging to detect or predict premature birth [1]. Our

previous threshold algorithm scheme results were promising in labour detection [129];

however, the proposed scheme lacked some aspects to be generalized. The first aspect

is that it needs more testing with a larger sample of databases. The second aspect

is that the algorithm needs more features and complexity to independently decide

the pregnancy’s progress. Therefore, based on the parameters extracted from EHG

signals, we proposed an automated wireless home uterine monitoring scheme to detect

when a pregnant woman with a high risk of premature birth is in labour.

6.3 Scheme implementation

As we discussed before, EHG is a vital measurement for non-invasively detecting

labour from the pregnant woman’s abdomen [19] [63]. In the amplitude-frequency

61
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algorithm implementation, we will be extracting two features from EHG uterine con-

tractions readings, namely amplitudes (which we will refer to as “peaks”) and frequen-

cies. In terms of time-frequency methods, these two were found to be the most-used

parameters to predict premature birth [4] [8]. Additionally, these two parameters

change throughout pregnancy [70]. They go from weak and uncoordinated signals to

more intense and coordinated as they get closer to labour [27]. According to [68] [90],

the accurate analysis of these parameters is critical in evaluating pregnancy progress.

Building upon this knowledge, we designed and implemented a proof-of-concept

prototype application using the Java programming language. The application was

built using the Android Studio programming platform and was deployed and tested

on an Asus Nexus 7 tablet with Android OS version 6.0.1.

The application continuously reads the dataset inputs of uterine contractions for

a 30-minute session. After the 30-minute monitoring session, the application analyzes

EHG readings and extracts the two features: peaks and frequencies then decides if the

pregnant woman is in labour. If she is in labour, the application triggers a warning

to notify the pregnant woman to go to the hospital. In the following sections, we will

present the scheme UI.

6.3.1 Scheme User Interface

We designed the application’s UI to have only three interfaces. The first interface

is the application’s start interface, which has two options: start monitoring and exit

application buttons. Figure 6.1 shows the main interface.

When the user presses the start monitoring button on the application’s main

interface, the application switches to the second interface shown in Figure 6.2 and

starts the 30-minute monitoring session. This interface has a monitoring timer, end

monitoring button, and exit the application button.

When the 30-minute monitoring session ends with a warning, the application trig-

gers the alarm sound, turns the screen on and shows a warning message, as shown in

Figure 6.3. In the following sections, we will explain data selection and preprocessing.
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Figure 6.1: Application main interface - Amplitude-frequency scheme

Figure 6.2: Application monitoring interface - Amplitude-frequency scheme
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Figure 6.3: Application alarm interface - Amplitude-frequency scheme

6.4 Data Selection and Preprocessing

6.4.1 Data Selection

To test the scheme, we used three publicly available uterine contraction EHG sig-

nals databases of pregnant women from the PhysioNet repository [127]. The three

databases are:

• Icelandic 16-electrode Electrohysterogram Database [128].

• Term-Preterm EHG Database [126].

• Term-Preterm EHG DataSet with Tocogram [131].

The Icelandic 16-electrode Electrohysterogram database has 45 recordings of preg-

nant women performed between 2008 and 2010. Each recording consists of 16 datasets

of uterine contraction EHG signals shown in the data sample in Figure 6.4.

The Term-Preterm EHG database contains 300 uterine EHG recordings of preg-

nant women obtained from 1997 to 2005 at the University Medical Centre Ljubljana,

Department of Obstetrics and Gynecology. Each record is 30 minutes long and has
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Figure 6.4: The Icelandic 16-electrode Electrohysterogram data sample

Figure 6.5: Term-Preterm EHG data sample

12 datasets of uterine contractions EHG signals shown in the data sample in Figure

6.5.

The Term-Preterm EHG DataSet with tocogram has 24 uterine EHG recordings

of pregnant women and another five uterine EHG recordings of non-pregnant women.

It was developed at the Faculty of Computer and Information Science (Laboratory

for Biomedical Computer Systems and Imaging), University of Ljubljana, Ljubljana.

The records themselves were collected at the University Medical Centre Ljubljana,

Department of Obstetrics and Gynecology in 2018 shown in the data sample in Figure

6.6.

There are 376 datasets in the three databases ranging in recording time from less
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Figure 6.6: Term-Preterm EHG DataSet with Tocogram data sample

than 30 minutes to 1 hour. The following section will explain data preprocessing and

how we extracted the final datasets for testing.

6.4.2 Data Preprocessing

As we explained in Section 6.3, the amplitude-frequency scheme’s primary goal is to

detect premature birth by analyzing EHG signals for consistent labour contraction

spikes for the 30-minute monitoring session. We need to extract the datasets from the

three databases and prepare them to be 30-minute-long single columns of readings.

To illustrate further, each dataset in the three databases has several columns of

EHG readings, as shown in Figure 6.4, for example. The length of these datasets

ranges from less than 30 minutes to an hour. Based on that, the datasets extraction

process has the following steps:

1. Extract each column separately from each dataset.

2. Split each column to the length of 30 minutes following these rules:

(a) If the length of the dataset is less than 30 minutes, then discard the dataset.

(b) If the length of the dataset is 30 minutes, then extract the dataset as it is.

(c) If the length of the dataset is more than 30 minutes, then extract the first

30 minutes of the dataset.

(d) If the dataset has more readings after the first 30 minutes, repeat the steps

starting from process number 2a.
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(a) EHG consistent pattern (labour)

(b) EHG random pattern (non-labour)

Figure 6.7: Datasets EHG signal types

From the three databases’ 376 datasets, we extracted a total of 6169 30-minute-

long datasets. In the next section, we will detail the data analysis process for EHG

feature extraction and final decision (FD) selection for labour detection.

6.4.3 Data Analysis

In general, the extracted EHG signals datasets have either a consistent pattern

(labour) or a random pattern (non-labour). Figure 6.7 shows both types of EHG

signal pattern datasets.

Based on this observation, we divided data analysis into two phases, as shown in

the scheme’s general flowchart in Figure 6.8, where SD stands for standard deviation,

and FD stands for final decision. The scheme’s general flowchart is divided into four

sections:

1. Data streaming section (coloured green), where the application reads EHG sig-

nals.

2. Phase 1 analysis section (coloured blue).

3. EHG feature extraction Section (coloured orange).
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4. Phase 2 analysis section (coloured gray).

If the dataset does not pass Phase 1, it has a random EHG signal pattern, and

the final decision will not trigger the alarm. If the dataset passes Phase 1, it goes into

feature extraction, followed by Phase 2. If the dataset does not pass Phase 2, then

the final decision will be to not trigger the alarm. Otherwise, the final decision will

be to trigger the alarm since the dataset has passed Phase 2. The following sections

will go into detail for each phase and feature extraction process.

6.4.4 Phase 1 Analysis

To optimize the proposed scheme, we need to first recognize if the dataset’s EHG

signal pattern is consistent or random. We need a value that can determine if the

pattern of the EHG signals is random and can be efficiently calculated using the

smartphone’s limited resources. Standard deviation (SD) is one of the commonly cal-

culated attributes when analyzing uterine contractions [33] [42] and can be efficiently

calculated using the smartphone’s limited resources.

To find out if the SD value can indicate the randomness of the pattern of the

EHG signals, we calculated the SD value for several randomly chosen datasets from

our 6169 datasets. We noticed that datasets with a random EHG signal pattern

scored SD values of less than 0.1, while the datasets with consistent EHG signal

patterns scored higher SD values. Therefore, we chose the SD value of 0.1 to be

the threshold to determine if the dataset’s EHG signal has a pattern and therefore

whether Phase 1 will be passed or not. Figure 6.9 shows the plot of the SD value

for all the datasets. Notice that the threshold value of 0.1 (represented by the red

dotted line) distinguishes the datasets with pattern readings from those with random

readings.

Standard Deviation Analysis

To calculate the SD value, we will use the following equations, where N is the size of

the dataset:
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Figure 6.8: Amplitude-frequency scheme general flowchart
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Figure 6.9: SD values plot

1. Sum of all dataset readings:

sum =
N∑
i=1

xi (6.1)

2. Mean of the dataset readings:

µ = sum/N (6.2)

3. SD value:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (6.3)

If the SD value is higher than the threshold of 0.1, then the dataset will pass Phase 1

and proceed to feature extraction and then Phase 2. Otherwise, the dataset will not

pass Phase 1, and no alarm will be triggered.
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6.4.5 Feature extraction

After passing Phase 1, the dataset will go through the process of feature extraction.

As we mentioned in Section 6.3, we will be using peaks and frequency to determine

if the pregnant woman is in labour. Notice that each feature extraction iteration will

be done in a window of 100 EHG readings until the end of the dataset.

Peaks

During labour, the uterine contraction amplitude will peak before decreasing again.

Contractions close to each other will have similar peak levels. The peaks algorithm

will look for the highest reading in the 100 reading range and mark its position as a

peak. Figure 6.10 shows the flowchart of peak extraction, and Algorithm 3 illustrates

the peak extraction process. The following section will define what a frequency is and

illustrate the frequency feature extraction process.

Algorithm 3 Peaks extraction algorithm
Require: dataset EHG signals readings
1: for i← 0 to < sataset_size do
2: isPeak ← ture
3: l ← max(0, i− range)
4: r ← min(datasetSize− 1, i+ range)
5: for j ← l to <= r do
6: if i = j then
7: continue
8: end if
9: if Dataseti < datasetj then

10: isPeak ← false
11: break
12: end if
13: end for
14: if isPeak = true then
15: store peak value
16: store peak position
17: i+ = range
18: end if
19: end for
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Figure 6.10: Peaks extraction flowchart
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Frequency

Frequency is defined as the time from one peak to the next peak. Similar to the peaks,

contractions closer to each other will have similar frequency values. The frequency

algorithm will calculate the distance from one peak position to the next peak position.

Figure 6.11 shows the flowchart of frequencies extraction, where pp refers to peak

position, and Algorithm 4 demonstrates the frequency extraction process.

Algorithm 4 Frequency extraction algorithm
Require: peaks positions
1: for i← 0 to < PeaksSize− 1 do
2: frequency ← Peaksi + 1− Peaksi
3: store frequency value
4: end for

6.4.6 Phase 2 Analysis

Phase 2 is designed to calculate three statistical values used for the final decision

(FD). The three statistical values are:

• The percentage difference between two peaks or two frequencies values next to

each other.

• The percentage rate of pattern dissimilarities (PRPD) of extracted features.

• The final decision (FD) rate.

Each value is the baseline for the next one. We will use the above list of statistical

values to determine if the dataset has a consistent pattern for each extracted feature.

Percentage Difference

This is the first statistical value to be calculated. To illustrate how the percentage

difference (PD) is calculated, we will check the similarity of each value with the

following value and calculate the PD between the two values. Figure 6.12 shows the

PD flowchart, where:

• valP is value1 + value2.

