
A MACHINE LEARNING BASED FRAMEWORK FOR
USER-CENTERED INSIDER THREAT DETECTION

by

Duc C. Le

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

August 2021

Dalhousie University is located in Mi’kma’ki,
the ancestral and unceded territory of the Mi’kmaq.

We are all Treaty people.

© Copyright by Duc C. Le, 2021

Table of Contents

List of Tables . vi

List of Figures . viii

Abstract . xi

List of Abbreviations Used . xii

Acknowledgements . xiv

Chapter 1 Introduction . 1

1.1 Research Objectives . 3

1.2 Contributions . 4

1.3 Organization of the Thesis . 6

Chapter 2 Background and Related Work 7

2.1 Background . 7

2.2 Related Work . 10
2.2.1 Literature Surveys and Guidelines 10
2.2.2 Non-ML Detection Approaches 11
2.2.3 Machine Learning based Insider Threat Detection 13

2.2.3.1 Anomaly detection 13
2.2.3.2 Other ML based approaches 16

2.2.4 Related Cyber-security Problems 18

2.3 Summary . 19

Chapter 3 Overview of the Insider Threat Detection Framework 22

3.1 Framework Overview . 22

3.2 Summary . 26

Chapter 4 Data and Pre-processing 27

4.1 Data Sources . 27
4.1.1 CERT Insider Threat Test Datasets (CERT datasets) 28
4.1.2 Comprehensive, Multi-Source Cyber-Security Events (LANL

dataset) . 29

ii

4.1.3 TWOS (The Wolf of SUTD) Dataset 30

4.2 Data Extraction . 32
4.2.1 Data Aggregation . 32
4.2.2 User Profiles . 33
4.2.3 Feature Extraction . 33
4.2.4 Data Granularity . 37

4.3 Temporal Representation of Extracted Data 40
4.3.1 Concatenation . 41
4.3.2 Comparing to a Time Window – Percentile and Mean/Median

Difference Representations . 41

4.4 Comparisons of Data Extraction Approaches 42
4.4.1 Compare against Sequential Data Extraction 43
4.4.2 Compare against Time Series Data Extraction 44

4.5 Summary . 45

Chapter 5 Initial Detection Step – Anomaly Detection 46

5.1 Anomaly Detection System for Insider Threat 46

5.2 Unsupervised Machine Learning for Anomaly Detection 48
5.2.1 Autoencoder . 48
5.2.2 Isolation Forest . 49
5.2.3 LODA – Lightweight On-line Detector of Anomalies 50
5.2.4 Local Outlier Factor . 51
5.2.5 Combination of Anomaly Detection Scores 51

5.3 Experiment Settings . 52
5.3.1 Training the Anomaly Detection Algorithms 53
5.3.2 Performance Metrics . 53

5.4 Anomaly Detection Results . 54
5.4.1 Results by Learning Algorithms 60
5.4.2 Results by Data Representations 62
5.4.3 Results on Different Conditions for Training Anomaly Detec-

tion Algorithms . 63
5.4.3.1 Anomaly detection performance under training data

poisoning conditions 63
5.4.3.2 Effects of the number of users in training data 65
5.4.3.3 Effects of training data duration 65

5.4.4 Ensembles of Anomaly Detection Models 66

5.5 Discussions and Comparisons . 71

iii

5.5.1 Case Study of Anomaly Alerts 71
5.5.2 Detection Performance on Insider Threat Scenarios 72
5.5.3 Robustness of the Trained Models 73
5.5.4 Comparative Study . 73

5.6 Summary . 75

Chapter 6 Insider Threat Detection using Machine Learning . . . 76

6.1 Overview of the Insider Threat Detection System 76

6.2 Machine Learning for Data Analytics 79
6.2.1 Logistic Regression (LR) . 79
6.2.2 Neural Network (NN) . 79
6.2.3 Random Forest (RF) . 80
6.2.4 XGBoost (XG) . 80
6.2.5 Automatic Optimization of Classifier – TPOT 81

6.3 Experimental Evaluations . 82
6.3.1 Experiment Settings – Realistic training condition 83
6.3.2 ML Training Configuration and Parameterization 84
6.3.3 Performance Metrics . 85

6.4 Evaluation Results . 87
6.4.1 Results by Training conditions 87

6.4.1.1 Realistic vs Idealistic 87
6.4.1.2 Learning algorithm – Supervised vs Unsupervised . . 89

6.4.2 Results by Data Representations 89
6.4.3 Detection Performances by ML algorithms 93

6.4.3.1 TPOT results . 96
6.4.4 Results by Data Granularity Levels 97

6.4.4.1 Instance-based results 97
6.4.4.2 User-based results 99

6.5 Analysis of Insider Threat Scenarios 101
6.5.1 Scenarios 1 and 4 – Data Exfiltration 101
6.5.2 Scenario 2 – Intellectual Property Thief 101
6.5.3 Scenario 3 – IT Sabotage . 103
6.5.4 Traitors vs Masqueraders . 103
6.5.5 Data Granularity Effects . 103
6.5.6 Test Results on Different Organizational Data 104

6.6 Discussion . 105
6.6.1 DR - FPR trade-off . 105
6.6.2 Data Imbalance Problem . 106
6.6.3 Overfitting and Effect of Training Data 107

iv

6.6.4 Feature Analysis . 108

6.7 Summary . 108

Chapter 7 Semi-supervised Learning for Insider Threat Detection 111

7.1 Overview of the Semi-supervised Learning based Approach to Insider
Threat Detection . 111

7.2 Semi-supervised Learning Methods 113
7.2.1 Label Propagation . 113
7.2.2 Label Spreading . 114
7.2.3 Self-Training . 114

7.3 Label Availability for Semi-supervised Learning 115

7.4 Experiment Settings . 116

7.5 Evaluation Results . 117
7.5.1 Compare to Anomaly detection and Supervised learning . . . 120
7.5.2 Visualizing the Training Data 121
7.5.3 Data Granularity . 124
7.5.4 Anomaly Detection Algorithm 124
7.5.5 Effect of the Initially Labelled Training Set Size 125

7.6 Summary . 127

Chapter 8 Conclusion and Future Work 128

8.1 Conclusion . 128

8.2 Future Research Directions . 130

Bibliography . 132

v

List of Tables

4.1 Summary of the CERT datasets 29

4.2 Summary of the datasets . 36

4.3 Data granularity levels . 37

4.4 Summary of the extracted data 38

4.5 Temporal representation abbreviations for each dataset 41

5.1 Instance-based anomaly detection results with different investi-
gation budgets on CERT datasets 55

5.2 Instance-based anomaly detection results with different investi-
gation budgets on LANL and TWOS datasets 56

5.3 User-based anomaly detection results with different investigation
budgets on CERT R6.2 and LANL datasets 57

5.4 Instance-based and User-based AUCs by the combination schemes
on the CERT datasets . 67

5.5 Detection performance on specific insider threat scenarios . . . 73

6.1 Instance-based results: Realistic vs Idealistic 87

6.2 Instance-based results by Isolation Forest 89

6.3 Instance-based detection results by data representations 91

6.4 User-based detection results by data representations 92

6.5 Instance-based detection results by TPOT 94

6.6 User-based detection results by TPOT 95

6.7 Instance-based results by data granularity levels and ML algorithm 98

6.8 User-based results by data granularity levels and ML algorithm 98

6.9 User-based test results of the trained models on CERT R5.1 &
CERT R6.2 . 104

6.10 User-based results with Oversampling on user-session data . . . 106

vi

7.1 Detection results (AUC and DR) of the semi-supervised learning
algorithms under different data availability conditions 118

7.2 User-based detection results (UAUC and UDR) of the semi-
supervised learning algorithms under different data availability
conditions . 119

7.3 Anomaly detection and classification performances (AUC) for
comparison . 121

7.4 Detection results (AUC and DR) of the semi-supervised learning
algorithms under different data granularity levels 124

7.5 Detection results (AUC and DR) of the semi-supervised learning
algorithms under label availability scheme (iv) – anomaly scores
– with different anomaly detection algorithms 125

vii

List of Figures

2.1 Insider threat factors [29] . 8

2.2 Potential Consequences of an Insider Incident [31] 9

3.1 Overview of the proposed system 23

3.2 Data events to alerts and analysis 24

4.1 Data extraction process . 31

4.2 Histogram of actions by hour of day in a typical workday in
CERT dataset . 34

4.3 Illustration of the feature extraction process 35

4.4 Relationship between the duration and the number of actions
in user-session data . 39

4.5 Comparison of anomaly detection results (ROC and AUC) by
numerical and sequential data extraction approaches 44

5.1 Components of the proposed anomaly detection system 47

5.2 Demonstration of anomaly detection and threshold 48

5.3 An example of an autoencoder 49

5.4 ROCs of AE on R4.2 week data with different representations 58

5.5 ROCs of LOF on R6.2 day data with different representations 59

5.6 User-based ROC by learning algorithms on original R6.2 day
data . 60

5.7 Critical Difference (CD) diagrams of algorithms’ results by in-
stance and by user . 60

5.8 Average training time and prediction time per data instance of
the algorithms on different data 61

5.9 Critical Difference (CD) diagrams of results by data represen-
tations. 62

5.10 UAUC by number of malicious users in R4.2 training data . . 64

viii

5.11 UAUC by number of users in R4.2 training data 65

5.12 UAUC by number of weeks in R4.2 training data 66

5.13 ROCs by combination schemes and individual learning algo-
rithms (AE, IF) on CERT R4.2 data with P30 representation. 68

5.14 Critical Difference diagrams of results by learning algorithms
and ensembles . 69

5.15 UAUC of learning algorithms and ensembles under different
training conditions on CERT R4.2 day data. 70

5.16 UAUC of models trained on CERT R4.2 and R6.2 data when
tested on R6.2 . 74

6.1 Overview of the insider threat detection system 77

6.2 An example machine learning pipeline with components auto-
mated by TPOT [90] . 81

6.3 Instance-based F1-score by data types and algorithms under
realistic and idealistic training condition 88

6.4 Instance-based ROCs and AUCs of ML algorithms on user-week
and user-session data . 90

6.5 Critical Difference (CD) diagrams of results by ML algorithms 94

6.6 Instance-based F1-score by data and algorithms 95

6.7 Instance-based and user-based F1-score by data types and ML
algorithms . 97

6.8 Instance-based vs User-based ROCs and AUCs of RF on differ-
ent data granularity levels . 100

6.9 Insider threat scenario detailed results by RF 102

6.10 User-based F1-score on test data of “normal” train users and
unseen users . 107

6.11 Feature importance in user-session data 109

7.1 Overview of the proposed system for semi-supervised insider
threat detection . 112

7.2 Critical Difference (CD) diagrams of results by label availability
schemes and semi-supervised algorithms. 120

ix

7.3 t-SNE visualization of training data with labelled set selected
randomly . 122

7.4 t-SNE visualization of training data with labelled set selected
based on anomaly scores . 123

7.5 UAUC by the amount of initial labels randomly selected – label
availability scheme (i) . 126

7.6 UAUC by the amount of initial labels selected using anomaly
scores – label availability scheme (iv) 126

x

Abstract

Insider threat represents a major cyber-security challenge to companies, organiza-

tions, and government agencies. Harmful actions in insider threats are performed by

authorized users in organizations. Due to the fact that an insider is authorized to ac-

cess the organization’s computer systems and has knowledge about the organization’s

security procedures, detecting insider threats is challenging. Many other challenges

exist in this detection problem, including unbalanced data, limited ground truth, and

possible user behaviour changes. This research proposes a comprehensive machine

learning-based framework for insider threat detection, from data pre-processing, a

combination of supervised and unsupervised learning, to deep analysis and meaning-

ful result reporting.

For the data pre-processing step, the framework introduces a data extraction ap-

proach allowing extraction of numerical feature vectors representing user activities

from heterogeneous data, with different data granularity levels and temporal data

representations, and enabling applications of machine learning. In the initial detec-

tion step of the framework, assume no available ground truth, unsupervised learning

methods with different working principles and unsupervised ensembles are explored

for anomaly detection to identify anomalous user behaviours that may indicate in-

sider threats. Furthermore, the framework employs supervised and semi-supervised

machine learning under limited ground truth availability and real-world conditions

to maximize the effectiveness of limited training data and detect insider threats with

high precision. Throughout the thesis, realistic evaluation and comprehensive result

reporting are performed to facilitate understanding of the framework’s performance

under real-world conditions.

Evaluation results on publicly available datasets show the effectiveness of the

proposed approach. High insider threat detection rates are achieved at very low false

positive rates. The robustness of the detection models is also demonstrated and

comparisons with the state-of-the-art confirm the advantages of the approach.

xi

List of Abbreviations Used

AE AutoEncoder

APT Advanced Persistent Threat

AUC Area under the [ROC] Curve

CDF Cumulative distribution function

CERT Computer Emergency Response Team

Cγ concatenation of γ data instances

CI Confidence Interval

DD Detection Delay

DNS Domain Name Service

DR Detection Rate

Ew mean difference data representation with time window w

FPR False Positive Rate

GBAD Graph-Based Anomaly Detection

GMM Gaussian Mixture Model

HMM Hidden Markov Model

HTTP Hypertext Transfer Protocol

IB Investigation Budget

IF Isolation Forest

IT Information Technology

LANL Los Alamos National Lab

LDAP Lightweight Directory Access Protocol

LODA Lightweight on-line detector of anomalies

LOF Local Outlier Factor

LP Label Propagation

LR Logistic Regression

LS Label Spreading

ML Machine Learning

Mw median difference data representation with time window w

xii

NN Neural Network

Pw percentile data representation with time window w

RF Random Forest

ROC Receiver Operating Characteristic

ST Self Training

SVM Support Vector Machine

TPOT Tree-based Pipeline Optimization Tool

TWOS The Wolf of Singapore University of Technology and Design

[dataset]

XG Extreme Gradient Boosting

xiii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors,

Dr. Nur Zincir-Heywood and Dr. Malcolm I. Heywood, for their continuous support,

guidance, and encouragement. Their guidance and words of encouragement always

inspire me to do my best. I would not be capable of being the person I am today

without their support and faith in me.

I also would like to thank the rest of my thesis committee: Dr. Mohammad

Zulkernine, Dr. Srinivas Sampalli, and Dr. Andrew McIntyre, for generously offering

their time, expertise, and insightful comments.

I greatly appreciate the financial support from the Killam Trusts, Nova Scotia

Government, Dalhousie University, and Mitacs. My gratitude extends to Interset at

Micro Focus for the internship opportunity to apply the research in this thesis. This

research was enabled in part by computing resources provided by Compute Canada.

With great pleasure, I would like to thank my family for unceasing encouragement

and support throughout my life. Thank you, mom, for raising me and for all your

sacrifices to allow my pursuits. Last but not least, I want to thank my wife, Thao

Vo, for her support, companionship, and great food. I am truly thankful for having

her in my life.

xiv

Chapter 1

Introduction

Insider threat is one of the most dangerous and prevalent security threats that various

institutions, companies and government agencies are facing, where the malicious acts

are performed by authorized personnel inside the organization. Due to the fact that

insiders are authorized to access an organization’s networked systems and are knowl-

edgeable about its structure and security procedures, an insider threat is one of the

most costly types of attacks and hardest to detect. Cyber-security reports show that

at least a half of U.S. companies and public sector organizations (e.g. federal agen-

cies) suffer from insider threats every year [83,102]. With the rise of remote working

and cloud computing, organizations are even more exposed to insider threats. Recent

surveys show that 68% of organizations think that insider attacks have become more

frequent, and 70% have experienced at least one insider attack within the last 12

months [32]. The overall cost of insider threat incidents is measured at an average of

$11.45 million per organization researched in a 2020 report [96]. The leading factors

contributing to the increase in insider threats are: Increased use of applications that

can leak data (e.g. web emails), increased amount of data that leaves the protected

perimeter of an organization under ‘normal’ use cases, more end-user devices, and

migration of sensitive data to the cloud [32].

The insider threat is defined in a recent technical report by the CERT Insider

Threat Center as threats that are carried out by malicious or unintentional insiders,

whose authorized access to the organization’s network, system, and data is exploited

to negatively affect the confidentiality, integrity, availability, or physical well-being of

the organization’s information, information systems, or workforce [105]. Some insider

threat related incidents reported, to date, are data compromisation, such as customer

records, trade secrets or intellectual property, theft of personally identifiable informa-

tion, and IT system sabotage [31, 105]. Not only may insider threats directly cause

operational disruption / outage, loss of critical data, and incurring remediating costs,

1

2

but the impact of insider threats may also result in loss of revenue and competitive

edge, brand damage, and legal liabilities [32, 96]. Furthermore, the impact of insider

threat is potentially multiplied by the delay in detection, due to the challenges in

detecting insider threats. Reports show that detecting and containing insider attacks

takes 77 days on average [96], and in 42% of the cases, remediation is after data loss

has occurred [32]. In short, insider threat poses a serious cyber-security challenge,

which needs to be addressed with high priority to ensure the continued security of

such systems and therefore an organization’s functionality.

Distinct from traditional intrusion detection tasks, many challenges of insider

threat detection come from the fact that the insider is authorized to access the or-

ganization’s computer systems and has familiarity with the organization’s security

layers. Furthermore, in most organizations, the activities of insiders with malicious

intent occur infrequently. Thus, data available to describe the activity is usually rare

and not well-documented [7]. Finally, challenges of insider threat detection may arise

from the need to process and investigate a wide range of data types in organizational

environments, from network traffic, web and file access logs, to email history, or em-

ployee information. The available data also differs significantly by organization. The

detection problem is further complicated by the recent trend towards migrating ser-

vices to the cloud and remote working. Hence only a small fraction of organizations

have tools and (the human) resources to interpret user’s behaviour and intent from

the monitoring data collected [32,83].

This thesis presents a machine learning (ML) based system that focuses on user-

centered analysis for insider threat detection, which aims to present a complete ML

based insider threat detection solution. We propose and evaluate a workflow for user-

centered insider threat detection, from data collection and pre-processing, anomaly

detection, to data analysis using ML classification models, and alert reporting and

analysis. The proposed system aims to assist cyber-security analysts while employing

minimal data labelling overheads (unsupervised learning) or working under limited

ground truth conditions to identify threats in unknown data, and provide useful

insights to insider threat remediation.

3

1.1 Research Objectives

The main objective of this research is to propose and evaluate a ML based framework

with different stages of insider threat detection in corporate and organizational envi-

ronments. Based on real-world conditions for insider threat detection, the research

aims to emphasize the use of machine learning with no ground truth (without labelled

data) and with very limited ground truth for anomalous behaviours and insider threat

detection. To this end, the following objectives are studied on different data sources

that were publicly available to researchers.

1. Exploring data processing techniques to extract data with rich details describing

user activities from heterogeneous organizational data sources.

2. Assessing the impacts of different levels of data granularity, in terms of insider

detection performance and response time.

3. Exploring different temporal representations of data to highlight user behaviour

changes, in order to improve detection effectiveness.

4. Examining unsupervised ML techniques for identifying signs of anomalous be-

haviours that may indicate insider threats. This is the initial and important

detection step in cyber-security workflow, where early signs of user behaviour

changes (anomaly) are flagged for further investigation, potentially to detect

both known and unknown (zero-day) attacks/vulnerabilities.

5. Exploring anomaly detection ensembles based on different schemes of combin-

ing anomaly detection methods, in order to enhance detection capabilities and

robustness.

6. Investigating different conditions for the application of ML to insider threat

detection. Realistic limitations are adopted in order to obtain results reflect-

ing real-world environments and highlight the differences compared to training

under ideal (typical ML) conditions. Furthermore, impacts of different factors,

e.g. training data poisoning, number of users in training data, and the duration

of training data, are examined.

4

7. Investigating the effect of various supervised and semi-supervised machine learn-

ing algorithms on insider threat detection, under different situations reflecting

real-world cases, in order to maximize the effectiveness of limited labelled train-

ing data.

1.2 Contributions

The main contribution of this thesis is the design and evaluation of a complete insider

threat detection framework based on machine learning, from data pre-processing to

initial detection using anomaly detection, and insider threat classification under real-

istic conditions including the constraints faced in practice in organizations. In doing

so, the contributions of this thesis can be summarized as follows.

1. A complete system, from processing raw log data, a combination of supervised

and unsupervised learning, to deep result analysis, is proposed to assist the

cyber-security analyst in all phases of data monitoring and analysis for insider

threat detection.

2. The research comprehensively assesses the effect of different data granularity

levels and training conditions of ML in insider threat detection. Furthermore,

different representations of data, namely concatenation, percentile, mean and

median difference, are introduced for ML-based anomaly detection algorithms,

where temporal information is encoded to highlight user behaviour changes.

3. Unsupervised machine learning approaches and unsupervised ensembles are in-

vestigated in anomaly detection, as an initial step in insider threat detection.

The proposed approach demonstrates the ability to generalize and detect mali-

cious insiders under very low investigation budgets, which achieves state-of-the-

art performance and robustness on insider threat detection and related prob-

lems.

4. Assuming limited available ground truth and training regimes with constraints

reflecting real-world conditions, supervised and semi-supervised machine learn-

ing algorithms are examined and shown to be able to improve detection precision

5

and accuracy. The approach allows learning from very limited data for insider

threat detection in unseen data at high recall and very low positive rates. Ad-

ditionally, automated model optimization based on evolutionary computation

is explored for further performance gains.

5. Comprehensive result reporting is performed at each step to adequately present

detection performance under real-world considerations. Per instance and per

user results are reported throughout the thesis, and malicious cases are inves-

tigated, for a better view of system performance. Furthermore, detection delay

metric is investigated to measure the elapsed time between malicious behaviour

and detection.

The performance of the proposed system is demonstrated on publicly available

datasets depicting insider threat and related activities. Several results have been

published in journals and conferences in related fields, such as network security and

management, cyber-security, artificial intelligence and machine learning [38,60–72].

The unsupervised machine learning / anomaly detection approaches to the initial

detection step have been published in [63, 66, 67, 69]. In [63], different approaches to

data extraction for machine learning for insider threat detection, namely sequential

and numerical data, were explored. In [66,69], the focus was to employ temporal rep-

resentations of data to achieve state-of-the-art detection performance using popular

anomaly detection techniques and ensemble approaches. Later detection steps are

presented in [61,65,67,70–72]. Specifically, in [65,71], machine learning classification

techniques are employed to examine effects of data granularity levels, and limited

training conditions, as well as to perform malicious behaviour analysis. Feature re-

duction and transformation techniques are examined in [38, 67]. On the other hand,

genetic programming based approaches are examined in [60, 61] for insider threat

detection under dynamic conditions of feature and label spaces. Finally, in [72], we

further examine the ability of machine learning under real-world conditions and con-

straints for insider threat detection via different training regimes for a semi-supervised

learning based approach.

6

1.3 Organization of the Thesis

The thesis is structured into eight chapters, as follows.

Chapter 2 provides background information and reviews the literature on insider

threat detection and related cyber-security problems. While ML has been adopted

widely for insider threat in the literature, different issues are identified and presented

in the chapter, along with the research gaps addressed in this thesis.

Chapter 3 presents an overview of the proposed system, from data sources, pre-

processing, to initial detection and classification, to result reporting and analysis.

Chapter 4 details the employed datasets and pre-processing steps to enable ma-

chine learning applications. Data extraction approaches, sequential and numerical,

are compared in this chapter. Furthermore, this chapter introduces different levels of

data granularity and temporal representations of data.

Chapter 5 describes anomaly detection approaches based on unsupervised ma-

chine learning for identifying signs of anomalous behaviours that may indicate in-

sider threats. This is the initial and important detection step in cyber-security

workflow, where early signs of user behavioural changes (anomaly) are flagged for

further investigation, potentially to detect both known and unknown (zero-day) at-

tacks/vulnerabilities.

Chapter 6 details the use of supervised machine learning on multiple levels of data

granularity and realistic conditions for identifying not only malicious behaviours, but

also malicious insiders. Detailed analysis of popular insider threat scenarios with

different performance measures is presented in this chapter to facilitate the realistic

estimation of system performance.

Chapter 7 presents a semi-supervised learning approach to insider threat detection

under different training regimes reflecting limited real-world conditions. These include

obtaining the initial ground truth data through random sampling versus knowledge of

a certain type of insider malicious behaviour or by anomaly detection system scores.

Finally, Chapter 8 wraps the thesis by providing conclusions summarizing the

research and discusses possible future research directions.

Chapter 2

Background and Related Work

Insider threat detection is a challenging research problem, not only to the research

community but also to government agencies and cyber-security firms. Thus, research

into insider threat detection and related cyber-security issues attracted a lot of atten-

tion in recent years. This chapter presents background on the insider threat problem

and related work from recent literature.

2.1 Background

Insider threat is defined in a guide to mitigation by the US’s Cyber-security and

Infrastructure Security Agency [31] as:

“the potential for an insider to use their authorized access or special understand-

ing of an organization to harm that organization. This harm can include malicious,

complacent, or unintentional acts that negatively affect the integrity, confidentiality,

and availability of the organization, its data, personnel, facilities, and associated re-

sources”.

In that, an insider is “any person who has or had authorized access to or knowledge

of an organization’s resources, including personnel, facilities, information, equipment,

networks, and systems” [31].

Figure 2.1 [29] show a summary the factors involved in insider threat, from individ-

uals, organization’s assets, to insiders’ actions and their consequences. The defining

characteristic of insider threat is authorized access entitled to a current or former

employee, contractor, or business partner, by that harmful actions are performed.

Insider threats can be intentional or unintentional. Intentional insiders, or ma-

licious insiders, carry out actions that harm an organization for personal benefit or

to act on a personal grievance intentionally. Common factors that lead to mali-

cious insider actions are perceived grievance, ambition, financial pressures, or even

perceived public good. Insider IT sabotage and workplace violence may originate

7

8

Figure 2.1: Insider threat factors [29]

from disgruntlement, which in turn is possibly the result of termination or unmet

expectations (e.g. insufficient salary increase or bonus, diminished authority or re-

sponsibilities, perception of unfair work requirements) [105]. In many cases, malicious

insiders have stolen proprietary data or intellectual property to advance their careers,

or to benefit their new organizations. Insiders may also collaborate with an external

threat actor to compromise an organization (collusion). These incidents frequently

involve cyber-criminals recruiting an insider to enable fraud, intellectual property

theft, espionage, or a combination of the three [31]. In 2020, more than a quarter

of insider threat cases recorded by the CERT National Insider Threat Center involve

collusion [86].

Unintentional insiders are an organization’s personnel who bear them no malice

but whose actions unintentionally expose the organizations to risk in some way [48].

The source of unintentional insider threat can be negligent or accidental acts. Negli-

gent insiders may expose an organization to a threat by their lack of good judgment

or carelessness. Insiders of this type are generally familiar with security and/or IT

9

Figure 2.2: Potential Consequences of an Insider Incident [31]

policies but choose to ignore them, creating risk to the organization. Examples in-

clude improper use and management of personal equipment, misplacing or losing a

portable storage device containing sensitive information, and ignoring messages to

install new updates and security patches [31,48]. On the other hand, accidental unin-

tentional insider threat is the potential unintended risk to an organization, caused by

mistakes of oblivious or näıve employees. Examples include accidental disclosure (e.g.

via the internet) of sensitive information, sending sensitive information to the wrong

party via email, unknowingly or inadvertently clicking on a hyperlink or opening an

attachment that contains a virus within a phishing email, or improperly disposing of

sensitive documents [31].

Figure 2.2 [31] lists some potential consequences of an insider incident. Losses

from insider threat may result from physical damage to infrastructure, disruption

of productivity, intellectual property theft, accidental leakage of sensitive data, or

insult to an organization’s reputation [31]. The severity and financial damage caused

by insider threat also come from the time it takes to contain an insider incident.

For example, a recent survey shows that incidents that took more than 90 days to

contain cost organizations $13.71 million on an annualized basis, while incidents that

lasted less than 30 days cost roughly half, at $7.12 million [96]. The same survey

also indicates that it takes an average of more than two months to contain an insider

incident.

While employee training and education programs may prevent or reduce the preva-

lence of some types of insider threats, such as negligent acts, many factors leading to

insider threats are unavoidable in organizational environments. For example, orga-

nizations can successfully work to minimize accidents, but they will occur and may

10

not be completely prevented [31]. Because of the damage and urgency, research into

insider threat detection is greatly needed. In the following section, we summarize the

literature in this field.

2.2 Related Work

In this section, firstly the literature surveys and general guidelines to insider threat

detection and mitigation are presented in Section 2.2.1. As the focus of this thesis is

machine learning applications in insider threat detection, we quickly discuss non-ML

based research in this field in Section 2.2.2, before focusing on ML based approaches

in Section 2.2.3. Finally, related cyber-security problems, such as user identification

and lateral movement detection, are mentioned in Section 2.2.4.

2.2.1 Literature Surveys and Guidelines

Addressing the rising problem of insider threats, many guides are published to pro-

mote best cyber-security practices for preventing and detecting insider threats [30,31,

87, 105, 111]. The CERT National Insider Threat Center publishes “Common Sense

Guide to Mitigating Insider Threats”, currently in its sixth edition [105]. The guide-

line describes 21 practices that organizations should implement across the enterprise

to prevent and detect insider threats, as well as case studies of organizations that

failed to do so. Examples are “Know and protect your critical assets”, “Monitor

and respond to suspicious or disruptive behaviour”, and “Enforce separation of du-

ties and least privilege” [105]. Each practice includes challenges to implementation,

high-impact solutions for small and large organizations, and is mapped to relevant

security standards. The guide focuses on six groups within an organization – Hu-

man Resources, Legal, Physical Security, Data Owners, Information Technology, and

Software Engineering – and maps the relevant groups to each practice.

Recently, an insider threat mitigation guide is published by the US’s Cyber-

security and Infrastructure Security Agency [31]. The guide provides up-to-date defi-

nitions of insider threat and relevant factors, and outlines the principles to build a suc-

cessful insider threat mitigation program. Not only indicators to detect and identify

insider threats are presented, but the guide also outlines steps to assess and manage

insider threats. In Canada, a recent guide by Public safety Canada [30] presents eight

11

recommended security actions to enhance Canada’s critical infrastructure resilience

to insider risk. The guide is organized into three main themes: “Establish a holistic

approach to security”, “know and empower your people”, and “identify and protect

what is critical”.

Earlier surveys [7, 48, 100] summarize the problem of insider attack and uninten-

tional insider threat in computer science literature. In [7], Azaria et al. presents

a multidisciplinary survey of insider threat capturing contributions from computer

scientists, psychologists, criminologists, and security practitioners, and highlights

the challenges in highly imbalanced data in insider threat detection. Recent sur-

veys, [52, 81], provide systematization of knowledge in the insider threat research

literature. In [81], Liu et al. reviewed insider threats and related cyber-security

problems, such as malware and advanced persistent threats. The survey is organized

around the advanced persistent threat (APT) intrusion kill chain and covers three

major types of insiders, namely traitor, masquerader and unintentional perpetrator.

