
REINFORCEMENT LEARNING WITH REAL VALUED
TANGLED PROGRAM GRAPHS

by

Ryan Amaral

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2021

© Copyright by Ryan Amaral, 2021

Dedicated to Zoe.

ii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . ix

Acknowledgements . x

Chapter 1 Introduction . 1

1.1 Thesis Objectives . 2

1.2 Thesis Outline . 3

Chapter 2 Background . 5

2.1 Reinforcement Learning . 5

2.1.1 Deep Reinforcement Learning 6

2.2 Continuous Control . 8

2.2.1 Reinforcement Learning for Continuous Control 8

2.3 Evolutionary Algorithms . 9

2.3.1 Overview . 9

2.3.2 Example . 10

2.4 Genetic Programming . 12

2.4.1 Overview . 12

2.4.2 Evolution . 14

2.4.3 Execution . 14

2.5 Symbiotic Bid Based Genetic Programming 16

2.5.1 Overview . 16

2.5.2 Evolution . 19

2.5.3 Execution . 21

2.6 Tangled Program Graphs . 22

2.6.1 Overview . 22

2.6.2 Evolution . 22

2.6.3 Execution . 24

iii

Chapter 3 Real Valued Tangled Program Graphs 26

3.1 Overview . 26

3.2 Implementation . 26

Chapter 4 Diversity Maintenance . 28

4.1 Overview . 28

4.2 Intermittent SBBr Populations . 30

4.3 Curriculum learning . 32

4.4 Rampancy . 35

Chapter 5 ViZDoom Experiments . 36

5.1 Overview . 36

5.2 Prior Results . 38

5.3 Experiment Parameterizations . 38

5.4 Memory . 39

5.5 Results . 41
5.5.1 Training . 41
5.5.2 Generalization . 42
5.5.3 Complexity . 45

Chapter 6 Bipedal Walker Experiments 49

6.1 Overview . 49

6.2 Prior Results . 50

6.3 Experiment Methodology and Parameterization 51

6.4 Results . 53
6.4.1 Evolution Comparison . 53
6.4.2 Champion Comparison . 62

Chapter 7 Conclusion . 69

7.1 Summary . 69
7.1.1 Algorithm Improvements . 69
7.1.2 ViZDoom Experiments Summary 69
7.1.3 Bipedal Walker Experiment Summary 70

iv

7.2 Future Work . 70

Bibliography . 72

v

List of Tables

5.1 (ViZDoom) Parameters for the runs. 39

5.2 (ViZDoom) Comparing action program and action label runs. . 46

6.1 (Bipedal Walker) Parameters for the GP, SBBr, TPGr, and
TPGr+SBBr runs. 52

6.2 (Bipedal Walker) Mean, median, and standard deviation of scores
from champions. 63

6.3 (Bipedal Walker) Comparison to results from other algorithms. 64

6.4 (Bipedal Walker) Number of total and used learners and instruc-
tions in the champion in each run. 67

vi

List of Figures

2.1 Two examples of distinct RL environments (OpenAI Atari and
Roboschool. 7

2.2 The equation max(3.6, R1)/(15 ∗ cos(I5)) represented in tree
based GP (left) and in linear GP (right). 13

2.3 An example of the structure of TPG. 23

5.1 (ViZDoom) Fitness curves on Basic task. 42

5.2 (ViZDoom) Fitness curves on Defend the Center task. 43

5.3 (ViZDoom) Fitness curves on Defend the Line task. 43

5.4 (ViZDoom) Fitness curves on Health Gathering task. 44

5.5 (ViZDoom) Fitness curves on Take Cover task. 44

5.6 (ViZDoom) Complexity curves. 48

6.1 (Bipedal Walker) Fitness curves during training from 5 runs of
each run type. Each different of a given run type is represented
as different line/color. 54

6.2 (Bipedal Walker) Comparison of fitness from the different runs. 55

6.3 (Bipedal Walker) Champion team and learner counts. 57

6.4 (Bipedal Walker) Instructions per program. 58

6.5 (Bipedal Walker) TPGr+SBBr subpopulation counts. 59

6.6 (Bipedal Walker) Fitness curves for SBBr and TPGr in TPGr+SBBr
run 1. 59

6.7 (Bipedal Walker) Fitness curves for SBBr and TPGr in TPGr+SBBr
run 2. 60

6.8 (Bipedal Walker) Fitness curves for SBBr and TPGr in TPGr+SBBr
run 3. 60

6.9 (Bipedal Walker) Fitness curves for SBBr and TPGr in TPGr+SBBr
run 4. 61

vii

6.10 (Bipedal Walker) Fitness curves for SBBr and TPGr in TPGr+SBBr
run 5. 61

6.11 (Bipedal Walker) Champion scores. 62

6.12 (Bipedal Walker) Activation level of each joint. 65

6.13 (Bipedal Walker) Renders of agents showing how they move. . 68

viii

Abstract

Tangled Program Graphs (TPG) represents a framework for evolving programs under

an explicitly emergent model for modularity. The framework has been very success-

ful at discovering solutions to tasks with delayed rewards (reinforcement learning)

when the actions are limited to a single discrete action per state. In this thesis, an

approach is proposed for generalizing TPG to the case of multiple real-valued actions

per state. Two empirical benchmarking studies are performed to demonstrate these

outcomes: ViZDoom over multiple tasks, and bipedal walker control. The former

is used to compare to original TPG with single discrete actions per state, the later

is used to demonstrate multiple real-valued actions per state. It is shown that the

complexity of the resulting solutions decreases considerably compared to the original

TPG formulation. However, in order to reach these results, significant attention has

to be paid to the adoption of appropriate diversity mechanisms. This thesis therefore

also proposes a framework for intermittently injecting new material into the TPG

population during training. The modular properties of TPG enable this material

to be absorbed on a continuous basis. Results are comparable with those identified

under certain recent deep learning approaches.

ix

Acknowledgements

First and foremost, the bulk of my thanks is given to Dr. Malcolm Heywood, my

research supervisor. Plenty of ideas were tried throughout my degree, some working

better than others. Ultimately I ended up with a thesis that I am proud of, credit

due to Dr. Heywood.

Plenty of good times were shared between us members of Dr. Heywood’s lab.

From game nights, to research meetings, to publishing papers together. It was a

great group to be a part of, certainly relationships to hold on to.

Lastly all of my non-research related relationships, friends and family are to be

thanked for the support and interest in my work.

x

Chapter 1

Introduction

Genetic Programming (GP) with a “linear representation” attempts to construct a

search for sequences of instructions in an imperative programming language [4], e.g.

C or a task transfer language (processor independent assembly language). In the

most general case such programs assume a variable length representation, in some

cases solutions are allowed to evolve up to a maximum number of instructions. This

is equivalent to learning the overall topology of a machine learning solution as well

as the parameter values. Conversely many machine learning algorithms concentrate

on finding the parameter values given a prior topology, e.g. the weight values for a

pre-specified neural network architecture. In addition, genetic programming can also

benefit from the ability to reuse code or encourage modularity. To do so, specific

mechanisms are often introduced in an attempt to spot candidate code sequences for

‘modularization’ within a piece of ‘non-modular’ code [16].

This work takes a different approach to evolving modular solutions. Specifically, a

symbiotic two population framework is assumed in which every program is a module.

Programs have to answer the question as to when to perform an action, rather than

attempt to directly define an action. Symbiosis implies that two populations coevolve,

with one population searching for useful teams of programs and a second population

searching for useful programs. Previous research has shown that such a framework

(hereafter symbiotic bid based GP or SBB for short) is particularly effective under

applications defined in terms of discrete scalar rewards, e.g. classification [38, 39] or a

subset of reinforcement learning tasks [12, 28, 55]. The framework was also previously

generalized to enable actions to include references to other teams, thus providing the

basis for hierarchical and graph-like forms of modularity (Tangled Program Graphs,

TPG for short) [24, 25, 27, 56, 57].

A fundamental limitation however has been that TPG and SBB are limited to

1

2

single discrete scalar actions per state. Previous research has shown that it is possi-

ble to learn real-valued actions for reinforcement learning tasks with memory, albeit

limited to single outputs [29, 69]. In this work we are interested in addressing a re-

lated but distinct question. Can we develop TPG and SBB in such a way that the

modular decomposition is retained, but actions can now take the form of multiple

real-valued functions? Thus, the resulting agents are capable of benefiting from task

decomposition (through TPG and SBB), but produce multi-dimensional vectors of

action per state. Success in this regard opens the opportunity to address problems

from robotics and real-valued reinforcement learning that have previously eluded both

TPG and SBB.

1.1 Thesis Objectives

The TPG algorithm provides a framework for scaling GP to challenging tasks through

modularity [24, 25, 27]. To do so, it simultaneously performs a search for good team

members and programs. TPG assumes that programs represent modules and that

each module expresses context (through program execution) and a scalar action. An

action can take one of two forms, either a pointer to another team, or a single (scalar,

likely discrete) instance of a task specific atomic action. Thus, in order to apply TPG

to the Arcade Learning Environment (suite of Atari style console games [3]) the set

of atomic tasks are defined in terms of the eight discrete directions that the joystick

can take, both with and without a button press, plus the button press alone, and

a nil action (i.e. a total of 18 actions). This implies that there can only ever be a

single action at any state, and that actions can only be discrete values. TPG being

designed in this manner can represent a considerable limitation when attempting to

apply TPG to tasks with real-valued actions and/or tasks that benefit from being

able to take multiple actions per state.

The primary goal of this thesis is to expand TPG’s capabilities by enabling real

valued vector outputs. Specifically, the limitation of discrete scalar actions implies

that it is not possible to scale TPG to real-valued action spaces as discrete enumer-

ations run into the curse of dimensionality. Moreover, the objective of this thesis is

to do so without compromising on the other desirable properties of TPG, i.e. open

ended modularity.

3

The hypothesis of this thesis is that replacing each module’s scalar action with

a linear GP program is sufficient for mapping between state and real-valued action.

However, additional properties will also be investigated:

• Linear GP is actually capable of providing multiple outputs, thus multiple real-

valued actions per state are to be supported, and;

• Given that the action associated with each TPG module is now a program, the

complexity of a TPG individual (from the perspective of the number of modules

per TPG graph) will also potentially decrease. This can lead to TPG graphs

that are potentially less complex than under TPG with discrete scalar actions.

This thesis will use two reinforcement learning environments to demonstrate the

effectiveness of the proposed approach: finding policies for simultaneously solving

five ViZDoom benchmark tasks [31] and identifying policies for a bipedal walking

benchmark from OpenAI Gym (Bipedal-Walker-v3) [5].1 The ViZDoom environ-

ment represents a high dimensional partially observable task in which an agent is

rewarded for surviving in different task scenarios. The bipedal walker represents a

difficult real-valued control problem in which multiple actions have to be specified per

state. Moreover, this thesis also addresses issues such as diversity maintenance with

the multi-task setting from ViZDoom providing one source of variation and partial

restarts during evolution being used with the bipedal walker. In both experiment

sets a method of performing multiple mutations at a time is also used, though not

necessarily analyzed.

1.2 Thesis Outline

This thesis is structured as follows: In chapter 2: Background, relevant topics are

introduced to give an understanding of Reinforcement Learning (the broad classifi-

cation of problems being addressed in this work), Continuous Control (encompasses

the bipedal walker task used in this work), Evolutionary Algorithms, GP, SBB, and

TPG.

Following that, in chapter 3: Real Valued Tangled Program Graphs (hereafter

TPGr), the real value action implementation used for TPG in this thesis, is described

1https://github.com/openai/gym/blob/master/gym/envs/box2d/bipedal_walker.py

https://github.com/openai/gym/blob/master/gym/envs/box2d/bipedal_walker.py

4

in detail. Descriptions of the potential use cases of TPGr is also provided. Note that

the term TPG is used to describe TPG in general (real valued or discrete), and TPGr

is used in specific reference to the real valued implementation/update, while TPGd

will refer specifically to the original discrete formulation. TPGr is not so much a new

version of TPG, it is more-so an option within TPG.

Then in chapter 4: Diversity Maintenance, the processes used to increase/maintain

the level of diversity within GP, SBB, and TPG are described. This includes the

concept of rampancy, interleaving SBB individuals into a TPG population under the

biped walker task, and task sampling under ViZDoom.

Chapter 5: ViZDoom Experiments describes the experiments performed on the

ViZDoom tasks, where the emphasis is on comparing TPGr with TPGd under a

single action per state setting, one in which the state space is a 3D high-dimensional

multi-task setting.

Chapter 6: Biped Walker Experiments describes the experiments performed on

the bipedal walker task, which requires multiple real-valued control signals to be

specified per state, given a real-valued observation described by tens of attributes,

where the agent must learn to walk.

Lastly chapter 7: Conclusion, wraps up with a summary of the thesis including

limitations and directions in which to carry this work in the future.

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is a machine learning (ML) paradigm, where a given

problem is posed as an interaction between an agent (instance of an ML algorithm)

and an environment [63]. An “agent” is taken to imply an instance of an ML al-

gorithm, for example a neural network, decision tree, or a genetic program. An

environment is the problem an agent tries to solve, for example an environment could

be an Atari game, or a drone in the real world trying to reach a destination.

The term “solve” here can be tricky to define, sometimes environments will have a

human pre-defined score that is seen as acceptable for a solution to reach, so if an agent

achieves at-least that score then it is considered to have solved the environment. To

solve an environment could also mean that the agent performs at a task well enough

that an observer (typically human) approves of the results. For example a robot

walking up stairs, its footing may be shaky and it may almost fall backwards, but

ascending the stairs completely is good enough regardless. Benchmarks are useful

simply to compare different algorithms and their obtained scores, though sometimes

there are explicitly defined scores that count as a solution which can even be outscored.

The environment first produces an observation, the representation of the current

state of the environment (st). The agent takes this observation to produce an action

(at). The environment is then updated based on the action, producing a new obser-

vation for the agent to use (st+1). In addition to each observation, the agent also gets

a reward based on the current state of the environment (rt+1). The ultimate goal

of the agent is to maximize total cumulative reward or
∑

t=1 rt. Thus, an episode is

the full set of interactions with the environment, from the start state (t = 0) to the

last (t = n), when the environment ends and a terminal reward is received by the

agent. Typically the dimensions of the observation and action remain consistent, just

the values differ. The so-called reward isn’t always positive, it could be a negative

5

6

reward, or punishment.