• valM is value1 - value2.
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Figure 6.11: Frequency extraction flowchart
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• perDiff is the PD result.
Algorithm 5 illustrates the percentage difference calculation:

Algorithm 5 Percentage difference algorithm
Require: two values
1: valM ← |val1− val2|
2: valP ← (|val1 + val2|)/2
3: if valP 6= 0 then
4: perDiff ← (valM/valP ) ∗ 100
5: return perDiff
6: i+ = range
7: end if

The lower the PD, the more similar the two values are. If the PD is more than 14%,

then we consider the two values as not similar. In the end, we will count how many

dissimilarities there are in order to calculate PRPD using the following equation:

PRPD =
dissimilarities ∗ 100
extracted_values_size

PRPD should be 25% or less to consider the values consistent. Before calculat-

ing the final decision (FD), both PD and PRPD will be calculated for peaks and

frequencies.

Peaks Analysis

We defined peaks in Section 6.3 as uterine contraction spikes. They are one of the

essential features used in detecting labour. As we mentioned in the previous chapter,

PD and PRPD will be calculated to determine if the peaks have consistency. Figure

6.13 shows the peaks analysis flowchart, where:

• PFC is the count of dissimilar peaks.

• PDR is the peaks percentage difference rate.

• PeaksFD is the peaks final decision.

Algorithm 6 illustrates the peaks analysis process.
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Figure 6.12: Percentage difference flowchart
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Figure 6.13: Peaks analysis flowchart
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Algorithm 6 Peaks analysis algorithm
Require: peaks values
1: PFC ← 0
2: for i← 0 to < peaks_size− 1 do
3: peak1← peaki
4: peak2← peaki+1

5: PDR← percDiff(peaki, peaki+1)
6: if PDR > 14 then
7: PFC ++
8: end if
9: end for

10: PRPD ← (PFC ∗ 100)/peaks_size
11: if PRPD <= 25 then
12: PeaksFD ← FD(PRPD, 1)
13: end if

Frequency Analysis

In Section 6.3, we explained the importance of frequencies in detecting labour. A

uterine frequency is a distance from one peak to the next. Similar to peaks analysis,

PD and PRPD will be used to determine the consistency of the frequencies of the

dataset. Figure 6.14 shows the frequency analysis flowchart, where:

• FFC is the count of dissimilar frequencies.

• FDR is the frequencies percentage difference rate.

• FreqFD is the frequency final decision.

Algorithm 7 illustrates the frequency analysis process:

6.4.7 Final Decision Analysis

This is the last step in dataset analysis. After calculating the peaks FD and frequen-

cies FD, we will calculate the FD of the dataset’s consistency and trigger the alarm.

We will combine the peaks FD (PeaksFD) and frequencies FD (freqFD) to calculate

the FD. If the result is higher than or equal to the FD threshold, the alarm will be

triggered. Our choice of the FD threshold is based on the framework’s design goal

to monitor pregnant women with a high risk of premature birth. As we explained

in Section 1.3, premature birth can happen spontaneously without a known reason
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Figure 6.14: Frequency analysis flowchart
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Algorithm 7 Frequency analysis algorithm
Require: frequeny values
1: FFC ← 0
2: for i← 0 to < frequency_size− 1 do
3: freq1← frequencyi
4: freq2← frequencyi+1

5: FDR← percDiff(frequencyi, frequencyi+1)
6: if FDR > 14 then
7: FFC ++
8: end if
9: end for

10: PRPD ← (FFC ∗ 100)/frequency_size
11: if PRPD <= 25 then
12: FreqFD ← FD(PRPD, 2)
13: end if

and at a very early gestational age. Considering this, we believe that the threshold

must be reasonable to ensure the safety of pregnant women and premature babies,

considering the high risk that could threaten their well-being. Figure 6.15 shows the

application FD analysis flowchart, and Algorithm 8 illustrates the application FD

analysis process. In the next section, we will present the scheme evaluation method-

ology.

6.5 Evaluation Methodology

To meet our research goals listed in Chapter 4, we need to evaluate the proposed

scheme in terms of two aspects:

• Scheme algorithms’ reliability and accuracy in detecting labour patterns.

• Smartphone resources performance.

We will implement a proof-of-concept application in the Java programming lan-

guage using a Nexus 7 tablet and use the uterine EHG datasets derived from the

three databases from [127] to evaluate the application.
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Figure 6.15: FD analysis flowchart
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Algorithm 8 FD analysis algorithm
Require: value (PeaksFD or freqFD), choice
1: switch (choice)
2: case 1:
3: if value <= 10 then
4: peaksF inalDecision← 50
5: else if value > 10 and value <= 20 then
6: peaksF inalDecision← 40
7: else if value > 20 and value <= 30 then
8: peaksF inalDecision← 30
9: else if value > 30 and value <= 40 then

10: peaksF inalDecision← 20
11: else if value > 40 and value <= 50 then
12: peaksF inalDecision← 10
13: else
14: peaksF inalDecision← 0
15: end if
16: case 2:
17: if value <= 10 then
18: freqF inalDecision← 50
19: else if value > 10 and value <= 20 then
20: freqF inalDecision← 40
21: else if value > 20 and value <= 30 then
22: freqF inalDecision← 30
23: else if value > 30 and value <= 40 then
24: freqF inalDecision← 20
25: else if value > 40 and value <= 50 then
26: freqF inalDecision← 10
27: else
28: freqF inalDecision← 0
29: end if
30: end switch
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Classified pattern Classified no pattern
Pattern true positive (TP) FN

No pattern FP true negative (TN)

Table 6.1: Confusion matrix

6.5.1 Reliability and Accuracy Analysis

We will be using a confusion matrix, a two-dimensional matrix table used to rate the

performance of a classifier based on test data [132], to evaluate the scheme algorithms’

performance. Table 6.1 represents the confusion matrix we will be using.

From this table, we will calculate the following equations to measure the system

algorithm performance:

• Accuracy (AC) is the percentage of how often the classifier is correct overall to

identify the dataset as having a pattern or no pattern. AC is given by Equation

6.4:

AC =
TP + TN

TP + TN + FP + FN
(6.4)

• Misclassification rate (MisCl) is the percentage of how often the classifier is

wrong overall to identify the dataset as having a pattern or no pattern. MisCl

is given by Equation 6.5:

MisCl =
FP + FN

TP + TN + FP + FN
(6.5)

• Recall (R) is the percentage of how often the classifier identifies the dataset as

having a pattern when it is has a pattern. R is given by Equation 6.6:

R =
TP

TP + FN
(6.6)

• Precision (P) is the percentage of how often the classifier is correct when it

identifies the dataset as having a pattern. P is given by Equation 6.7:

P =
TP

TP + FP
(6.7)
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• F is the balance between the precision (P) and the recall (R) values. A higher F

value indicates a classifier is more accurate, especially since we care more about

patterned datasets in our results. F is given by Equation 6.8:

F = 2 ∗ P ∗R
P +R

(6.8)

• False negative rate (FNR) is the percentage of how often the classifier identifies

the dataset as not having a pattern when it has a pattern. This evaluation

parameter is important because if it is high, it means the application will not

trigger an alarm, even though dataset has a pattern. FNR is given by Equation

6.9:

FNR =
FN

TP + FN
(6.9)

• False positive rate (FPR) is the percentage of how often the classifier identifies

the dataset as having a pattern when it has no pattern. This evaluation pa-

rameter is important because if it is high, it means the application will trigger

an alarm, even though the dataset has no pattern, resulting in pregnant women

having more unscheduled visits to the hospital for no reason. FPR is given by

Equation 6.10:

FPR =
FP

FP + TN
(6.10)

We used the NetBeans 8.2 platform to test all 6169 datasets and obtain the results

for the confusion matrix. In the next section, we will present the smartphone resources

performance criteria.

6.5.2 Smartphone Resources Performance

As we mentioned in Chapter 4, the proposed scheme should be cheap and reliable.

Moreover, the proposed scheme will be deployed on a smartphone that has limited

resources. For these reasons, we need to evaluate the application in terms of CPU,

memory, and battery power consumption. The application should efficiently consume

the smartphone’s resources so it can be deployed on low-cost, lower-end smartphones,
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which are commonly used in developing countries. We will use two tools to analyze the

smartphone’s resource consumption: the Android monitor tool and Battery Historian.

Furthermore, since we need to deploy the algorithm and the datasets on the smart-

phone for resource evaluation, we cannot use all 6169 datasets individually for testing.

Therefore, we will choose a set of datasets for resource evaluation. This set will con-

tain the different varieties of datasets to cover all possible outcomes, i.e. did not pass

Phase 1, did not pass Phase 2, and passed Phase 2 with alarm.

CPU and Memory Performance

We will monitor the application CPU and memory consumption at the beginning,

middle, and end of the 30-minute monitoring session. We will take the overall aver-

age CPU and memory consumption rate for all the testing datasets to evaluate the

smartphone’s CPU and memory resources’ application consumption efficiency.

Battery Power Consumption

The Batterystats and Battery Historian tools will provide us with the percentage

and quantity (in mAh) of the application’s battery power consumption. For each

chosen dataset, we will monitor the application at the beginning, middle, and end

of the 30-minute monitoring session. We will take the overall average battery power

consumption rate for all the datasets to evaluate how efficiently the application con-

sumes battery power. In the next section, we will present the results of the simulation

experiment.

6.6 Results

In this section, we will present the results of the scheme we obtained based on our

evaluations. The application was running for 30 minutes. Since the Android Studio

monitoring tool needs the tablet to be connected to the laptop and the battery mon-

itoring tool needs the tablet to be disconnected, we used two identical Asus Nexus 7

tablets with no noticeable difference in performance for evaluation. One tablet was
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Classified pattern Classified no pattern
Pattern 2795 581

No pattern 0 2793

Table 6.2: The threshold of 70% confusion matrix for the amplitude-frequency algo-
rithm

used to collect CPU and memory performance, and the other was used for battery

power consumption.

6.6.1 Reliability and Accuracy Analysis

We need to ensure that the algorithm can recognize the uterine contractions labour

pattern. The final decision (FD) represents this crucial point. Furthermore, as we

explained in Section 6.4.7, the risk of premature birth is high for some pregnant

women, and they need to be monitored more carefully than pregnant women with

low premature birth risk. Therefore, we need to ensure that pregnant women with

a high risk of premature birth will have the highest possible probability of getting a

warning from the application. For that reason, our analysis results of reliability and

accuracy will be divided into two FD thresholds:

• FD threshold of 70%.

• FD threshold of 50%.

The threshold of 70% or higher means that 70% of the dataset has a pattern

consistency. Table 6.2 represents the confusion matrix of the threshold of 70% we

will be using to calculate the evaluation equations described in Section 6.5.1.

