
DEEP REINFORCEMENT LEARNING BASED

ADMISSION CONTROL FOR THROUGHPUT MAXIMIZATION

IN MOBILE EDGE COMPUTING

by

Yitong Zhou

Submitted in partial ful�llment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

June 2021

© Copyright by Yitong Zhou, 2021

This thesis entitled "Deep Reinforcement Learning Based

Admission Control for Throughput Maximization in Mobile

Edge Computing" by Yitong Zhou is for the partial ful�llment of

the requirements for the degree of Masters of Computer Science.

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . vii

Acknowledgements . viii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Overview of the Proposed Scheme . 3

1.3 Thesis Outline . 4

Chapter 2 Related Work . 6

2.1 Mobile Edge Computing . 6

2.2 Throughput Maximization . 8
2.2.1 Routing and Physical Optimization 8
2.2.2 Network Virtualization . 9
2.2.3 Admission Control . 10

2.3 Reinforcement Learning . 12
2.3.1 Q-learning . 13
2.3.2 Double Q-learning . 14

2.4 Deep Reinforcement Learning . 14
2.4.1 Deep Q-Learning . 15
2.4.2 DRL with Actor-Critic Methods 15

2.5 MEC with DRL . 16

Chapter 3 DAC: DRL-based Admission Control for MEC 19

3.1 Problem Formulation . 19

3.2 Details of DAC . 21
3.2.1 System Action . 25
3.2.2 System Condition Update . 25
3.2.3 Reward Function . 27

iii

Chapter 4 Experimental Results . 29

4.1 Experiment Con�guration . 29

4.2 Experimental Results in Baseline Scenario 31

4.3 Experimental Results in Extended Scenarios 33
4.3.1 Max Occupation Period With 25 Time Slots 33
4.3.2 Max Occupation Period With 30 Time Slots 38
4.3.3 Max Occupation Period With 35 Time Slots 40
4.3.4 Max Occupation Period With 40 Time Slots 44
4.3.5 Max Occupation Period With 45 Time Slots 46
4.3.6 Max Occupation Period With 50 Time Slots 49

4.4 Summary of Throughput Results . 53

Chapter 5 Conclusion and Future Work 55

5.1 Conclusion . 55

5.2 Future Work . 56

Bibliography . 58

Appendix A Copyright Permissions . 63

iv

List of Tables

3.1 Key Notations . 20

4.1 Request Speci�cation . 30

v

List of Figures

3.1 MEC Architecture . 19

3.2 Work�ow of DAC . 22

4.1 System Throughput with τmax = 20 32

4.2 Resource Utilization with τmax = 20 34

4.3 System Throughput with τmax = 25 35

4.4 CPU Utilization with τmax = 25 36

4.5 Memory Utilization with τmax = 25 37

4.6 System Throughput with τmax = 30 39

4.7 CPU Utilization with τmax = 30 40

4.8 Memory Utilization with τmax = 30 41

4.9 System Throughput with τmax = 35 41

4.10 CPU Utilization with τmax = 35 42

4.11 Memory Utilization with τmax = 35 43

4.12 System Throughput with τmax = 40 45

4.13 CPU Utilization with τmax = 40 46

4.14 Memory Utilization with τmax = 40 47

4.15 System Throughput with τmax = 45 48

4.16 CPU Utilization with τmax = 45 49

4.17 Memory Utilization with τmax = 45 50

4.18 System Throughput with τmax = 50 51

4.19 CPU Utilization with τmax = 50 52

4.20 Memory Utilization with τmax = 50 52

4.21 Impact of Max Occupation Period 53

vi

Abstract

With the development of wireless network technologies, such as LTE/5G, Mobile

Cloud Computing (MCC) has been proposed as a solution for mobile devices that

need to carry out high-complexity computation with limited resources. Technically,

with MCC, high-complexity computation tasks are o�oaded from mobile devices to

cloud servers. However, MCC does not work well for time-sensitive mobile applica-

tions due to the relatively long latency between mobile devices and cloud servers.

Mobile Edge Computing (MEC), is expected to a latency optimized version of MCC.

With MEC, edge servers, instead of cloud servers, are deployed at the edge of the

network to provide o�oading services to mobile devices. Since edge servers are much

closer to mobile devices, the resulting latency is signi�cantly lower than the cloud

servers. Despite the advantages of MEC over MCC, edge servers are not as resource-

abundant as cloud servers. Consequently, when many o�oaded tasks arrive at an

edge server, admission control needs to be in place to arrive at the best performance.

In this thesis, we propose a Deep Reinforcement Learning (DRL) based admission

control scheme, DAC, to maximize the system throughput of an edge server. The

performance of DAC is thoroughly investigated via extensive simulations. Speci�-

cally, in our simulations, when varied o�oaded tasks arrive at an edge server, an

admission control scheme determines whether a task is admitted or rejected. Our

experimental results indicate that DAC outperforms the existing admission control

schemes for MEC in terms of system throughput and resource utilization.

vii

Acknowledgements

At this moment, I want to give my greatest gratitude to my supervisor Dr. Qiang

Ye for his professional guidance, valuable advice, and knowledge, which strongly ben-

e�ted me and accelerated my research work. Moreover, I am also grateful to my

colleagues Dr. Hui Huang, and Dr. Yuxuan Jiang, who spared their precious time to

discuss and brainstorm with me. Their suggestions, support, warmheartedness and

encouragement as well continuous helpful criticism bene�ted me extremely during

this research.

Lastly, my deepest appreciation goes to my parents Mr. Kai Zhou and Mrs. Yan

Hua and the rest of my family for their continuous care, support and encouragement.

This research can not be accomplished without their unconditional love and a�ection.

Thank you all.

viii

Chapter 1

Introduction

1.1 Motivation

With the wide deployment of mobile devices, e.g. smartphones, the quantity and

type of mobile applications have grown rapidly over the past years. Nowadays, many

mobile applications, such as online games and virtual reality, involve high-complexity

computation that requires a large number of hardware resources, which often exceeds

the processing capacity of mobile devices [1, 2, 3, 4]. Even if mobile devices have

su�cient resources to execute these applications, the high-complexity nature of these

applications typically leads to a long execution time, which is not energy-friendly to

battery-powered mobile devices.

Therefore, to meet the computation requirements of these mobile applications or

reduce the energy consumption of mobile devices, Mobile Cloud Computing (MCC)

was proposed as a solution to this computation and resource limitation problem.

With MCC, high-complexity computation tasks are o�oaded from mobile devices to

cloud servers. Therefore, other than utilizing the network bandwidth and battery

on o�oading, the mobile devices do not need to allocate any hardware resources for

o�oaded tasks. Once cloud servers complete the o�oaded tasks, the computation

results are returned to mobile devices. As a result, the MCC replaces the complex,

resource heavily used and long-time executed tasks with relatively simple, resource-

friendly and short-time used o�oading actions. Therefore, the MCC saves the mobile

devices' hardware resources and extends their battery life, while these mobile devices

are running the applications with complex functions and high-quality images.

To o�oad the high-complexity tasks to cloud servers, wireless technologies, such

as LTE/5G[5, 6], are used to transfer data by mobile devices.The LTE 4G, as a high-

speed wireless technology, has increased the data transmission speed up to 100 Mbps.

1

2

This transmission speed signi�cantly deducts the delay in o�oading tasks and re-

turning computation results. Therefore, LTE 4G makes MEC �nish o�oading tasks

before the deadline possible. The 5G technology further improves the bandwidth to

10 Gbps to further reduce the delay of the MEC. However, since 5G is using millimetre

wave, which is di�cult to maintain long-range propagation and low penetration loss,

in physical layers. Therefore, the LTE 4G is more reliable in task o�oading and the

5G can optimize the delay performance in MEC. However, due to the long distance

between mobile devices and cloud servers, the lengthy latency between mobile devices

and cloud servers tends to be intolerable to time-sensitive applications. To process

the o�oading tasks with lower latency, Mobile Edge Computing (MEC) is proposed

to deploy less-powerful servers at the edge of the network and o�oad requests to the

relatively close edge servers (instead of remote cloud servers).

Despite the obvious advantages of MEC over MCC, edge servers are not as resource-

abundant as cloud servers. To be speci�c, with the bene�ts of hardware virtualization,

the cloud servers are virtualized from the clusters of powerful servers. In this way,

virtualization technology provides independence from the underlying hardware for

services and operating systems [7]. Therefore, the cloud servers should not be con-

sidered as physical machines, whose con�gurations are static. The cloud servers can

scale up and down their hardware capacity in need by invoking and releasing the

hardware resource within the network of its cluster. Nevertheless, the edge servers,

which are established as singleton with the base stations. There are no extra physical

machines working as a cluster where the edge server can adjust its hardware capacity.

Therefore, the edge servers normally can not enhance their hardware capacity by uti-

lizing the spared hardware resources within a cluster. Furthermore, the cloud server

clusters can increase their hardware capacity by including more physical machines

into the clusters with virtualization administration software, while the clusters are

providing the services. On the contrary, the edge server must replace the machine

itself, when the edge server must be halted. As a result, the MCC can theoretically

provide unlimited hardware support, but the MEC will �nally run out of its hardware

resources if the mobile devices' use cases keep expanding. Consequently, when many

o�oaded tasks arrive at an edge server, admission control needs to be in place to

3

arrive at the edge server's best performance.

Several admission control schemes are developed to improve the system through-

put of edge servers. However, most of the algorithms are focusing on optimizing the

load balance and resource-saving according to the network topology. When it comes

to the algorithms that work on a single edge server, the common mechanism is sorting

the o�oaded tasks by a developed cost equation to admit the tasks with a preference

for lower resource requirements and lower execution period. Though admitting tasks

with a priority can ensure the edge server accept the tasks with relatively low resource

requirements and occupation time, the low-priority tasks can still be accepted as long

as the edge server has su�cient resource. Therefore, even if the cost equation can

assign the task running time an extremely large coe�cient to maximize the cost of the

task and to minimize the priority of the task, this task request can still be admitted

and executed if the edge server's spare hardware resource meet its requirements. In

other words, the sorting-based admission control policies can not successfully clear

the resource-intensive requests, whose negative in�uence is mainly contributed by the

executing time. Therefore, this thesis is devising an admission control policy, which

can reject the resource-intensive tasks actively to spare hardware resources for more

o�oading tasks, especially when the edge server's hardware resources are largely allo-

cated. Hence, the edge server increases its throughput of handling o�oading tasks by

ensuring the hardware resources for resource-intensive tasks, even if it has to abandon

part resource-intensive tasks.

1.2 Overview of the Proposed Scheme

The objective of this thesis is to develop an admission control mechanism to increase

the edge server's throughput. The proposed scheme utilizes Deep Reinforcement

Learning (DRL) to solve the admission control problem in MEC. Speci�cally, we

propose a novel admission control scheme for MEC, DRL-based Admission Control

(DAC). With DAC, a DRL algorithm, Deep Deterministic Policy Gradient (DDPG)

[8], is employed to determine whether an o�oaded task should be admitted or re-

jected so that the system throughput of an edge server is maximized. Therefore, the

4

high-priority tasks can be accepted, and the in�uence of low-priority tasks can be

mitigated. Technically, DDPG is a DRL algorithm that is capable of learning in a

high-dimensional policy space. By observing the request details of historical tasks

and the impact of the tasks on available resources on edge servers, DDPG gradually

learns the best admission policy for an edge server in MEC. Through extensive ex-

periments, we found that DAC outperforms the existing admission control schemes

for MEC in terms of system throughput.

In this thesis, we present a scheme that decides the admission of requests to

optimize the performance of edge servers by accepting resource-friendly requests and

rejecting the potentially resource-intensive requests. The process of this admission

control scheme is implemented with the following steps:

(1) Develop a policy-based admission control system, which can accept and reject

the incoming requests with an admission policy.

(2) Extract the parameters, such as resource usages and request requirements, as a

vector that can describe the status of the system.

(3) Construct a neural network, which can take the system status vector as input

and generate the admission policy.

(4) Further develop a reward equation that produces the feedback of the system for

the model's learning.

(5) Train the neural network to pick a neural network that generates the admission

policy increasing most performance.