Often in RL results of an agent are averaged over multiple episodes. Overall

results are often reported as the mean performance over multiple runs with the same

parameterizations (often displaying the standard deviation as well).

2.1.1 Deep Reinforcement Learning

Deep learning (DL) is a very popular method used for function approximation in

RL, and ML in general. DL assumes that the RL agent takes the form of a neural

network with some form of deep learning architecture (e.g. convolutional and max

pooling kernel applied over typically tens of layers under a “bottleneck” configuration

in order to facilitate the development of a low dimensional encoding of the original

state space [35]). The combination of RL with DL has gained particular popularity

on account of several landmark results1 that might include but are not limited to:

1. DQN as applied to the Arcade Learning Environment (suite of Atari console

games [3]) without the use of a prior features [43]. State was described using a

down sampled version of frames from the game engine, yet performance typically

reached and in some cases bettered that of a human.

2. AlphaGo as applied to the game of Go exceeded the level of play from the world

champion [53]. This result was further generalized to AlphaGo Zero which learnt

through self play alone [54].

3. AlphaStar in which the earlier results were generalized to the StarCraft video

game title [65]. This was significant because StarCraft is an example of a

stochastic, partially observable environment, whereas both ALE and Go are

examples of tasks with discrete state spaces and complete information.

An example of an Atari environment is explained in Figure 2.1 (a). Other com-

mon benchmarks are of the continuous control variety and will be described more

in depth section 2.2: Continuous Control. Naturally, results from RL based on DL

often establish state of the art performance for the task in question. However, results

1Taken from the perspective of the challenge posed by different gaming environments.

7

(a) Atari Environment (b) Roboschool Environ-
ment

Figure 2.1: Two examples of distinct RL environments. On the left is an Atari envi-
ronment as can be found in OpenAI Gym, more specifically the Boxing environment.
In this environment the observation is every pixel visible on the screen, just as hu-
mans see, though in numerical representation. The expected action is a discrete value
representing a controller input, for example, up and button press, or no button press
and down. The reward comes back as a single value, in this case the player’s score
(3) minus the opponent’s score (16), so −13. On the right is an environment found
in OpenAI Roboschool, the RoboschoolWalker2d environment. In this environment
the observations would be the angles of joints as well as other typically egocentric
physical properties. A valid action would be the force to apply to each joint, for
example (0.2, 0.4, 0.9, 0.5, 1, 0), to apply 0.2 units of force the the left hip, 0.4 units
to the left knee, etc. The score would then be a combination of the distance walked,
movement cost, time steps without falling over, etc.

based on DL also represent a considerable computational overhead, with computa-

tion (even post training) requiring support from Graphics Processing Unit hardware

(usually, though not entirely necessary). Conversely, solutions identified using genetic

programming execute on regular CPU computing platforms. Indeed, the complexity

of solutions identified by TPGd for the Atari suite of tasks are multiple orders of

magnitude simpler than those identified using DL, with comparable performance in

some cases [24, 25, 27, 56, 57, 59]. Moreover, TPGd has even been demonstrated on

embedded computing platforms such as the Raspberry Pi [11].

8

2.2 Continuous Control

Continuous control (CC) environments are environments which require continuous/real

valued actions, often multiple actions simultaneously. These are typically simu-

lated/real robotics tasks (e.g. locomotion, or drone flying) or another form of physics

based task, though they do not necessarily have to be physically grounded, e.g. [13].

Such environments are distinct from those experienced under tasks from the afore-

mentioned video game tasks in that:

• State information typically takes the form of egocentric (relative) measurements

of different components of the system under control. As such there is less em-

phasis on finding a low dimensional encoding (of a very high dimensional state

space), as is often required for benchmarks based on game engines. Instead,

the emphasis is more towards feature construction (i.e. discovery of predictive

variables).

• Multiple real-valued actions often need to be specified for each state in order to

define a complete policy (see Figure 2.1 (b)). This is distinct from many gaming

environments where only a limited number of actions (possibly only one) need

specifying per action, and the actions are discrete.

• Often more precision or precise control is needed in solutions. In a video-game,

erroneously moving to the side could be inconsequential in many cases, whereas

doing so in a locomotion tasks could very well lead to an irrecoverable failure

(unless counter measures have been previously discovered).

Common environments used for continuous control tasks include the OpenAI gym

classic control environments [13], OpenAI gym MuJoCo robotics environments2, Ope-

nAI Box2D environments [5], and PyBullet[7] gymperium environments.

2.2.1 Reinforcement Learning for Continuous Control

RL is useful for the more complex CC environments which may be unsolvable with

closed-form solutions. Though it is still useful to compare RL solutions to optimal

closed form solutions on simpler problems for reasons such as comparing learning time

2http://www.mujoco.org

http://www.mujoco.org

9

for a good solution across algorithms, and seeing how close a certain RL algorithm

can get to an optimal solution. Also the simple tests can serve as a basic benchmark

to know if an RL algorithm idea has potential.

Agents do not necessarily have to solve the environments directly without any

additional help. Various methods exist in aiding agents in solving RL problems,

especially in more complex CC tasks, due to complexity. One such method is imitation

learning, where an existing solution is used to help the agent, for example using real

human walking data to help an agent to learn to walk within an anatomically accurate

humanoid system [32, 36]. Another method is the use of oscillatory motion models

to aid in locomotion (e.g. walking, crawling) tasks, where a sinusoidal wave is used

to consistently move a part of the agent’s body, and the agent is responsible for

configuring the parameters of this model [47, 46, 44, 68]. In this thesis no help is

given to the agents, aside from reward signals, and sinusoidal inputs for the biped

walker task.

2.3 Evolutionary Algorithms

2.3.1 Overview

An Evolutionary Algorithm (EA) is a method of incrementally improving a group of

individuals, often from a random starting point [14]. EAs are analogous to biological

evolution, where in a group of individuals, those that are less (more) fit will be less

(more) likely to reproduce to create new individuals. These new individuals take on

traits of their parent (or parents), along with some random mutations to potentially

introduce new behaviours.

EAs can be used along with a variety of different algorithms, such as neural

networks or genetic programs (genetic programs will be described in section 2.4:

Genetic Programming). To clarify, only one type of algorithm will be used within a

given EA run, for example all individuals will be genetic programs. Each instance of

an algorithm (e.g. neural network, genetic program) is an individual in an EA, the

population being comprised of instances of distinct individuals.

One of the particularly unique properties of EAs as applied to defining solutions

to RL problems is that the topology as well as model parameters are both adapted

10

by the credit assignment process. This is very distinct from other forms of ML in

which the user is typically required to a priori define a specific instance of the model3

after which the ML framework optimizes a fixed set of parameters.

2.3.2 Example

There is no single method of running an EA, they can be ran in a variety of ways

with different steps. In this example an EA will be described that is similar to what

is used later in this thesis in practice. This EA is being kept abstract, avoiding any

specifics of an algorithm used along with it, a biological stand in of a creature and

its genes are used. The goal of the population is to avoid predators. An algorithmic

description is shown in Algorithm 1.

An EA will typically start with a group of random individuals, of population size

N . Imagine a group of N creatures each with a random set of genes, these individuals

would each tend to perform different behaviours/routines due to their genetic makeup.

Survival depends on fitness, how well the individuals perform in their environment.

In this case the less evasive individuals which are then eaten by the predators have less

fitness, all the others which get away without issue will have higher fitness. A portion

of the population will be removed, based on fitness (i.e. a breeder formulation in

which only the fittest explicitly survive). This can be modelled with a portion called

gap, which is the portion of individuals that get removed from the population at each

generation. Thus, N×(1−gap) individuals survive and are able to reproduce, creating

new individuals to replace the N × gap eaten individuals. For convenience, in this

example the predators manage to eat exactly N × gap individuals each generation.

In stochastic environments, as is often the case in RL, individuals are typically

evaluated over multiple episodes, this is represented by e, the number of episodes.

Fitness will typically be the mean fitness across the e episodes.

In this example the individuals reproduce asexually, meaning that only a single

parent is needed to create offspring. So a random surviving individual is selected,

gets cloned, and that new clone then has some random mutations done to its genes

(based on pre-set evolutionary parameters), and is added to the population. This

3For example, under DL the number of layers, kernel type and number of kernels per layer and
network topology all need defining a priori.

11

Algorithm 1 EvolutionaryAlgorithm: Performs evolution of a population in

an environment.
INPUT: N : Size of the population to maintain. G: Number of generations to run

for. gap: Portion of population to delete each generation. e: Number of episodes

to run each agent. mutateParams: Variety of parameters used during mutation

(algorithm dependent).

OUTPUT: Varies, could be the set of 1 − gap portion individuals representing the

survivors at generation G or the single best performing individual.

1. population = InitializeRandomPopulation(size = N)

2. For (g In 1..G)

3. For (individual In population)

4. individual.fitness = Perform(individual, e)

5. survivors = GetF ittest(from = population, portion = 1− gap)

6. population = survivors

7. For (i In 1..(N × gap))

8. child = CloneRandomSurvivor(survivors)

9. child.Mutate(mutateParams)

10. population.Add(child)

12

is repeated, each time with a random surviving individual (with replacement and

independent and identically distributed), excluding the newly added individuals, until

the current population size is back up to N . Each new individual will likely be quite

similar to its parent, but with minor differences, such as a different behavior. It is

possible that some changes to the genes of a new individual will have no immediate

effect, but may still be useful in its latent state, possibly taking effect after mutations

in later generations (provided the individual survives and passes on those genes).

The survivors and new individuals are then tested by the predators and the new

survivors repopulate. In implementation, the existing survivors don’t have to be

tested again, as they already have a fitness, assuming the environment remains static.

This process repeats, often for a fixed number of generations, G, with the goal of

creating better individuals in later generations.

At this point nothing has been said regarding the representation, or how a geno-

type is mapped to a phenotype. Section 2.4 will detail the specific approach assumed

in this thesis (for GP and the GP components of SBB and TPG).

2.4 Genetic Programming

2.4.1 Overview

Genetic programming (GP) is a class of machine learning algorithm which draws

parallels to how genes behave in biological evolution and as such is quite similar to

the original representation assumed for Genetic Algorithms, i.e. a string of bits [17].

In GP, an individual solution is known as a program, and is comprised of instruc-

tions in some representation. Instructions can contain mathematical/computational

operations (e.g. cos, ×, ÷, mov) or constants, and operate on some value, poten-

tially from an input state of the current problem. A common formulation of GP is to

have programs represented as trees of instructions [33]. Another common formulation

which is used in TPG, known as linear GP, is to have programs represented as linear

sequences of instructions [4]. These representations are contrasted in Figure 2.2.

A common feature seen in linear GP is the use of registers. Registers are used

to store intermediary results and can be used as a form of memory (i.e. retain

their value between program execution events). There are different ways to interact

13

/

15 cos

*

R13.6

I5

max

(a) Tree GP

R2 = cos(I5)

R2 = R2*15

R1 = max(R1,3.6)

R0 = R1/R2

(b) Linear GP

Figure 2.2: The equation max(3.6, R1)/(15 ∗ cos(I5)) represented in tree based GP
(left) and in linear GP (right). R1 means whatever is stored in register 1, I5 means
whatever is in element 5 of the input. Blue circles are operations, and squares are
values, red being constants, yellow being register values, and green being input values.
In the linear GP example, register 0 stores the outcome.

with the registers, such as having dedicated register read and write operations (as in

assembly programming), or by making operations read from either the given input or

the registers and immediately writing the result to a register. After a GP individual

is finished executing on a given input vector, one or more of the register values can

be used as the output, TPG uses this method which will be described in more depth

later. Programs have progregs registers.

To clarify instruction composition, as used by SBB and TPG in addition to linear

GP, there are four main parts making up the representation assumed for each instruc-

tion: mode, operation, destination, and source. Mode defines whether the instruction

reads its source references relative to the application inputs (environment observation)

or from its registers (Figure 2.2), it is Boolean valued. The operation selects a single

math operation (from a finite set of operations) to perform on the value currently

stored in the output register and/or the input. The destination represents which

register to store the result of the given instruction in, and can take on a value up to

progregs. The source is the index in the observation or register set to pull a value from

14

(based on mode), this value can range up to max(Length(observation), progregs).

As such linear GP interprets a tuple of integers specifying mode, operation, des-

tination, and source for each instruction. A program consists of L such tuples, where

each tuple is “decoded” into its corresponding instruction. The number of tuples

need not be the same for each individual, and the variation operators manipulate the

integers appearing in the tuples to provide different offspring programs that inherit

material from their parent(s). In this work programs to not have an upper limit in

size, only an upper limit in initial size (when a program is first created), denoted by

progmaxInit.

Marking the value in the destination register as x and the value as specified by

source and mode as y, the following are all of the operations used in all algorithms

in this work (op set): x + y, x− y, x× y, x÷ y (only if y 6= 0), x = x×−1 (only if

x > y), and cos(y).

2.4.2 Evolution

The process of evolution followed by GP (at-least as used in this thesis) is equivalent

to the breeder framework of Algorithm 1. The exact mutation process is illustrated in

Algorithm 2. This same mutation process is also used with SBB and TPG programs.

In short, a proportion of the instructions have fields from their tuple changed to new

legal values. Thus, offspring inherit from their parent(s), but also potentially define

new properties. Note however, that not all variation will introduce a corresponding

variation in the observed policy of the individual. This is because some fraction

of instructions will in some way be “non-functional” or neutral. That is to say,

they might not appear in the path of execution (manipulate a value used in a result

producing register) or might undo / negate a previous instruction. Such neutral code

however, is important from the perspective of the search process, i.e. neutral code

could be re-enabled at a later round of variation [4].

2.4.3 Execution

From the context of a learning algorithm making use of a program, the execution of a

linear GP individual is quite simple as shown in Algorithm 3. The program executes,

and the output value can be obtained from one of its registers (usually the first, for

15

Algorithm 2 MutateGp: Mutates a genetic program. Function Flip is like a

coin flip, where the probability provided is the probability of returning true. Passing

“random” as an index means any random valid index, using “random1” and “ran-

dom2” ensures two distinct values. Function MutateInstruction mutates a single

random part of the instruction (mode, operation, destination, source), changing it to

a random valid value.
INPUT: instructions: List of instructions that make up a program. instdel:

Probability of deleting a random instruction. instmut: Probability of mutating a

random instruction. instswp: Probability of swapping two random instructions.

instadd: Probability of adding a random instruction.