The survey also discusses detection approaches from a data analytics perspective,

where the literature is presented according to host, network, or contextual data based

analytics. In [52], Homoliak et al. focus on a structural taxonomy and novel catego-

rization of insider threat related research. The work identified four main categories

of research and development efforts: Incidents and datasets, analysis of incidents,

simulations, and defence solutions.

2.2.2 Non-ML Detection Approaches

As the insider threat problem can be related to human factors, many researchers ap-

proach the problem using psychological models and decision-making theories [47, 74,

75, 91]. In [91], Padayachee et al. applied opportunity theories from criminology for

conceptualizing insider threats, as well as opportunity-reducing measures for assisting

insider threat mitigation. The evaluation in the paper focuses on proactive mitigation

strategy and seeks to conceptualize the element of opportunity for implementing infor-

mation security controls, such as increase the effort [of performing insider attack] (e.g.

control of access to facilities, target hardening), reduce the rewards (e.g. concealing

and removing targets, denying benefits [of successful attacks]), reduce provocations,

12

and reduce excuses. In [47], Greitzer et al. proposed a predictive modelling frame-

work that integrates multiple data sources and psychological/motivational factors for

assisting the data analyst in detecting high-risk behaviours. The framework performs

reasoning based on hierarchical ontological networks and a memory mechanism to

identify changes in user behaviours. The knowledge is represented using Ontology

Web Language in the work. However, the work did not perform an evaluation to

demonstrate the effectiveness of the proposed approach.

Legg et al. in [74] proposed a framework for modelling insider threats based on

behavioural and psychological observations. Based on a proposed conceptual model of

relationships between elements in four categories: Enterprise, information, technology

and physical, the framework allows an analyst to reason and describe potential insider

threats from different domains, such as human behaviours and organizational policies.

Nevertheless, the work lacks evaluations showing how such a model can be applied

successfully in real-world contexts. In [75], Legg et al. further explored the con-

ceptual model with multi-level anomaly alerts based on policy violations, previously

recognized attacks, or distance-based thresholds and deviations. The work defined a

tree-structure profiling approach to generate user and role-based profiles to describe

the users’ activities within an organization. Visualization techniques are applied to

highlight user activities for inspection and provide deviation measurement based on

comparison across peers and observations. Evaluations are performed on their own

synthetic datasets and an early version of the CERT insider threat dataset [24]. While

the number of generated alerts are presented in the results, the paper remains vague

in the actual detection performance of the system.

In [88], Nurse et al. introduced a modelling framework to characterize insider

attacks and to facilitate an understanding of the problem, its many components and

how they all fit together. The model is heavily dependent on experts knowledge in

the domain, which is acquired by manual investigation of insider threats accidents

case by case, over different contexts and organization structures. The framework

is useful for general understanding of the threat, and also for reflection, modelling

past attacks and looking for useful patterns. In [3], Agrafiotis et al. expanded the

framework and described a methodology for identification of behaviours of interest

from 120 insider attack case studies analyzed. Attack-pattern trees are designed to

13

highlight the possible paths that an attacker can follow for a specific threat. The

work suggests that constructed attack steps can be linked to features and anomaly

metrics to enhance detection systems.

Finally, in [51], Ho et al. focus on the interpretation of dynamic human infor-

mation behaviour in an organizational setting, which takes into account the trust-

worthiness and human sensors’ attribution in close relationships. Through a number

of propositions, the paper argues that the group can collectively attribute a shift in

trustworthiness – via communication cues – when an individual violates integrity-

based trust. The work demonstrated the application in an empirical experiment,

where a focal actor’s betrayal concealed in the deceptive activities were identifiable

through the group’s collective cognitive and communication.

2.2.3 Machine Learning based Insider Threat Detection

Considering the huge amount of data acquired daily in any organization, ML based

solutions are one of the most promising approaches for solving cyber-security chal-

lenges in the current era [13,21]. The advantage of ML is the ability to automatically

learn from a large amount of data and identify patterns potentially characterizing

malicious activities or anomalous behaviours.

2.2.3.1 Anomaly detection

Anomaly detection is a popular approach employing ML in insider threat detection,

where normal user behaviour models are built and anomalies are identified as devi-

ations from the normal behaviour. An anomalous alert, in this case, may indicate

changes in employee behaviours as a potential early indicator of insider threats.

A popular research direction for this problem is graph-based anomaly detec-

tion [17, 37, 40, 78, 92, 106]. Graphs are employed for their ability to capture and

model relationships, such as interactions between users and files. In [37], Eberle et

al. employed Graph-Based Anomaly Detection (GBAD) for insider threat detection.

GBAD takes input as a graph in which labelled vertices and edges represent entities

and relationships/actions between entities, respectively. Three possible changes to a

graph – modifications, insertions and deletions – are measured using the minimum

description length, which allows GBAD to discover anomalous instances of structural

14

patterns in graph data. The approach is evaluated using Enron email dataset and

cellphone traffic to identify interesting graph patterns. In [92], Parveen et al. ex-

panded the GBAD based learning approach with stream mining. Three varieties of

GBAD are employed to generate an ensemble of models, and stream mining is enabled

using the weighted average between the most recent data chunks. The approach is

evaluated on 1998 Lincoln Laboratory intrusion detection dataset of system calls and

demonstrated high detection rates at low false positive rates in stream settings.

In [17], Brdiczka et al. proposed a framework combining structural anomaly detec-

tion and psychological profiling for detecting insider threats. Graph analysis, dynamic

tracking, and machine learning are performed in structural anomaly detection step

to detect anomalies in network data, while psychological profiling step constructs dy-

namic psychological profiles from behavioural patterns. Threats are identified through

a fusion and ranking of outcomes from the two steps. The approach was evaluated on

an online gaming dataset (World of Warcraft) to detect anomalous behaviours (guild

quitting) and predict a player’s personality from in-game behaviour, achieved up to

89% accuracy.

Gamachchi et al. proposed a framework based on a graph learning and Isola-

tion Forest to analyze heterogeneous data in isolating possible malicious users [40].

Based on release R4.2 of the CERT insider threat dataset [24], the framework gen-

erates graph attributes from authentication and web access data. Isolation forest is

then employed to produce anomaly scores for individual users from graph extracted

features and features extracted directly from authentication, removable media usage

records, and psychometric scores. The work reported the distribution of anomaly

scores but failed to show the effectiveness of the approach in detecting malicious

users in the dataset.

Recently, in [78], Liu et al. presented an approach based on graph embedding for

detecting insider and related cyber threats. Heterogeneous graphs are generated based

on data sources and time, using a set of graph construction rules. Word2vec is then

employed to map log entries into low-dimensional vectors through context generated

from the heterogeneous graph using random walk. A clustering algorithm can then

be applied to the extracted data and thresholds are set to isolate the suspicious

log entries. The approach achieved Area Under the Curve (AUC) of 0.93 on CERT

15

dataset R6.2, and 0.91 on LANL dataset [55]. However, the evaluations are performed

only on subsets picked the datasets: On CERT R6.2, only 6 malicious users and 12

normal users (in total 4000 users) are included; on LANL dataset, only 50 (in 98)

malicious users and 90 (in 11K) normal users are included.

Another approach to anomaly detection is to model the sequences of user actions

and employ them to detect unusual sequences [97, 103]. A Hidden Markov Model

(HMM) was applied by Rashid et al. in [97] to capture each user’s normal weekly

activity sequences of common activities. Anomalous weekly action sequences are

detected by the model through log probability generated by the user’s HMM, and

each user’s HMM is updated by retraining with the week’s sequence if it is confirmed

to be normal. The approach is evaluated on CERT R4.2 dataset, in that 1000 HMMs

are maintained and updated every week for 1000 users in the dataset, and achieved

AUC of 0.83.

In [5], Aldairi et al. presented an approach to extract features from heteroge-

neous log data representing user activities periodically (daily to yearly). In addition

to extracted data features, the work employs trust scores based on anomaly scores

generated for each user in a previous cycle to train the detection model in each

cycle. Using two unsupervised learning algorithms – One class Support Vector Ma-

chine (SVM) and Isolation forest, the approach achieved AUC of 0.89 (daily) to 0.97

(yearly) on CERT R4.2 dataset. Nevertheless, the value of insider threat detection

under long periods (quarterly, yearly) is questionable, as with those data extraction

settings, detection would likely occur after all the damages happened. Furthermore,

reviewing a quarter or a year of an user activities to confirm an alert would be a

significant burden to the analyst.

Many insider threat detection systems, [17,41,41,45,101,103], were supported by

the U.S. Defense Advanced Research Projects agency’s project ADAMS1 – Anomaly

Detection At Multiple-scales. The project aimed to “identify patterns and anomalies

in very large datasets” in order to detect and prevent insider threats. In [45, 103],

various anomaly detection algorithms, including HMM and Gaussian Mixture Models

(GMM), were employed in an ensemble on user activity log data for identifying insider

threat indicators. The ensemble detection approach works on features extracted from

1https://www.darpa.mil/program/anomaly-detection-at-multiple-scales

16

a day or a month of user activities. Additionally, a visual language for describing

anomalies was proposed in the work of [103]. Evaluations are performed on a private

dataset with inserted red-team activities, and showed detection AUC of 0.76 to 0.93,

by month.

With the popularity of deep learning and its growing applications in cyber-security,

different approaches based on the algorithms were proposed for insider threat detec-

tion recently [79, 80, 84, 108]. In [108], Tuor et al. proposed an anomaly detection

system based on retraining a deep neural network, or recurrent neural networks on

daily user data to generate anomaly scores. Similar to [97], the approach requires

maintaining a detection model per user and updating it daily. While starting with no

ground truth, the approach requires labelling by the analyst in each training cycle (i.e.

a day), in order to calculate the loss function for training the neural networks. Test

results on CERT R6.2 (obtained on 15% of the dataset on weekdays only) achieved

100% detection rate at a daily budget of 400 alerts, which is equivalent to 10% FPR

(of 4000 users’ daily data).

In [79], Liu et al. presented an approach to convert weekly user’s log data from

multiple sources into text corpus. A neural network (Word2vec) is then employed to

learn word associations from the corpus and produce behavioural probabilities. Based

on the probabilities, a threshold is used to indicate if users’ events are suspicious, and

a user is labelled as malicious if he/she is associated with multiple suspicious events.

The approach is evaluated on a subset of 500 (in 4000) users and 3 (in 6) malicious

users picked from CERT R6.2 dataset, and achieved an AUC of 0.956.

2.2.3.2 Other ML based approaches

Other recent ML based approaches to insider threat detection include supervised

learning [41,53], stream online learning [15,108], and Bayesian-based approaches [85,

99].

Gavai et al. applied different ML methods on organizational data to detect not

only anomalies but also early “quitter” indicators, where both may suggest insider

threats [41]. Based on a private dataset, the work extract features from social data

including email communication patterns and content, web browsing, and file and

machine access patterns. Isolation forest is employed for anomaly detection, while

17

random forest is used for quitter classification. Results show AUC of 0.77 for anomaly

detection, and normalized accuracy of 73.4% in quitter detection.

In [53], Jiang et al. applied graph convolutional neural network for insider threat

detection. Proposing that users’ relationships may contain essential information that

is useful to detect malicious users or groups, the work characterizes users’ behaviours

and their connection relationships into a graph to train graph convolutional network

models. Evaluated on CERT R4.2, the supervised learning approach achieved 94.5%

accuracy and 83% detection rate.

Bose et al. proposed a system employing scalable supervised and unsupervised

learning algorithms on a fusion of heterogeneous data streams to detect anomalies

and insider threats [15]. The work focuses on real-time processing and analysis of

data and training of the detection models. In the anomaly detection component, a

hierarchy of simple correlation filters is used to target malicious actions, such as data

exfiltration and inappropriate access, and aggregate anomaly alerts. In the detection

component, streaming machine learning based on k-nearest neighbours algorithm is

used. On an older version of the CERT insider threat dataset (release R2), detection

rate of 50% at 8% precision is demonstrated by the approach.

In [99] Roberts et al. applied Bayesian Networks as a modelling tool for enterprise

data. Bayesian network is selected for its portability, privacy, and simplicity. The

work also compares different scenarios, e.g. a change in the organizational environ-

ment or a detector/sensor, for generating Bayesian networks. Test results on subsets

(3 months) of CERT R4.2 dataset, where data instances are represented monthly in

the approach, showed 100% detection rate at 0.89% False positive rate.

In [85], Meng et al. employed a Bayesian based trust management approach for

insider attacks in healthcare software-defined networks. Based on findings from sur-

veys on healthcare organizations, the authors develop a trust-based approach based

on Bayesian inference to detect malicious devices in healthcare environments. In the

software defined network, the centralized server observes the traffic and assign trust

levels to devices based on the total number of packets and the number of benign pack-

ets, using Bayesian rules. Experimental evaluations are performed on simulated data

and in a real hospital environment to demonstrate the effectiveness of the approach,

where the trust value of malicious devices are quickly decreased.

18

2.2.4 Related Cyber-security Problems

User identification and masquerader detection are closely related to insider threat

[81]. In [101], Salem and Stolfo proposed a user profiling approach via modelling

user search behaviour to detect deviations indicating a masquerade attack. The

work hypothesizes that differences appear in search behaviours, where each normal

individual knows their own file system well enough to quickly search and locate the

target file/information. Masqueraders, on the other hand, would likely search more

extensively and broadly or in a different manner due to the lack of knowledge about

the file system and layout. A small set of search related features is extracted in the

work to train One class SVM based anomaly detection. Results on RUU dataset of

Windows log containing 18 normal users’ data and simulated masquerader data –

extracted by 2 minute periods – showed AUC of 0.98, and 100% detection rate at

1.1% false positive rate.

Similarly, in [106], Toffalini et al. proposed masquerader detection approaches

based on anomaly detection in user search and file access behaviours. The work

employs a graph partitioning technique (Markov Clustering) on weighted oriented

graphs generated from a history of a user and events recorded in a time window (the

user’s session), based on the idea that strongly connected nodes have to belong into

the same cluster. New input in a time window is compared to the user’s graph through

a similarity function defined over pairs of vertex clusters. The approach achieved a

mean AUC of 0.944 on 2 minutes time windows of WUIL dataset, and 0.851 on 30

minutes time windows of TWOS dataset [49].

In [94], Peng et al. reviewed user profiling in intrusion detection. The work

summaries behavioural based intrusion detection systems from the viewpoint of user

behaviours, based on biometric, psychometric, or combined user profiles. In [56], Kent

et al. proposed representing authentication data in enterprise networks as a set of

user-specific authentication graphs. Based on the graphs, the work extracts features

using a proposed time-constrained path distance algorithm to enable analysis, such

as user classification and intrusion detection. In a private dataset from Los Alamos

National Laboratory (LANL), the work demonstrated the ability to differentiate ad-

ministrative and general users as well as finding compromised users, with AUCs of

0.907 and 0.915, respectively.

19

Another closely related problem to insider threat detection is lateral movement

detection, in which many malicious actions are also performed using insider accounts.

Lateral movement is used as a technique in advanced persistent threat by threat actors

to gain access to their intended targets, moving through compromised accounts and

systems of the victim organization. Recently proposed machine learning approaches

for lateral movement detection are graph analysis [16, 78, 116], recurrent neural net-

works [20], and other supervised learning techniques [14]. In [116], Zhao et al. pro-

posed a continuous temporal lateral movement detection framework, in which remote

and local authentication events are represented as a path connection graph and a bi-

partite graph, respectively. Path features are generated from the graph dataset, using

breadth-first search algorithm with time constraints. Anomaly detection based on fa-

miliarity measurement is then applied to the extracted features to detect anomalous

authentication paths. The approach is evaluated on LANL dataset [55] and achieved

an AUC of 0.92 in detecting their injected attacks (instead of attacks provided in the

dataset).

In [16], a similar graph-based approach is proposed by Bowman et al. Using an au-

thentication graph created from input data, the approach performs unsupervised node

embedding generation to enable anomaly detection. Low-probability authentication

events are learned via a logistic regression link predictor. The approach requires pure

normal data for training and achieves a detection rate of 85% with 0.9% false positive

rate on LANL dataset (30% as testing data). On the same dataset, Bian et al. [14]

instead applied supervised ML methods to classify daily malicious authentications

based on extracted features from authentication graphs. Best AUC of 0.995 achieved

by Random forest, on data subsets of only one day of remote authentication actions.

In [20], Brown et al. employed recurrent neural network with attention mechanism

to detect anomalous authentication activities at log line level on LANL dataset. Test

results on a single day show AUC of 0.99 at log line level.

2.3 Summary

Background on insider threat and the related work in the literature on insider threat

detection are reviewed in this chapter. The related literature is organized into four

20

main categories: (1) literature surveys and guidelines, (2) non-ML detection ap-

proaches, (3) ML based detection approaches, and (4) related cyber-security prob-

lems.

The following particular gaps can be observed from the literature on insider threat

detection approaches, which we aim to address:

• There are only several works capable of learning from heterogeneous data for

detection [15, 40, 79, 108]. This naturally creates a problem of ranking and

prioritizing anomaly alerts from detection models on different data sources to

present to the analyst, which may not be intuitive in an unsupervised setting.

Furthermore, many works in the literature require maintaining and updating

multiple complex detection models, such as deep learning, per each user in an

organization [40, 97, 106, 108]. Not only this greatly increases the computation

and storage requirements, but ranking anomaly scores by users also needs to

be addressed as well, as each user may have a different scale for anomaly scores

based on their personalized detection model. To avoid the issues and provide

a unified view to the security analyst for simplifying the investigation process,

the proposed approach in this research is designed to work on heterogeneous

data (from all sources). We also focus on the use of unified detection models for

all users, which naturally provides the ability to prioritize users and behaviours

in its alerts, while reducing computation overheads.

• While the objective of insider threat detection is malicious and/or masquerad-

ing users and behaviours, most of the works in the literature omit reporting the

results based on users. There are only a few works that report user-based re-

sults in a limited manner [40,79,106]. Due to the diversity in a users’ roles and

behaviours within an organization, high detection rates by data instances or

log lines may not necessarily translate to all malicious insiders being detected.

In an attempt to shed light on this issue and to provide user-centered report-

ing of the system’s results, we distinguish between malicious actions detected

and malicious users detected in this research. User-based results are reported

throughout the thesis for that purpose. Similarly, although the delay in detec-

tion is directly related to the cost of insider incidents [96], none of the work in

the literature to date addressed this issue. To address this, in this thesis, we

21

report detection delay, i.e. the time period between the first malicious action

and when the insider is detected by the system.

• In the literature, there is rarely a comprehensive detection approach for insider

threat detection [15], where the vast majority of proposed works are based on

either unsupervised anomaly detection or supervised ML for classification. In

this thesis, we introduce a complete system to assist the cyber-security analyst

in all phases of data monitoring and analysis, from processing the raw log data,

a combination of unsupervised and supervised learning, to deep analysis and

meaningful result reporting.

• A common problem to proposed approaches in the literature is that they assume

unrealistic settings for training and evaluation of ML approaches [5, 78–80, 99,

108], such as incomplete evaluation (only on a selected subset of test data),

private datasets, and partial result reporting. Throughout this thesis, we adopt

a realistic setting for training and evaluation of the detection approach, and re-

port results comprehensively, in order to demonstrate the system performances

in real-world conditions.

• Some works in the literature report the importance of temporal information

in dealing with insider threat, which is highly related to the human factors

[84, 97, 103, 108]. Notable attempts to leverage temporal information include a

moving average approach [108], graph embedding [78], or employing ML models

with temporal learning capabilities [97, 108]. This thesis instead explores the

representation of temporal information in data for anomaly detection training.

With dynamics and user behaviour changes in mind, we keep the focus on de-

tecting the changes in each user’s most recent activities instead of the whole

/ averaging over the time range of data. Furthermore, instead of affixing to

a single data granularity level, i.e. time period for detection, we explore dif-

ferent levels of granularity in data extraction, from hours to a week of user

data, to allow comprehensive assessment and selecting the best setting for each

application scenario.

Chapter 3

Overview of the Insider Threat Detection Framework

This chapter presents an overview of the insider threat detection framework proposed

in this thesis. A general description of the components in the framework is also

provided in this chapter.

3.1 Framework Overview

A framework for machine learning applications in detecting insider threats in cor-

porate and organizational computer systems is proposed in this thesis. Figure 3.1

illustrates the components of the framework. The workflow is designed to be modu-

lar and easily expandable for a wide range of corporate environments, data acquisition

conditions, as well as learning and analysis methods.

As presented in Figure 3.1, the framework is organized as follows:

1. Data collection: data from multiple sources are collected and stored in unified

formats. The two main sources are:

• User activities, e.g. network traffic, email, authentication, and process logs

• Organization structure and users’ information.

2. Data pre-processing: heterogeneous data from different sources is aggregated

and processed to construct feature vectors representing user activities and profile

information at different granularity levels. The extracted data can be further

processed with temporal information in representation.

3. Unsupervised learning algorithms are employed for the initial detection step to

detect any anomalies as possible indicators of insider threats.

4. Supervised and semi-supervised ML algorithms are then employed for data an-

alytics based on the constructed feature vectors and limited ground truth.

22

23

Feedback

Data collection

Activity log data
(network traffic, email,

process log, …)

Organization
structure

& user information

Initial detection

Analyst

 Unsupervised
 ML - based

 Anomaly detection

 User profiles

Data pre-processing

 Data aggregation

Feature extraction

 Temporal data
 representation

Machine learning for data analytics

 Supervised machine learning

 Semi-supervised machine learning

 Instance alerts

Analyst

Results & Analysis

 Malicious behaviours
 analysis

User alerts

Numerical data

Ground truth

Figure 3.1: Overview of the proposed system

24

Millions of
data events

per day

Thousands
of extracted
numerical
instances

Tens of
anomaly alerts

Malicious
classification
alerts

Insider threat
behaviours
Malicious
insiders

Figure 3.2: Data events to alerts and analysis

5. Results are presented in different formats, and detailed analysis is provided to

the system analyst.

Figure 3.2 depicts the process of transforming from data events from heterogeneous

sources to alerts and indicators of insider threat behaviours and malicious users by

the detection system, based on the Model-based predictive classification concept [46].

The system is designed to operate with the participation / supervision of security

analysts in many steps, especially in initial detection, where the early signs of mali-

cious behaviours and abnormal activities are investigated. Human analysts play an

important role not only in the analysis of system warnings and alerts, but also in

performing the necessary actions to return the system to ‘normal’ operation after an

attack.

In this thesis, we assume five benchmarking datasets: CERT datasets (R4.2, R5.2,

and R6.2), LANL dataset, and TWOS dataset (Section 4.1). The data pre-processing

steps are presented in Chapter 4. Data collected from different sources in corporate

environments are aggregated and organized by user and time. The unified data is then

used, together with user profiles, to extract numerical vector data that is suitable for

machine learning applications. In this research, we explore different levels of extracted

data granularity (Section 4.2.4) and representations of extracted data with temporal

information (Section 4.3) for improving insider threat detection performance.

With the aim of detecting insider threat without or with very limited a priori

knowledge available, ML algorithms are employed in the next steps with different

25

deployment conditions for anomaly detection and masquerader / malicious insider

identification. In Chapter 5, unsupervised machine learning are techniques are used

for anomaly detection. The assumption is that malicious behaviours are often rare

and deviated from normal user behaviours, which constitute the vast majority of the

collected data [13,62]. Thus, although no label information is used, a trained anomaly

detection model may capture the normal data and reveal anomalous behaviours as

outliers. An investigation budget (IB), which is the amount (%) of data that the

security analyst can examine for confirmation of malicious behaviours, is used in the

initial detection step to assess detection performances at different thresholds.

In Chapters 6 and 7, supervised and semi-supervised machine learning methods

are trained with very limited amounts of ground truth for detecting unknown ma-

licious insiders. Then, we explore how well the learned solutions would be able to

generalize for detecting unknown malicious insider cases. The benefit of using super-

vised learning is that we need not assume that data clusters are always synonymous

with distinct behaviours. This potentially leads to higher precision than unsupervised

learning / anomaly detection algorithms [21]. Chapter 7 explores semi-supervised

learning methods and different approaches to present a limited labelled training set

for semi-supervised learning algorithms. Semi-supervised learning permits the large

amounts of unlabelled data to be harnessed in combination with typically smaller

sets of labelled data to improve the outcome [110]. This motivates its use in insider

threat detection, as obtaining a fully labelled training dataset is prohibitively costly

in many real-world conditions.

In addition, the analysis will distinguish between malicious actions detected and

malicious users detected, where the two are not necessarily the same. That is to say,

the diversity in a user’s role within an organization can impact the number/types of

actions performed, both normal and malicious. In many cases, user actions can vary

over time and have multiple contexts that need to be taken into account in order to

process an alert about a suspicious behaviour [112]. Thus, high malicious instance

detection rates, in this case, may not necessarily translate to all malicious insiders

being detected. Furthermore, a seemingly small false positive rate may still require

a lot of attention from the security analyst if it flags many distinct normal users as

anomalous. In short, we believe that results that highlight malicious users rather

26

than events represent a more important measure of system performance.

Finally, several measures are presented, such as detection delay per malicious

insider, or the support for each malicious insider alert (Chapter 6). By providing

these measures, we aim to provide better support to security analysts and enable

successful application of the proposed system in real-world scenarios.

3.2 Summary

This chapter presented an overview of the proposed insider threat detection frame-

work in this thesis. This includes steps from raw data collection to pre-processing

and machine learning based insider threat detection, both unsupervised and super-

vised. The framework is designed with adaptability and participation of analysts in

mind, in that each module can be adjusted to suit the deployment environment of an

organization.

Chapter 4

Data and Pre-processing

Data collection and pre-processing are crucial for insider threat detection in particu-

lar but also for cyber-security tasks in general. A good monitoring / data collection

procedure in combination with adequate pre-processing steps may significantly sim-

plify the application of machine learning techniques1 and support security analysts

in making correct decisions. In this chapter, firstly we detail the publicly available

data sources employed in this thesis in Section 4.1. The data extraction steps are

presented in Section 4.2. In this section, we also discuss granularity levels of the

extracted data 4.2.4. Finally, in Sections 4.3 and 4.4, we present temporal properties

in data extraction and perform initial comparisons to illustrate the advantages of the

data processing technique.

4.1 Data Sources

Obtaining data for designing and evaluating insider threat detection systems encoun-

ters additional challenges over typical difficulties observed in cyber-security. Insider

threats typically involve corporations and government agencies, where such threats

relate to compromising organizational intellectual properties. Furthermore, concerns

about user privacy may limit the distribution of data. Therefore, insider threat test

datasets are very rare [81].

This thesis employs three most related publicly available data sources of insider

threats and similar cyber-security issues. The data sources cover different log types

and activities, from high-level HTTP and email logs, organization structure, to low

level anonymized process logs and mouse/keyboard captures. The datasets depict

a wide range of insider threats, both of malicious insiders and masqueraders, and

related cyber-security attacks, such as lateral movement.

1Identification of useful attributes and mapping categorical to numerical values are typical steps
performed by a domain expert. Likewise, any feature construction activity would be initiated by
domain experts. Even frameworks for ‘AutoML’ are as yet not effective at this task [107]

27

28

4.1.1 CERT Insider Threat Test Datasets (CERT datasets)

Popularly used in the literature, the CERT insider threat test dataset is publicly avail-

able for research, development, and testing of insider threat mitigation approaches

[24,43]. The datasets simulate corporate environments, and consist of users’ computer

activities (log on/off, email, web, file and thumb drive connects), as well as organiza-

tional structure and user information in the form of a Lightweight Directory Access

Protocol (LDAP) directory. The data is synthesized using a number of generation

models, including communication and relationship graph models, asset graph and

decoy models, topic models, behavioural models, and psychometric models. These

models are used in the same form and scope as the normal data in order to generate

the data as close to what is seen in the real world as possible [43]. There are a to-

tal of five insider threat scenarios simulated, ranging from data leaking, intellectual

property theft to IT sabotage [24]:

1. User who did not previously use removable drives or work after hours begins log-

ging in after hours, using a removable drive, and uploading data to wikileaks.org.

Leaves the organization shortly thereafter.

2. User begins surfing job websites and soliciting employment from a competitor.

Before leaving the company, they use a thumb drive (at markedly higher rates

than their previous activity) to steal data.

3. System administrator becomes disgruntled. Downloads a keylogger and uses a

thumb drive to transfer it to his supervisor’s machine. The next day, he uses the

collected keylogs to log in as his supervisor and send out an alarming mass email,

causing panic in the organization. He leaves the organization immediately.

4. A user logs into another user’s machine and searches for interesting files, email-

ing to their home email. This behaviour occurs more and more frequently over

a 3 month period.

5. A member of a group decimated by layoffs uploads documents to Dropbox, plan-

ning to use them for personal gain.

In this thesis, we mainly employ three releases: 4.2 (CERT R4.2), 5.2 (CERT

R5.2), and 6.2 (CERT R6.2) of the datasets. The releases are generated with different

29

versions of the generation models, and simulate companies with 1000, 2000, and 4000

employees, respectively. Additionally, the data releases differ in the number of insider

threat scenarios and the number of malicious insiders simulated: scenarios 1–3 with

70 malicious insiders in R4.2, scenarios 1–4 with 99 malicious insiders in R5.2, and all

five scenarios with only one malicious insider each in R6.2. A summary of the CERT

datasets is presented in Table 4.1.

Table 4.1: Summary of the CERT datasets
Release Duration #Users Scenarios (#Mal. insiders) #Log on/off #Emails #Web #USB #File Access

R4.2 72 weeks (01/02/2010 - 05/16/2011) 1,000 1 (30), 2 (30), 3 (10) 854,860 2,629,979 28,434,423 405,380 445,581
R5.2 74 weeks (01/02/2010 - 06/02/2011) 2,000 1 (29), 2 (30), 3 (10), 4 (30) 1,810,070 17,361,575 58,960,449 836,984 887,621
R6.2 74 weeks (01/02/2010 - 06/01/2011) 4,000 1 (1), 2 (1), 3 (1), 4 (1), 5 (1) 3,530,286 10,994,957 117,025,216 1,551,828 2,014,883

4.1.2 Comprehensive, Multi-Source Cyber-Security Events (LANL

dataset)

LANL dataset2 is another publicly available data source depicting comprehensive and

real corporate log data. The dataset consists of 58 consecutive days of de-identified

event data collected from five sources within Los Alamos National Laboratory’s cor-

porate, internal computer network [55]. The dataset contains anonymized real users’

processes, network flows, DNS, and authentication logs. The authentication log in-

cludes Windows-based authentication events from both individual computers and

centralized Active Directory domain controller servers [55]. Similarly, the process

log records process start and stop events from individual Windows computers. Do-

main Name Service (DNS) lookups and network flow data are collected at internal

DNS servers and key router locations. In total, the dataset represents 1,648,275,307

events for 12,425 users, 17,684 computers, and 62,974 processes. Furthermore, au-

thentication events that present known redteam compromise events (attacking) are

provided in the dataset, but without further information or other malicious activities.