(6) Evaluate and compare our scheme to existing solutions on the simulation system.

1.3 Thesis Outline

The rest of this thesis is organized as follows. The detailed background on admission

control, MEC and DRL is presented in Chapter 2. It also illustrates the related re-

search that has been processed. Some of research involves the existing algorithms and

5

performance evaluation. At the end of this chapter, the problem under investigation

is formulated. The proposed admission control scheme, DAC, is described in Chapter

3. Chapter 4 includes the detailed experimental results. Finally, our conclusions and

future work are described in Chapter 5.

Chapter 2

Related Work

As introduced in the above sections, the scale of mobile computing scenarios has

been in�ated by the development of remote resource utilization. MCC and MEC,

the typical techniques that provide powerful computation for mobile devices, are hot

topics in increasing the performance of mobile computing. On the other hand, within

a network, the maximum system throughput can be considered as the constraint of

task o�oading. Therefore, throughput maximization is a critical aspect to be re-

searched for further performance improvement. When it comes to optimizing the

performance of MEC, DRL is also a common methodology implemented by the re-

searchers. Therefore, this chapter discusses and presents the topics and research that

has been conducted in MEC, throughput maximization and DRL.

2.1 Mobile Edge Computing

The concept of MEC is extended from MCC. The MCC is utilizing a rich portfolio

of services and applications from the data center or computation center [9]. With

this methodology, the mobile devices' application can get rid of the constraints of the

hardware capabilities and battery life.

In comparison with the MCC, the MEC's service provider is on the edge of the

network [10]. To be speci�c, in mobile computing, the edge service provider nor-

mally refers to the base stations(BSs) and wireless access points(APs). The devices

used to work as the transmitters in a speci�c network have become powerful service

providers because their storage and computation capacities have improved the de-

velopment of hardware and software. As Mao et al. proposed, the hardware of edge

service providers is capable of processing tasks like machine learning and augmented

reality [11]. Furthermore, since the service providers directly connect to the mobile

6

7

devices, the latency of the services is signi�cantly reduced. According to the recent

research, Weisong claims that the delay of the edge computing is only about 169 ms,

while the delay of the cloud computing is about 900ms [12]. Therefore, this proximity,

which indicates a shorter distance between mobile devices and servers, contributes to

a smaller latency for MEC to handling o�oading tasks.

As for the disadvantage of the MEC to the MCC, the hardware capacity of the

edge server is considered obviously less than the cloud server[12]. To be speci�c, the

di�erence between edge servers' and cloud servers' hardware capacities is not only

based on the physical hardware components but also based on the service deploy-

ment and technologies. The edge server is deployed on the base station, which is at

the edge of the network. Meanwhile, the cloud server is deployed at the data center

or computation center, where hardware components can be freely placed. Therefore,

MEC's hardware capacity is weak compared to the MCC. Furthermore, because of the

development of virtualization technology, the hardware capacity of the cloud servers

gits rid of the physical space [13]. Moreover, the implementation of the auto-scaling

allows the cloud server to increase its hardware capacity when it is running out of

its current resources, without the change in the physical machine [14]. Therefore,

regardless of the physical di�erence between MEC and MCC, the edge server is more

possible to meets the problem of the resource constraints.

To increase the e�ciency of implementing edge servers, the researchers propose

the work in several di�erent directions. Considering the performance and features

of mobile devices, edge servers, and cloud servers, o�oading scheduling is promised

as an important aspect to optimize the e�ciency of MEC. If the tasks are o�oaded

to the most suitable devices, the energy consumption, task latency, and completion

rate are optimized [15, 16, 17, 18]. With these basic theories and approaches, further

optimizations are developed with reinforcement learning and DRL [19, 20, 21, 22, 23].

Regardless of the optimizations on the o�oading, if the edge service providers have

su�cient resources, the more tasks are o�oaded, the mobile devices have the higher

e�ciency to accomplish the tasks. Therefore, maximizing the system throughput is

8

a reliable aspect to improve the performance of the MEC.

2.2 Throughput Maximization

As the previous section summarized, optimize the system throughput of MEC is a

signi�cant approach to improve the performance of MEC. Therefore this section de-

scribes the speci�c theories and methodologies that are applied in this MEC through-

put maximization problem. In the aspect of mechanism, the major solutions for MEC

to increase its throughput are categorized as physical-based, virtual-network-based,

and admission-control-based. The speci�c topics and researches are discussed brie�y

below.

2.2.1 Routing and Physical Optimization

The feature of the wireless network de�nes the connection quality within the network

is dependent on the distance between the nodes. Considering the mobility of mobile

devices, optimizing the network routing and geometrical relationship to increase the

MEC's throughput is also a direction of research.

In the research [24], Xiumei et al. devised an optimization algorithm, which in-

cludes all variables in the MEC. In this environment, the routing and o�oading

decisions are based on the status, such as connection quality, task queue backlog and

energy consumption , of the base stations. Therefore, the better connection between

mobile devices and bases stations, the more tasks and requests can be o�oaded to the

edge server. Therefore, Xiumei et al. optimizes the edge server's system throughput

by improving the communication e�ciency physically. In addition, since this research

also involves the energy harvesting(EH) technique, optimization the throughput of

energy transferring is also a target for optimization [25]. Xiumei et al. �rstly uti-

lize the perturbed Lyapunov optimization to get a routing matrix, which makes base

stations admit the most number of o�oaded tasks. Furthermore, the author accom-

panied the cost of the queue of backlog into the optimization of the routing matrix

9

to improve the system throughput of the MEC.

On the other hand, [26] illustrates a solution that improves the system throughput

by optimizing the geometrical relationship between nodes. In this research, Jie et al.

introduced a case where functions of base stations are performed by the unmanned

aerial vehicle (UAV). Therefore, adjusting the location of UAVs can modify the ge-

ometrical relationships between the nodes. As a result, the connection quality and

communication e�ciency can be improved by these modi�cations. Therefore, Jie et

al. devised a deep Q learning based algorithm to supervise the natural environment

and connection quality. With the observations from supervising, this algorithm pro-

duces a set of adjustment decisions for UAVs to update their locations. Consequently,

the system throughput is successfully improved by this solution.

2.2.2 Network Virtualization

Network virtualization is a technique that enables the abstraction and shares the

hardware and physical resources [27]. This technique also further devised two tech-

niques, namely Network Function Virtualization (NFV) and Software De�ned Net-

work(SDN), with the emergence of MEC. Both two techniques �exibly administer

the resources within the network without the constraints of the physical hardware

[28]. Therefore, the NFV is considered a common paradigm in the future network

communication and several throughput maximizations is developed based on NFV.

Yu et al. devised the provisioning mechanism in an NFV-enabled MEC system

[29]. Then Yu et al. developed a cost-based algorithm to evaluate NFV's request

multicasting mechanism. With the estimation of the costs, a multicast tree, whose

subset of edges connecting the source node and destination, is constructed. This tree

indicates this request can be admitted with the estimated cost. Finally, Yu et al.

minimized the cost of every multicast tree to maximize the system throughput of this

MEC system.

Similarly, Yi et al. also implemented the network virtualization to optimize the

system throughput of the MEC [30]. The di�erence of this solution from Yu et al. is Yi

10

et al. focusing on the administrations on the VNF but not multicasting. To be speci�c,

Yi et al. formulate every o�oaded task from the mobile devices into a set of small-

size tasks, which can be processed by the service functions chains(SFCs). With these

SFCs, the separated tasks can be handled by the VNF sequentially. Therefore, Yi et

al. developed an algorithm that can estimate the correlation between the requesting

node and processing node. Then this most correlated request will be processed by the

node whose spare resource is su�cient but not larger than another node. In this way,

this MEC system processes e�cient requests with a high priority and fully utilizes the

resources within the network. Consequently, the system throughput will be increased

by admitting more e�cient requests.

2.2.3 Admission Control

Admission control is the methodology for a single server to admit or reject incoming

tasks. In the case of MEC, though, the edge servers have richer resources compared

with the mobile devices. In comparison with the cloud servers, the capacity of the

edge servers is not as su�cient. Even if the edge server is powerful enough for cur-

rent use cases, it will �nally run out of its hardware resources because of the growing

number of mobile devices and the increasing diversity of functions provided by the mo-

bile devices. Therefore, providing more services with constrained hardware resources

is an important optimization problem for the edge server. In this case, admitting

the task requests with a speci�c strategy is helpful for edge servers to process more

tasks with their resource constraints. In recent years, there are several solutions that

involve the speci�c admission control policy that improves MEC's system throughput.

Online Batch Algorithm [31]

Xia et al. proposed a cost model to estimate the in�uence of every request on the

system throughput. Theoretically, Xia et al. formulates the throughput maximization

problem into a bin packing problem. Every hardware resource of the edge server can

be considered as empty bins with speci�c capacity. Therefore, Xia et al. claims that

the edge server can perform better by admitting more requests with fewer resources

requirements and shorter occupation time, just like admitting smaller items in the

11

bin packing problem.

Xia et al. �rstly developed an equation to estimate the cost of resources. To be

speci�c, every resource is set with a basic value, which can be adjusted based on the

capacity of the server. To be speci�c, if some hardware resources, such as memory,

are easily running out, the server can con�gure a larger value for the admission con-

trol to prefer to admit tasks with fewer memory requirements. Then the cost of task

resources is generated by raising this basic value to the power of the ratios of resource

utilization and task resource requirements. Finally, the cost of the task is the product

of the cost of task resources and the task's running time.

On the other hand, Xia et al. also devised a threshold system, which can check

whether the request is obviously resource-intensive. Therefore, after assigning every

o�oaded task with their estimated cost to the edge server, the incoming requests need

to be �ltered if their hardware requirements exceed the server's available resource or

their estimated cost exceeds the prede�ned threshold.

When �ltering is �nished, the edge server sorts the incoming tasks by their costs.

The less cost is estimated, the earlier this task is checked by the edge server. There-

fore, considering the decrease of available resources caused by the admission, the lower

cost of the task is estimated, the higher probability that the task can be admitted.

Every checked task is admitted if the edge server has su�cient available hardware

resources that meet the task's resource requirements. Otherwise, this task is rejected

because it can not be processed by the edge server. Theoretically, admitting the

requests whose cost is less than the others, can spare more available resources for

other tasks. Moreover, since the cost involves the in�uence of the running time, over

the long term, more space for the cost of the future request is spared. Therefore, in

the case of admitting tasks, the admitted requests utilize fewer resources and run for

less time. Therefore, this algorithm minimizes the requests' average in�uence on the

system throughput. As a result, in a relatively long time interval, the edge server's

system throughput is increased by this algorithm.

12

Maximum E�ciency First Ordered (MEFO) [32]

Hu et al. proposed a similar solution. However, this admission control algorithm is ap-

plied to a multi-server environment. Furthermore, the ratio of the available resource

is not a factor to calculate the cost of the task, but a important factor to guide the

o�oaded task to identify suitable server. In this research, the ratios of the required

resources to the edge server's spare resources are designed for mobile devices to select

edge servers. To be speci�c, the smaller ratios are, the more suitable is this edge

server for o�oaded tasks. In this way, according to the requirements of the task, the

task can be o�oaded to a more suitable server, whose ratio of the available hardware

resources decreases smallest. To be speci�c, the requests, which occupy more memory

resources for their tasks, are sent to the servers, whose memory resources are richer

than the other resources. Moreover, if more than one edge servers meet the previous

requirement, the task is o�oaded to the edge server, whose overall available resource

is more. To simplify this edge server selection, Hu et al. developed a matrix that is

used to calculate the tasks' scores on di�erent servers.

As for the admission control algorithm working on the single edge server, the so-

lution proposed by Hu et al. also implemented a similar logic. The di�erence is, Hu

et al. devise a di�erent cost calculation. Unlike the ONLINE-BATCH algorithm, the

MEFO will not estimate the tasks' resource costs following exponential growth. The

MEFO just sums up the ratios of required resources to the edge server's available

resources as the task's resource cost. Then the MEFO also gets the weight of the task

by timing the cost of task resource requirements with its execution time. Finally, the

tasks will be reordered by their weights and be checked by the edge server one by

one. The edge server's performance is improved by this algorithm like the ONLINE-

BATCH algorithm veri�ed.