OUTPUT: A newly mutated program (list of instructions).

1. original = Copy(instructions)

2. While (instructions! = original)

3. If (Length(instructions) > 1 And Flip(instdel))

4. instructions.Delete(index = “random”)

5. If (Flip(instmut))

6. instructions[“random”] = MutateInstruction(instructions[“random”])

7. If (Length(instructions) > 1 And Flip(instswp))

8. tmp = instructions[“random1”]

9. instructions[“random1”] = instructions[“random2”]

10. instructions[“random2”] = tmp

11. If (Flip(instadd))

12. instructions.add(CreateRandomInstruction(), index = “random”)

16

a single value output).

Algorithm 3 GetActionGp: Gets an action from a GP individual.

INPUT: input: An input from the environment (e.g. the pixels of an image, or

sensor readings).

OUTPUT: An action, in this case a scalar.

1. action = program.Execute(input)

2. Return action

Note that in this example a real valued number would be returned, whereas in

some later examples (SBB and TPG) a discrete value is returned. This is because GP

is used later on to obtain a real value to determine which discrete action to return,

though the use of GP itself remains the same within the later mentioned algorithms

(SBB and TPG).

The process of executing the program, by iterating through all of the instructions

is shown in Algorithm 4. In Algorithm 5 it is shown how operations take place, as

well as the operation set which is used throughout this thesis.

2.5 Symbiotic Bid Based Genetic Programming

2.5.1 Overview

An extension of GP, known as Symbiotic Bid Based (SBB) GP [38], uses groups

of programs called teams to obtain discrete actions, each team being an agent. To

obtain an action, a process known as bidding first takes place. Bidding has each

program execute, then whichever program produces the highest output (or bid) value

is said to have “won” the right to suggest its action. The action is merely a single

discrete scalar value (atomic action), where actions are assigned at initialization from

the set of task specific atomic actions. Such a process is supported using the concept

of coevolution through symbiosis [21]. This implies that there are two populations,

a host or team population and a symbiont or program population. Individuals from

the team population are merely a set of pointers to programs from the program

population.

17

Algorithm 4 program.Execute: Shows how a program executes. The modes,

operations (ops), destinations (dests), sources, and registers are all member variables

of the program.

INPUT: input: An input from the environment.

OUTPUT: A numerical value from the first register.

1. For (i In 1..Length(modes))

2. x = registers[dests[i]]

3. If (modes[i] == 0)

4. y = registers[sources[i]%Length(registers)]

5. Else If (modes[i] == 1)

6. y = input[sources[i]%Length(input)]

7. registers[dests[i]] = ProgramExecuteOperation(x, y, ops[i])

8. Return registers[1]

18

Algorithm 5 ProgramExecuteOperation: Execute a given operation on the

values.
INPUT: x, y: Two values to perfom an operation on. op: the operation to perform.

OUTPUT: A scalar, the result of the operation.

1. If (op == 0)

2. Return x+ y

3. Else If (op == 1)

4. Return x− y

5. Else If (op == 2)

6. Return x× y

7. Else If (op == 3 And y! = 0)

8. Return x/y

9. Else If (op == 4)

10. Return x×−1

11. Else If (op == 5)

12. Return cos(y)

13. Return x

19

An extension to SBB, known as hierarchical-SBB [28, 12], builds upon SBB by

allowing existing teams from previous iterations to become the actions that the pro-

grams point to. First the base population is evolved to completion, as in SBB, with

only discrete atomic actions. Then the next layer goes through evolution, where ac-

tions take the form of a pointer to members from the previous population of teams.

This process can repeat any number of times to build multiple layers of hierarchy

[55].

It is important that the base population of hierarchical-SBB be sufficiently diverse,

as this is the only level of SBB that actually selects atomic actions for the given task.

Once past the first layer of SBB there are no new possible atomic interactions with

the environment, the new layers learn to recombine individuals from the lower layers

together in an attempt to reapply the initial set of policies in new ways.

2.5.2 Evolution

SBB starts evolution by creating teams one at a time, creating random programs to go

with each team (limited to a fixed number per team as a pre-established parameter).

Programs which are attached to a team are encapsulated in what is called a learner,

along with an action. So when a team of programs is mentioned, what is really

meant (in terms of implementation) is a team of learners, which each consist of a

program and an action (this applies to TPG as well). In effect, the program describes

the context under which an action is applied. Each team is given at-least teammin

learners, each with randomly generated programs and atomic actions (or team actions

if a higher layer of hierarchical-SBB). These initial teams will have between teammin

and teammaxInit learners, selected uniformly.

Once the initial population is created, the only sources of variation are due to

mutation [39]. Mutation has multiple steps, once a parent is selected the first step is

to clone the parent (team). It is that clone that is affected by mutation to become a

new distinct individual. Through mutating a team, the team can either have learners

deleted, added, or mutated, provided that certain restrictions are followed, namely

having at-least two learners with different actions, and not having more learners than

a pre-determined maximum limit [39].

After cloning a team, first learner deletion happens. A random learner is deleted

20

with probability lrnrdel, if that is successful (and other conditions are met), another

random learner in that team learner gets deleted with probability lrnrdel
2, and so on

(with shrinking probabilities lrnrdel
3...). Deletion can happen as long as there are

more than max(2, teammin) learners.

Learner addition then follows with the same shrinking probability pattern as

learner deletion, with lrnradd. Any learner in the entire population (of the current

layer) can be added to a team provided that the learner is not already in the team.

Learners can be added without restriction to team size unless teammax is defined,

which sets the maximum number of learners a team can have.

Then learner mutation happens. Each learner is given lrnrmut probability to

mutate. When a learner mutates, both the program and the action have a chance of

mutating, based on progmut and actmut respectively, at-least one of these must occur

(attempts will be repeated until successful). An action is mutated by swapping out

the current action for an eligible one, either a random (different) discrete action if a

first layer SBB, or a (different) team from the previous layer for higher layers of SBB.

The learner population is defined as the set of all learners that are referenced by

at-least one team. As per team mutation, when a learner is mutated, it first gets

cloned, then the new clone has a chance to mutate its program, and its action has a

chance to change as well (at-least one of these will happen). A clone of a learner is

mutated because the original learner may also be used in any number of other teams.

Hence, only the new team should initially have an instance of the mutated learner.

Other teams using the original copy of the learner will retain the original variant.

The team population bases its survival on fitness obtained from the environment.

The learner population’s survival is based on being “useful”. A learner is considered

useful if it is used by at-least one surviving team. After all the teams undergo fit-

ness evaluation and the weakest gap portion are deleted, any learners that are not

referenced by any surviving teams are removed from the learner population.

Overall the evolutionary process of SBB follows the breeder framework of Algo-

rithm 1, where the team population is represented by population, and the learner

population is tracked implicitly (through the team population). So between steps 5

and 6, any unused learners are removed from the learner population.

21

2.5.3 Execution

SBB teams are synonymous with agents/ policies. They map from state, st, to action,

a ∈ A, by executing each learner’s program, identifying the winning bid and returning

the associated action. This is shown in Algorithm 6.

Under hierarchical-SBB an agent represents a policy tree. To select an action,

first the top level (agent) team goes through its bidding process to select an action,

depending on the current layer this could either be another team or an atomic action.

If the selected action is a team, the process repeats, and continues to do so until

an atomic action is reached, which is then returned as the current output from the

policy [12, 28, 55]. This means that only one team at any level of a policy tree is ever

evaluated, potentially resulting in very efficient solutions to reinforcement learning

problems [26].

Algorithm 6 GetActionHsbb: Gets an action from a hierarchical-SBB individual.

Function learner.Bid executes the learner’s program and returns the value held in

the first register.

INPUT: input: An input from the environment (e.g. the pixels of an image, sensor

readings).

OUTPUT: An atomic action (though since the function is recursive there may be an

intermediary team return value, though the final returned value is always atomic).

1. bestBid = −∞

2. bestLearner = null

3. For (learner In this.learners)

4. bid = learner.Bid(input)

5. If (bid > bestBid)

6. bestBid = bid

7. bestLearner = learner

8. Return bestLearner.GetAction(input)

22

2.6 Tangled Program Graphs

2.6.1 Overview

TPG is similar to SBB in that it uses a hierarchical structure, making use of different

levels of abstraction to the environment. The key difference is that TPG allows

programs at any level to point not just to teams (or actions if applicable) of the

level below, but to teams of any level and atomic actions at any level of abstraction.

So TPG teams can be comprised of a mix of different levels of abstraction to the

environment, for example having one program point to an atomic action and another

that points to a different team (which itself may point to another team, it does not

matter). Whereas SBB forms a tree structure, TPG forms a graph structure with

possible cycles, this is where the concept of a “tangled graph” comes from.

Only teams that are not referenced by any learner are considered to be agents,

these top level teams are called root teams. Throughout evolution root teams may be

subsumed by new teams, losing their root team status, but also if those new teams

are removed from the population a former root team may become a root team again

(provided that no other learners are referencing it at that time). An example of a

TPG instance is shown in Figure 2.3 along with an example action execution.

2.6.2 Evolution

In evolution, TPG starts off like SBB, as a group of N teams, each with two to

teammaxInit learners. All of these teams are root teams, because they are all discon-

nected from each other, as all of their learners have solely atomic actions, so there

are no learners pointing to any team. All of the learners are given random programs

and random atomic actions.

After evaluation in the environment, a proportion, represented by gap, of the

root team population is deleted. Then, until the team population is back up to N ,

remaining root teams are selected at random, cloned, mutated, and added to the root

team population. Note the slight difference with the use of gap and N in TPG. Since

there is a root-team (agent) population as a subset of the team population, gap is

used to delete a portion of the root-team population R, not the team population (N).

R is not a fixed value, there will typically be less root-teams than team in a TPG

23

R R

R

Figure 2.3: An example of the structure of TPG. Here actions are represented as
yellow circles, learners are represented as blue squares, and teams are represented as
red triangles. The more saturated red triangles with “R”s in them are root teams.
The links between components are represented as directional arrows, and the larger
bold arrows show a sample execution path to find an action from the top left root
team. Note that this path does not show all of the teams and learners that would
have been visited, just the final path to the selected action. All of a teams learners
are visited when a team is visited (except for learners that point to teams that have
already been visited in the current environment step).

24

population, and the value will fluctuate throughout evolution.

The mutation process is slightly different than in SBB. Being composed as a graph

rather than a tree (as in SBB) could possibly introduce infinite loops during execution.

This is overcome by not allowing the same team to be visited more than once in each

environment interaction, as well as by ensuring that each team has at-least one learner

with an atomic action. When adding learners during team mutation, an additional

constraint is that an added learner must not have its action be a team action that

refers to the team itself (the team being currently mutated).

Additional changes are made to the learner mutation process. The variable actatom

is added, representing the probability that when a learner’s action mutates, it becomes

an atomic action (vs a team action). If the action mutates into a team action (whether

or not it already was a team action), the new team cannot be the team that the learner

being mutated belongs to.

2.6.3 Execution

The process of action selection / execution in TPG is almost identical to SBB. Root

teams are the teams that will interact with the environment, all other teams are

involved as sub-processes of the root teams, execution starts with the root team.

The main difference with TPG is that there needs to be a memory of which teams

have been visited already for a given input, as seen in Algorithm 7. When each node

(team) of the graph is visited during a given environment interaction, it is added to

a list of visited nodes. Before taking any learners’ team action, the team is compared

to the visited node list, if it is already in the list then the next best learner’s action

is taken (this process repeats until there is a valid action). This along with ensuring

that each team has at-least one atomic action does away with any possibility of an

infinite loop, ensuring that an action will always be returned in a timely manner. An

example of execution is shown in Figure 2.3.

25

Algorithm 7 GetActionTpg: Gets an action from a TPG individual.

INPUT: input: An input from the environment (e.g. the pixels of an image, sensor

readings). visited: a list of already visited teams to not repeat.

OUTPUT: An action, in this case a scalar (though since the function is recursive

there may be an intermediary team return value, though the final returned value is

always a scalar).

1. visited.Add(this)

2. bestBid = −∞

3. bestLearner = null

4. For (learner In this.learners If learner.team Not In visited)

5. bid = learner.Bid(input)

6. If (bid > bestBid)

7. bestBid = bid

8. bestLearner = learner

9. Return bestLearner.GetAction(input, visited)

Chapter 3

Real Valued Tangled Program Graphs

3.1 Overview

The central contribution of this thesis is the implementation and evaluation of a

method of creating real valued actions in TPG. Unlike TPGd in which an action

is assumed to be a discrete scalar value, TPGr generalizes actions to “functions”.

Thus, when a learner produces a winning bid, the corresponding action program

would execute, producing a vector of actions. The set of states for which the learner

wins is now associated with a function rather than a single scalar value (discrete

or real-valued). That said, the only difference between TPGd and TPGr is the use

of a program to produce actions. However, this has the potential to change the

functional properties of TPG as well as opening up a range of different applications

that previously were out of scope, i.e. multiple actions per state and real-valued

actions.

The major motivation of TPGr is to make TPG more competitive in CC tasks, by

not relying on discretization or re-using the output of the bidding programs. Though

TPGr can also be used in tasks with only discrete actions, such as in the Atari

domain, where action programs outputs are floored and modded to an appropriate

value. This potentially allows for smaller less complex teams to explore full action

spaces. A slightly different approach is explored in the ViZDoom tasks explained

later.

3.2 Implementation

TPGr assumes programs for action creation/generation, or a function. Where before

each learner consisted of a program, p, for identifying context (the bidding process)

and a single action defined as a fixed discrete value1, now learners define task specific

1Selected from a set of task specific atomic actions (a ∈ A).

26

27

actions as two programs, one for bidding (pb) and one for action generation (pa). In

this work, programs assume the linear GP representation [4], thus defined in terms

of an instruction set operating on registers (§2.4.1). This now means that action

programs can produce a vector of actions relative to the subset of states that the

bidding program is the winner.

Naturally, the number of actions required by a task domain sets a minimum bound

for the number of registers per action program, actProgregs ≤ |A|. Just like bidding

programs, action programs also have a maximum initial size, actProgmaxInit, with no

set upper bound to growth.

In addition to action programs, TPGr still provides pointers to other teams. Thus,

there are two types of actions that a learner can support: pointers to other teams and

action programs. Each learner may only have one type of action, however, as TPG

action mutation can flip between the types. This is exactly the same as previously

described for TPG, except for the atomic actions now being represented by programs.

