
DETECTING MALICIOUS DNS TUNNELS VIA NETWORK
FLOW ENTROPY

by

Yulduz Khodjaeva

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2021

© Copyright by Yulduz Khodjaeva, 2021

The thesis is dedicated to my parents and to all people who have been

with me during these challenging times

ii

Table of Contents

List of Tables . v

List of Figures . vii

Abstract . viii

List of Abbreviations Used . ix

Acknowledgements . xi

Chapter 1 Introduction . 1

Chapter 2 Literature Review . 4

2.1 DNS tunnelling and exfiltration detection 4

2.2 DoH tunnelling detection . 6

2.3 Using entropy . 8

2.4 Optimization using TPOT-AutoML 10

2.5 Summary . 11

Chapter 3 Methodology . 13

3.1 Datasets . 14

3.2 Network Flow Extraction Tools . 17

3.3 Network Flow Entropy and Statistical Features 19

3.4 WEKA: Machine Learning Software in Java 24

3.5 Machine Learning Algorithms applied via WEKA 26

3.6 TPOT for Optimization . 34

3.7 Summary . 37

Chapter 4 Evaluations and Results 38

4.1 C4.5 classifier results obtained by using Weka 38

iii

4.2 Results of running four ML classifiers on Weka 41

4.3 Results of experiments with Argus flow extractor 43

4.4 Results of running TPOT-AutoML 44

4.5 Summary . 46

Chapter 5 Conclusion . 48

Appendix . 50

Bibliography . 62

iv

List of Tables

3.1 A summary of the datasets used 16

3.2 Performance of the C4.5 training model on flow statistical fea-
tures without entropy by three flow exporters 19

3.3 Features chosen by Tranalyzer2 20

3.4 Features chosen by Argus . 20

3.5 Features chosen by DoHlyzer 20

3.6 Features chosen by Tranalyzer2 augmented with entropy 22

3.7 Features chosen by Argus augmented with entropy 24

3.8 The current list of classifiers and preprocessors implemented in
TPOT . 36

4.1 C4.5 classification results of training and test datasets - entropy
calculated over all packets of a flow 39

4.2 C4.5 classification results of training and test datasets - entropy
calculated over the first 4 packets of a flow 40

4.3 C4.5 classification results of training and test datasets - no en-
tropy deployed . 40

4.4 Classification results of RF, SVM, LR, and NB on training and
test datasets - entropy calculated over first 4 packets of a flow . 41

4.5 Classification results of RF as number of trees increases - entropy
calculated over the first 4 packets of a flow 42

4.6 Depth of RF per tree as the number of trees increase - Trained
on DoHBrw+ImpactGT+CICIDS 42

4.7 Comparison of classification results for Tranalyzer2 and Argus . 43

4.8 Results of running TPOT (11 classifiers) for optimizing the pro-
posed approach . 45

4.9 Results of running TPOT - Neural Network classifiers only . . 45

4.10 Comparison of Weka RF classifier versus TPOT 46

v

5.4 Benign and Malicious Traffic Representation in datasets supplied 61

vi

List of Figures

3.1 Research Methodology for selecting the best feature set 15

3.2 Research Methodology for optimizing classification using the
selected best feature set . 16

3.3 Methodology for entropy calculation 22

3.4 Average number of packets per flow in training and testing de-
ployments . 23

3.5 An example machine learning pipeline [51] 34

4.1 Visualization of entropy values distribution over classes in the
training dataset using Weka 40

4.2 Deploying the trained Supervised Learning model as a Predic-
tive Model . 43

4.3 Visualization of C4.5 Decision Tree - entropy calculated over
the first 4 packets of a flow . 44

4.4 Computational cost (hrs) of TPOT during training as the num-
ber of generations increase where TPOT considered all 11 clas-
sifiers . 46

4.5 Computational cost (hrs) of TPOT during training as the num-
ber of generations increase where TPOT considered Neural Net-
work classifiers only . 47

vii

Abstract

The thesis proposes the concept of ”entropy of a flow” to augment flow statistical fea-

tures for DNS tunnelling detection, specifically DNS over HTTPS traffic. To achieve

this, the use of flow exporters, namely Argus, DoHlyzer and Tranalyzer2 are explored.

Flow features are then augmented with the flow entropy, calculated in three different

ways: entropy over all packets of a flow, entropy over the first 96 bytes of a flow,

entropy over the first n-packets of a flow. These features are provided as input to

five machine learning classifiers, specifically Decision Tree, Random Forest, Logistic

Regression, Support Vector Machine and Naive Bayes to detect malicious behaviours

in different publicly available datasets. Evaluations show that the Decision Tree algo-

rithm could reach an F-measure of approximately 99.7% when flow statistical features

are augmented with the flow entropy of the first four packets. This model is then

optimized using TPOT-AutoML, where the Random Forest classifier provided the

best pipeline configuration for the same features.

viii

List of Abbreviations Used

ARP Address Resolution Protocol

AutoAI Automated Artificial Intelligence

AUC Area Under Curve

CNN Convolutional Neural Network

DNS Domain Name System

DoH DNS over HTTPS

DoT DNS over TLS

DT Decision Tree

DoS Denial of Service

DL Deep Learning

ESP Encapsulating Security Protocol

FTP File Transfer Protocol

GB Gradient Boosting

GML General Machine Learning

GUI Graphical User Interface

GP Genetic Programming

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IDS Intrusion Detection System

KNN k-nearest neighbor

LGBM Light Gradient Boosting Machine

LR Logistic Regression

ML Machine Learning

NB Naive Bayes

ix

NLP Natural Language Processing

PCC Pearson Correlation Coefficient

PC Personal Computer

RF Random Forest

SSH Secure Shell

SOM Self-Organizing Map

SVM Support Vector Machine

TLS Transport Layer Security

T2 Tranalyzer2

URL Uniform Resource Locator

VANET Vehicular Ad hoc Network

WEKA Waikato Environment for Knowledge Analysis

XGBM Extreme Gradient Boosting Machine

x

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Nur Zincir-Heywood for

her immense support and guidance during my Master’s Degree journey. Apart from

that, I show my deep appreciation to Global Affairs Canada for administering ”Study

in Canada Scholarship” for my studies at Dalhousie University.

This thesis is the result of hard work and commitment coming not only from my

side but from my parents who have supported and encouraged me to study, develop

and grow.

xi

Chapter 1

Introduction

The role of Domain Name System (DNS) protocol is crucial to the core functionality

of the Internet. DNS is the Internet’s hierarchical, distributed database system that

translates the Internet Protocol (IP) addresses to Domain names, and vice versa. Re-

cently, this critical network functionality has been facing pressure for change. Specifi-

cally, two aspects are of particular relevance: DNS over HTTPS (DoH) and DNS over

TLS (DoT). The objective is to secure communications between the DNS resolver re-

siding on the end user’s system and their chosen recursive resolver. DoH achieves

this by embedding DNS query into a Secure HyperText Transfer Protocol (HTTPS)

request/response, while DoT achieves this over the Transport Layer Security (TLS

over TCP) protocol [73, 64, 35]. DoT protocol uses new TCP port number 853, and

DoH blends into HTTPS traffic, sharing the same port. For this reason, controlling

DoT traffic seems doable for network security specialists who can simply monitor

and block malicious traffic going through the DoT-used port. Applying the same

approach for DoH traffic is not possible [37]. New protocols potentially imply that

significant changes will result in web and domain name mapping services. These new

versions will change connection management layer, as well as changing the nature of

traffic and application behaviours. Moreover, with DoH, the entire Internet ‘threads’

through the ‘eye’ of HTTPS. As a consequence, traditional ways of analyzing network

and application data for cyber security, network operations and management using

metadata, port or payload will no longer be possible [68, 63, 59].

In particular, DoH has been advocated to provide user privacy and security by

encrypting the data between the DoH client and the DoH-based DNS resolver. As a

consequence, it is argued that the risk of DNS data manipulation substantially de-

creases. What seemed to be a quite promising and effective solution at the very start,

later gained a lot of criticism among the researchers, who claimed that DoH makes

DNS tunnels harder to detect and mitigate. This specifically affects the detection

1

2

of malicious behaviours that exfiltrate data through DNS tunnelling. DNS protocol,

which works with plain text for its data transmission, allows organizations to monitor

DNS traffic by observing DNS queries. Once the data gets encrypted, threat analysis

based on the plain text content of DNS queries becomes an obsolete tool for network

security specialists. The features extractable from DNS queries, like domain name,

record type, unique query ratio, query volume and length would be encrypted in DoH

leaving only IP address, port number and timestamp in plaintext form [37]. The

feeling of worry builds up with an overall increase in encrypted traffic. According to

statistics[20], 95% of web data across Google platforms undergoes HTTPS encryp-

tion: this includes Advertising, Google Calendar, Google Drive, Gmail, Google Maps

and YouTube. In addition to it, Operating Systems like macOS, iOS and Windows

have been supporting DoH and DoT protocols. Web-browsers, like Google Chrome,

Microsoft Edge, Mozilla Firefox and Opera have been working with newly established

protocols, which can be configured from a settings panel [70]. Given that a form of en-

cryption is applied in this newly established protocol, attackers can leverage DoH for

malicious purposes. It is well known that DNS and its plaintext nature remains highly

vulnerable to amplification attacks, DNS cache poisoning, botnet attacks, phishing

attacks and DNS manipulation [58]. Due to these security issues, it is important to

detect malicious DoH traffic.

Taking all these factors into account, researchers have started to explore host-

based and network-based monitoring for DoH protocol analysis [52]. To this end,

some recent works have evaluated the use of Machine Learning (ML), entropy, and

network packet distribution-based approaches for analyzing DNS tunnelling and exfil-

tration attacks [66, 40, 75, 57]. While some of these works focus on using DNS-specific

attributes, others use traffic or malware-specific attributes. This thesis explores the

effect of entropy of a network flow in order to detect malicious behaviours in DoH

tunnels. Even though previous works [47, 54] have employed entropy for summariz-

ing network packet distributions, to the best of my knowledge, this is the first work

studying entropy in the context of network flows. Additionally, the usability of Au-

toML tools, namely TPOT, for optimizing the DoH tunnelling classification is also

explored. TPOT is a Python-based ML tool that was developed in 2016 with a core

objective of optimizing ML pipelines using Genetic Programming [11]. Considering

3

thousands of pipeline configurations based on the dataset provided, TPOT automates

the most tedious and time-consuming part of ML. Built on top of the scikit-learn li-

brary, TPOT currently has an implementation of 11 classifiers and 12 pre-processors

required for training purposes [29]. Previous research deployed another AutoML tool

called AutoAI for detecting malicious DNS over HTTPS traffic [31]. Based on the

current literature studied, using the TPOT-AutoML toolset for malicious DNS traffic

detection is the first experiment in its nature being reported. Thus, the novelty and

the new contributions of this thesis are summarized as the following:

• Exploring the use of flow entropy characteristic to augment statistical features of

network traffic flows for identifying malicious DNS, in particular DoH, tunnels;

• Exploring the minimum number of packets required to calculate entropy per

traffic flow without decreasing performance or increasing complexity of the iden-

tification of malicious DoH tunnels;

• Exploring the optimization of the proposed approach in terms of complexity and

performance to detect malicious DoH tunnelling behaviours using the TPOT-

AutoML tool.

The rest of the thesis is organized as follows. Chapter 2 summarizes the related lit-

erature. Chapter 3 introduces the proposed approach and discusses the methodology

used in this research. Chapter 4 details the experiments performed and presents the

results obtained. Finally, conclusions are drawn and the future research is discussed

in Chapter 5.

Chapter 2

Literature Review

Detection of attacks by analyzing network traffic has become one of the most widely

researched areas in the cybersecurity world. Scientists have been proposing state-of-

the-art Intrusion Detection Systems (IDS) and carrying out experiments to analyze

malicious activities. In this thesis, the focus is on malicious DNS (DoH) tunnelling

behaviours. Thus, this chapter is divided into four sections, with Section 2.1 sum-

marizing DNS tunnelling and exfiltration detection research in general, Section 2.2

looking at DoH tunnelling identification in particular, Section 2.3 highlighting scien-

tific work related to entropy usage for attack detection and lastly, Section 2.4 studying

papers related to TPOT-AutoML tool and its effectiveness.

2.1 DNS tunnelling and exfiltration detection

I will start by looking at papers that studied DNS exfiltration and tunnelling de-

tection methods. In [41], Das et.al. proposed ML algorithms to detect DNS channel

exploitation, a possible alternative for traditional detection mechanisms like blacklists

or signature-based methods. An application of a Machine Learning based system was

designed for internal network enterprise. They came up with the first end-to-end sys-

tem that identifies exfiltration and tunnelling activity based on internal packet data.

For the dataset, researchers collected network traffic of a certain enterprise for 39

days, containing no malicious activity. For exfiltration data, they had to synthesize

it artificially, with three sets using base64, base32 and hex on random strings and

one set using base64 on credit card numbers. Once the dataset was generated and la-

belled, researchers calculated features like normalized entropy of concatenated string,

length of the concatenated string, the ratio of uppercase and lowercase letters in the

string, etc. Feeding 8 features into Logistic Regression model, authors demonstrated

F1-measure of 96%, low false-positive and high detection rate.

4

5

In [54], Ahmed et.al. set the same goal of detecting DNS exfiltration and tun-

nelling behaviour from enterprise networks by performing real-time analysis of DNS

queries. They collected DNS traffic from two enterprise networks, a medium-sized

research institute and a large University campus, injected a million malicious DNS

queries and fed a set of features extracted from queries into the Isolation Forest algo-

rithm. To avoid the high computational cost of deriving time-series features of DNS

queries, authors identified a set of three attributes: character count, the entropy of a

query string and length of discrete labels in the query name that primarily helped to

distinguish malicious DNS queries from benign ones. Performing fine-tuning during

a training phase, they achieved 95% accuracy for malicious and 98% accuracy for be-

nign classes for testing datasets. Since detection of DNS exfiltration and tunnelling

was done in real-time, the authors also presented the average time complexity of the

proposed methodology, demonstrating that 800 µsec would be enough per each query

name.

Another work to identify DNS tunnelling and exfiltration activity was carried in

[40], where Campbell et. al. used Self-Organizing Maps. Packet inspection-based

approach was the core path chosen by the authors. Researchers represented DNS

packets as query strings and extracted features from them, which were then used to

train a Self-Organizing Feature Map (SOM), an unsupervised learning algorithm, to

cluster DNS tunnelling, exfiltration and normal behaviours. Three publicly available

datasets were used for representing benign behaviour, while publicly available tools

like DNScat2, DET, DNSTunnel and DNSteal were run to generate tunnelling and

exfiltration attack behaviours. In order to detect DNS exfiltration, authors extracted

8 features from query strings, including their length, ratio and etc. As for identifying

DNS tunnelling, researchers derived 10 features. Derived features were put forward to

prove the author’s hypothesis: testing SOM’s ability to self-organize the input data

into distinct neighbourhoods, with neighbourhoods representing different behaviours

(benign and malicious). Once the experiments were done, researchers achieved an

F-measure of over 99% on all testing schemes, demonstrating the robustness of their

model. SOM model was able to cluster all the data sets employed with high accuracy,

separating malicious behaviours from benign ones with high precision.

Lastly, in [61] Lambion et. al. deployed Random Forest and Convolutional Neural

6

Network (CNN) to detect DNS tunnelling in real-time. Researchers created a dataset

consisting of real-time DNS data, collected from subscribers including Internet Service

Providers, schools and businesses. For each instance in a dataset, 5-tuple information

was gathered: 〈query name, query type, IP address, query time and date〉. A label

for each instance was provided as well: ”non-tunnelling traffic”, ”normal resolved”,

and ”DNS tunnel”. Because only a limited amount of data can be tunnelled within

each query name, data exfiltration is done over multiple queries combined. Hence,

the authors of the paper grouped queries with the same SLD, day and IP address.