2.3 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning. However, this machine

learning is not based on the neural network. The basic function of RL is maximizing

13

the notion of the cumulative reward[33]. To accumulate the reward, the learning

model needs to estimate the reward, which can be acquired at the current state with

a speci�c action. With a well-trained RL model, the actor can always get the correct

estimation about the �nal reward. Therefore, at every stage, the actor just needs

to process the action whose estimation of the reward is the largest to get the �nal

reward. A sequence of combinations of the state and actions is working as a Markov

chain. Therefore, the basic idea for RL's reward estimation is times the �nal reward

with the probability of �nally getting the reward, which is calculated with the Markov

decision process.

2.3.1 Q-learning

Theoretically, if the actor knows all of the details of the states, this problem normally

can be reformulated into a shortest path problem or minimum spanning tree problem.

Moreover, in most cases, there is no speci�c probability that can be concluded for

the actions at a speci�c state. Therefore, the RL may not solve the problem more

e�ciently. To get rid of the prerequisite problem of knowing all environment states

and the probabilities of all actions, Q-learning is proposed. The major contribution

of the Q-learning is involving the Bellman equation in the �nal reward estimation[34].

With the Bellman equation, a Q value, which represents the estimation of the �nal

reward, can be calculated. According to the Bellman equation, the Q value at the

current state is a discount of the max Q-value of the states, which can be achieved

from the current state. Therefore, even if the actor does not know the environment

in the �rst place, the actor can also explore the environment randomly. Once the

actor gets the reward, the Q value will be back-propagated along the path, which is

explored by the actor. After several iterations, a well-trained Q-learning agent can

be utilized to optimize the solution to handle the current environment.

14

2.3.2 Double Q-learning

Regardless of the performance and e�ciency of Q-learning, Q-learning's learning pro-

cedure can be easily biased. As introduced before, Q-learning will calculate the Q-

value along with the path, which the actor takes to reach the reward. However, once

some of the states are calculated and marked with the Q value, in the further learning

procedure, the actor may be easily attracted back to this old path, even if there is an-

other shorter path to the reward. Therefore, the learning procedure of the Q-learning

may �nally make the Q-learning only achieve a suboptimal solution. To make Q-

learning more possibly get the optimal solution, Double Q-learning is proposed. The

idea of Double Q-learning is training multiple Q-learning agents at the same time

[35]. In this way, two biased Q-learning models are trained. However, combining

the outcomes of two Q-learning models, a less biased Q-learning model can be picked

out. Repeating the separated training and outcome combining until the di�erence be-

tween two Q-learning models is close to zero, an unbiased Q-learning model is trained.

2.4 Deep Reinforcement Learning

Despite the outstanding performance of RL in maximizing the reward within a spe-

ci�c environment, RL's mechanism limits its use cases. No matter what RL methods,

all trained models should have a map for all available states and their �nal reward es-

timation. If the size of environment states is large enough, the RL will be progressed

with extremely low e�ciency. In the worst-case scenario, RL may fail to reach the

reward until it is used out of the memory or storage for its model. The function of the

outcome of RL is combining the states with their estimation of reward. Therefore,

if there is a computation method, which can calculate the estimation of reward with

the state, the storage space for RL can be released. Since the neural network can

compute the complex input to get high dimension output, which is close to the logic

binding the state with its estimation, the concept of the DRL is developed [36].

15

2.4.1 Deep Q-Learning

Deep Q-learning, is the most naive combination of the Deep Neural Network(DNN)

with the RL. As the concept of the DRL, deep Q-learning is trying to use the neural

network to mimic the procedure of Q-learning. When the deep Q-learning explores

the environment, the steps of getting a reward and calculate the Q value are the same

as the Q-learning. After the calculation of the Q values, the states and Q values are

used as the input and the target of the neural network. However, the DRL model,

which is trained with this learning procedure, is unstable. Normally, these DRL mod-

els can not get the correct Q values with the state, since the states and the Q-values

do not have a linear relationship. Therefore, a technique, named experience replay, is

implemented to remove the correlations in the state sequence and smooths changes in

the data distribution [37]. And the replay bu�er becomes the necessary component

for the DRL.

2.4.2 DRL with Actor-Critic Methods

Though deep Q-learning makes RL gets rid of the limitation of the state space, the size

of the actions still in�uences the performance of the DRL. According to the procedure

of the RL, even if deep Q-learning is implemented, the learning model progress slow in

summarizing the estimations, which is caused by the possible actions. Furthermore,

similar to the bias of the Q-learning, the deep Q-learning also potentially learns a

suboptimal model or never reaches the reward. Similar to the solution to tackle the

problem of state space, the neural network is the solution for the large action space.

Therefore, the relation from state and action to the reward needs to be learned by

the neural network [38]. Moreover, to simplify the procedure of picking an optimal

solution, a neural network, which is used to infer the suitable action from the state,

is implemented. This solution is the actor-critic method, where the actor network is

trained to pick the optimal action and the critic network is trained to estimate the Q

value.

Furthermore, the critic network is not only capable of predicting the Q value or

estimation of the reward. In the implementation of the Advantage Actor-Critic (A2C)

16

algorithm, the critic network is used to predict the baseline of the estimation at the

current state [39]. In this way, the critic network can predict the baseline value only

with the state. The di�erence between the Q value, which is calculated by the envi-

ronment, and the baseline value is called advantage. Basically, the advantage gives

the direction of the optimization. If the advantage is positive, which indicates that

the current A2C model may underestimate the environment, the actor network and

the critic network are optimized towards the environment to improve the baseline

for further improvement. Otherwise, the current A2C model may overestimate the

environment, the actor network and the critic network are optimized backwards the

environment for more precise predictions and improve the policy. Therefore, the A2C

is not only mimicking the function of the Q-learning algorithm but also optimizing

the learning procedure.

In the research, the algorithm Volodymyr et al. introduce is the Asynchronous

advantage Actor-Critic algorithm (A3C) [39]. This algorithm's mechanism is the

same as the A2C, but A3C implements a multi-agent method. In this way, the

A3C models can be trained separately. Once training is done, all A3C networks are

compared with each other. The models that perform better can be used to update

the global network. According to the experience of Double Q-learning, the A3C

should have better and more stable performance. Unlike the learning procedure of

Q-learning, which updates the Q value to the target directly, the neural network

updates its variables with a learning rate for the precision of learning. Therefore, the

A3C algorithm does not obviously outperform the A2C, but it proposed a framework

for the multi-agent neural network.

2.5 MEC with DRL

As introduced before, the edge server is powerful enough to process the machine learn-

ing task. This use case brings a new topic, which is known as edge intelligence. This

topic refers to the implementation of deep learning within the MEC. Normally, these

implementations will only provide the machine learning services for mobile devices.

In [40], the author developed an Internet of Things (IoT)-based energy management

scheme to schedule the energy consumption within the smart cities. To be speci�c,

17

the author utilizes the DRL to observe the energy consumption demands and produce

actions to schedule the energy consumption. Since the value of the saved energy con-

sumption is the reward for DRL, this DRL provides a successful energy management

service. In the industrial aspect, the concept of Industry Internet of Things(IIoT)

is raised. The techniques of MEC and machine learning become a methodology to

improve productivity by optimizing con�gurations of the production line [41]. Mean-

while, machine learning is also applied in quality control to lower the maintenance

costs [42].

These machine-learning-based services can not only serve mobile devices, but also

be implemented by the edge servers themselves. MEC can utilize the inner machine

learning services to optimize the resource utilization and throughput maximization

[43]. This kind of edge intelligence is called intelligent edge. In the previous discus-

sion, [26] implements machine learning to optimize the positions of the UAV.

In [44], the author noticed that methodology that handles the network delay in for-

mulating the existing problem into a Mix Integer Nonlinear Programming (MINLP)

problem. Then the MEC leverages the Lyapunov optimization method to solve the

formulated problem. However, the time complexity of Lyapunov optimization is large.

Zhaolong et al. utilizes the machine learning to replace the calculation in Lyapunov

optimization. Therefore the trained model can imitate the decisions by observing the

previous input.

Other than the latency reduction, the machine learning services are also applied

to network security. The most common function is to classify the exceptional func-

tions and abnormal interactions within the network. To be speci�c, in some of the

research, neural networks are trained to learn the features of network interactions to

detect spoof attacks [45, 46]. Theoretically, rejecting or blocking these interactions,

when the neural network detect them, can e�ectively prevent the network from the

poisonous attack. Furthermore, the activities of processes and �les on the edge server

can be monitored by the machine learning services [47]. Therefore, once the deep

18

learning services detect any of the edge servers having abnormal �les, the adminis-

trator can protect this network by expel the suspect edge servers from the trust list

until they �x �les.

Chapter 3

DAC: DRL-based Admission Control for MEC

3.1 Problem Formulation

In this section, we formulate the throughput maximization problem under investiga-

tion. Speci�cally, we consider a 2-tier MEC system in our research. The architecture

of the MEC system is illustrated in Fig. 3.1. In this system, there are a number of

mobile devices, which attempt to o�oad their high-complexity computation tasks to

an edge server that is located at a base station. After receiving the tasks from varied

mobile devices, the edge server can either accept or reject the request. A list of the

key notations used in this paper are listed in Table 3.1. The details of the notations

will be presented in the rest of this paper.

Figure 3.1: MEC Architecture

In an MEC system, an edge server typically receives a set of o�oading requests,

which consume the resources of the edge server. In our research, this set of requests

from mobile devices are denoted as Q = {q1, q2, · · · }. Considering the limited hard-

ware resources of mobile devices, these requests will utilize the hardware resources

for amount of time on the edge server to save their resources usage and batteries'

lives. Therefore, every task request from mobile devices should be patched with its

requirements of hardware resources and its running time. To simplify the description

of requests arrival, a speci�c time interval can be considered as a time slot. In this

19

20

Table 3.1: Key Notations

Notation Description
Q Request set
q Request
qi i-th request in request set Q

τmax, τmin Maximum and minimum execution time
τq Execution time for request q
E Condition of edge server
H Occupied system resource
A Available system resource
at Admission decision

way, the requests, which arrive in the edge server within this time interval, can be

considered as arrive in the edge server at this time slot. With the concept of time

slot, all admission policies, which will decide the acceptance and rejection of requests,

are generated at the beginning of every time slot t.

To be more speci�c, there are K di�erent hardware resources in this system. For

edge server, Ck can be denoted as the capacity of resource k on the edge server. In

this case, k is an integer in the range of 1 to K. Moreover, the relative properties,

the amount of occupied resources and available resources, can be denoted as Hk and

Ak. For a speci�c time slot t, these properties can be grouped into two vectors,

H(t) =< H1(t), · · · , HK(t) > and A(t) =< A1(t), · · · , AK(t) >. At time slot t, all

resources should satisfy Eq. (3.1). Since a request will occupy the hardware resources

for several time slots, the request should be described with the resources and the

occupation time. Therefore the request in the request set Q(t), which arrives at edge

server at time slot t, is denoted by qi(t) =< qi,1(t), · · · , qi,K(t); τi >. In this manner,

qi,k(t) represents the amount of resource k that is occupied by request i arriving at

time slot t; and τqi represents the occupation time of request qi.

Ak(t) = Ck −Hk(t) (3.1)

For the MEC system under investigation, system throughput is de�ned as the

number of completed requests during a speci�c period T . Consequently, throughput

21

maximization is about admitting as many requests as possible within the time win-

dow T . During each time slot, a number of requests arrive at an edge server. These

requests, which are �ltered by algorithms, can be formally admitted if the edge server

can provide su�cient hardware resources. Otherwise, even if some of requests pass

the �ltration of algorithms, they will be rejected and not be counted as the through-

put of edge server. The admitted requests will be executed by the edge server, at the

same time, the rejected requests will be executed by mobile devices or resubmitted

to other edge servers or cloud servers. Once the requests are admitted and executed

by the edge server, these requests will start running and be assigned with hardware

resources they require. These resources will become exclusive for the request claims

them until this request �nish its work and release these resources.