In TPGr when mutation takes place for a learner’s action object, there is a 50/50

chance that the action program will be modified, if applicable. Along with a potential

action program mutation, action mutation takes place normally where the action can

either become an atomic action or a team action.

It should also be mentioned that this real valued paradigm can be applied to SBB

as well, given that SBB is essentially a form of TPG2. Such a formulation of SBB

will be referred to as SBBr, and is the only form of SBB used in this thesis. No such

distinction is needed for GP, given that GP is already real action generator (as it is

used for real action generation in SBBr and TPGr).

2SBB = TPG limited to single teams of programs, so no graphs of teams.

Chapter 4

Diversity Maintenance

4.1 Overview

Machine learning algorithms in general have to balance exploration and exploitation

during credit assignment. Exploitation in evolutionary computation implies that the

population is increasingly taken over by offspring from the better performing parents.

This might be appropriate when there is a good chance that the training scenarios

are “sufficiently” representative of the overall task.1 However, under tasks that are

in some way partially observable or stochastic it is likely that performance evalua-

tion will be “noisy” or only capable of providing partial information. The resulting

“partial” fitness evaluation may then be significantly different from the actual level

of performance, or misrepresent the potential of a given pathway of evolution. Indeed

various pathologies can result from such partial information, e.g. cycling, forgetting,

disengagement [67].

There are a variety of ways in which diversity can be increased/maintained. Some

specific examples might take the form of:

• Multiple objectives [8, 6]: implies that the objective of the task is actually

expressed using multiple objectives. Such objectives might be in tension with

each other to some degree2 or be satisfied sequentially, i.e. solving one objective

representing a pre-requisite to solving another. Several overheads may appear

when applying multi-objective formulations the most significant of which being

that multiple forms of fitness evaluation are necessary (one for each objective).

• Niching methods [9]: recognize that the same level of performance might be

associated with different ‘modes’ of the task. Niching therefore attempts to

1By “sufficient” we do not imply exhaustive, only that the sampling of training instances is
selected to cover the envisaged target application scenarios.

2For example, precision and recall.

28

29

distinguish between different modes using a distance metric defined relative

to the representation space. However, distance metrics are sensitive to the

definition of suitable thresholds to characterize what is sufficiently close enough

to something else (i.e. how close / distant does something have to be before

it is a member/ not a member of a niche?). Moreover, defining distances for

representations based on collections of variable length programs (as per TPG)

is not straightforward.

• Incremental evolution [18]/ layered learning [62]/ curriculum learning [45]: means

that a set of source tasks are first designed. Solving each source task either se-

quentially and/or independently enables the overall target task to be solved. To

varying degrees, it might be possible to actually learn which source tasks should

be solved and in what order, i.e. competitive coevolution [55]. Aside from hav-

ing to a priori design a “good” set of source tasks, such methods assume that

there is enough control over the task domain to facilitate initialization from

arbitrary start configurations.

• Novelty metrics [37]: imply that rather than attempting to learn how to solve

a task using a task specific performance objective, e.g. maximize the distance

traveled in a locomotion task, evolution is rewarded for discovering a diverse

range of policies. To do so, appropriate “novelty” metrics need to be defined,

such as finding sequences of actions or state-actions that are distinct from those

discovered by other individuals from the population [26]. One source of difficulty

can appear when the task domain has stochastic properties (such as the use of

random start conditions) that then make it difficult to establish whether the

source of “novelty” was due to the start condition, non-stationary properties of

the environment or the agent under evaluation.

• Age layered Population Structure (ALPS) [22]: stratifies the population based

on age in an attempt to make the competition between individuals with different

age bands “fair”. The lowest band consists of a fixed number of individuals that

are randomly seeded at each generation. Individuals comprising the content

of older bands must be fit in order to remain competitive within the band.

Decisions regarding the number of bands could be mitigated by assuming a

30

Pareto multi-objective formulation [50].

In this thesis the biped walker task will maintain diversity by occasionally intro-

ducing new SBBr individuals as potential new actions to TPGr (which later on may

become full teams), described in section 4.2. Such a scheme therefore attempts to

continuously introduce new material into TPGr, i.e. a little like ALPS, but without

the age based matching criteria. The motivation for doing so is to let TPGr plateau

before introducing new material, with the goal of simulating new directions for devel-

opment. TPGr can potentially make use of this material by introducing appropriate

team references to the root teams. The biped walker represents an environment that

can only be solved using multiple real-valued actions per state.

Conversely, the ViZDoom agent control task will make use of a curriculum of

source tasks in order to maintain diversity (section 4.3). The ultimate goal is to

discover a single agent that performs all source tasks. The ViZDoom task assumes

discrete actions, but may support a variable number of discrete actions per state.

In addition to this, across all algorithms, a process called rampancy is used, de-

scribed in section 4.4. The underlying motivation for rampancy is to introduce mul-

tiple modifications simultaneously across the multiple levels of TPG.

4.2 Intermittent SBBr Populations

A type of run used in this thesis for the biped walker uses a combination of TPGr

and SBBr, referred to as TPGr+SBBr. Essentially a single TPGr population is

maintained through the whole process, while periodically new SBBr runs will be

started to integrate into the TPGr population, see Algorithm 8. This is similar to

the concept of restarts with a fixed “momentum”, as mentioned in [60].

From the context of the aforementioned diversity mechanisms such a process is

a little like ALPS. However, TPGr enables us to directly subsume champions from

the independent SBBr runs on a continuous basis, hence we do not need to protect

individuals though the concept of age, hoping that crossover is sufficient for combining

the best of old and new individuals. Instead, TPGr can directly index the new SBBr

individuals as they are continuously introduced into the pool of eligible (team) actions.

These runs start out with an SBBr population that evolves for a fixed number of

generations (Gsbb), and stops earlier if no improvements are made in best fitness for

31

Algorithm 8 RunTpgSbbPopulation: Performs evolution of a TPGr popula-

tion interleaved with SBBr populations. RunSbbSubpopulation receives a variety of

parameters as described in Algorithm 9. RepopulateTpg goes through the whole

selection and mutation process of TPG for the given generation.

INPUT: gfail: The maximum number of generations an SBBr or TPGr population

can go without making improvements. Plus a variety of additional evolutionary pa-

rameters (e.g. G,N, gap, e,mutateParams).

OUTPUT: Nothing in this example, though a set of top performing individuals could

be returned/saved.

1. maxFitness = −∞

2. noImprovements =∞

3. tpgPop = InitializeTpgPopulation(size = N)

4. For (g In 1..G)

5. If (noImprovements > gfail)

6. sbbChampions = RunSbbSubpopulation(...)

7. For (individual In tpgPop)

8. individual.fitness = Perform(individual, e)

9. tpgPop = RepopulateTpg(mutateParams, sbbChampions)

10. If (bestF itness(tpgPop) <= maxFitness)

11. noImprovements+ = 1

12. Else

13. maxFitness = bestF itness(tpgPop)

14. noImprovements = 0

32

a consecutive number of generations (gfail). At the end of such a SBBr run, a set

number of top individuals from the population are saved for later use (nsbb), these will

be called the SBBr champions, and are swapped out after every SBBr run (Algorithm

9), and are used as potential actions in the TPGr population.

After the first SBBr champions are selected, TPGr commences evolution. At each

generation the TPGr individuals are evaluated on the environment as usual, but when

variation occurs, the SBBr champions are also used as potential actions that can be

mutated into the TPGr population (thus making them TPGr teams).

As opposed to the SBBr populations, the TPGr population can evolve without a

fixed generation limit (aside from the ultimate end generation of the run, G), provided

that max fitness improvements does not stagnate for more than gfail generations just

like in the SBBr populations. In such a case another SBBr subpopulation will be

started, and cycle repeats (until G generations).

The motivation for adopting such an approach is to attempt to “kick start” new

search directions when TPGr evolution plateaus. Rather than target current content

(that presumably does something well), we let SBBr (aka single teams) develop a new

set of candidate teams.

It is hypothesised that this method of evolution will help the population improve

beyond a local optima. If a population stagnates at a given part of the environment,

introducing a new population could help to break up that stagnation. These SBBr

populations can be especially directed to focus on the given local minima, by starting

the SBBr individuals at a state that is near where TPG champions have failed (as is

the case in the biped walker task).

Intermittent subpopulation were described here in terms of the real valued formu-

lations of TPG and SBB. Though it could apply to the discrete formulations as well,

and any other learning algorithm (or multiple, provided they are compatible as SBB

and TPG are).

4.3 Curriculum learning

Under the ViZDoom task domain our goal is to learn policies that have the potential

to perform well at multiple tasks. Thus, we are able to chose the task experienced

by an agent. Specifically, at generation t mod τ a task is chosen uniformly without

33

Algorithm 9 RunSbbSubpopulation: Performs evolution of a an SBBr subpop-

ulation for use in TPGr.
INPUT: Gsbb: The max number of generations an SBBr population can run for. gfail:

The maximum number of generations an SBBr can go without making improvements.

nsbb: Number of top individuals to return from the SBBr population to TPGr. Plus

a variety of additional evolutionary parameters (e.g. N, gap, e,mutateParams).

OUTPUT: Nothing in this example, though a set of top performing individuals could

be returned/saved.

1. maxFitness = −∞

2. noImprovements = 0

3. sbbPop = InitializeSbbPopulation(size = N)

4. For (g In 1..Gsbb)

5. If (noImprovements > gfail)

6. Break

7. For (individual In sbbPop)

8. individual.fitness = Perform(individual, e)

9. sbbPop = RepopulateSbb(mutateParams)

10. If (bestF itness(sbbPop) <= maxFitness)

11. noImprovements+ = 1

12. Else

13. maxFitness = bestF itness(sbbPop)

14. noImprovements = 0

15. Return GetF ittest(from = sbbPop, amount = nsbb)

34

replacement from a set of T tasks. Thus, over a sequence of τ generations the same

task is experienced by all agents before a different task is selected.

Fitness is accumulated per task, or

f(i, S) =
1

τ

τ−1∑
k=0

gsk(i, S) (4.1)

where gsk(i, S) is the game score returned by the game engine for agent i in task S.

A total of τ encounters between agent and the same task occur due to the stochastic

initialization of a task.

In order to encourage agents to generalize to more than one task, fitness is actu-

ally formulated with respect to the previous three tasks (chosen stochastically), the

curricula. However, each task’s game score are over different ranges. Thus, a task’s

score is re-scaled relative to the best agent’s score on that task encounter:

F (i, S) =
f(i, S)

maxj∈N f(j, S)
(4.2)

where N are the set of eligible agents (e.g. root teams in TPG, all the individuals

from the team population in SBB).

Performance of an agent is now defined as that over the last R (R = 3 in this

case) tasks encountered:

F (i) =
R∑
j=1

F (i, S − j + 1) (4.3)

In short, tasks are selected randomly from the curricula of five tasks without

replacement and fitness defined over the last three tasks encountered. Once all the

curricula has been encountered, the set of tasks appearing in the curricula is reset. The

underlying assumption is that the population will act as a repository of multiple agent

behaviours. Eventually, agents will emerge that are able to demonstrate skills that

span multiple tasks. Such an approach was previously demonstrated to be effective

for evolving solutions for up to 8 tasks [56, 58]. Here the focus is on whether action

programs are able to accelerate and/or develop stronger multi-task agents.

35

4.4 Rampancy

Rampancy is the process of repeated mutation, and can be parameterized as a 3-tuple

[1]. For a rampancy tuple (freq, rmin, rmax), freq is how frequently to perform ram-

pancy in generations, so with freq = 5, rampancy will take place every 5 generations.

rmin and rmax define the range in which a random number of rampancy iterations will

take place. If rmin and rmax are equal, then rampancy occurs for exactly that many

iterations.

An iteration of rampancy is just a regular mutation. For GP, rampancy takes

place at the program level. For SBB and TPG, rampancy takes place at the team

level.

The primary goal of rampancy is speed up the process of evolution, creating a less

gradual search (intermittently, depending on freq).

Chapter 5

ViZDoom Experiments

5.1 Overview

The ViZDoom platform consists of multiple task environments, each with similar base

mechanics, but different goals [31]. However, all environments share the same visual

state space, a 160× 120× 3 RGB image, each pixel’s colour being described using 8

bits. The three RGB colour values are concatenated into a single 24-bit representation

in order to reduce the state representation to a single matrix of 160 × 120 cells [56].

A learning agent has to be able to infer what the task is from the visual information

alone, and then develop a strategy for maximizing reward under that task.

Five task environments are used in this research: Basic, Defend the Center, Defend

the Line, Health Gathering, and Take Cover.1 The action space and reward differs

among the different environments, specified as follows:

• Basic: spawns the agent in the center of the longer side of a rectangular room. A

monster is spawned on the opposite wall at a random location. The agent may

only turn left/right or shoot. The rewards are 101 for shooting the monster, -5

for a missed shot, and -1 for each time step and there are a maximum of 300

frames within an episode. The “high score” on this task is therefore 100 (under

a very specific agent-monster initialization).

• Defend the Center: the agent must survive in a room with 5 re-spawnable

monsters. The agent can only turn left or right and shoot, and the number of

shots is limited. Moreover, the agent is only spawned in the centre of the room

and, due to the limited actions, can only rotate. A reward of 1 is given for each

monster killed, and the episode ends when the agent dies (which will happen

due to the limited number of shots).

1https://github.com/mwydmuch/ViZDoom/tree/master/scenarios

36

https://github.com/mwydmuch/ViZDoom/tree/master/scenarios

37

• Defend the Line: is similar to Defend the Center, except the monsters come

back stronger each re-spawn. Moreover, the room is now a rectangle, with the

agent spawned in the centre of one of the longer walls. Monsters are spawned

randomly on the opposing wall, but there can only be three at a time. Again,

the limited number of shots implies that episodes end with the agent losing its

life.

• Health Gathering: rewards the agent for collecting health packs in order to

counter the negative effect of an acidic floor. There are no monsters. The agent

can only move forward and rotate left or right and the environment is limited to

a single rectangular room. The health packs re-spawn randomly, so the agent

has to continuously investigate the room in order to survive. A reward of 1 is

given for each frame survived, up to a maximum of 2,100 frames.

• Take Cover: monsters are spawned repeatedly and can shoot projectiles at the

player. The agent can only move left and right, i.e. no ability to shoot. As such

the agent has to learn to “dodge” the incoming projectiles. A reward of 1 is

given for each frame and more monsters appear as the episode length increases,

implying that at some point there will be too many projectiles for the agent to

avoid being hit.