In the literature, LANL dataset is used for evaluating detection techniques for lateral

movement [14,116], in which threat actors move through compromised accounts and

systems of the victim organization to gain access to the intended targets. Although

ground truth is only provided for compromised authentications, malicious activities

performed by the compromised accounts may also be recorded in the dataset. In this

2https://csr.lanl.gov/data/cyber1/

https://csr.lanl.gov/data/cyber1/

30

research, as the focus is on detecting malicious users, we employ only authentication

and process logs of the LANL dataset, which contain user identity in logged activities.

Due to limitations of the dataset in the second half, the first 30 days of the logs are

employed for feature extraction and analysis.

4.1.3 TWOS (The Wolf of SUTD) Dataset

Lastly, the TWOS dataset3 is employed in this thesis, by virtue of its unique log

types and simulated environment of many competing companies. The dataset pro-

vides anonymized authentication, mouse, keystroke, email, and network captures from

a student competition with the aim of emulating insider threats, by both masquer-

aders and traitors [49]. The competition comprises 24 participants in six teams over

five days. In the provided logs, timestamps are only properly presented in authenti-

cation log, and mouse and keystroke captures. Therefore, we employ these logs from

the dataset in this research. There are 97,147 Windows-based authentication events

captured in the dataset. The keystroke capture is anonymized by grouping, in that

alphabet and digit keys are presented only by their groups (DIGIT, LEFT, CENTER,

RIGHT). Mouse activities are captured by button clicks or moving actions and the

corresponding positions. In total, there are 1,849,244 and 27,128,418 keystroke and

mouse events in the dataset.

The dataset is generated from a competition, in which students are grouped into

six competing teams representing companies. The teams earn points not only by

successfully acquiring customers but also by taking points / customers from each

other. Masquerader actions are created by giving the teams access to a machine

that belongs to a member of another team, while malicious insiders are stimulated

by arranging periods of firing / hiring, in that fired participants are incentivized to

steal the original team’s data to benefit his new team [49]. In total, there are 12

instances of masquerading and one instance of possible traitor in the data. The label

information is represented by time windows of 90 minutes each per masquerader case,

and 2 hours for the traitor case.

3https://github.com/ivan-homoliak-sutd/twos

https://github.com/ivan-homoliak-sutd/twos

31

Event log

Network traffic

Firewall log

Email

Access logAuthentication
 Log

Monitoring
data

Data Collection

Log data
streams

Organization structure &
User information

Process log

Extracted
Numerical data

Data Pre-processing

 Data Aggregation

Aggregate data
from different

sources by user
and time

Assign to
groups

 Feature extraction

Frequency
features

Statistical
features

Concatenation

Mean
difference

Median
difference

Percentile

 Temporal data
 representation User Profiles

 position, project, team,
department, relationships,
assigned machine, work

hours, ...

Figure 4.1: Data extraction process

32

4.2 Data Extraction

From the data sources, data pre-processing steps are performed to transform the

data to suitable formats for the application of machine learning techniques. The

data is first aggregated by a criterion, such as time and user. Then, depending on

the available data sources, context models are created to support feature extraction.

User-centered numerical features are then extracted to represent user behaviours for

detection steps. The process is depicted in Figure 4.1.

4.2.1 Data Aggregation

As observed from the employed data sources and corporate monitoring data [8], in

general, this research assumes that organizational data are collected in two main cat-

egories: (i) activity log data, and (ii) organization’s structure and users’ information.

Data from the first category comes from different logging systems such as network

traffic capture, firewall logs, email, web, and file access. These represent real-time

sources of data that often need to be collected and processed in a timely manner

in order to quickly detect and respond to malicious and/or anomalous behaviours.

The second category of data represents background or context data, which can be

employee information, role in the organization, relationships to other users. In many

cases, this category also consists of more complex data, such as psychometric and

behavioural models of users.

In certain conditions, this step may also be used to mask individual activities, such

as website visited, into groups. For the CERT dataset, we define sets of websites (e.g.

social network, cloud, job search) and file categories (e.g. document, compressed,

executable) in corporate environments that are potentially helpful to insider threat

detection. In doing so, not only numerical features can be extracted, but also privacy-

preserving user monitoring can be facilitated, as specific websites and files that users

visited, as well as their contents are not inspected in data pre-processing [57].

As shown in Figure 4.1, firstly, data from different sources are aggregated based

on a pre-defined criterion (c), such as by user / computer and by time period (day /

week) or the number of actions performed. In this research, we aggregate collected

data mainly using user ID and by day or week. This is to achieve user-focused insider

33

threat detection. In Section 4.2.4, the time and number of actions performed are

explored to generate different levels of granularity in extracted data. We also note

that aggregated by time, the system is ready to process data as soon as possible,

hence able to facilitate early detection of threats.

4.2.2 User Profiles

To assist data processing and feature construction, profiles are created for each user

in the organization. The profiles consist of auxiliary information related to each user,

such as assigned machines, relationships with other users, roles, work hours, permitted

access and so on. The information in the profile is specific to each organization

and data collection scenario. Inherently, the user profiles allow generating simple

forms of graph features, where information captured by user-user and user-machine

relationships are extracted.

In the CERT datasets, certain user information is provided in LDAP directory,

such as the user’s position, project, team, department, supervisor. For further en-

richment of the profiles, we investigate the first weeks of the data to determine the

user-machine relationship, i.e. identify each user’s assigned machine, and shared ma-

chines. Similarly, work hours are empirically determined from the data. Figure 4.2

presents a histogram of activities by the hour of day in a workday in the CERT R4.2.

From this, work hours can be selected as 8:00 – 17:30 for the CERT datasets.

Similarly, for LANL dataset and TWOS dataset, user profiles are created, depend-

ing on the amount of information available. In the case of LANL, user’s domains,

frequent processes and computers are determined for each user. In TWOS data pre-

processing, user profile contains each user’s team, assigned machine’s IP, and user’s

role. Based on the user context models, feature vectors summarizing user’s actions

can be quickly and orderly created from incoming data.

4.2.3 Feature Extraction

From the aggregated data and user profiles, feature extraction can be performed to

transform the data to a format that are suitable for training ML algorithms. This

research employs numerical vectors for extracted data, in that each vector describes

a user’s activities and profile in a time period or in a computer session. As such,

34

0 2 4 6 8 10 12 14 16 18 20 22
0

1000

2000

3000

4000

5000 Log on
Log off
Device
Email
File
HTTP

Figure 4.2: Histogram of actions by hour of day in a typical workday in CERT dataset

numerical vectors xc, which are also called data instances, of fixed length d are gen-

erated. Each vector consists of user information – mostly categorical data encoded in

numeric format for providing context for ML algorithms – and two types of features:

• Frequency features, which are the count of different types of actions the user

performed in the aggregation period, e.g. number of emails sent, number of file

accesses after work hour, or number of websites visited on a shared PC.

• Statistical features, which are descriptive statistics, such as mean, median, stan-

dard deviation, of data. Examples of data that are summarized in statistical

features are email attachment sizes, file sizes, and the number of words in web-

sites visited.

Fig. 4.3 demonstrates the feature creation process in the case of CERT dataset

employed in this work. The process allows creating information-rich features con-

sisting of many details, such as PC, time, and action specific characteristics. Up to

three connected pieces of information presented in Fig. 4.3 are combined to generate

a feature, such as the number of actions on a shared PC, number of HTTP down-

loads after workhour, mean attachment size of sent emails. Thus, the set of features

35

PC:
User’s PC,
Shared PC,
Supervisor’s PC,
Other PC

Time:
Workhour,
After workhour,
Weekend

HTTP features

Email features

Email count features:
external, external bcc

Email type:
send, receive

HTTP stat features:
url length, url depth, content
length, content #words HTTP type:

soc. net., cloud, job,
hacking, info. leak,
otherHTTP action:

visit, download, upload

File features

File count features:
to usb, from usb, disk

File type:
compressed,
photo,
document, text,
exe, other

File action:
copy, read, write, delete

Device features

Login, Logoff

USB stat features:
connect duration, file tree length

Email stat features:
#dest., #attachments, #attachment
types, attachment size, #external
dest., #bcc dest., size, #words

File stat features:
len, depth, #words

Figure 4.3: Illustration of the feature extraction process

36

constructed is essentially an enumeration over the pieces of information4.

For LANL dataset, frequency features are created via counting user authentica-

tion and process logs, using different information provided in the dataset, such as

source/destination domains, source/destination PC, log on type. We also augment

the dataset by estimating sets of frequent processes and PCs for each user, and ex-

tract additional features from the sets. The work hour is assumed as 8:00 – 16:00 for

the dataset. On the other hand, for TWOS dataset, as only authentication, keystroke

and mouse data are employed (Section 4.1.3), counting features are extracted for ac-

tions in each group. The statistics of the duration of key presses in each key group and

mouse button are also extracted. Due to the datasets’ limited duration, data instances

of a day and 30 minutes of activities are extracted for LANL and TWOS datasets,

respectively. A similar time window has been successfully applied on TWOS dataset

in [106], on a different log type (file system access events – not available publicly).

Table 4.2 shows the statistics of the extracted data in each type (by duration), and

the number of normal and malicious users. It is apparent that the data distribution is

extremely skewed in all extracted datasets. This reflects a real-world limitation, where

insider threat events are extremely rare, and detection systems need to overcome the

challenges in learning from highly skewed data of heterogeneous sources in order to

distinguish malicious activities from the legitimate ones, where all are from authorized

users.

Table 4.2: Summary of the datasets. Sc: Insider threat scenario. Malicious user
counts are in parentheses.

Data Duration
Feature
count

User
count

Class distribution

Normal Sc 1 Sc 2 Sc 3 Sc 4 Sc 5

CERT
R4.2

day 500 1,000 329,466 85 (30) 861 (30) 20 (10)
week 661 1,000 66,840 52 (30) 254 (30) 10 (10)

CERT
R5.2

day 824 2,000 1,692,342 85 (29) 863 (30) 20 (10) 339 (30)
week 1,092 2,000 139,572 49 (29) 235 (30) 10 (10) 248 (30)

CERT
R6.2

day 888 4,000 1,393,941 3 (1) 20 (1) 2 (1) 9 (1) 1 (1)
week 1,176 4,000 283,205 2 (1) 4 (1) 1 (1) 7 (1) 1 (1)

LANL day 1,215 11,814 229,691 Attack: 176 (98)

TWOS 30mins 278 24 1,458 Attack: 38 (13)

4Feature extraction code is made publicly available at https://github.com/lcd-dal/feature-
extraction-for-CERT-insider-threat-test-dataset

37

Table 4.3: Data granularity levels

Data type Notation Aggregation criterion c

User-Week xw Week of user actions on all PCs

User-Day xd Day of user actions on all PCs

User-Session xs Session of user actions, from login to logoff on a PC

Sub-session Ti xt=i i hours of user actions in each session

Sub-session Nj xn=j j user actions in each session

Note that each data instance extracted is assigned an unique id (e.g. session id),

which refers to the corresponding actions (in log files) that were performed by the

user. This allows the cyber-security analysts to further investigate ML based system’s

alerts by quickly accessing and evaluating the original course of actions that caused

the alerts.

4.2.4 Data Granularity

In this research, we explore data processing techniques to enable the extraction of

multiple levels of data granularity with rich details for data analytics5. Hence, in

addition to extracting user data by periods of day / week as in the previous section,

we further extract data with higher fidelity: by sessions of user’s computer activities,

and by time / action counts in each session. This is done on the CERT R5.2 dataset,

where the data allows the extraction of sessions of user activities. By changing the

aggregation criterion c, different levels of data granularity are generated. Table 4.3

summaries the data types extracted in this research based on different granularity

levels.

As presented in the previous section, the basic data instances extracted by week

/ day summarize users’ activities over the corresponding time period. These coarse-

grained types of data provide a high-level overview of behaviours (in a day or a week)

with a higher feature count than session and sub-session data. As such, they can

potentially accelerate the learning process by lowering the amount of extracted data

instances.

On the other hand, session data points provide higher data fidelity by capturing

5This section has been presented as a part of a paper published at the IEEE Transactions on
Network and Service Management [71] (© 2020 IEEE).

38

user actions on a PC, from Login to the corresponding Logoff; or from one Login to

the next Login. Session-based data has utility for isolating malicious actions, since

malicious users tend to perform malicious actions in particular sessions whereas other

sessions in the same day or week may still be normal [52]. Furthermore, as the

duration of a session is typically much shorter than a day, this data type may also

allow quicker system responses when a malicious instance is detected.

As a session may last many hours and comprises hundreds of actions, we explore

further the balance between the amount of data summarized in each data instance and

potential system response time to malicious behaviours. This is done by using time

duration and the number of actions performed as the criteria for separating a user-

session data instance into sub-session data instances. This way, we control the amount

of information embedded into each data instance. Thus, if the ML based system could

successfully learn from the short-lived sub-session data to detect malicious behaviours,

the response time of the system might be improved. As presented in Table 4.3, based

on duration, a sub-session Ti data instance is created every i hours from the start

time of a user’s session on a PC. Similarly, a sub-session Nj data instance is created

after every j actions by a user on a PC, starting from the Login action. The smaller

i and j, the higher fidelity the data, but also the smaller amount of user activity

information that is summarized in an instance.

Table 4.4: Summary of the extracted data. (Sc: Insider threat scenario)

Data # features
Data distribution by class

Normal Sc 1 Sc 2 Sc 3 Sc 4

xw 1,092 139,572 49 245 10 248

xd 824 692,342 85 863 20 339

xs 221 1,002,616 65 1,070 33 678

xn=50 222 2,164,629 70 2,018 48 678

xn=25 222 3,710,139 89 2,841 55 679

xt=4 222 2,153,840 93 1,884 47 678

xt=2 222 3,713,142 119 2,811 59 678

users by scenario: 1901 29 30 10 30

h
ig
h
er

gr
an

u
la
ri
ty

Fig. 4.4 shows the distribution of user-session data by the number of actions,

39

0
70

00
0

14
00

00

0

70000

140000

210000

0700000
70000

0

70000

140000

0

70000

140000

0
70

00
0

14
00

00
21

00
00

28
00

00
350000 420000

0 70000 140000
0

70000
140000 210000

0

0
70000

01>

01−8
8−6

6−4

4−

2

2
<

<5
0

50−100
100−150

150−200
>200

)sruoh(noisses a fo noitaruD

Number of actions per session

Figure 4.4: Relationship between the duration and the number of actions in user-
session data

40

the duration of each session, and the relationship between the two features. It is

apparent that the majority of user-session data has less than 300 actions, and more

than half of the sessions has less than 100 actions. We therefore employ j = {25, 50}
for extracting sub-session Nj data. On the other hand, the duration of a session is

closer to a uniform distribution, with a large proportion lasting longer than 8 hours.

Moreover, as shown in Fig. 4.4, many sessions with less than 50 actions may last

longer than 10 hours. Hence, we explore the values of i = {2, 4} for extracting sub-

session data by time. Table 4.4 provides an overview of the data types by granularity

levels.

4.3 Temporal Representation of Extracted Data

Exploiting the fact that insiders are essentially regular employees before they start

performing malicious actions [105], we propose data representation approaches using

temporal information6. The goal is to highlight the trends / changes in user behaviour

over time. This may potentially reveal the transitions in behaviours of malicious

insiders. The approach performs concatenating or comparing a data point to a time

window of the most recent data of the same user.

Using a window of time, the approach compares a user’s activities to only his/her

most recent and relevant behaviours. As concept shift and drift are likely in user

behaviours [50], this may be more effective than normalizing all data instances of

each user from the beginning. Furthermore, by processing each data instance via time

window, the proposed approach is ready to be applied anytime a new data instance

appears, which is critical in online stream learning. Additionally, we note that in

contrast to extracting time series data from a time window, where all data points in

the window contribute similarly to the output, in this research, the focus is on using

the time window to define a baseline comparison for each new data instance. Table 4.5

lists the applicable temporal data representations with corresponding abbreviations

for each dataset in this thesis.

6This section has been presented as a part of a paper published at the IEEE Transactions on
Network and Service Management [69].

41

Table 4.5: Temporal representation abbreviations for each dataset

Temp. rep. CERT week CERT day LANL TWOS Description

Concat. (Cγ) C2, C3 C2, C3 C2, C3 C2, C3
γ is number of in-
stances concatenated

Percentile (Pw) P30, P60 P7, P30 P7 P1 w denotes the
size of time
window in
days

Mean Diff. (Ew) E30, E60 E7, E30 E7 E1

Med. Diff. (Mw) M30,M60 M7,M30 M7 M1

4.3.1 Concatenation

Inspired by the use of shift register and taps for representing time in data for intrusion

detection [54], we introduce data examples to anomaly detection algorithms as the

concatenation of γ consecutive data instances of the same user (abbreviated as Cγ).

The idea is to encourage the learning algorithms to construct comparisons/arithmetic

operations between each user data instance and its previous records. In this data

representation form, a data instance xt at time t is adjoined with γ − 1 most recent

instances to form a data point for anomaly detection:

xconcatenation
t = concat(xt, xt−1, xt−2, ..., xt−γ+1) (4.1)

Essentially, this creates a data instance with γ times the number of features originally

extracted.

4.3.2 Comparing to a Time Window – Percentile and Mean/Median

Difference Representations

In order to explicitly include temporal information and reflect changes in user activi-

ties, we propose to represent data for anomaly detection via a function comparing each

data instance xt with a time window w leading to t. The procedure is summarized in

Algorithm 1.

Each arriving data instance is compared with previous data instances of the same

user in the most recent time window w to create percentile or mean/median difference

representation. In this research, we set the window size w to 7 days, 30 days, or 60

days. This setting allows contrasting each day (week) of user’s activity against the

same user’s activities in the full week (month) leading to it, where both weekdays and

weekends are taken into account to provide sufficient information for comparison.

42

Algorithm 1: Calculating Percentile and Mean/Median difference represen-

tation of data
Input : xt of user u, window size w

Output: xoutput
t

construct a n× d matrix X of xt−1, xt−2, ..., xt−n of the same user u, based on

w ; // d: data dimension

xoutput
t = [];

for feature f in F do

if Percentile then

f ′ = findPercentile(xt[f], X[:, f]);

else if Mean difference then

f ′ = xt[f]− E(X[:, f]);

else if Median difference then

f ′ = xt[f]−median(X[:, f]);

xoutput
t .append(f ′);

4.4 Comparisons of Data Extraction Approaches

In this section, we perform initial an analysis on CERT R4.2 to compare the data

extraction approaches. The data extraction approach presented in Sections 4.2 and

4.3 is compared against sequential data and time series data extraction. The data

extraction approaches are compared in unsupervised machine learning for anomaly

detection.

For the initial analysis performed here, we use LODA [95] on extracted numerical

data in original format (Section 4.2) and in percentile representation (Section 4.3).

Further details on LODA can be found in Chapter 5. The comparisons are performed

on weekly data instances in different extracted formats. The anomaly detection results

are compared using AUC metrics. Receiving Characteristic Curve (ROC) depicts

the relationship between Detection rate (DR) and False Positive Rate (FPR) under

different decision thresholds, and AUC (Area Under the Curve) summarizes ROC in

a single numerical metric for comparison between models.

43

4.4.1 Compare against Sequential Data Extraction

Sequential data summarizes the sequence of user’s actions over a period of time. In the

simplest form, the data sequence consists of an ordered list of actions taken by a user.

For example, in the case of the CERT dataset, the sequential data feature set is {log
on, log off, device connect, disconnect, file, email, http}. This results

in variable-length sequences of user actions. In this section, sequences representing

user activities for the period of a week are extracted7.

Hidden Markov Model (HMM) is employed to learn from the extracted sequential

data to detect anomalous user action sequences that may indicate insider threats.

HMM is a statistical Markov model in which the states are hidden [42]. Each hid-

den state emits a symbol in a set with probabilities before transitioning to a new

state. This algorithm is particularly suited to model normal behaviours based on

the extracted sequential data. In this work, a HMM is created for each user at the

beginning of the training process to model the user’s weekly action sequence. Then

for each of the user’s new weekly sequences, the user’s HMM is used to calculate the

log probability of the sequence. The sequence is flagged as an anomaly for further

analysis if the log probability value is larger than a threshold. If the action sequence

is not flagged, or the flag is cleared by an analyst, it is used in combination with the

previous action sequence to train the user’s HMM again. This approach is used for

insider threat detection in [97]. In this section, we train HMMs on only the most

recent user data (2 weeks) to be able to adapt to the shifts and drifts in the user’s be-

haviours. The HMM is trained using Baum–Welch algorithm. The number of hidden

states in HMM is set to 5 or 15.

Figure 4.5 presents the ROC curves and AUCs by LODA and HMMs on different

extracted data types. Results show that the highest AUC is achieved by numerical

data with percentile representation (AUC = 0.9). LODA on percentile data repre-

sentation also achieves the best detection rate at all false positive levels. In addition

to the detection results, the data extraction approach employed in this thesis also

has advantages in deployment situations. LODA’s results in Figure 4.5 are achieved

using a single detection model trained once, while sequential data approach (HMM)

7Results in this section has been presented at the 2018 IEEE Security and Privacy Workshops [63]
(©2018 IEEE).

44

0 20 40 60 80 100
False positive rate %

0

20

40

60

80

100

D
et

ec
tio

n
ra

te
 %

LODA - Org, AUC = 0.844
LODA - Percentile, AUC = 0.900
HMM - 5 states, AUC = 0.772
HMM - 15 states, AUC = 0.854

Figure 4.5: Comparison of anomaly detection results (ROC and AUC) by numerical
and sequential data extraction approaches

requires a model for each user in CERT R4.2, and retraining the models every week.

This process is time-consuming to train and evaluate over sequences of thousands

of actions per user per week. Furthermore, sequential data structure for training

HMM is incapable of carrying details representing user’s actions that are valuable for

anomaly detection, such as irregular log in time, downloading files from unauthorized

machines, etc.

4.4.2 Compare against Time Series Data Extraction

In this section, we perform a comparison between the temporal data representation

(Section 4.3) and time series feature extraction8. Time series features are extracted

from CERT R4.2 day data with a rolling window size of 30, using tsfel package [9]

with comprehensive extraction settings. Due to the computation overhead of the

time series feature extraction process, a sample set of 200 randomly selected users in

CERT R4.2 is used. Each feature in the original data is treated as a time series to

extract 132 time-series features, using tsfel.

8Results in this section has been published as part of a paper at IEEE Transactions on Network
and Service Management [69] (©2021 IEEE).

45

Results obtained show an AUC of 0.78 using tsfel time series extracted fea-

tures. In comparison, LODA using original data and percentile representation gener-

ate AUCs of 0.81 and 0.87, respectively, under the same conditions. This shows the

advantage of the proposed approach to traditional time series extraction approaches

for temporal data in this application. We believe that by focusing on using the tem-

poral window to define a baseline comparison for each new data instance, changes

in user behaviours are easier to detect than from time series data via time windows,

where all data points in the window contribute similarly to the output.

4.5 Summary

In this chapter, the employed data sources and the data extraction approach of this

thesis are presented. The approach allows extraction of heterogeneous data into

numerical feature vectors representing user activities in a time period, such as a day,

and enables applications of popular ML methods. Different data granularity levels

and temporal data representations are also introduced for further exploration of their

potentials in assisting insider threat detection. Finally, preliminary comparisons of the

data extraction approach to sequential data extraction and time series data extraction

are performed to confirm the effectiveness.

Chapter 5

Initial Detection Step – Anomaly Detection

This chapter presents an unsupervised learning based anomaly detection approach

for insider threat detection. We employ four unsupervised learning methods with dif-

ferent working principles, and explore various representations of data with temporal

information. Furthermore, different computational intelligence schemes are explored

to combine these models to create anomaly detection ensembles for improving detec-

tion performance. Evaluation results show that the approach allows learning from

unlabelled data under challenging conditions for insider threat detection. Insider

threats are detected with high detection and low false positive rates. For example,

60% of malicious insiders are detected under 0.1% investigation budget, and all ma-

licious insiders are detected at less than 5% investigation budget. Furthermore, we

explore the ability of the proposed approach to generalize for detecting new anoma-

lous behaviours in different datasets, i.e. robustness. Finally, results demonstrate

that a voting-based ensemble of anomaly detection can be used to improve detection

performance as well as robustness. Comparisons with the state-of-the-art confirm the

effectiveness of the proposed approach1.

The chapter is organized as follows. Section 5.1 introduces the proposed anomaly

detection approach. Section 5.2 presents the employed machine learning algorithms.

Sections 5.3 and 5.4 detail the experiments and presents the evaluation results. Sec-

tion 5.5 further discusses the results and makes comparisons. Finally, conclusions are

drawn in Section 5.6

5.1 Anomaly Detection System for Insider Threat

Fig. 5.1 shows an overview of the proposed anomaly detection system for insider

threat. From raw collected log data of user activities, the data is pre-processed to

1This chapter’s content has been published at IEEE Transactions on Network and Service Man-
agement [69] (© 2021 IEEE)

46

47

Unsupervised machine learning
based anomaly detection / ensembles

Autoencoder

Isolation Forest

LODA

Local Outlier Factor

Exceed anomaly
threshold?

Anomaly scores

Investigation budget

Analyst

Extracted
Numerical data

Temporal data
representation

 Anomaly alerts Yes

Figure 5.1: Components of the proposed anomaly detection system

extract numerical features by day or week, with different temporal representations

(Chapter 4). The extracted data are then used to train anomaly detection models

using unsupervised machine learning. The employed ML methods are described in

Section 5.2. Post-training, anomaly scores are assigned by the detection model. Based

on a user-selected investigation budget, a decision threshold can be calculated so that

data samples with high anomaly scores (i.e. exceeding a threshold) are flagged for

further investigation of possible malicious actions.

Using anomaly detection based on unsupervised learning, the assumption is that

malicious behaviours are often rare and deviated from normal user behaviours, which

constitute the vast majority of the collected data [2, 13]. Thus, although no ground

truth is used, a trained anomaly detection model may capture the normal data and

reveal anomalous behaviours as outliers.

Outliers identified by the anomaly detection model are defined by a threshold of

anomaly scores, as demonstrated in Fig. 5.2. In this work, different thresholds are

examined through changing the investigation budget (IB), which is the amount (%)

of data – with the highest anomaly scores – that the security analyst can examine

for confirmation of malicious behaviours [13, 67]. This represents the available hu-

man resources for analyzing the highest ranked data instances, post-training of the

detection system, and performing the necessary actions in response.

48

0.0 0.2 0.4 0.6 0.8 1.0
Anomaly score (X)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(X

)

All data
Malicious data

Threshold

Outliers

Figure 5.2: Demonstration of anomaly detection and threshold. CDF: Cumulative
distribution function.

5.2 Unsupervised Machine Learning for Anomaly Detection

This research employs four popular ML methods for anomaly detection with different

underlying concepts: Autoencoder (AE), Isolation Forest (IF), Lightweight On-line

Anomaly Detection (LODA), and Local Outlier Factor (LOF).

5.2.1 Autoencoder

AE is a form of multi-layer neural network that compresses and reconstructs the data.

Fig. 5.3 depicts an example of an AE with three hidden layers. The input and output

layers both have d neurons (d: the number of dimensions). Each data dimension j in

the input x is reconstructed into a corresponding dimension of r at the output layer by

AE. By enforcing a “bottleneck” architecture through hidden layers (middle hidden

layer size:h, h ≪ d), AE compresses (encodes) the input data into h dimensions and

reconstructs it at the output layer. AE is trained through minimizing the aggregated

reconstruction error as the cost function:

E =
N∑︂
i

⌜⃓⃓⎷ d∑︂
j=1

(xij − rij)2, (5.1)

49

Input Layer ∈ ℝ d Output Layer ∈ ℝ d

Hidden Layers

 Encoder
 Autoencoder

x1

x2

xd

xd-1

r1

r2

r3

rd-1

rd

x3

 Decoder

Figure 5.3: An example of an autoencoder

Post training, the lossy compression produced by AE essentially captures the lower-

dimensionality representation of the majority of training data at the middle hid-

den layer. Assuming that normal user data constitute the majority of the training

data, it is expected that AE shows a higher reconstruction error for anomalies [2],

which may represent malicious insider behaviours. Thus, for each data instance

x, the AE anomaly score is defined as the Euclidean distance between x and r:

ei =
√︂∑︁d

j=1(xij − rij)2.

5.2.2 Isolation Forest

Based on the principle that anomaly examples are rare and significantly different

in attribute-values from normal data points, IF [77] is designed as an ensemble of

“isolation trees”, whereas the anomalies – being easier to isolate – are assumed to be

closer to the roots of the trees than normal instances. This is different from other

anomaly detection methods, which build models of (mostly) normal data, and identify

anomalies as any instances that do not conform to the model.

Each tree in IF works on a subset of training data and feature set. Binary splits

are generated in each node of a tree by a randomly selected feature and split value.

50

The process is recursively repeated until each instance is isolated in a leaf. Having

trained all isolation trees, the anomaly score of a data instance – h(x) = E(hi(x)) –

is calculated as the average path length from root nodes to the corresponding leaves

of the instance in the trees (hi(x)).

Based on different principles from other outlier detection methods (such as AE),

IF has been shown to possess some desired capabilities: To be able to deal with

high dimensional data with irrelevant attributes, and able to be trained with or

without anomalies included the training set [77]. These characteristics are evaluated

in Section 5.4.

5.2.3 LODA – Lightweight On-line Detector of Anomalies

LODA [95] is an ensemble method combining weak histogram-based anomaly detec-

tors into a strong detector. Similar to IF, each histogram anomaly detector in LODA

works on a subset of input features in order to promote diversity. This is achieved

through the use of sparse random projections {wi ∈ Rd}ki=1, where k projection vec-

tors, each has
√
d non-zero components, are created to approximate the probability

density of input data into k one-dimensional vectors. Individual histograms are then

calculated for each of k vectors. Each histogram shows an approximation of the orig-

inal data distribution, which may reveal some aspects of outliers that come from a

different distribution than normal data. Furthermore, in online LODA training, each

histogram is updated by a training sample by projecting the sample onto a vector

and then the corresponding histogram bin is updated.

To produce anomaly score for a data sample, LODA uses the average of the

logarithm of probabilities estimated on individual projection vectors:

f(x) = −1

k

k∑︂
i=1

log p̂i(x
Twi), (5.2)

LODA was shown to achieve comparable detection performance to more compli-

cated algorithms, while significantly reduce time and storage complexity [95]. Fur-

thermore, it is also able to operate and update itself in real-time online environment

and on data with missing variables. In cyber-security, LODA’s ability in identifying

features of an outlier sample that deviates from the majority provides a useful tool

to explain the causes of anomalous events detected.

51

5.2.4 Local Outlier Factor

LOF [19] is a popular anomaly detection algorithm, which proposes the concept of

local density to identify anomalous data points. The local density measures how

isolated a data sample is with respect to the surrounding neighbourhood. By com-

paring the local density of a data sample to that of its neighbours, LOF can identify

data points that have a substantially lower density than their neighbours, which are

considered to be outliers.