3.2 Details of DAC

In our research, we attempt to utilize deep reinforcement learning to arrive at the

best admission policy in order to maximize the system throughput in an MEC sys-

tem. Though the DRL is implemented in the optimization in the routing and server

selection of MEC, this is the �rst attempt in maximizing the throughput of single

server of the MEC. Speci�cally, we use the DDPG algorithm to learn the appropriate

admission policy by observing the request details of historical tasks and the impact

of the tasks on available resources on edge servers. The work�ow of the proposed

admission control scheme, DAC, is illustrated in Fig 3.2. As the �gure states, the

DRL will produce admission policy with the input, which represents the status of

the edge server and incoming requests. These admission policies �rstly ensure the

admission for more resource-friendly tasks. As for other tasks, when the edge server

is busy and heavily utilized, DAC can reject the resource-intensive requests, which

contain the heavy tasks separated from games, VR or AR, to spare available resources

for more tasks. Otherwise, when the edge server has large amount of spare resources,

the resource-intensive requests can still be admitted by the DAC. The details of DAC

are presented in the rest of this section.

22

Edge Server Condition

System State

Request Details

Admission Decision

Reject

Execute

Reward

Figure 3.2: Work�ow of DAC

Overview of DDPG

DDPG is a DRL algorithm based on the actor-critic structure that was proposed to

deal with optimization problems by providing high-dimension action or policy [8].

The details of DDPG are summarized in Alg. 1. Up to now, DDPG has been the

methodology for the several solutions to communication applications [43, 48]. As for

the details of the DDPG, to be speci�c, this learning model consist of four neural net-

works, namely actor network, actor target network, critic network, and citric target

network. In the further discussion, these networks are denoted with πθµ , πθµ′ , πθQ ,

and πθQ′ , respectively.

The actor networks are performing decision generating with the observations. The

mechanism of the actor network is mimicking an actor observing the environment and

status of the system, then produce the policy for the system. Therefore, this network

takes the observations or system states as input and calculates the policies as output.

Meanwhile, the critic networks are designed to evaluating the policies that are

23

generated by actor networks. The basic evaluating mechanism is the critic networks

take the combination of the observations and policies as input and takes the reward

value as the target value. Therefore, the reward value is the evaluation result for the

policies, which are taken based on the observations. While the critic network πθQ

is processing learning procedures with these data, the underlying logic of evaluating

the policies, which are applied to the observed system, can be learned by the critic

network. After convergence, the critic network can predict the reward for the input,

which represents the di�erent states of systems applying di�erent policies. With the

help of the critic network, the actor network can be guided to produce the policies,

which can make the system feedback with higher reward value. On the other hand,

the target networks are the networks πθµ′ and πθQ′ that stabilize the learning process

their relative networks by reducing the value change of the network.

24

Algorithm 1 DDPG

1: Initialize actor and actor target network θµ, θµ
′
;

2: Initialize actor and actor target network θQ, θQ
′
;

3: Initialize replay bu�erM;

LOOP Process

4: for episode t in 1,2,3,. . . do

5: for t=1,2,3, . . . do

6: Observe state st;

7: Generate the admission policy at = πθµ(st) + ϵ and calculate reward rt and

next state st+1;

8: Store transition (st, at, st+1, rt) intoM;

9: Pick sample mini-batch of transitions from bu�er M and reorganize them

into matrices: stn , atn , st+1n , rtn ;

10: Smooth policy action at : ˜︁at ← πθµ′ (stn) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c);
11: Loss function for critics is formulated as:

yn ← rn + γ · πθQ′ (st+1n , ˜︂atn);
12: Update Critic network:

θQ ← minθQN
−1

∑︁
(yn − πθQ(stn , atn));

13: if (t mod δ = 0) then

14: Update target network: ∇θµJ(θ
µ) =

N
∑︁
∇atnπθQ(stn , atn)|an=πθµ(btn)∇θµ(stn);

15: Update target networks

θµ
′ ← νθµ + (1− ν)θµ

′
;

θQ
′ ← νθQ + (1− ν)θQ

′
;

16: end if

17: end for

18: Continue till convergence;

19: end for

System Observation

At the t time slot, DAC observes edge server's state st, which involves the resource

occupation and details about the incoming requests. As the system model described,

25

the requests can be illustrated as a vector like qi =< qi,1, qi,2, qi,3, qi,4 >. In this

case, the numbers from 1 to 4 refer to CPU, memory, disk storage and bandwidth,

respectively. Therefore, for all qi(t) ∈ Q(t), can be combined and reformatted into

a long vector to represent the observation of requests, which arrives at time slot t.

Therefore, the details of requests set, whose size is at most 10, can be explained with

Q(t) =< q0,1(t), q0,2(t), · · · , q1,3(t), q1,4(t), · · · , q9,4(t) > .

The conditions of the system can be also illustrated in the same way. In the case

of admitting request by available resources, the ratio of hardware resource occupation

can be reasonable statistics to describe the situation of the edge server. Therefore,

the conditions of the system can be described with Et =< H1(t)
C1

, H2(t)
C2

, H3(t)
C3

, H4(t)
C4

>.

Therefore, the state of the whole system can be< q0,1(t), q0,2(t), q0,3(t), · · · , H3(t)
C3

, H4(t)
C4

>.

Furthermore, since the number of the requests arrives at every time slots are randomly

generated, if the number of requests is smaller than 10, the Q(t) will �ll 0 to represent

the non-existing requests.

3.2.1 System Action

DAC is designed to provide admission control policies for the edge server. There-

fore, at the beginning of every time slot, it should determine whether every incoming

request should be admitted or rejected by observing the edge server and incoming

requests. As Alg. 1 illustrates, the �nal action at corresponds to the output of the

actor network πθµ with a randomly generated exploration noise ϵ. In this case, this

output can be denoted with at and be calculated using Eq. (3.2):

at = πθµ (st) + ϵ (3.2)

3.2.2 System Condition Update

Once at is available, the set of admitted requests will be updated using Alg. 2. And

requests in the set will be processed by the edge server at the same time. At the

end of the current time slot, some of the admitted requests will be completed. These

requests, whose tasks are accomplished, should be removed from the admitted request

26

set. At the same time, the resources, which are occupied by these requests, should be

released. By releasing the occupied resources, the available resource vector should be

increased accordingly. Alg. 3 includes the updating actions that need to be carried

out. Finally, the ratios of resources occupations will be calculated again and denoted

with Et+1, which indicates the edge server's system status at the next time slot.

Algorithm 2 Admitted Request Set Update

Input: Request qi(t), admission decision ai(t), H(t) = {H1(t), · · · , HK(t)}, A(t) =
{A1(t), · · · , AK(t)}

Output: Updated admitted request set U(t)

1: if ai(t) = 0 then

2: Reject qi(t);

3: else

4: for resource k = 1, 2, · · · , K do

5: if ri,k > Ak(t) then

6: reject qi(t);

7: end if

8: end for

9: for resource k = 1, 2, · · · , K do

10: Ak(t) = Ak(t)− qi,k;

11: Hk(t) = Hk(t) + qi,k;

12: end for

13: U(t)← U(t) + {qi};
14: end if

15: return U(t)

27

Algorithm 3 System Update at the End of a Time Slot

Input: U(t),H(t) = {H1(t), · · · , HK(t)},A(t) = {A1(t), · · · , AK(t)}
Output: Admitted request set U(t+ 1), A(t+ 1),H(t+ 1)

1: U(t+ 1)← U(t);

2: Ak(t+ 1) = Ak(t);

3: Hk(t+ 1) = Hk(t);

4: for q ∈ U do

5: τq = τq − 1;

6: if τq = 0 then

7: for resource k = 1, 2, · · · , K do

8: Ak(t+ 1) = Ak(t+ 1) + qk;

9: Hk(t+ 1) = Hk(t+ 1)− qk;

10: U(t+ 1)← U(t+ 1)− {q};
11: end for

12: end if

13: end for

14: return U(t+ 1), A(t+ 1),H(t+ 1);

3.2.3 Reward Function

The objective of DAC is to maximize the system throughput of an edge server while

satisfying the hardware capacity of the edge server. To achieve this objective, when ev-

ery accepted request meets the edge server's available resource, this admission control

method will accumulate the reward value. This reward consists of three parts, namely

the marks for throughput, execution time, and resource requirements. The mark for

throughput is straightforward. If edge server accepts one request, its throughput will

be increased by 1. Therefore, the mark for throughput is also a constant with value

1. As for the marks for execution time and resource requirements, the less execution

time, and resources the request claims, the larger throughput this edge server is ex-

pected to have. Moreover, to normalize the in�uence of marks of di�erent aspects,

all marks are limited in the range of [0,1]. Therefore, denoting marks of execution

time and resource requirements with ρt and ρr respectively. Hence, the calculation of

marks and the rewards at time slot t is illustrated as follows:

28

ρt(qi) =
τmin

τqi
(3.3)

ρr(qi) = 1−
∑︁

j∈{1,··· ,K}
qi,j
Cj

K
(3.4)

rt =
∑︂

∀executed qi(t)

ρt(qi) + 1 + ρr(qi) (3.5)

The details of DAC are summarized in Alg. 4. To be speci�c, the state st is

generated according to the ratios of resource occupations and details of the income

requests. Next, if t is not zero, the transition (st−1, at−1, st, rt−1) is stored into the

bu�er M for actor and critic networks' further learning. After this, DDPG's actor

network produces the admission decision at with st. With the admission decision

at, the edge server will execute the requests according to Alg. 2. Meanwhile, the

reward will be calculated with Eq. (3.5). At the end of this time slot t, every running

request's execution time will be reduced by 1. Those requests, whose execution time

become 0, will be removed from edge server and release the resource they are occu-

pying according to Alg. 3. Thereafter, the DDPG will update its networks. DAC

continues until the stop condition is satis�ed.

Algorithm 4 DAC: DDPG-based Admission Control

Input: A set of requests Q(t), condition of edge server Et

1: for Time slot t,t = 1, 2, 3 · · · do
2: Observe the condition of edge server and details of requests:st = (Q(t), Et);

3: Store transition (st−1, at−1, st, rt−1) to bu�erM
4: Produce admission policy at with actor network πθµ

5: Process admission using Alg. 2

6: Calculate rt with executed requests with Eq. (3.5)

7: Update edge server status using Alg. 3

8: Update DDPG networks using Alg. 1

9: Continue till convergence

10: end for

Chapter 4

Experimental Results

This chapter illustrates the context of the proposed solution and the results of sim-

ulation experiments. The primary goal of experiments is to verify the performance

of the edge server processing the admission control with DAC. Speci�cally, the per-

formance of DAC is compared to that of two existing admission control algorithms,

which are designed to maximize the system throughput in MEC. Both algorithms are

cost-based admission control schemes, which reduce the load or cost of edge servers in

a long term to maximize the system throughput. The �rst algorithm, which is called

ONLINE-BATCH [31], calculates the cost of a request, which is based on the average

resource requirement and occupation time. The second algorithm, Most E�ciency

First O�oading (MEFO) [32], employs a cost based on resource requirements and oc-

cupation time. In our research, as a baseline algorithm, the First-Come-First-Served

algorithm is included in the comparison study. The experiments' results proved the

proposed scheme make the edge perform better than other two algorithms.

4.1 Experiment Con�guration

This section presents the experiment environment where DAC and counter solutions

will be processed. The simulation environment consists of one edge server and a

set of mobile devices that may send task requests to this edge server for processing

as described in Fig. 3.1. Considering about the general use cases, this edge server

provides the resources namely, CPU, memory, and storage. Their capacities are 2.99

GHz, 32 GB and 4 TB respectively. To be speci�c, the capacity of a single core of

CPU is set with its computation frequency. Since the common modern server CPUs

having multiple cores, we set the CPU in experiment is a CPU with 8 cores, whose

max computation frequency is 2.99 GHz. Other than the resources for request tasks,

this simulation also need to involve the network resource, which will be occupied by

29

30

transmitting the requests and relative data. Since the edge server is set up with the

base stations, the maximum speed of network transmitting is limited by the band-

width of the edge server. Therefore, assuming the edge server is set up with the 5G

technology ,the capacity of the bandwidth for wireless access is set to 10 Gbps [6, 49].