The ViZDoom task will be used to compare TPGd to TPGr. In order to render

action programs as “discrete” (as opposed to real-valued) each register associated

with an action is subject to a threshold. If the register value is greater than zero,

then the action is deployed, otherwise it is not. This potentially means that multiple

actions can be deployed under any given state (allowed under the ViZDoom game

engine). In addition, the variable number of actions per task is accounted for by

supporting the union of all actions, but enforcing a mask relative to the task.

Post training, we will assess the ability of agents to both specialize (return the

high-score specific tasks) as well as generalize (identify a single policy that is com-

petitive under multiple tasks).

Ultimately this environment was selected due to it being a sufficiently complex

task, in having a large observation space to index, and requiring emergence of multi-

task behaviour in order to perform well. It is also well suited to using TPGr for

38

discrete action generation given that multiple actions could be selected at a time, a

more open ended task than selecting a single action from a program.

5.2 Prior Results

ViZDoom represents a widely employed benchmark for visual reinforcement learning,

in part on account of the challenging nature of the task (partially observable en-

vironment, high-dimensionality, 3-D representation, multiple actions per state) and

efficient implementation [31]. That said, benchmarking generally takes one of two

forms: evaluation on individual source tasks, or evaluation on some form of ‘death-

match’.

Thus, many reinforcement learning frameworks have been benchmarked on single

source tasks, beginning with the original demonstration of the ViZDoom game engine

[31] and continuing to the present [2, 64, 48]. The common theme being that they

all assume some form of deep neural network architecture for reinforcement learning.

Conversely, when training agents to participate in the ‘deathmatch’, deep learning

approaches have either assumed: a curricula of hand designed progressions for death-

matches [71, 72], independently trained navigation and specialist fighting networks

[72], or assumed a self play framework [48].

Outside of deep learning, the only previous research has been that involving TPGd.

Initially, TPGd agents were demonstrated to be able to play multiple subtasks [56]

and then, with the addition of indexed memory, agents were demonstrated in ‘death-

matches’ [57].

In this work, for computational practicality, we focus on learning 5 of the 8 source

tasks simultaneously, i.e. an undertaking sufficiently difficult to illustrate the merit

or otherwise of assuming action programs in TPGr.

5.3 Experiment Parameterizations

As noted above, the ViZDoom domain will be used to compare TPGd to TPGr. Both

configurations assume rampant mutation (section 4.4).

The TPG approaches are parameterized as shown in Table 5.1. In short, the

39

Table 5.1: Parameters for the TPG ViZDoom runs. ∗ In the version of TPG used in
these runs, learner mutation is attempted as each learner is added from a parent to
the new team and program mutation is also attempted but not guaranteed.

Parameter TPGd TPGr

N 120
G 9,000
gap 0.5
e 5
rampancy (1,5,5)
teammin 12
teammax 12
teammaxInit 12
lrnrdel 0.7
lrnradd 0.7
lrnrmut ?∗

progmut ?∗

actmut 0.2
actatom 0.5
progmaxInit 128
progregs 8
actProgmaxInit ∅ 128
actProgregs ∅ 7
instdel 0.5
instadd 0.5
instswp 1.0
instmut 1.0

only difference between TPGd and TPGr are the parameters for the action pro-

grams. Naturally, there is no concept of action program registers for TPGd, hence

the null parameterization. In total 9,000 generations (G) are performed, with the

task stochastically re-sampled every e = 5 generations. There are N = 120 root

teams, with gap = 50% replaced per generation.

5.4 Memory

The VizDoom task is both high-dimensional (state space with over 19,000 inputs, i.e

pixels) and partially observable. This means that an internal model of state also has

to be learnt. To do so, this work adopts the probabilistic indexed memory model

formulated in [57, 58]. There are two components to this framework: 1) a single

40

instance of indexed memory that the entire population ‘share’ and 2) a probabilistic

write operation.

The shared indexed memory approach implies that the contents of indexed mem-

ory is only ever a ‘cold start’ at initialization. Thereafter each agent inherits the

state of indexed memory as left by the agent that was previously evaluated. One

implication of this is that indexed memory comes to represent a shared resource

for communication between programs comprising a learner as well as different TPG

agents. Any agent that ‘pollutes’ the contents of indexed memory therefore has an

impact on the entire population. Previous research has shown that such a shared

memory model is actually effective at establishing a common view of state [61].

Two additional instructions are assumed in order to enable programs to read

or write to indexed memory. Classically, both operations require an address to be

specified. However, the probabilistic indexed model of Smith and Heywood adopts a

different approach [57, 58]. Instead of specifying a write address, the write operation

(write(R)) assumes that indexed memory is organized into L columns of MaxReg

cells, where MaxReg is the number of registers that any program may manipulate (see

the linear GP representation of §2.4.1). The write instruction, when encountered,

writes the contents of the MaxReg register values to each column of indexed memory

such that the probability of a write follows the distribution [57, 58],

Pwrite

(
L

2
± c
)

= α− (β × c)2 (5.1)

where c is a column index and α = 0.25 and β = 0.01 control the height and width

of the shoulders of the probability distribution.

This means that columns near 1 or L are less likely to be written to, whereas

columns towards l
2

are more likely to be written to. This mimics a form of long

(respectively short) term memory. The read operation take the form of R[i] =

read(k) in which i is the register index and k is the memory index. Over time,

programs appear to evolve specialist programs for writing data to indexed memory,

while most programs read. Previous research has demonstrated that the probabilistic

index model produces agents that discover how to navigate under the VizDoom and

Dota 2 environments [57, 58] and perform considerably better than reactive agents

41

under the take cover task [30]. Note that the probabilistic indexed memory model is

only used in the ViZDoom benchmark.

5.5 Results

5.5.1 Training

Training performance for each task is summarized by Figures 5.1, 5.2, 5.3, 5.4 and

5.5. Thus, although the population only experiences a single task per generation, we

plot the population’s previously recorded performance for each task. Naturally, this

may introduce considerable variation in the performance of tasks over generations,

i.e. improvements in one task, might result in reductions to others.

In each case, the fitness curves reflect average population fitness (solid line) and

champion individual in the population (dashed line). The extent of the variance of

the champion is also summarized by the shaded area (max to min of champion on the

10 evaluations performed per generation, where the task environment is stochastically

initialized). The green (blue) curves represent TPGd (TPGr) respectively.

The following observations are made with respect to each task:

• Basic (Figure 5.1): both TPG formulations appear to solve this task (max fitness

for this task is 100). However, the Action Programs do so while maintaining a

higher average population fitness and the champion agent observes much less

inter-generational variation (compare green to blue shaded regions).

• Defend the Centre (Figure 5.2): agents using Action Programs appear to have

a considerable advantage on this task, with average population fitness of Ac-

tion Programs matching the performance of the champion agent from Discrete

Actions.

• Defend the Line (Figure 5.3): demonstrates a clear preference for TPGd through-

out the run.

• Health Gathering (Figure 5.4): only TPGr is able to consistently achieve max-

imum fitness on this task (2100). Indeed, fitness for champions with Discrete

Actions is significantly lower than the average population fitness with Action

Programs.

42

Figure 5.1: Fitness curves during training for Basic task. Blue (Green) curves indicate
TPGr (TPGd) respectively. Average population performance is the solid line. Dashed
lines are the average task performance of the champion with shading indicating the
corresponding spread (max. to min.)

• Take Cover (Figure 5.5): champion fitness was very much the same for both

TPG configurations, but the average fitness of TPGr was consistently higher

than for TPGd.

Naturally, these curves are only able to reflect the performance of TPG agents

under each independent task, i.e. the performance ceiling for each task / approach

to action selection. The following post training assessment will assess the capacity of

each configuration to identify agents that generalize across multiple tasks.

5.5.2 Generalization

Post training performance is assessed from the perspective of an agent to perform

multiple tasks simultaneously. With that in mind, the top 20 agents are identified

(from training) and performance averaged over 50 initializations of each task. Gener-

alization will be assessed by evaluating performance over all combinations of 3, 4 and

5 tasks. However, to do so, we first need to normalize performance from individual

game titles in such a way that they can be additively combined. For this purpose, use

is made of the linear re-scaling normalization as often assumed for mapping features

over a fixed range. In this context the worst and best performance on a title (across

43

Figure 5.2: Fitness curves during training for Defend the Center task. Blue (Green)
curves indicate TPGr (TPGd) respectively. Average population performance is the
solid line. Dashed lines are the average task performance of the champion with
shading indicating the corresponding spread (max. to min.)

Figure 5.3: Fitness curves during training for Defend the Line task. Blue (Green)
curves indicate TPGr (TPGd) respectively. Average population performance is the
solid line. Dashed lines are the average task performance of the champion with
shading indicating the corresponding spread (max. to min.)

44

Figure 5.4: Fitness curves during training for Health Gathering task. Blue (Green)
curves indicate TPGr (TPGd) respectively. Average population performance is the
solid line. Dashed lines are the average task performance of the champion with
shading indicating the corresponding spread (max. to min.)

Figure 5.5: Fitness curves during training for Take Cover task. Blue (Green) curves
indicate TPGr (TPGd) respectively. Average population performance is the solid
line. Dashed lines are the average task performance of the champion with shading
indicating the corresponding spread (max. to min.)

45

any agent) is used to map the average generalization performance of an agent to the

interval [0, 100]. Thus, the normalized score, s̄, of agent i on task g is defined as

s̄i(g) = 100× si(g)−mink∈S(sk(g))

maxk∈S(sk(g))−mink∈S(sk(g))
(5.2)

where si(g) is the original score of agent i on task g (averaged over 50 initializations).

S is the set of 20 agents under evaluation.

The generalization performance of agent i over a set of tasks (g ∈ 〈b, bg, btl, dtc,

tc〉) is now the sum over the combination of tasks appearing in the assessment, or

G(i) =
∑
g∈G

s̄i(g) (5.3)

where G is the particular combination of tasks included in the evaluation.

As there are 5 tasks, there are a total of 10 combinations of 3 tasks, 5 combinations

of 4 tasks and one combination of 5. Table 5.2 details the performance of TPGd and

TPGr agents over the combinations of tasks for the assessment of generalization. A

ranked difference is then estimated as the basis for applying the Wilcoxon Signed-

Ranks test for significance testing [10].

It is now apparent that TPGd never wins a generalization test for any combination

of 3 to 5 task (significant at the 95th percentile). In summary, TPGd provides

solutions that appear to be very specific to the “Defend the Line” task, but there

is no evidence of generalization beyond this. On the other hand TPGr provides

agents that are able to discount their lack of ability on Defend the Line with stronger

performance on all other tasks.

5.5.3 Complexity

TPG incrementally constructs graphs of teams / programs during evolution. As such,

the dynamic properties of this process can be visualized (Figure 5.6). It is apparent

that TPGr and TPGd undergo very little variation in the number of learners per

team. From the perspective of the number of instructions per learner (team), TPGr

appears to converge on a preferred complement within the first 1,000 generations and

is then relatively stable. Conversely, TPGd appears to have an underlying growth

trend over the generations, resulting in solutions that are generally more complex

46

Table 5.2: TPGr and TPGd generalization performance over combinations of 3, 4 and
5 task combinations. ViZDoom tasks are identified as “b” for basic; “hg” for health
gathering, “dtl” for defend-the-line, “dtc” for defend-the-center, “tc” for take cover.
Rank is determined by how well TPGr performs over TPGd, from the least (rank 1)
to the most (rank 16). This ranking system is used for the Wilcoxon Signed-Ranks
test.

Task TPGr TPGd TPGr - TPGd rank
b-hg-dtl 152.3 104.3 48.0 5
b-hg-dtc 179.6 75.4 104.1 15
b-hg-tc 176.3 92.6 83.6 12

b-dtl-dtc 166.9 122.7 44.2 4
b-dtl-tc 163.6 139.9 23.7 1
b-dtc-tc 190.9 111.0 79.9 10
b-dtl-dtc 131.8 80.3 51.4 6
hg-dtl-tc 128.6 97.6 31.0 3
hg-dtc-tc 155.8 68.6 87.2 13
dtl-dtc-tc 143.1 115.9 27.2 2

b-hg-dtl-dtc 210.2 127.6 82.6 11
b-hg-dtl-tc 206.9 144.8 62.1 8
b-hg-dtc-tc 234.2 115.9 118.3 16
b-dtl-dtc-tc 221.5 163.2 58.3 7
hg-dtl-dtc-tc 186.4 120.8 65.6 9
all 5 tasks 264.8 168.1 96.7 14

47

than under TPGr. This is likely a factor of action programs simply being able to

define a “range” of behaviours with action programs. Thus, for the same instruction

count, many different behaviours exist. Conversely, under TPGd the only change an

action can take is being “flipped” to a different discrete action, or the action type

changing to a team index. Changes to a team index will split a previous single discrete

action into multiple possible (discrete actions), but at the expense of introducing more

complexity into the solution (an entire team or graph is added).

In short, TPGr is able to provide a new level of granularity into the complexity

of solutions that did not exist under TPGd. Indeed, TPGd agents can increase to

very large graphs, yet the vast majority of the teams comprising the graph might be

hitchhikers [23, 1].

48

(a) Inst. per Learner

(b) Inst. per Team

(c) Learner per Team

Figure 5.6: Development of TPGd and TPGr champion complexity over the course
of a run. Blue (green) represent TPGr (TPGd) respectively

Chapter 6

Bipedal Walker Experiments

6.1 Overview

Walker locomotion represents a task in which actions take the form of a vector of

continuous valued actions. Thus, unlike the ViZDoom task, it is not feasible to

enumerate the action space. Which is to say that too many arbitrary decisions would

have to be made regarding the resolution of attempts to define a set of discrete actions.

Moreover, changing the locomotion task would result in having to revisit the decisions

made to build the set of discrete actions. As a consequence neural networks are often

the preferred choice for attempting to derive control policies for locomotion tasks,

but come with the caveat that the solutions are typically opaque/non-interpretable

(§6.2).

The environment assumed in this work takes the form of the Bipedal-Walker-v3,

which is implemented in the Box2D physics engine, and is released as an OpenAI

Gym environment [5]. There is a normal version which features a relatively flat yet

uneven terrain, and a hardcore version which contains additional obstacles. Only the

normal version is used in this thesis due to time constraints.