As with the threshold of 70%, the threshold of 50% or higher means that 50% of

the dataset has pattern consistency. Table 6.3 represents the confusion matrix of the

threshold of 50%. Table 6.4 shows the reliability and accuracy analysis evaluation

results derived from both confusion matrix Tables 6.2 and 6.3. In the next section,

we will present the smartphone’s resource performance.
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Classified pattern Classified no pattern
Pattern 3350 26

No pattern 0 2793

Table 6.3: The threshold of 50% confusion matrix for the amplitude-frequency algo-
rithm

Threshold of 70% Threshold of 50%
AC 0.905 0.995

MisCl 0.094 0.004
R 0.827 0.992
P 1 1
F 0.905 0.996

FNR 0.172 0.007
FPR 0 0

Table 6.4: Reliability and accuracy analysis evaluation results for the amplitude-
frequency algorithm

6.6.2 Smartphone’s Resources Performance

Since the smartphone is the primary resource the proposed scheme uses to analyze

uterine contractions, we need to make sure the application uses the smartphone’s

resources efficiently. The next smartphone resource consumption evaluation results

are the same for both thresholds of 70% and 50%.

Because we are testing the application for 30 minutes, it is not practical to run

the test for all 6169 datasets. Therefore, we randomly chose 13 datasets, making sure

they represent the following:

• All three different databases.

• All three FD situations, i.e., did not pass Phase 1, did not pass Phase 2, and

passed Phase 2.

We will show the results at the beginning, middle, and end of the application’s running

time and divide them into "with alarm" and "with no alarm" resource consumption.
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Figure 6.16: Beginning of the application’s running time - with alarm - amplitude-
frequency algorithm

Figure 6.17: Middle of the application’s running time - with alarm - amplitude-
frequency algorithm

CPU and Memory Performance

With Alarm

As seen in Figure 6.16, the application at the beginning uses 2% of the CPU with a

small spike representing the launch of the application and allocates 51.8 MB out of

1.80 GB of the device’s memory. The application at the middle uses 2% of the CPU

and allocates 60.7 MB out of 1.80 GB of the device’s memory, as shown in Figure

6.17.

Figure 6.18 shows that the application at the end uses 2% of the CPU, with a

short spike of 50% of the CPU representing data analysis and alarm triggering with

the screen turning on, and allocates 67.7 MB out of 1.80 GB of the device’s memory.

Notice that at the top of Figure 6.18, the alarm was triggered.
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Figure 6.18: End of the application’s running time - with alarm - amplitude-frequency
algorithm

Figure 6.19: Beginning of the application’s running time - with no alarm - amplitude-
frequency algorithm

With no Alarm

As seen in Figure 6.19, the application at the beginning where it used 2% of the CPU

with a small spike representing the launch of the application and allocated 52 MB

out of 1.80 GB of the device’s memory.

Figure 6.20 represents the application in the middle where it used 2% of the CPU

and allocated 52.1 MB out of 1.80 GB of the device’s memory.

Figure 6.20: Middle of the application’s running time - with no alarm - amplitude-
frequency algorithm
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Figure 6.21: End of the application’s running time - with no alarm - amplitude-
frequency algorithm

Figure 6.21 shows the application at the end where it used 2% of the CPU, with

a short spike representing data analysis, and allocated 53.4 MB out of 1.80 GB of

the device’s memory. Notice that there is no alarm indicator at the top of Figure

6.18 since the alarm was not triggered. On average, the application used 2% of CPU

power and allocated 60 MB out of 1.80 GB of the smartphone’s memory.

Battery Power Consumption

The device has a battery capacity of 3448 mAh. On average, the application consumed

0.84% or 34.5 mAh of battery capacity. In the next section, we will discuss the results.

6.7 Discussion

In this section, we will discuss the results of the scheme and how the scheme met

the objectives set in Section 4.2. We will also compare the results of the smartphone

application with the studies in the literature review and the results from the previously

proposed scheme [129] that we detailed in Chapter 5.

6.7.1 Reliability and Accuracy Analysis

On the one hand, with normal labour, pregnant women have an expected date of birth

determined by the obstetrician. On the other hand, labour for a pregnant woman

with a high risk of premature birth can happen spontaneously at an early gestational

age without her noticing labour until later. This uncertainty will put her health and
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the fetus’s health in danger. Due to this unpredictable nature of premature birth, we

need to make sure we give the pregnant woman the highest possible chance of knowing

if she is starting to go into labour. For these reasons, we chose the minimum of 50%

pattern consistency of the uterine contraction datasets since, in our assumption, 50%

is enough for the pregnant woman to be checked by an obstetrician due to the high

risks that can follow a premature birth. This decision could increase unscheduled

hospital visits if the application gave a false warning after analyzing the dataset.

Based on the above, the application’s reliability and accuracy analysis results

are critical for the proposed scheme to meet our design objectives. Moreover, the

framework’s ultimate goal is to mitigate the consequences of premature birth for

pregnant women and babies. Therefore, we chose the two FD thresholds of 70% and

50% to detect if the pregnant woman is going into labour or not. The following will

discuss the thresholds’ confusion matrices’ results, as shown in Table 6.4.

In general, the FD threshold of 50% has better results than the 70% threshold in

all the above criteria except FPR. Starting with the AC rate, the application is 9%

more accurate with the threshold of 50% than 70% in classifying the datasets, with

an accuracy rate of 0.995 and 0.905, respectively. On the other hand, the threshold

of 70% has a misclassified rate of 0.094, and the threshold of 50% has a misclassified

rate of 0.004.

The R rate is 0.827 for the threshold of 70% and increases to 0.992 for 50%, with a

total of 2795 and 3350 correctly predicted pattern datasets, respectively. That means

the application with the threshold of 50% has a better rate of predicting a pattern in

a dataset.

For both thresholds, the P rate has a possibility of 1. This indicates that both

the thresholds are always correct when they classify a dataset as patterned.

The F score for the threshold of 70% is 0.905, and it increases to 0.996 for 50%.

This score indicates that R and P are balanced more in the 50% threshold, which

means the threshold of 50% has a better classifier than 70%.

Of all the evaluation results in the above table, FNR is the most important result
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Figure 6.22: FD thresholds result in comparison - amplitude-frequency algorithm

because it represents the percentage of the application not triggering a warning when

the dataset has a labour pattern. This rate indicates that the pregnant woman has

started going into labour, but the application failed to notify her through a warning.

This error could jeopardize her life and the life of the fetus, thereby failing to meet

the core goal of the framework. The FNR for the threshold of 50% is 0.007 with a

total of 26 misclassified patterned datasets and 0.172 for the threshold of 70% with

581 misclassified patterned datasets.

On the other hand, the FPR for both thresholds is 0 since both thresholds did

not classify any non-patterned datasets into patterned datasets. Finally, the chart in

Figure 6.22 visualizes the differences between the two thresholds.

Finally, compared to the previously proposed system [129], the smartphone ap-

plication’s proposed scheme is more reliable and accurate. The application extracts

more features with higher precision and analyzes them with more complicated al-

gorithms. The application was also tested with more datasets derived from three

different databases, making the application more reliable and generalized.

In conclusion, the threshold of 50% has been shown to be a more suitable choice
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that meets the proposed scheme’s objectives. It has a lower possibility of misclassi-

fying a patterned dataset into non-patterned while maintaining a reasonable pattern

detection threshold. In the next section, we will discuss how efficient the application

is in consuming the smartphone’s resources.

6.7.2 Smartphone’s Resources Performance

Since the amplitude-frequency algorithm scheme is designed to be deployed on smart-

phones, the application must be optimized to efficiently consume smartphone re-

sources to meet the framework’s design objectives. The scheme will not be practical

if the application quickly drains the smartphone’s resources.

There are two main reasons for the optimum usage of the smartphone’s resources:

• The scheme will be continually monitoring pregnant women.

• The scheme is designed to be suitable for developing countries, where low-end

smartphones are widely used.

For these reasons, we need to ensure that the monitoring application will not in-

tensively consume the smartphone’s resources. In comparison to the proposed studies

listed in Chapter 3, none of the proposed studies have used a smartphone to analyze

uterine EHG signals for labour detection. Furthermore, our proposed system is fully

automated and has a wireless design so it does not require the pregnant woman to

stay at home or go to the hospital regularly to monitor her uterine activity. The

proposed systems in [42] and [44] require the pregnant woman to stay home to be

monitored, which will restrict her from moving around freely and comfortably. More-

over, we designed our system to work on any smartphone that operates on Android

OS and collect uterine EHG signals using a cost-effective wireless body sensor. These

two features make our system cost-effective and suitable for deployment in developing

countries where low-cost, low-end Android smartphones are commonly used. All of

the proposed studies in the literature review are expensive and cannot be deployed

in developing countries.

To measure the application’s resource consumption, we focused on the smart-

phone’s CPU, memory performance, and battery power consumption, which will be
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discussed in the following three sections.

CPU

Throughout the 30-minute monitoring sessions, the application managed to use only

2% of the CPU on average. Although the proposed scheme has a more complex data

analysis process than the previous scheme, its CPU usage was significantly lower than

the threshold algorithm scheme due to the optimization of the application. However,

there is a short spike in CPU usage to a maximum of around 50% at the end of the

monitoring session. This is due to the more complicated calculations of the algorithm.

Memory Performance

The application used an average of 60 MB of memory, which is about 3.33% of the

smartphone’s memory. However, compared to the threshold algorithm scheme, the

complicated data analysis process increased the memory usage by about 130% or 34

MB, which is still considered low compared to the smartphone’s memory capacity of

1.80 GB.

Battery Power Consumption

The continuous monitoring of pregnant women requires the application to consume

the smartphone’s battery efficiently. If the smartphone battery cannot keep up with

the application’s power demands, the scheme will not meet its objectives. Across the

13 testing datasets, the application consumed 0.84% or 34.5 mAh of battery capacity

on average. The application’s battery consumption was efficient, and compared to

the threshold algorithm scheme the application’s battery consumption has improved

by about 130%. Furthermore, the application can run for an extended period (about

60 hours of operation before consuming the smartphone battery), unlike the proposed

studies [22], [42], [43] and [44].
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6.8 Chapter Summary

In this chapter, we presented the amplitude-frequency algorithm scheme in detail.

We illustrated the scheme’s implementation and evaluation methodology. We pre-

sented and discussed the evaluation results and concluded that the FD threshold of

50% has better results than 70%. Moreover, the application efficiently consumed the

smartphone’s resources in terms of CPU, memory performance, and battery power

consumption. Finally, the amplitude-frequency algorithm scheme has shown improve-

ments in CPU and battery power consumption compared to the previously proposed

system. In the next chapter, we will present the machine learning algorithm scheme.