If this edge server is deployed at the base station with the LTE 4G, the con�guration

of the bandwidth should be modi�ed. The other di�erences between LTE 4G and

5G will not in�uence the DAC's admission strategy. Furthermore, we assume the

time slots refers to 10 seconds and the system monitoring time period is T = 100,

which means every 100 time slots will be considered as an episode to check the system

throughput. Meanwhile, the number of the request that arrives in the edge server is

randomly generated within the range of [1,10]. For every request's speci�c resource

requirements will be randomly generated within the range of resource in Table 4.1.

In this table, the maximum occupation period τmax is set with 20. Moreover, the

range of CPU requirement is based on the proportion of the computation resource is

occupied. In the speci�c calculation, the CPU's utilization can be recognized as the

improvement of CPU's overall frequency. Therefore the requirement of CPU can also

be roughly presented with [0.15,0.3] GHz.

Table 4.1: Request Speci�cation

Type Range
CPU (Proportion) [5%,10%]
Memory (MB) [1000,2000]
Storage (GB) [10,50]

Bandwidth (Mbps) [50,100]
Maximum Occupation Period (Time Slots) 20

Other than the proposed algorithm, the ONLINE-BATCH, MEFO, and FCFS are

also involved in this experiment. To be speci�c, in the case of FCFS, the incoming

requests are not processed specially. The edge server will keep admitting requests

when it has su�cient resources. As for the ONLINE-BATCH and MEFO, the edge

server will �rst remove the requests, whose resource requirements exceed the edge

31

server's spare hardware resources. After �ltering, the cost of every request is calcu-

lated according to the cost equation of ONLINE-BATCH or MEFO. Afterward, the

rest of the tasks are sorted by their costs. At last, the edge server tried to admit

these sorted tasks one by one, if it has enough resources.

To qualify the performance of the admission control algorithms, two evaluation

metrics are used in our research. Moreover, to ensure all algorithms' performances

are reliable, all experiments are processed for 2000 episodes. Furthermore, to explore

the robustness of the all algorithms, we run more experiments whose requests having

longer max resource occupation period.

� System Throughput : It indicates the number of �nished requests within a period.

Increasing this number ensure the more request can be processed by edge server.

� Resource Utilization: It indicates the e�ciency of the algorithm to utilize the

resource facing a shortage. To be speci�c, it can also indicates the performance

of saving resources and leave space for incoming requests.

4.2 Experimental Results in Baseline Scenario

In this section, we compare DDPG-based admission control with the existing meth-

ods in the aspect of system throughput. The performance curves of these algorithms

are plotted in Fig. 4.1. From this graph, we unsurprisingly notice the line of FCFS,

which indicates the edge server with ordinary admission control policy, makes the

edge server admit the fewest requests. Therefore, take the line of FCFS as a baseline,

the other three lines can present how well these admission control methods optimize

the edge server's system throughput.

On the other hand, the proposed algorithm outperforms all of its counterparts,

MEFO, FCFS, and ONLINE-BATCH. To be speci�c, the performance of the proposed

algorithm is about 60%, 33%, and 8% higher than the throughputs of the admission

controls with FCFS, ONLINE-BATCH and MEFO respectively. As expected, the

32

DAC's strategies help the edge server successfully accept the most requests. And the

DAC optimized the MEC's system throughput most e�ciently.

In our theory, this advantage of the proposed algorithm is because the cost estima-

tions of MEFO and ONLINE-BATCH, are focusing on the admitting less-cost request

at the current time slot t while the DDPG-based admission control will reject some

requests, which may decrease the system throughput in a long-term vision. Though

both ONLINEBATCH and MEFO involves the occupation time as a factor of cost,

they can not reject these requests if they are relatively expensive but still meet the

edge server's available resource.

250 500 750 1000 1250 1500 1750 2000
Episode #

0

25

50

75

100

125

150

175

200

Th
ou
gh

pu
t (

of
 P
ro
ce

ss
ed

 Ta
sk
s/
Ep

iso
de

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.1: System Throughput with τmax = 20

As for the resource utilization, the performance of four algorithms can be ex-

plained with Fig. 4.2a, Fig. 4.2b,4.2c, and 4.2d. Observing four �gures, the usages of

storage and bandwidth are the smallest. All four admission control mechanisms only

use around 10% of storage and bandwidth resources. This indicates most of these

33

two system resources are not utilized. For incoming requests, storage and network

bandwidth are always abundant in the edge server. Therefore, the requests acquiring

the edge server's hardware usage are not possible to be rejected because of the short-

age of either storage or network bandwidth. Moreover, di�erences in either storage

or bandwidth utilization between the four algorithms are so slight that the advantage

of DAC's resource allocating can not be �rmly supported.

When it comes to the comparisons among four algorithms, though the DAC has

the largest throughput, its resource utilization is the smallest. Moreover, other than

ONLINE-BATCH, all admission control algorithms' performances are that the less

the resource occupied, the higher throughput the edge server has. To be speci�c, in

Fig. 4.2b, the edge server applying the proposed algorithm only occupied about 50%

of the whole memory resource, which is roughly 70% of the resource utilization of

ONLINE-BATCH.

Observing Fig. 4.2a, the edge server can be considered as su�ering a shortage

of CPU resources. Even if all of FCFS, MEFO, and ONLINE BATCH run out of

CPU resources, the DAC's average CPU usage is still holding at 81Despite the less

CPU utilization, the edge server with DAC accomplishes more task requests than

the edge servers with other algorithms. This phenomenon indicates, DAC can save

more system resources, which can be provided for admitting more incoming requests,

than all other admission controls. Combining the line graph of memory utilization

and system throughput, we can assume the DAC has a better performance in the

resource-saving feature.

4.3 Experimental Results in Extended Scenarios

4.3.1 Max Occupation Period With 25 Time Slots

The performance curves of the edge servers using the admission control basing these

algorithms processing the o�oading requests, whose max occupation period is 25,

are plotted in Fig. 4.3. Overall, the DAC's performance in maximizing the system

34

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

CP
U
Ut
iliz

at
io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

(a) CPU Utilization

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

M
em

or
y

Ut
iliz

at
io

n
(%

)
DAC
MEFO
FCFS
ONLINE-BATCH

(b) Memory Utilization

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

St
or
ag
e
Ut
iliz

at
io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

(c) Disk Utilization

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

Ba
nd

wi
dt
h
Ut
iliz

at
io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

(d) Bandwidth Utilization

Figure 4.2: Resource Utilization with τmax = 20

35

250 500 750 1000 1250 1500 1750 2000
Episode #

0

25

50

75

100

125

150

175

200
Th
ou
gh

pu
t (

of
 P
ro
ce

ss
ed

 Ta
sk
s/
Ep

iso
de

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.3: System Throughput with τmax = 25

throughput is still better than other admission control algorithms' in this experiment

environment. Moreover, comparing with Fig. 4.1, the edge server with the proposed

algorithm's throughput decreases by roughly 13, which is the smallest decrease com-

paring with the other edge servers in the simulation. On the other hand, the edge

server applying the MEFO algorithm, whose system throughput is the second-highest

in this comparison, loses around 24 units of the system throughput. Though the per-

formance of MEFO is surpassed by neither ONLINE-BATCH nor FCFS, the decrease

of system throughput of the edge server implementing MEFO for admission control

is the largest. This decrease also indicates the drop of the MEFO's performance in

admission control. Though the system throughput of the edge server applying MEFO

is 30 larger than the edge server applying ONLINE-BATCH, the MEFO is still possi-

bly performing worse than the ONLINE-BATCH, if its resistance is also worse than

ONLINE-BATCH in further simulations.

In the summary the experiments with τmax = 25 , according to the speci�c com-

parison among four algorithms, the performance of the proposed algorithm is about

36

61%, 36%, and 9.6% higher than the throughputs of the admission controls with

FCFS, ONLINE-BATCH and MEFO respectively. The above digits indicate that the

performance loss of the DAC is smaller than its counterparts.

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

CP
U
Ut
iliz

at
io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.4: CPU Utilization with τmax = 25

When it comes to resource utilization with τmax = 25, the performance of four

algorithms can be explained with the Fig. 4.4 and Fig. 4.5. As we observed in ba-

sic environment, the CPU is the most signi�cant hardware resource, which strongly

in�uence the throughput performance of edge server. In the current environment,

whose max occupation period is 25, the DAC's CPU utilization is roughly stay at

80 %. Meanwhile, the other three algorithm-based admission control's CPU utiliza-

tions remain steady at around 99 %. Therefore, while all counterparts are admitting

as many requests as possible at every timeslot, the proposed algorithm admits the

requests with a careful restraint. Furthermore, the DAC's CPU utilization slightly

decrease by 1 %. As for the edge server's memory utilization, a slight decline can be

witnessed by comparing the lines of DAC in Fig. 4.2b and Fig. 4.5. In Fig. 4.2b, the

edge server with DAC allocates about 50 % of its memory resources on the o�oaded

37

requests. In the current environment, the edge server's memory utilization decreases

to 48 %. On the contrary, when edge server apply admission control with other three

algorithms, the memory utilization increases by 1-2 %.

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

M
em

or
y

Ut
iliz

at
io

n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.5: Memory Utilization with τmax = 25

As for the edge server's memory utilization, a slight decline can be witnessed by

comparing the lines of DAC in Fig. 4.2b and Fig. 4.5. In Fig. 4.2b, the edge server

with DAC allocates about 50 % of its memory resources on the o�oaded requests.

In the current environment, the edge server's memory utilization decreases to 48 %.

On the contrary, when edge servers apply admission control with the other three al-

gorithms, the memory utilization increases by 1-2 %.

In the comparison of the simulations in the current environment and the previous

environment, we noticed that the overall di�erence of algorithms' resource allocation

is not changed. As for the speci�c resource utilization in simulations, only slight

changes can be spotted. The di�erences in system utilizations are so small that value

�uctuations can be a reasonable explanation for the di�erence. Therefore, we focus

38

on the changes of speci�c system utilizations in the incoming discussion about simu-

lations with more di�erent environments.

4.3.2 Max Occupation Period With 30 Time Slots

The performance curves of these algorithms processing the o�oading requests, whose

max occupation period is 30 are plotted in Fig. 4.6. As expected, the DAC's perfor-

mance is still the best in the current experiment environment. Moreover, comparing

with Fig. 4.3, the edge server with the proposed algorithm's throughput decreases by

roughly 14, which is the smallest decrease among all algorithms. On the other hand,

the edge server with MEFO, whose system throughput is the second-best among four

algorithms, loses around 17 units of the throughput. The decrease of the performance

of MEFO in the change of environment con�gurations is still the largest comparing

with other admission control algorithms. On the other hand, comparing with the

previous environment, FCFS in the current environment also decreases 14. Despite

the MEFO still outperforms the ONLINE-BATCH and the FCFS, the advantage of

MEFO to ONLINE-BATCH has become smaller.

To conclude the speci�c comparison among four algorithms, the performance of

the proposed algorithm is about 71%, 41%, and 13% higher than the throughputs of

the admission controls basing on FCFS, ONLINE-BATCH and MEFO respectively.

The increase of di�erence between the proposed algorithm and its counterparts sug-

gests, unlike the other admission control solutions, DAC increases its advantage when

the incoming requests having longer running time.

When τmax increases to 30, the resource utilization of edge servers applying four

algorithms are illustrated in Fig. 4.7 and Fig. 4.8. As we observed before, the CPU

is the most signi�cant hardware resource, which strongly in�uences the throughput

performance of the edge server. In the current environment, where the request's max

occupation period is 30, the DAC's CPU utilization roughly stays at 79 %. Com-

paring the previous environment, the CPU utilization of the edge server applying

DAC is obviously lower than 80 %. Therefore, an evident decrease in CPU utilization

39

250 500 750 1000 1250 1500 1750 2000
Episode #

0

25

50

75

100

125

150

175

200
Th
ou
gh

pu
t (

of
 P
ro
ce

ss
ed

 Ta
sk
s/
Ep

iso
de

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.6: System Throughput with τmax = 30

with the DAC algorithm is witnessed. Meanwhile, the CPU utilization of the edge

servers applying the other three algorithm-based admission controls remains steady

at around 99 %. Therefore, while all counterparts are admitting as many requests

as possible at every timeslot, the proposed algorithm admits the requests with more

careful restraint, since the incoming requests are more likely to have a longer execu-

tion time.