This environment was selected because it required multiple real valued inputs,

so we could test the capability of action programs in such an environment. Also,

this environment is widely used, having multiple benchmark comparisons available.

Lastly, such a starting point was perfect for beginning to analyse action programs

given that it is a 2D environment, lacking the significant step up in difficulty of 3D

environments (performing in 3D environments is a goal to build towards, and would

have been tested if we had more time).

The action space consists of torque applied to four joints, the two hips and two

knees (which a boxy hull/body sits on top of). Actions are clipped between -1 and 1.

The observation space consists of the hull angle, angular velocity, and horizontal

and vertical speeds, the positions and angular speeds of the four joints, whether each

49

50

leg is touching the ground, and ten range finder measurements. This observation

space is extended by adding {sin(t)/k | k in 1..3} and {cos(t)/k | k in 1..3}, to

further motivate the adoption of cyclical/sinusoidal motion which has been shown to

be beneficial for bipedal locomotion [68, 44]. This brings the total observation space

dimension to 30.

Reward is given for distance moved forward, -100 points is given if the agent falls

over, and a small penalty is applied for energy use. The ultimate goal is to reach

the end of the environment with minimal energy usage, the environment is deemed

solved if the agent can do so with at-least 300 points in 1,600 time steps.

Results analysis source code for the bipedal walker experiments can found online1.

6.2 Prior Results

Prior published results using GP on the OpenAI bipedal walker task could not be

found, doing so is a notable contribution of this thesis. However, there are prior

results on the Bipedal-Walker-v2 task which make use of neural networks, as well as

GP results on different bipedal walking environments. Results from different loco-

motion tasks are not necessarily interchangeable because the underlying physics and

/ or sensor instrumentation vary between simulators. That said, there could be an

opportunity for future research in terms of attempting to “transfer” ML solutions

between tasks.

In the case of results using GP, the work of Ok et al. evolve control policies for a

3D bipedal walker task [46]. They use GP to create a model of the nervous system to

synchronize the movement of the different joints, with each joint being controlled by

a neural oscillator model (a basic rhythmic generator). Only up to 4 steps of walking

were generated by their model, though this is a more complex environment then the

one used in this work as it controls 3 times as many joints (12 vs 4) and exists in a

3D environment.

Wolff and Wahde also address bipedal locomotion using GP [68]. This work also

makes use of more complex 3D physics with more joints to control, using two different

task environments. In one environment they were able to obtain slow movement with

small steps, much slower than a human would move. In the other environment the

1https://github.com/Ryan-Amaral/gp-bipedal-walker-analysis

51

biped was capable of at-most 2 steps before falling over.

Malagon and Ceberio use an earlier version of the Open AI bipedal walker [41].

They compare a method of optimizing neural net weights based on continuous uni-

variate marginal distributions (UMDAc) to neural net weight optimization using an

evolutionary algorithm (EA). In general, results showed that the UMDAc outper-

formed EA, with UMDAc optimization preferable to the EA with a probability of

0.821, albeit with a relatively large variance.

Finally, Landajula et al. showcases the use of symbolic (mathematical) policies

as generated by deep neural nets [34]. These final symbolic policies are similar to GP

programs, in fact depending on the operations allowed in GP the agent policies could

come out exactly the same. Moreover, the symbolic nature of the solution implies

that the specifics of the control policy are now known. They demonstrate that the

generated symbolic policies outperform other deep learning methods in general by

showing that the average rank of the approach for a variety of tasks is better than

that of any other approach they tested. These results on the bipedal walker task are

used for comparison in this thesis (though this thesis uses v3 rather than v2).

6.3 Experiment Methodology and Parameterization

The approach taken to benchmarking TPGr on the biped walker locomotion task

is to first establish a baseline for GP and SBBr. Two formulations of TPG are

then benchmarked. The first takes the form of TPGr as described in Section 3, the

second (also TPGr) introduces hitchhiker removal and the periodic introduction of

new genetic material taken from independent limited runs of SBBr (i.e. the diversity

maintenance scheme of §4.2). In all cases the total generation limit is parameterized

to be the same.

The specific parameterizations for the runs on the bipedal walker experiments are

shown in Table 6.1. The SBBr subpopulations of TPGr+SBBr take on the same

parameters as the TPGr population (aside from the omission of actatom).

Not previously mentioned, ghh represents the generational interval (in terms of

TPG generations) in which to do hitchhiker removal (only for TPGr+SBBr). Hitch-

hiker removal seeks to remove any unused learners from root-teams’ graphs.

For each of the 4 run types, 5 runs are done. All episodes of the environment are

52

Table 6.1: (Bipedal Walker) Parameters for the GP, SBBr, TPGr, and TPGr+SBBr
runs.

Parameter GP SBBr TPGr TPGr+SBBr

N 360
G 10,000
Gsbb ∅ 500
ghh ∅ 100
gfail ∅ 100
gap 0.5
e 5
rampancy (5,5,5)
teammin ∅ 2
teammax ∅ 4
teammaxInit ∅ 2
lrnrdel ∅ 0.3
lrnradd ∅ 0.2
lrnrmut ∅ 0.7
progmut ∅ 0.5
actmut ∅ 0.7
actatom ∅ 0.8
progmaxInit ∅ 64
progregs ∅ 8
actProgmaxInit 512 64
actProgregs 8
instdel 0.5
instadd 0.5
instswp 0.5
instmut 0.5

53

done with a max of 1,600 frames, each agent is evaluated with the mean score over 5

episodes.

Each individual bipedal walker run would take just under half a week using a

consumer grade desktop with 24 CPU hyper-threads each running at 3.8 GHz. A run

would typically use no more than 1-2 GB of memory. Ultimately it would take about

2 weeks to do all of the runs for each run type, and about 2 months for all of the runs

mentioned in this thesis. As such, this limited the number and types of experiment

that could be run due to time constraints.

6.4 Results

6.4.1 Evolution Comparison

Fitness Comparison

Fitness curves of the 5 runs of each run type is shown Figure 6.1. In the majority

of GP runs, significant plateaus are shown to start around 1,000 generations, with

minor improvements beyond. Similar happens in SBBr runs starting at about the

2,000 generation mark. TPGr performs with a wide variance, having the single worst

run, and typically stalling within a few thousand generations. TPGr+SBBr shows

relatively consistent improvements throughout evolution, with the earliest terminal

plateau appearing at around 4,000 generations.

The run types each vary in the spread / standard deviation (SD) of final results

as well, characterized along with mean results in Figure 6.2. GP and SBBr both show

a relatively high SD compared to TPGr+SBBr, with TPG having a much higher SD.

TPGr+SBBr achieved the highest mean final fitness value with relatively low SD.

These observations ultimately suggest that GP and SBBr are capable of per-

forming well, though inconsistently, that TPGr generally performs poorly, and that

TPGr+SBBr typically performs relatively well and consistently. This outcome is

taken to imply that diversity maintenance is important for providing TPGr with use-

ful material that can be absorbed into TPGr graphs. Also that potentially keeping

the size of teams down (through hitchhiker removal) is generally useful.

54

0 2000 4000 6000 8000 10000
Generation

0
25
50
75
100
125
150
175
200
225
250
275
300
325

Fi
tn

es
s

GP Runs

(a) GP

0 2000 4000 6000 8000 10000
Generation

0
25
50
75
100
125
150
175
200
225
250
275
300
325

Fi
tn

es
s

SBBr Runs

(b) SBBr

0 2000 4000 6000 8000 10000
Generation

0
25
50
75
100
125
150
175
200
225
250
275
300
325

Fi
tn

es
s

TPGr Runs

(c) TPGr

0 2000 4000 6000 8000 10000
Generation

0
25
50
75
100
125
150
175
200
225
250
275
300
325

Fi
tn

es
s

TPGr+SBBr Runs

(d) TPGr+SBBr

Figure 6.1: (Bipedal Walker) Fitness curves during training from 5 runs of each run
type. Each different of a given run type is represented as different line/color.

55

0 2000 4000 6000 8000 10000
Generation

0

25

50

75

100

125

150

175

200

225

250

275

300

325

Fi
tn

es
s

Run Comparisons
GP
SBBr
TPGr
TPGr+SBBr

Figure 6.2: Mean fitness curves with standard deviation of each run type, each over
5 runs.

56

Agent Composition

Figure 6.3 (a) shows the number of teams, and learners found within the champions of

each run type (averaged over runs (mean) with 1
2
SD)2. TPGr developed significantly

larger teams, such over complexity is likely a significant contributor to its relatively

poor performance (Given that GP and SBBr are essentially subsets of TPGr, which

also performed better). TPGr+SBBr typically ended up with champion graphs con-

taining roughly 5 teams and 10 learners, around twice the number of learners found

in SBBr champions.

Sub-figure (b) of Figure 6.3 shows the total number of instructions found within

the champions of each run type (averaged over runs (mean) with 1
2
SD). For each

run type (where applicable) there were more instructions from bidding programs

than from action programs, as would be expected given that every learner has a

bidding program, but not necessarily an action program (aside from SBBr). SBBr

and TPGr+SBBr are found to have roughly the same number of instructions from

action programs, although TPGr+SBBr tends to have significantly more bid pro-

gram instructions. GP found the most simple solutions (based on instruction count),

containing roughly 30 instructions, despite potentially allowing individuals to be ini-

tialized with up to 512 instructions. Note, however, that under GP and SBBr all

programs are always executed, whereas under TPGr and TPGr+SBBr only the sub-

set of programs in the path to an action program are executed to make a decision.

In Figure 6.4 we can see the number of instructions per program type found within

the champions of each run type (averaged over runs (mean) with 1
4
SD). Both program

types’ sizes across all run types ranged similarly, between 25 and 35, with the only

notable difference being SBBr bid instructions at 45. It is interesting that the single

program solutions (GP) averaged similarly to most other program sizes.

Figure 6.5 shows the (mean and SD) number of teams and learners from the SBBr

subpopulations that are in the main TPGr population. The number of teams remains

roughly consistent throughout evolution whereas the number of learners is constantly

on the rise. This makes sense because as TPGr evolves, the overall team population

remains fixed (to N), whereas the learner population grows without restriction. The

rising number of SBBr learners indicates that TPGr teams are making good use of

2Assumed to improve the legibility of the plots.

57

0 2000 4000 6000 8000 10000
Generation

Champion Teams and Learners
SBBr Teams
SBBr Learners
TPGr Teams
TPGr Learners
TPGr+SBBr Teams
TPGr+SBBr Learners

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Am
ou

nt

(a) Teams and Learners

0 2000 4000 6000 8000 10000
Generation

Champion Instructions
GP Action Instructions
SBBr Action Instructions
SBBr Bid Instructions
TPGr Action Instructions
TPGr Bid Instructions
TPGr+SBBr Action Instructions
TPGr+SBBr Bid Instructions

0

75

150

225

300

375

450

525

600

675

750

825

900

975

1050

1125

1200

1275

1350

1425

1500

1575

1650

1725

1800

1875

1950

In
st

ru
ct

io
ns

(b) Instructions

Figure 6.3: Mean number of champions’ teams and learners per run type with halved
standard deviations (a). Mean number of champions’ total instructions per run type
with halved standard deviations (b). Standard deviations halved for neater presen-
tation.

58

0 2000 4000 6000 8000 10000
Generation

Champion Instructions per Program
GP Action Instructions
TPGr Action Instructions
TPGr Bid Instructions

0

5

10

15

20

25

30

35

40

45

50

55

60

(a) GP and TPGr

0 2000 4000 6000 8000 10000
Generation

Champion Instructions per Program
SBBr Action Instructions
SBBr Bid Instructions
TPGr+SBBr Action Instructions
TPGr+SBBr Bid Instructions

0

5

10

15

20

25

30

35

40

45

50

55

60

In
st

ru
ct

io
ns

(b) SBBr and TPGr+SBBr

Figure 6.4: Mean number of champions’ instructions per program (bid and action)
per run type with quartered standard deviation for neater presentation. GP and TPG
shown in (a), SBBr and TPGr+SBBr shown in (b).

them. By the end of evolution, the average learner population was composed of

roughly 62% learners imported from SBBr sup-population runs (§4.2).

The fitness curves obtained from TPGr+SBBr runs for the both TPGr populations

and SBBr subpopulations are shown in Figures 6.6 to 6.10. Here we see that on their

own, the SBBr sub-populations in their relatively short 500 generation runs can obtain

a fitness approaching (in rare cases surpassing) the goal of 300. The TPGr population

in TPGr+SBBr would therefore likely end up at-least as good. Though it can also be

seen that TPG is capable of building itself up beyond the obtained SBBr champion

levels, thus making use of SBBr champions’ components. Indeed, this is supported

by the earlier observation that most of the learner population (by the end of a run)

comprises of material from the SBBr sup-population runs. It should be noted that

the SBBr subpopulations start not at the beginning of the environment (as in the

main TPG population), but at a point between 50% and 75% of the way to the end

of the current best TPGr agent’s test episode.

59

0 2000 4000 6000 8000 10000
Generation

100

101

102

103
Am

ou
nt

SBBr Sub-Populations
SBBr Teams
SBBr Learners

Figure 6.5: Logarithmic plot of the mean number of SBBr subpopulation teams and
learners in the TPGr population with standard deviations.

0 2000 4000 6000 8000 10000
Generation

SBBr and TPGr Fitness in TPGr+SBBr run 1
TPGr
SBBr

0

50

100

150

200

250

300

Fi
tn

es
s

Figure 6.6: Fitness curves for SBBr and TPGr in TPGr+SBBr run 1.

60

0 2000 4000 6000 8000 10000
Generation

SBBr and TPGr Fitness in TPGr+SBBr run 2
TPGr
SBBr

0

50

100

150

200

250

300

Fi
tn

es
s

Figure 6.7: Fitness curves for SBBr and TPGr in TPGr+SBBr run 2.

0 2000 4000 6000 8000 10000
Generation

SBBr and TPGr Fitness in TPGr+SBBr run 3
TPGr
SBBr

0

50

100

150

200

250

300

Fi
tn

es
s

Figure 6.8: Fitness curves for SBBr and TPGr in TPGr+SBBr run 3.

61

0 2000 4000 6000 8000 10000
Generation

SBBr and TPGr Fitness in TPGr+SBBr run 4
TPGr
SBBr

0

50

100

150

200

250

300

Fi
tn

es
s

Figure 6.9: Fitness curves for SBBr and TPGr in TPGr+SBBr run 4.