Chapter 7

Machine Learning Algorithm Scheme

7.1 Introduction

As a subset of artificial intelligence, machine learning aims to automatically improve

the performance of computer systems throughout a learning process to integrate do-

main knowledge [133][134]. Another definition of machine learning is the study of

simulating human learning behaviour by learning from data to gain new knowledge

or skills using analysis algorithms [135] [136].

Machine learning can be applied to nearly any field such as medicine, education,

industry, automobiles or stock markets [136]. Furthermore, machine learning classifi-

cation algorithms have been applied extensively in the medical field to help medical

staff in disease prediction and diagnosis [137]. ML can be divided into supervised

and unsupervised learning. Supervised learning is when the human intervenes in the

learning process by labelling or classifying data into the algorithm. On the other

hand, unsupervised learning occurs without human intervention by looking for a pat-

tern within raw data. Supervised learning has two main areas: classification and

regression. Examples of well-known and popular classification machine learning al-

gorithms include support vector machine (SVM), random forest (RF), decision trees

(DT), Naïve Bayes (NB) and k-nearest neighbours.

ML is applied in several healthcare applications, such as detecting diseases or

predicting the health status of patients based on their medical history. One area we are

interested in is applying ML to uterine EHG signals. Studies have been conducted to

use the uterine EHG signals to identify contractions to help in monitoring pregnancy

health status (please refer to Section 3.2.2 for more information). Data are fed to

the ML algorithms for training to classify the data or create categories for future

96
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predictions [138].

7.2 Proposed Scheme

Detecting and predicting premature labour, as established in Chapter 1, is a chal-

lenging task. Machine learning can identify or predict premature labour by analyzing

EHG signals with high accuracy. After analyzing studies in the literature, we chose

four machine learning classifiers that are widely used by researchers to classify EHG

signals into labour and non-labour signals based on their accuracy and efficiency. The

four classifiers are:

• Decision trees (DT)

• Random forest (RF)

• Support vector machine (SVM)

• Naïve Bayes (NB)

Similar to the previous scheme implementation described in Section 6.3, we will

use the implemented proof-of-concept application built using the Android Studio

programming platform for deployment and testing on an Asus Nexus 7 tablet with

Android OS version 6.0.1.

To improve the simulation scenario, we used one of the tablets to mimic the

WBS by wirelessly sending the EHG signal readings via Bluetooth for more accurate

evaluation. The application will continuously receive the uterine contraction EHG

data via Bluetooth for the duration of the 30-minute monitoring session. After the

30-minute monitoring session, the application will extract the selected features and

feed them to the machine learning classifier implemented within the application to

classify the EHG data and decide if the pregnant woman is in labour. If she is in

labour, the application will trigger a warning to notify the pregnant woman to go to

the hospital. Otherwise, the application will start a new monitoring session. Figure

7.1 shows the block diagram of the monitoring system architecture. In the following

section, we will present the scheme UI.
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Figure 7.1: The monitoring system architecture

7.3 Scheme User Interface

The UI is the same as the previous scheme in Section 6.3.1 for interfaces 1 and 2.

Interface 3 (the alarm interface) was modified and improved by adding Google Maps

to guide pregnant women to the closest hospital. In Figure 7.2, we can see the IWK

Health Centre’s location in Halifax, Nova Scotia, Canada. In the next section, we

will present the scheme’s experimental framework.

7.4 Experimental Framework

The ML algorithm development cycle shown in Figure 7.3 has two main phases. The

first phase deals with data preparation and ML algorithms building and testing. The

second phase deals with converting the ML algorithm to TensorFlow Lite format to

deploy it to the smartphone. In the next section, we will present the scheme’s data

selection and preprocessing.

7.4.1 Data Selection and Preprocessing

Data Selection

Similar to the previous scheme, we will use the three databases described in Section

6.4.1. In addition to these three databases, we added two more publicly available
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Figure 7.2: Application alarm interface with Google maps

Figure 7.3: ML Algorithms development cycle
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Figure 7.4: CTU-CHB Intrapartum Cardiotocography data sample

Figure 7.5: OB-1 Fetal ECG data sample

databases from the PhysioNet repository [127] for a total of five databases:

• CTU-CHB Intrapartum Cardiotocography Database [139].

• OB-1 Fetal ECG Database [127].

The CTU-CHB Intrapartum Cardiotocography database contains 552 cardiotocog-

raphy (CTG) recordings collected between 2010 and 2012 from Czech Technical Uni-

versity (CTU) in Prague and the University Hospital in Brno (UHB). Each recording

has a fetal heart rate (FHR) time series and a uterine contraction (UC) signal. The

length of the recording is 90 minutes at most. Figure 7.4 shows a data sample of

uterine contractions EHG signals.

The OB-1 Fetal ECG database contains 5 hours and 42 minutes of fetal ECG

signals and uterine contraction signals. Figure 7.5 shows the data sample of uterine

contraction EHG signals. In the next section, we will explain the data preprocessing.
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Data Preprocessing

The databases downloaded from the PhysioNet repository [127] are in the WFDB

signal files format. To read and convert them into CSV format, we used a tool called

rdsamp with the following command:

rdsamp − r record − c −H − f 0 − v − pe > output_file.csv (7.1)

Where:

• -r reads the record.

• -c produces output in CSV.

• -H reads the signal files in high-resolution mode.

• -f 0 begins at the specified time (0 means at the beginning of the record).

• -v prints column headings.

• -pe prints the elapsed time from the beginning of the record as hh:mm:ss.

In addition to the 6169 30-minute-long datasets from the three databases described

in Section 6.4.2, we extracted an additional 1102 30-minute-long datasets from the

two new databases, making 7271 30-minute-long datasets from all five databases.

The ratio between the pattern and non-pattern datasets is 60% pattern to 40% non-

pattern. The normal and premature labour ratio is 90% for the normal and 10% for

the premature. In the next section, we will describe feature selection.

7.4.2 Feature Selection

Feature selection is the process of extracting or selecting a subset of features from data

to use in model creation and training. Feature extraction can generate dense and im-

proved information from raw EHG signals [140]. Furthermore, studies extracted EHG

features based on the time domain, frequency domain, and time-frequency domain

[140]. Table 7.1 summarizes the features used in the ML literature review studies.

The datasets we extracted have uterine contraction EHG raw signals, and we need

to extract our features from them. As illustrated in Section 6.3, we need to extract
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Proposed systems 1 [30] 2 [48] 3 [49] 4 [50] 5 [18] 6 [51] 7 [52] 8 [55] 9 [57] 10 [56] 11 [53] 12 [54] 13 [58]
Average Amplitude Change Of EMG Signal X X
Autocorrelation zero-crossing X
Centroid frequency X
Difference Absolute Standard Deviation Value X
Fourier Transform X
Fractal Dimension X
Fuzzy Entropy X
Hilbert envelope X
Integrated EMG X
Interquartile Range X
Log Detector Of EMG Signal X
Maximum Fractal Length Of EMG Signal X
Mean Absolute Deviation X
Mean Absolute Value X
Mean Crossing Rate X X
Mean frequency (MNF) X
Mean Energy X
Mean Teager-Kaiser Energy X
Median frequency (MDF) X X X X
Normalized Range X X
Peak frequency (PF) Of EMG Signal X X X X
Power Of The EHG Signal X X
Root mean square (RMS) X X X X X X X X
Sample Entropy X X X X
Simple Square Integral X
Squared RMS X
Standard Deviation X X
Teager energy X
Variance of EMG X
Wavelet energy X
Wavelet Length of EMG Signal X X

Table 7.1: Summary of the ML related work studies’ feature selection

the EHG signals’ amplitude and frequency to mimic obstetricians who use these two

parameters to decide if the pregnant woman is in labour. Figure 7.6 visualizes the

feature selection process. First, we will calculate the EHG signal’s power spectrum

using FFT for each dataset. Next, using the power spectrum, we will extract the

following two features:

• Mean frequency (MNF), which represents the centroid frequency of the EHG

signal’s power spectrum.

• Peak frequency (PF), which represents the largest amplitude peaks of the EHG

signal.

7.5 Machine Learning Classifiers

In this section, we will illustrate the chosen classifiers and our selection of hyper-

parameters. Note that for all the classifiers, the split data ratio is 70% for training

to 30% for testing. The implementation of the classifiers was done on a Windows 10

OS with a 3.60-GHz 8-Core Intel i7-9700KF processor, 128 GB of RAM and NVIDIA

Quadro RTX 8000 48-GB GDDR6 memory GPU.
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Figure 7.6: Feature selection process for ML

Package Version Description
scikit-learn 0.23.2 This is a Python integrated ML library. It includes various classification

and regression algorithms such as RF, DT, NB and SVM. It also has various
functions that we used for implementation and analysis.

tensorflow 2.6.0 This is an open-source ML library developed by the Google
Brain team. It utilizes different programming languages such as Python,
C++ and CUDA. Moreover, it can integrate ML algorithms on IoT, Android
or iOS smartphones using TensorFlow Lite.

Table 7.2: ML implementation packages description

The coding was done in Python programming language version 3.7.11 using Jupyter

Notebook environment version 6.4.3. Table 7.2 lists the packages used during imple-

mentation:

7.5.1 Hyper-parameters Search

Hyper-parameters are numeric or boolean values the user can set and configure be-

fore the classifier learning process. They help improve the training time, performance

and prediction of the classifier. Examples of hyper-parameters are the learning rate,

number of epochs or random state. Each hyper-parameter directly affects the classi-

fier learning process, which means we need to make sure we choose the best hyper-

parameters according to the data we are using.

To choose the optimum hyper-parameters for the classifiers, we will use a tuning

technique called grid search. Grid search is a technique that calculates the optimum

hyper-parameters for a given classifier through the exhaustive search of a given hyper-

parameter. This technique can save time and resources when training the classifier.
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Hyper-parameter Definition Values
criterion The function is used to measure the quality of the split. "gini" or "entropy’. default="gini"
max_depth Represents the maximum depth of the tree. int. default=None
min_samples_split The minimum number of samples needed to

split an internal node
int, float. default=2

min_samples_leaf The minimum number of samples required
to be at a leaf node (i.e. a node that has no children).

int or float. default=1

random_state Controls the randomness of the estimator. int, RandomState instance or None. default=None
n_estimators The number of trees in the random forest. int. default=100
kernel The kernel to be used in the algorithm. "linear", "poly", "rbf", "sigmoid" or "precomputed".

default="rbf"
C The regularization parameter. float. default=1.0
gamma The kernel coefficient for 'rbf', 'poly'and 'sigmoid'. "scale", "auto" or float. default="scale"
probability To enable or disable the probability estimates. bool. default=False

Table 7.3: Hyper-parameters definitions

Table 7.3 defines the hyper-parameter used in the classifiers (more details on the use

of these hyper-parameters will be provided in the following sections). Next, we will

present ML classifiers and their optimized hyper-parameters.