As for the edge server's memory utilization, a slight decline can be witnessed by

comparing the lines of DAC in Fig. 4.5 and Fig. 4.8. In Fig. 4.5, the edge server

with DAC allocates about 48 % of its memory resources on the o�oaded requests.

In the current environment, the edge server's memory utilization decreases to 46 %.

On the contrary, when the edge server applies admission control with the other three

algorithms, the memory utilizations increase by 1 %.

Up to now, the changing trends of resource utilization of the edge servers applying

di�erent admission control policies are large enough. Therefore, these changes in sys-

tem utilization can be claimed as the e�ect caused by the change of the environment.

40

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100
CP

U
Ut
iliz

at
io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.7: CPU Utilization with τmax = 30

Therefore, we can �rmly conclude that the edge server applying the DAC is using

fewer resources when requests are occupying resources for a longer period of time.

On the contrary, the edge servers applying the other three admission control policies

increased their system utilization in the same situation.

4.3.3 Max Occupation Period With 35 Time Slots

The performance curves of these algorithms processing the o�oading requests, whose

max occupation period is 35 are plotted in Fig. 4.9. As expected, the throughput

of the edge server applying the DAC is also higher than the edge servers using a

di�erent algorithm for admission control. Comparing with Fig. 4.6, the edge server

with the proposed algorithm's throughput decreases by roughly 12, which is 3 larger

than the FCFS's decrease, which is the smallest among all algorithms. On the other

hand, MEFO, whose performance is the second-best among the four algorithms, the

edge server applying it loses around 13 units of the throughput. The decrease of

41

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

M
em

or
y

Ut
iliz

at
io

n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.8: Memory Utilization with τmax = 30

250 500 750 1000 1250 1500 1750 2000
Episode #

0

25

50

75

100

125

150

175

200

Th
ou
gh

pu
t (

of
 P
ro
ce

ss
ed

 Ta
sk
s/
Ep

iso
de

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.9: System Throughput with τmax = 35

42

the performance of MEFO is the largest as the decrease in the change of max occu-

pation period from 30 to 35 timeslots. Despite the signi�cant decrease in MEFO's

performance, the MEFO still outperforms the ONLINE-BATCH and the FCFS. But

MEFO's advantage to them keeps decreasing. Moreover, the throughput decreases of

DAC, MEFO and ONLINE-BATCH are close to each other. This may indicate, when

τmax ⩽ 30, the resistance of the above three algorithms to a large occupation period

is close. Moreover, the di�erences between the edge servers applying these admission

control policies will �nally become steady.

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

CP
U
Ut
iliz

at
io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.10: CPU Utilization with τmax = 35

To summarize the speci�c comparison among the four algorithms, the performance

of the proposed algorithm is about 75%, 45%, and 15% higher than the throughputs

of the admission controls with FCFS, ONLINE-BATCH and MEFO respectively. The

increase of di�erence between the proposed algorithm and its counterparts suggests,

DAC still improves its advantage in the current environment. The DAC keeps enlarg-

ing its advantages to the other algorithms in the above experiments with the increase

of the max running time. Up to now, the DAC mitigates the in�uence of longer max

43

execution time on the system throughput.

When τmax increases to 35, the resource utilization of edge servers applying four

admission control algorithms are illustrated in Fig. 4.10 and Fig. 4.11. As before,

the CPU is still the most signi�cant hardware resource, which strongly in�uences

the throughput performance of edge servers. In the current environment, where the

request's max occupation period is 35, the DAC's CPU utilization roughly stays at

78 %. Comparing the previous environment, the CPU utilization of the edge server

applying DAC is obviously lower than 80%. Therefore, an evident decrease of CPU

utilization on the edge server applying the DAC algorithm is witnessed with the in-

crease of the max occupation period. Meanwhile, CPU utilizations of the other three

edge servers with other admission control algorithms remain steady at around 99 %.

Therefore, while all counterparts are admitting as many requests as possible at every

timeslot, the proposed algorithm admits the requests with careful restraint, since the

incoming requests are more likely to have a longer running period.

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

M
em

or
y

Ut
iliz

at
io

n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.11: Memory Utilization with τmax = 35

44

As for the edge server's memory utilization, an evident decline can be witnessed

since the line of DAC in Fig. 4.11 is much closer to 40 % comparing with the line

of DAC in Fig. 4.8. In Fig. 4.8, the edge server implementing DAC allocates about

46 % of its memory resources on the o�oaded requests. In the current environment,

memory utilization of the edge server, which using DAC to �lter incoming requests,

decreases to 43 %. On the contrary, the memory utilization of ONLINE-BATCH is

much closer to 80% comparing with Fig. 4.8. This comparison �rmly proves the

increase of memory utilization on the edge server applying admission control with the

other three algorithms.

4.3.4 Max Occupation Period With 40 Time Slots

The performance curves of these algorithms processing the o�oading requests, whose

max occupation period is 40 are plotted in Fig. 4.12. Unexceptionally, the through-

put of the edge server applying the DAC is also higher than the edge servers applying

a di�erent algorithm for admission control. Comparing with Fig. 4.9, the edge server

with the proposed algorithm's throughput decreases by roughly 6, which is the small-

est decrease among all algorithms. At the same time, MEFO, the algorithm with the

second-best performance, loses around 10 units of the throughput. The decrease of

the performance of MEFO is still the largest as the decrease in the change of max

occupation period from 35 to 40 timeslots. Though MEFO's performance decreases

more than other algorithms, the MEFO still outperforms the ONLINE-BATCH and

the FCFS. And since the edge server applying the ONLINE-BATCH only decreases

about 9 units, the line of MEFO is not obviously getting close to the line of ONLINE-

BATCH. On the other hand, this environment is the �rst environment whose average

throughput decrease is lower than 10. This may indicate, the in�uence of τmax on the

server throughput is not evident as before.

As for the speci�c comparison among four algorithms, the performance of the

proposed algorithm is about 84%, 53%, and 20% higher than the throughputs of

the admission controls with FCFS, ONLINE-BATCH and MEFO respectively. To

be speci�c, the system throughput of the edge server applying the DAC is almost a

45

double of the counter part of the edge server only implement the FCFS as admission

policy. The increase of di�erence between the proposed algorithm and its counterparts

suggests, DAC still increases its advantage in the current environment.

250 500 750 1000 1250 1500 1750 2000
Episode #

0

25

50

75

100

125

150

175

200

Th
ou
gh

pu
t (

of
 P
ro
ce

ss
ed

 Ta
sk
s/
Ep

iso
de

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.12: System Throughput with τmax = 40

When τmax increases to 40, the resource utilization of edge servers applying four

algorithms are illustrated in Fig. 4.13 and Fig. 4.14. As expected, the CPU is as sig-

ni�cant as before, because, for most edge servers, the CPU resource is fully utilized in

experiments and no more tasks can be admitted. In the current environment, where

the request's max occupation period is 40, the DAC's CPU utilization roughly stays

at 73 %. Though the di�erence in CPU utilization between the two environments is

estimated to be around 4-6 %, it's hard to compare the lines across the two �gures.

Nevertheless, comparing the previous environment, the CPU utilization of the edge

server applying DAC is obviously much closer to 70%. Therefore, in this comparison

of the CPU utilizations in two environments,the decrease of CPU utilization with

the lines of DAC algorithm caused by the increase of the max occupation period is

witnessed. Meanwhile, the CPU utilizations of the edge servers applying other three

algorithm-based admission controls remain steady at around 99 %. This high CPU

46

utilization not only indicates that the edge servers applying the other three admis-

sion control algorithms used up the CPU resources but also suggests the cases where

incoming tasks can be admitted are few.

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

CP
U
Ut
iliz

at
io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.13: CPU Utilization with τmax = 40

As for the edge server's memory utilization, the change in this environment is not

as evident as before. In Fig. 4.14, the edge server with DAC also allocates about 43

% of its memory resources on the o�oaded requests. On the other hand, the memory

utilization of ONLINE-BATCH is much closer to 80 % comparing with Fig. 4.11.

This comparison also proves the increase of memory utilization on the edge server

applying admission control with the other three algorithms.

4.3.5 Max Occupation Period With 45 Time Slots

The performance curves of these algorithms processing the o�oading requests, whose

max occupation period is 45 are described in Fig. 4.15. Unexceptionally, the through-

put of the edge server applying the DAC is performing better than the edge servers

using a di�erent algorithm for admission control. In the comparison between the

47

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100
M

em
or

y
Ut

iliz
at

io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.14: Memory Utilization with τmax = 40

current environment and the previous environment, unlike previous comparisons, the

edge server applying FCFS decreases the least system throughput, which is about

5. Both edge servers implementing DAC and MEFO for admission control lose 10

units of the system throughput, which is the largest system throughput lost in the

change of max occupation period from 40 to 45 timeslots. Even if DAC's and MEFO's

performance decreases the most, both of them still outperform the ONLINE-BATCH

and the FCFS. On the other hand, the average throughput decrease is also lower than

10. The change of the system throughput caused by the increase of the requests' max

occupation time is also obviously mitigated with the growth of the running time of

the incoming requests.

As for the speci�c comparison among four algorithms, the performance of the

proposed algorithm is about 82%, 54%, and 21% higher than the throughputs of the

admission controls with FCFS, ONLINE-BATCH, and MEFO respectively. The in-

crease of di�erence between the proposed algorithm and its counterparts suggests,

DAC still increases its advantage to ONLINE-BATCH and MEFO in the current

48

250 500 750 1000 1250 1500 1750 2000
Episode #

0

25

50

75

100

125

150

175

200
Th
ou
gh

pu
t (

of
 P
ro
ce

ss
ed

 Ta
sk
s/
Ep

iso
de

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.15: System Throughput with τmax = 45

environment. Though the proposed algorithm's advantage to FCFS decreased, this

advantage is still the largest among comparisons in the current environment.

When τmax increases to 45, the resource utilization of edge servers applying four

algorithms are illustrated with Fig. 4.16 and Fig. 4.17. As expected, the CPU is

as signi�cant as before. In the current environment, whose max occupation period

is 45, the DAC's CPU utilization roughly stays at 75 %. Comparing the previous

environment, the CPU utilization of the edge server applying DAC is much closer to

80 %. Though the decrease of CPU utilization of the edge server with the DAC algo-

rithm is still ambiguous in the comparison between the previous environment and the

current environment, comparing with the most previous environment, the decrease

of CPU utilization over a long term caused by the increase of the max occupation

period is obvious. Meanwhile, the other three algorithm-based admission controls'

CPU utilizations remain steady at around 99 %.

As for the edge server's memory utilization, the change in this environment is

still not evident. In Fig. 4.17, the edge server with DAC also allocates about 43 %

49

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100
CP

U
Ut
iliz

at
io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.16: CPU Utilization with τmax = 45

of its memory resources on the o�oaded requests. On the other hand, the memory

utilization of ONLINE-BATCH is much closer to 80% comparing with Fig. 4.14. If

comparing with Fig. 4.2b, the increase of the memory utilization is �rmly happened

on the edge server, which applying the ONLINE-BATCH algorithm for admission con-

trol. Up to now, the change direction of the memory utilization of the edge servers

applying sorting-based admission control is �rmly supported by the comparisons.