CNN classifier was instructed to classify each instance of the dataset and subsequently

use majority voting to label a group of DNS queries, while RF classifier was trained

to classify entire groups of DNS queries. RF algorithm used 100 trees for training

purposes and 11 features were fed into it. Results of classification demonstrated

96.04% accuracy for Random Forest and 99.30% for CNN model.

2.2 DoH tunnelling detection

Over the last decades, Network Security specialists have been raising a question about

the security problem of DNS protocol. As a solution to this, DNS over TLS and DNS

over HTTPS protocols have been suggested. DoT is an Internet Engineering Task

Force (IETF) standard deploying TCP as its connection protocol to layer over TLS

encryption and authentication between a DNS client and a DNS server. Functioning

at the operating system level, it communicates over TCP port 853. Whereas, DoH

leverages HTTPS for encryption and authentication between a DNS client and server.

DoH shares TCP port 443 with HTTPS traffic, and unlike DoT, it is implemented

at the application layer, creating room for browser traffic to bypass enterprise DNS

control. As it was mentioned earlier, analyzing and controlling DoT traffic is still

possible for Network Administrators who can monitor it as DoT traffic appears. Doing

the same thing for DoH is not possible, since DoH shares a port with other HTTPS

traffic. For this reason, focusing on DoH tunnelling detection has been set as a key

priority for this research [26].

Among the latest research working with DoH tunnelling detection is the paper

published by a group of scientists from the University of New Brunswick. In [66],

Montazeri et. al. presented a two-layered approach to detect and characterize DoH

7

traffic using time-series classifiers. In the first layer, traffic was classified into DoH and

Non-DoH, while in the second layer characterization of DoH into benign and malicious

took place. They extracted 28 statistical features of DoH flows, using a tool called

DoHMeter [4]. Statistical features included parameters like number and rate of flow

bytes sent, number and rate of flow bytes received, packet length, packet time, etc.

The authors employed six different machine learning (ML) classifiers at layer-1 and

layer-2 and achieved an F-measure of 99.3% with Random Forest (RF) and Decision

Tree (DT) classifiers. For their research experiments, authors generated benign and

malicious DoH as well as Non-DoH traffic within their network premises, identifying

every flow of encrypted network traffic by using tuple 〈source IP, destination IP,

source port, destination port, protocol 〉. The dataset was made publicly available at

[2].

Following this, in [75], Singh et. al. applied several Machine Learning algorithms

to detect malicious activity in DoH and traditional DNS traffic. Researchers raised

the question of DoH security risks since the new protocol bypasses local security

measures like Firewalls, IDS and makes the audit of traffic impossible. The authors

used the DoHMeter tool to extract statistical features from the publicly available

DoH dataset [2] and employed five ML classifiers. It should be noted here that they

applied the same 28 features as in [66]. Similar to previous research, the Random

Forest algorithm outperformed others with Precision, Recall and F-measure reaching

99.99%.

Analyzing research works done in DoH tunnelling detection, a recent paper [32]

published in August 2021 was studied. Behnke et. al. compared the performance

of ten ML classifiers using ten-fold cross-validation on DoHBrwDataset [2]. The

authors also used DoHMeter [4] tool to extract statistical and time-series features

and applied Chi-Square and Pearson Correlation Coefficient (PCC) tests to address

the overfitting problem. As a result, out of 34 statistical features, 21 were used for

a classification task. The results showed almost 0% misclassification error for Light

Gradient Boosting Machine (LGBM), Random Forest, Decision Tree and Extreme

Gradient Boosting Machine (XGBM) classifiers. Apart from comparing performance

metrics of ML classifiers, researchers also considered training and prediction time.

Thus, LGBM was the fastest model, with training time making up 87 seconds for

8

Layer 1, and on the other hand, Random Forest was the slowest one, with training

time reaching 1.39 hrs.

Lastly, a recently published paper [70] discussed detection of DNS over HTTPS

tunnelling by using a set of ML algorithms. Researchers deployed a packet sniffer

on their local PC to capture the packets of every connection layer transfer sent and

received by the PC. Once the dataset was collected, they deployed Scapy - a mod-

ule written in Python to manipulate data packets by exploiting numerous protocols.

Python script, which leverages Scapy to clump packets into flows, extracted 34 fea-

tures for each flow (it is interesting to note that features extracted by Scapy-based

script were similar to features extracted by DoHlyzer tool in [66, 3]). To reduce the

training time of the classification model, authors applied Gini index [19] to identify

features to remove from the huge dataset. A set of Machine Learning algorithms used

during the experiments were Logistic Regression, KNN, SVM (Linear and RBF), and

Random Forest. Accuracy for the following classifiers ranged from 94% to 99%, where

RF outperformed others with 99.8% accuracy. The training time of the model ranged

between 2.2 seconds and 39.7 seconds, with LR being the fastest model.

2.3 Using entropy

In the literature, cyber security specialists have studied the use of entropy features

to detect malicious behaviours in DNS and other network traffic. In [65], Mejri et.al.

used packet entropy to identify Denial Of Service (DOS) attacks happening at Ve-

hicular Ad hoc Networks (VANETs). Packets, circulating within the network, were

categorized into four types: DATA, ACK, RTS and CTS packet families. After that,

the authors calculated the entropy value of DATA and ACK packets. Comparing

entropy value results of different scenarios, researchers managed to prove their as-

sumptions: higher entropy of packets corresponded to normal VANET behaviour.

The gap of entropy values allowed the proposed schema to distinguish easily between

benign and malicious VANET activity.

The paper[40] mentioned in the DNS tunnelling detection section used the en-

tropy feature as well. The packet inspection-based approach was followed throughout

the experiments. The authors extracted eight features from DNS queries, includ-

ing normalized entropy of concatenated string to detect DNS exfiltration. A similar

9

method was undertaken for DNS tunnelling detection, where entropy was among the

ten features derived from DNS queries.

Another work [30] looked at the entropy value of NAN characters present at

Uniform Resource Locator (URL) strings to apply at URL-based phishing detection.

The core purpose behind computing entropy was to look at how NAN characters

were distributed in each URL. Augmenting entropy value with previously proposed

10 features, like IP address, age of the domain, port number, etc, researchers fed 11

features into Random Forest classifier. As for datasets, authors made up balanced and

imbalanced datasets. The balanced dataset consisted of an equal number of legitimate

and phishing URLs, while the ratio of benign and malicious URLs in the imbalanced

dataset was 9:1. Once the experiments were completed, they compared the efficiency

of the entropy feature and concluded that augmenting entropy with other features

increased the model’s precision rate by 7-10%. Despite significant improvements in

accuracy when applying entropy, authors undermined the high False Positive Rates

still present in both cases.

In [79], Zhou et. al. worked with entropy-related features to detect spam emails

using gcForest - deep forest learning algorithm. Authors calculated three features

for spam detection: entropy of subject size of sent mails, the entropy of content size

of sent emails and the ratio of received mail count to sent mail count. In terms of

the dataset, they collected mail data at a border network of a province in China for

34-days. Once the dataset was collected, they ran proposed features on three different

classifiers: ALAC, SVM and gcForest. Results showed high spammer detection rates

for all three classifiers at the source network, exceeding 90%. Researchers managed

to demonstrate the efficiency of entropy-related features for identifying spam mails.

Similarly in [47], Fawcett designed the ExFILD tool to detect data exfiltration

by analyzing encryption characteristics of the packets and sessions, where features

extracted from network traffic were classified by a Decision Tree. Fawcett processed

network traffic at the packet and session levels. For extracting packets belonging to

one session, the researcher used a session identifier consisting of source and destination

IP addresses and their respective ports. Entropy values of packets’ payload were

calculated to model the encryption state for packets or sessions. Then, they were

input to the Decision Tree to classify whether a packet/session contains exfiltrated

10

data. The decision-making tree was a key body in the proposed methodology to

decide whether a packet or a session contains exfiltrated data. The tree branched out

into four branches: expected and received unencrypted data, expected unencrypted

but received encrypted traffic, expected encrypted but received unencrypted data,

and lastly, expected and received encrypted data. Once encryption characteristics of

a packet/session went through the tree, it decided whether or not to flag a specific

packet/session.

2.4 Optimization using TPOT-AutoML

In [67] Olson et.al. implemented an open-source TPOT tool using Python library

and presented the tool’s efficiency by testing it on a series of simulated and real-

world benchmark datasets. The main reason behind developing TPOT was to make

machine learning a more accessible, scalable and flexible area for the research commu-

nity. Pipeline operators implemented in TPOT were based on the scikit-learn module:

preprocessors, decomposition, feature selection and models. Researchers primarily fo-

cused on supervised learning models in the last operator, like Decision Tree, Random

Forest and Gradient Boosting (GB) classifiers, along with SVM and Logistic Regres-

sion models. To demonstrate TPOT’s efficiency, they picked nine supervised learning

datasets from the well-known UC-Irvine Machine Learning Repository [44]. They

divided all datasets in ratio 3:1, ran the TPOT tool and concluded that experiments

with large datasets demonstrated a higher accuracy rate. The authors also underlined

an issue with TPOT’s slow activity on a large dataset, which could take several hours

to complete the training process.

Another paper [48] compared eight open-source AutoML tools benchmarking them

on 12 popular OpenML datasets. Ferreira et. al. carried out experiments based on

three scenarios: General Machine Learning (GML), Deep Learning (DL) and XG-

Boost. They divided datasets into ten folds to perform external cross-validation. In

addition, they split datasets into a 3:1 ratio, allocating 75% of each for training.

Researchers used different performance metrics for regression, binary and multi-class

classification tasks. Mean Absolute Error was used for regression, Area Under Curve

(AUC) for binary classification and Macro F1 score for multi-class classification. In

11

total, authors performed 12 (datasets) x 6 (tools) x 10 (folds) = 720 AutoML exe-

cutions. In the GML scenario, TPOT was the top second tool in terms of execution

time, which explains its long training time. For test datasets, TPOT achieved a 74%

F1 score for multi-task classification, performing better than the other 4 AutoML

tools. In other scenarios, TPOT did not manage to set high scores.

The next paper [31] used another AutoML tool, called Auto AI for malicious DoH

traffic classification. Banadaki et.al. deployed DoHBrw dataset [2], extracted 34

features by using the DoHlyzer tool [3] and fed them into Auto AI to analyze differ-

ent pipeline configurations the tool provided. Unlike TPOT, Auto AI considered six

Machine Learning classifiers, namely Decision Tree classifier, Extra Trees classifier,

Gradient Boosting classifier, LGBM and XGB classifier, and lastly Random Forest

classifier. Results demonstrated the high performance of LGBM and XGBoost classi-

fiers, achieving an accuracy of 100% in separating traffic into DoH and non-DoH. As

for identifying malicious DoH among benign DoH traffic, LGBM outperformed the

other five classifiers again.

Last, but not least, paper [42] discussed the application of the ANTE system, Au-

toML tool for botnet detection among IoT devices. Neira et. al. proposed the system

that autonomously selected the most appropriate ML pipeline for different botnet at-

tack scenarios. ANTE tool was based on the Auto-Sklearn framework, consisting of 3

parts: data collection and preprocessing, feature processing and estimator. AutoML

tool had 14 options for pre-processing features, 15 supervised classifiers implemented.

Researchers deployed three different datasets to test the proposed methodology, ex-

tracted 20 features from network traffic and provided them as an input to the ANTE

system. The system, in its turn, identified the best model, executed a bot anticipation

process and notified the network security administrator about malicious behaviours.

The work demonstrated an average accuracy of 99.87% for botnet detection.

2.5 Summary

As discussed above, the field of DoH Tunnelling detection has been a popular topic

over recent years. Extraction of specific features from DNS traffic packets and flows as

well as analysis of the use of entropy on normal and malicious packets - are examples

of work carried out recently. Researchers have been suggesting novel approaches to

12

increase detection rates of malicious activities in a new DoH protocol. The encrypted

nature of DoH traffic complicates the work for cyber security experts, pushing the

need for comprehensive, fast, and yet reliable analysis models.

To the best of my knowledge, no research has explored the use of entropy on

network traffic flows in terms of modelling different behaviours such as tunnelling

and exfiltration in encrypted DoH tunnels. Moreover, this is the first time such an

approach gets optimized using the TPOT-AutoML system. The potential of TPOT

to find the best parameters and model ensembles by using a genetic search algorithm

is promising and encouraging. In other words, TPOT enables the identification of

a pipeline configuration that might not get considered otherwise, bringing in a new

perspective by a systematic search of the solution space.

To sum up, the research papers discussed above studied and proposed a wide

scope of DNS and DoH tunnelling detection systems. While some of the papers carried

deep-packet inspection and performed computationally expensive packet analysis [41],

which may complicate real-time malware detection, other works utilized network flow

feature extraction tools, which dealt with TCP protocol only [66, 75, 32]. Hence,

the approach these papers suggested is not generalizable to the extent required by

research and the cyber security community.

Studies related to entropy utilization for attack detection calculated it at a packet

level, resulting in a time-consuming and computationally expensive approach [65,

30, 79]. On top of that, some experiments were done by extracting query strings

from DNS requests, which may not work for DNS over HTTPS protocol, since DNS

requests get encrypted by an increasing number of DoH-based web browsers.

Chapter 3

Methodology

In this thesis, the proposed approach for detecting tunnelling and exfiltration be-

haviours in DoH traffic is a network traffic flow inspection-based approach, where the

flow features are augmented with the entropy of the network flow. This augmented

feature set is then used with ML classifiers to detect the malicious DNS tunnels.

Figure 3.1 shows the overall methodology followed in this research. Three publicly

available datasets are run through Flow Exporters, generating statistical features for

each flow, which are then augmented with the entropy of a flow. For the entropy fea-

ture, four different scenarios are benchmarked during the experiments: the first one

does not deploy any entropy feature, the second one calculates an entropy value per

flow by using all packets of the given flow, the third one calculates an entropy value

per flow by using the first 96 bytes of a packet’s payload and the last one calculates

the entropy value using only the first n-number of packets of a flow (where n=4-6).

The final set of statistical and entropy features are input into ML classifiers, including

the C4.5 Decision Tree, Random Forest, Logistic Regression (LR), Support Vector

Machine (SVM) and Naive Bayes (NB). After the model is trained, five different

testing datasets are used to evaluate the performance, complexity and computational

cost of the trained models to differentiate benign flows from malicious ones.

Once the final statistical features are chosen along with the entropy of a flow,

the proposed approach is optimized further using the TPOT-AutoML system. It

should be noted here that TPOT is trained on the same training dataset, and then

five different testing scenarios are analyzed for optimizing the performance of the

proposed detector approach. The reduced number of features required for training

ensures considerably less time spent on finding the best possible pipeline by the

TPOT-AutoML system.

This chapter is structured as follows: Section 3.1 presents the datasets used for

this research, Section 3.2 provides information about network flow extraction tools

13

14

used, Section 3.3 introduces the proposed approach of augmenting flow statistical

features with the flow entropy, Section 3.4 provides information about Weka tool used

throughout this research, Section 3.5 discusses deployed algorithms via Weka, and

finally Section 3.6 discusses the TPOT tool and explains the experiments completed

using TPOT for optimization of the proposed approach.

3.1 Datasets

Due to the novelty of the DoH protocol, finding publicly available datasets is a chal-

lenging task. Montazeri et. al. released the ”CIRA-CIC-DoHBrw-2020” dataset [2],

where they generated Benign-DoH, Malicious-DoH and non-DoH traffic using five

different browsers and four servers. Researchers used Google Chrome, Mozilla Fire-

fox browsers along with dns2tcp, DNSCat2 and Iodine tools to access the top 10k

Alexa websites. As for servers: AdGuard, Cloudflare, GoogleDNS and Quad9 were

employed to respond to DoH requests. In this dataset, DoH traffic is divided into

benign and malicious, with malicious activity being represented in a tunnelled form.