Considering k nearest neighbours to each data point, a k-distance(x) is defined

as the distance of point x to its kth neighbour, and Nk(x) is the set of x’s nearest

neighbours. A reachability distance between two data points x and y is defined as

reach-distk(x, y) = max{k-distance(y), dist(x, y)}. The local reachability density of a

data point x is then defined as the inverse of the average reachability distance based

on Nk(x) neighbours of x: lrdk(x) = 1
/︂(︂∑︁

y∈Nk(x) reach-distk(x,y)

|Nk(x)|

)︂
. Finally, LOF assigns

anomaly score (i.e. outlier factor) of a data point x as average local reachability

density of x’s neighbours divided by lrdk(x):

LOFk(x) =

∑︁
y∈Nk(x)

lrdk(y)

|Nk(x)| · lrdk(x)
, (5.3)

A value significantly larger than 1 indicate outliers, where the considered point has

much lower local reachability than its neighbours. Despite the clear disadvantage in

runtime, LOF has the capability to identify local outliers that could be skipped by

other methods [19]. The algorithm also has been shown to perform well in cyber-

security domains [22].

5.2.5 Combination of Anomaly Detection Scores

Ensemble methods have been shown to reduce variance and bias of anomaly detection

models in several applications [2]. In this section, we present unsupervised methods

to combine results from the four aforementioned algorithms to create anomaly detec-

tion ensembles, in order to test their ability in insider threat detection. Employing

four anomaly detection methods with different working principles, we expect to see

differences in their detection results, especially under different conditions or scenar-

ios. This creates potentials for improvements by combining the individual models.

Specifically, we investigate combining schemes to create aggregated anomaly scores

52

based on the average / maximum of individual anomaly scores, or based on majority

votes of individual algorithms:

• Averaging (AVG): Anomaly scores of individual models are normalized by rank,

i.e. percentile transformation. The combined score of a single data point is then

computed as the average (mean) over the different scores of the point.

• Maximum (MAX): This approach assigns the combined anomaly score to a data

point as the maximum of normalized scores (by rank) reported by individual

models. In essence, this combining scheme reports the highest anomaly signal

(alarm) generated for a data sample by any of the participating models.

• Voting (VOTEν): In this scheme, a majority vote is used to select outlier data

points at each investigation budget. The parameter ν ∈ {2, 3, 4} dictates how

many votes are required to flag a data sample as anomalous.

5.3 Experiment Settings

In this chapter, to examine the anomaly detection performance under a wide range of

data and conditions, CERT R4.2 and R6.2, LANL, and TWOS datasets are employed

for experiments. As presented in Chapter 4, CERT R4.2 simulates a company with

1000 employees, where 70 are malicious insiders under three threat scenarios. This

enables us to perform more flexible experiments in anomaly detection and provide

a better understanding of the models’ behaviours. On the other hand, CERT R6.2

depicts a much larger company with 4000 employees, containing only five malicious

insiders (five threat scenarios, with only a single malicious user per scenario). This

makes the detection task in CERT R6.2 much more challenging and realistic. On

the other hand, TWOS and LANL present insider threat detection under a different

simulated environment, and lateral movement detection, respectively (Section 4.1).

The extracted data summary and abbreviations can be found in Tables 4.2 and 4.5.

For CERT datasets, this chapter assesses the detection performance on day and

week data. More fine-grained data, e.g. session of user activities, could be used as

well. However, that may not be beneficial in terms of utilizing human resources, as

fine-grained data increases the data count, and thus raises the workload to inspect

53

anomaly alerts in the unsupervised anomaly detection setting, where false alerts are

unavoidable [13].

5.3.1 Training the Anomaly Detection Algorithms

In training the anomaly detection algorithms, we randomly select a number of users

nu whose data in the first nw weeks is included in the training process. Essentially nu

and nw control the amount of data for training the models to represent computation

and real-world limitations: Only a limited amount of data collected before the time of

training can be used. In the following experiments, unless specified otherwise, we use

training data of randomly selected nu = 200 users (2000 for LANL data) in the first

50% of dataset duration (nw = 37 for CERT and 2 for LANL). In the case of TWOS

dataset, nu = 24 and nw = 1, due to the dataset’s limitations. Since the training

process is label-free (unsupervised), test results are reported on the entire dataset.

The experiments are repeated 10 times in each setting, and the averaged results are

reported.

The experiments are performed on compute nodes with Intel Xeon E5-2683v4 CPU

and 125GB of RAM.We implemented the data pre-processing and analysis steps using

Python 3. AEs are implemented using Tensorflow [1]. In this paper, each AE has

three hidden layers, where the size of the first and the third hidden layers are set to

input dimension/4, and the middle hidden layer’s size is set to input dimension/8.

On CERT and LANL datasets, the hidden layers and the output layer take the form of

rectified linear [44] and sigmoid activation functions, respectively. On TWOS dataset,

tanh activation function is selected. AEs are trained using Adam optimization [59]

for 100 epoch each. Implementations from Scikit-learn [93] and PyOD [117] are used

for IF, LODA, and LOF. For IF, the number of trees is set to 200, and 256 is used for

max sample size. LODA is built with 400 histograms and 1/
√
d sparsity, while LOF’s

number of neighbours is set to 20. These parameter values are chosen empirically.

5.3.2 Performance Metrics

In this section, the insider threat detection performance is measured using ROC

and AUC metrics. ROC (Receiving Characteristic Curve) depicts the relationship

between Detection rate (DR) and False Positive Rate (FPR) under different decision

54

thresholds (i.e. different investigation budgets), and AUC (Area Under the Curve)

summarizes ROC in a single numerical metric for comparison between models.

DR =
TruePositive

TruePositive+ FalseNegative
(5.4)

We also present DRs at critical IBs (see Section 5.1) for a better understanding

of the performance at very low IBs.

Furthermore, user-based results are presented in this section in terms of alarms

that are raised per user through aggregation of raw (instance-based) anomalous alerts

[34, 71]. Specifically, a normal insider (user) is misclassified if at least one of his/her

data instances is classified as “malicious”. On the other hand, a malicious insider is

identified if at least one of his/her malicious data instances is labelled as “malicious”

by the detection system. Consequently, we have two sets of performance metrics:

Instance-based (DR, FPR, AUC) and User-based (UDR, UFPR, UAUC).

To compare between multiple algorithms or data representations on multiple

datasets, we perform Friedman test [39], which is a non-parametric statistical test.

The null hypothesis of the Friedman test is that there are no significant differences

between the variables. It is rejected when the test statistic exceeds the critical value

of the significance level (p = 0.05). Using the average rank of a method on all datasets

(Rj), the Friedman statistic is calculated as: χ2
F = 12N

k(k+1)

[︂∑︁k
1 R

2
j −

k(k+1)2

4

]︂
, where

N is the number of data points, and k is the number of methods. The statistic is

distributed according to χ2
F with k− 1 degrees of freedom [35]. If the null hypothesis

is rejected, a posthoc test (Bonferroni-Dunn) is carried out to compare the algorithms

by pairs, i.e. the corresponding average ranks differ by at least the critical difference.

The critical difference (CD) of the posthoc test can be calculated based on k and

N [35].

5.4 Anomaly Detection Results

Instance-based anomaly detection results with different IBs are presented in Tables 5.1

and 5.2. Figures 5.4 and 5.5 show instance-based and user-based ROCs on R4.2 week

data and R6.2 day data with different temporal data representations. Table 5.3

presents user-based detection results on CERT R6.2 and LANL datasets. Note that

the abbreviations for data representations are shown in Table 4.5.

55

Table 5.1: Instance-based anomaly detection results with different investigation budgets on CERT datasets. The unit of DR
is percent (%). DR and AUC results are color-coded based on different shades of green and yellow, for easier comparison.

Data Data
type

Temp.
rep.

DR @ 0.1% IB DR @ 1% IB DR @ 5% IB DR @ 10% IB DR @ 20% IB AUC
AE IF LODA LOF AE IF LODA LOF AE IF LODA LOF AE IF LODA LOF AE IF LODA LOF AE IF LODA LOF

CERT
R4.2

day

Org. 2.45 0.10 2.64 0.91 8.50 1.60 7.71 4.06 26.20 13.72 14.57 7.41 47.41 40.48 36.97 10.33 74.70 70.56 70.93 15.98 0.854 0.830 0.830 0.521
C2 2.68 0.03 1.39 1.18 9.34 0.84 5.49 3.60 24.68 11.89 12.84 8.72 46.07 38.81 33.43 14.97 77.03 73.98 77.13 28.30 0.866 0.843 0.852 0.636
C3 2.23 0.02 0.68 1.04 8.81 0.45 4.43 3.79 21.92 11.39 10.62 10.52 43.37 39.87 28.88 17.56 72.82 79.21 77.72 32.07 0.853 0.855 0.851 0.667
P7 2.00 0.71 2.26 1.84 7.85 3.59 7.85 8.96 35.75 24.20 32.37 35.67 63.02 52.71 55.63 57.52 87.60 84.63 78.73 77.95 0.903 0.882 0.870 0.859
P30 2.31 0.72 3.55 1.33 12.08 3.66 12.30 9.25 36.15 23.82 36.14 30.37 62.39 54.99 59.27 52.22 88.43 86.59 81.18 77.47 0.902 0.890 0.882 0.858
E7 3.48 0.58 2.25 2.05 10.57 3.44 9.55 4.84 20.86 15.97 19.47 12.67 33.55 37.87 32.59 20.14 55.36 70.18 55.64 32.67 0.788 0.835 0.783 0.612
E30 3.41 0.52 2.64 1.2 10.82 3.31 10.52 4.93 21.15 15.09 21.89 10.66 35.37 41.00 35.56 16.05 59.22 77.38 62.68 27.52 0.797 0.859 0.814 0.590
M7 2.62 0.61 2.64 1.35 9.58 3.52 9.31 4.18 20.40 18.58 19.95 10.97 32.14 38.23 34.76 16.50 54.92 66.54 57.24 27.47 0.771 0.819 0.781 0.604
M30 2.10 0.54 2.75 1.43 8.31 3.82 10.39 4.27 21.99 22.10 22.52 10.64 36.94 43.71 39.55 15.98 59.57 72.49 63.27 27.29 0.786 0.841 0.808 0.623

week

Org. 2.53 0.03 0.25 2.25 9.97 0.85 6.14 7.18 22.41 6.71 20.98 17.47 40.13 23.89 33.70 22.82 72.53 70.47 67.18 32.06 0.847 0.825 0.844 0.611
C2 2.88 0.03 0.16 2.75 9.21 0.66 2.85 6.23 22.15 4.78 16.20 18.13 41.65 19.53 30.98 24.62 77.03 72.75 64.59 34.49 0.858 0.838 0.842 0.624
C3 2.75 0 0 2.69 7.12 0.66 1.42 6.30 20.92 3.64 10.25 16.71 40.06 15.76 26.30 24.08 77.85 66.90 64.72 35.22 0.857 0.827 0.837 0.617
P30 5.76 0.22 2.47 5.6 10.57 0.44 9.72 9.72 27.63 13.23 31.46 29.59 52.18 46.30 57.56 54.49 81.55 86.46 83.99 88.20 0.874 0.881 0.889 0.897
P60 7.66 0.16 3.32 7.22 14.34 0.60 13.10 13.07 32.56 13.64 36.58 31.46 55.09 47.41 59.49 56.99 83.67 87.12 86.58 88.58 0.887 0.884 0.900 0.901
E30 6.11 0.25 2.25 5.79 14.94 1.17 9.81 13.01 28.92 12.34 26.65 24.21 46.49 31.84 43.35 36.99 70.79 72.78 67.82 63.58 0.845 0.843 0.833 0.804
E60 8.39 0.28 2.22 8.32 16.23 1.42 10.09 14.72 29.30 11.46 28.77 24.15 48.48 32.69 48.45 36.58 70 74.08 70.57 64.27 0.849 0.848 0.852 0.824
M30 3.64 0.32 2.03 3.96 13.16 2.12 10.32 9.94 31.58 17.53 29.46 22.82 47.53 38.16 46.23 36.23 69.75 71.80 70.16 61.04 0.839 0.847 0.840 0.797
M60 5.03 0.28 3.01 5.44 9.81 2.85 14.08 12.44 29.08 20.22 34.72 25.16 48.51 42.78 51.96 38.01 68.99 76.65 75.13 62.12 0.844 0.862 0.863 0.806

CERT
R6.2

day

Org. 26.29 0 8.00 20.00 39.14 6.00 22.57 35.24 67.43 49.71 52.00 38.10 84.29 79.71 88.86 40.00 96.29 90.86 100 41.90 0.952 0.924 0.949 0.751
C2 24.57 0 2.29 20.95 38.29 4.00 22.00 35.24 74.00 48.29 55.71 37.14 91.14 79.14 93.43 38.10 99.43 92.57 96.86 47.62 0.965 0.923 0.949 0.817
C3 22.86 0 0.57 22.86 36.86 5.14 16.00 35.24 80.29 49.71 57.71 38.10 95.43 73.71 90.57 38.10 99.14 86.86 94.57 42.86 0.969 0.909 0.942 0.787
P7 31.14 0.29 16.00 27.62 45.43 21.43 46.29 40.00 81.71 72.00 71.14 69.52 98.57 92.00 86.00 78.10 100 98.86 96.86 91.43 0.977 0.958 0.958 0.942
P30 33.71 0 13.71 37.14 43.43 15.71 42.57 44.76 81.43 82.57 69.71 65.71 96.29 92.29 84.57 83.81 100 97.14 97.14 93.33 0.974 0.960 0.957 0.948
E7 30.57 0 10.29 27.62 37.71 6.29 31.71 39.05 52.57 48.86 43.14 41.90 64.00 80.86 55.43 49.52 89.14 98.29 74.29 63.81 0.913 0.936 0.878 0.844
E30 28.86 0 10 31.43 40.00 3.71 33.43 37.14 55.43 52.00 44.00 58.10 67.43 90.57 58.86 76.19 91.43 97.43 77.71 87.62 0.926 0.942 0.892 0.928
M7 28.00 0.29 9.14 23.81 37.71 12.00 30.57 38.10 53.71 46.29 45.43 50.48 68.86 67.14 54.00 60.00 83.71 80.57 71.71 76.19 0.906 0.890 0.849 0.875
M30 25.71 0.29 12.29 12.38 37.43 9.43 29.71 40.95 58.00 47.71 44.29 58.10 74.29 64.29 55.71 75.24 92.00 86.00 74.00 91.43 0.935 0.901 0.862 0.934

week

Org. 38.00 0 0 38.67 63.33 0 8.67 64.00 75.33 10.00 42.00 74.00 94 44.67 82 78.67 98.67 87.33 99.33 86.00 0.973 0.870 0.933 0.925
C2 33.33 0 0 34.00 57.33 0 4.67 60.67 72.00 14.67 41.33 70.67 91.33 44.67 76 75.33 99.33 82.00 94.67 82.00 0.967 0.857 0.926 0.901
C3 32.00 0 0 34.00 50.67 0 1.33 53.33 71.33 15.33 40.67 64.00 88.67 34.67 78.67 70.67 94.67 74.00 90.00 78.00 0.959 0.837 0.915 0.881
P30 40.00 0 9.63 33.33 66.67 0 39.26 66.67 85.93 17.78 74.81 91.85 97.04 52.59 96.30 100 100 85.93 100 100 0.981 0.889 0.970 0.985
P60 40.74 0 2.96 32.59 66.67 0 51.11 66.67 78.52 12.59 74.07 85.93 99.26 42.22 94.81 99.26 100 90.37 100 100 0.979 0.881 0.971 0.981
E30 30.37 0 0 31.11 63.70 0 10.37 63.70 70.37 6.67 50.37 74.81 82.22 21.48 65.93 83.70 96.30 74.81 86.67 99.26 0.958 0.829 0.909 0.966
E60 24.44 0 0 25.19 66.67 0 6.67 66.67 71.85 3.70 51.11 75.56 85.19 20.74 70.37 90.37 99.26 77.78 91.85 100 0.966 0.837 0.925 0.972
M30 33.33 0 0 35.33 60.67 0 9.33 62.67 74.67 10.00 41.33 80.00 85.33 35.33 62.67 92.00 98.00 76.00 88.00 98.67 0.961 0.842 0.908 0.971
M60 35.33 0 0 38.67 61.33 0.67 7.33 60.00 71.33 13.33 37.33 76.00 82.67 42.00 64.00 92.67 98.67 86.67 97.33 98.67 0.962 0.864 0.913 0.969

56

Table 5.2: Instance-based anomaly detection results with different investigation bud-
gets on LANL and TWOS datasets. The unit of DR is percent (%). DR and AUC
results are color-coded based on different shades of green and yellow, for easier com-
parison.

Data Rep.
DR @ 1% IB DR @ 5% IB DR @ 10% IB DR @ 20% IB AUC

AE IF LODA LOF AE IF LODA LOF AE IF LODA LOF AE IF LODA LOF AE IF LODA LOF

LANL

Org. 20.28 34.77 25.23 6.59 53.86 54.60 45.00 14.55 71.31 64.15 58.47 24.43 84.83 76.14 73.98 51.59 0.908 0.884 0.863 0.776
C2 17.76 24.59 21.29 8.59 51.18 48.82 38.71 18.82 69.53 59.29 53.29 33.41 85.06 73.88 68.35 56.47 0.896 0.869 0.841 0.787
C3 13.49 20.60 16.51 7.71 41.45 41.33 33.01 15.90 57.23 54.82 44.58 33.37 76.14 71.33 61.93 59.16 0.862 0.846 0.814 0.789
P7 11.82 6.54 4.03 5.79 44.78 26.04 19.12 10.19 64.91 44.91 32.45 17.86 85.16 65.28 51.82 32.58 0.897 0.804 0.749 0.689
E7 17.48 11.45 11.57 5.03 47.67 36.73 30.19 17.99 69.43 53.71 43.02 31.57 83.02 70.44 62.14 57.23 0.883 0.834 0.789 0.780
M7 17.48 8.68 13.46 4.15 44.40 31.19 26.92 16.98 62.26 47.55 41.26 30.44 79.12 65.66 60.13 49.18 0.864 0.813 0.779 0.763

TWOS

Org. 2.63 0.26 0 0 13.42 18.95 8.95 7.89 23.42 29.47 17.11 15.79 42.89 44.47 34.21 34.21 0.714 0.708 0.577 0.632
C2 0 0 0 0 5.53 10.53 8.68 10.53 14.21 19.74 13.68 15.79 33.42 37.89 26.58 31.58 0.641 0.673 0.591 0.613
C3 0.79 0 0 0 5.26 5.79 4.21 10.53 10.26 11.84 9.47 15.79 19.47 28.16 21.32 23.68 0.599 0.634 0.555 0.565
P1 0 0.26 0.53 0 16.32 12.11 16.32 2.63 40.53 27.89 34.21 2.63 55.26 57.63 54.47 18.42 0.794 0.780 0.777 0.578
E1 7.37 1.32 2.11 2.63 11.05 13.68 13.68 7.89 18.95 22.89 21.84 10.53 40.26 39.21 38.16 31.58 0.709 0.716 0.691 0.669
M1 4.47 4.74 3.42 5.26 8.16 17.63 13.68 7.89 20.53 36.05 20.26 13.16 39.21 44.21 37.63 36.84 0.708 0.737 0.671 0.692

Overall, the results achieved using autoencoder and percentile representation are

very promising, given that the results are obtained under an unsupervised setting with

very limited training data (a small set of only 200 unidentified users in 37 weeks, for

CERT data). On CERT R4.2, the approach was able to detect 80% of the malicious

users by investigating only 1% of the most anomalous instances (1% IB). Also, at only

5% IB, nearly 100% of 70 malicious insiders are detected (Table 5.3). Figures 5.4 and

5.5 also show the differences in reporting results based on data instances and users,

where the AUC achieved on user-based results could be higher and the differences

between temporal data representations are more pronounced.

57

Table 5.3: User-based anomaly detection results with different investigation budgets on CERT R6.2 and LANL datasets. The
unit of UDR and UFPR is percent (%). DR, FPR, and AUC results are color-coded based on different shades of green, red,
and yellow, for easier comparison.

Data Data
type

Temp
. rep.

0.1% IB 1% IB 5% IB AUC
AE IF LODA LOF AE IF LODA LOF AE IF LODA LOF

AE IF LODA LOF
UFPR UDR UFPR UDR UFPR UDR UFPR UDR UFPR UDR UFPR UDR UFPR UDR UFPR UDR UFPR UDR UFPR UDR UFPR UDR UFPR UDR

CERT
R6.2

day

Org. 1.66 54.00 3.15 0.00 1.92 40.00 2.55 46.67 18.78 78.00 13.17 36.00 21.56 60.00 28.60 60.00 39.37 100 34.44 60.00 40.94 80.00 47.70 66.67 0.937 0.774 0.863 0.768
C2 1.11 50.00 2.19 0.00 0.83 12.00 2.10 46.67 13.44 66.00 8.00 18.00 10.20 58.00 25.56 60.00 34.76 90.00 24.62 60.00 31.54 80.00 46.91 60.00 0.935 0.754 0.883 0.752
C3 0.93 50.00 1.73 0.00 0.54 2.00 1.55 46.67 10.55 64.00 6.27 20.00 7.30 58.00 20.45 53.33 29.68 88.00 20.25 44.00 26.09 80.00 43.20 66.67 0.935 0.755 0.904 0.752
P7 1.56 54.00 2.68 2.00 2.41 56.00 2.48 53.33 14.66 80.00 11.12 44.00 20.91 80.00 19.30 73.33 31.33 80.00 27.14 78.00 38.56 80.00 38.05 80.00 0.968 0.904 0.955 0.962
P30 1.48 60.00 1.78 0.00 2.10 56.00 2.65 60.00 16.29 80.00 8.98 38.00 22.00 78.00 20.95 86.67 34.74 94.00 25.19 80.00 40.29 80.00 41.46 100 0.954 0.891 0.946 0.975
E7 2.76 56.00 3.45 0.00 5.67 50.00 1.97 53.33 28.07 70.00 14.06 36.00 32.60 60.00 17.67 73.33 44.55 100 33.56 80.00 46.96 82.00 37.75 93.33 0.905 0.843 0.796 0.941
E30 2.62 62.00 2.33 0.00 5.51 44.00 2.14 60.00 26.12 78.00 11.49 22.00 32.36 60.00 19.74 73.33 44.62 100 32.05 60.00 47.44 82.00 39.24 100 0.936 0.809 0.817 0.968
M7 2.87 56.00 5.11 2.00 6.25 54.00 2.20 53.33 26.64 72.00 22.60 42.00 32.27 60.00 19.51 73.33 44.31 100 41.44 80.00 46.03 80.00 40.71 100 0.895 0.841 0.817 0.943
M30 2.15 58.00 4.57 2.00 6.03 56.00 0.40 53.33 22.91 74.00 21.82 40.00 31.66 60.00 14.71 93.33 42.67 100 41.47 80.00 46.71 80.00 40.49 100 0.936 0.849 0.821 0.969

week

Org. 0.72 50.00 0.73 0.00 0.73 0.00 0.74 50.00 7.03 56.00 4.38 0.00 5.03 24.00 14.19 60.00 21.02 84.00 12.93 24.00 18.04 68.00 36.06 84.00 0.915 0.757 0.875 0.855
C2 0.46 46.00 0.52 0.00 0.58 0.00 0.47 46.00 4.71 56.00 3.19 0.00 3.26 14.00 10.54 56.00 15.46 72.00 10.70 24.00 12.92 68.00 30.66 72.00 0.912 0.790 0.892 0.853
C3 0.39 46.00 0.47 0.00 0.51 0.00 0.33 46.00 3.85 56.00 2.73 0.00 2.90 4.00 8.15 56.00 13.12 68.00 9.59 20.00 11.03 62.00 25.74 58.00 0.912 0.774 0.894 0.848
P30 0.50 60.00 0.91 0.00 1.14 28.89 0.54 51.11 4.59 60.00 4.37 0.00 7.33 57.78 5.36 60.00 14.98 80.00 12.66 42.22 19.77 80.00 16.01 88.89 0.949 0.853 0.927 0.948
P60 0.38 60.00 0.91 0.00 1.13 8.89 0.39 53.33 3.69 60.00 4.12 0.00 6.68 60.00 4.27 60.00 15.31 80.00 12.02 33.33 20.99 82.22 16.33 91.11 0.940 0.839 0.926 0.944
E30 0.52 51.11 1.08 0.00 5.01 0.00 0.53 51.11 12.27 62.22 6.05 0.00 24.05 28.89 9.29 62.22 30.62 82.22 17.39 20.00 43.69 60.00 28.06 91.11 0.896 0.763 0.653 0.915
E60 0.56 44.44 1.01 0.00 4.36 0.00 0.47 44.44 10.29 60.00 5.60 0.00 23.29 20.00 8.44 60.00 31.34 75.56 16.98 11.11 43.63 62.22 29.24 86.67 0.898 0.753 0.674 0.915
M30 0.67 50.00 1.40 0.00 5.40 0.00 0.60 50.00 13.83 56.00 7.56 0.00 26.09 28.00 10.11 60.00 32.94 86.00 21.81 30.00 44.03 60.00 28.78 92.00 0.850 0.711 0.654 0.910
M60 1.05 52.00 1.49 0.00 4.47 0.00 1.01 54.00 11.67 68.00 7.83 2.00 24.31 22.00 10.08 64.00 31.35 88.00 22.29 32.00 44.03 60.00 28.79 94.00 0.911 0.736 0.615 0.933

LANL day

Org. 0.15 2.45 0.46 10.31 0.23 6.22 0.35 2.04 3.38 20.20 4.96 33.27 3.60 22.24 8.23 5.10 21.76 52.65 18.96 52.96 18.47 42.55 28.61 16.94 0.829 0.817 0.788 0.643
C2 0.15 2.53 0.30 4.21 0.15 3.58 0.17 1.68 2.66 14.95 3.63 25.68 2.78 16.63 5.06 6.53 18.30 52.42 15.38 48.42 15.44 36.42 22.32 21.05 0.849 0.826 0.799 0.721
C3 0.14 1.51 0.23 4.95 0.13 3.66 0.14 1.29 2.42 12.90 2.95 22.58 2.47 13.33 3.97 7.74 16.59 42.37 12.80 41.51 13.93 32.26 19.22 17.63 0.835 0.821 0.796 0.711
P7 0.59 0.88 1.36 1.76 1.43 1.10 0.68 1.54 9.07 17.58 10.76 11.21 11.51 7.03 10.06 9.23 26.66 52.75 28.47 30.55 32.04 29.01 29.84 14.29 0.772 0.715 0.673 0.647
E7 0.25 1.54 1.14 3.30 0.86 4.84 0.22 1.54 6.39 19.78 9.18 13.41 10.04 15.60 6.16 5.27 25.18 48.35 25.25 38.90 28.95 33.41 21.42 21.98 0.790 0.754 0.729 0.668
M7 0.30 1.76 1.05 4.18 0.82 5.93 0.28 1.76 6.05 18.46 8.48 11.21 8.45 16.92 6.70 4.40 23.05 44.40 24.64 33.85 25.83 30.33 22.05 19.56 0.796 0.758 0.753 0.680

58

0 20 40 60 80 100
False positive rate %

0

20

40

60

80

100

D
et

ec
tio

n
ra

te
 %

P60, AUC = 0.887
P30, AUC = 0.874
C2, AUC = 0.858
C3, AUC = 0.857
E60, AUC = 0.848
Org, AUC = 0.847
E30, AUC = 0.845
M60, AUC = 0.844
M30, AUC = 0.839

(a) Instance-based ROCs

0 20 40 60 80 100
False positive rate %

0

20

40

60

80

100

D
et

ec
tio

n
ra

te
 %

P60, AUC = 0.916
P30, AUC = 0.899
C3, AUC = 0.857
C2, AUC = 0.850
Org, AUC = 0.835
E30, AUC = 0.797
M30, AUC = 0.792
E60, AUC = 0.752
M60, AUC = 0.739

(b) User-based ROCs

Figure 5.4: ROCs of AE on R4.2 week data with different representations. Cγ:
contatenation of γ data instances, P/M/Ew: percentile / median difference / mean
difference data representation with time window w.

We note that normal data dominates the distribution in all employed datasets

(Table 4.2). Thus, the FPR (normal data wrongly flagged) obtained under each IB

is very similar to the IB, e.g. at 1% IB, FPRs range from 0.96% to 0.99% on CERT

R4.2 week data. Furthermore, as IB represents different human resource levels for

investigating anomaly detection output, i.e. different amounts of data flagged, a

suitable IB can be selected based on deployment conditions. For example, on CERT

R4.2 day data (Table 4.2), 1% / 5% / 10% IBs are equivalent to 3300 / 16500 / 33000

alerts, or approximately 7 / 33 / 66 alerts per day over the dataset’s duration.

59

0 20 40 60 80 100
False positive rate %

0

20

40

60

80

100
D

et
ec

tio
n

ra
te

 %

P30, AUC = 0.948
P7, AUC = 0.942
M30, AUC = 0.934
E30, AUC = 0.928
M7, AUC = 0.875
E7, AUC = 0.844
C2, AUC = 0.817
C3, AUC = 0.787
Org, AUC = 0.751

(a) Instance-based ROCs

0 20 40 60 80 100
False positive rate %

0

20

40

60

80

100

D
et

ec
tio

n
ra

te
 %

P30, AUC = 0.975
M30, AUC = 0.969
E30, AUC = 0.968
P7, AUC = 0.962
M7, AUC = 0.942
E7, AUC = 0.941
Org, AUC = 0.768
C2, AUC = 0.752
C3, AUC = 0.752

(b) User-based ROCs

Figure 5.5: ROCs of LOF on R6.2 day data with different representations. Cγ:
concatenation of γ data instances, P/M/Ew: percentile / median difference / mean
difference data representation with time window w.

60

5.4.1 Results by Learning Algorithms

0 20 40 60 80 100
False positive rate %

0

20

40

60

80

100

D
et

ec
tio

n
ra

te
 %

AE, AUC = 0.936
LODA, AUC = 0.863
IF, AUC = 0.774
LOF, AUC = 0.768

Figure 5.6: User-based ROC by learning algorithms on original R6.2 day data

1 2 3 4

AE
IF LODA

LOF

CD

(a) Instance-based results

1 2 3 4

AE
LOF IF

LODA

CD

(b) User-based results

Figure 5.7: Critical Difference (CD) diagrams of algorithms’ results by instance and
by user. Average rank of each algorithm is shown on the scale. Two linked en-
tries (connected by a horizontal black bar) are not significantly different, i.e. rank
difference is less than CD.