7.5.2 Decision Trees

DT is a commonly used classifier tree that starts at the root, then each node represents

an attribute test, and sorting down occurs until reaching a leaf node, which will

provide a classification [141].

Selection of Hyper-parameters

The following key parameters were used for the DT classifier:

criterion = 'entropy', max_depth = 8, min_samples_split = 5,

min_samples_leaf=10 random_state = 0

The maximum depth for the tree was 8.

Moreover, we chose entropy for splitting as it performed better than gini in our

experiment. Lastly, the minimum samples split is five, and the minimum samples leaf

is ten according to the grid search we performed.

7.5.3 Random Forest

RF was proposed by Breiman in 2001 [142]. It is an ensemble DT using the bagging

method. The goal of the bagging method is to increase the accuracy of the algorithm
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by combining many classifiers. RF has advantages over DT by reducing data overfit-

ting and increasing precision. It also does not require many configurations to produce

accurate predictions. In addition, more trees mean more accurate results from the

RF algorithm [142] [143].

Selection of Hyper-parameters

The following key parameters were used for the RF classifier:

n_estimators = 100, criterion = 'entropy', max_depth = 10,

min_samples_leaf = 1, min_samples_split = 15, random_state = 2

The algorithm performs the best with a maximum depth of 10 as recommended

by the grid search. Moreover, the minimum samples split is 15, and the minimum

samples leaf is 1. Lastly, the grid search recommended the number of trees to be 100,

which is also the default value of the n_estimators hyper-parameter.

7.5.4 Support Vector Machine

The SVM classifier was introduced in 1995 [144]. It became popular due to its classi-

fication accuracy, robustness and indifference towards the input data type [145]. It is

based on Vapnik statistical learning theory and can be applied to many classification

and regression problems [146] [147].

SVM works by separating data into classes using support vectors and hyperplane.

An SVM model can be linear (where the hyperplane is a straight line) and non-linear

(where a straight line can not separate data). For the non-linear SVM, we use kernels

to separate data. Kernels transform data into another dimension to be classified.

Selection of Hyper-parameters

The following key parameters were used for the SVM classifier:

C = 1000000, kernel = 'rbf', gamma = 1000, random_state = 0,

probability=True

Radial Basis Function (RBF) kernel is the best choice for our non-linear data.
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Moreover, grid search confirmed that RBF is the best kernel for our model. When us-

ing RBF as the kernel, C and gamma are the two most important hyper-parameters to

be considered. Both hyper-parameters have been tuned using grid search. Lastly, ac-

cording to the sklearn’s SVM documentation, the probability hyper-parameter should

be enabled prior to calling the fit function when building and training the model.

7.5.5 Naïve Bayes

NB is one of the most widely used classifiers for many applications with a fast learning

and testing process [148]. It is designed based on the Bayesian rule and probability

theorems [148] [149]. The Bayes theorem assumes that the features are independent of

each other. This assumption reduces the number of features and makes classification

easier and more efficient.

Naïve Bayes has several variants such Gaussian Naive Bayes, Multinomial Naive

Bayes or Complement Naive Bayes. The Gaussian Naive Bayes classifier, which we

chose for classification, is used when the features have continuous values. It assumes

that all the features follow a Gaussian distribution (also called normal distribution).

Selection of Hyper-parameters

We used the Gaussian NB classifier with the default hyper-parameters.

7.6 Convert and Deploy the MB Algorithm to the Smartphone

Android-based smartphones can run pre-trained ML algorithms. However, we need to

convert the format of the ML algorithm into a compressed flat buffer using TensorFlow

Lite converter with Python.

TensorFlow Lite is an open-source framework developed by Google to convert pre-

trained ML models and deploy them into IoT devices and smartphones’ OS such as

Android and iOS.

There are three steps to convert the ML algorithm to the TensorFlow Lite format

with the .tflite extension.
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1. Save the pre-trained ML algorithm to produce the file my_model.sav.

2. Convert the file to TensorFlow Lite using the following Python commands:

converter =tf.lite.TFLiteConverter.from_saved_model('my_model')

tflite_model = converter.convert()

3. Save the converted model using the following Python command:

open("converted_model.tflite", "wb").write(tflite_model)

To deploy the converted_model.tflit file to the smartphone, we implement the

following steps:

1. Implement the TensorFlow Lite library into the Android application’s build

gradel.

2. Add the converted_model.tflit file to the application’s assets folder.

3. In the application’s MainActivity Java file, we import the TensorFlow Inter-

preter to load the converted_model.tflit file into the Java environment.

4. We can now pass the values of the features to the loaded model and get the

prediction after the 30-minute monitoring session.

5. The application will either trigger a warning or start a new monitoring session

based on the prediction value.

7.7 Evaluation Methodology

To meet the research goals listed in Chapter 4, we need to evaluate the proposed

scheme in terms of two aspects:

• Scheme algorithms’ reliability and accuracy in detecting labour.

• Smartphone resources performance.
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7.7.1 Reliability and Accuracy Analysis

We will be using the same evaluation methodology from the previous scheme illus-

trated in Section 6.5, namely the confusion matrix, AC, MisCl, R, P, F, FNR and

FPR.

In addition to these evaluation criteria, we will be using the following two criteria:

• Receiver operating characteristic (ROC) is a performance evaluation measure-

ment for binary classification algorithms. It is represented in a graphic plot

between the true positive rate (TPR) and the false positive rate (FPR) within

different thresholds.

• The area under the ROC curve (AUC) is a statistical value between 0 and 1 that

measures the performance of a classifier. The classifier’s probability ranking of

a randomly chosen positive instance is higher than a randomly chosen negative

instance [150]. A higher AUC value means better performance for the classifier.

AUC is given by the following Equation 7.2; where TP stands for TP, FP stands

for FP, P stands for positive, and N stands for negative:

AUC =

∫ 1

0

TP

P
d

(
FP

N

)
(7.2)

7.7.2 Smartphone Resources Performance

Chapter 4 previously illustrated that the proposed scheme should be cheap and reli-

able. Therefore, the proposed scheme should efficiently consume the limited smart-

phone resources.

We will be using the Android Profiler tool from the Android Studio integrated

development environment (IDE) for the CPU and memory performance. For the bat-

tery power consumption, we will be using the Battery Historian tool. Next, we will

illustrate each tool in detail. The Android Profiler and Battery Historian will be used

separately. We used two identical Android tablets for the performance analysis to

speed up the process: one tablet for the Android Profiler and the other for the Bat-

tery Historian tool. Figure 7.7 demonstrates the smartphone resources performance
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Figure 7.7: ML Algorithms development cycle

analysis.

The Android Profiler

The Android Profiler tool provides real-time data on the application usage of CPU,

memory, network, and battery resources. It provides a visual representation of the

application’s performance. We will be using the CPU and memory resource usage

from the Android Profiler tool in resources performance. We do not need to use

the network analysis feature since we are not sending any data to the Internet. We

cannot use the Android Profiler tool for the battery consumption analysis since it

only supports Android version 8.0 and above, and our application’s Android version

is 5.0. In the next section, we will illustrate the Battery Historian tool.

To monitor the application CPU and memory usage, we first need to connect the

device to the computer. Next, we will upload the application to the device and run

the application. Once the application is running in ideal mode (i.e. we have not

started the monitoring session yet), we will run the Android Profiler tool by clicking

on View > Tool Windows > Profiler. We can then locate and choose the application

for analysis and start the 30-minute monitoring session. The Android Profiler will
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provide real-time analysis of the application’s CPU usage percentage and allocated

memory. Notice that the device should be connected to the computer throughout the

monitoring session.

Battery Power Consumption

The Battery Historian tool can analyze the battery power consumption for Android

device resources. It provides the battery consumption status as a percentage of the

total battery capacity and the quantity of mAhs consumed during the application’s

running time.

To analyze battery consumption, we need to set up the smartphone with the

following steps:

1. Connect the smartphone to the computer.

2. Type the following commands in the Android Studio terminal to reset the Bat-

tery Historian files: adb kill-server, adb devices and adb shell dumpsys

batterystats –reset

3. Disconnect the smartphone from the computer and start the monitoring session.

4. Once the monitoring session is done, connect the smartphone to the com-

puter and type the following commands in the terminal to dump the bugreport

analysis files: adb shell dumpsys batterystats > dir and adb bugreport

> dir

5. Start a localhost service such as docker and type the following terminal com-

mand: docker run -p 9999:9999 gcr.io/android-battery-historian/

stable:3.0 –port 9999.

6. Use the browser to go to http://localhost:9999/

7. Upload the bugreport file and review the battery usage analysis report.

In the next section, we will present the results of the classifiers evaluation and the

smartphone resource consumption.
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Classified pattern Classified no pattern
Pattern 785 49

No pattern 52 1296

Table 7.4: DT classifier confusion matrix

Criteria Result
AC 0.953

MisCl 0.046
R 0.941
P 0.937
F 0.939

FNR 0.058
FPR 0.038
AUC 0.98

Table 7.5: Reliability and accuracy evaluation results for the DT classifier

7.8 Results

In this section, we will present and compare the results of the classifiers’ performance

evaluation. Moreover, we will present smartphone resource consumption during the

beginning, middle, and end of the monitoring session. The monitoring session length

was 30 minutes, during which Bluetooth communication was sending EHG signals

from one tablet to the other. The screen was off throughout the monitoring session.

7.8.1 Reliability and Accuracy Analysis

In this section, we will list the evaluation criteria listed in Section 7.7.1 for each

classifier individually.

Decision Tree

Table 7.4 represents the DT classifier’s confusion matrix, and Table 7.5 shows the

reliability and accuracy of the evaluation results. Figure 7.8 shows the AUROC plot

for the DT classifier.
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Figure 7.8: DT AUROC plot

Classified pattern Classified no pattern
Pattern 814 31

No pattern 62 1275

Table 7.6: RF classifier confusion matrix

Random Forest

Table 7.6 represents the RF classifier’s confusion matrix, and Table 7.7 shows the

reliability and accuracy evaluation results. Figure 7.9 shows the AUROC plot for the

RF classifier.

Support Vector Machine

Table 7.8 represents the SVM classifier’s confusion matrix, and Table 7.9 shows the

reliability and accuracy analysis evaluation results. Figure 7.10 shows the AUROC

plot for the SVM classifier.
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Criteria Result
AC 0.957

MisCl 0.042
R 0.963
P 0.929
F 0.945

FNR 0.036
FPR 0.046
AUC 0.99

Table 7.7: Reliability and accuracy analysis results for the RF classifier

Figure 7.9: RF AUROC plot

Classified pattern Classified no pattern
Pattern 806 28

No pattern 102 1246

Table 7.8: SVM classifier confusion matrix
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Criteria Result
AC 0.940

MisCl 0.059
R 0.966
P 0.887
F 0.925

FNR 0.033
FPR 0.075
AUC 0.98

Table 7.9: Reliability and accuracy analysis evaluation results for the SVM classifier

Figure 7.10: SVM AUROC plot
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Classified pattern Classified no pattern
Pattern 811 23

No pattern 192 1156

Table 7.10: NB classifier confusion matrix

Criteria Result
AC 0.901

MisCl 0.098
R 0.972
P 0.808
F 0.882

FNR 0.027
FPR 0.142
AUC 0.97

Table 7.11: Reliability and accuracy analysis evaluation results for the NB classifier

Naïve Bayes

Table 7.10 represents the NB classifier’s confusion matrix, and Table 7.11 shows the

reliability and accuracy analysis evaluation results. Figure 7.11 shows the AUROC

plot for the NB classifier.