Tools used for malicious traffic generation sent TCP traffic encapsulated in DNS

queries. DNS queries, in its term, were sent using TLS-encrypted HTTPS requests

to one of four DoH servers. Hereafter, this dataset is referred to as DoHBrw.

Another publicly available dataset used in this research is ”GT Malware Passive

DNS Data Daily Feed” [77, 5]. The dataset collection was initiated by Georgia Tech

Information Security Center in 2015, with data capture continuing. It was generated

by running suspect Windows executable files in a sterile and isolated environment,

with limited access to the Internet. For this research, DNS Data for the year 2020

was deployed. Hereafter, this dataset is referred to as ImpactGT.

Additionally, one more publicly available dataset, namely ”CICIDS 2017” [53, 74]

is also employed in this thesis. Intrusion Detection Evaluation Dataset was released by

the University of New Brunswick in 2017 and contains benign and malicious pcap files,

represented in a raw form. Researchers attempted to simulate abstract behaviours of

25 users using HyperText Transfer Protocol (HTTP), HTTPS, File Transfer Protocol

(FTP), Secure Shell (SSH) and email protocols for benign traffic. The capture of

network traffic lasted for 5 days, with Monday representing benign activity and the

rest of the four days focusing on malicious behaviours. I made use of only benign

15

Figure 3.1: Research Methodology for selecting the best feature set

16

Figure 3.2: Research Methodology for optimizing classification using the selected best
feature set

traffic from this dataset. Henceforward, it is referred to as CICIDS.

Table 3.1 shows the number of flows used from each dataset in my research. As it

can be seen from the table, the largest number of flows were taken from the DoHBrw

dataset, corresponding to benign and attack behaviour. ImpactGT dataset was only

represented in malicious form. On the other hand, CICIDS flows outlined benign

user activity. The datasets used in this thesis are balanced with an equal amount

of malicious and benign flows for training and testing purposes. Table 5.4 in the

Appendix part, provides information about the types of attacks represented in each

dataset, and the way benign traffic was generated.

Datasets DoHBrw ImpactGT CICIDS
Number of flows 33000 12000 12000

Table 3.1: A summary of the datasets used

17

3.2 Network Flow Extraction Tools

As discussed earlier, in this research, I explore the application of network traffic flow-

based features augmented with the flow entropy calculated. It enables the analysis

of encrypted DoH traffic for malicious behaviours since no deep packet inspection is

necessary. Hands down, when it comes to anomaly detection, packet-based inspection

analysis ends up being a costly solution looking at packet payload and header on an

individual basis. By contrast, a flow-based approach considers flow properties in

general - duration, number of bytes sent and received (among others) - making real-

time analysis of network activity possible for network security specialists. To this

end, I explore the usage of the following three network traffic flow exporters that are

publicly available.

1. Tranalyzer2 (T2) is a lightweight flow generator and packet analyzer, which can

work with ultra-large packet dumps. Tranalyzer2 consists of a core and a set of plug-

ins, which users can activate according to their needs. Packet-to-flow aggregation

provides better analysis of network operations [38]. Similar to TShark, Tranalyzer2

supports packet mode, but unlike TShark, Tranalyzer2 also includes a unique nu-

merical ID linking every packet to its flow [39]. In [50], Haddadi et. al. compared

several flow exporter tools and reported that Tranalyzer2 [6] demonstrated the best

performance. The functionalities of Tranalyzer2 are as the following:

• Packet capture

• Packet-to-flow allocation

• Flow timeout handling

• Plug-in function invocation

• Flow/packet based output formats

Unlike other flow exporters, Tranalyzer2 provides information about flow direc-

tion, labeling A and B flows (client to server and server to client respectively). Over-

all, thanks to the large number of statistical features extracted (Tranalyzer2 extracts

109 features for each network flow), T2 allows analysts perform troubleshooting and

provide network and application security. On top of that, Tranalyzer2 has become

18

preferred tool for researchers, who use it for traffic preprocessing before training their

ML classifiers for malicious traffic detection.

2. Argus is a bi-directional network traffic flow monitoring system. It provides

information about network flow status and is generally used for Network Intrusion

Detection and Anomaly Detection projects [1]. Released in 1993 and implemented in

C language, Argus was used for network monitoring, supporting distributed network

architecture [78]. Argus supports many protocols, like TCP, ARP, ICMP, ESP, using

its binary format for flow extraction. For this reason, it is required to use the ra tool

to convert the binary output into CSV. Ra module of the tool reads the input file

specified by the user and writes user-specified fields to a file. The maximum number

of fields Argus can extract is 125. For this research, I decided to extract all flow

features and analyze how ML classifiers would use them for classification purposes.

3. DoHlyzer is specifically designed to export and analyze DoH traffic flows by

researchers from the University of New Brunswick. Developed in Python, DoHlyzer

reads user-specified PCAP files and extracts statistical and time-series features into

CSV files. DoHlyzer extracts 34 features for each flow, including the number and rate

of flow bytes sent/received, mean and median packet time, the standard deviation of

packet time, and so on. DoHlyzer consists of several modules that assist data analysis

of DoH flows. These include DoHMeter, Analyzer and Visualizer [3]. Functionalities

of the DoHMeter model are:

• Capturing HTTPS packets from network interfaces and parsing user-specified

PCAP files;

• Grouping packets into flows by their source and destination IP addresses as well

as source and destination port numbers;

• Statistical and time-series feature extraction for traffic analysis.

To compare these three flow exporters, I employed a C4.5 decision tree to classify

attack versus normal behaviours using the training dataset. In this set of experiments,

I only used the statistical flow features without augmenting them with the entropy,

Table 3.2. The results showed that while Argus and DoHlyzer achieve F-measure

values around 99%, Tranalyzer2 achieves F-measure of 95%. Since all of them have

high performances, I further analyzed the features that were selected by the trained

19

decision tree model from the set of all features. To this end, I observe that the C4.5

classifier selected seven features to separate normal flows from malicious ones while

using Tranalyzer2. It selected ten features while using Argus, and fourteen features

while using DoHlyzer. Another potential downside for DoHlyzer is that it can only

support feature extraction based on TCP flows, whereas Argus and Tranalyzer2 work

with TCP and UDP flow.

Flow Exporter # of attributes used P F R
Tranalyzer2 7 95.6 95.2 95.2

Argus 10 99.6 99.6 99.6
DoHlyzer 14 99.9 99.9 99.9

Table 3.2: Performance of the C4.5 training model on flow statistical features without
entropy by three flow exporters

Given the low number of features selected when Tranalyzer2 is used (less number

of features potentially enables a simpler ML model and near real-time execution)

and the ease of using Tranalyzer2 (compared to DoHlyzer and Argus not working

robustly) on all different datasets employed, I selected to continue with Tranalyzer2

to extract features from flows for the initial part of experiments. However, I did

compare Tranalyzer2-extracted features to Argus-extracted flow features, given that

both tools support TCP and UDP. These comparisons are included in the Results

section of the thesis, demonstrating the better performance obtained by Tranalyzer2-

extracted features.

3.3 Network Flow Entropy and Statistical Features

Claude E. Shannon introduced the concept of entropy for information theory in 1948

[46]. Entropy is a measure of a state of randomness, disorder or uncertainty. The

more random the string is, the higher the entropy value it has. Contrary, a string of

all same-character letters will produce an entropy value of 0. Entropy has been used

in many fields from thermodynamics to physics and has been of interest in network

anomaly detection as well. Detection of online warms, DDoS attacks, ransom malware

- are just a few examples where entropy can be used for attack identification purposes.

Entropy can be considered a handy approach compared to traditional attack detection

tools due to its need for a small number of packets for entropy value calculation. We all

20

Attribute Description
1 tcpSeqSntBytes TCP sent seq diff bytes
2 connSip Number of connections from source IP to different hosts
3 tcpSSASSAATrip (A) TCP Trip Time Syn, Syn-Ack;(B) TCP Trip Time Syn-Ack
4 tcpRTTAckTripJitAve TCP ACK trip jitter average
5 aveIAT Average inter-arrival time
6 bytps Sent bytes per second
7 stdIAT Standard inter-arrival time

Table 3.3: Features chosen by Tranalyzer2

Attribute Description
1 DstLoad Destination bits per second
2 TcpRTT TCP connection setup round-trip time, the sum of ’synack’ and ’ackdat’
3 Cause Argus record cause code: Start, Status, Stop, Close, Error
4 Dur Record total duration
5 Dir Direction of transaction
6 sTtl Source to Destination TTL value
7 Rank Ordinal value of this output flow record i.e. sequence number
8 DstLoad Destination bits per second
9 Proto Transaction Protocol
10 dHops Estimate number of IP hops from dst to this point

Table 3.4: Features chosen by Argus

Attribute Description
1 FlowBytesSent Number of flow bytes sent
2 PacketLengthMode Mode packet length
3 DestinationPort Destination port
4 PacketLengthMedian Median packet length
5 PacketTimeMedian Median packet time
6 PacketLengthSkewFromMedian Skew from median packet length
7 ResponseTimeTimeVariance Variance of request/response time difference
8 FlowReceivedRate Rate of flow bytes received
9 PacketTimeSkewFromMedian Skew from median packet time
10 PacketLengthVariance Variance of packet length
11 PacketLengthSkewFromMode Skew from mode packet length
12 Duration Duration
13 ResponseTimeTimeMode Mode request/response time difference
14 PacketLengthMode Mode packet length

Table 3.5: Features chosen by DoHlyzer

21

know that traditional IDS requires a huge volume of data to analyze traffic behaviour,

and quite often hidden malware activities remain undetected by standard tools.

To this end, researchers have used entropy to capture important characteristics

of a packet’s header or payload distributions [60, 33, 54, 40] for detecting anomalous

behaviours. However, I am not aware of any work that provides a methodology to

leverage entropy over network flows. Thus, the research hypothesis is that entropy

characteristics of a network traffic flow could provide an accurate metric to show the

randomness and therefore could be used to indicate the actual state of encryption

in the flow analyzed. Campbell et. al. has shown that entropy values calculated

over encrypted packet payloads enable identification of tunnelling behaviours in DNS

traffic in [40]. Thus, to test my hypothesis I study the use of entropy over network

traffic flows. The following equation is used to calculate the entropy of a network flow

data:

H(X) = −
N∑︂
i=1

p(Xi) log2 p(Xi) (3.1)

where X is the string and Xi is a character in the string. p(Xi) is a particular

character’s probability of being present in the string [46, 47].

Once the datasets were chosen for my research, finding the right algorithm for

flow entropy calculation was an essential step forward. Figure 3.3 shows the detailed

approach I followed in network flow entropy calculation. The raw pcap file is provided

as an input file for the T-Shark tool, which extracts 6-tuple information from each

packet: 〈source IP address, destination IP address, source port, destination port,

packet’s frame time, packet’s payload〉. T-Shark writes output into JSON file, which

is later fed into MATLAB script from one side. The same PCAP file is provided

as input for the network flow extractor. Tranalyzer2, for instance, outputs 106 flow

features and the output is given as a CSV file. Then, this output is provided into

MATLAB script from the other side. Once both JSON and CSV files are fed into

MATLAB, the script runs to calculate the entropy of a flow.

JSON file, generated by the T-Shark tool, contains 6-tuple information, which

MATLAB script uses to match each packet to a particular flow. The script matches

source and destination IP addresses, source and destination port numbers, and packet

frame time to construct the flows. After all of the packets are matched to their flows,

22

Figure 3.3: Methodology for entropy calculation

the entropy value of the merged n packets is calculated.

In this thesis, I augment statistical flow features with the entropy of a network

flow. In this case, the decision tree employs 13 features in total, where 12 of them

are statistical features selected by the decision tree from the set of 106 features that

Tranalyzer2 extracts. It should be noted that features selected by the decision tree

significantly differ from the features chosen when no entropy is employed (See Ta-

ble 3.6).

Attribute Description
1 %dir Direction of the flow
2 numBytesSnt Number of bytes sent
3 minPktSz Minimum packet size
4 stdIAT Standard inter-arrival time
5 ipMindIPID IP minimum delta IP identification
6 ipMaxTTL IP maximum time to live
7 tcpPSeqCnt TCP packet sequence count
8 tcpInitWinSz TCP initial effective window size
9 tcpAveWinSz TCP average effective window size
10 tcpMSS TCP maximum segment length
11 tcpWS TCP window scale
12 tcpRTTAckTripMax TCP acknowledgment trip maximum
13 entropy Entropy value of a flow

Table 3.6: Features chosen by Tranalyzer2 augmented with entropy

Once the statistical and entropy features are extracted and calculated, a training

dataset with 12000 malicious and benign flows is used to create a training model. To

23

ensure a balanced dataset, half of the 12000 flows are benign and half are malicious.

In addition to it, the dataset is balanced in terms of protocols too: both benign and

attack flows are represented with TCP and UDP protocols. DoHBrw dataset consists

of TCP flows, while ImpactGT and CICIDS are made up of UDP flows.

As discussed earlier, the training model is evaluated under four different scenar-

ios: (i) Only statistical flow features are used without any entropy, (ii) Flow features

are augmented with the entropy that is calculated over all the packets of a network

flow, (iii) Flow features are augmented with the entropy that is calculated over the

first 96 bytes of a network flow [43], and (iv) Flow features are augmented with the

entropy that is calculated for the first n-packets of a network flow. When scenario

2 outperformed scenarios 1 and 3, I explore the entropy concept of a network flow

by using fewer data and therefore employ scenario 4. The reason behind this is that

identifying all packets belonging to a flow, and calculating their entropy is compu-

tationally expensive. To decrease this computational cost, I analyze the number of

packets per flow (following the work in [34]) in each dataset used, Figure 3.4. As

it is noticeable from the figure, MATLAB script analyses 31 and 32 packages per

single flow in DoHBrw testing datasets before merging their payload, 7.78 packages

for training and 5.15 packets for ImpactGT datasets.

Figure 3.4: Average number of packets per flow in training and testing deployments

24

Attribute Description
1 DstLoad Destination bits per second
2 Entropy Entropy value calculated over 4 packets
3 TotBytes Total transaction bytes
4 DstBytes Destination → Source transaction bytes
5 RunTime Total active flow run time
6 sTtl Source to destination TTL value
7 Rank ordinal value of this output flow record i.e. sequence number

Table 3.7: Features chosen by Argus augmented with entropy

I, therefore, evaluate the performance of the trained classifiers by calculating the

entropy for the first n=6, n=5 and n=4 packets of a given flow. In this case, my

objective is to find the minimum number of packets per flow that can provide a

reasonable indication of the entropy of a flow without decreasing the performance

of the classifier. The results of these evaluations show that calculating flow entropy

over the first four packets of a flow decreases the computational cost (relative to all

packets) without decreasing the F-measure of a classifier. It should be noted here

that when a flow has less than four packets, all packets belonging to that flow are

used for the entropy calculation. The evaluation results are presented and discussed

in more detail in the next chapter.

Having carried out experiments with Tranalyzer2 flow exporter and looking at

how 13 statistical features help ML classifiers distinguish traffic behaviour, it was

decided to try Argus flow exporter and analyze how Argus-extracted features help

Weka tool classify the same flows in the same set of training and testing datasets.

Table 3.7 shows 7 features deployed by the C4.5 decision tree for classification of the

training model.