Figure 5.6 shows a comparison of the algorithms by ROC. Performing Friedman

test on both user-based and instance-based anomaly detection performance of the al-

gorithms, the null hypotheses are easily rejected (χ2
F = 38.78, p = 2× 10−8 and χ2

F =

40.28, p = 9× 10−9), which means there are significant differences between the algo-

rithms. Figure 5.7 presents the critical difference diagram obtained using the posthoc

test, where the average ranking of each algorithm and whether they are significantly

different are shown. Additionally, training and prediction times per data instance of

each algorithm are presented in Figure 5.8.

61

100

AE IF LODA LOF

200
474.26

(a) Training time (s)

2.5

AE IF LODA LOF

CERT R4.2 week CERT R4.2 day
CERT R6.2 week CERT R6.2 day
LANL TWOS

 13.32

5.0

(b) Prediction time per instance (ms)

Figure 5.8: Average training time and prediction time per data instance of the algo-
rithms on different data. Out of chart values are noted in red.

62

Overall, it is shown that AE achieves the best performance in detecting anomalies

representing insider threats, especially at very low FPRs. For example, at only 0.1%

IB, AE is able to detect 60% of the malicious insiders from R6.2 week data with P30

representation, while IF requires 8% IB to reach a similar UDR in the same setting.

LOF shows interesting results, where it performs well when data counts are lower

(R4.2 and R6.2 week) and only on percentile representations. We believe that its

ability to outperform in some cases is due to the “local” characteristics of its detected

outliers, which may be missed by other algorithms (5.2.4). However, LOF suffers from

very long training and prediction time. On the remaining two algorithms, LODA

achieves very similar results to IF (Table 5.1 and Figure 5.7), and at very low time

complexity. This makes it suitable for time-critical online detection tasks.

Experiments in Section 5.4.3 provide further insights into the detection perfor-

mance of the algorithms. We note that the characteristics of the datasets (predomi-

nantly normal behaviours – Table 4.2), and experiment settings (Section 5.3) could be

partly the reason to AE’s outstanding performance in this section. On the other hand,

Section 5.4.3 shows that LODA and IF can be more robust to changes in deployment

conditions.

5.4.2 Results by Data Representations

1 2 3 4 5

Percentile
Org.

Concat
Mean Diff.
Med Diff.

CD

(a) Instance-based results

1 2 3 4 5

Percentile
Org.

Concat
Med Diff.
Mean Diff.

CD

(b) User-based results

Figure 5.9: Critical Difference (CD) diagrams of results by data representations.

On data representations, Table 5.1 and Figure 5.4 show that percentile (Pw) is

the best representation of data for anomaly detection. This is confirmed by Fried-

man test (hypotheses rejected, χ2
F = 21.46, p = 0.0003 and χ2

F = 12.48, p = 0.01),

63

and posthoc tests, as shown in CD diagrams in Figure 5.9. Percentile representa-

tion allows the algorithms to achieve significantly better results than on the original

data. Concatenation shows slight improvements in some cases, while mean/median

differences are unable to surpass the original data. In some cases, such as R4.2 day

data, mean/median difference even deteriorates the AUC (Table 5.1). Only on LANL

dataset, percentile representation does not exhibit improvements in detection perfor-

mance over original extracted data. This can be explained through the data extraction

process, in that temporal properties are already incorporated in the extracted data

via frequent processes/computers in user profiles (Section 4.2.2).

The observations suggest that percentile representation, although encoding the

data change by omitting the absolute values, successfully captures the change in user

behaviours while avoiding noises in the data. At the same time, maintaining the

absolute values of changes as in mean and median difference representation seems

to create noise and decreases the detection performance (Figure 5.4). Finally, on

concatenated representation, the results show that it is hard to facilitate meaningful

automatic comparisons between data related to different points in time.

5.4.3 Results on Different Conditions for Training Anomaly Detection

Algorithms

In the following, we assume percentile data representation with window size of 30 days

(P30) and analyze ML algorithms on CERT R4.2 data types under different sizes of

training data and conditions.

5.4.3.1 Anomaly detection performance under training data poisoning

conditions

In this experiment, instead of using data from 200 randomly selected users, we de-

liberately introduce malicious users’ data during training. The number of malicious

users included varies from 0 (pure normal training data) to all 70 malicious users of

CERT R4.2 (35% of training users are malicious). In an extreme case, we use only

data of the 70 malicious insiders for training the algorithms. This is to analyze how

the anomaly methods respond to data poisoning, where malicious data is presented

at high density in training data, which may corrupt the ML models into mislabelling

64

0 10 20 30 40 50 60 70 70 mal. users
Number of malicious users in training

0.6

0.7

0.8

0.9
AU

C
AE, day data
IF, day data
LODA, day data
LOF, day data
AE, week data
IF, week data
LODA, week data
LOF, week data

Figure 5.10: UAUC by number of malicious users in R4.2 training data

malicious as normal [10,68].

Figure 5.10 shows the user-based AUC by the algorithms on R4.2 data under

different numbers of malicious users in training. Overall, it is clear that ensemble-

based algorithms, IF and LODA, are very robust to the data poisoning attack. Using

IF, AUC even increases slightly with the presence of malicious data in training. This

can be explained through its properties, where a small amount of contamination in

training data allows trained IF trees to better model the anomalies that may appear

in the data [77].

On the other hand, the performance of AE and LOF deteriorates as the number of

malicious users in training increases. It seems that with high malicious data presence

in the training set, AE may incorporate some malicious actions as normal in its

trained model through the encoding-decoding process. Thus, it is unable to detect

those types of behaviours in testing. Similarly, in the case of LOF, high amounts of

poisoning data injected into training may increase the local density of malicious data

points, which may trick LOF to assign lower anomaly scores to those points.

Nevertheless, AE was able to maintain a better performance than other algo-

rithms, up to 30 malicious users in training data (15%). We note that in practice,

the amount of malicious users in training data for insider threat detection approaches

is typically very small [7], hence the use of AE is still preferred. Moreover, LODA

shows a great balance between detection performance and robustness, making it a

prime candidate in extreme poisoning conditions.

65

5.4.3.2 Effects of the number of users in training data

50 100 200 400 700 1000
Number of users in training data

0.85

0.90

0.95

U
AU

C

AE, day data
IF, day data
LODA, day data
LOF, day data
AE, week data
IF, week data
LODA, week data
LOF, week data

Figure 5.11: UAUC by number of users in R4.2 training data

Without having to collect ground truth for training data, the unsupervised learn-

ing approach permits the use of as many users in training data as possible, at the cost

of a higher computational cost. In this experiment, we vary the number of (randomly

selected) users to include in training data from 50 to 1000 (maximum amount) users

in CERT R4.2. User-based AUCs are presented in Figure 5.11. Results show that

except LOF, in most cases, the performance is largely unchanged. However, results

vary more (i.e. unstable), when fewer data (less number of users) are used in train-

ing. LODA and AE’s UAUC increase slightly to 200 users in training data, but AE’s

performance decreases slowly as the number of users increases in training.

Behaviours of AE and LOF can be explained through results in 5.4.3.1, where

a larger number of training users creates a higher chance of malicious users to be

included in training data, hence lowering their effectiveness. This shows that main-

taining a relatively small number of users (200) in training data not only reduces the

computational cost but also potentially gives more robust results.

5.4.3.3 Effects of training data duration

Similar to the number of users in training data, the number of weeks can be adjusted,

too. This experiment varies the parameter from 7 (10% of data time range) to 74

66

7 22 37 52 67 74
Number of weeks in training data

0.80

0.85

0.90

0.95
U

AU
C

AE, day data
IF, day data
LODA, day data
LOF, day data
AE, week data
IF, week data
LODA, week data
LOF, week data

Figure 5.12: UAUC by number of weeks in R4.2 training data

(100%). Figure 5.12 shows user-based AUCs on CERT R4.2 data types. As in the

previous experiments, IF’s performance is maintained through different numbers of

weeks used in training data. On the other hand, the detection performance of AE and

LODA rises until about 50% of the data duration is used in training (37 weeks), then

remains largely unchanged. LOF shows similar improvements in the first half of data

duration, but quickly deteriorates after that. In fact, more malicious insider activities

appear in the second half of CERT data than in the first half [24]. Hence, it can be

concluded that for AE and LOF, more training data may help to improve results, but

only to a point where the improvements are negated by the introduction of malicious

samples in training data (5.4.3.1). This experiment shows the advantage of online

learning methods, such as LODA, where results can be progressively improved over

time with more training data.

5.4.4 Ensembles of Anomaly Detection Models

As shown in previous sections, four anomaly detection algorithms show various effec-

tiveness on the datasets, especially under different training conditions. This section

presents the results by the ensemble schemes described in Section 5.2.5. Table 5.4

and Figure 5.13 show the results on CERT datasets by AUC and ROC. Combining

the anomaly scores to create ensembles, the best results (measured by AUC) by in-

dividual unsupervised ML algorithms are maintained in almost all cases, by VOTEν

67

Table 5.4: Instance-based and User-based AUCs by the combination schemes on the
CERT datasets. The results are color-coded based on different shades of yellow, for
easier comparison.

Data Data
type

Temp.
rep.

Instance-based AUC User-based AUC

AVG MAX VOTE2 VOTE3 VOTE4 AVG MAX VOTE2 VOTE3 VOTE4

CERT
R4.2

day

Org. 0.848 0.771 0.843 0.852 0.758 0.863 0.774 0.871 0.881 0.805
C2 0.860 0.791 0.856 0.867 0.803 0.881 0.800 0.871 0.874 0.868
C3 0.862 0.802 0.856 0.863 0.809 0.883 0.791 0.868 0.875 0.869
P7 0.905 0.897 0.901 0.904 0.885 0.901 0.889 0.907 0.910 0.888
P30 0.910 0.897 0.904 0.909 0.894 0.901 0.915 0.924 0.926 0.886
E7 0.814 0.761 0.809 0.816 0.757 0.876 0.780 0.828 0.881 0.857
E30 0.840 0.769 0.833 0.840 0.778 0.871 0.801 0.855 0.895 0.847
M7 0.806 0.748 0.800 0.804 0.763 0.865 0.782 0.810 0.865 0.824
M30 0.833 0.771 0.822 0.825 0.796 0.854 0.793 0.806 0.871 0.816

week

Org. 0.845 0.774 0.848 0.851 0.770 0.857 0.755 0.836 0.846 0.851
C2 0.854 0.794 0.851 0.856 0.793 0.866 0.772 0.849 0.863 0.831
C3 0.839 0.785 0.843 0.846 0.758 0.849 0.757 0.848 0.858 0.806
P30 0.894 0.895 0.896 0.896 0.881 0.882 0.895 0.900 0.893 0.860
P60 0.904 0.903 0.905 0.907 0.891 0.893 0.913 0.919 0.919 0.868
E30 0.854 0.836 0.849 0.854 0.842 0.741 0.689 0.765 0.755 0.745
E60 0.866 0.849 0.864 0.865 0.854 0.691 0.669 0.728 0.687 0.717
M30 0.855 0.834 0.851 0.857 0.840 0.718 0.652 0.743 0.742 0.722
M60 0.872 0.851 0.867 0.872 0.859 0.706 0.705 0.728 0.693 0.727

CERT
R6.2

day

Org. 0.950 0.932 0.955 0.956 0.911 0.945 0.896 0.950 0.941 0.897
C2 0.956 0.946 0.961 0.963 0.922 0.896 0.884 0.938 0.940 0.826
C3 0.941 0.948 0.959 0.960 0.883 0.884 0.887 0.935 0.941 0.799
P7 0.977 0.971 0.976 0.976 0.967 0.969 0.960 0.971 0.970 0.951
P30 0.978 0.971 0.977 0.976 0.971 0.961 0.972 0.965 0.960 0.949
E7 0.920 0.918 0.910 0.914 0.904 0.947 0.896 0.894 0.939 0.937
E30 0.961 0.943 0.951 0.949 0.955 0.954 0.919 0.914 0.949 0.944
M7 0.910 0.893 0.902 0.910 0.898 0.939 0.932 0.890 0.921 0.928
M30 0.945 0.940 0.940 0.929 0.934 0.946 0.931 0.935 0.922 0.927

week

Org. 0.967 0.963 0.973 0.955 0.943 0.897 0.857 0.923 0.902 0.837
C2 0.957 0.956 0.968 0.946 0.921 0.909 0.864 0.923 0.915 0.857
C3 0.945 0.948 0.960 0.940 0.899 0.904 0.858 0.927 0.920 0.842
P30 0.966 0.979 0.980 0.977 0.935 0.920 0.938 0.947 0.942 0.880
P60 0.961 0.977 0.979 0.975 0.924 0.909 0.939 0.943 0.941 0.858
E30 0.932 0.953 0.957 0.942 0.885 0.831 0.838 0.900 0.854 0.766
E60 0.937 0.961 0.967 0.942 0.893 0.850 0.832 0.892 0.857 0.761
M30 0.936 0.963 0.966 0.938 0.891 0.821 0.804 0.873 0.840 0.768
M60 0.931 0.935 0.945 0.930 0.909 0.840 0.842 0.907 0.836 0.783

68

0 20 40 60 80 100
False positive rate %

0

20

40

60

80

100
D

et
ec

tio
n

ra
te

 %

VOTE3, AUC = 0.907
AVG, AUC = 0.904
MAX, AUC = 0.903
AE, AUC = 0.887
IF, AUC = 0.884

(a) Instance-based ROCs

0 20 40 60 80 100
False positive rate %

0

20

40

60

80

100

D
et

ec
tio

n
ra

te
 %

VOTE3, AUC = 0.919
AE, AUC = 0.916
MAX, AUC = 0.913
AVG, AUC = 0.893
IF, AUC = 0.850

(b) User-based ROCs

Figure 5.13: ROCs by combination schemes and individual learning algorithms (AE,
IF) on CERT R4.2 data with P30 representation.

69

and AVG. In some cases, ensembles increase the detection performance. For exam-

ple, VOTE3 achieves AUCs of 0.909 and 0.907 on CERT R4.2 day and week data,

respectively, which improves over the individual components (Table 5.1). Performing

Friedman test, hypotheses rejected on both AUC and UAUC comparisons between

the learning algorithms and ensemble schemes (χ2
F = 148, p = 4 × 10−28 and χ2

F =

120, p = 2 × 10−22). Figure 5.14 shows critical difference diagrams for the posthoc

tests on instance-based and user-based results. On the other hand, as shown in the

figure, there are no significant differences detected between AVG, VOTE2,3, and AE,

and these methods all significantly outperform the remaining algorithms (VOTE4,

MAX, IF, LODA, LOF).

1 2 3 4 5 6 7 8 9

AVG

AE
IF

MAX

LODA
LOF

CD

 VOTE 3

 VOTE 2 VOTE 4

(a) Instance-based results

1 2 3 4 5 6 7 8 9

AE

AVG LOF
MAX
IF
LODA

CD

 VOTE 3

 VOTE 2

 VOTE 4

(b) User-based results

Figure 5.14: Critical Difference diagrams of results by learning algorithms and en-
sembles

Furthermore, we explore the effects of ensemble schemes under different training

conditions as in Section 5.4.3. Figure 5.15 shows results (in UAUC) of ML algorithms

and ensembles on CERT R4.2 day data under different training conditions. It is ap-

parent that voting schemes, especially VOTE2, achieve the best or near best detection

performance in almost all cases. Moreover, with more training data (Figure 5.15b),

VOTE2 is able to outperform all other algorithms. On the other hand, while AVG

shows similar results to voting-based ensembles, Figure 5.15 shows that combination

by averaging is not favoured under adverse learning conditions.

On time requirement consideration, it is noteworthy that while the computation

cost (and hence time) of combining scores by the individual algorithms is insignif-

icant, in order to create an ensemble, all components need to be trained. Hence,

the ensembles are restricted by the slowest algorithm (e.g. LOF) in both training

and predicting. In the particular cases of the datasets employed in this work, the

70

0 10 20 30 40 50 60 70 70 mal. users
Number of malicious users in training

0.6

0.7

0.8

0.9

AU
C

AE
IF
LODA
LOF
AVG
VOTE
VOTE

2
3

(a) UAUCs under training data poisoning

50 100 200 400 700 1000
Number of users in training data

0.85

0.90

U
AU

C

(b) UAUCs with different number of users in training data.

Figure 5.15: UAUC of learning algorithms and ensembles under different training
conditions on CERT R4.2 day data.

71

time required to train and evaluate detection models is reasonable (Fig. 5.8), hence

permitting their use in the current form. In other real-world applications, lightweight

components can be selected to create ensembles to avoid time and computation cost

burdens.

5.5 Discussions and Comparisons

In this part, CERT R6.2 is employed for testing purposes, as it represents more ma-

licious insider threat cases and better mimics real-world conditions (only 5 malicious

insiders). We study anomaly detection results given by the proposed system under

specific scenarios and show how security analysts may use these to further investi-

gate and identify malicious behaviours. Results on each insider threat scenario and

comparisons with other works in the literature are also presented.

5.5.1 Case Study of Anomaly Alerts

Using a unique id for each data instance used in the anomaly detection process,

the corresponding course of original user actions can be quickly examined, once an

anomaly alert is raised. A true anomaly alert example on CERT R6.2 is associated

with actions of user PLJ1771 – an IT administrator – on August 12, 2010. Using

AE and P30 representation, the data instance was assigned an anomaly alert with

99.99% confidence (i.e. the data instance has an anomaly score higher than 99.99%

of CERT R6.2 data). By studying the action sequence of the user on the day, his/her

malicious behaviour can quickly be confirmed: The user visits several sites providing

computer monitoring software, downloads a keylogger and puts it on a USB. Later

in the day, they log onto PC-3999, which belongs to their supervisor – HIS1706, and

start keylogging on the PC. This corresponds to the behaviours of a “disgruntled

system administrator” in the CERT dataset [24].

Another true anomaly alert is raised with 99.93% confidence for activities of user

CDE1846 on March 22, 2011, in which the user logged in after work hours to PC-5014,

which belongs to another user. Then, he/she opens and emails multiple documents

to his/her personal email.

On the other hand, several false alarms generated by the anomaly detection system

are worth investigating as well. For example, false alarms are raised for user YNW2855

72

on September 24, 2010 and user RRH3057 on November 03, 2010 with confidence of

99.90% and 99.99%. Investigating the original user activities on both days reveals

multiple actions (file accesses, website visits) very late after work hours (around 10

PM). While these examples may not depict malicious intentions (as per the dataset’s

ground truth), their anomalous nature needs to be inspected to ensure the safety of

the system and data.

These case studies show how a system administrator may leverage the anomaly

detection system’s output to identify the true nature of alerts as well as perform

appropriate responses, with reference to the reorganized course of actions (by user,

time) in log files. Furthermore, in manually investigating the original user’s activities

corresponding to each alert, the analyst may have access to more restricted informa-

tion that was not incorporated in the ML system’s training, such as email content,

to make informed decisions.

5.5.2 Detection Performance on Insider Threat Scenarios

As mentioned in Section 4.1.1, there are five malicious insiders in CERT R6.2, each

depicts a unique threat scenario. This part examines the detection results on the

scenarios.

Table 5.5 presents the malicious insiders and detection results using AE and week

data with P60 representation of CERT R6.2. Detection delays (at 10% IB), which is

the time between the first malicious action and when the malicious user is detected,

are also presented in the table. As the table shows, scenarios 1, 3, and 4 can be

detected very easily using the proposed system with only 0% to 0.04% FPR (or 0.04

to 0.15% normal users flagged wrongly). All malicious instances of those users are

detected with less than half a percent (0.32%) FPR. Scenarios 1 and 3 can also be

detected very quickly.

On the other hand, threat scenarios 2 and 5 are much harder to detect, resulting

in FPRs of 3.07% and 8.36%, respectively. At a UFPR of 26.46%, a system analyst

will need to inspect more than 1000 users to identify the malicious user MBG3183.

The descriptions of these scenarios show much less intrusive malicious behaviours

than the other three scenarios [24]. For example, in scenario 5, “a member of a

group decimated by layoffs uploads documents to Dropbox, planning to use them

73

for personal gain” (Section 4.1.1). This explains the lower detection performance on

these two scenarios, as they are easy to be mistaken as normal activities.

Table 5.5: Detection performance on specific insider threat scenarios. DD: detection
delay.

Threat
Scen.

Username
Min.

FPR to
detect

FPR to detect
all malicious
instances

UFPR
DD - week
data (days)

DD - day
data (days)

1 ACM2278 0.02% 0.06% 0.12% 3.22 0.22
2 CMP2946 3.07% 6.97% 13.00% 5.74 0.74
3 PLJ1771 0.00% 0.00% 0.04% 2.79 0.79
4 CDE1846 0.04% 0.32% 0.15% 5.68 3.07
5 MBG3183 8.36% 8.36% 26.46% 4.57 0.57

5.5.3 Robustness of the Trained Models

For this analysis, we use an anomaly detection model trained on one CERT dataset

(R4.2) to detect new anomalies on another one (R6.2). As CERT R6.2 is a newer

version with changed generative models and a larger size [24], this experiment can

be seen as applying the anomaly detection model of a company for a different one.

User-based AUCs on CERT R6.2 week data by AE models trained using the original

and P30 data representations are shown in Figure 5.16. The figure shows that the

anomaly detection model trained using CERT R4.2 data with P30 representation can

achieve very good AUC when tested on CERT R6.2 (UAUC=0.908). The result is

vastly improved over a model trained using R4.2 via the original data representation

(UAUC=0.511). This demonstrates the robustness of the proposed system when

percentile data representation is used. The result suggests that modelling user data

points in percentile representation brings in the temporal information of the user’s

previous data instances and therefore allows the model to generalize better.

5.5.4 Comparative Study

The proposed system shows clear advantages in both detection performance and the

ability to generalize when compared to other works in the literature employing un-

supervised anomaly detection methods for insider threat detection on the CERT

datasets [5, 63, 78–80,84,97,108].

74

0 20 40 60 80 100
False positive rate %

0

20

40

60

80

100

D
et

ec
tio

n
ra

te
 %

Train on R6.2 P30, AUC = 0.948
Train on R6.2 Org, AUC = 0.915
Train on R4.2 P30, AUC = 0.908
Train on R4.2 Org, AUC = 0.511

Figure 5.16: UAUC of models trained on CERT R4.2 and R6.2 data when tested on
R6.2

On CERT R4.2, the proposed approach obtained AUC of 0.907 and 0.909 on week

and day data (Section 5.4.4), outperforming previous works [5,63,97] that used HMM

and OneClass-SVM, which achieved AUC of 0.83 and 0.89, respectively. On CERT

R6.2 data, the proposed approach achieved AUC of 0.977 and 0.981 on day and

week data. In comparison, recent best AUCs achieved on R6.2 day data were 0.814

(Matterer et al. [84]), and 0.956 (Liu et al. [79], on only 3 malicious insiders). This

demonstrates the advantage of the proposed approach in embedding temporal infor-

mation in data representation, as opposed to using a learner with temporal learning

capabilities such as Long Short-Term Memory [84] and Markov models [97]. On R6.2

week data, recently, [80] achieved AUC of 0.999. However, they only tested on 500

users and 1 easy-to-detect malicious user (ACM2278, see 5.5.2). Under the same mali-

cious user consideration, the proposed approach posts an AUC of 0.9996. Similarly,

log2vec [78] achieved AUC of 0.93 with only 6 malicious users and 12 normal users in

CERT R6.2 included in the evaluation, while the result in this thesis (higher AUC)

is obtained on the full dataset. Furthermore, to the best of the author’s knowledge,

no other work has been able to show the ability of the anomaly detection solutions

to generalize (robustness) on other datasets as illustrated in Section 5.5.3.

On LANL, the proposed approach achieves comparable results to unsupervised

approaches in the literature [78, 116]. Note that other recent works on the datasets

75

achieved higher AUCs, but they used supervised learning, as in [14], or presented

results by log lines [16,20], which significantly increase the number of alerts.

Finally, the proposed approach is the first evaluated for insider threat detection on

the publicly available logs in TWOS dataset, to the best of my knowledge. Previous

works mostly focus on employing mouse captures in the dataset for user authentication

[28]. In one masquerader detection approach employing the data [106], the host

monitor log containing file system access events is employed to achieve AUC of 0.851.

However, this log is not publicly available (see Section 4.1.3).

5.6 Summary

In this chapter, an unsupervised ML based anomaly detection approach for insider

threat detection is presented. To this end, four different anomaly detection algorithms

with different working principles are employed. The methods are studied using dif-

ferent representations of data with temporal information, including concatenation,

percentile and mean or median difference. In doing so, the aim is to describe the

changes in user activities that could highlight the detection of anomalous behaviours.

Experiments under different constrained conditions are performed on publicly avail-

able datasets and comprehensive results are reported. Results show that Autoencoder

using percentile representation of data is the best combination for anomaly detection.

Temporal data representation in percentile format achieves significant improvements

over original extracted data, which enables effective insider threat detection under

very low investigation budgets and generalizes well on new data. Moreover, experi-

ments demonstrate the robustness of LODA, which may suggest its use under extreme

conditions and for low time complexity online learning and prediction. Furthermore,

when training resources permit, a voting-based ensemble of anomaly detection can be

used to improve detection performance and robustness. Comparing with the existing

literature, the proposed approach shows clear advantages in detection performance

and the ability to generalize to work under different environments.

Chapter 6

Insider Threat Detection using Machine Learning

This chapter presents and evaluates a machine learning based system for user-centered

insider threat detection. Using machine learning, analysis of data is performed on

multiple levels of granularity under realistic conditions for identifying not only ma-

licious behaviours, but also malicious insiders. Detailed analysis of popular insider

threat scenarios with different performance measures is presented to facilitate the

realistic estimation of system performance. Evaluation results show that the machine

learning based detection system can learn from limited ground truth and detect new

malicious insiders in unseen data with high accuracy. Specifically, up to 85% of ma-

licious insiders are detected at only 0.78% false positive rate. The system is also able

to quickly detect malicious behaviours, as low as 14 minutes after the first malicious

action. Comprehensive result reporting allows the system to provide valuable insights

to analysts in investigating insider threat cases1.

The chapter is organized as follows. Sections 6.1 and 6.2 present the proposed

system and the ML algorithms employed. Section 6.3 details the experimental set-

tings, while evaluation results are presented in Section 6.4. Further analysis of insider

threat scenarios and discussion of the results are presented in Sections 6.5 and 6.6.

Finally, conclusions are drawn in Section 6.7.

6.1 Overview of the Insider Threat Detection System

The proposed approach of a system for malicious behaviour and insider threat detec-

tion is illustrated in Figure 6.1. Following the process in Chapter 4, data sources are

processed into numerical data format with different granularity levels and temporal

representations. A limited ground truth on the data may be obtained via initial de-

tection, as presented in Chapter 5. Alternatively, based on an organization’s normal

1Parts of this chapter have been published at IEEE Transactions on Network and Service Man-
agement [71] (© 2020 IEEE)

76

77

ML-based
Anomaly
detection

Supervised Machine Learning for
Data Analytics

Logistic Regression

Neural Network

Random Forest

XGBoost

Extracted
Numerical data

Temporal data
representation

 Instance alerts

Analyst

Results & Analysis

Malicious behaviours
analysis

User alerts

Ground truth

Classification results
Initial detection

Analyst

Figure 6.1: Overview of the insider threat detection system

78

network and system conditions, security analysts may notice suspicious activities or

unusual changes in user behaviours. The security analyst would follow up by perform-

ing an investigation to identify whether these are originated from malicious action,

which may result in some amount of data being labelled. Supervised machine learning

models are trained on extracted data using the limited amount of ground truth. The

employed ML methods are described in Section 6.2. The ML-based classification re-

sults are then presented to cyber-security analysts for further analysis and responses.

This chapter presents an analysis of different insider threat scenarios/behaviours, data

granularity levels, and training conditions.

In this chapter, we assume the following benchmarking datasets: CERT R4.2,

CERT R5.2, and LANL. In each case, ML algorithms are trained with a limited

amount of ground truth on malicious/normal user behaviours with the aim to detect

unknown malicious insiders. Then, we explore how well the learned solution would

be able to generalize for detecting unknown malicious insider cases in the datasets.

Using supervised learning, the benefit is that we need not assume that data clusters

are always synonymous with distinct behaviours. Hence, this may allow higher pre-

cision in detecting insider threats than unsupervised learning / anomaly detection

algorithms [21] (Section 6.4.1.2).

In addition, focusing on user-centered detection of insider threats, the analysis in

this chapter will distinguish between malicious actions detected and malicious users

detected, where the two are not necessarily the same. For example, the diversity

in a user’s role within an organization can impact on the number/types of actions

performed, both normal and malicious. Additionally, in many cases, user actions can

vary over time and have different contexts that need to be taken into account in order

to process an alert about a suspicious behaviour [112]. Thus, high malicious instance

detection rates in this case may not necessarily translate to all malicious insiders

being detected.

Finally, several measures are presented in this chapter, such as detection delay

per malicious insider, or the support for each malicious insider alert. By providing

these measures, in addition to traditional cyber-security metrics, such as detection

rate and false positive rate, we aim to provide better support to security analysts and

positively contribute to a successful application of the proposed system in real-world

79

scenarios.

6.2 Machine Learning for Data Analytics

In this chapter, the following four well-known and widely-used ML algorithms are

employed: Logistic Regression, Random Forest, Neural Network, and XGBoost [21,

104]. Brief descriptions of the algorithms are presented below, while more detailed

descriptions can be found in [104].

6.2.1 Logistic Regression (LR)

LR is a linear statistical model that uses a logistic function to model a binary de-

pendent variable based on independent variables. In statistics, the logistic model

is suitable to model the probability of a certain class or event, such as pass / fail,

win / lose. In this research, the corresponding outputs are normal / insider threat

behaviours. Specifically, in this work, the logistic function, σ, is used to model the

probability of normal or malicious insider behaviour for each input x:

σ(wTx) = (1 + e−wT x)−1 (6.1)

Logistic regression training (with l2-regularization) results in the identification of

a weight vector, w, that minimizes the sum of squared errors between logistic function

σ(wTx) and target labels.

Logistic regression has the advantage of being highly interpretable as a linear

model. Furthermore, it returns a probability of an input vector belonging to a class,

thus facilitating the prioritization of the most suspicious actions for investigation. In

this work, logistic regression is included as a baseline model [23].

6.2.2 Neural Network (NN)

The NN assumed in this work takes the form of a multi-layer perceptron with up

to three hidden layers.2 Neural networks with at least a hidden layer provide the

ability to model a wide range of non-linear properties [11]. Reliably training such

architectures has recently been made possible through developments in approaches to

2Larger architectures could be trained, but at the expense of computational cost and interoper-
ability, factors that are also potentially important in real-world applications [21].

80

credit assignment and representation. Specifically, back-propagation with the Adam

formulation of stochastic gradient descent is assumed in this work [59], where this

implies that each weight in the network has its own (adaptable) learning rate. Thus,

given a mini-batch sample of training exemplars, statistics are collected to enable

second order information to be collected, i.e. the second moments of the gradients

are inferred. The resulting combination of per weight learning rate adaption and

(stochastic) back-propagation of the error represents a more robust scheme for weight

updating than many previous more computationally expensive methods [59]. The use

of rectified linear activation functions (as part of the representation) in the hidden

layers also accelerates learning across multi-layer architectures [44].