0 2000 4000 6000 8000 10000
Generation

SBBr and TPGr Fitness in TPGr+SBBr run 5
TPGr
SBBr

0

50

100

150

200

250

300

Fi
tn

es
s

Figure 6.10: Fitness curves for SBBr and TPGr in TPGr+SBBr run 5.

62

GP SBBr TPGr TPGr+SBBr
Run Type

125
100
75
50
25
0

25
50
75

100
125
150
175
200
225
250
275
300
325
350

Sc
or

e
Champion Scores

Figure 6.11: Distribution of scores obtained from champions with mean and median
bars. Means in blue, medians in red. Plotted from 5 champions for each run type,
each evaluated for 100 episodes. Gaussian kernel density estimation made with 500
points.

6.4.2 Champion Comparison

Post Training Evaluation

From each run type the top 5 agents were assessed over 100 episodes. The agent with

the highest mean score from each run was selected ultimately as the champion of that

run. The distribution of scores obtained from the champion of each run is shown in

Figure 6.11, split by run type. TPGr+SBBr has notably higher mean and median

scores than other run types and an overall higher distribution.

Across different runs the GP, SBBr, and TPGr champions show much less consis-

tency overall when compared to TPGr+SBBr champions, though GP tends to show

less standard deviation per individual champion scores, as seen in Table 6.2. TPGr

63

Table 6.2: The mean, median, and standard deviation of scores calculated over 100
evaluations for the champion of each run. Underlined run names represent the “best”
agent of each run type based on mean score, other underlines show the best median
and SD per run type.

Run Mean Median SD

GP 1 236.0 254.2 67.5
GP 2 155.5 189.4 91.7
GP 3 186.8 190.8 27.4
GP 4 294.3 297.9 19.8

GP 5 171.7 171.9 21.0
GP Mean 208.9 220.84 45.48

SBBr 1 267.9 281.9 54.7

SBBr 2 31.8 -23.9 136.9
SBBr 3 189.3 219.2 83.1
SBBr 4 121.4 166.2 93.8
SBBr 5 238.4 306.7 118.1

SBBr Mean 169.8 190.0 97.3

TPGr 1 142.8 149.4 38.5
TPGr 2 120.7 157.4 82.4
TPGr 3 173.4 170.5 22.3
TPGr 4 218.0 230.3 59.7

TPGr 5 52.1 65.7 42.5
TPGr Mean 141.4 154.7 49.1

TPGr+SBBr 1 247.0 275.5 77.1
TPGr+SBBr 2 277.2 319.0 103.0
TPGr+SBBr 3 277.6 281.7 22.4

TPGr+SBBr 4 287.4 295.0 32.7

TPGr+SBBr 5 252.6 283.1 88.0
TPGr+SBBr Mean 268.4 290.9 64.6

champions performed relatively poorly in general. The mean scores consistently be-

ing lower than the median scores can be explained by how the environment’s rewards

work, giving a relatively large 100 point penalty on failure.

In Table 6.3, some results from this thesis’s runs are compared to competitor

algorithms. From this, we see that GP based solutions are typically comparable with

deep learning algorithms. Specifically, there are 5 to 6 cases where a deep learning

solution is better, versus 4 to 5 cases where the TPGr+SBBr solution is better. For

average results from the TPGr+SBBr runs, a champion is expected to score around

86% of that scored by the strongest listed competitor.

64

Table 6.3: Scores obtained from the best GP and TPGr+SBBr agents (based on
mean, GP 4 and TPGr+SBBr 4), as well as the mean of the TPGr+SBBr cham-
pion scores over the five runs, all compared to results from [34]. Results listed as
ours
theirs

where ours is a results from the runs in this thesis and theirs is a result from
an algorithm evaluated in [34], so a value of > 1 means a result from this thesis
outperformed the comparative algorithm. ours are calculated over 100 episodes in
Bipedal-Walker-v3, whereas theirs are evaluated over 1,000 in Bipedal-Walker-v2.
The only difference between v2 and v3 is a slight change in how the “lidar sensors”
worked. Underlined are the portions relating to the strongest competitor (DSP°).

Algorithm GP Best TPGr+SBBr Best TPGr+SBBr Mean

DSP° [34] 0.94 0.92 0.86

TRPO [51] 0.95 0.92 0.86
TD3 [15] 0.95 0.93 0.87
SAC [20] 0.96 0.94 0.87
ACKTR [70] 0.98 0.96 0.90

PPO [52] 1.03 1.00 0.94

DSP [34] 1.11 1.09 1.02
Zoo [49] 1.11 1.09 1.02
A2C [42] 1.22 1.19 1.11
DDPG [40] 3.23 3.05 2.85

Action Selection

The selected champion for each run type makes use of the action space in different

ways, though with some similarities, as can be seen in Figure 6.12. Each agent engages

in some sort of cyclical pattern for each used limb, and in general each agent only

controls 2 or 3 limbs (GP seems to slightly make use of a 4th limb).

For the multi-program/learner solutions (SBBr, TPGr, and TPGr+SBBr), sur-

prisingly of the top champion for each run type, none of them make use of more than

one learner (at-least in the first 200 frames measured). Essentially these solutions

could be simplified into single program solutions. This suggests that SBBr, TPGr,

and TPGr+SBBr are acting as “surrogate” environments from which different action

programs are ‘incubated’. The bidding programs are ultimately not necessary, aside

from helping build towards the single program solutions. This is interesting as it

means that the SBBr/TPGr/TPGr+SBBr formulations are not getting in the way of

discovering simple solutions to a task, although TPGr could be left out of this group

since it failed to produce adequate agents.

65

Hip #1

Knee #1

Hip #2

Knee #2

GP

Hip #1

Knee #1

Hip #2

Knee #2

Learner

SBBr

Hip #1

Knee #1

Hip #2

Knee #2

Learner

TPGr

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Frame

Hip #1

Knee #1

Hip #2

Knee #2

Learner

TPGr+SBBr

-1 0 1
Activation Level

Action Space Activation Levels

Figure 6.12: Activation levels (torques applied) to each joint throughout the first
200 frames of an episode. SBBr, TPGr, and TPGr+SBBr run types show activation
for which learner is in use at a given time (though none of them make use of different
learners).

66

The average GP and TPGr runs were not able to discover these simple effec-

tive solutions (though not to be forgotten is that the single highest scoring agent

(based on mean) was from a GP run). Thus, the decomposition component of the

SBBr/TPGr+SBBr formulations appears to provide a ‘surrogate learning environ-

ment’ for discovering such effective solutions. The function of the bidding programs

appears to be to initially decompose the task, so encouraging the identification of

useful action programs. As the action programs become more capable, the role of the

bidding programs decreases. Conversely, neither GP (typically) or TPGr were able

to support such a process.

In Table 6.4, the number of learners in total and the number actually used by each

champion is shown. From this we can see that every run deemed the best previously

only makes use of a single learner. In fact, for each run type, the run that is deemed

the best has the least amount of learners in total, and generally the least amount of

total instructions. The best solution from GP makes use of 72 instructions per time-

step, the best from SBBr uses 157, the best from TPGr used 847, and the best from

from TPGr+SBBr used 423 instructions per time-step. Note however that since all of

these best solutions only make use of a single action program, most of the instructions

used are from the unnecessary bid programs, further reducing the amount (averaging

about 25-40 instructions per action program in general according to Figure 6.4).

Even with all of the extra instructions, these solutions end up less complex than

the comparative neural net solutions. One such solution from Ha makes use of a

relatively simple fully connected neural network, using 24 input nodes, 2 hidden

layers of 40 nodes each, and 4 output nodes [19]. Therefore at each time-step, the

equivalent of 5,524 instructions are executed (2,720 from weight multiplications, 2,720

elements to sum together, and 84 activation functions). Even with using the “extra”

bid instructions from the TPGr+SBBr best solution, the neural net solution is still on

the order of 10 times more complex, even on the order of 100 times more complex if

counting only the action instructions. Though this neural network solution performs

extraordinarily well, better than any benchmark solution mentioned in Table 6.3,

with an average score of 347, meaning our average TPGr+SBBr solution performs

77% as well.

Figure 6.13 shows renders of how the different champions behave. Some general

67

Table 6.4: The number of learners and instructions in the champion of each run,
both the total and the amount actually used in an evaluation episode. Underlines
represent the run previously deemed as the best for that run type.
Run Type Count Run 1 Run 2 Run 3 Run 4 Run 5

GP Inst. Total/Used 28 34 16 72 13

SBBr Learners Total 2 2 9 6 5
SBBr Learners Used 1 1 1 1 1

SBBr Inst. Total 170 110 669 338 486
SBBr Inst. Used 157 104 420 277 222

TPGr Learners Total 71 19 110 19 22
TPGr Learners Used 5 4 6 1 2

TPGr Inst. Total 4,086 1,115 3,902 1,131 995
TPGr Inst. Used 2,067 503 1,134 847 332

TPGr+SBBr Learners Total 12 12 19 8 9
TPGr+SBBr Learners Used 2 1 2 1 1

TPGr+SBBr Inst. Total 616 605 599 456 460
TPGr+SBBr Inst. Used 375 517 476 423 275

principals are followed by all agents, such as a kneeling gait, and a backwards tilt.

The GP agent takes many small but steady steps. SBBr performs erratically. TPGr

and TPGr+SBBr both make use of a longer lunge style gait.

Future research might consider how solutions from the Bipedal-Walker-v3 task

(as used here) could be transferred to the ‘Hardcore’ version of this task, or indeed

form the basis for 3D versions of bipedal walking. However, recent results with the

‘Hardcore’ version of the Bipedal-Walker-v3 task (e.g. [66]) have required computing

platforms that deploy hundreds of cores to discover appropriate solutions.

68

(a) GP

(b) SBBr

(c) TPGr

(d) TPGr+SBBr

Figure 6.13: Renders of the selected champion from each run type. GP render taken
over 21 frames, SBBr taken over 40, TPGr over 36, and TPGr+SBBr taken over 47.

Chapter 7

Conclusion

7.1 Summary

7.1.1 Algorithm Improvements

TPG has been updated to make use of real valued actions through the use of action

programs (TPGr). Granting TPG real valued actions allows it to be used in new sets

of environments which require real valued actions, such as robotics and various other

control tasks.

Also, action programs have been demonstrated to improve performance on envi-

ronments which require discrete actions, by generating multiple discrete actions per

state. Such an approach to problem decomposition allows TPGr to potentially create

more efficient solutions, given that a single action program could theoretically cover

the entire required action space, whereas with TPGd, at-least one program is required

for each discrete action.

In addition to analyzing real valued actions in TPG, various approaches to di-

versity maintenance have been evaluated. This includes making use of new SBBr

sub-populations within a TPGr run (unique to this thesis), curriculum learning from

cycling through tasks in random order [56, 58], and rampancy, a process of repeated

mutation [1].

7.1.2 ViZDoom Experiments Summary

Through the ViZDoom set of tasks, action programs from TPGr were used to gener-

ate multiple simultaneous discrete actions per state, to compare against the original

TPGd formulation that was limited to single discrete actions per state (action pro-

grams vs action labels). Of the five tasks that the agents were required to simultane-

ously learn, TPGr was able to learn four tasks better than TPGd. Moreover, when

69

70

it came to agents generalizing over 3, 4 and 5 tasks simultaneously, TPGr was signif-

icantly better in all task combinations. Moreover, the development of TPG graphs

was such that TPGr also resulted in simpler solutions (less instructions).

7.1.3 Bipedal Walker Experiment Summary

In the bipedal walker task, actions programs are a necessary prerequisite for solving

the task, i.e. the original TPGd formulation cannot be applied to the task (with-

out discretization or other forms of “preprocessing” which ultimately limits the ex-

plorable action space and creates more hyper-parameters). Agents were discovered

which were capable of solving the environment at times (300+ points), and which

could consistently walk through the entire terrain (though not always meeting energy

requirements necessary to solve the task). Results from TPGr+SBBr on average have

been shown to be competitive with some deep learning results, while not requiring

computational acceleration through hardware such as GPUs.

TPGr+SBBr on average produced better solutions than other tested algorithms,

both in terms of consistency with which solutions were discovered and in terms of

solution simplicity (effectively single programs with in the order of 70 instructions).

GP performed the next best, with similarly small programs. TPGr performed the

worst and had the largest overall size (lots of learners and teams). This suggests

that its not the structure of TPGr+SBBr agents that made it successful, more so the

search process. Likewise the mechanism assumed for maintaining diversity was also

important, with the periodic injection of new material from SBBr sub-populations

providing the basis for new learner material for incorporation into TPGr.

7.2 Future Work

Future research might also consider the case of GP or SBBr with restarts, given the

success of the approach with TPGr+SBBr. A conventional restart policy resets the

entire population using restarts as more of a full reset than as a method to add new

genetic diversity [60]. Abstaining from crossover, the GP reset runs would follow this

conventional reset method, SBBr could be tested in this way as well.

The hardcore version of BipedalWalker-v3 could also be used in the future, which

opens up more results to compare to. Moreover, having already evolved solutions

71

to the “regular” walker, these solutions could potentially be transferred to the more

difficult version of the task. This might provide a more complex environment that

makes use of the graph like properties of TPGr, while avoiding the considerable com-

putational resources assumed in alternative neural network approaches as assumed

to date.

A method of diversity maintenance to consider in the future in Quality Diversity

(QD), which has been shown to be effective in various tasks [37]. QD goes beyond

fitness based evolution in also considering diversity. Essentially, the more distinctly

an agent behaves, the less likely it is to be removed from the population, even with

a relatively poor fitness value. This approach can help get around local minima

in the fitness search. In bipedal walker for example, the diversity criteria could be

the average height of the hips, frequency of steps, average speed, or energy usage.

Hopefully this method can help to consistently create agents which can solve the

bipedal walker task (hardcore or not).

Bibliography

[1] Caleidgh Bayer, Ryan Amaral, Robert J. Smith, Alexandru Ianta, and Malcolm I.
Heywood. Finding simple solutions to multi-task visual reinforcement learning
programs with tangled program graphs. In Genetic Programming Theory and
Practice XVIII. Springer, 2021.

[2] Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf. Deep
reinforcement learning on a budget: 3d control and reasoning without a super-
computer. In Proceedings of the International Conference on Pattern Recognition,
pages 158–165. IEEE, 2020.