3.4 WEKA: Machine Learning Software in Java

WEKA, Waikato Environment for Knowledge Analysis, represents a collection of al-

gorithms for data analysis and visualization tools along with Graphical User Interface

(GUI) for convenient access to user[15, 7]. WEKA is a free software issued under the

GNU General Public License. Developed at the University of New Zealand, WEKA

was designed to help researchers carry Machine Learning experiments and apply de-

veloped techniques to real-world data mining problems. The workbench has integral

25

methods required for data mining problems: regression, classification, clustering, as-

sociation rule mining, and attribute selection. Developers suggest three ways of using

WEKA[45]:

• applying a learning method to a dataset and analyzing its output to learn more

about data

• using learned/trained models to make predictions on new/unseen data

• applying various learners and comparing their performance to choose the best

one for prediction

The data is usually presented in a spreadsheet or database. However, WEKA’s native

data storage format is ARFF. The ARFF file consists of a list of instances and the

attribute values for each instance are separated by commas. The main difference

between ARFF and CSV file is the presence of @relation, @attribute and @data tags

in the first file format. @relation tag defines the name of the database, @attribute

tag defines attributes, @data defines a list of data rows, in a comma-separated line.

WEKA accepts numeric and nominal attribute values, so string attributes have to be

removed from the dataset. Once the user loads the dataset into WEKA, he/she is

able to choose the learning algorithm from a list of implemented ones. The current

list of classifiers, for instance, includes but is not limited to Naive Bayes, Logistic

Regression, J48 (C4.5), Random Forest, SVM and etc.

When choosing classifiers, a user is able to set parameters based on preference

and training dataset. For J48, for instance, the user can play with the confidence

threshold for pruning (default is 0.25), a minimum number of instances permissible

at a leaf (default is 2), and others. Instead of standard C4.5 pruning, the user can

opt for reduced-error pruning, instruct the classifier to apply Laplace for counts at a

leaf or not.

After choosing a classifier, the next step is to choose the evaluation method that

the tool offers: Cross-validation, Training set, Testing set and Percentage split. Un-

less the user has its own training and testing sets, choosing Cross-validation and

Percentage split is recommended. For Cross-validation, a number of folds in which

the entire data would be split and used at each iteration of training are set, while in

26

Percentage split, the user-specified ratio would be applied to data and divided into

training and testing subsets.

As mentioned above, WEKA has powerful visualization tools, both for datasets

themselves and for classification results. Dataset visualization tool displays a matrix

of 2D scatter plots for each pair of attributes. The classification model visualization

tool provides a visual representation of the trained Decision Tree model once the

training process is completed (see Fig. 4.3). This function of the tool has been

used a lot throughout the research to estimate tree’s complexity when working with

various network flow extractor tools. A user is able to see how many instances of the

training set were classified correctly and incorrectly based on a particular attribute

of the data.

3.5 Machine Learning Algorithms applied via WEKA

The main task of the Machine Learning classifier is to study data provided as an

input and predict the output class for unseen instances. The simplest example of the

classification task also referred to as binary classification, is spam detection, where

the ML algorithm filters emails into ”spam” and ”not spam” categories [13]. In this

research, Machine Learning classifiers are applied to classify network flows into benign

and malicious, providing an efficient predictive model for network security specialists

[36]. The key algorithm deployed in experiments is C4.5 Decision Tree, along with

Random Forest, Logistic Regression, Support Vector Machine and Naive Bayes. This

section talks about mentioned classifiers in detail.

C4.5 Decision Tree is a supervised Machine Learning algorithm, using a tree

structure to solve a particular classification problem. It is an improved version of

Quinlan’s ID3 algorithm, which underwent a series of improvements[8]:

• C4.5 Decision Tree can work both with discrete and continuous attributes

• C4.5 can perform training process despite missing values

• C4.5 applies pruning once decision tree is created

InWEKA tool, J48 is an open-source Java implementation of C4.5 algorithm, allowing

classification to be performed in two modes: through decision tree or rules generated

27

from them [56]. Default parameters of the C4.5 decision tree in WEKA can be changed

by the user, but for my research, none of the parameters were changed. Parameters

include pruning (whether to perform it or not), collapseTree (whether to remove parts

of the tree that do not reduce training error), the minimum number of instances per

leaf, useLaplace (whether counts at leaves are smoothed based on Laplace) and etc.

C4.5 builds up a decision tree based on the sample instances provided for training

purposes. The algorithm is implemented using the concept of information entropy,

the same concept utilized in its predecessor, ID3. Training set is represented as

S = {s1, s2, ...} with labeled instances of data, where each instance of data, si consists

of p-dimensional vector {x1, i, x2, i, ..., xp, i} with xj representing attribute value of

corresponding instance as well as its class. The attribute with the greatest information

is chosen to be split on by Decision Tree at each node, after performing normalized

information gain calculation. C4.5 repeats this procedure on partitioned sub-lists

following the divide-and-conquer approach. Finally, a decision tree is created based

on a greedy algorithm. Once the training process comes to its end, C4.5 performs

pruning in order to avoid overfitting problems. The algorithm leaves the largest

generalizable part of the tree and prunes out the branches, contributing to better

performance in testing instances[22]. C4.5 is known to use another concept of decision

tree making process based on the Gini index. A detailed explanation of the splitting

process is provided below.

Belonging to the family of decision tree-like algorithms, C4.5 undergoes recursive

partitioning of the training set. The recursion continues until achieving subsets that

are as pure as possible to a given target class. Each node of the tree corresponds to

a specific set of records T identified by a particular test on a feature. For instance,

continuous attribute A can be split by performing test A ≤ x. The set of records T

is then divided into the left and right branches.

Tl = {t ϵ T : t(A) ≤ x}

and

Tr = {t ϵ T : t(A) > x}

Likewise, a set of categorical features B can be split into subsets based on its

value. For example, support B = {b1, ..., bk} each branch i can be induced by the test

B = bi.

28

The process of dividing features into splits of decision trees considers all possible

combinations in search of the best one based on the splitting criteria. If a dataset is

induced on the following scheme

A1, A2, ..., Am, C

where Aj are attributes of the dataset and C is the target class, all candidates go

through split generation and evaluation by the splitting criterion. The choice of the

best split considers impurity measures for the decision-making process. The impurity

of the parent node has to be decreased by the split. Let (E1, E2, ..., Ek) be a split

induced on the set of records E, a splitting criterion that uses impurity measure I(·)
is:

△ = I(E)−
k∑︂

i=1

|Ei|
|E|

I(Ei)

Out of two standard impurity measures, Decision Tree uses the Gini index, defined

for the set E as following. Let pj be the fraction of records in E of class cj:

pj =
|{t ϵ E : t[C] = cj}|

|E|

then

Gini(E) = 1−
Q∑︂

j=1

p2j (3.2)

where Q is the number of classes. It should be noted here that having records of the

same class gives zero impurity [10].

Random Forest is a supervised learning algorithm, which can be used both for

classification and regression tasks. It consists of decision trees, trained with the

bagging (bootstrap aggregating) method. Given a training set X = x1, x2, ..., xn

with responses Y = y1, y2, ..., yn, bagging repeatedly selects a random sample with

replacement of the training set and fits trees to these samples. Let us assume B to

be the number of samples/trees, which can typically vary between a few hundred to

several thousand [25].

For b = 1, 2, ..., B:

1. Sample, with replacement, n training examples from X, Y ; call them XB, YB.

2. Train a classification tree fb on XB, YB.

29

After training, predictions for unseen samples x′ can be made by averaging predictions

from all the individual regression trees on x′:

f̂ =
1

B

B∑︂
b=1

fb(x
′) (3.3)

An estimate of the uncertainty of the prediction can be calculated as the standard

deviation of the predictions from all individual regression trees on x′:

σ =

√︄∑︁B
b=1(fb(x

′)− f̂)2

B − 1
(3.4)

Provided with the dataset, Random Forest creates decision trees for randomly

selected data samples, obtains decisions from each tree and chooses the best solution

utilizing voting. The more trees the Random Forest has, the more robust solution it

provides. Since the majority of machine learning tasks are based on classification and

regression, Random Forest has been of frequent use by ML specialists. The biggest

advantage of the Random Forest classifier is that its default hyperparameters tend to

produce pretty good results and also RF does not overfit the model it is building on

[14, 17]. RF also uses Gini index [19] to decide how nodes on a decision tree branch

based on their probability of occurring [72].

However, there is one particular disadvantage of an RF classifier: a rather complex

tree can make the algorithm too slow and inefficient for real-time predictions. Even

though Random Forest is fast to train, it takes a lot of time to create predictions once

they are trained. For this reason, it is recommended to look for other approaches when

run-time performance is essential [17].

Logistic Regression is the baseline supervised machine learning algorithm for clas-

sification tasks in Natural Language Processing (NLP). It is an extension of a linear

regression model. In a linear model, the relationship between outcome and features

can be described by using the following linear equation [21]:

ŷ(i) = β0 + β1x
(i)
1 + ...+ βpx

(i)
p (3.5)

Since the probability value for classification is expected to be between the values

0 and 1, the right side of the equation is wrapped into logistic function:

30

logistic(η) =
1

1 + exp(−η)
(3.6)

Finally, the probability formula looks like:

P (y(i) = 1) =
1

1 + exp(−(β0 + β1x
(i)
1 + ...+ βpx

(i)
p))

(3.7)

Logistic Regression is known to have a close relationship to neural networks. Lin-

ear regression is limited by its ability to interpolate between the points, which cannot

be interpreted as a probability. For this reason, logistic regression was suggested as a

solution for the classification task. Rather than fitting a straight line or hyperplane

between given points, Logistic Regression makes use of logistic function [21].

One of the merits of logistic regression is that it can not only classify the data

but provide probabilities for sample data too. On top of that, logistic regression can

be easily extended from binary classification algorithm to multi-class classification

[27]. But, on the other hand, LR is known to have several demerits. One of them is

the restrictive nature of expressiveness when for example, interactions must be added

manually. Another downside of an algorithm is a multiplicative interpretation of the

weights, rather than additive, which interprets the model more difficult [21].

Support Vector Machine is another supervised machine learning algorithm, mainly

used for classification and regression tasks. The motivation behind SVM lies in suc-

cessfully finding (p-1)-dimensional hyperplane, separating data points represented in

p-dimensional vector form (a list of p numbers). For instance, provided with data

points for the training process, SVM tries to find a decision boundary in form of a

line for 2-dimensional data, and a plane for 3-dimensional data, etc. to categorize n-

dimensional space into classes [76, 28]. Among many hyperplanes that might classify

the data, a reasonable choice as the best hyperplane comes to the one representing

the largest separation, or margin between two classes. Advantages of Support Vector

Machine [69, 28, 16] are:

• small input sample required for training

• high speed and memory efficiency

• effectiveness in high dimensional space

31

• versatility: different Kernel functions can be specified for the decision function

Suppose a training dataset of n points is given in the form

(x1, y1), ..., (xn, yn)

with yi being either 1 or -1, indicating which class xi belongs to. Each xi is p-

dimensional real vector. The goal is to find ”maximum-margin hyperplane” separating

group of points xi for which yi = 1 from a group of points xi for which yi = −1.

”Maximum-margin hyperplane” should be such with distance between hyperplane

and the nearest point xi from either group is maximized.

Any hyperplane can be represented as the set of points x satisfying

wTx− b = 0

where w is the normal vector to the hyperplane. The parameter b
∥w∥ determines the

offset of the hyperplane from the origin along the normal vector w.

In case the training data is linearly separable, two parallel hyperplanes that sepa-

rate two classes of data are selected, so that the distance between them is as large as

possible. The area enclosed between two hyperplanes is called ”margin” and the max-

imum margin hyperplane is the one that lies halfway between them. If the dataset is

normalized, these hyperplanes can be described by the equation:

wTx− b = 1

any point on or above this boundary belongs to one class, with label 1 and

wTx− b = −1

any point on or below this boundary belongs to another class, with label -1.

Applying the rules of geometry, the distance between two boundaries is 2
∥w∥ , in

order to maximize the distance between hyperplanes, it is required to minimize ∥w∥.
Distance is calculated using distance from a point to a plane equation. It is essential

to ensure the data points do not fall into the margin by adding the next constraint:

for each i either

wTx− b ≥ 1, if yi = 1

32

or

wTx− b ≤ −1, if yi = −1

Following constraints state that each data point must lie on the correct side of the

margin. This can be rewritten as:

yi(w
Txi − b) ≥ 1 , for all 1 ≤ i ≤ n

Putting this together to obtain optimization problem:

”Minimize ∥w∥ subject to yi(w
Txi − b) ≥ 1 for i = 1, ..., n.”

The w and b that solve this problem determines classifier, x ↦→ sgn(wTx − b)

where sgn(·) is the sign function.

An important consequence of this geometric description is that ”maximum-margin

hyperplane” is completely determined by those xi⃗ that lie nearest to it. These xi are

called support vectors [28].

Naive Bayes is a probabilistic machine learning algorithm based on the Bayes

Theorem. It is one of the most popular classifiers. The fundamental NB assumption

is that each feature makes an independent and equal contribution to the outcome [24].

Bayes Theorem calculates the probability of an event occurring given the probability

of another event that has already occurred. In a classification task, it assumes that

the presence of a particular feature in a class is unrelated to the presence of any other

feature.

P (A|B) =
P (B|A)P (A)

P (B)
(3.8)

Given a problem instance to be classified, represented by a vector x = (x1, ..., xn)

representing some n features(independent variables), it assigns to this instance prob-

abilities

p(Ck|x1, ..., xn) (3.9)

for each of K possible outcomes or classes Ck.

Using Bayes’ theorem, the conditional probability can be decomposed as:

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(3.10)

Correspondence of following theorem to plain English can be stated as:

posterior =
prior ∗ likelihood

evidence

33

Since denominator value does not depend on C and the values of the features xi

are provided, denominator is a constant value, whereas the numerator of the fraction

serves as the main interest. The numerator is equivalent to joint probability model:

p(Ck, x1, ..., xn)

which can be rewritten as follows, using the chain rules for repeated applications of

the definition of the conditional probability:

p(Ck, x1, ..., xn) = p(x1, ..., xn, Ck)

= p(x1|x2, ..., xn, Ck)p(x2, ..., xn, Ck)

= p(x1|x2, ..., xn, Ck)p(x2|x3, ..., xn, Ck)p(x3, ..., xn, Ck)

= ...

= p(x1|x2, ..., xn, Ck)p(x2|x3, ..., xn, Ck)...p(xn−1|xn, Ck)p(xn|Ck)p(Ck)

(3.11)

Now, let us apply ”naive” conditional independence assumptions to it, by assuming

all features in x to be mutually independent, conditional on the category Ck. Under

this assumption:

p(xi|xi+1, ..., xn, Ck) = p(xi|Ck) (3.12)

In this way, the joint model can be expressed as:

p(Ck|x1, ..., xn) ∝ p(Ck, x1, ..., xn)

∝ p(Ck)p(x1|Ck)p(x2|Ck)p(x3|Ck)...

∝ p(Ck)
n∏︂

i=1

p(xi|Ck)

(3.13)

where ∝ means proportionality.

Taking into account independence assumption mentioned above, conditional dis-

tribution over the class variable C is:

p(Ck|x1, ..., xn) =
1

Z
p(Ck)

n∏︂
i=1

p(xi|Ck) (3.14)

where the evidence Z = p(x) =
∑︁

k p(Ck)p(x|Ck) is a scaling factor dependent only

on x1, ..., xn, that is, a constant if the values of feature variables are known [23].

Due to its fast training time and ability to work well on a large datasets, Naive

Bayes is used for real-time class prediction in sentiment analysis, spam detection and

etc [24, 49, 71].

34

3.6 TPOT for Optimization

TPOT is considered as a Data Science Assistant that helps scientists find the best

possible pipeline for a classification task [51, 67]. It was one of the very first AutoML

methods and open-source software packages developed for the data science community

[11].

TPOT is based on the genetic programming principle to generate the optimized

search space. Genetic programming, in its turn, reflects the process of natural selec-

tion where the fittest individuals are selected for reproduction in order to produce

offspring of the next generation [12].