6.2.3 Random Forest (RF)

RF represents a process for building an ensemble of decision tree classifiers that

collectively ‘vote’ to provide a single class label for each exemplar [18]. Given p

training exemplars, each described in terms of d attributes, each decision tree is

define by: (1) selecting a random subset of the p training exemplars; (2) identify a

random subset, D, of the d attributes (D ≪ d); (3) each of the D selected attributes

are used to parameterize a new decision node in the decision tree [104]. Each leaf

of a tree represents a “decision”, or in classification tasks, a predicted class label.

Typically, each tree of a random forest is trained using CART algorithm [82], which

seeks to maximize information change – measured by “gini” impurity – at each split

of the tree. Gini impurity is calculated as GINI = 1−
∑︁J

i=1 p
2
i , where pi is the fraction

of items with label i in a set of J classes.

The entire process is repeated to create a user-specified number of decision trees.

The selection of attributes (step 2) and design of decision tree nodes (step 3) is

contextual on the subset of exemplars to build each decision tree, and the subset

of attributes used to build each decision node. These properties have been formally

shown to preclude over learning, making the predictions of the RF robust [18].

6.2.4 XGBoost (XG)

Similar to RF, XG also assumes decision trees as the classifiers to compose an ensem-

ble [26]. However, XG assumes a gradient boosting method, where the combination

81

Figure 6.2: An example machine learning pipeline with components automated by
TPOT [90]

of simple decision trees into a strong ensemble is guided by the optimization of a

differentiable loss function. Moreover, in boosting, the classifier output predicts class

labels through probabilities obtained using the logistic transformation of a linear com-

bination of each decision tree output. Different measures can be used with boosting to

reduce overfitting, such as random subspace method, and random subset of training

data available to each tree.

XGBoost provides improvements over traditional gradient boosting methods to al-

low a highly scalable tree boosting system. Examples include regularization, a mech-

anism for operating under sparse and weighted data, and adopting a block structure

for parallel learning. The algorithm has been successfully applied to applications in

a wide range of data mining tasks, including cyber-security [27, 36]. Due to its pop-

ularity, in this work, we include XG to test its capability in insider threat detection.

6.2.5 Automatic Optimization of Classifier – TPOT

With the aim of examining the possibilities of employing an automated machine learn-

ing approach (AutoML) to optimization of classifiers for insider threat detection, we

employ Tree-based Pipeline Optimization Tool (TPOT)3 [90] in this research. In

3https://github.com/EpistasisLab/tpot

https://github.com/EpistasisLab/tpot

82

general, automated machine learning refers to frameworks that automatically ex-

plore, select and tune the components of a machine learning pipeline to achieve well-

performed models with little to no human involvement [107]. AutoML is mostly used

in supervised machine learning tasks, i.e. classification and regression.

TPOT is an AutoML system based on evolutionary computation to optimize a se-

ries of feature selectors, pre-processors and ML models based on an objective, such as

maximizing classification accuracy [73]. An example machine learning pipeline with

components that TPOT optimizes is presented in Figure 6.2. In addition to model

selection and hyperparameter optimization, like most other AutoML systems, TPOT

also performs feature selection and feature engineering / construction. Specifically,

TPOT pipelines are designed as binary expression trees with ML operators as prim-

itives. Components of the pipelines are selected from implementations of algorithms

in scikit-learn [93] and other libraries. By default, TPOT evaluates a wide range of

algorithm or classifier tasks, including four algorithms presented in this section (LR,

RF, NN, XG), and others, such as Naive Bayes, k-nearest neighbours, and Extra

trees classifier. The complete pipelines in TPOT are evaluated based on their cross-

validated scores, such as accuracy or f1-score. TPOT then optimizes the pipeline

using genetic programming with the NSGA-II Pareto optimization [33].

TPOT has been shown to outperform standard machine learning techniques [73].

Hence, in this research, we explore if TPOT is capable of achieving better performance

than other ML methods employed in this chapter.

6.3 Experimental Evaluations

In this chapter, we present the evaluation of the proposed system for insider threat

detection using the CERT insider threat datasets R4.2 and R5.2, and LANL and

TWOS datasets. Chapter 4 details the process to extract numerical features from the

data sources, as well as data pre-processing based on the identification of multiple

levels of data granularity. In Section 6.3.1, the experiment settings and performance

measures are introduced. Section 6.3.2 details the training configuration and param-

eterization of the employed ML algorithms, while Section 6.3.3 presents the metrics

for measuring the detection performance.

83

6.3.1 Experiment Settings – Realistic training condition

Based on results obtained in Chapter 5, this chapter focuses on using original ex-

tracted numerical data and percentile-based temporal data representation (see Sec-

tion 4.3).

In this chapter, the aim is to obtain a realistic estimation of the proposed system’s

performance on real-world detection tasks, based on scenarios characterized by limi-

tations to the amount of ground truth data available for training the ML algorithms.

Specifically, in real-world environments, labelled (ground truth) data for training de-

tection systems is scarce. Thus, ground truth is only obtainable from a limited set

of verified users, while behaviours of others are generally unknown [13, 43]. To em-

ulate this condition, we assume a primary configuration – namely realistic condition

thereafter – where ground truth is obtained from only a restricted set of users over a

given time period.

On CERT R5.2, the ground truth data for training the ML algorithms is limited

to the data of 400 identified “normal” and “malicious” users (among 2000 users in the

organization), based on the first 37 weeks – 50% of the time period that the dataset

covers. By user count, this allows the ML algorithms to learn from data representing

18% of “normal” users and 34% of malicious insiders. Similarly, on CERT R4.2 and

LANL data, the user limits are 200 (in 1000 users) and 2000 (in 11814 users), while

duration limits are first 36 weeks (50%) and first 12 days (in 30 days), respectively. It

is noteworthy that from a detector’s point of view, the “normal” users in the training

data are only guaranteed to be benign in the training duration, while later in the

testing weeks, they may or may not turn “malicious”. Additionally, we further ensure

experiments are realistic by presenting results obtained solely from unknown users,

i.e users that have not performed any malicious actions in the training duration. By

excluding known malicious users, i.e. users whose malicious actions are included in

training data, from system performance measures, we believe the evaluations reflect

real-life situations, as well as cyber-security analyst’s interest [112].

Conceptually, by employing realistic training condition, we aim to estimate how

well a detection model developed on a dataset could perform on future unseen data

of the organization. In the first experiment, to show the contrast between traditional

ML applications and real-world cyber-security situations, we compare the realistic

84

setting above with an idealistic (traditional) setting, where a random 50% of data

from the whole dataset is used to train the ML algorithms. This is done at three

levels of data granularity: user-week, user-day, and user-session. The second exper-

iment evaluates the ML algorithms in realistic setting on all aforementioned data

granularity levels to obtain detailed results, both instance-based and user-based. De-

tailed analysis is performed on the results for each insider threat scenario provided

in the dataset. Furthermore, models trained on CERT R5.2 are also used to test

against other versions of CERT insider data for exploring the generalization of the

trained models’ performances under new / unseen environments (different version of

the CERT data emulates different organizations). The evaluation results are obtained

from a series of experiments, where each setting – a ML algorithm on a data type –

is randomly repeated 20 times.

6.3.2 ML Training Configuration and Parameterization

In this research, Python 3.7 is used for data pre-processing steps and Scikit-learn [93]

and XGBoost [26] are used for implementing ML algorithms. The training data are

normalized, per attribute, to zero mean and unit variance before being used to train

the ML algorithms. The ML algorithms are trained in a binary setting, where the

two classes are: malicious (positive) and normal (negative).

Logistic Regression assumes the lbfgs solver [76] and appeared to perform best

under default parameters. In the case of the three remaining algorithms, we perform

parameter search with cross-validation using hyperopt, which is a parameter tuning

solution based on the tree-structured Parzen estimator [12]. Specifically, for RF, we

tune the number of decision tree estimators (50 to 300), the number of features to

consider when looking for the best tree split (all features, square root and log base-2

of all features), and the depth of individual trees (3 to 10, or unlimited). Similarly, we

tune the number of estimators in XG (50 to 300), the depth of each tree (3 to 25), the

feature and sample subset size (0.5 to 1). Finally, for the NN, a computational limit of

250 epochs was assumed. A search between 1 to 3 for the number of hidden layers was

conducted, where each hidden layer has the size set to a half of the previous layer.4

Different mini-batch sizes were tested (32 to 256), and L2 regularization penalty (10−6

4Enforces a ‘bottleneck’ effect that encourages the network to discover a suitable encoding.

85

to 10−1) are also tuned. In each case, parameter tuning is limited to training data

alone.

6.3.3 Performance Metrics

In cyber-security applications of ML, detection rate (DR), which is also called recall,

and false positive rate (FPR) are widely used [21].

DR =
TP

TP + FN
, (6.2)

FPR =
FP

TN + FP
, (6.3)

where TP, TN, FP, FN are True Positive, True Negative, False Positive, and False

Negative, respectively. In this research, TP represents the number of malicious sam-

ples that are correctly classified as “malicious”, and FN represents the number of

malicious samples that are incorrectly classified as “normal”. On the other hand,

TN (FP) are the numbers of normal data samples that are correctly (incorrectly)

classified.

In addition to DR and FPR, we also report the system performance by Preci-

sion (Pr) and F1-score (F1). In particular cases, Accuracy (Ac), Receiver operating

characteristic (ROC) curves and Area under the curve (AUC) are also presented.

Pr =
TP

TP + FP
, (6.4)

F1 =
2

Pr−1 +Recall−1
, (6.5)

Precision represents the percentage of malicious alarms generated by the system

that is true. F1-score summarizes both DR, or recall, and Pr as a harmonic mean. Due

to the extremely skewed data (Table 4.2), a relatively small FPR may still translate

to a large number of false alarms. By reporting results using Pr and F1, the cost of

false alarm investigation is better presented. It is noteworthy that except ROC AUC,

the remaining metrics are calculated based on the default classification thresholds

generated by the algorithms post-training on each test data, which separates normal /

86

malicious predictions. For the sake of brevity, in the following, we report performance

metrics (Ac, DR, FPR, Pr, F1) in percent (%).

As mentioned in Section 6.1, system performance is reported in terms of both data

instances correctly detected (instance-based results), and users correctly detected,

(user-based results). For user-based results, a normal user is misclassified if at least

one of their data instances is classified as “malicious”, while a malicious insider is

identified if at least one of their malicious data instances is classified as “malicious”

by the system. We therefore have two sets of performance metrics: Instance-based

(IAc, IDR, IFPR, IPr, IF1) and User-based (UAc, UDR, UFPR, UPr, and UF1).

Finally, to further analyze the insider threat cases and provide better insights

into the effectiveness of the approach, we introduce the following measures: detection

delay (DD) and detection rate per detected malicious insider (DR/DMI). DD can

be defined as the time duration between the first malicious action performed by a

malicious insider until he/she is detected (if ever). On the other hand, DR/DMI

is the percentage of malicious instances detected per malicious user. For example,

if a malicious insider performs data exfiltration over 5 weeks and only one user-

week data instance of the user is flagged as “malicious”, DR/DMI for this case is

1/5 = 0.2. These additional metrics could be helpful in evaluating insider threat

detectors’ performances, where DD demonstrates how quickly the system is able to

detect a malicious insider, and DR/DMI represents the extent of the user’s malicious

actions uncovered by the system.

To compare between the algorithms, data types, or experiment settings, we adopt

F1 performance metric for its expressive power. Naturally, a system achieves high

F1 when it does well on both recall (DR) and precision, which means high malicious

detection rate at a cost of low false alarm rate. Pair-wise comparisons are supported

by Wilcoxon signed-ranks test, which is the nonparametric analogue to the paired

t-test for statistical significance tests [35,113]. In the cases of tests between multiple

algorithms and data types, Friedman test with Bonferroni-Dunn posthoc test is used

[35,39] (see Section 5.3.2).

87

Table 6.1: Instance-based results: Realistic vs Idealistic

Setting Alg.
Week Day Session

IACC IFPR IDR IPr IF1 IACC IFPR IDR IPr IF1 IFPR IFPR IDR IPr IF1

Idealistic

LR 99.74 0.09 55.13 71.70 62.28 99.86 0.01 33.26 81.94 47.30 99.85 0.01 22.13 89.04 35.44

NN 99.83 0.03 55.82 89.27 68.20 99.90 0.05 48.99 68.57 56.68 99.87 0.04 46.90 69.99 55.88

RF 99.80 0.00 57.55 99.97 73.05 99.86 0.00 44.60 99.98 61.68 99.86 0.00 27.80 99.96 43.49

XG 99.86 0.01 66.65 97.69 79.22 99.95 0.00 74.85 98.81 85.16 99.92 0.00 58.76 96.70 73.09

Realistic

LR 98.37 1.40 53.77 16.94 25.53 99.17 0.70 43.88 13.44 20.27 99.56 0.27 26.49 19.82 22.34

NN 99.73 0.41 45.23 38.03 40.33 99.84 0.41 39.90 20.54 26.30 99.82 0.14 29.28 37.20 31.80

RF 99.30 0.00 49.54 99.39 66.07 99.45 0.03 41.97 83.70 55.12 99.69 0.02 31.54 81.98 45.10

XG 99.67 0.14 63.37 74.10 67.63 99.70 0.20 56.39 44.84 48.52 99.53 0.31 31.76 22.09 25.11

6.4 Evaluation Results

In this section, first the effects of different training conditions on detection perfor-

mance are examined in 6.4.1. Section 6.4.2 presents results based on data representa-

tions, while detection performances by ML algorithms and by automatic optimization

of classifiers (using TPOT) is presented in 6.4.3. Finally, results by data granularity

levels are presented in 6.4.4.

6.4.1 Results by Training conditions

In this section, we perform comparisons between training conditions: realistic vs.

idealistic, and supervised learning vs unsupervised learning. For this purpose, we use

the original extracted numerical data of CERT R5.2

6.4.1.1 Realistic vs Idealistic

In this experiment, we compare instance-based results on user-session, user-day, and

user-week data between the two training conditions (realistic vs idealistic) in order

to demonstrate the challenges in applying ML solutions in real-world environments.

Instance-based results obtained from the two settings are shown in Table 6.1 and

Figure 6.3. It is clear that results obtained under the idealistic setting - 50% of

all data instances are used for training, sampled across the entire temporal period -

are significantly better on almost all measures than results obtained in the realistic

setting - training data is limited to data of only 20% of users in the first half of the

dataset. Performing Wilcoxon signed-ranks test returns p = 0.003. Thus, this rejects

88

LR NN RF XG LR NN RF XG

 0

 20

 40

 60

 80

In
st

an
ce

 b
as

ed
 F

1−
sc

or
e

Data type

xw

xd

xs

RealisticIdealistic

Figure 6.3: Instance-based F1-score by data types and algorithms under realistic and
idealistic training conditions. Error bars show 95% confidence intervals.

the null hypothesis: ML algorithms under the two training conditions (idealistic and

realistic) perform similarly with regards to IF1 at the 1% significance level.

By employing idealistic training condition, most ML algorithms achieved near

perfect IFPR, and higher IDR than under the realistic setting. The only exception

is RF over user-session data, where IDR and IF1 obtained from realistic setting is

better. Figure 6.3 also shows that RF achieves the most similar performances between

idealistic and realistic training conditions, which suggests RF as a good candidate for

learning from limited data conditions. On the other hand, while XG performs better

under the idealistic setting than the remaining algorithms, its performance degrades

greatly under realistic training condition, especially on higher granularity data, i.e

user-session data.

From a ML standpoint, all ML algorithms achieve relatively low instance-based

false positive rates under realistic condition, where IFPR < 0.5% in most cases.

However, in practice, due to the fact that normal data instances account for more

than 99.6% of all data instances, the amount of false positive alarms may still pose

a challenge to analysts. For example, a 0.14% IPFR by NN on user-session data is

equivalent to 1400 false malicious instance alerts.

89

The presented results highlight the challenges observed in many real-world appli-

cations of ML, especially in cyber-security, where ground truth is limited and typical

ML setting (random training / testing splitting of data) can not be satisfied, given that

such a split assumes global information. Thus, results obtained in a typical (ideslis-

tic) ML setting may not necessarily reflect real-world cyber-security performances,

and realistic settings need to be adopted in system design in order to ensure a smooth

transition to deployment environments and valid estimation of performances.

6.4.1.2 Learning algorithm – Supervised vs Unsupervised

Table 6.2: Instance-based results by Isolation Forest

Threshold
User-Week User-Day User-Session

IFPR IDR IPr IFPR IDR IPr IFPR IDR IPr

1% 0.94 0.38 0.22 1.17 3.01 0.59 1.14 12.54 2.50
5% 4.98 6.31 0.62 4.96 24.30 1.09 4.90 31.66 1.44
10% 9.42 26.42 1.32 9.23 50.99 1.17 9.08 49.87 1.17

In this section, we compare in realistic training condition the performances of

employed ML algorithms and Isolation Forest (IF) [77], a prominent unsupervised

learning approach that has been employed in many network anomaly detection work

recently [4]. IF assumes that the anomalous data instances are easier to isolate from

the rest of the data than normal instances, hence shorter path lengths to the corre-

sponding leaves of anomalous instances. For training IF models, the number of trees

is tuned for each data type. We assume three different thresholds (1%, 5%, and 10%)

for flagging data instances as “anomaly”, based on different investigating budgets.

Table 6.2 and Figure 6.4 illustrate the results achieved by IF. The results clearly

demonstrate that when label information, albeit limited, is available for training ML

algorithms, guided search as in supervised learning will achieve superior performances,

especially at very low FPRs.

6.4.2 Results by Data Representations

In Chapter 5, percentile data representation has been shown to benefit anomaly de-

tection, especially on the CERT datasets. Hence in this section, we evaluate the

90

0 20 40 60 80 100
False positive rate

0

20

40

60

80

100
De

te
ct

io
n

ra
te

XG,AUC=0.990
RF,AUC=0.987
LR,AUC=0.928
NN,AUC=0.914
IF,AUC=0.831

(a) User-week data

0 20 40 60 80 100
False positive rate

0

20

40

60

80

100

De
te

ct
io

n
ra

te

XG,AUC=0.923
RF,AUC=0.897
NN,AUC=0.875
LR,AUC=0.847
IF,AUC=0.795

(b) User-session data

Figure 6.4: Instance-based ROCs and AUCs of ML algorithms on user-week and
user-session data

91

Table 6.3: Instance-based detection results by data representations. F1 and AUC
results are color-coded based on different shades of green and yellow, for easier com-
parison.

Data Data
type Alg

Original Percentile representation
IAc IFPR IDR IPr IF1 IAUC IAc IFPR IDR IPr IF1 IAUC

CERT
R4.2

Session

LR 99.40 0.41 21.33 13.53 15.78 0.865 99.77 0.01 16.13 76.44 26.56 0.727
NN 98.60 1.23 32.60 6.59 10.83 0.844 99.51 0.33 35.65 22.68 27.34 0.811
RF 99.63 0.22 40.72 37.88 36.85 0.956 99.80 0.01 24.91 89.91 38.95 0.984
XG 99.11 0.75 44.60 14.34 21.21 0.947 99.83 0.04 50.43 77.71 60.82 0.983

Day

LR 99.10 0.67 27.08 12.58 16.75 0.878 99.72 0.06 31.29 63.11 41.78 0.730
NN 98.72 1.10 42.45 11.63 17.99 0.898 99.84 0.05 67.89 80.28 73.53 0.950
RF 99.31 0.55 55.88 27.68 35.72 0.968 99.85 0.07 74.61 79.75 76.82 0.998
XG 99.21 0.66 57.93 23.28 32.68 0.970 99.83 0.13 87.36 69.21 77.00 0.998

Week

LR 98.41 1.31 44.13 15.30 22.58 0.904 98.68 0.93 24.97 12.71 16.68 0.646
NN 98.85 0.87 45.63 22.56 29.78 0.914 99.49 0.14 28.68 52.96 37.08 0.771
RF 99.45 0.22 37.60 49.82 42.01 0.971 99.71 0.02 48.44 94.56 63.72 0.983
XG 99.24 0.47 44.49 35.09 38.54 0.974 99.18 0.64 65.39 37.14 46.51 0.973

CERT
R5.2

Session

LR 99.56 0.27 26.49 19.82 22.34 0.847 99.77 0.03 17.59 57.76 26.81 0.707
NN 99.69 0.14 29.28 37.20 31.80 0.875 99.58 0.27 37.44 26.06 30.25 0.885
RF 99.82 0.02 31.54 81.98 45.10 0.897 99.82 0.00 25.63 98.22 40.63 0.972
XG 99.53 0.31 31.76 22.09 25.11 0.923 99.78 0.07 36.18 57.84 44.15 0.973

Day

LR 99.17 0.70 43.88 13.44 20.27 0.915 99.82 0.07 52.43 66.67 58.02 0.802
NN 99.45 0.41 39.90 20.54 26.30 0.935 99.88 0.06 74.08 78.30 75.43 0.938
RF 99.84 0.03 41.97 83.70 55.12 0.980 99.91 0.04 75.94 83.03 79.21 0.998
XG 99.70 0.20 56.39 44.84 48.52 0.984 99.95 0.02 87.82 92.26 89.93 0.999

Week

LR 98.37 1.40 53.77 16.94 25.53 0.928 98.75 0.95 41.75 18.83 25.91 0.715
NN 99.30 0.41 45.23 38.03 40.33 0.914 99.63 0.08 44.42 75.99 55.61 0.823
RF 99.73 0.00 49.54 99.39 66.07 0.987 99.69 0.02 45.35 94.36 60.82 0.986
XG 99.67 0.14 63.37 74.10 67.63 0.991 99.57 0.17 48.85 63.11 54.42 0.973

LANL Day

LR 99.60 0.33 15.46 3.82 6.10 0.801 99.83 0.10 10.68 8.41 9.36 0.811
NN 99.82 0.11 13.45 10.28 11.36 0.748 99.85 0.07 7.71 8.73 8.01 0.662
RF 99.91 0.01 7.39 34.83 11.93 0.950 99.90 0.01 0.93 3.81 1.42 0.915
XG 99.90 0.02 7.06 21.38 10.35 0.964 99.90 0.02 1.53 5.55 2.37 0.924

92

Table 6.4: User-based detection results by data representations. F1 and AUC results
are color-coded based on different shades of green and yellow, for easier comparison.

Data Data
type Alg

Original Percentile representation
UAc UFPR UDR UPr UF1 UAUC UAc UFPR UDR UPr UF1 UAUC

CERT
R4.2

Session

LR 90.52 9.47 90.49 29.22 43.90 0.971 98.53 0.91 86.34 81.51 83.76 0.978
NN 83.19 17.23 94.39 17.49 29.44 0.965 86.89 13.60 99.27 22.87 37.09 0.989
RF 96.27 3.64 94.15 55.98 69.19 0.993 98.79 1.13 97.07 80.54 87.76 0.999
XG 93.80 6.04 90.00 40.13 55.24 0.971 96.94 2.72 89.51 61.69 72.38 0.989

Day

LR 87.97 12.27 94.15 24.13 38.26 0.969 96.70 3.34 97.56 56.95 71.81 0.977
NN 84.45 16.01 96.34 19.34 32.10 0.979 97.41 2.66 99.02 63.31 77.00 1.000
RF 95.62 4.53 99.02 50.11 66.20 0.996 97.96 2.13 100.00 70.14 81.78 1.000
XG 95.08 4.66 89.27 46.32 60.76 0.979 97.55 2.42 96.83 65.07 77.63 0.996

Week

LR 89.79 9.86 81.46 25.75 39.07 0.910 87.38 11.89 69.51 19.44 30.29 0.906
NN 94.61 5.06 87.07 43.65 57.93 0.950 95.83 3.33 77.07 51.27 61.44 0.942
RF 96.85 2.52 82.93 60.34 69.49 0.990 99.45 0.51 98.54 91.18 94.33 1.000
XG 96.00 3.25 79.27 52.60 63.09 0.978 91.06 9.02 92.93 31.16 46.39 0.971

CERT
R5.2

Session

LR 93.31 6.54 89.00 31.49 46.44 0.982 96.77 2.75 82.70 50.97 62.84 0.961
NN 96.26 3.44 87.54 47.47 61.31 0.987 89.95 10.14 93.02 22.66 36.31 0.976
RF 98.72 0.78 84.62 81.45 82.36 0.993 99.52 0.13 89.37 96.18 92.60 0.999
XG 97.02 2.49 82.77 54.39 65.39 0.979 97.89 1.85 90.16 62.99 73.98 0.991

Day

LR 92.23 7.75 91.54 28.17 43.03 0.978 96.40 3.70 99.23 48.45 64.98 0.998
NN 95.54 4.13 86.15 41.96 56.32 0.982 97.34 2.75 100.00 59.09 73.38 0.999
RF 98.95 0.43 81.62 88.04 84.42 0.997 97.76 2.32 100.00 61.77 75.82 1.000
XG 97.61 1.97 85.46 61.03 70.96 0.991 99.03 1.01 100.00 79.84 88.28 1.000

Week

LR 92.20 7.77 91.31 28.12 42.93 0.971 87.98 11.75 79.38 17.61 28.82 0.915
NN 96.50 2.82 77.00 49.00 59.77 0.922 97.80 1.53 78.77 65.85 71.33 0.958
RF 99.08 0.02 73.85 99.33 84.60 0.995 99.72 0.10 94.62 97.35 95.89 1.000
XG 98.42 1.00 82.00 75.52 78.25 0.992 96.78 3.22 96.62 52.33 67.42 0.996

LANL Day

LR 97.18 2.29 19.24 5.69 8.70 0.789 98.32 1.07 15.90 9.98 12.19 0.851
NN 98.52 0.89 13.67 10.26 11.42 0.777 98.59 0.76 11.41 10.48 10.70 0.768
RF 99.28 0.05 3.67 36.35 6.59 0.901 99.11 0.16 1.41 4.14 1.98 0.850
XG 99.26 0.09 6.46 32.60 10.61 0.926 99.03 0.25 2.31 6.12 3.32 0.884

93

learning algorithms with two different representations of the numerical data: original

extracted data and percentile.

The results are presented in Tables 6.3 and 6.4. As shown in the tables, by

using percentile representation, detection performances by almost all algorithms are

improved on CERT datasets, on both F1 scores and AUC. Wilcoxon signed-ranks

tests return p = 0.003 and p = 0.013 for comparisons by IF1 and UF1, respectively.

Furthermore, similar to the observations in Chapter 5, temporal representation of data

does not seem to improve detection performance over the original extracted data on

LANL dataset. This has been attributed to the appearance of temporal information

in original extracted data for the case of LANL (see Section 5.4). It is also noteworthy

that FPRs and DRs in the tables are measured at default classification thresholds

by the algorithms, at very low FPRs. In the case of LANL data, as AUC is higher

than 0.9 with RF and XG, it is expected that by adjusting the decision threshold to

accept a higher FPR, DRs can be improved. For example, using XG at 1% IFPR and

UFPR, IDR and UDR are improved to 54% and 38%, respectively.

6.4.3 Detection Performances by ML algorithms

As shown in Tables 6.3 and 6.4, among the ML algorithms, RF presents the best

results in terms of F1-score, precision, and false positive rates, both on user-based

and instance-based metrics (Figure 6.8). NN shows promising UDR – about 4%

higher than RF – at a cost of higher UFPR. On the other hand, LR suffers from high

UFPR and low F1 scores. Finally, while XG achieves the best performance (IF1)

on user-week data, fine-grained data types have a much higher negative impact on it

than on either RF or NN (Section 6.4.4).

Performing Friedman test on both user-based and instance-based F1 scores, the

null hypotheses are easily rejected (p = 0.0008 and p = 4×10−5), which means there

are significant differences between the algorithms. Figure 6.5 presents the critical

difference diagram obtained using the posthoc test. The tests confirm the observations

on algorithms’ performances.

94

1 2 3 4

RF
XG NN

LR

CD

(a) Instance-based results

1 2 3 4

RF
XG NN

LR

CD

(b) User-based results

Figure 6.5: Critical Difference (CD) diagrams of results by ML algorithms. Average
rank of each algorithm is shown on the scale. Two linked entries (connected by a
horizontal black bar) are not significantly different, i.e. rank difference is less than
CD.

Table 6.5: Instance-based detection results by TPOT. F1 and AUC results are color-
coded based on different shades of green and yellow, for easier comparison.

Data Type Temp. rep. IAc IFPR IDR IPr IF1 IAUC

CERT
R4.2

session
Org. 99.02 0.86 48.80 13.17 20.50 0.944
Percentile 99.76 0.09 42.79 68.70 50.34 0.976

day
Org. 98.82 1.10 73.20 19.21 30.05 0.969
Percentile 99.81 0.16 88.05 69.28 76.23 0.998

week
Org. 99.08 0.67 52.10 32.21 38.88 0.971
Percentile 99.33 0.50 66.83 45.44 52.47 0.978

CERT
R5.2

session
Org. 99.34 0.52 40.96 17.69 24.16 0.885
Percentile 99.81 0.02 26.79 76.40 39.40 0.901

day
Org. 99.50 0.42 65.83 30.47 40.49 0.960
Percentile 99.92 0.05 87.54 81.69 84.28 0.997

week
Org. 99.62 0.25 73.97 65.69 68.50 0.990
Percentile 99.68 0.10 57.63 78.14 65.61 0.985

LANL day
Org. 99.90 0.02 6.41 20.33 9.21 0.913
Percentile 99.86 0.05 4.32 5.04 4.02 0.907

TPOT optimized with F1 scoring

Data Type Temp. rep. Alg Accuracy % FPR % DR % Precision % Kappa

r4.2

session
None TPOT 98.64 1.24 49.47 9.94 0.158
percentile30 TPOT 99.74 0.11 38.74 56.99 0.441

day
None TPOT 99.11 0.78 64.99 21.77 0.321
percentile30 TPOT 99.80 0.15 86.32 67.78 0.748

week
None TPOT 98.98 0.78 52.81 29.38 0.365
percentile30 TPOT 99.51 0.31 63.71 56.20 0.583

r5.2

session
None TPOT 98.47 1.41 47.59 9.40 0.148
percentile30 TPOT 99.70 0.14 29.00 42.76 0.314

day
None TPOT 98.88 1.07 76.13 16.73 0.267
percentile30 TPOT

week
None TPOT 98.41 1.49 78.31 22.99 0.346
percentile30 TPOT 99.54 0.26 61.86 56.74 0.588

95

Table 6.6: User-based detection results by TPOT. F1 and AUC results are color-coded
based on different shades of green and yellow, for easier comparison.