4.3.6 Max Occupation Period With 50 Time Slots

The performance curves of these algorithms processing the o�oading requests, whose

max occupation period is 45 are described in Fig. 4.18. Unexceptionally, the through-

put of the edge server applying the DAC is performing better than the edge servers

using a di�erent algorithm for admission control. In the comparison between the

current environment and the previous environment, like the change in the last envi-

ronment, the edge server implementing admission control with FCFS decreases the

least system throughput, which is about 5. Both edge servers implementing DAC and

50

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100
M

em
or

y
Ut

iliz
at

io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.17: Memory Utilization with τmax = 45

MEFO lose 7 units of the system throughput, which is the largest system through-

put lost in the change of max occupation period from 45 to 50 timeslots. Even if

DAC's and MEFO's performance decreases the most, both of them still outperform

the ONLINE-BATCH and the FCFS. On the other hand, the average throughput

decrease is also lower than 7. Furthermore, the di�erence between the edge servers'

system throughput lost is smaller than 2. Therefore, none of the algorithms show

better resistance to the increase of the max occupation period.

As for the speci�c comparison among four algorithms, the performance of the

proposed algorithm is about to 86%, 57%, and 23% higher than the throughputs of

the admission controls with FCFS, ONLINE-BATCH, and MEFO respectively. The

increase of di�erence between the proposed algorithm and its counterparts suggests,

DAC also increases its advantage to the admission controls with other algorithms in

the current environment. And since, up to now, the max running time has increased

from 20 to 50, the DAC is veri�ed that it can keep maintaining and enlarging its

advantage to other admission control algorithms.

51

250 500 750 1000 1250 1500 1750 2000
Episode #

0

25

50

75

100

125

150

175

200
Th
ou
gh

pu
t (

of
 P
ro
ce

ss
ed

 Ta
sk
s/
Ep

iso
de

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.18: System Throughput with τmax = 50

When τmax increases to 50, the resource utilization of edge servers applying four

algorithms are illustrated in Fig. 4.19 and Fig. 4.20. As expected, the CPU is as

signi�cant as before. In the current environment, whose max occupation period is 50,

the DAC's CPU utilization roughly stays at 75 %. Comparing the previous environ-

ment, the CPU utilization of the edge server applying DAC is not obviously changed.

Meanwhile, the other three algorithm-based admission controls' CPU utilizations re-

main steady at around 99 %.

As for the edge server's memory utilization, the change in this environment is

still not evident. In Fig. 4.20, the edge server with DAC also allocates about 43 %

of its memory resources on the o�oaded requests. On the other hand, the memory

utilization of ONLINE-BATCH is much closer to 80% comparing with Fig. 4.17. Up

to now, the change direction of the memory utilization of the edge servers apply-

ing sorting-based admission control is fully proven by all changes from τmax = 20 to

τmax = 50.

52

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

CP
U
Ut
iliz

at
io
n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.19: CPU Utilization with τmax = 50

250 500 750 1000 1250 1500 1750 2000
Episode #

0

20

40

60

80

100

M
em

or
y

Ut
iliz

at
io

n
(%

)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.20: Memory Utilization with τmax = 50

53

4.4 Summary of Throughput Results

The overall performance of the DAC overall experimental environments can be de-

scribed in Fig. 4.21. According to the experimental data across all prede�ned en-

vironments, the DAC outperforms all other admission control solutions with less

consumption of system resources. Moreover, when the max occupation period of re-

quest increases, the DAC normally loses the least system throughput. This feature

indicates DAC's strong robustness to the requests with a longer execution time.

20 25 30 35 40 45 50
Max Occupation Period (timeslots)

0

25

50

75

100

125

150

175

Th
ro
ug

hp
ut
 (#

 o
f P

ro
ce

ss
ed

 Ta
sk

s/
Ep

iso
de
)

DAC
MEFO
FCFS
ONLINE-BATCH

Figure 4.21: Impact of Max Occupation Period

At the same time, we noticed that the in�uence of max occupation time is not

strong anymore when τmax > 40. Furthermore, the di�erences between the decreases

of the algorithms are also dropping accompanying by the increase of the τmax. There-

fore, the advantage of the DAC can also be advanced to its counterparts in most

inferable environments. On the other hand, if the advantage of the DAC is calcu-

lated with the proportion, the superiority of DAC is growing up steadily with the

augmentation of the τmax. When τmax = 45, even if the DAC decreases more than the

admission control with ONLINE-BATCH and FCFS, the DAC exceeding proportions

54

to those admission control solutions still increase around 1 %. Therefore, the above

�gures do not only prove the powerful performance comparing with other algorithms,

but also illustrates the DAC's solid robustness in handling resource-intensive requests.

In the aspect of the system resource utilization, we noticed the changes of the

system utilization that happens on edge servers with DAC are totally di�erent from

the other edge servers. Though changes are slight when the di�erence of τmax is only

5, the decrease of DAC's system resource utilization is obvious if we compare the

�gures in Section 4.2 with Section 4.3.6. As for the edge servers applying MEFO,

ONLINE-BATCH, and FCFS, the trend their system resource utilizations go in the

opposite direction of DAC.

In general cases, the fewer spare system resources indicate a better performance

of the edge server in accomplishing tasks. However, to receive new incoming requests,

the edge server should have su�cient system resources, which meet the requirements

of the requests. To be speci�c, at the time slot where edge sever accepts the requests

requiring 20 % of system resource, the edge server's system utilization should not be

larger than 80 %. Therefore, the increase of the max occupation period improves

the average request running time. This increment of running time in�uences the fre-

quency of the edge server's request acceptance. Finally, the average system utilization

of the edge servers applying sorting-based admission control is increased.

Unlike the sorting-based admission control solutions, the DAC rejects the incom-

ing requests if they are expected to use a large number of resources or occupy resources

for a long time. The increase of the max occupation period improves the probability

of the edge server handling resource-intensive requests. Therefore, the edge server

applying DAC will reject more incoming requests when τmax increases. The more

edge server rejects, the fewer system resources are utilized.

Chapter 5

Conclusion and Future Work

This chapter concludes the thesis by analyzing the algorithm mechanism, summariz-

ing the experimental results, comparing the proposed algorithms to other admission

control algorithms. Meanwhile, the experimental results also illustrate the space for

further improvement. Therefore, the possible space for improvement and the research

to be processed in the future are also presented.

5.1 Conclusion

In this paper, we present a novel admission control scheme for MEC, DAC, to max-

imize the system throughput in MEC. The existing admission control methods are

sorting the sequence of the incoming tasks. With these admission control solutions,

the edge server admits the requests when it has su�cient resources passively. In this

case, the tasks, whose resources requirements are low but execution time is long can

still cause negative in�uence on the edge server's system throughput. Therefore, the

DAC's basic mechanism, which is di�erent from the passive admission control solu-

tions, is processing the admission policy actively. Technically, DAC is a DRL-based

method, which employs the DDPG algorithm to generate the appropriate admission

decisions. By observing the request details of historical tasks and the impact of the

tasks on available resources on edge servers, DAC gradually learns the best admission

control policy for an edge server in MEC. Furthermore, the tasks, which potentially

deduct the edge server's long-term system throughput, can be successfully rejected

by the policies generated by the DAC.

In order to evaluate the performance of the DAC, a series of extensive simula-

tion experiments are proposed. These simulations are based on a basic environment,

where an edge server with speci�c resources capacities is established and a set of

randomly generated tasks arrive in the edge server at every timeslot. Through these

55

56

simulations, we compare the performance of DAC to that of the existing admission

control methods, namely ONLINE-BATCH, MEFO, and FCFS, in terms of system

throughput and resource utilization. Our experimental results indicate DAC leads to

the highest system throughput, which is around 183, among the admission control

schemes under investigation. Meanwhile, we adjust the max request occupation time

for more simulations to see the robustness of these admission control methods. In

the further simulations, the DAC not only proves its robustness but also increases its

advantage in system throughput to the other admission control algorithms.

As for the resource utilization, the edge server, which applies the DAC for admis-

sion control, used fewer hardware resources compared with the edge servers applying

other admission control methods. In the further simulations, the resource utilization

of the edge server applying the DAC, unlike the other edge servers, decreases with the

increase of the task's max occupation time. With further analysis and discussion, we

believe that the increase of the task's max occupation time will reduce the possibility

of the edge server having free resources to admit new task requests. Therefore, the

edge servers applying other admission control solutions increase their system resources

utilization. Moreover, since the DAC rejects unsuitable tasks actively, the increase

of the max occupation time increases the proportion of the requests rejected by the

DAC. At last, the system utilization of the edge server applying the DAC decreases.

To summarize, the DAC outperforms other admission control algorithms in max-

imizing the edge server's system throughput. Moreover, the DAC's resistance to the

increased request execution time is the best, since the DAC's advantage in system

throughput is increased with the increase of request execution. Therefore, DAC's

performance and robustness in maximizing the throughput are veri�ed by the simu-

lations.

5.2 Future Work

The current solution successfully makes the model learn and evaluate every single

request for an admission decision. As a result, this model produces reliable admission

57

policies that outperform the admission policies based on the other admission control

algorithms. Though the proposed solution increases the edge server performance in

maximizing throughput, about 20 % CPU is not utilized. This spare space of system

utilization potentially increases the edge server's system throughput, by leaving suf-

�cient hardware resources for more resource-friendly requests in the next time slots.

Meanwhile, this unused proportion of the CPU resource also indicates room for fur-

ther maximizing the system throughput. Therefore, if the current model can involve

the consideration of utilizing as much hardware as possible, the current solution's

bene�ts to the edge server can be further improved.

On the other hand, the performance of trained models is not so stable that it can

not always guide the MEC to reach the largest system throughput. Considering the

mechanism of the neural network, we believe that the current input of the neural net-

work is not enough for the model to observe the status of the system. Therefore, we

expect to involve more observable variables, such as the queue of the tasks running on

the edge server. Furthermore, by observing the failed admission policies, we realized

that though we constructed a reward system for the admitted request, this reward

system may mislead the neural network because of the contribution of the request

characteristics. If the neural network is misled by this reward, the major function of

the network may be trained into a �lter, which makes admission decisions only ac-

cording to the request characteristics. Therefore, we can further develop the reward

calculation logic to ensure the long-term system throughput is the major contributor

to the �nal reward to improve the performance of the DAC.

Bibliography

[1] A. Al-Shuwaili and O. Simeone, �Energy-e�cient resource allocation for mobile
edge computing-based augmented reality applications,� IEEE Wireless Commu-
nications Letters, vol. 6, no. 3, pp. 398�401, 2017.

[2] L. Liu, Y. Zhou, J. Yuan, W. Zhuang, and Y. Wang, �Economically optimal ms
association for multimedia content delivery in cache-enabled heterogeneous cloud
radio access networks,� IEEE Journal on Selected Areas in Communications,
vol. 37, no. 7, pp. 1584�1593, 2019.

[3] Y. Zhou, L. Tian, L. Liu, and Y. Qi, �Fog computing enabled future mobile
communication networks: A convergence of communication and computing,�
IEEE Communications Magazine, vol. 57, no. 5, pp. 20�27, 2019.

[4] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, �A double deep
q-learning model for energy-e�cient edge scheduling,� IEEE Transactions on
Services Computing, vol. 12, no. 5, pp. 739�749, 2018.

[5] U. Varshney, �4g wireless networks,� IT Professional, vol. 14, no. 5, pp. 34�39,
2012.

[6] P. Mogensen, K. Pajukoski, E. Tiirola, E. Lähetkangas, J. Vihriälä, S. Vesterinen,
M. Laitila, G. Berardinelli, G. W. Da Costa, L. G. Garcia et al., �5g small
cell optimized radio design,� in 2013 IEEE Globecom Workshops (GC Wkshps).
IEEE, 2013, pp. 111�116.

[7] N. Jain and S. Choudhary, �Overview of virtualization in cloud computing,� in
2016 Symposium on Colossal Data Analysis and Networking (CDAN). IEEE,
2016, pp. 1�4.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, �Continuous control with deep reinforcement learning,� arXiv
preprint arXiv:1509.02971, 2015.

[9] M. Satyanarayanan, �Mobile computing: the next decade,� in Proceedings of the
1st ACM workshop on mobile cloud computing & services: social networks and
beyond, 2010, pp. 1�6.

[10] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, �Fog computing and its role in
the internet of things,� in Proceedings of the �rst edition of the MCC workshop
on Mobile cloud computing, 2012, pp. 13�16.

58

59

[11] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, �A survey on mobile edge
computing: The communication perspective,� IEEE Communications Surveys &
Tutorials, vol. 19, no. 4, pp. 2322�2358, 2017.