• Selection phase chooses the fittest individuals and lets them pass their genes to

the next generation

• Crossover selects the fittest individuals from above and performs crossover be-

tween them to generate a new population

• Mutation of individuals generated y crossover for further random modifications.

It is repeated for a few steps or until the best generation is achieved [12, 51]

Figure 3.5: An example machine learning pipeline [51]

Figure 3.5 shows an example of ML pipeline and how does TPOT automates

feature selection, preprocessing and construction part of it, choosing the best model

35

afterwards and performing parameter optimization. During the training process,

TPOT tries one pipeline, assesses its performance and makes random changes to the

pipeline’s parameters in search of a better solution. By this, the tool saves up time

for scientists, who would have to perform tedious feature engineering for a long span

of time. Once the training process is complete, TPOT provides a Python code for

the best pipeline, which can be exported by the user [29].

For example, for a 10,000-pipeline configuration, TPOT will evaluate them us-

ing 10-fold cross-validation, and therefore resulting in 100,000 models being fit and

evaluated on the training data in one grid search. By offering a specific pipeline as

a solution for a given problem, TPOT can enable researchers to take a new look at

pipeline configurations, which they might not have considered if they did not use it.

TPOT is implemented with a number of configurations, working best for specific

tasks. For this research, I made use of Default TPOT configuration, however, other

configurations are worth looking at:

• TPOT light uses simple operators in pipelines. In addition to it, this configu-

ration verifies operators to be fast-executing

• TPOT MDR is suitable for problems in the bioinformatics area, with configu-

ration being ideal for genome-wide association studies

• TPOT spare configuration works best for sparse matrices

• TPOT NN is helpful for exploitation of neural network estimators with default

POT. Estimators are written in PyTorch

• TPOT cuML is applicable for medium or large-size datasets to search for best

pipelines over a limited configuration utilizing the GPU-accelerated estimators

[18]

For this research, I employed 13 features chosen by Tranalyzer2 and augmented with

the flow entropy, splitting training and testing datasets into 12000 and 9000 flows

respectively (similar to experiments carried out on Weka). The ratio of training

vs. testing datasets can be set to 3:1 or 1:1, depending on the user’s preference.

To keep consistency in my research work and be able to compare the AutoML tool

36

Classifier Preprocessor
1 Bernoulli Naive Bayes Binarizer
2 Gaussian Naive Bayes Fast ICA
2 Multinomial Naive Bayes Feature Agglomeration
3 Decision Tree Max Abs Scaler
4 Extra Trees Min Max Scaler
4 Random Forest Normalizer
5 Gradient Boosting Nystroem
6 K-Neighbors PCA
7 Linear SVC Polynomial Features
8 Logistic Regression RBF Sampler
9 XGB Robust Scaler
10 SDG Standard Scaler
11 MLP (Neural Network) Zero Count
12 One Hot Encoder

Table 3.8: The current list of classifiers and preprocessors implemented in TPOT

with a standard ML classifier, I provided the same testing datasets for performance

assessment.

The number of pipelines TPOT considers depends on the parameters set by the

user. The formula used by the TPOT tool for the pipeline number identification is

following:

population size+ generations ∗ offspring size (3.15)

where population size is the number of individuals to keep in GP population after

every generation, generations is the number of iterations to run pipeline optimization

process and offspring size is the number of offspring to generate in each GP genera-

tion. By default, offspring size is equal to population size and population size is set to

100, unless specified by the user. Setting verbosity parameter to 2 shows a progress

bar during the training process. In this thesis, I evaluated TPOT’s performance over

10, 50, 100 and 200 generations, processing 1100, 5100, 10100 and 20100 pipelines

accordingly. Since TPOT’s algorithm optimization follows stochastic nature, the Au-

toML tool will not generate the same pipeline as the best classifier twice. However, if

random state parameter is set before the training process starts, it enables the tool

to choose the same algorithm when running the training model multiple times.

The list of classifiers and preprocessors implemented in TPOT is quite impressive.

Table 3.8 shows current options implemented in the latest version of TPOT tool [29].

37

However, if the user does not want the tool to consider all implemented classifiers

during training, he/she can limit the algorithms and parameters TPOT looks at. The

tool provides flexibility to the user to set up custom configurations and parameters.

Using this possibility, I configured TPOT to consider only Neural Network classifiers

(namely Multi-Layer Perceptron) in the second part of TPOT related experiments to

compare pipeline configurations in the end.

3.7 Summary

Setting up the right path to carry the research was a top priority at the start of this

research. Once the papers were analyzed, finding publicly available datasets was the

next step. While looking for suitable datasets, various factors were taken into account.

In particular, the availability of a dataset, the year of release, and the amount of

research work being carried using a dataset were all taken into consideration. While

some datasets were captured for a fixed period, the capture of others (ImpactGT) is

continuing. Before choosing network flow exporters as the next milestone in research,

comparing their performance based on scientific work was essential. The choice was

narrowed to Tranalyzer2, Argus and DoHlyzer, but taking into account the limitation

of the DoHlyzer tool, it was decided to keep the first two network flow extractor tools.

Data pre-processing and feature engineering was the following stage in research

analysis. Running benign and malicious PCAP files through Tranalyzer2, and then

Argus, labelling and preparing training and testing datasets for the classification task,

comparing the learner’s performance without entropy were the first several steps in my

proposed approach. Right after that, writing a Matlab script for entropy calculation,

involving the T-Shark tool for field extraction and analyzing how Decision Tree acted

differently provided me more insight regarding the path I needed to follow since the

start of the research.

Following the success of the C4.5 classifier, running datasets on other ML classifiers

took place. Post-training evaluation and further research were carried out. Finally,

the TPOT-AutoML system was used to optimize the proposed approach.

Chapter 4

Evaluations and Results

As discussed earlier, the goal of the thesis is to explore the use of entropy of a network

flow to augment statistical flow features to identify malicious DoH tunnels. Proposing

highly effective (in terms of F1-measure) performance with a relatively reasonable

computational cost solution is a key focus throughout the research methodology. All

the experiments were run on a MacBook Pro with a 2.3GHz 8-core Intel Core i9. Thus,

the performance of the proposed approach is measured by the following metrics:

1. Precision is the ratio of correctly predicted malicious (benign) flows to the total

number of malicious (benign) flows.

P =
TP

TP + FP

2. Recall is the ratio of correctly predicted malicious (benign) flows to all flows in

actual class.

R =
TP

TP + FN

3. F1-measure of the weighted average of Precision and Recall.

F =
2RP

R + P

4.1 C4.5 classifier results obtained by using Weka

Once the training dataset is formed and the C4.5 decision tree classifier is trained

using different entropy scenarios, five new datasets are used for testing the trained

models. It should be noted here that WEKA 1, the open-source ML software is

used for training and testing all classifiers using default parameters unless depicted

differently. Table 4.1 shows the results of the C4.5 decision tree classifier on training

and testing datasets, using flow features augmented by the entropy calculated over all

1WEKA - https://www.cs.waikato.ac.nz/ml/weka/

38

39

packets of a flow. As it can be seen from the results, the performance of this trained

model is still over 90% for the first four test datasets that were not seen during the

training. The only exception is the last test dataset containing 9000 malicious flows

from DoHBrw.

Scenario Datasets P R F
Training DoHBrw+ImpactGT+CICIDS 0.997 0.997 0.997
Testing DoHBrw benign and attack 0.921 0.906 0.906

ImpactGT attack 1.000 0.999 1.000
DoHBrw benign 1.000 0.991 0.995
CICIDS benign 1.000 0.990 0.995
DoHBrw attack 1.000 0.821 0.902

Table 4.1: C4.5 classification results of training and test datasets - entropy calculated
over all packets of a flow

On the other hand, when no entropy is used to augment flow features, the perfor-

mance of the classifier drops for all datasets, except the last one, Table 4.3. Specif-

ically, Recall values decline on almost all test datasets, in particular to around 71%

and 91% for CICIDS benign and DoHBrw attack datasets, respectively. These re-

sults indicate the effectiveness of the entropy for augmenting flow statistical features.

Moreover, Table 4.2 shows the results of the C4.5 decision tree classifier on training

and testing datasets, using flow features augmented by entropy calculated over the

first four packets of a flow. These results demonstrate that only the first four (or

less) packets of a flow seem to be enough to calculate the entropy. This not only

augments flow statistical features well without decreasing the F-measure, Precision

and Recall metrics but also it is computationally less expensive relative to calculating

entropy over all packets of a flow when the flow includes more than four packets. It is

noticeable that this approach improves the performance of the C4.5 model: one can

see an increase of 1% for test datasets containing 9000 flows of benign and malicious

flows from DoHBrw and a 1% increase for CICIDS benign datasets. Thus, I propose

this model in the following evaluations.

40

Figure 4.1: Visualization of entropy values distribution over classes in the training
dataset using Weka

Scenario Datasets P R F
Training DoHBrw+ImpactGT+CICIDS 0.997 0.997 0.997
Testing DoHBrw benign and attack 0.928 0.917 0.916

ImpactGT attack 1.000 0.999 1.000
DoHBrw benign 1.000 0.983 0.983
CICIDS benign 1.000 1.000 1.000
DoHBrw attack 1.000 0.828 0.906

Table 4.2: C4.5 classification results of training and test datasets - entropy calculated
over the first 4 packets of a flow

Scenario Datasets P R F
Training DoHBrw+ImpactGT+ CICIDS 0.956 0.952 0.952
Testing DoHBrw benign and attack 0.919 0.916 0.916

ImpactGT attack 1.000 0.985 0.992
DoHBrw benign 1.000 0.928 0.963
CICIDS benign 1.000 0.708 0.829
DoHBrw attack 1.000 0.907 0.951

Table 4.3: C4.5 classification results of training and test datasets - no entropy de-
ployed

41

4.2 Results of running four ML classifiers on Weka

Table 4.4 presents a comparison of the proposed model using the C4.5 decision tree

classifier against Random Forest, Logistic Regression, Support Vector Machine and

Naive Bayes classifiers. These ML classifiers are chosen for further evaluations since

they were used in literature, as discussed in Chapter 2.

ML Classifiers Random Forest SVM Logistic Regression Naive Bayes
P R F P R F P R F P R F

Training: DoHBrw+ImpactGT+CICIDS 1.000 1.000 1.000 0.893 0.870 0.868 0.963 0.962 0.962 0.861 0.818 0.813
Test: DoHBrw benign and attack 0.926 0.917 0.917 0.813 0.750 0.737 0.951 0.951 0.951 0.786 0.730 0.717
Test: ImpactGT attack 1.000 1.000 1.000 1.000 0.983 0.992 1.000 0.999 0.999 1.000 0.984 0.992
Test: DoHBrw benign 1.000 0.989 0.995 1.000 0.785 0.880 1.000 0.890 0.942 1.000 0.543 0.704
Test: CICIDS benign 1.000 1.000 1.000 1.000 0.865 0.928 1.000 0.844 1.000 1.000 0.672 0.804
Test: DoHBrw attack 1.000 0.844 0.915 1.000 0.985 0.992 1.000 0.953 0.976 1.000 0.977 0.988

Table 4.4: Classification results of RF, SVM, LR, and NB on training and test datasets
- entropy calculated over first 4 packets of a flow

In all cases, classifiers are evaluated using the same training and test datasets

as well as the same feature set, i.e. flow statistical features augmented with the

flow entropy feature calculated over the first four packets of a flow. The results

show that the Random Forest classifier demonstrates a similar performance as the

C4.5 classifier. It is interesting to see that LR, SVM and NB perform pretty well in

detecting malicious flows as well. However, they misclassify the majority of benign

flows in test datasets. The NB classifier, for example, managed to classify only around

54% of benign flows in the DoHBrw benign dataset, even though it detected almost

98% of attacks. This seems to support the argument Singh et. al. made in [75]

regarding the lagging feature of the NB classifier.

Finally, Table 4.5 shows the performance of the RF classifier as I increase the

number of trees during its training (the same feature set and the same training dataset

as before) using numIterations parameter in WEKA. The results show that as the

number of trees increases from 100 to 2000, the performance seems to stay pretty

much consistent.

42

Training Testing

Dataset
DoHBrw+ImpactGT

+CICIDS
DoHBrw benign

and attack
ImpactGT
attack

DoHBrw
benign

CICIDS
benign

DoHBrw
attack

P R F P R F P R F P R F P R F P R F
100 1.000 1.000 1.000 0.926 0.917 0.917 1.000 1.000 1.000 1.000 0.989 0.995 1.000 1.000 1.000 1.000 0.844 0.915
500 1.000 1.000 1.000 0.940 0.935 0.935 1.000 1.000 1.000 1.000 0.990 0.995 1.000 1.000 1.000 1.000 0.880 0.936
1000 1.000 1.000 1.000 0.941 0.935 0.935 1.000 1.000 1.000 1.000 0.990 0.995 1.000 1.000 1.000 1.000 0.881 0.937
1500 1.000 1.000 1.000 0.938 0.932 0.932 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.878 0.935
2000 1.000 1.000 1.000 0.938 0.932 0.932 1.000 1.000 1.000 1.000 0.990 0.995 1.000 1.000 1.000 1.000 0.877 0.935

Table 4.5: Classification results of RF as number of trees increases - entropy calculated
over the first 4 packets of a flow

Table 4.6 presents the depth of RF trees, again as I increase the number of trees

during training. This indicates that RF trees are deep and therefore resulting in a

rather complex RF classifier, with the depth of the tree starting from 24 and going up

as the tree size increases. On the other hand, the C4.5 decision tree classifier’s trained

model is less complex (depth=10) and can be visualized in Figure 4.3. This also

demonstrates that Decision Tree trained model uses the entropy attribute throughout

the tree to classify a flow as benign or malicious. This supports my hypothesis of

using the entropy of a network flow to augment statistical features for identifying

malicious behaviours in encrypted tunnels.

Number of Trees Depth per Tree
100 24
500
1000
1500 26
2000

Table 4.6: Depth of RF per tree as the number of trees increase - Trained on Do-
HBrw+ImpactGT+CICIDS

Based on these results obtained, using the proposed Decision Tree solution as a

predictive model will enable to label the new/unseen flows by providing 13 statistical

features augmented with the entropy feature (over the first four packets of a flow).

Figure 4.2 illustrates how the final trained model can be used as a predictive tool for

the DoH traffic classification.

43

Figure 4.2: Deploying the trained Supervised Learning model as a Predictive Model

4.3 Results of experiments with Argus flow extractor

After proposing a model where entropy was calculated over the first four packets of

a flow and running various experiments on Weka, it was decided to take a look at

how the Argus tool would perform for the DoH tunnelling identification task. The

methodology for working with Argus flow extractor was completely similar to the

Tranalyzer2. Table 4.7 compares the results of two tools and how Argus was lagging

in terms of performance metrics. Particularly, in the last testing dataset - DoHBrw

attack, Argus presented 58.8% Recall value compared to 82.8% for Tranalyzer2. The

second tool, on the other hand, overtook the first one for DoHBrw benign and attack

dataset, demonstrating a 100% precision rate against 93%. However, considering the

two sides of the argument indicates towards giving preference for Tranalyzer2, since

the 25% difference in the DoHBrw attack dataset seemed more persuading than 7%

in DoHBrw benign and attack dataset.

Dataset Tranalyzer2 Argus
P R F P R F

Training: DoHBrw + ImpactGT + CICIDS 0.997 0.997 0.997 0.999 0.999 0.999
Test: DoHBrw benign and attack 0.928 0.917 0.916 0.996 0.965 0.965
Test: ImpactGT attack 1.000 1.000 1.000 1.000 0.997 0.999
Test: DoHBrw benign 1.000 0.983 0.992 1.000 1.000 1.000
Test: CICIDS benign 1.000 1.000 1.000 1.000 0.993 0.996
Test: DoHBrw attack 1.000 0.828 0.906 1.000 0.588 0.740

Table 4.7: Comparison of classification results for Tranalyzer2 and Argus

44

Figure 4.3: Visualization of C4.5 Decision Tree - entropy calculated over the first 4
packets of a flow

4.4 Results of running TPOT-AutoML

Following a discussion in the methodology section regarding the TPOT tool and how

it can help find the best classifier for DoH tunnelling detection, I ran 13 features

from my predictive model. It needs to be mentioned that the more pipelines TPOT

try out, the more time it requires for the training process. TPOT’s performance is

represented in the same metrics used in the first part of the research.