Data Type Temp. rep. UAc UFPR UDR UPr UF1 UAUC

CERT
R4.2

session
Org. 93.93 6.04 93.17 40.81 56.54 0.984
Percentile 96.25 3.69 95.12 66.46 74.72 0.996

day
Org. 93.88 6.24 96.59 40.70 57.08 0.989
Percentile 97.77 2.33 100.00 69.52 80.90 1.000

week
Org. 95.07 4.70 89.76 47.22 61.43 0.986
Percentile 91.28 8.96 97.07 34.91 49.96 0.991

CERT
R5.2

session
Org. 95.53 4.34 91.69 42.51 57.88 0.987
Percentile 98.04 1.36 80.32 70.35 74.40 0.951

day
Org. 96.25 3.78 97.23 47.45 63.61 0.988
Percentile 98.77 1.27 100.00 73.95 84.91 1.000

week
Org. 98.43 1.18 87.38 72.50 79.18 0.995
Percentile 97.93 2.14 100.00 63.42 77.22 0.999

LANL day
Org. 99.19 0.16 6.65 23.22 9.81 0.888
Percentile 98.70 0.61 5.77 5.46 5.00 0.877

TPOT optimized with F1 scoring

Data Type Temp. rep. Accuracy % FPR % DR % Precision % F1

r4.2

session
None 92.95 7.10 94.15 36.84 0.528
percentile30 95.71 4.08 91.22 58.03 0.680

day
None 94.81 5.20 95.12 45.01 0.610
percentile30 97.64 2.44 99.51 68.54 0.799

week
None 95.18 4.65 91.22 47.25 0.619
percentile30 94.51 5.59 97.07 45.57 0.613

r5.2

session
None 92.01 8.04 93.85 30.09 0.447
percentile30 95.71 3.81 81.27 47.87 0.580

day
None 94.74 5.41 98.97 39.12 0.558
percentile30

week
None 96.06 3.81 92.31 45.85 0.611
percentile30 96.49 3.63 100.00 50.66 0.666

CERT R4.2 CERT R5.2 LANL

0.0

0.2

0.4

0.6

F
1−

sc
or

e

Algorithm

LR
NN
RF
XG
TPOT

Figure 6.6: Instance-based F1-score by data and algorithms. Error bars show 95%
confidence intervals.

96

6.4.3.1 TPOT results

As presented in Section 6.2.5, TPOT is employed to explore the possibilities of au-

tomatically optimizing the classifiers for better detection results. In this research,

TPOT is run with default classifier configuration5 and based on the following tem-

plate: Selector-Transformer-Classifier. The template enforces a linear pipeline struc-

ture as described by the steps: Selector (feature selection, e.g. SelectPercentile,

VarianceThreshold), Transformer (transforming features, e.g. FeatureAgglomeration,

OneHotEncoder), and Classifier. In our preliminary experiments, TPOT has a ten-

dency to produce complex stacked classifiers without improvements in performance.

Thus, the template is used to reduce TPOT computation time and potentially provide

more interpretable results [73]. In [73], the authors demonstrated that by enforcing

type constraints with strongly typed GP, TPOT with templates significantly outper-

formed a tuned XGBoost model and standard TPOT implementation.

Similar to other learning algorithms in this chapter, TPOT’s training data is

provisioned based on realistic training condition (Section 6.3.1). For optimizing the

classifier pipelines, in this research, TPOT is run with population size of 100 and up

to 50 generations (with early stopping). Accuracy is selected for the scoring function

and the results in each generation are measured using 5-fold cross-validation. The

parameters are selected empirically.

As TPOT needs to evaluate a population of pipelines, each has multiple steps,

and repeats that over many generations, TPOT training process requires significantly

higher computing resources than individual learning algorithms, such as RF and NN.

For example, in our experiments, TPOT may take up to three days to train on

compute nodes with Intel Xeon E5-2683v4 CPU and 250GB of RAM, while RF can

be trained in minutes on smaller nodes. Furthermore, in some cases, TPOT may

crash due to excessive RAM requirement of Polynomial feature construction6.

The following is an example of an optimized TPOT pipeline on CERT r4.2 week

data with percentile representation: ExtraTreesClassifier(ZeroCount(SelectPercentile(

input matrix, percentile=60)), bootstrap=False, criterion=entropy, max features=0.7,

5The configuration can be found at https://github.com/EpistasisLab/tpot/blob/master/

tpot/config/classifier.py
6https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

PolynomialFeatures.html

https://github.com/EpistasisLab/tpot/blob/master/tpot/config/classifier.py
https://github.com/EpistasisLab/tpot/blob/master/tpot/config/classifier.py
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

97

Instance based results

LR NN RF XG LR NN RF XG

 0

 20

 40

 60

 80

F
1−

sc
or

e
User based results

Data type xw xd xs xn=50 xn=25 x t=4 x t=2

Figure 6.7: Instance-based and user-based F1-score by data types and ML algorithms.
Error bars show 95% confidence intervals.

min samples leaf=1, min samples split=9, n estimators=100)). Post-training, the

optimized TPOT pipelines are evaluated on test data. The test results are presented

in Tables 6.5 and 6.6. Figure 6.6 shows a comparison between the ML algorithms on

the original extracted data from datasets by F1 score. It is apparent that TPOT in

this case offer no improvements over RF and XG. Performing Wilcoxon signed-ranks

test, the p values for comparison pairs RF – TPOT and XG – TPOT are 0.44 and

0.15, respectively. This shows the advantage of RF with proper parameterization

(Section 6.3.2), as it is able to achieve optimized results without the computation

overhead as via TPOT.

6.4.4 Results by Data Granularity Levels

As presented in Section 4.2.4, multiple levels of data granularity can be extracted on

CERT R5.2. In this section, we investigate the impact on the performance of a ML

based insider threat detection system under the realistic training condition.

6.4.4.1 Instance-based results

Instance-based results are shown in Table 6.7 and Figure 6.7. One noticeable trend

overall is that ML algorithms’ instance-based performances are degrading (w.r.t. IDR

98

Table 6.7: Instance-based results by data granularity levels and ML algorithm. F1 and AUC results are color-coded based on
different shades of green and yellow, for easier comparison.

Data
type

Logistic Regression Neural Network Random Forest XGBoost

IFPR IDR IPr IF1 IAUC IFPR IDR IPr IF1 IAUC IFPR IDR IPr IF1 IAUC IFPR IDR IPr IF1 IAUC

xw 1.40 53.77 16.94 25.53 0.93 0.41 45.23 38.03 40.33 0.91 0.00 49.54 99.39 66.07 0.99 0.14 63.37 74.10 67.63 0.99
xd 0.70 43.88 13.44 20.27 0.91 0.41 39.90 20.54 26.30 0.94 0.03 41.97 83.70 55.12 0.98 0.20 56.39 44.84 48.52 0.98
xs 0.27 26.49 19.82 22.34 0.85 0.14 29.28 37.20 31.80 0.87 0.02 31.54 81.98 45.10 0.90 0.31 31.76 22.09 25.11 0.92
xn=50 0.14 16.72 17.60 16.72 0.82 0.09 20.24 32.39 23.69 0.86 0.01 19.96 80.09 31.57 0.88 0.27 22.12 12.14 15.38 0.88
xn=25 0.07 11.22 17.84 13.49 0.80 0.04 14.75 39.61 20.59 0.85 0.01 15.56 78.98 25.67 0.88 0.20 15.74 9.24 11.37 0.86
xt=4 0.13 18.20 19.13 18.35 0.85 0.09 22.02 29.77 24.46 0.88 0.01 21.65 74.77 33.06 0.90 0.12 21.45 22.93 21.53 0.89
xt=2 0.08 12.53 16.65 14.13 0.84 0.05 15.77 32.02 20.26 0.87 0.01 16.13 67.86 25.68 0.89 0.16 16.33 11.26 13.13 0.87

Table 6.8: User-based results by data granularity levels and ML algorithm. F1 and AUC results are color-coded based on
different shades of green and yellow, for easier comparison.

Data
type

Logistic Regression Neural Network Random Forest XGBoost

UFPR UDR UPr UF1 UAUC UFPR UDR UPr UF1 UAUC UFPR UDR UPr UF1 UAUC UFPR UDR UPr UF1 UAUC

xw 7.77 91.31 28.12 42.93 0.97 2.82 77 49 59.77 0.92 0.02 73.85 99.33 84.60 1.00 1 82 75.52 78.25 0.99
xd 7.75 91.54 28.17 43.03 0.98 4.13 86.15 41.96 56.32 0.98 0.43 81.62 88.04 84.42 1.00 1.97 85.46 61.03 70.96 0.99
xs 6.54 89 31.49 46.44 0.98 3.44 87.54 47.47 61.31 0.99 0.78 84.62 81.45 82.36 0.99 2.49 82.77 54.39 65.39 0.98
xn=50 6.44 87.77 31.72 46.46 0.97 3.71 86.46 45.43 59.24 0.98 0.54 80.15 85.89 82.37 0.99 2.51 75.15 51.49 60.90 0.96
xn=25 6.55 85.54 30.73 45.10 0.96 2.83 83.54 51.89 63.54 0.98 0.51 79.85 86.49 82.49 0.99 2.58 69.77 48.91 57.36 0.95
xt=4 7.83 89.54 27.6 42.11 0.97 4.56 88.38 40.55 55.32 0.98 0.79 83.08 80.67 81.30 0.99 2.3 71.54 52.5 60.33 0.95
xt=2 9.36 89.62 23.87 37.63 0.97 4.47 86.15 40.38 54.74 0.98 0.92 82.92 77.8 79.77 0.99 2.66 66.62 46.94 54.91 0.94

99

and IF1) by higher data granularity levels. Specifically, significant differences can be

observed when comparing instance-based results (IF1) of different data granularity

levels in almost all of the cases. For example, comparing RF’s IF1 between user-week

and user-session, or between user-session and sub-session T2 both yield p = 9e−5.

Figure 6.4 further demonstrates the observation, where AUCs are higher on user-

week data than on user-session data. This can be explained through the amount of

information embedded in each data instance of different data types (see Chapter 4),

where coarse-grained data types, such as user-week and user-day, covers a longer

period and summarize more behavioural information, i.e. user actions, than fine-

grained data types, such as user-session and sub-session. Furthermore, much larger

instance count and higher imbalanced data distribution in fine-grained data types

(Table 4.2) also likely contribute to the observed degradation in instance-based results.

6.4.4.2 User-based results

Table 6.8 and Figure 6.7 and 6.8 show user-based results by the ML algorithms on

different data granularity levels. In contrast to the trend observed in instance-based

results, user-based results (UDR, UF1) are generally more robust on different data

granularity levels. Other than the XG algorithm, no large changes (>5%) can be found

between the measures of the data types in most of the cases. Furthermore, despite

a relatively low proportion of detected malicious insider data instances (Table 6.7),

the classifiers could learn to detect at least one malicious instance for most of the

malicious insiders (80 to 90%). User-based result reporting also adjusts false positive

rates considerably. For example, the NN achieves only a 0.14% IFPR, but 3.44%

UFPR on user-session data. These observations show the shortcomings of simply

reporting results per data instance rather than per user, where the former may not

necessarily demonstrate a true estimation of the detector’s capability in detecting

malicious users. In practice, it seems that user-based metrics justify the use of fine-

grained data types, such as session and sub-session. On these data types, despite

lower IF1 and IDR than for coarse-grained data types, the UF1 and UDR performance

remain the same. Fine-grained data types also provide further advantages to detection

systems, such as allowing a faster response (investigated in Section 6.5).

100

0 20 40 60 80 100
False positive rate

0

20

40

60

80

100
De

te
ct

io
n

ra
te xw ,AUC=0.987

xd ,AUC=0.979
xs ,AUC=0.897
xn = 50,AUC=0.885
xn = 25,AUC=0.876
xt = 4 ,AUC=0.895
xt = 2 ,AUC=0.888

(a) Instance-based

0 20 40 60 80 100
False positive rate

0

20

40

60

80

100

De
te

ct
io

n
ra

te xw ,AUC=0.995
xd ,AUC=0.997
xs ,AUC=0.993
xn = 50,AUC=0.990
xn = 25,AUC=0.989
xt = 4 ,AUC=0.990
xt = 2 ,AUC=0.988

(b) User-based

Figure 6.8: Instance-based vs User-based ROCs and AUCs of RF on different data
granularity levels

101

6.5 Analysis of Insider Threat Scenarios

As mentioned in Section 4.1.1, there are four distinct insider threat scenarios in CERT

R5.2 dataset. In this section, we analyze the performance of the ML models on each

scenario based on UDR, detection delay, and detection rate per detected malicious

insider. The results by RF are shown in Figure 6.9.

6.5.1 Scenarios 1 and 4 – Data Exfiltration

It is readily apparent that insider threat scenarios 1 and 4 are reliably detected on

most of the data types. Furthermore, these scenarios are detected quickly by the

system with high confidence, particularly on session and sub-session data granularity

levels. In these cases, the detection delays by RF are 3 and 0.23 hours (14 minutes)

on average, and DR/DMI mostly above 70% and 48%, respectively. This suggests

that the two scenarios can be easily detected using ML based systems. The insider

threat scenarios depict data exfiltration attempts. In scenario 1, “user begins to log in

after hours, using a USB, and uploading data to wikileaks.org”, and scenario 4 shows

another example: “user logs into another user’s machine and searches for interesting

files, emails them to his/her home email” [24]. Thus, it may be assumed that well-

chosen / derived features (Chapter 4) contribute to the detection of behavioural shifts

(abrupt changes in the user behaviour) in these scenarios. Some examples of these

are in after workhour information, or in PC and external email information.

6.5.2 Scenario 2 – Intellectual Property Thief

Scenario 2 appears to be the hardest to detect using ML based detectors. The best

results are obtained on user-day data, where 46% and 65% of malicious insiders

are detected using RF and NN respectively. Detection also takes longer and with

less confidence (DR/DMI < 36%) – averaging 154 hours (NN) and 86 hours (RF)

after the first malicious behaviour. Dataset description states that in this scenario,

“user surfing job websites and soliciting employment from a competitor, and use

a thumb drive to steal data” [43]. This implies less obtrusive actions than other

scenarios. Furthermore, the insiders in scenario 2 possibly hid their malicious actions

intentionally by performing them over a longer period of time (2 months on average,

102

UDR Detection delay

UDR Detection delay

UDR Detection delay

UDR Detection delay

0

25

50

75

100

0

10

20

30

0

25

50

75

100

0

20

40

60

80

0

20

40

60

80

0

200

400

0

20

40

60

0

100

200

300

0

25

50

75

100

0

10

20

30

40

50

0

25

50

75

100

0

25

50

75

100

Scenario 3 - IT Sabotage

Scenario 4 - Intellecture Property Theft 2

Scenario 2 - Intellecture Property Theft

DR/DMI

DR/DMI

DR/DMI

DR/DMI

Scenario 1 - Data exfiltration

Data type xw xd xs xn=50 xn=25 x t=4 x t=2

Figure 6.9: Insider threat scenario detailed results by RF. Error bars depict 95%
confidence intervals. UDR: User-based Detection Rate, DR/DMI: detection rate per
detected malicious insider. The unit of detection delay (DD) is hour. Note that for
DD, lower is better.

103

Section 4.1.1), hence making it harder to detect.

6.5.3 Scenario 3 – IT Sabotage

Scenario 3 represents an IT sabotage behaviour, where “disgruntled system admin-

istrator uses keylogger to collect keylogs then log in as his supervisor to send out

an alarming mass email” [24]. Based on Figure 6.9, it is apparent that this scenario

can be detected easily with fine-grained data types (session and sub-session). On the

other hand, coarse-grained data types result in lower performance under this scenario.

This observation can be explained through distinct characteristics particular to this

scenario, where a malicious user performs only a small number of actions (download

keylogger, copy to USB) under their own account. Fine-grained data types are able

to isolate those activities in terms of their short duration and PC-specific nature,

leading to high detection rates. However, it should be noted that although this sce-

nario can be detected effectively using fine-grained data types, detection delay and

DR/DMI are not as good as that of scenarios 1 and 4, at approximately 8 hours and

40%, respectively.

6.5.4 Traitors vs Masqueraders

Depending on the modelling approach, scenarios 3 and 4 may be considered mas-

queraders [52, 100], as they involve insiders performing malicious actions on other

users’ machines. The two remaining scenarios are purely traitors’ actions. Results

show that traitors’ actions – when performed in a less obtrusive manner and over a

long period – are harder to detect (Scenario 2, Figure 6.9). On the other hand, both

masquerader and traitor cases (scenarios 1, 3, and 4) can be detected easily using the

proposed system if significant changes in user behaviours can be detected through the

ML models.

6.5.5 Data Granularity Effects

Finally, with respect to granularity levels, fine-grained data types perform well with

high malicious insider DR, low detection delay, and high DR/DMI in almost all

situations. However, sub-session data types show no advantage over user-session data

in all measures. On coarse-grained data types, user-day data has an edge in detecting

104

insider threat scenario 2. On the other hand, when user-week data is used, lower

performance results, especially in terms of detection delay (> 280 hours and 360

hours in scenarios 4 and 2), despite the best instance-based performances (Table 6.7).

6.5.6 Test Results on Different Organizational Data

Table 6.9: User-based test results of the trained models on CERT R5.1 & CERT R6.2

Test data
Data
type

Neural Network Random Forest

UFPR UDR UPr UF1 UFPR UDR UPr UF1

CERT
R5.1 (2000
users, 4
malicious
insiders)

xw 3.56 70.00 3.75 7.12 0.05 55.00 75.42 62.16
xd 5.87 63.75 2.06 3.99 0.68 65.00 21.81 30.44
xs 5.14 76.25 2.84 5.48 0.84 77.50 22.15 32.68
xn=50 4.50 75.00 3.28 6.28 0.58 75.00 31.09 41.62
xn=25 3.57 75.00 4.33 8.15 0.67 75.00 28.13 37.97
xt=4 5.78 80.00 2.71 5.24 0.96 76.25 20.31 29.97
xt=2 6.18 81.25 2.55 4.94 1.17 75.00 13.87 22.90

CERT
R6.2 (4000
users, 5
malicious
insiders)

xw 0.05 10.00 26.10 13.39 2.75 52.00 4.43 7.79
xd 2.03 40.00 2.97 5.45 2.99 62.00 5.96 10.10
xs 18.57 59.00 0.34 0.68 16.02 57.00 0.38 0.75
xn=50 17.58 63.00 0.38 0.75 6.18 61.00 1.36 2.65
xn=25 16.46 57.00 0.38 0.75 6.51 60.00 1.17 2.30
xt=4 22.56 59.00 0.26 0.52 8.16 60.00 0.92 1.81
xt=2 26.29 60.00 0.21 0.43 8.38 59.00 0.87 1.71

As mentioned in Section 4.1.1, there are different versions of the CERT insider

threat datasets. In this section, we train ML classifiers on CERT R5.2 and test them

on CERT R5.1 and R6.2. CERT R5.1 simulates a similar organizational structure

as CERT R5.2, with the same number of users, while CERT R6.2 has a different

organizational structure and more users (4000), compared to CERT R5.2. Both

CERT R5.1 and R6.2 simulate only one malicious user per insider threat scenario,

significantly reducing the proportion of malicious data, which makes the detection

task more challenging. Table 6.9 presents the results of these tests.

On CERT R5.1, it is apparent that the models perform well with low false alarm

rates and 75% malicious insider detection rate. Typically on all data types, only

the insider in scenario 2 is missed. It is noteworthy that while UDR and UFPR are

similar to that observed on CERT R5.2, UPr and UF1 are lower, given the lower

105

number of malicious users in CERT R5.1. On the other hand, CERT R6.2 appears to

present new challenges, possibly due to a different organizational structure. Notably,

a new insider threat scenario in CERT R6.2 (scenario 5) is undetected. This scenario

depicts behaviours of “a user decimated by layoffs uploads documents to Dropbox,

planning to use them for personal gain” [24]. Not only does this scenario represent

a novel malicious behaviour to the trained model, but it also shows less obtrusive

actions than the remaining four scenarios.

On data granularity, user-session shows lower performance than the other data

types from CERT R6.2. This suggests that on a different organization with different

user behaviour models, a session of user data may represent a different course of

actions. In this case, a more aggregated data type, such as user-day and/or user-

week may demonstrate better results.

Overall, results in this section indicate that models trained for insider threat

detection in an organization can only be used as an initial detection step in a different

environment. Specific models need to be re-trained from ground up or evolved from

existing models for better accuracy. Furthermore, anomaly detection is needed to

identify novel malicious behaviours.

6.6 Discussion

6.6.1 DR - FPR trade-off

Throughout the experiments and results presented above, it is clear that there is

a trade-off between the ability to detect malicious behaviours (DR) and maintain-

ing a low false alarm rate (FPR). RF achieves the lowest FPRs and good DRs in

most of the cases, explaining the good performances under the F1-score. Wilcoxon

signed-ranks tests between RF and LR, NN, XG return p values 0.015, 0.015 and

0.03, respectively. This provides strong evidence against the null hypothesis that the

methods are equivalent with respect to IF1. NN and LR post higher malicious DR

at a cost of lower precision. Table 6.7 shows that instance-based false alarm rates

are approximately 5/6 for LR, and 2/3 for NN. In comparison, the false alarm rate

is only 1/5 for RF, both for instance-based and user-based. On the other hand, XG

shows good results on week data and in the idealistic condition only, which suggests

106

that it may not be a suitable candidate for insider threat detection, under limited

ground truth conditions.

On data granularity levels, the experiments show that data extracted in user-

session format allows good detection performance and low delay in most cases. Specif-

ically, using RF classifier, 85% of malicious users are detected at a low cost of 0.78%

false malicious user alarms. Classifiers using RF on user-session data also achieve the

lowest delay in detecting most of the insider threat scenarios. User-day data may

provide an advantage over user-session data in detecting scenario 2, while user-week

data shows promising results on unseen data of different organizational structures

(Table 6.9). On the other hand, pre-processing user data into sub-sessions does not

improve the results w.r.t. session data in any metrics. This is probably due to the

lower amount of information embedded in each instance of sub-session data.

6.6.2 Data Imbalance Problem

As the data is highly imbalanced (Table 4.2), in this section we discuss the effect

on ML algorithms. In this work, training the ML algorithms as binary classifiers, in

which minority malicious classes are combined to a single positive class, may help to

reduce the negative impacts of data imbalance. Furthermore, good results obtained

by RF, as shown in 6.4, may be attributed to its resistance to data imbalance [58].

We further examine the ML algorithms performances with oversampling tech-

niques. Results with random oversampling (increase positive class to 20% of training

data) are shown in Table 6.10. Note that other oversampling techniques, such as

SMOTE [25], and different training settings yield very similar results. Overall, it

seems that the DR-FPR trade-off is maintained, and the results obtained with over-

sampling is similar to what achieved with original training data composition with an

adjusted decision threshold (Figure 6.4 and 6.8).

Table 6.10: User-based results with Oversampling on user-session data

Algorithm UFPR UDR UPr UF1

LR 32.55 100.00 6.90 12.91
NN 17.26 95.08 14.03 24.44
RF 1.36 86.46 72.00 77.63
XG 5.04 88.31 37.83 52.72

107

LR NN RF XG LR NN RF XG

 0

 20

 40

 60

 80

U
se

r b
as

ed
 F

1−
sc

or
e

Data type

xw

xd

xs

Train users Unseen users

Figure 6.10: User-based F1-score on test data of “normal” train users and unseen
users. Error bars show 95% confidence intervals.

6.6.3 Overfitting and Effect of Training Data

We perform permutation test [89] in order to validate the trained classifiers. Essen-

tially, permutation test is a null hypothesis test to evaluate if the classifier found a

significant class structure, that is, a real connection between the data and the class

labels [89]. The test is done by obtaining classification results with a random per-

mutation of the labels. The process is repeated (100 times in this case) to obtain a

p value. Test results in all cases return p-values less than 0.01 w.r.t F1, indicating

the ML algorithms have learned to recognize meaningful classifiers from training data

without overfitting.

We further explore the effect of training data by comparing test results on test data

of “normal” training users (user set Utrain), and of unseen test users (user set Uunseen,

Uunseen ∪ Utrain = All test users). Recall that in the realistic training condition,

data from only a limited subset of users are included for training. Uunseen is the set

of users whose data in the first 37 weeks are not used in training the ML models.

Figure 6.10 shows user-based F1-score on test data of the two user sets. Overall,

the ML algorithms are able to generalize well, where UF1 is only slightly higher on

Utrain than on Uunseen (p=0.012 w.r.t UF1). RF shows the most similar performance

108

between Uunseen and Uresults (p = 0.66 w.r.t UF1), which suggests that it is more

robust to overfitting problem than the remaining algorithms.

6.6.4 Feature Analysis

We perform feature analysis based on the feature importance output of RF, which is

calculated using Gini impurity, and information gain. Definition of the metrics can

be found in [104]. Figure 6.11 illustrates the 25 most important features identified by

the two metrics in user-session data.

Figure 6.11a shows that HTTP and USB features are important to RF classi-

fiers, specifically URL depth, and in job category. This is expected, considering the

malicious actions in the insider threat scenarios (Section 6.5), where web and USB

are two common means for carrying out malicious actions, such as copying files, and

searching job offers. Features related to HTTP category “other” are important too.

This suggests the use of a more detailed HTTP categorization model for a better

description of user activities might be appropriate. Furthermore, the importance of

team and psychometric scores indicate the usefulness of the constructed user pro-

files (Section 4.2). On the other hand, information gain shows a slightly different

picture, Figure 6.11b, where features describing document related activities are the

most important ones.

6.7 Summary

In this chapter, a ML based system for insider threat detection in networked systems

of organizations is presented. The chapter benchmarks four different ML algorithms,

namely LR, NN, RF, and XG, and automatic optimization of classifier using TPOT.

This is done on multiple levels of data granularity, limited ground truth, and different

training scenarios in order to support cyber-security analysts in detecting malicious

insider behaviours in unseen data. Evaluation results show that the proposed system

is able to successfully learn from the limited training data and generalize to detect

new users with malicious behaviours. The system achieves a high detection rate and

precision, especially when user-based results are considered.

Among the ML algorithms, RF clearly outperforms the other algorithms, where

it achieves high detection performance and F1-score with low false positive rates

109

 0 0.005 0.010 0.015 0.020 0.025 0.030

HTTP URL depth
HTTP URL depth, other cat.
#USB acts
#HTTP acts
HTTP acts, other cat.
Psy. score, E
USB duration
HTTP URL len.
USB file tree len.
Psy. score, A
Psy. score, N
#Acts
Psy. score, O
Session duration
Session end time
HTTP content len., job cat.
HTTP URL len., other cat.
Session start time
HTTP URL len., job cat.
Psy. score, C
Team
HTTP content n words, job cat.
#HTTP acts, job cat.
HTTP content len.
Doc. att. / email

(a) Feature importance by RF (with 95% CIs)

 0 0.0005 0.0010 0.0015 0.0020

Doc. att. / email
#File acts
HTTP URL depth
#Doc. file acts
Doc. att. size / email
#USB acts
File depth
File len
File n_words
#File copy
Doc. file depth
Doc. file len.
Doc. file n_words
#Doc. file copy
Att. / email
Doc. att. / sent email
#File acts on disk C
#HTTP acts
Email size
Team
#Disk C doc. file acts
USB duration
#File acts on disk R
Att. / sent mail
USB file tree size

(b) Feature importance by Information gain

Figure 6.11: Feature importance in user-session data

110

in most of the cases. On the other hand, NN allows slightly better insider threat

detection performance at a cost of higher false alarm rates. On data granularity,

user-session data provides high malicious insider detection rates and minimum delay.

User-day data shows slightly better performance on detecting a particular insider

threat scenario, aka scenario 2 - intellectual property theft.

The results in this chapter show the advantages of supervised ML in learning from

limited ground truth (e.g. Chapter 5) to predict future insider threat cases at very

high precision. This creates the potential for employing supervised ML in assisting

analysts to quickly detect malicious insider cases, while complimenting anomaly-based

detection, which is useful for zero-day attacks.

Chapter 7

Semi-supervised Learning for Insider Threat Detection

Many challenges from insider threat detection come from the fact that the ground

truth is very limited and costly to acquire. This chapter presents a semi-supervised

learning approach to insider threat detection, in order to maximize the effectiveness

of the limited availability of the labelled training set. We employ three machine

learning methods under different real-world conditions. These include obtaining the

initial ground truth training data randomly or via a certain type of insider malicious

behaviour or by anomaly detection system scores. Evaluation results show that the

approach allows learning from very limited data for insider threat detection at high

precision. 90% of malicious data instances are detected under 1% false positive rate.

The results are also comparable to that of supervised learning1.

The chapter is organized as follows. Section 7.1 provides an overview of the semi-

supervised learning based approach to insider threat detection. The semi-supervised

ML algorithms and label availability schemes employed in this work are presented in

Section 7.2 and Section 7.3, respectively. Section 7.4 details the experimental settings,

while the evaluation results are presented in Section 7.5. Finally, conclusions are

drawn in Section 7.6.

7.1 Overview of the Semi-supervised Learning based Approach to

Insider Threat Detection

Figure 7.1 illustrates the overview of the proposed approach for insider threat detec-

tion using semi-supervised learning. Based on the process in Chapter 4, numerical

data with different granularity levels and temporal representations is extracted from

data sources. The following datasets are employed in this chapter: CERT R4.2,

CERT R5.2, and LANL. Based on the available data, firstly, anomaly detection steps

1Parts of this chapter have been presented at 2021 IEEE Security and Privacy Workshops [72]
(© 2021 IEEE)

111

112

ML-based
Anomaly
detection

Semi-supervised Machine
Learning for Data Analytics

Label Spreading

Self Training

Label Propagation
Extracted

Numerical data
Temporal data
representation

 Instance alerts

Analyst

Results & Analysis

User alerts

Classification results

Initial detection

Analyst

Label Availability Conditions

Random Malicious actions

Anomaly detection output

Limited
ground truth

Figure 7.1: Overview of the proposed system for semi-supervised insider threat detec-
tion. Limited ground truth, as defined by label availability conditions, in combination
with a large amount of unlabelled data is used for training the detection system.

113

or manual investigation is performed to obtain the initial labelled set of confirmed

malicious and normal users’ data. Then, based on the limited ground truth and ex-

tracted data, semi-supervised learning algorithms are employed in the next step to

improve detection performance. Presented in Section 7.2, semi-supervised learning

is a ML approach that permits large amounts of unlabelled data to be harnessed

in combination with typically smaller sets of labelled data, in order to improve the

outcome [110]. Conceptually, semi-supervised learning falls between unsupervised

learning, which does not need labelled training data, and supervised learning, which

trains using only labelled training data. This motivates its use in cyber-security

applications, as obtaining a fully labelled training dataset is prohibitively costly or

infeasible in many real-world conditions [21].

In this chapter, the focus is on using semi-supervised learning to improve upon the

limited labelled data obtained from the initial detection step for identifying unknown

malicious insiders. To achieve this, in Section 7.3, we detail the explored approaches

to present a limited labelled training set for semi-supervised learning algorithms using

three different methods.