Table 7.12 summarizes all the criteria in terms of percentage and actual count from

the confusion matrix tables. Moreover, Figure 7.12 shows the AUC and AUROC plot

for all the classifiers.

7.8.2 Smartphone’s Resources Performance

The following smartphone resources performance results apply to all the classifiers

since there are no significant differences in performance between these classifiers. The

testing was performed using twenty chosen datasets that represent all five databases.

Classifier AC MisCl R P F FPR FPR Count FNR FNR Count
DT 0.953 0.046 0.941 0.937 0.939 0.038 52 0.058 49
RF 0.957 0.042 0.963 0.929 0.945 0.046 62 0.036 31
SVM 0.940 0.059 0.966 0.887 0.925 0.075 102 0.033 28
NB 0.901 0.098 0.972 0.808 0.882 0.142 192 0.027 23

Table 7.12: Machine learning classifiers comparison
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Figure 7.11: NB AUROC plot

Figure 7.12: All classifiers AUROC plot
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Figure 7.13: Beginning of the application’s running time - machine learning algo-
rithms

Ten of these datasets ended up with an alarm, and ten ended up with no alarm.

CPU and Memory Performance

At the start and the middle of the application’s running time, the performance was

similar whether the alarm was triggered or not.

Figure 7.13 shows that the application at the beginning uses 16% of the CPU

power and allocates 75.9 MB out of 1.80 GB of the device’s memory.

The application at the middle uses 16% of the CPU and allocates 75.9 MB out

of 1.80 GB of the device’s memory, as shown in Figure 7.14. The following section

will present the application’s performance with the alarm triggered at the end of the

monitoring session.

With Alarm

Figure 7.15 shows that the application at the end uses 0% of the CPU (the application

has ended) with the alarm triggered, as is shown at the top of the figure. Furthermore,

the smartphone memory usage was reduced to 49.6 MB out of 1.80 GB after the

application monitoring session.
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Figure 7.14: Middle of the application’s running time - machine learning algorithms

Figure 7.15: End of the application’s running time - with alarm - machine learning
algorithm
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Figure 7.16: Beginning of the application’s running time - with no alarm - machine
learning algorithm

With no Alarm

Figure 7.16 shows that the application at the end continues using 16% of the CPU

(the application did not end the monitoring session) with the alarm not triggered, as

is shown at the top of the figure. Furthermore, the application allocates 75.9 MB out

of 1.80 GB of the device’s memory.

Battery Power Consumption

The smartphone has a battery capacity of 3448 mAh. On average, the application

consumed 0.54% or 18.6 mAh of battery capacity. In the next section, we will discuss

the results.

7.9 Discussion

In this section, we will discuss the scheme’s results and how the scheme met the

objectives set out in Section 4.2. We will compare the machine learning algorithms’

results with the studies in the literature review and the results from the previously

proposed scheme [130] detailed in Chapter 6. We will also discuss our choice of

machine learning classifiers. In addition, we will discuss the smartphone resources

performance results.
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7.9.1 Reliability and Accuracy Analysis

In the proposal report, we chose the SVM classifier based on the literature review.

In addition to the SVM classifier, we included the DT, RF and NB classifiers due to

their excellent classification accuracy in general.

Based on the proposal report, we anticipated that the SVM would perform the

best. To compare the four classifiers and determine which is the best, we need to

compare the top significant rates for our proposed framework: higher AC, lower FPR

and lower FNR. For example, a classifier could be better in AC; however, the FNR

is higher than the classifier. In this case, the decision will be based on the user’s

preferences and whether they need higher accuracy in general or prefer to reduce the

chance of the application not giving a warning while the pregnant woman is already

in labour.

The RF performed the best in terms of the AC rate, the FPR rate and the FPR

count among the four machine learning classifiers. In terms of FNR rate and FNR

count, the NB classifier performed the best. Although NB has the lowest FNR and

FNR count (i.e. there is a labour pattern, but no warning is given), RF is the best

choice for our framework because it has higher AC and lower FPR. Moreover, the

FNR difference between RF and NB is insignificant, making the RF our best choice

of the four classifiers.

Furthermore, the RF classifier performed better in terms of the MisCl rate with

0.042, P rate with 0.929, F rate with 0.945 and AUC rate with 0.99. However, it

came second after NB for the R rate with 0.963. The chart in Figure 7.17 visualizes

the evaluation results.

Scheme Comparison with the Literature Review Studies

In this section, we will compare our chosen RF classifier to the studies from the

literature review. The comparison will be on the criteria listed in Section 7.7.1.

Table 7.13 shows the results of the RF classifier and the studies from the literature

review.
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Figure 7.17: Machine learning classifiers results in comparison (in %)

Proposed systems AC MisCl R P F FNR FPR AUC
Proposed RF classifier 0.95 0.04 0.96 0.93 0.94 0.03 0.04 0.99
Idowu et al. [30] x x 0.97 x x x x 0.94
Fergus et al.[48] 0.90 x 0.85 x x x x 0.90
Acharya et al. [49] 0.96 x 0.95 x x x x x
Altini et al. [50] 0.87 x x x x x x x
Borowska et al. [18] 0.83 x x x x x x x
Altini et al. [51] x x x x x x x x
Hoseinzadeh and Amirani [52] 0.97 x 0.95 x x x x x
Degbedzui and Yüksel [53] 0.99 x 0.99 x 0.99 x x x
Peng et al. [54] 0.93 x 0.89 x x x x 0.80
Shahbakhti et al. [55] 0.99 x 0.98 x x x x x
Sheryl Oliver et al. [56] 0.96 x 0.92 x x x x x
Chen et al. [57] 0.90 x 0.92 x x x x x
Esgalhado et al. [58] 0.97 x x x x x x x

Table 7.13: Comparative analysis of the proposed work with published state-of-the-
art techniques
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Table 7.13 shows that the studies did not provide some criteria, making their work

more difficult to evaluate since we can not measure all the classifiers’ performance

results. For example, none of the studies reported MisCl, P, FNR or FPR rates.

In this case, we can not compare our proposed work to the literature review studies

regarding labour EHG signals being categorized by the classifier as non-labour, for

example, since there is no FNR reported.

In terms of AC rate, six studies are better than our proposed scheme. However,

when we perform a deeper analysis of the studies’ design and implementation, we

can see some advantages of our scheme over these studies. For instance, none of the

studies used as many databases as we have used in our proposed scheme. Some of

the studies used only one database. This could lead to a bias in the results due to

the lack of diversity in the databases. The same concept applies to the R rate. The

ratio is 60% pattern datasets to 40% non-pattern datasets in our datasets collection,

implying no bias towards any dataset group. Finally, our proposed scheme achieved

the highest AUC among the literature review studies.

7.9.2 Smartphone’s Resources Performance

CPU

Throughout the monitoring session, the application used 16% of the CPU on average.

Compared with 2% from the previous scheme in Chapter 6, this increase in CPU

usage is due to the use of Bluetooth to simulate the sending of EHG signals from a

WBS. However, the 16% usage is still considered low on average, especially when we

notice from Figure 7.13, for example, that the CPU usage bar was consistently low

throughout the monitoring session.

Memory Performance

The application memory usage increased from 60 to 75.9 MB compared to the previous

scheme in Chapter 6. The increase in memory usage was only 15.9 MB or 4.2% of the

smartphone memory capacity of 1.80 GB, which is still considered low and efficient.
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Battery Power Consumption

The application efficiently consumed 0.54% or 18.6 mAh of the battery capacity on

average. This is slightly lower than what the previous scheme in Chapter 6 consumed,

which is 0.84%. The improvement was not significant; however, the application met

the objective listed in Section 4.2 to use the smartphone’s resources efficiently.

7.10 Chapter Summary

In this chapter, we presented the machine learning algorithm scheme in detail. We

illustrated the scheme implementation and our choice of feature selection and machine

learning classifiers. We presented and discussed the evaluation results and concluded

that the RF classifier performed the best. Furthermore, we compared our results

with the literature review studies. Moreover, the application efficiently consumed the

smartphone’s CPU, memory performance, and battery power consumption. In the

next chapter, we will present the deep learning algorithm scheme.



Chapter 8

Deep Learning Algorithm Scheme

8.1 Introduction

Deep learning is a subfield of machine learning under the umbrella of artificial intel-

ligence. Deep learning models learn from complex relationships or high-level features

[138]. One example of a commonly used deep learning model is artificial neural net-

work (ANN). ANN is a data processing archetype that mimics the biological nervous

system of the human brain [151].

The ANN model consists of multiple layers: an input layer, several hidden layers

and output layers [151] [152]. Each layer is comprised of neurons (also called nodes)

that form parallel-connected neural networks to achieve superior computation speed

and power [151]. A layer also has activation functions that are critical in designing the

neural network. It is used to decide the neuron’s output to the next layer depending

on the activation function type. Two commonly used activation functions are:

• Rectified Linear Activation (ReLU): It makes the network training fast due to

its simple and easy computation. If the input x is less than 0, then set the input

to 0; otherwise, set the input to x . ReLU is given by the following equation:

relu(x) = max(0, x) (8.1)

• Logistic (Sigmoid): It is best used for prediction since it produces a value

between 0 and 1. Sigmoid is given by the following equation:

S(X) =
1

1 + e−x
(8.2)
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When compiling the model, we use some parameters such as optimizers, loss func-

tions and learning rate. Optimizers are methods used to minimize the losses by

changing the attributes of the neural network. Commonly used optimizers are Adam,

RMSprop and Stochastic Gradient Descent (SGD).

Loss functions are methods used to predict errors in the neural net and update

their weights. Examples of loss functions are Mean Squared Error (MSE), Binary

Cross-entropy (BCE) and Categorical Cross-entropy (CC). Learning rate refers to

how much to update the neurons’ weights when training the model, which ranges

from 0.0 to 1.0. A lower learning rate means more training time. Finally, ANN has

two phases: forward pass and backtrack. During the forward pass, the neural network

outputs from the input layer to the ouput layer using activation functions. During the

backtrack phase, we fine-tune the weights of the neural network using optimizers, loss

functions and learning rates. One forward pass and backtrack is called an iteration,

during which one batch of data is passed through.