Firstly, I configured TPOT to use all 11 classifiers in search of the best solution,

without limiting its choice. Table 4.8 presents the results of running one training

and five testing datasets. It is interesting to see that for the smallest number of

generations (n=10), TPOT chose RF classifier, achieving almost 100% training CV

score. As the number of generations goes up, the choice of classifier shifts to GB

classifier, reaching the same mark. Following this work, I configured TPOT to use

a Neural Network classifier only, looking at how performance will change over the

course of generation number increase (see Table 4.9). In this case, MLP classifier

demonstrated 88% CV score for n=10 and 90% CV score for n=200. However, the

performance of the trained model on testing datasets was quite low. Parameters set

45

during the training process are described in detail in the Methodology chapter.

of generations 10 50 100 200
Classifier chosen Random Forest Gradient Boosting Gradient Boosting Gradient Boosting
Training CV score(avg) 0.997 0.998 0.998 0.998
Testing datasets P R F P R F P R F P R F
DoHBrw benign and attack 1.00 0.92 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
ImpactGT attack 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CICIDS benign 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DoHBrw benign 1.00 0.98 0.99 1.00 0.99 0.99 1.00 0.98 0.99 1.00 0.99 0.99
DoHBrw attack 1.00 0.92 0.96 1.00 0.98 0.99 1.00 0.99 1.00 1.00 0.99 1.00

Table 4.8: Results of running TPOT (11 classifiers) for optimizing the proposed
approach

of generations 10 50 100 200
Classifier chosen MLP MLP MLP MLP
Training CV score(avg) 0.877 0.873 0.878 0.893
Testing datasets P R F P R F P R F P R F
DoHBrw benign and attack 0.69 0.68 0.67 0.44 0.49 0.36 0.69 0.66 0.65 0.73 0.71 0.71
ImpactGT attack 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CICIDS benign 1.00 0.85 0.92 1.00 0.72 0.84 1.00 0.85 0.92 1.00 0.86 0.92
DoHBrw benign 1.00 0.58 0.73 1.00 0.94 0.97 1.00 0.43 0.60 1.00 0.56 0.72
DoHBrw attack 1.00 0.84 0.91 1.00 0.04 0.08 1.00 0.87 0.93 1.00 0.88 0.94

Table 4.9: Results of running TPOT - Neural Network classifiers only

A rather interesting idea came once the results from applying the TPOT tool were

received. I compared the performance of the Random Forest classifier both on Weka

and TPOT tools. As it was mentioned in the methodology, the RF classifier was

set with default parameters in Weka, while TPOT came up with a tailored pipeline

for the RF algorithm. While training results were almost identical, testing datasets

illustrated some differences (Table 4.10). Precision value of DoHBrw benign and

attack dataset in Weka was lagging behind TPOT’s performance by almost 7%, as

for DoHBrw attack dataset, TPOT outperformed Weka by 7% in Recall and 4% in

F-1 score. The following results prove TPOT’s developers’ core principles: trying out

different pipeline configurations can substantially improve the classifier’s performance

since both tools were provided with the same datasets, consisting of the same labelled

flows.

46

Figure 4.4: Computational cost (hrs) of TPOT during training as the number of
generations increase where TPOT considered all 11 classifiers

Tools Weka TPOT
P R F P R F

Training 1.00 1.00 1.00 0.997
Test:DoHBrw benign and attack 0.926 0.917 0.917 1.00 0.92 0.96
Test:ImpactGT attack 1.00 1.00 1.00 1.00 1.00 1.00
Test:CICIDS benign 1.00 1.00 1.00 1.00 1.00 1.00
Test:DoHBrw benign 1.00 0.989 0.995 1.00 0.98 0.99
Test:DoHBrw attack 1.00 0.844 0.915 1.00 0.92 0.96

Table 4.10: Comparison of Weka RF classifier versus TPOT

4.5 Summary

As the results of experiments demonstrate, the target set at the start of the re-

search was achieved with justifications provided. Indeed, when it comes to feature

extraction from network traffic, Tranalyzer2 performed better compared to Argus and

DoHlyzer, deploying only seven features out of 109 for anomaly detection with no en-

tropy calculated (Table 3.2). After that, the idea of utilizing network flow entropy was

advocated by the results obtained (Table 4.1 vs. Table 4.3). Once the network flow

47

Figure 4.5: Computational cost (hrs) of TPOT during training as the number of
generations increase where TPOT considered Neural Network classifiers only

entropy approach was adopted, the goal of improving the model’s complexity and the

computational cost was established. Augmenting entropy over the first four packets

with other statistical features verified my assumptions since the model’s performance

did not decrease on testing datasets (Table 4.5). Comparing C4.5’s performance with

other four ML classifiers was outlined as the baseline: RF, LR, SVM and NB algo-

rithms demonstrated their ability to separate malicious DoH/DNS flows from benign

ones (Table 4.4). C4.5 Decision Tree provided a less complex model, compared to a

better performing RF algorithm (tree depth of 10 against 24). To explore the most

suitable choice of flow extractor, similar experiments were carried out using the Argus

tool. As a result, Tranalyzer2 outperformed Argus in the DoHBrw attack dataset by

a large margin (Table 4.7). Finally, training the TPOT-AutoML system with the

model of the proposed approach and testing it on five datasets not only provided

the optimized model for the proposed approach but also demonstrated the effective-

ness and the efficiency of the optimized model in DNS malicious tunnel behaviour

detection.

Chapter 5

Conclusion

With the mounting criticism against DoH protocol, which can allow attackers to

bypass organizational controls, new approaches to monitoring encrypted DNS queries,

such as DoH, are necessary. Researching this area has been a challenging task due to

several limitations. First of all, finding publicly available datasets built on new DoH

protocol with malicious activities was the first obstacle I encountered. Limited tools

used for feature extraction from network flows were the second difficulty standing

in the way. Some recent work proposed the DoHlyzer tool to analyze DoH traffic

whereas other works employed network packet entropy to address the aforementioned

challenges.

In this thesis, exploring a solution for these challenges without performing deep

packet inspection, payload or metadata analysis was an important goal set at the

beginning. To this end, I studied the use of the concept of ”entropy of a flow” to

augment flow statistical features for identifying malicious DoH tunnels. To achieve

this, a thorough investigation of the use of different flow exporters was performed. The

flow exporters that were analyzed include Argus, DoHlyzer and Tranalyzer2. Results

showed the limitation of the DoHlyzer tool in terms of protocols it could support,

TCP, but not UDP, and hence making feature extraction for UDP flows impossible.

Taking into account these limitations present in the DoHlyzer tool for flow feature

extraction, it was decided to consider Tranalyzer2 and Argus tools more closely to

select the most suitable statistical flow features for the task. These features were

then augmented with flow entropy. To this end, three different ways of calculating

the entropy of a flow (over all packets of a flow, over the first 96 bytes of a flow and over

the first 4/5/6 packets of a flow) using ML classifiers (DT, RF, LR, SVM and NB) over

different datasets were evaluated. The evaluations showed that the C4.5 Decision Tree

classifier achieved very high performance in the best case (F-measure 99.7%) when

flow statistical features obtained by Tranalyzer2 were augmented with the entropy

48

49

feature of a flow calculated over the first 4 packets. This proposed model not only

achieved high performance on all datasets employed but also outperformed the model

that did not use the entropy feature. Furthermore, heterogeneous aspects of the

datasets employed, from different protocols to different packet sizes to different flow

characteristics and different behaviours indicated the generalizability of the proposed

model over different real-world scenarios.

Moreover, the thesis research demonstrated the effectiveness of the TPOT-AutoML

system for optimizing the proposed model to detect malicious DoH flows. Employing

TPOT with flow statistical features augmented with entropy calculated over the first

four packets enabled me to look at different pipeline configurations at 10, 50, 100

and 200 generations. It should be noted here that with an increase in the number of

generations, the training time of TPOT also increases. However, this cost seems to

be reasonable to obtain the optimization of the proposed solution. Thus, it is con-

cluded that for a lower number of generations allocated for training, Random Forest

outperforms other classifiers implemented in TPOT. If the user is interested in the

best performance, then setting a generation number to 100 or 200 is recommended.

Future research will explore the proposed system’s behaviour against evasive and

adversarial attacks to improve its robustness [62]. Moreover, the proposed model

will be evaluated as a predictor on other datasets to investigate its generalization

under concept shifts and drifts [55]. Last but not the least, further research into

the analysis of DoH and DoT protocols is necessary against the rising privacy and

security concerns of our digital world.

Appendix

Flow Features

The tables below provide a list of features extracted by three flow extractor tools

deployed in my research. The list of fields extractable by Argus tool is following [1]:

Field name Description

1 srcid argus source identifier

2 rank ordinal value of this output flow record i.e. sequence number

3 stime record start time

4 ltime record last time

5 trans aggregation record count

6 flgs flow state flags seen in transaction

7 seq argus sequence number

8 dur record total duration

9 runtime total active flow run time. This value is generated through

aggregation, and is the sum of the records duration

10 idle time since the last packet activity. This value is useful in

real-time processing, and is the current time - last time

11 mean average duration of aggregated records

12 stddev standard deviation of aggregated duration times

13 sum total accumulated durations of aggregated records

14 min minimum duration of aggregated records

15 max maximum duration of aggregated records

16 smac source MAC addr

17 dmac destination MAC addr

18 soui oui portion of the source MAC addr

19 doui oui portion of the destination MAC addr

20 saddr source IP addr

21 daddr destination IP addr

22 proto transaction protocol

50

51

Field name Description

23 sport source port number

24 dport destination port number

25 stos source TOS byte value

26 dtos destination TOS byte value

27 sdsb source diff serve byte value

28 ddsb destination diff serve byte value

29 sco source IP address country code

30 dco destination IP address country code

31 sttl src → dst TTL value

32 dttl dst → src TTL value

33 shops estimate of number of IP hops from src to this point

34 dhops estimate of number of IP hops from dst to this point

35 sipid source IP identifier

36 dipid destination IP identifier

37 smpls source MPLS identifier

38 dmpls destination MPLS identifier

39 autoid Auto generated identifier (mysql)

40 sas Src origin AS

41 das Dst origin AS

42 ias Intermediate origin AS, AS of ICMP generator

43 cause Argus record cause code. Valid values are Start, Status,

Stop, Close, Error

44 nstroke Number of observed keystrokes

45 snstroke Number of observed keystrokes from initiator (src) to target

(dst)

46 dnstroke Number of observed keystrokes from target (dst) to initiator

(src)

47 pkts total transaction packet count

48 spkts src → dst packet count

49 dpkts dst → src packet count

52

Field name Description

50 bytes total transaction bytes

51 sbytes src → dst transaction bytes

52 dbytes dst → src transaction bytes

53 appbytes total application bytes

54 sappbytes src → dst application bytes

55 dappbytes dst →src application bytes

56 pcr producer consumer ratio

57 load bits per second

58 sload source bits per second

59 dload destination bits per second

60 loss pkts retransmitted or dropped

61 sloss source pkts retransmitted or dropped

62 dloss destination pkts retransmitted or dropped

63 ploss percent pkts retransmitted or dropped

64 psloss percent source pkts retransmitted or dropped

65 pdloss percent destination pkts retransmitted or dropped

66 retrans pkts retransmitted

67 sretrans source pkts retransmitted

68 dretrans destination pkts retransmitted

69 pretrans percent pkts retransmitted

70 psretrans percent source pkts retransmitted

71 pdretrans percent destination pkts retransmitted

72 sgap source bytes missing in the data stream. Available after

argus-3.0.4

73 dgap destination bytes missing in the data stream. Available after

argus-3.0.4

74 rate pkts per second

75 srate source pkts per second

76 drate destination pkts per second

77 dir direction of transaction

53

Field name Description

78 sintpkt source interpacket arrival time (mSec)

79 sintdist source interpacket arrival time distribution

80 sintpktact source active interpacket arrival time (mSec)

81 sintdistact source active interpacket arrival time (mSec)

82 sintpktidl source idle interpacket arrival time (mSec)

83 sintdistidl source idle interpacket arrival time (mSec)

84 dintpkt destination interpacket arrival time (mSec)

85 dintdist destination interpacket arrival time distribution

86 dintpktact destination active interpacket arrival time (mSec)

87 dintdistact destination active interpacket arrival time distribution

(mSec)

88 dintpktidl destination idle interpacket arrival time (mSec)

89 dintdistidl destination idle interpacket arrival time distribution

90 sjit source jitter (mSec)

91 sjitact source active jitter (mSec)

92 sjitidle source idle jitter (mSec)

93 djit destination jitter (mSec)

94 djitact destination active jitter (mSec)

95 djitidle destination idle jitter (mSec)

96 state transaction state

97 label Metadata label

98 suser source user data buffer

99 duser destination user data buffer

100 swin source TCP window advertisement

101 dwin destination TCP window advertisement

102 svlan source VLAN identifier

103 dvlan destination VLAN identifier

104 svid source VLAN identifier

105 dvid destination VLAN identifier

106 svpri source VLAN priority

54

Field name Description

107 dvpri destination VLAN priority

108 srng start time for the filter timerange

109 erng end time for the filter timerange

110 stcpb source TCP base sequence number

111 dtcpb destination TCP base sequence number

112 tcprtt TCP connection setup round-trip time, the sum of ‘synack’

and ‘ackdat’

113 synack TCP connection setup time, the time between the SYN and

the SYN ACK packets

114 ackdat TCP connection setup time, the time between the

SYN ACK and the ACK packets

115 tcpopt the TCP connection options seen at initiation. The tcpopt

indicator consists of a fixed length field, that reports pres-

ence of any of the TCP options that Argus tracks

116 inode ICMP intermediate node

117 offset record byte offset in file or stream

118 smeansz Mean of the flow packet size transmitted by the src (initia-

tor)

119 dmeansz Mean of the flow packet size transmitted by the dst (target)

120 spktsz histogram for the src packet size distribution

121 smaxsz maximum packet size for traffic transmitted by the src

122 dpktsz histogram for the dst packet size distribution

123 dmaxsz maximum packet size for traffic transmitted by the dst

124 sminsz minimum packet size for traffic transmitted by the src

125 dminsz minimum packet size for traffic transmitted by the dst

The list of features extracted by DoHlyzer tool [70]:

Field name Description

1 SourceIP IP address of source machine

2 DestinationIP IP address of destination machine

55

Field name Description

3 SourcePort Port number of source machine

4 DestinationPort Port number of destination machine

5 Timestamp Date time of the flow created

6 Duration Duration of the network flow

7 FlowBytesSent Amount of bytes sent from machine

used to run DoHlyzer

8 FlowSentRate Rate of bytes sent in the current flow

9 FlowBytesReceived Amount of bytes received

10 FlowReceivedRate Rate of the bytes received in the cur-

rent flow

11 PacketLengthVariance Variance of packet length for each flow

12 PacketLengthStandardDeviation Standard deviation of packet length

for each flow

13 PacketLengthMean Mean of packet length for each flow

14 PacketLengthMedian Median of packet length for each flow

15 PacketLengthMode Mode of packet length for each flow

16 PacketLengthSkewFromMedian Skew of packet length for each flow us-

ing median

17 PacketLengthSkewFromMode Skew of packet length for each flow us-

ing mode

18 PacketLengthCoefficientofVariation Coefficient of variance of a packet

lengths list

19 PacketTimeVariance Variance of packet times for each flow

20 PacketTimeStandardDeviation Standard deviation of packet times for

each flow

21 PacketTimeMean Mean of packet times for each flow

22 PacketTimeMedian Median of packet times for each flow

23 PacketTimeMode Mode of packet times for each flow

24 PacketTimeSkewFromMedian Skew of packet times for each flow us-

ing median

56

Field name Description

25 PacketTimeSkewFromMode Skew of packet time for each flow using

mode

26 PacketTimeCoefficientofVariation Coefficient of variance of a packet time

list

27 ResponseTimeTimeVariance Variance of the list of time differences

between an outgoing packet and the

following response packet

28 ResponseTimeTimeStandardDeviation The standard deviation of the list of

time differences between an outgo-

ing packet and the following response

packet

29 ResponseTimeTimeMean The mean of the list of time differences

between an outgoing packet and the

following response packet

30 ResponseTimeTimeMedian The median of the list of tie differences

between an outgoing packet and the

following response packet

31 ResponseTimeTimeSkewFromMedian Skew of the list of time differences be-

tween an outgoing packet and the fol-

lowing response packet using median

32 ResponseTimeTimeSkewFromMode Skew of the list of time differences be-

tween an outgoing packet and the fol-

lowing response packet using mode

33 ResponseTimeTimeCoefficientofVariation Coefficient of variance of the list of

time differences between an outgo-

ing packet and the following response

packet

34 DoH Boolean defining a packet is DoH or

non-DoH

57

Lastly, the features extracted by Tranalyzer2[9]:

Field name Description

1 %dir Flow direction

2 flowInd Flow index

3 flowStat Flow status and warnings

4 timeFirst Date time of the first packet

5 timeLast Date time of the last packet

6 duration Flow duration

7 numHdrDesc Number of different headers descriptions

8 numHdrs Number of headers (depth) in header descrip-

tion

9 hdrDesc Headers description

10 srcMac source MAC address

11 dstMac destination MAC address

12 ethType Ethernet type

13 ethVlanID VLAN IDs

14 srcIP source IP

15 srcIPCC source IP country

16 srcIPOrg source IP organization

17 srcPort source port

18 dstIP destination IP

19 dstIPCC destination IP country

20 dstIPOrg destination IP organization

21 dstPort destination port

22 l4Proto Layer 4 protocol

23 macStat MAC statistics

24 macPairs MAC pairs

25 srcMac dstMac numP source/destination MAC addresses, number of

packets

26 srcManuf dstManuf source/destination MAC manufacturers

27 dstPortClassN port based classification of the destination port

number

58

Field name Description

28 dstPortClass classification of the destination port

29 numPktsSnt number of packets sent

30 numPktsRcvd number of packets received

31 numBytesSnt number of bytes sent

32 numBytesRcvd number of bytes received

33 minPktSz minimum packet size

34 maxPktSz maximum packet size

35 avePktSize average packet size

36 stdPktSize standard packet size

37 minIAT minimum inter-arrival time

38 maxIAT maximum inter-arrival time

39 aveIAT average inter-arrival time

40 stdIAT standard inter-arrival time

41 pktps sent packets per second

42 bytps sent bytes per second

43 pktAsm packet stream asymmetry

44 bytAsm byte stream asymmetry

45 tcpFStat multiple values possible for TCP flag stat

46 ipMindIPID IP Minimum delta IP Identification

47 ipMaxdIPID IP Maximum delta IP Identification

48 ipMinTTL IP Minimum Time to Live (TTL)

49 ipMaxTTL IP Maximum Time to Live (TTL)

50 ipTTLChg IP TTL Change Count

51 ipTOS IP Type of Service

52 ipFlags IP flags

53 ipOptCnt IP options count

54 ipOptCpCl Num the aggregated IP options are coded as a bit

field in hexadecimal notation where the bit po-

sition denotes the IP options

55 ip6OptCntHH D IPv6 aggregated hop by hop dest option counts

56 ip6OptHH D IPv6 hop by hop destination options

59

Field name Description

57 tcpISeqN TCP initial sequence number

58 tcpPSeqCnt TCP packet sequence count

59 tcpSeqSntBytes TCP sent sequence diff bytes

60 tcpSeqFaultCnt TCP sequence number fault count

61 tcpPAckCnt TCP packet ACK count

62 tcpFlwLssAckRcvdBytes TCP flawless ACK received bytes

63 tcpAckFaultCnt TCP ACK number fault count

64 tcpInitWinSz TCP initial effective window size

65 tcpAveWinSz TCP average effective window size

66 tcpMinWinSz TCP minimum effective window size

67 tcpMaxWinSz TCP maximum effective window size

68 tcpWinSzDwnCnt TCP effective window size change down count

69 tcpWinSzUpCnt TCP effective window size change up count

70 tcpWinSzChgDirCnt TCP effective window size direction change

count

71 tcpWinSzThRt TCP packet count ratio below window size

WINMIN

72 tcpFlags TCP aggregated protocol flags (FIN, SYN,

RST, PSH, ACK, URG, ECE, CWR)

73 tcpAnomaly TCP aggregated header anomaly flags

74 tcpOptPktCnt TCP options packet count

75 tcpOptCnt TCP options count

76 tcpOptions TCP aggregated options

77 tcpMSS TCP maximum segment size

78 tcpWS TCP window scale factor

79 tcpMPTBF MPTCP type bitfield

80 tcpMPF MPTCP flags

81 tcpMPAID MPTCP address ID

82 tcpMPdssF MPTCP DSS flags

83 tcpTmS TCP time stamp

84 tcpTmER TCP time echo reply

60

Field name Description

85 tcpEcI TCP estimated counter increment

86 tcpUtm TCP estimated up time

87 tcpBtm TCP estimated boot time

88 tcpSSASAATrip (A) TCP trip time SYN, SYN-ACK,(B) TCP

trip time SYN-ACK, ACK

89 tcpRTTAckTripMin TCP ACK trip minimum

90 tcpRTTAckTripMax TCP ACK trip maximum

91 tcpRTTAckTripAve TCP ACK trip average

92 tcpRTTAckTripJitAve TCP ACK trip jitter average

93 tcpRTTSseqAA (A) TCP round trip time SYN, SYN-ACK,

ACK (B) TCP round trip time ACK-ACK

94 tcpRTTAckJitAve TCP ACK round trip average jitter

95 tcpStates TCP states

96 icmpStat status

97 icmpTCcnt type code count

98 icmpBFTypH TypL Code aggregated type H(>128),L(<32) and code bit-

field

99 icmpTmGtw time/gateway

100 icmpEchoSuccRatio echo reply/request success ratio

101 icmpPFindex parent flow index

102 connSip number of unique source IPs

103 connDip number of unique destination IPs

104 connSipDip number of connections between source and des-

tination IPs

105 connSipDprt number of connections between source and des-

tination port

106 connF the f number, experimental:

connSipDprt/connSip

Following is Tshark command executed to extract user-specified fields from net-

work flow packets and write them into separate json file. In this example, the flows

represented in pcap file are TCP protocol flows:

61

tshark -T json -e ip.src -e ip.dst -e tcp.srcport -e tcp.dstport -e

frame.time_epoch -e tcp.payload -r DoHBrw_benign.pcap

> DoHBrw_benign.json

Benign and Attack Scenarios represented in Datasets

Dataset Benign Malicious

DoHBrw
Accessing thousands of websites that

use HTTPS protocol from Alexa domain

DNS tunnelling tools as dns2tcp,
DNSCat2, Iodine are used to generate

malicious DoH traffic. Tools send
TCP traffic encapsulated in DNS queries,

in other words, they create tunnels of encrypted data

ImpactGT -
Executing suspect Windows executables
in a sterile, isolated environment with a

limited access to the Internet

CICIDS

Profiling behaviour of human
interactions and generating naturalistic

benign background traffic, build
abstract behaviour of 25 users

The most common attacks based
on 2016 McAfee report, like Web based,
Brute Force, DoS, DDoS, Infiltration,

Heart-bleed, Bot and Scan

Table 5.4: Benign and Malicious Traffic Representation in datasets supplied

Bibliography

[1] Argus. https://openargus.org/using-argus. Accessed: 20-Sep-2021.

[2] CIRA-CIC-DoHBrw-2020. https://www.unb.ca/cic/datasets/

dohbrw-2020.html. Accessed: 10-Oct-2021.

[3] DoHlyzer. https://github.com/ahlashkari/DoHlyzer. Accessed: 10-Oct-
2021.

[4] DoHMeter. https://github.com/ahlashkari/DOHlyzer/tree/master/

DoHMeter. Accessed: 10-Oct-2021.

[5] Impact Cyber Trust. https://www.impactcybertrust.org. Accessed: 6-Mar-
2021.

[6] Tranalyzer. https://tranalyzer.com. Accessed: 19-Sep-2021.

[7] Weka Wiki. https://waikato.github.io/weka-wiki/visualization/

extensions_for_wekas_main_gui/. Accessed: 1-Nov-2021.

[8] C4.5 Algorithm. https://en.wikipedia.org/wiki/C4.5_algorithm, 2008.
Accessed: Nov-2021.

[9] Tranalyzer - development team. https://www.onworks.net/downloadapp/

SOFTWARE/documentation.pdf?service=service01, 2008. Accessed: 28-Nov-
2021.

[10] Mathematics behind classification and regression trees.
https://stats.stackexchange.com/questions/44382/

mathematics-behind-classification-and-regression-trees, 2013. Ac-
cessed: 23-Nov-2021.

[11] AutoML: TPOT. http://automl.info/tpot/, 2016. Accessed: Nov-2021.

[12] Introduction to Genetic Algorithms. https://towardsdatascience.com/

introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3,
2017. Accessed: 21-Nov-2021.

[13] Machine Learning Classifiers. https://towardsdatascience.com/

machine-learning-classifiers-a5cc4e1b0623, 2018. Accessed: Nov-2021.

[14] Understanding Random Forests Classifiers in Python. https://www.datacamp.
com/community/tutorials/random-forests-classifier-python, 2018. Ac-
cessed: Nov-2021.

62

https://openargus.org/using-argus
https://www.unb.ca/cic/datasets/dohbrw-2020.html
https://www.unb.ca/cic/datasets/dohbrw-2020.html
https://github.com/ahlashkari/DoHlyzer
https://github.com/ahlashkari/DOHlyzer/tree/master/DoHMeter
https://github.com/ahlashkari/DOHlyzer/tree/master/DoHMeter
https://www.impactcybertrust.org
https://tranalyzer.com
https://waikato.github.io/weka-wiki/visualization/extensions_for_wekas_main_gui/
https://waikato.github.io/weka-wiki/visualization/extensions_for_wekas_main_gui/
https://en.wikipedia.org/wiki/C4.5_algorithm
https://www.onworks.net/downloadapp/ SOFTWARE/documentation.pdf?service=service01
https://www.onworks.net/downloadapp/ SOFTWARE/documentation.pdf?service=service01
https://stats.stackexchange.com/questions/44382/mathematics-behind-classification-and-regression-trees
https://stats.stackexchange.com/questions/44382/mathematics-behind-classification-and-regression-trees
http://automl.info/tpot/
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://www.datacamp.com/community/tutorials/random-forests-classifier-python
https://www.datacamp.com/community/tutorials/random-forests-classifier-python

63

[15] Weka Tutorial. https://www.tutorialspoint.com/weka/index.html, 2019.
Accessed: 1-Nov-2021.

[16] 1.4 - Support Vector Machines. https://scikit-learn.org/stable/modules/
svm.html, 2021. Accessed: 19-Nov-2021.

[17] A complete guide to the Random Forest Algorithm. https://builtin.com/

data-science/random-forest-algorithm, 2021. Accessed: Nov-2021.

[18] Automate Machine Learning using TPOT - Explore thousands of possible
pipelines and find the best. https://www.analyticsvidhya.com/blog/

2021/05/automate-machine-learning-using-tpot%E2%80%8A-%E2%80%

8Aexplore-thousands-of-possible-pipelines-and-find-the-best/, 2021.
Accessed: 21-Nov-2021.

[19] Gini coefficient. https://en.wikipedia.org/wiki/Gini_coefficient, 2021.
Accessed: 17-Nov-2021.

[20] HTTPS encryption on the web. https://transparencyreport.google.com/

https/overview?hl=en, 2021. Accessed: 13-Nov-2021.

[21] Interpretable Machine Learning. https://christophm.github.io/

interpretable-ml-book/logistic.html, 2021. Accessed: Nov-2021.

[22] J48 Classification in a Nutshell. https://medium.com/@nilimakhanna1/

j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e, 2021.
Accessed: Nov-10-2021.

[23] Naive Bayes Classifier: Wikipedia. https://en.wikipedia.org/wiki/Naive_

Bayes_classifier, 2021. Accessed: 21-Nov-2021.

[24] Naive Bayes Classifiers. https://www.geeksforgeeks.org/

naive-bayes-classifiers/, 2021. Accessed: Nov-2021.

[25] Random Forest. https://en.wikipedia.org/wiki/Random_forest, 2021. Ac-
cessed: 18-Nov-2021.

[26] Solving unintended challenges with DoT and
DoH. https://www.infoblox.com/wp-content/uploads/

infoblox-solution-note-dot-and-doh-present-new-challenges.pdf,
2021. Accessed: 3-Dec-2021.

[27] Speech and Language Processing. https://web.stanford.edu/~jurafsky/

slp3/5.pdf, 2021. Accessed: Nov-2021.

[28] Support-vector machine. https://en.wikipedia.org/wiki/Support-vector_
machine, 2021. Accessed: 19-Nov-2021.

https://www.tutorialspoint.com/weka/index.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://builtin.com/data-science/random-forest-algorithm
https://builtin.com/data-science/random-forest-algorithm
https://www.analyticsvidhya.com/blog/2021/05/automate-machine-learning-using-tpot%E2%80%8A-%E2%80%8Aexplore-thousands-of-possible-pipelines-and-find-the-best/
https://www.analyticsvidhya.com/blog/2021/05/automate-machine-learning-using-tpot%E2%80%8A-%E2%80%8Aexplore-thousands-of-possible-pipelines-and-find-the-best/
https://www.analyticsvidhya.com/blog/2021/05/automate-machine-learning-using-tpot%E2%80%8A-%E2%80%8Aexplore-thousands-of-possible-pipelines-and-find-the-best/
https://en.wikipedia.org/wiki/Gini_coefficient
https://transparencyreport.google.com/https/ overview?hl=en
https://transparencyreport.google.com/https/ overview?hl=en
https://christophm.github.io/interpretable-ml-book/logistic.html
https://christophm.github.io/interpretable-ml-book/logistic.html
https://medium.com/@nilimakhanna1/j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e
https://medium.com/@nilimakhanna1/j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e
https://en.wikipedia.org/wiki/Naive_Bayes _classifier
https://en.wikipedia.org/wiki/Naive_Bayes _classifier
https://www.geeksforgeeks.org/naive-bayes-classifiers/
https://www.geeksforgeeks.org/naive-bayes-classifiers/
https://en.wikipedia.org/wiki/Random_forest
https://www.infoblox.com/wp-content/uploads/infoblox-solution-note-dot-and-doh-present-new-challenges.pdf
https://www.infoblox.com/wp-content/uploads/infoblox-solution-note-dot-and-doh-present-new-challenges.pdf
https://web.stanford.edu/~jurafsky/slp3/5.pdf
https://web.stanford.edu/~jurafsky/slp3/5.pdf
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine

64

[29] Epistasis Lab at UPenn. GitHub repository of TPOT tool. https://github.

com/EpistasisLab/tpot, 2018. Accessed: 1-Nov-2021.