[12] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, �Edge computing: Vision and
challenges,� IEEE internet of things journal, vol. 3, no. 5, pp. 637�646, 2016.

[13] L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and C. Fu,
�Cloud computing: a perspective study,� New generation computing, vol. 28,
no. 2, pp. 137�146, 2010.

[14] N. Roy, A. Dubey, and A. Gokhale, �E�cient autoscaling in the cloud using pre-
dictive models for workload forecasting,� in 2011 IEEE 4th International Con-
ference on Cloud Computing. IEEE, 2011, pp. 500�507.

[15] P. Mach and Z. Becvar, �Mobile edge computing: A survey on architecture and
computation o�oading,� IEEE Communications Surveys & Tutorials, vol. 19,
no. 3, pp. 1628�1656, 2017.

[16] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, �Energy-e�cient dynamic compu-
tation o�oading and cooperative task scheduling in mobile cloud computing,�
IEEE Transactions on Mobile Computing, vol. 18, no. 2, pp. 319�333, 2018.

[17] Y. Geng, Y. Yang, and G. Cao, �Energy-e�cient computation o�oading for
multicore-based mobile devices,� in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 46�54.

[18] J. Xu, L. Chen, and S. Ren, �Online learning for o�oading and autoscaling
in energy harvesting mobile edge computing,� IEEE Transactions on Cognitive
Communications and Networking, vol. 3, no. 3, pp. 361�373, 2017.

[19] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, �Optimized computa-
tion o�oading performance in virtual edge computing systems via deep reinforce-
ment learning,� IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4005�4018,
2018.

[20] H. Huang, Q. Ye, and H. Du, �Reinforcement learning based o�oading for real-
time applications in mobile edge computing,� in ICC 2020-2020 IEEE Interna-
tional Conference on Communications (ICC). IEEE, 2020, pp. 1�6.

[21] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and
D. I. Kim, �Applications of deep reinforcement learning in communications and
networking: A survey,� IEEE Communications Surveys & Tutorials, vol. 21,
no. 4, pp. 3133�3174, 2019.

[22] J. Li, H. Gao, T. Lv, and Y. Lu, �Deep reinforcement learning based computation
o�oading and resource allocation for mec,� in 2018 IEEE Wireless Communica-
tions and Networking Conference (WCNC). IEEE, 2018, pp. 1�6.

60

[23] Y. Liu, H. Yu, S. Xie, and Y. Zhang, �Deep reinforcement learning for o�oading
and resource allocation in vehicle edge computing and networks,� IEEE Trans-
actions on Vehicular Technology, vol. 68, no. 11, pp. 11 158�11 168, 2019.

[24] X. Deng, J. Li, L. Shi, Z. Wei, X. Zhou, and J. Yuan, �Wireless powered mobile
edge computing: Dynamic resource allocation and throughput maximization,�
IEEE Transactions on Mobile Computing, 2020.

[25] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and K. Huang,
�Energy harvesting wireless communications: A review of recent advances,� IEEE
Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 360�381, 2015.

[26] J. Tang, J. Song, J. Ou, J. Luo, X. Zhang, and K.-K. Wong, �Minimum through-
put maximization for multi-uav enabled wpcn: A deep reinforcement learning
method,� IEEE Access, vol. 8, pp. 9124�9132, 2020.

[27] C. Liang and F. R. Yu, �Wireless network virtualization: A survey, some research
issues and challenges,� IEEE Communications Surveys & Tutorials, vol. 17, no. 1,
pp. 358�380, 2014.

[28] S. Van Rossem, W. Tavernier, B. Sonkoly, D. Colle, J. Czentye, M. Pickavet,
and P. Demeester, �Deploying elastic routing capability in an sdn/nfv-enabled
environment,� in 2015 IEEE Conference on Network Function Virtualization and
Software De�ned Network (NFV-SDN). IEEE, 2015, pp. 22�24.

[29] Y. Ma, W. Liang, J. Wu, and Z. Xu, �Throughput maximization of nfv-enabled
multicasting in mobile edge cloud networks,� IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 2, pp. 393�407, 2020.

[30] Y. Yue, B. Cheng, B. Li, M. Wang, and X. Liu, �Throughput
optimization vnf placement for mapping sfc requests in mec-nfv enabled
networks,� in Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom '20. New York,
NY, USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3372224.3418169

[31] Q. Xia, W. Liang, and W. Xu, �Throughput maximization for online request
admissions in mobile cloudlets,� in 38th Annual IEEE Conference on Local Com-
puter Networks. IEEE, 2013, pp. 589�596.

[32] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao, �Learning driven com-
putation o�oading for asymmetrically informed edge computing,� IEEE Trans-
actions on Parallel and Distributed Systems, vol. 30, no. 8, pp. 1802�1815, 2019.

[33] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

https://doi.org/10.1145/3372224.3418169

61

[34] C. J. Watkins and P. Dayan, �Q-learning,� Machine learning, vol. 8, no. 3-4, pp.
279�292, 1992.

[35] H. Hasselt, �Double q-learning,� Advances in neural information processing sys-
tems, vol. 23, pp. 2613�2621, 2010.

[36] Y. LeCun, Y. Bengio, and G. Hinton, �Deep learning,� nature, vol. 521, no. 7553,
pp. 436�444, 2015.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., �Human-level
control through deep reinforcement learning,� nature, vol. 518, no. 7540, pp.
529�533, 2015.

[38] V. R. Konda and J. N. Tsitsiklis, �Actor-critic algorithms,� in Advances in neural
information processing systems, 2000, pp. 1008�1014.

[39] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, �Asynchronous methods for deep reinforcement learning,�
in International conference on machine learning. PMLR, 2016, pp. 1928�1937.

[40] Y. Liu, C. Yang, L. Jiang, S. Xie, and Y. Zhang, �Intelligent edge computing for
iot-based energy management in smart cities,� IEEE network, vol. 33, no. 2, pp.
111�117, 2019.

[41] B. Chen, J. Wan, Y. Lan, M. Imran, D. Li, and N. Guizani, �Improving cognitive
ability of edge intelligent iiot through machine learning,� IEEE Network, vol. 33,
no. 5, pp. 61�67, 2019.

[42] A. Kanawaday and A. Sane, �Machine learning for predictive maintenance of
industrial machines using iot sensor data,� in 2017 8th IEEE International Con-
ference on Software Engineering and Service Science (ICSESS). IEEE, 2017,
pp. 87�90.

[43] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen, �Convergence
of edge computing and deep learning: A comprehensive survey,� IEEE Commu-
nications Surveys & Tutorials, vol. 22, no. 2, pp. 869�904, 2020.

[44] Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and R. Y. Kwok,
�Intelligent edge computing in internet of vehicles: a joint computation o�oading
and caching solution,� IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 4, pp. 2212�2225, 2020.

[45] B. Fekade, T. Maksymyuk, M. Kyryk, and M. Jo, �Probabilistic recovery of
incomplete sensed data in iot,� IEEE Internet of Things Journal, vol. 5, no. 4,
pp. 2282�2292, 2017.

62

[46] T. Wang, J. Zhou, A. Liu, M. Z. A. Bhuiyan, G. Wang, and W. Jia, �Fog-based
computing and storage o�oading for data synchronization in iot,� IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 4272�4282, 2018.

[47] M. Chen, Y. Hao, K. Lin, Z. Yuan, and L. Hu, �Label-less learning for tra�c
control in an edge network,� IEEE Network, vol. 32, no. 6, pp. 8�14, 2018.

[48] A. Zappone, M. Di Renzo, and M. Debbah, �Wireless networks design in the
era of deep learning: Model-based, ai-based, or both?� IEEE Transactions on
Communications, vol. 67, no. 10, pp. 7331�7376, 2019.

[49] D. Muirhead, M. A. Imran, and K. Arshad, �Insights and approaches for low-
complexity 5g small-cell base-station design for indoor dense networks,� IEEE
access, vol. 3, pp. 1562�1572, 2015.

1.

2.

3.

4.

5.

6.

1.

2.

IEEE COPYRIGHT AND CONSENT FORM

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording

of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material

in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

Deep Reinforcement Learning Based Admission Control for Throughput Maximization in Mobile Edge Computing

Yitong Zhou,Qiang Ye,Hui Huang,Hongwei Du

2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall)

COPYRIGHT TRANSFER
The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights

under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE

by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements

accompanying the Work.

GENERAL TERMS

The undersigned represents that he/she has the power and authority to make and execute this form.

The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the

event of a breach of any of the warranties set forth above.

The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB

Operations Manual.

In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before

acceptance by the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of

the manuscript for internal administrative/record-keeping purposes.

For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the

others.

The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is

the author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the

works of others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third

party permissions and consents to grant the license above and has provided copies of such permissions and consents

to IEEE

You have indicated that you DO wish to have video/audio recordings made of your conference presentation under terms

and conditions set forth in "Consent and Release."

CONSENT AND RELEASE

ln the event the author makes a presentation based upon the Work at a conference hosted or sponsored in whole or in

part by the IEEE, the author, in consideration for his/her participation in the conference, hereby grants the IEEE the

unlimited, worldwide, irrevocable permission to use, distribute, publish, license, exhibit, record, digitize, broadcast,

reproduce and archive, in any format or medium, whether now known or hereafter developed: (a) his/her presentation

and comments at the conference; (b) any written materials or multimedia files used in connection with his/her

presentation; and (c) any recorded interviews of him/her (collectively, the "Presentation"). The permission granted

includes the transcription and reproduction of the Presentation for inclusion in products sold or distributed by IEEE and

live or recorded broadcast of the Presentation during or after the conference.

In connection with the permission granted in Section 1, the author hereby grants IEEE the unlimited, worldwide,

irrevocable right to use his/her name, picture, likeness, voice and biographical information as part of the advertisement,

distribution and sale of products incorporating the Work or Presentation, and releases IEEE from any claim based on

right of privacy or publicity.

Appendix A

Copyright Permissions

63

-

-

-

-

-

-

-

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION

CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH

AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A

VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

Information for Authors

AUTHOR RESPONSIBILITIES

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its

publications is properly available to the readership of those publications. Authors must ensure that their Work meets the

requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,

authorship, author responsibilities and author misconduct. More information on IEEE’s publishing policies may be found at

http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of

IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether

disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE

PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of

the authors."

RETAINED RIGHTS/TERMS AND CONDITIONS
Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or

derivative works for the author's personal use or for company use, provided that the source and the IEEE copyright notice are

indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the

copies themselves are not offered for sale.

Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party

requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such

third-party requests.

Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates

from that funding agency.

AUTHOR ONLINE USE
Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted

articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided

that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the

original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published

versions of their papers.

Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her

own IEEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in

connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and

reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-

reserves, conference presentations, or in-house training courses.

Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their

own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission

of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any

previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by

the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the

 Qiang Ye 30-07-2021

Signature

Date (dd-mm-yyyy)

64

IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only

(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article

in IEEE Xplore.

Questions about the submission of the form or manuscript must be sent to the publication's editor.

Please direct all questions about IEEE copyright policy to:

IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

65

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Overview of the Proposed Scheme
	Thesis Outline

	Related Work
	Mobile Edge Computing
	Throughput Maximization
	Routing and Physical Optimization
	Network Virtualization
	Admission Control

	Reinforcement Learning
	Q-learning
	Double Q-learning

	Deep Reinforcement Learning
	Deep Q-Learning
	DRL with Actor-Critic Methods

	MEC with DRL

	DAC: DRL-based Admission Control for MEC
	Problem Formulation
	Details of DAC
	System Action
	System Condition Update
	Reward Function

	Experimental Results
	Experiment Configuration
	Experimental Results in Baseline Scenario
	Experimental Results in Extended Scenarios
	Max Occupation Period With 25 Time Slots
	Max Occupation Period With 30 Time Slots
	Max Occupation Period With 35 Time Slots
	Max Occupation Period With 40 Time Slots
	Max Occupation Period With 45 Time Slots
	Max Occupation Period With 50 Time Slots

	Summary of Throughput Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Copyright Permissions