8.2 Proposed Scheme

Like the previous machine learning scheme, the deep learning scheme aims to detect

and predict premature labour. The difference between deep learning and machine

learning is that deep learning is a more powerful and advanced technique. It utilizes

big data to extract and form complex relationships between features to understand

data better [153]. DL does not need feature engineering. We can feed the neural net-

work with all the features, and it will identify the best features to use in classification.

We chose the ANN model for the DL scheme’s implementation.

By utilizing the power of deep learning, we aim to personalize the scheme to

fit pregnant women’s different needs and characteristics. For example, a pregnant

woman could have diabetes, be a smoker, have hypertension or have had a premature

birth. In this case, deep learning could be fed with personal features, alongside the

EHG signal features such as amplitude, to predict if the pregnant woman is at risk

for premature labour.
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Finally, to the best of our knowledge, only one study used EHG signals to identify

uterine contractions using CNN. The issue with this study is that it can not be applied

to a continuous monitoring scenario. More details can be found in Section 3.2.2. Our

deep learning scheme contributes to the thesis by using ANN and EHG to predict

premature labour. It also contributes by personalizing the scheme to the different

health conditions of the pregnant woman. In the next section, we will present the

scheme user interface.

8.3 Scheme User Interface

We will be using the same UI from the previous machine learning scheme in Section

7.3. In the next section, we will present the scheme’s experimental framework.

8.4 Experimental Framework

In this section, we will illustrate the chosen DL model, feature selection and data

selection. Note that the split data ratio is 70% for training to 30% for testing. The

DL model development cycle is similar to the ML development cycle shown in Figure

7.3, with some differences illustrated in each section.

The implementation was done on a Windows 10 OS with a 3.60-GHz 8-Core Intel

i7-9700KF processor, 128 GB of RAM and NVIDIA Quadro RTX 8000 48-GB GDDR6

memory GPU. The coding was done in Python programming language version 3.7.11

using Jupyter Notebook environment version 6.4.3. Table 8.1 lists the packages used

during implementation:

8.4.1 Data Selection and Preprocessing

Data Selection

Similar to the previous scheme, we will use the five databases described in Section

6.4.1, which are:

• Icelandic 16-electrode Electrohysterogram Database [128].
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Package Version Description
scikit-learn 0.23.2 This is a Python integrated ML library. It includes a wide

variety of DL models such as ANN. It also has various
functions that we used for implementation and analysis.

tensorflow 2.6.0 This is an open-source ML library developed by the Google
Brain team. It utilizes different programming languages
such as Python, C++ and CUDA. Moreover, it is capable
of integrating ML algorithm on IoT, Android or iOS
smartphones using a tool called TensorFlow Lite.

Table 8.1: ML implementation packages description

• Term-Preterm EHG Database [126].

• Term-Preterm EHG DataSet with Tocogram [131].

• CTU-CHB Intrapartum Cardiotocography Database [139].

• OB-1 Fetal ECG Database [127].

Data Preprocessing

We will use the same datasets previously extracted from the five databases for a total

of 7271 30-minute-long EHG datasets detailed in Section 7.4.1. In the next section,

we will list the selected features for the ANN algorithm.

8.4.2 Feature Selection

We will be using the two features from the previous scheme: MNF and PF with the

addition of median frequency (MDF). Furthermore, to personalize the features for

each pregnant woman, we need to add medical information regarding the pregnant

woman’s health, such as if she smokes or if she is diabetic. However, such infor-

mation is not collected by all the five databases we use. Hence, we need to select

common features between the five databases. Each database has a description record

of the pregnant women, such as their gestational age, weight, or maternal risk fac-

tors. However, not all databases have the same record information. For example, one

database has collected information about pregnant women’s diabetes status, while

other databases lack such information. Figure 8.1 visualizes the feature selection
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Figure 8.1: Feature selection process for DL

process.

We will only select features collected among all five databases to avoid any bias

towards these features in the ANN model. In total, we will have six selected features

as follows:

• PF.

• MNF.

• MDF.

• Pregnancy gestational age.

• Pregnant woman’s age.

• Parity, which is the number of times a woman has given birth with a gestational

age of 24 weeks or more and whether the child was born alive or was stillborn.

8.5 Hyper-parameter Searching and Setting

To choose the optimum hyper-parameters for the ANN model, we will use the Grid

Search tuning technique similar to the previous Section 7.5.1. We will search for the

best number of layers, neurons, activation functions, optimizers and loss functions.

The search range was as follows:

• The number of layers: 2, 3, 4 and 5.

• neurons: 16, 32, 64, 128 and 256.



129

• Activation functions: ReLU and sigmoid.

• Optimizers: SGD, RMSprop and Adam.

• Loss functions: Binary cross-entropy and Mean Squared Error.

• Learning rate: 1e-2, 1e-3 and 1e-4.

In the experiments, the network has shown excellent accuracy and precision results

based on the following parameters:

• Four hidden layers.

• The number of nodes: 128.

• The activation functions: ReLU for the hidden layers and sigmoid for the output

layer.

• Adam for the optimizer.

• The binary cross-entropy for the loss functions.

• Batch size of 20 with 50 epochs.

• Learning rate of 1e-3.

ReLU is expected to perform the best for the hidden layers as it is one of the most

common and effective activation functions, as we explained in Section 8.1. Moreover,

the sigmoid activation function is used for binary classification. Therefore, it per-

formed the best for the output layer. Finally, the binary cross-entropy loss function

is the best for binary classification.

8.6 Evaluation Methodology

Similar to the machine learning scheme, the deep learning scheme needs to meet the

research goals listed in Chapter 4 by the evaluation of the proposed scheme for two

aspects:
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Classified pattern Classified no pattern
Pattern 839 9

No pattern 24 1306

Table 8.2: ANN confusion matrix

• Scheme algorithms’ reliability and accuracy in detecting labour.

• Smartphone resources performance.

8.6.1 Reliability and Accuracy Analysis

We will be using the same evaluation methodology from the previous two schemes

illustrated in Section 6.5 and Section 7.7, namely the confusion matrix, AC, MisCl,

R, P, F, FNR, FPR, receiver operating characteristic (ROC) and AUC.

8.6.2 Smartphone Resources Performance

We will be using the same performance criteria illustrated in the previous machine

learning scheme in Section 6.5.2. In the next section, we will present the results.

8.7 Results

In this section, we will present the evaluation results of the ANN model. Moreover, we

will present the smartphone resource consumption during the monitoring session. The

monitoring session length was 30 minutes, during which Bluetooth communication

was sending EHG signals from one tablet to the other. The screen was off throughout

the monitoring session.

8.7.1 Reliability and Accuracy Analysis

This section will list the results of the confusion matrix and derived equations ex-

plained in Section 8.6.1. Table 8.2 represents the ANN model’s confusion matrix, and

Table 8.3 shows the reliability and accuracy analysis results. Figure 8.2 shows the

AUROC plot for the ANN model.
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Criteria Result
AC 0.984

MisCl 0.015
R 0.989
P 0.972
F 0.98

FNR 0.01
FPR 0.018
AUC 0.99

Table 8.3: Reliability and accuracy analysis evaluation results for the ANN model

Figure 8.2: ANN AUROC plot
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Figure 8.3: Beginning of the application’s running time - machine learning algorithms

8.7.2 Smartphone’s Resources Performance

The smartphone’s resource consumption performance was similar to the performance

of the previous machine learning scheme.

CPU and Memory Performance

As seen in Figures 8.3 and 8.4, the application’s consumption of CPU and the memory

resources from the beginning to the end of the monitoring session were very similar to

the previous machine learning scheme. The CPU was 15% on average, and memory

allocation was 67.9 MB.

Battery Power Consumption

The smartphone has a battery capacity of 3448 mAh. On average, the application

consumed 0.50% or 18.6 mAh of the battery capacity. In the next section, we will

discuss the results.

8.8 Discussion

In this section, we will discuss the scheme’s results and how the scheme met the

objectives set in Section 4.2. We will compare the results of the machine learning
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Figure 8.4: Beginning of the application’s running time - with no alarm - machine
learning algorithm

algorithms with the studies in the literature review. In addition, we will discuss the

smartphone resources performance results.

8.8.1 Reliability and Accuracy Analysis

In the proposal report, our choice of deep learning model was the CNN model. How-

ever, we found that the CNN model is better for image recognition rather than pat-

tern recognition. Therefore, we changed our choice to the ANN model since it is more

suitable to the data type and the deep learning scheme’s purpose.

We aim to improve the prediction and recognition of labour by personalizing the

needs of each pregnant woman. Moreover, we want to use deep learning to further

improve the outcome of the framework. As seen from the results in Table 8.3, the

ANN improved the prediction in all the criteria compared to the RF algorithm from

the machine learning scheme. The AC has improved from 0.95 to 0.98, FNR from

0.03 to 0.01 and FPR from 0.04 to 0.01.

FNR and FPR, as one of the top priority aspects in the framework, have been

reduced by about 50% for the FNR and 75% for the FPR. The chart in Figure 8.5

visualizes the evaluation results. Finally, although we achieved good results using

the deep learning approach, the size of our data could make the problem too easy for
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Figure 8.5: Results comparison between the ANN model and RF classifier

the deep learning models. Deep learning is powerful and needs big data to produce

reliable results. We need more data to confirm our results for the deep learning

approach, which we will discuss later in the chapter.

Scheme Comparison with the Literature Review Studies

Although the authors from [59] used a different approach in using the CNN model

for image recognition of uterine contractions, their goal is similar to our approach to

detect labour. Table 8.4 summarizes the comparison of the results between the two

approaches. Our ANN and the CNN model have the same AC rate. Furthermore,

our ANN model has a significantly better R rate and AUC value. The authors of the

CNN model have not provided information about the MisCl, P, F, FNR and FPR

rates. Although both models have a similar AC rate, other critical criteria such as

FNR and FPR are missing, making the full comparison incomplete. Moreover, the

R rate for the CNN model is below 90%. That means the probability of the model

identifying a dataset as labour is lower than our ANN model by 11.2%. This further

supports that we need more information on the CNN model’s performance to analyze

it comprehensively. In the next section, we will discuss big data and the issue of

synthesizing EHG data.
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Proposed systems AC MisCl R P F FNR FPR AUC
Proposed ANN model 0.98 0.01 0.98 0.97 0.98 0.01 0.01 0.99
CNN model [59] 0.98 x 0.87 x x x x 0.92

Table 8.4: Summary of the related work studies

8.8.2 Big Data and Synthetic Data

One of the main aspects of deep learning is big data, as this is one of the main dif-

ferences that distinguish it from machine learning. When it comes to medical data,

obtaining big data on uterine EHG signals for pregnant women in general and preg-

nant women with a high risk of premature labour in particular is difficult. Moreover,

the publicly available uterine EHG databases are limited. The vast majority of avail-

able databases collect data using the IUPC technique, which does not apply to our

framework. For example, we contacted a pregnancy research group from Oxford Uni-

versity, and they agreed to share their big data with us; however, their data were on

IUPC, not EHG. Furthermore, the lack of big data in our scheme is a limitation of

our work. More data are needed to thoroughly utilize big data in our work.