[30] E. Sandi Aung and H. Yamana. Url-based phishing detection using the entropy of
non-alphanumeric characters. In Proceedings of the 21st International Conference
on Information Integration and Web-based Applications & Services, iiWAS 2019,
Munich, Germany, December 2-4, 2019, pages 385–392. ACM, 2019.

[31] Y. M. Banadaki. Detecting malicious dns over https traffic in domain name
system using machine learning classifiers. In Journal of Computer Science and
Applications, pages 46–55. Science and Education Publishing, 2020.

[32] M. Behnke, N. Briner, D. Cullen, K. Schwerdtfeger, J. Warren, R. Basnet, and
T. Doleck. Feature engineering and machine learning model comparison for ma-
licious activity detection in the dns-over-https protocol. IEEE Access, 9:129902–
129916, 2021.

[33] P. Berezinski, J. Pawelec, M. Malowidzki, and R. Piotrowski. Entropy-based
internet traffic anomaly detection: A case study. In Wojciech Zamojski, Jacek
Mazurkiewicz, Jaroslaw Sugier, Tomasz Walkowiak, and Janusz Kacprzyk, ed-
itors, Proceedings of the Ninth International Conference on Dependability and
Complex Systems DepCoS-RELCOMEX. June 30 - July 4, 2014, Brunów,
Poland, volume 286 of Advances in Intelligent Systems and Computing, pages
47–58. Springer, 2014.

[34] L. Bernaille and R. Teixeira. Early recognition of encrypted applications. In
Steve Uhlig, Konstantina Papagiannaki, and Olivier Bonaventure, editors, Pas-
sive and Active Network Measurement, 8th Internatinoal Conference, PAM 2007,
Louvain-la-neuve, Belgium, April 5-6, 2007, Proceedings, volume 4427 of Lecture
Notes in Computer Science, pages 165–175. Springer, 2007.

[35] T. Böttger, F. Cuadrado, G. Antichi, E. Leão Fernandes, G. Tyson, I. Castro,
and S. Uhlig. An empirical study of the cost of dns-over-https. In Proceedings of
the Internet Measurement Conference, IMC 2019, Amsterdam, The Netherlands,
October 21-23, 2019, pages 15–21. ACM, 2019.

[36] J. Brownlee. 4 Types of Classification Tasks in Ma-
chine Learning. https://machinelearningmastery.com/

types-of-classification-in-machine-learning/, 2020. Accessed: Nov-
2021.

[37] K. Bumanglag and H. Kettani. On the impact of DNS over HTTPS paradigm on
cyber systems. In 3rd International Conference on Information and Computer
Technologies, ICICT 2020, San Jose, CA, USA, March 9-12, 2020, pages 494–
499. IEEE, 2020.

https://github.com/EpistasisLab/tpot
https://github.com/EpistasisLab/tpot
https://machinelearningmastery.com/types-of-classification-in-machine-learning/
https://machinelearningmastery.com/types-of-classification-in-machine-learning/

65

[38] S. Burschka and B. Dupasquier. Tranalyzer: Versatile high performance network
traffic analyser. In 2016 IEEE Symposium Series on Computational Intelligence,
SSCI 2016, Athens, Greece, December 6-9, 2016, pages 1–8. IEEE, 2016.

[39] S. Burschka and B. Dupasquier. Tranalyzer: Versatile high performance network
traffic analyser. In 2016 IEEE Symposium Series on Computational Intelligence,
SSCI 2016, Athens, Greece, December 6-9, 2016, pages 1–8. IEEE, 2016.

[40] A.J. Campbell and N. Zincir-Heywood. Exploring tunneling behaviours in ma-
licious domains with self-organizing maps. In 2020 IEEE Symposium Series
on Computational Intelligence, SSCI 2020, Canberra, Australia, December 1-4,
2020, pages 1419–1426. IEEE, 2020.

[41] A. Das, M. Shen, M. Shashanka, and J. Wang. Detection of exfiltration and
tunneling over DNS. In Xuewen Chen, Bo Luo, Feng Luo, Vasile Palade, and
M. Arif Wani, editors, 16th IEEE International Conference on Machine Learning
and Applications, ICMLA 2017, Cancun, Mexico, December 18-21, 2017, pages
737–742. IEEE, 2017.

[42] A. Bergamini de Neira, A. Medeiros Araujo, and M. Nogueira. Early botnet
detection for the internet and the internet of things by autonomous machine
learning. In 16th International Conference on Mobility, Sensing and Networking,
MSN 2020, Tokyo, Japan, December 17-19, 2020, pages 516–523. IEEE, 2020.

[43] John W. Dorfinger P., Panholzer G. Real-time detection of encrypted traffic
based on entropy estimation. Master’s thesis, 2011.

[44] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. http://

archive.ics.uci.edu/ml, 2017. Accessed: 15-Oct-2021.

[45] M. A.Hall E. Frank and I. H.Witten. The WEKA workbench. MK, 2016. Ac-
cessed: 10-Nov-2021.

[46] Claude E.Shannon. Prediction and entropy of printed english. Bell system tech-
nical journal, 30:50–64, January 1951.

[47] Tyrell Fawcett. Exfild: a tool for the detection of data exfiltration using entropy
and encryption characteristics of network traffic. Master’s thesis, University of
Delaware, 2010.

[48] L. Ferreira, A. Luiz Pilastri, C. Manuel Martins, P. Miguel Pires, and P. Cortez.
A comparison of automl tools for machine learning, deep learning and xgboost.
In International Joint Conference on Neural Networks, IJCNN 2021, Shenzhen,
China, July 18-22, 2021, pages 1–8. IEEE, 2021.

[49] R. Gandhi. Naive Bayes Classifier. https://towardsdatascience.com/

naive-bayes-classifier-81d512f50a7c, 2018. Accessed: Nov-2021.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c

66

[50] F. Haddadi and N. Zincir-Heywood. Benchmarking the effect of flow exporters
and protocol filters on botnet traffic classification. IEEE Syst. J., 10(4):1390–
1401, 2016.

[51] J. Hale. TPOT Automated Machine Learn-
ing in Python. https://towardsdatascience.com/

tpot-automated-machine-learning-in-python-4c063b3e5de9, 2018. Ac-
cessed: 1-Nov-2021.

[52] D. Hjelm. A New Needle and Haystack: Detecting DNS over
HTTPS Usage. https://www.sans.org/reading-room/whitepapers/dns/

needle-haystack-detecting-dns-https-usage-39160. Accessed: 10-May-
2021.

[53] Arash Habibi Lashkari Iman Sharafaldin and Ali A. Ghorbani. CIC-IDS 2017.
https://www.unb.ca/cic/datasets/ids-2017.html. Accessed: 5-Mar-2021.

[54] J.Ahmed, H. Habibi Gharakheili, Q. Raza, C. Russell, and V. Sivaraman. Real-
time detection of DNS exfiltration and tunneling from enterprise networks. In Joe
Betser, Carol J. Fung, Alex Clemm, Jérôme François, and Shingo Ata, editors,
IFIP/IEEE International Symposium on Integrated Network Management, IM
2019, Washington, DC, USA, April 09-11, 2019, pages 649–653. IFIP, 2019.

[55] S. Khanchi, A. Vahdat, M. I. Heywood, and Nur Zincir-Heywood. On botnet
detection with genetic programming under streaming data label budgets and
class imbalance. Swarm Evol. Comput., 39:123–140, 2018.

[56] Nilima Khanna. J48 Classification (C4.5 Algorithm)
in a Nutshell. https://medium.com/@nilimakhanna1/

j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e,
2021. Accessed: 18-Nov-2021.

[57] Y. Khodjaeva and N. Zincir-Heywood. Network flow entropy for identifying mali-
cious behaviours in DNS tunnels. In Delphine Reinhardt and Tilo Müller, editors,
ARES 2021: The 16th International Conference on Availability, Reliability and
Security, Vienna, Austria, August 17-20, 2021, pages 72:1–72:7. ACM, 2021.

[58] A. Khormali, J. Park, H. Alasmary, A. Anwar, M. Saad, and D. A. Mohaisen.
Domain name system security and privacy: A contemporary survey. Comput.
Networks, 185:107699, 2021.

[59] Kh.Shahbar and N. Zincir-Heywood. How far can we push flow analysis to
identify encrypted anonymity network traffic? In 2018 IEEE/IFIP Network
Operations and Management Symposium, NOMS 2018, Taipei, Taiwan, April
23-27, 2018, pages 1–6. IEEE, 2018.

https://towardsdatascience.com/tpot-automated-machine-learning-in-python-4c063b3e5de9
https://towardsdatascience.com/tpot-automated-machine-learning-in-python-4c063b3e5de9
https://www.sans.org/reading-room/whitepapers/dns/needle-haystack-detecting-dns-https-usage-39160
https://www.sans.org/reading-room/whitepapers/dns/needle-haystack-detecting-dns-https-usage-39160
https://www.unb.ca/cic/datasets/ids-2017.html
https://medium.com/@nilimakhanna1/j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e
https://medium.com/@nilimakhanna1/j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e

67

[60] A. Lakhina, M. Crovella, and Ch. Diot. Mining anomalies using traffic feature dis-
tributions. In R. Guérin, R. Govindan, and G. Minshall, editors, Proceedings of
the ACM SIGCOMM 2005 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, Philadelphia, Pennsylvania,
USA, August 22-26, 2005, pages 217–228. ACM, 2005.

[61] D. Lambion, M. Josten, F. G. Olumofin, and M. De Cock. Malicious DNS
tunneling detection in real-traffic DNS data. In X. Wu, Ch. Jermaine, L. Xiong,
X. Hu, O. Kotevska, S. Lu, W. Xu, S. Aluru, C. Zhai, E. Al-Masri, Zh. Chen,
and J. Saltz, editors, 2020 IEEE International Conference on Big Data (IEEE
BigData 2020), Atlanta, GA, USA, December 10-13, 2020, pages 5736–5738.
IEEE, 2020.

[62] Duc C. Le and N. Zincir-Heywood. A frontier: Dependable, reliable and se-
cure machine learning for network/system management. J. Netw. Syst. Manag.,
28(4):827–849, 2020.

[63] Duc C. Le, N. Zincir-Heywood, and M. I. Heywood. Data analytics on network
traffic flows for botnet behaviour detection. In 2016 IEEE Symposium Series
on Computational Intelligence, SSCI 2016, Athens, Greece, December 6-9, 2016,
pages 1–7. IEEE, 2016.

[64] Ch. Lu, B. Liu, Zh. Li, Sh. Hao, H. Duan, M. Zhang, Ch. Leng, Y. Liu, Z. Zhang,
and J. Wu. An end-to-end, large-scale measurement of dns-over-encryption: How
far have we come? In Proceedings of the Internet Measurement Conference, IMC
2019, Amsterdam, The Netherlands, October 21-23, 2019, pages 22–35. ACM,
2019.

[65] M. Nidhal Mejri and J. Ben-Othman. Entropy as a new metric for denial of ser-
vice attack detection in vehicular ad-hoc networks. In Ravi Prakash, Azzedine
Boukerche, Cheng Li, and Falko Dressler, editors, 17th ACM International Con-
ference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
MSWiM’14, Montreal, QC, Canada, September 21-26, 2014, pages 73–79. ACM,
2014.

[66] M.MontazeriShatoori, L. Davidson, G. Kaur, and A. Habibi Lashkari. De-
tection of doh tunnels using time-series classification of encrypted traffic.
In IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl
Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and
Big Data Computing, Intl Conf on Cyber Science and Technology Congress,
DASC/PiCom/CBDCom/CyberSciTech 2020, Calgary, AB, Canada, August 17-
22, 2020, pages 63–70. IEEE, 2020.

68

[67] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore. Evaluation of a
tree-based pipeline optimization tool for automating data science. In Tobias
Friedrich, Frank Neumann, and Andrew M. Sutton, editors, Proceedings of the
2016 on Genetic and Evolutionary Computation Conference, Denver, CO, USA,
July 20 - 24, 2016, pages 485–492. ACM, 2016.

[68] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar. Towards
the deployment of machine learning solutions in network traffic classification: A
systematic survey. IEEE Commun. Surv. Tutorials, 21(2):1988–2014, 2019.

[69] S. Patel. Chapter 2: SVM (Support Vector Machines)
- Theory. https://medium.com/machine-learning-101/

chapter-2-svm-support-vector-machine-theory-f0812effc72, 2017.
Accessed: Nov-2021.

[70] R. Raghav, Pratheesh, K. Shedbalkar, Minal Moharir, N Deepamala, P Ra-
makanth Kumar, and MGP Tanmayananda. Analysis and detection of malicious
activity on doh traffic. In 2021 2nd Global Conference for Advancement in Tech-
nology (GCAT), pages 1–5, 2021.

[71] S. Ray. 6 Easy Steps to Learn Naive Bayes Algorithm with codes
in Python and R. https://www.analyticsvidhya.com/blog/2017/09/

naive-bayes-explained/, 2017. Accessed: Nov-2021.

[72] Madison Schott. Random Forest Algorithm for Ma-
chine Learning. https://medium.com/capital-one-tech/

random-forest-algorithm-for-machine-learning-c4b2c8cc9feb, 2019.
Accessed: 17-Nov-2021.

[73] M. Seufert, R. Schatz, N. Wehner, B. Gardlo, and P. Casas. Is QUIC becoming
the new tcp? on the potential impact of a new protocol on networked multime-
dia qoe. In 11th International Conference on Quality of Multimedia Experience
QoMEX 2019, Berlin, Germany, June 5-7, 2019, pages 1–6. IEEE, 2019.

[74] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani. Toward generating a
new intrusion detection dataset and intrusion traffic characterization. In Paolo
Mori, Steven Furnell, and Olivier Camp, editors, Proceedings of the 4th Interna-
tional Conference on Information Systems Security and Privacy, ICISSP 2018,
Funchal, Madeira - Portugal, January 22-24, 2018, pages 108–116. SciTePress,
2018.

[75] S. Kumar Singh and P. Kumar Roy. Detecting malicious dns over https traffic
using machine learning. 2020.

[76] B. Stecanella. Support Vector Machines (SVM) Algorithms Explained. https://
monkeylearn.com/blog/introduction-to-support-vector-machines-svm/,
2017. Accessed: Nov-2021.

https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/
https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/
https://medium.com/capital-one-tech/random-forest-algorithm-for-machine-learning-c4b2c8cc9feb
https://medium.com/capital-one-tech/random-forest-algorithm-for-machine-learning-c4b2c8cc9feb
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/

69

[77] Georgia Tech. GT Malware Passive DNS Data Daily Feed. http://dx.doi.

org/10.23721/102/1354027. Accessed: 6-Mar-2021.

[78] G. Vormayr, J. Fabini, and T. Zseby. Why are my flows different? A tutorial on
flow exporters. IEEE Commun. Surv. Tutorials, 22(3):2064–2103, 2020.

[79] M. Zhou, Sh. Zhang, Y. Qiu, H. Luo, and Zh. Wu. Entropy-based spammer detec-
tion. In Proceedings of the 10th International Conference on Internet Multimedia
Computing and Service, Nanjing, China, August 17-19, 2018, pages 43:1–43:6.
ACM, 2018.

http://dx.doi.org/10.23721/102/1354027
http://dx.doi.org/10.23721/102/1354027

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Literature Review
	DNS tunnelling and exfiltration detection
	DoH tunnelling detection
	Using entropy
	Optimization using TPOT-AutoML
	Summary

	Methodology
	Datasets
	Network Flow Extraction Tools
	Network Flow Entropy and Statistical Features
	WEKA: Machine Learning Software in Java
	Machine Learning Algorithms applied via WEKA
	TPOT for Optimization
	Summary

	Evaluations and Results
	C4.5 classifier results obtained by using Weka
	Results of running four ML classifiers on Weka
	Results of experiments with Argus flow extractor
	Results of running TPOT-AutoML
	Summary

	Conclusion
	Appendix
	Bibliography