[3] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[4] Markus Brameier and Wolfgang Banzhaf. A comparison of linear genetic pro-
gramming and neural networks in medical data mining. IEEE Transactions on
Evolutionary Computation, 5(1):17–26, 2001.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[6] Carlos A. Coello Coello. Evolutionary multi-objective optimization: a historical
view of the field. IEEE Computational Intelligence Magazine, 1(1):28–36, 2006.

[7] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simu-
lation for games, robotics and machine learning. http://pybullet.org, 2016–
2020.

[8] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evo-
lutionary Computation, 6(2):182–197, 2002.

[9] Kalyanmoy Deb and David E. Goldberg. An investigation of niche and species
formation in genetic function optimization. In Proceedings of the International
Conference on Genetic Algorithms, pages 42–50. Morgan Kaufmann, 1989.

[10] Janez Demsar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1–30, 2006.

[11] Karol Desnos, Nicolas Sourbier, Pierre-Yves Raumer, Olivier Gesny, and Maxime
Pelcat. Gegelati: Lightweight artificial intelligence through generic and evolvable
tangled program graphs. In Tomasz Kryjak and Andrea Pinna, editors, DASIP

72

http://pybullet.org

73

’21: Workshop on Design and Architectures for Signal and Image Processing,
pages 35–43. ACM, 2021.

[12] John A. Doucette, Peter Lichodzijewski, and Malcolm I. Heywood. Hierarchical
task decomposition through symbiosis in reinforcement learning. In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 97–104. ACM,
2012.

[13] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking deep reinforcement learning for continuous control. CoRR,
abs/1604.06778, 2016.

[14] A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing,
Second Edition. Natural Computing Series. Springer, 2015.

[15] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approx-
imation error in actor-critic methods. In ICML, pages 1582–1591, 2018.

[16] George Gerules and Cezary Z. Janikow. A survey of modularity in genetic pro-
gramming. In IEEE Congress on Evolutionary Computation, pages 5034–5043.
IEEE, 2016.

[17] David E. Goldberg and John H. Holland. Genetic algorithms and machine learn-
ing. Machine Learning, 3:95–99, 1988.

[18] Faustino J. Gomez and Risto Miikkulainen. Incremental evolution of complex
general behavior. Adaptive Behavior, 5(3-4):317–342, 1997.

[19] David Ha. Reinforcement Learning for Improving Agent Design. Artificial Life,
25(4):352–365, 11 2019.

[20] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. 2017.

[21] Malcolm I. Heywood and Peter Lichodzijewski. Symbiogenesis as a mechanism
for building complex adaptive systems: A review. In Applications of Evolutionary
Computation, Part I, volume 6024 of Lecture Notes in Computer Science, pages
51–60. Springer, 2010.

[22] Gregory S Hornby. On run time libraries and hierarchical symbiosis. In Proceed-
ings of the Genetic and Evolutionary Computation Conference, pages 795–802.
ACM, 2009.

[23] Alexandru Ianta, Ryan Amaral, Caleidgh Bayer, Robert J. Smith, and Malcolm I.
Heywood. On the impact of tangled program graph marking schemes under
the atari reinforcement learning benchmark. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 111–119. ACM, 2021.

74

[24] Stephen Kelly and Malcolm I. Heywood. Emergent tangled graph representations
for atari game playing agents. In European Conference on Genetic Programming,
volume 10196 of LNCS, pages 64–79. Springer, 2017.

[25] Stephen Kelly and Malcolm I. Heywood. Multi-task learning in atari video games
with emergent tangled program graphs. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, pages 195–202. ACM, 2017.

[26] Stephen Kelly and Malcolm I. Heywood. Discovering agent behaviors through
code reuse: Examples from half-field offense and ms. pac-man. IEEE Trans.
Games, 10(2):195–208, 2018.

[27] Stephen Kelly and Malcolm I. Heywood. Emergent solutions to high-dimensional
multitask reinforcement learning. Evolutionary Computation, 26(3):378–380,
2018.

[28] Stephen Kelly, Peter Lichodzijewski, and Malcolm I. Heywood. On run time
libraries and hierarchical symbiosis. In Proceedings of the IEEE Congress on
Evolutionary Computation, pages 1–8. IEEE, 2012.

[29] Stephen Kelly, Jacob Newsted, Wolfgang Banzhaf, and Cedric Gondro. A mod-
ular memory framework for time series prediction. In Carlos Artemio Coello
Coello, editor, GECCO ’20: Genetic and Evolutionary Computation Conference,
Cancún Mexico, July 8-12, 2020, pages 949–957. ACM, 2020.

[30] Stephen Kelly, Robert J. Smith, Malcolm I. Heywood, and Wolfgang Banzhaf.
Emergent tangled program graphs in partially observable recursive forecasting
and ViZDoom navigation tasks. ACM Transactions on Evolutionary Learning
and Optimization, 1, 2021.

[31] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech
Jaskowski. ViZDoom: A Doom-based AI research platform for visual reinforce-
ment learning. In IEEE Conference on Computational Intelligence and Games,
pages 1–8. IEEE Press, 2016.

[32] Lukasz Kidziński, Carmichael Ong, Sharada Prasanna Mohanty, Jennifer Hicks,
Sean Carroll, Bo Zhou, Hongsheng Zeng, Fan Wang, Rongzhong Lian, Hao
Tian, Wojciech Jaśkowski, Garrett Andersen, Odd Rune Lykkebø, Nihat En-
gin Toklu, Pranav Shyam, Rupesh Kumar Srivastava, Sergey Kolesnikov, Oleksii
Hrinchuk, Anton Pechenko, Mattias Ljungström, Zhen Wang, Xu Hu, Zehong
Hu, Minghui Qiu, Jun Huang, Aleksei Shpilman, Ivan Sosin, Oleg Svidchenko,
Aleksandra Malysheva, Daniel Kudenko, Lance Rane, Aditya Bhatt, Zhengfei
Wang, Penghui Qi, Zeyang Yu, Peng Peng, Quan Yuan, Wenxin Li, Yunsheng
Tian, Ruihan Yang, Pingchuan Ma, Shauharda Khadka, Somdeb Majumdar,
Zach Dwiel, Yinyin Liu, Evren Tumer, Jeremy Watson, Marcel Salathé, Sergey

75

Levine, and Scott Delp. Artificial intelligence for prosthetics: Challenge solu-
tions. In Sergio Escalera and Ralf Herbrich, editors, The NeurIPS ’18 Competi-
tion, pages 69–128, Cham, 2020. Springer International Publishing.

[33] John R. Koza. Hierarchical genetic algorithms operating on populations of com-
puter programs. In Proceedings of the International Joint Conference on Artifi-
cial Intelligence, pages 768–774. Morgan Kaufmann, 1989.

[34] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago,
Ruben Glatt, Nathan Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering
symbolic policies with deep reinforcement learning. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 5979–
5989. PMLR, 18–24 Jul 2021.

[35] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nat.,
521(7553):436–444, 2015.

[36] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. Scalable
muscle-actuated human simulation and control. ACM Trans. Graph., 38(4),
July 2019.

[37] Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary Computation, 19(2):189–223,
2011.

[38] Peter Lichodzijewski and Malcolm I. Heywood. Managing team-based problem
solving with symbiotic bid-based genetic programming. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 363–370. ACM, 2008.

[39] Peter Lichodzijewski and Malcolm I. Heywood. Symbiosis, complexification and
simplicity under GP. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pages 853–860. ACM, 2010.

[40] T. Lillicrap, Jonathan J. Hunt, A. Pritzel, N. Heess, T. Erez, Yuval Tassa, D. Sil-
ver, and Daan Wierstra. Continuous control with deep reinforcement learning.
CoRR, abs/1509.02971, 2016.

[41] Mikel Malagon and Josu Ceberio. Evolving neural networks in reinforcement
learning by means of umdac, 2019.

[42] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine Learning Research, pages
1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.

76

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529–533, 2015.

[44] Jared M. Moore, Catherine L. Shine, Craig P. McGowan, and Philip K. McKinley.
Exploring Bipedal Hopping through Computational Evolution. Artificial Life,
25(3):236–249, 2019.

[45] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor,
and Peter Stone. Curriculum learning for reinforcement learning domains: A
framework and survey. J. Mach. Learn. Res., 21:181:1–181:50, 2020.

[46] S. Ok, K. Miyashita, and K. Hase. Evolving bipedal locomotion with genetic
programming - a preliminary report. In Proceedings of the 2001 Congress on
Evolutionary Computation (IEEE Cat. No.01TH8546), volume 2, pages 1025–
1032 vol. 2, 2001.

[47] Miguel Oliveira, Lino Costa, Ana Rocha, Cristina Santos, and Manuel Ferreira.
Multiobjective optimization of a quadruped robot locomotion using a genetic
algorithm. In António Gaspar-Cunha, Ricardo Takahashi, Gerald Schaefer, and
Lino Costa, editors, Soft Computing in Industrial Applications, pages 427–436,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[48] Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen
Koltun. Sample factory: Egocentric 3d control from pixels at 100000 FPS with
asynchronous reinforcement learning. In Proceedings of the International Con-
ference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 7652–7662, 2020.

[49] Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/

rl-baselines3-zoo, 2020.

[50] Michael D. Schmidt and Hod Lipson. Age-fitness pareto optimization. In Proceed-
ings of the Genetic and Evolutionary Computation Conference, pages 543–544.
ACM, 2010.

[51] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In Francis Bach and David Blei,
editors, Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 1889–1897, Lille,
France, 07–09 Jul 2015. PMLR.

[52] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

77

[53] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneer-
shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[54] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George
van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game
of go without human knowledge. Nature, 550(7676):354–359, 2017.

[55] Robert J. Smith and Malcolm I. Heywood. Coevolving deep hierarchies of pro-
grams to solve complex tasks. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1009–1016. ACM, 2017.

[56] Robert J. Smith and Malcolm I. Heywood. Scaling tangled program graphs to
visual reinforcement learning in vizdoom. In European Conference on Genetic
Programming, volume 10781 of LNCS, pages 135–150. Springer, 2018.

[57] Robert J. Smith and Malcolm I. Heywood. Evolving Dota 2 Shadow Fiend bots
using genetic programming with external memory. In Genetic and Evolutionary
Computation Conference, pages 179–187. ACM, 2019.

[58] Robert J. Smith and Malcolm I. Heywood. A model of external memory for
navigation in partially observable visual reinforcement learning tasks. In Eu-
ropean Conference on Genetic Programming, volume 11451 of Lecture Notes in
Computer Science, pages 162–177. Springer, 2019.

[59] Robert J. Smith and Malcolm I. Heywood. Evolving a dota 2 hero bot with a
probabilistic shared memory model. In Wolfgang Banzhaf, Eric Goodman, Leigh
Sheneman, Leonardo Trujillo, and Bill Worzel, editors, Genetic Programming
Theory and Practice XVII, pages 345–366. Springer International Publishing,
2020.

[60] Michael Solano and Istvan Jonyer. Performance analysis of evolutionary search
with a dynamic restart policy. In David Wilson and Geoff Sutcliffe, editors, Pro-
ceedings of the Twentieth International Florida Artificial Intelligence Research
Society Conference, May 7-9, 2007, Key West, Florida, USA, pages 186–187.
AAAI Press, 2007.

[61] Lee Spector and Sean Luke. Cultural transmission of information in genetic
programming. In Annual Conference on Genetic Programming, pages 209–214.
Morgan Kaufmann, 1996.

[62] Peter Stone. Layered learning in multiagent systems - a winning approach to
robotic soccer. Intelligent robotics and autonomous agents. MIT Press, 2000.

78

[63] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, 2nd edition, 2018.

[64] Yujin Tang, Duong Nguyen, and David Ha. Neuroevolution of self-interpretable
agents. In Carlos Artemio Coello Coello, editor, Proceedings of the Genetic and
Evolutionary Computation Conference, pages 414–424. ACM, 2020.

[65] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja
Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexan-
der Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang,
Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina
McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu,
Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in starcraft
II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[66] Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune,
and Kenneth O. Stanley. Enhanced POET: open-ended reinforcement learn-
ing through unbounded invention of learning challenges and their solutions. In
Proceedings of the International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 9940–9951. PMLR, 2020.

[67] R. A. Watson and J. B. Pollack. Coevolutionary dynamics in a minimal substrate.
In Proceedings of the Genetic and Evolutionary Computation Conference, pages
702–709. Morgan Kaufmann, 2001.

[68] Krister Wolff and Mattias Wahde. Evolution of Biped Locomotion Using Linear
Genetic Programming. 10 2007.

[69] Matthew Wright. Providing real-valued actions for tangled program graphs un-
der the cartpole benchmkark. Master’s thesis, Dalhousie University, Faculty of
Computer Science, August 2020.

[70] Yuhuai Wu, Elman Mansimov, Roger B. Grosse, Shu Liao, and Jimmy Ba.
Scalable trust-region method for deep reinforcement learning using kronecker-
factored approximation. In NIPS, 2017.

[71] Yuxin Wu and Yuandong Tian. Training agent for first-person shooter game with
actor-critic curriculum learning. In Proceedings of the International Conference
on Learning Representations, 2017.

[72] Marek Wydmuch, Michal Kempka, and Wojciech Jaskowski. Vizdoom competi-
tions: Playing doom from pixels. IEEE Transactions on Games, 11(3):248–259,
2019.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Thesis Objectives
	Thesis Outline

	Background
	Reinforcement Learning
	Deep Reinforcement Learning

	Continuous Control
	Reinforcement Learning for Continuous Control

	Evolutionary Algorithms
	Overview
	Example

	Genetic Programming
	Overview
	Evolution
	Execution

	Symbiotic Bid Based Genetic Programming
	Overview
	Evolution
	Execution

	Tangled Program Graphs
	Overview
	Evolution
	Execution

	Real Valued Tangled Program Graphs
	Overview
	Implementation

	Diversity Maintenance
	Overview
	Intermittent SBBr Populations
	Curriculum learning
	Rampancy

	ViZDoom Experiments
	Overview
	Prior Results
	Experiment Parameterizations
	Memory
	Results
	Training
	Generalization
	Complexity

	Bipedal Walker Experiments
	Overview
	Prior Results
	Experiment Methodology and Parameterization
	Results
	Evolution Comparison
	Champion Comparison

	Conclusion
	Summary
	Algorithm Improvements
	ViZDoom Experiments Summary
	Bipedal Walker Experiment Summary

	Future Work

	Bibliography