To solve this issue, we proposed to generate our synthetic data using the five

databases as seeds. We found Gretel Labs, Inc. (https://gretel.ai/), which provides a

free service using Python. We were able to synthesize a few EHG datasets. However,

after analyzing the synthesized datasets and consulting with our deep learning expert,

Dr. Jaume Manero, about the quality of the synthesized datasets, he recommended

that we would not be able to verify if the synthesized datasets are similar to the actual

datasets of pregnant women. It is not easy to produce high-quality bio-synthetic data

that are similar to the original data. This could be a limitation of the company’s

algorithms since they do not specialize in synthesizing biodata. Dr. Manero has also

recommended that if we need to synthesize uterine EHG data, we would have to build

our own deep learning synthetic model, which would take a long time.
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Proposed systems AC MisCl R P F FNR FPR AUC
Proposed ANN model 0.98 0.01 0.98 0.97 0.98 0.01 0.01 0.99
Proposed RF classifier 0.95 0.04 0.96 0.93 0.94 0.03 0.04 0.99
CNN model [59] 0.98 x 0.87 x x x x 0.92
Idowu et al. [30] x x 0.97 x x x x 0.94
Fergus et al.[48] 0.90 x 0.85 x x x x 0.90
Acharya et al. [49] 0.96 x 0.95 x x x x x
Altini et al. [50] 0.87 x x x x x x x
Borowska et al. [18] 0.83 x x x x x x x
Altini et al. [51] x x x x x x x x
Hoseinzadeh and Amirani [52] 0.97 x 0.95 x x x x x
Degbedzui and Yüksel [53] 0.99 x 0.99 x 0.99 x x x
Peng et al. [54] 0.93 x 0.89 x x x x 0.80
Shahbakhti et al. [55] 0.99 x 0.98 x x x x x
Sheryl Oliver et al. [56] 0.96 x 0.92 x x x x x
Chen et al. [57] 0.90 x 0.92 x x x x x
Esgalhado et al. [58] 0.97 x x x x x x x

Table 8.5: Comparative analysis of the proposed work with published state-of-the-art
techniques

8.8.3 Smartphone’s Resources Performance

We maintained the same smartphone resource consumption as the previous machine

learning scheme in Section 7.8.2. Furthermore, the CNN model might use more

smartphone resources to extract images, requiring more CPU power and storage.

Table 8.5 summarizes the performance of all the ML and DL methods. In conclu-

sion, the ANN model is the best choice given that all the methods from the litera-

ture review did not provide enough information for a complete comparison and good

smartphone resource consumption.

8.9 Chapter Summary

In this chapter, we presented the deep learning algorithm scheme in detail. We il-

lustrated the scheme implementation and our choice of feature selection and deep

learning model. We also presented and discussed the evaluation results of the ANN

model. Furthermore, we compared our results with the literature review studies.

Moreover, the application efficiently consumed the smartphone’s CPU, memory, and
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battery power consumption. We concluded that the ANN deep learning model im-

proved the detection and prediction compared to the machine learning scheme and

the CNN model. In the next chapter, we will present experts’ knowledge regarding

the medical aspects of our framework.



Chapter 9

Experts Domain

In this chapter, we will present obstetricians’ medical opinions on some aspects of

our framework. We have contacted two obstetricians: Dr. Ebtehal Hussein Aljumaai,

obstetric and gynecology registrar, Abha Maternity Children’s Hospital, Saudi Ara-

bia; and Dr. Mohamed Elsheikh, obstetrician and fetal medicine consultant, National

Guard Hospital, MRCOG, SSCOG, DIP Prenatal genetics, Riyadh, Saudi Arabia.

9.1 Research Questions

To validate the medical aspects of the framework, we asked them the following ques-

tions:

1. Does the 30-minute monitoring session mimic the obstetrician’s uterine contrac-

tions analysis to determine if a pregnant woman is in labour?

2. Are amplitude and frequency the most important parameters to use to decide

if a pregnant woman is in labour?

3. Do you consider age, gestation and parity when evaluating the status of pregnant

women with a high risk of premature labour?

4. Would you integrate our monitoring system to assist your patients?

5. How many stages does labour involve?

6. What is the window of time before the pregnant woman goes into labour?

In the following section, we will provide the obstetricians’ answers to these ques-

tions.

138
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9.2 Discussion

For question 1, the obstetrician will monitor the pregnant woman’s contractions for

a minimum of 30 to 40 minutes, then repeat the process. This process can take from 4

hours to 24 hours, depending on the pregnancy status. This supports our framework

design, as the monitoring session is set to be 30 minutes long, and it is repeated if no

alarm is triggered.

For question 2, both obstetricians acknowledged that amplitude and frequency

are the top vital parameters when analyzing uterine contractions. That means our

choice of having these two parameters as the basis for the machine learning and deep

learning approaches is correct and mimics what an obstetrician would use to analyze

uterine contractions.

Dr. Aljumaai also added that if the contractions pattern is regular or the ampli-

tude is 60 millimetres of mercury (mmHg) or 200 Montevideo units (MVU) for IUPC,

the pregnant woman is in labour. This is similar to our amplitude-frequency scheme,

as we designed it to recognize regular contraction patterns.

For question 3, age was chosen by the obstetricians as the most important

factor, especially if the pregnant woman’s age is less than 18 or over 40. Gestation

and parity are also important, especially if the pregnant woman has a history of

premature labour.

For question 4, both obstetricians agreed that such a system is needed, and they

would use it with their patients.

For question 5, obstetricians explained that there are four stages of labour:

1. Stage 1 (Latent): When the contractions start until the cervix widens to 6 cm.

2. Stage 2 (Active): When the cervix widens to 10 cm.

3. Stage 3: Starts when the baby is born until the placenta detaches.

4. Stage 4 (Afterbirth): Starts after the placenta comes out.

According to the obstetricians, our framework comes before stage 1 when the

contractions start.

For question 6, obstetricians explained that the window before the pregnant
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woman goes into stage 1 of labour depends on how many pregnancies the woman has

had (Parity). If the pregnant woman is primigravida (it is her first pregnancy), the

window is around 16 hours. If the pregnant woman is multigravida (it is her at least

second pregnancy), the window is around 12 to 14 hours.

In the next chapter, we will present the concluding remarks and future work of

the framework.



Chapter 10

Conclusion and Future Work

Premature birth is a global issue for pregnant women and babies that can lead to

death or life-long health problems. Furthermore, there is no permanent solution

or cure for premature birth because the cause is usually unknown. Moreover, even

though premature birth more heavily affects women in developing countries, it is also

an issue in developed countries and has a very high cost of treatment. For these

reasons, we have proposed a framework for monitoring pregnant women with a high

risk of premature birth using a WBS and a smartphone. We designed the framework

to be continuous, home-comfortable, cost-effective, and reliable. The framework aims

to detect labour patterns and send a warning to the pregnant woman by monitoring

uterine EHG contractions. The framework has three schemes to use to analyze uterine

contractions:

1. Amplitude-frequency algorithm scheme.

2. Machine learning algorithm scheme.

3. Deep learning algorithm scheme.

We have implemented a proof-of-concept smartphone application to test the frame-

work’s schemes. We used 7271 datasets of uterine EHG contractions obtained from

the following five databases from [127]:

• Icelandic 16-electrode Electrohysterogram Database [128].

• Term-Preterm EHG Database [126].

• Term-Preterm EHG DataSet with Tocogram [131].

• CTU-CHB Intrapartum Cardiotocography Database [139].

• OB-1 Fetal ECG Database [127].

To evaluate the schemes, we calculated the accuracy and reliability of the analyzing

algorithms and evaluated the smartphone’s resources performance in terms of CPU,

141
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memory and battery power consumption. The deep learning ANN model achieved

better results in comparison to the machine learning RF classifier. In the next section,

we will list the framework’s future work.

10.1 Future Work

In future work, we will expand our smartphone usage to include iPhones and low-end

cost-effective smartphones found largely in developing countries. We will also develop

a deep learning model to synthesize EHG signals. Furthermore, we will identify and

evaluate the privacy and security implications of the system design.

In addition, We will propose a user study to evaluate the system application UI

ease of use. The following section will illustrate the user study to recruit pregnant

women.

10.1.1 Study Proposal

In this section, we propose a user study to recruit pregnant women for EHG data

collection and evaluation of how comfortable the sensor will be when attached to the

pregnant woman. We were able to connect with some obstetricians to discuss the

details of the study and the possibility of starting the recruitment. However, due to

the unprecedented and very uncertain situation with the COVID-19 pandemic, we

could not start the recruitment of pregnant women. According to the obstetricians,

pregnant women can not be exposed to COVID-19 by any means, especially if they

are at a high risk of premature labour. For that reason, we had to add recruitment as

future work and apply our framework as a simulation. The following sections detail

the study proposal for future work.

Objectives

As discussed in Chapter 2, pregnant women with a high risk of premature labour can

have spontaneous labour as early as 19 weeks of gestational age. Furthermore, since

EHG databases are limited in number, we can collect our data using WBSNs described
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in Section 2.3. To collect the data, we propose a study design to recruit pregnant

women with a high risk of premature labour. We will describe the WBS device we

will be using to collect uterine contraction EHG data in the following section.

Data Collection

Any device we are going to use must have the following specifications in order to meet

our research goals:

• Small in size so it does not restrict the pregnant woman’s movement.

• Sends data wirelessly to the smartphone.

• Can be used non-invasively on the pregnant woman’s abdomen.

• Safe to be used for both the pregnant woman and the fetus.

• Cost-effective to be applicable in developing countries.

• Easy to set up and launch.

• Collects data reliably and effectively for a long time.

• Stores data locally if unable to connect to the smartphone.

We will use a WBS device called the Shimmer3 Consensys EMG Development

Kit. It consists of:

• The Shimmer3 EMG sensor.

• 5*9-inch biophysical leads.

• EMG electrodes.
The Shimmer3 EMG sensor can collect, filter, and send signals wirelessly via

Bluetooth. Figure 10.1 shows the Shimmer3 device.

Patient Recruitment

Candidates for recruitment must be pregnant women with a history of premature

labour. Due to this restriction, it might be challenging to recruit more than ten

pregnant women with a high risk of premature labour. Therefore, we aim to recruit a

minimum of five patients for a monitoring session every 30 minutes. The monitoring

will start at the 19th week of gestational age and continue until the pregnant woman

gives birth
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Figure 10.1: The Shimmer3 EMG sensor
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