7.2 Semi-supervised Learning Methods

In this research, we employ three popular semi-supervised learning methods from the

literature [110]: Label Propagation (LP), Label Spreading (LS), and Self-Training

(ST).

7.2.1 Label Propagation

Label Propagation (LP) [119] is a graph-based method, which propagates given labels

from a (typically small) subset of the data points to the whole dataset. In LP, label

assignments ŷi ∈ R are obtained by propagating the estimated label at each node to

its neighbouring nodes based on the edge weights. A connection weight between node

vi and vj is denoted by Wij. The transition matrix A, Aij = Wij/
∑︁

vk
Wik, allows

the calculation of the new estimated label at each node as the weighted sum of the

labels of its neighbours: ŷi = AT · ŷ. In this work, the radial basis function (rbf) is

used as graph kernel for connection weights.

114

At the beginning, ŷ is set to random for unlabelled data points and ground truth

(known true labels) for the labelled points, respectively. Using this, the label propa-

gation algorithm performs the two following steps repeatedly until converging (guar-

anteed) to obtain the final predictions [110]:

i) Propagate labels from each node to the neighbouring nodes (ŷ = AT · ŷ).

ii) Reset the predictions of the labelled data points to the corresponding true labels.

7.2.2 Label Spreading

Label Spreading (LS) [118] is also a graph-based method with similar principles as

Label Propagation. It was proposed to deal with two main drawbacks of Label Prop-

agation: reducing label noise and regulation of influence of high degree nodes over

the graph. To address the first issue, instead of assigning all the true labels to the

labelled data points, LS relaxes the number of true labels that need to be assigned,

and uses the squared error between the true label and the estimated label in opti-

mization. The second issue is addressed by using a modified version of the original

graph and normalizing the edge weights via normalized graph Laplacian matrix (L̃).

LS admits a closed-form solution and is a relatively efficient iterative approach to op-

timization [110]. In that, the label vector ŷt+1 at iteration t+1 is calculated based on

that at iteration t, using the update rule ŷt+1 = α · L̃ · ŷt+(1−α) ·y, where y equals 0

for the unlabelled data points, and α balances the importance of the calculated label

vector ŷ and the base label vector y.

7.2.3 Self-Training

First proposed in [115], Self-Training (ST) is a pseudo-labelling approach, which

trains a supervised classifier iteratively using both the given true labels and the

predicted labels (with high confidence) from previous iterations of the algorithm.

Using only the labelled data at the beginning of the self-training procedure, a base

classifier is trained and then used to obtain predictions for the unlabelled data points.

Based on the classification result, a set of the most confident predictions are added

to the labelled dataset as pseudo-labels. The process is repeated with the supervised

classifier retrained and new pseudo-labels obtained, until all samples have labels or the

115

maximum number of iterations is reached. In this chapter, self-training is employed

with four different classifier bases presented in Chapter 6 (LR, NN, RF, XG). Thus,

in the following, self-training is abbreviated with its base classifier information, e.g.

ST(RF).

Self-training variations have been applied extensively to computer vision prob-

lems, especially with the use of deep learning, and demonstrated state-of-the-art

performances [114]. In cyber-security, ST variations are successfully used in intrusion

detection and attack detection tasks [6, 98].

7.3 Label Availability for Semi-supervised Learning

In this chapter, we explore different label availability conditions to semi-supervised

learning. In real-world cyber-security applications, the initial labelled set may not

come from a random subset of data as assumed in many semi-supervised learning

settings. For example, only some malicious actions are discovered by the analyst

and labelled for further analysis, while other kinds of malicious actions remain unde-

tected. In other cases, the results from unsupervised learning approaches for anomaly

detection can be used as the basis for investigation. This in return provides an initial

labelled data for training. Thus, the following conditions for label availability are

examined in this paper:

(i) By random: a randomly selected small subset of training data (instances) is

labelled for training semi-supervised learning algorithms. This assumes that all

users are equally suspicious.

(ii) By random users: in this scenario, similar to (i), we assume that data from

a small number of randomly selected users is labelled (equivalent to a small

subset of users being sampled for labelling from the training partition). As in

real-world practice, labelling data from a subset of users may be easier than

doing so on the same amount of random data from all users [111].

(iii) By malicious action type: This case assumes that a certain type of malicious

action is detected and labelled for training, in combination with a random set

of normal data. This condition examines whether learning methods can detect

116

and generalize to other malicious behaviours. Such a scenario recognizes that

it might in practice be easier to recognize certain types of malicious action and

therefore manual labelling practices might be biased to certain behaviours.

(iv) By anomaly detection scores: This case uses anomaly detection scores (e.g.

Chapter 5) to label the unknown data. To this end, a percentage of training data

with the highest (confidence) anomaly scores are provided to semi-supervised

learning.

(v) As a variation of (iii), we assume the labelled data is obtained from all data

points of a small set of users with the highest anomaly scores.

In the following, the label availability conditions are referred to based on the

above enumeration. For condition (iii), a number is used in conjunction to indicate

the insider threat scenario (see Section 4.1.1) included in the initial label set. For

example (iii-1) means that scenario 1 represents the malicious action type as labelled

in the training data.

7.4 Experiment Settings

In this chapter, experiments are performed on CERT R4.2, R5.2, and LANL datasets

to evaluate semi-supervised learning for insider threat detection. We adopt realistic

settings as characterized in the previous chapter for training data, where data was

obtained from only a restricted set of users over a given time period is used (see

Section 6.3.1). Specifically, for CERT R4.2, data from 200 users in the first half of

the dataset’s duration (36 weeks) is used to train the algorithms. Similarly, on CERT

R5.2 and LANL data, the user limits are 400 (in 2000 users) and 2000 (in 11814

users), while duration limits are first 37 weeks (50%) and first 12 days (in 30 days),

respectively.

The amount of labels (ground truth) available is selected from the training data.

In the main experiment, 20% of the training data is labelled, based on the conditions

provided for semi-supervised learning (Section 7.3). In the case of CERT R4.2, the

labelled data amount is equivalent to that of 40 users (from the dataset of 1000 users).

The trained classifiers are then used to test on the second half of the dataset to detect

117

unknown malicious insiders. Results on the unlabelled portion of training data are

also reported.

In the following experiments, unless specified otherwise, we use Autoencoder

anomaly scores as the basis for label availability (iv) and (v), based on its results

in Chapter 5. Additional experiments in this chapter also explore the effect of the

amount of initial labelling, the type of unsupervised learning algorithm assumed for

anomaly scores, and the sensitivity of data granularity on semi-supervised learning

detection performance. The experiments are repeated 10 times in each setting, and

the averaged results are reported.

We implemented the data pre-processing and analysis steps using Python 3. Im-

plementations from Scikit-learn [93] are used. For LP and LS, the RBF kernel is used

with γ = 10. The parameters are chosen empirically. Finally, similar to previous

chapters, the insider threat detection performance is measured using FPR, DR, and

ROC AUC metrics, both instance-based and user-based (see Section 6.3.3).

7.5 Evaluation Results

In the main experiment, based on results from previous chapters, we employ weekly

data from CERT R4.2 and R5.2 datasets in percentile representation, and LANL

dataset in original extracted representation. The main experimental results are pre-

sented in Table 7.1 – Instance-based, and Table 7.2 – User-based. The tables report

AUCs on test datasets, and DR on test data at different critical FPR levels, based

on the ground truth availability scenario and learning algorithm. The AUC is also

reported on unlabelled train data in Table 7.1. The tables report the best results

achieved by self-training with one of the base classifiers (in LR, NN, RF, XG). It

is noteworthy that that RF is the best candidate on most of the cases on CERT

datasets, while XG gives the best performances on LANL dataset.

Overall, the results achieved using Self-Training are the most promising, on all

data availability conditions. For example, on day data, using top anomaly scores for

initial labels on CERT R4.2, this combination was able to detect 89% and 99% of the

malicious users in CERT R4.2 test data at UFPRs of only 0.01% and 1% (Table 7.2).

The results demonstrate the ability of semi-supervised learning to improve upon the

available limited ground truth or anomaly scores to detect insider threats.

118

Table 7.1: Detection results (AUC and DR) of the semi-supervised learning algorithms under different data availability
conditions. DR and AUC results are color-coded based on different shades of green and yellow, for easier comparison.

Ground-truth
availability Algorithm

CERT R4.2 CERT R5.2 LANL

Unlabelled
train AUC Test AUC

Test DR Unlabelled
train AUC Test AUC

Test DR Unlabelled
train AUC Test AUC

Test DR

0.1% FPR 1% FPR 5% FPR 0.1% FPR 1% FPR 5% FPR 0.1% FPR 1% FPR 5% FPR

(i) Random
LP 0.771 0.759 10.06 21.74 38.14 0.706 0.634 5.92 10.79 20.42 0.797 0.720 5.04 12.69 28.66
LS 0.727 0.688 9.52 18.44 33.77 0.639 0.592 5.27 9.35 16.34 0.804 0.717 5.46 12.94 30.08
ST 0.935 0.948 27.25 45.09 71.14 0.928 0.946 33.97 55.21 73.94 0.949 0.890 15.29 41.34 65.38

(ii) Random users
LP 0.757 0.709 8.20 18.02 32.40 0.691 0.605 3.27 7.38 16.20 0.817 0.721 5.46 12.44 26.05
LS 0.693 0.659 8.08 14.37 28.98 0.623 0.569 3.44 7.89 14.14 0.827 0.727 5.38 12.52 26.97
ST 0.864 0.907 18.38 33.23 61.92 0.851 0.895 27.94 42.79 61.58 0.948 0.895 10.92 34.71 61.85

(iii-1) Scenario 1
LP 0.604 0.628 14.73 16.95 23.29 0.649 0.591 6.76 11.07 18.56

On LANL dataset, results with ground-truth availability
scheme (iii) are not available, as the dataset provides no

details on malicious behaviours .

LS 0.405 0.538 11.02 15.39 21.08 0.508 0.553 5.46 7.83 13.10
ST 0.716 0.791 23.29 25.39 38.86 0.708 0.698 10.14 10.65 29.75

(iii-2) Scenario 2
LP 0.606 0.745 6.11 16.11 32.46 0.560 0.567 0.25 3.18 10.06
LS 0.380 0.665 4.97 12.75 28.38 0.546 0.534 0.39 2.51 8.54
ST 0.926 0.958 24.85 40.90 66.53 0.874 0.893 12.45 20.37 39.01

(iii-3) Scenario 3
LP 0.564 0.623 3.47 12.46 24.43 0.536 0.540 4.14 7.58 13.04
LS 0.414 0.443 2.81 4.49 8.74 0.450 0.521 3.58 5.72 10.14
ST 0.709 0.701 2.99 4.67 16.17 0.690 0.634 2.25 7.94 18.99

(iv) Top anomaly
scores

LP 0.657 0.639 13.11 18.74 26.29 0.651 0.581 3.75 6.39 11.77 0.779 0.675 9.83 14.29 27.31
LS 0.638 0.618 14.25 19.22 25.87 0.520 0.556 4.51 6.68 12.06 0.783 0.716 7.31 16.30 30.34
ST 0.974 0.978 55.39 62.87 83.11 0.949 0.982 62.31 74.51 86.99 0.980 0.965 22.52 49.83 80.84

(v) Users with
highest anomaly
scores

LP 0.646 0.684 15.27 18.74 28.14 0.639 0.703 13.10 23.21 34.90 0.787 0.711 2.18 6.05 22.61
LS 0.636 0.658 12.46 17.96 27.01 0.601 0.617 9.49 16.11 22.28 0.811 0.709 2.1 5.80 21.51
ST 0.789 0.824 22.46 27.31 42.57 0.785 0.838 12.42 37.18 51.46 0.932 0.848 5.29 22.77 54.71

119

Table 7.2: User-based detection results (UAUC and UDR) of the semi-supervised
learning algorithms under different data availability conditions. DR and AUC results
are color-coded based on different shades of green and yellow, for easier comparison.

Ground-truth
availability Alg.

CERT R4.2 CERT R5.2 LANL
Test

UAUC
Test UDR (at UFPR) Test

UAUC
Test UDR (at UFPR) Test

UAUC
Test UDR (at UFPR)

0.1% 1% 5% 0.1% 1% 5% 0.1% 1% 5%

(i) Random
LP 0.8093 15.12 30.24 45.85 0.6789 9.54 20.92 33.08 0.7153 3.80 11.39 28.23
LS 0.7719 15.61 31.95 44.39 0.6538 11.38 23.23 30.00 0.7141 3.54 14.05 27.34
ST 0.9783 58.05 68.05 84.39 0.9846 50.92 67.23 88.62 0.8199 8.10 29.87 52.15

(ii) Random
users

LP 0.7297 10.73 25.61 39.27 0.6292 5.38 12.46 20.15 0.7046 3.04 12.41 24.30
LS 0.6864 14.15 24.63 35.61 0.6186 8.62 12.31 22.00 0.7065 1.77 10.89 25.19
ST 0.9391 40.00 46.59 63.66 0.9522 43.85 54.77 72.00 0.8386 5.70 23.42 50.00

(iii-1) Scenario
1

LP 0.7068 36.83 50.24 51.95 0.6643 20.92 25.54 30.15

On LANL dataset, results with
ground-truth availability scheme

(iii) are not available, as the dataset
provides no details on malicious

behaviours .

LS 0.6898 35.12 41.46 46.34 0.6152 20.46 23.85 30.31
ST 0.9122 51.46 53.17 62.20 0.8389 31.54 35.38 41.38

(iii-2) Scenario
2

LP 0.5483 0.00 9.27 22.44 0.5141 0.00 0.00 4.77
LS 0.5607 0.24 6.34 21.46 0.4869 0.15 1.08 4.31
ST 0.8893 25.61 33.90 38.54 0.8921 17.38 21.85 28.46

(iii-3) Scenario
3

LP 0.7386 10.00 10.00 21.95 0.6401 10.77 18.00 29.85
LS 0.4348 10.00 10.24 11.71 0.5658 11.69 14.92 22.15
ST 0.7533 10.24 12.44 14.88 0.7633 10.77 11.23 24.46

(iv) Top
anomaly scores

LP 0.7469 0.00 46.83 54.15 0.5945 14.31 18.00 23.69 0.7180 4.18 15.32 25.19
LS 0.7728 7.07 48.29 57.32 0.5972 12.92 20.77 27.69 0.7457 2.28 12.53 27.22
ST 0.9997 89.27 98.78 100.00 0.9997 91.38 100.00 100.00 0.9147 10.00 38.61 62.53

(v) Users with
highest
anomaly scores

LP 0.7943 38.05 50.24 55.37 0.7741 21.23 36.31 48.92 0.6917 1.39 4.94 19.37
LS 0.7839 38.05 47.32 52.68 0.7272 17.08 29.69 44.77 0.6874 1.39 3.67 13.54
ST 0.9267 57.32 59.27 66.59 0.8896 14.15 42.62 52.77 0.7700 3.29 14.56 36.46

Comparing results by the semi-supervised learning algorithms, it is apparent that

LP and LS lag behind ST under all conditions. Friedman test on user-based AUCs

return p = 9×10−5, and critical difference diagram obtained using the posthoc test is

shown in Figure 7.2a. The test confirms the observations on algorithms’ performances.

This can partially be explained by the learning mechanisms of the methods. LS

and LP assume neighbouring relationships to label unlabelled data. Hence, their

effectiveness is improved on conditions (i)-(ii) – randomly selected training set, in

that the labelled training set is more likely to be evenly distributed throughout the

data. On other conditions (iii)-(v), the initial labelled training set may have the

tendency to focus on specific regions of data (describing specific malicious actions, or

with high anomaly scores). In these cases, neighbourhood information as in LP and

LS might not be effective in labelling other regions, which explains why LP and LS

fail to capitalize on the information provided by anomaly detection scores (Table 7.1).

In Section 7.5.2, we explore the visualization of training data to further explain the

120

results.

1 2 3

Self Training Label
Propagation

Label
Spreading

CD

(a) Ranking of the semi-supervised algorithms

1 2 3 4

(iv) Anomaly scores
(i) Random (v) Anomalous

 users

(ii) Random
 users

CD

(b) Ranking of label availability schemes

Figure 7.2: Critical Difference (CD) diagrams of results by label availability schemes
and semi-supervised algorithms.

On three training conditions using different insider threat scenarios – (iii-1), (iii-

2), and (iii-3), the AUC is higher only when scenario-2 is used as initial labels. We

think this is due to a greater amount of malicious data from this scenario (Table 4.2),

as well as different data describing those types of malicious actions (see Section 4.1.1).

This also shows a weakness of this type of detection system, where supervised and

semi-supervised learning may find it harder to generalize from previously seen attacks

to detect novel unseen attacks. Unsupervised learning based anomaly detection may

be better suited for this case.

Using condition (iv) – top anomaly scores, ST achieves the best AUCs and DRs in

most cases (Table 7.1). This indicates that learning upon anomaly detection results

is beneficial in this case, as high anomaly scores may be indicative of malicious and

unusual activities. On the other hand, employing data from users with the highest

anomalous scores – condition (iv) – offers no further advantages in almost all of the

cases. As label availability scheme (iii) is not available for LANL dataset, performing

Friedman test on user-based AUCs between label availability schemes (i), (ii), (iv),

and (v) returns p = 0.0003 (rejecting the null hypothesis), and critical difference

diagram obtained using the posthoc test is shown in Figure 7.2b.

7.5.1 Compare to Anomaly detection and Supervised learning

Table 7.3 shows a summary of test results, in previous chapters, from unsupervised

learning (using Autoencoder), and supervised learning (using Random Forest) for

comparison purposes. The comparison results are obtained under the same setting

121

Table 7.3: Anomaly detection and classification performances (AUC) for comparison

Data
Unsupervised learning Classification

IAUC UAUC IAUC UAUC

CERT R4.2 0.874 0.949 0.983 1
CERT R5.2 0.888 0.918 0.983 1
LANL 0.908 0.829 0.964 0.926

of training data, but with fully unlabelled or labelled training set, depending on the

learning algorithm. We note that the results as presented in Table 7.3 are state-of-the-

art for corresponding learning methods on the CERT dataset [69,71]. From the tables,

it is clear that ST shows much better detection performances than unsupervised

learning and LS or LP. Furthermore, ST results are approaching that of classification

approaches in all cases.

7.5.2 Visualizing the Training Data

To understand the differences in performance of the semi-supervised learning algo-

rithms, we perform data visualization using t-SNE [109]. t-SNE is a popular tool

for visualizing high-dimensional data distribution. Figures 7.3 and 7.4 show train-

ing data distribution (for week data) and the initial labelled set selected randomly

(Figure 7.3) or based on top anomaly scores (Figure 7.4). It is clear that when the

initially labelled data subset is selected randomly, neighbour-based methods like LS

and LP are performing better than under other label availability scenarios, as the

labelled data is more representative of the training data in this case (Figure 7.3).

The figures also show that the malicious data from the three threat scenarios are

quite different from each other. This explains the lower detection performances when

only one of the scenarios is presented as the initial labelled set.

When using anomaly scores, Figure 7.4 shows that data points with top anomaly

scores are not representative of the whole data. However, as the selection focuses on

the most anomalous data points, malicious data is more likely to be included in the

initial labelled set in this case. This, in combination with the ability to partition the

feature space of tree-based classifiers like RF and XG [18], enables self-training to

learn from the anomaly scores for insider threat detection and perform better on test

122

Normal
Scenario 1
Scenario 2
Scenario 3

Figure 7.3: t-SNE visualization of training data with labelled set selected randomly.
• denotes selected labels, while x denotes unlabelled training data.

123

Normal
Scenario 1
Scenario 2
Scenario 3

Figure 7.4: t-SNE visualization of training data with labelled set selected based on
anomaly scores. • denotes selected labels, while x denotes unlabelled training data.

124

data.

7.5.3 Data Granularity

Table 7.4: Detection results (AUC and DR) of the semi-supervised learning algorithms
under different data granularity levels. DR and AUC results are color-coded based
on different shades of green and yellow, for easier comparison.

Ground-truth
availability

Data
type

Instance-based Results User-based Results
Unlabelled
train AUC

Test
AUC

Test DR (at FPR) Test
UAUC

Test UDR (at UFPR)
0.1% 1% 5% 0.1% 1% 5%

(i) Random
session 0.9411 0.9543 26.49 46.6 74.59 0.9911 71.71 92.20 95.85
day 0.9807 0.9847 65.19 76.88 92.09 0.9998 93.90 100 100
week 0.9346 0.9482 27.25 45.09 71.14 0.9783 58.05 68.05 84.39

(iv) Top
anomaly scores

session 0.8870 0.9762 40.74 64.08 87.7 0.9996 92.93 99.02 100
day 0.9835 0.9943 80.06 93.4 97.83 0.9999 94.63 100 100
week 0.9739 0.9775 55.39 62.87 83.11 0.9997 89.27 98.78 100

We explore the effect of data granularity on the insider threat detection perfor-

mance of semi-supervised learning in this section. Session, day, and week data of

CERT R4.2 with percentile representation is used for that purpose.

Table 7.4 presents detection results by self-training with RF base under two sce-

narios for label availability: (i) – random and (iv) – top anomaly scores. Self-training

with RF base classifier is the best performing model in all cases in this experiment.

As shown in the table, the performance (AUC) achieved on day data is better than

that on week data. However, this comes at a cost of a higher amount of labelling,

as day data has five times the number of instances in week data (Table 4.2). On

the other hand, session data does not produce better results than that of week data.

While day and week data summarize user activities in a whole day or week, making

them easier to compare between the data instances, session data tends to be more

diverse on what user activities each data instance covers. This may explain the lower

performance from a small initial label set on session data.

7.5.4 Anomaly Detection Algorithm

In previous sections, the anomaly scores by Autoencoder have been demonstrated to

benefit insider threat detection by semi-supervised learning. Thus, in this section,

125

Table 7.5: Detection results (AUC and DR) of the semi-supervised learning algo-
rithms under label availability scheme (iv) – anomaly scores – with different anomaly
detection algorithms. DR and AUC results are color-coded based on different shades
of green and yellow, for easier comparison.

Percentage of
top anomaly
scores labelled

Anomaly
detection
algorithm

Instance-based Results User-based Results
Unlabelled
train AUC

Test
AUC

Test DR (at FPR) Test
UAUC

Test UDR (at UFPR)
0.1% 1% 5% 0.1% 1% 5%

1%

AE 0.6388 0.7317 23.35 28.32 43.65 0.9368 61.95 62.93 70.00
IF 0.5539 0.5493 1.00 3.39 11.58 0.6430 1.63 8.94 14.63
LODA 0.6393 0.7290 21.50 27.90 43.71 0.9418 59.51 60.98 68.78
LOF 0.6241 0.7044 22.87 28.02 41.20 0.9343 54.63 64.88 67.80

5%

AE 0.7969 0.8940 26.05 36.17 63.05 0.9758 63.90 69.27 81.71
IF 0.8088 0.8663 19.58 29.82 58.44 0.9459 39.51 50.98 65.61
LODA 0.8754 0.9200 28.98 43.89 71.14 0.9843 64.39 72.44 88.29
LOF 0.8359 0.9114 27.19 41.80 66.35 0.9807 63.90 71.71 83.41

20%

AE 0.9739 0.9775 55.39 62.87 83.11 0.9997 89.27 98.78 100
IF 0.9758 0.9775 55.69 63.05 83.71 0.9998 89.51 100 100
LODA 0.9857 0.9757 56.05 63.23 82.40 0.9998 89.76 99.76 100
LOF 0.9901 0.9801 56.53 64.79 83.35 0.9999 99.02 99.51 100

we explore the unsupervised learning anomaly detection algorithms (AE, IF, LOF,

LODA, see Chapter 5) as the basis for label availability scheme (iv) – top anomaly

scores. The results of self-training (RF base) with three different budgets for labelled

training data amount (1%, 5%, and 20%) are presented in Table 7.5. From the table,

it is apparent that when the label budget is high enough (20%), anomaly scores by

all algorithms are equally effective in supporting insider threat detection using semi-

supervised learning. However, at lower label budgets, IF clearly does not lead to the

same effectiveness as the other three anomaly detection algorithms. This is directly

related to the anomaly detection performances of the algorithms, and their abilities

in detecting anomalous actions of insiders at very low label budgets, as shown in

Table 5.1.

7.5.5 Effect of the Initially Labelled Training Set Size

To understand the effect of the initial labelled set, we conducted further evaluations.

To this end, we vary the amount of data selected as the initial labelled set for semi-

supervised learning, in two selection settings: (i) Random and (iv) Anomaly Scores.

1% to 60% of training data (from 200 users) in CERT R4.2 is labelled, which is

equivalent to the amount of data from 2 to 120 users. User-based AUCs by the

126

1%5% 10% 20% 30% 45% 60%
Amount of ground truth

0.5

0.7

0.9

1.0

U
AU

C Label Spreading
Label Propagation
Self Training (RF)
Self Training (NN)
Self Training (LR)
Self Training (XG)

Figure 7.5: UAUC by the amount of initial labels randomly selected – label availability
scheme (i)

1%5% 10% 20% 30% 45% 60%
Amount of ground truth

0.5

0.7

0.9

1.0

U
AU

C Label Spreading
Label Propagation
Self Training (RF)
Self Training (NN)
Self Training (LR)
Self Training (XG)

Figure 7.6: UAUC by the amount of initial labels selected using anomaly scores –
label availability scheme (iv)

127

semi-supervised learning algorithms are presented in Figures 7.5 and 7.6.

Again, similar trends can be observed in both cases, where ST(RF) shows much

better performances than the other algorithms and the AUCs are higher with better

label availability. The improvement is significant up to when 20% of training data

is labelled. After that, detection performance is only slightly increased. This seems

to indicate that 20% is the sweet spot of labelled data for performance gains versus

the labelling costs in this case. Furthermore, with a very small initial labelled set

(1-10%), condition (iv) – top anomaly scores – yields better results (using ST(RF))

than random. This shows the advantages of using anomaly scores for labelling the

limited initial training set, especially at very low label budgets, where UAUC of 0.94

can be achieved with only 1% of training data (2 users’ data) labelled.

7.6 Summary

In this chapter, the proposed semi-supervised machine learning approach is presented

for insider threat detection. Three different semi-supervised learning algorithms (LP,

LS, and ST) are used in conjunction with different labelled data availability condi-

tions. These were designed to emulate real-world situations representing the avail-

ability of various scenarios of ground truth. The proposed approach demonstrates the

ability to learn from very limited ground truth to support cyber-security analysts in

detecting malicious insider behaviours in new data. Specifically, the semi-supervised

learning approach using the Self-Training with Random Forest algorithm as the base

classifier achieves the best results in most conditions. This approach successfully im-

proves upon anomaly detection results using limited training labels to detect insider

threats. On CERT R4.2, the obtained test AUC is 0.9997, with 99% of malicious

users detected at only 1% false positive rate, which is very competitive with the

performance of supervised learning that uses all the labels of the training set.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

Insider threat is one of the most dangerous and prevalent security threats that compa-

nies, institutions and government agencies are facing. Malicious and harmful actions

in insider threats are performed by authorized personnel in organizations. Detection

of insider threat is challenging, due to the fact that a malicious insider is authorized

to access the organization’s computer systems and has knowledge about the orga-

nization’s security procedures. Moreover, in organizational environments, malicious

insiders’ activities may only make up a small portion of user activities in a wide

range of domains that are recorded, from process and authentication log, web and file

access, to email history. Any proposed system for insider threat detection needs to

overcome the challenges in learning from highly skewed data of heterogeneous sources

in order to distinguish malicious activities from legitimate ones, where all are from

authorized users.

Different insider threat detection approaches have been proposed in the literature.

Most of them are based on machine learning for analyzing a large amount of data

in organizational environments to detect patterns that reflect the abnormal, attack,

and malicious insider’s behaviours. However, different existing issues may prevent

successful applications of the approaches in detecting insider threat under real-world

conditions, including lack of capability to learn from heterogeneous data, excessive

requirements in maintaining and updating multiple detection models, unrealistic ex-

periment and evaluation settings, incomplete result reporting.

In this research, a comprehensive ML based framework for insider threat detec-

tion is proposed. The framework consists of different phases of data monitoring and

analysis, from processing raw log data, a combination of supervised and unsuper-

vised learning, to deep analysis and meaningful result reporting. A data extraction

approach is introduced in the data pre-processing step in the framework, allowing

128

129

extraction of heterogeneous data into numerical feature vectors representing user ac-

tivities in a time period, such as a day, and enabling applications of popular ML

methods. Different data granularity levels and temporal data representations are also

presented to explore the potentials in assisting insider threat detection and improving

the flexibility in detection and deployment.

In the initial detection step of the framework, an unsupervised ML based anomaly

detection approach for insider threat detection is presented. Four different anomaly

detection algorithms with different working principles are employed to learn from the

data without ground truth to capture the normal behaviours and reveal anomalous

behaviours as outliers. Different unsupervised ensembles based on anomaly detection

methods are also explored. Results show that an Autoencoder using percentile rep-

resentation of data is the best combination for anomaly detection. Temporal data

representation in percentile format achieves significant improvements over the original

extracted data, which enables effective insider threat detection under very low investi-

gation budgets and generalizes well on new data. Moreover, experiments demonstrate

the robustness of LODA, which may suggest its use under extreme conditions and for

low time complexity online learning and prediction. When training resources permit,

a voting-based ensemble of anomaly detection can be used to improve detection per-

formance and robustness. The anomaly detection approach outperforms the existing

literature in detection performance, and shows the ability to generalize to work under

different environments.

In the detection step of the framework, supervised ML algorithms are trained

on limited ground truth to support cyber-security analysts in detecting malicious

insider behaviours on unseen data. Four different ML algorithms – LR, NN, RF,

and XG – are benchmarked on multiple levels of data granularity, limited ground

truth, and different training scenarios. Evaluation results show that the ML models

successfully learned from the limited training data and generalized to detect new users

with malicious behaviours. The detection approach achieved a high detection rate

and precision, e.g. AUC up to 1 (100% DR at 0% FPR) in some cases, especially

when user-based results are considered. Among the four ML algorithms, RF clearly

outperforms the other algorithms, where it achieves high detection performance and

F1-score with low false positive rates in most of the cases. On data granularity,

130

user-session data provides high malicious insider detection rates and minimum delay.

On the other hand, user-day data shows slightly better performance on detecting

particular insider threat scenarios, such as scenario 2 in CERT dataset (intellectual

property theft).

Finally, a semi-supervised machine learning approach for insider threat detection

is introduced to further explore the ability of ML for insider detection under very

limited ground truth availability. Different schemes were designed to emulate real-

world situations representing the availability of various scenarios of ground truth:

randomly, by malicious behaviours, and by anomaly detection scores. The results

demonstrated the ability of the approach in learning from very limited ground truth

to support cyber-security analysts in detecting malicious insider behaviours in new

data. Specifically, the semi-supervised learning approach using the Self-Training with

Random Forest algorithm as the base classifier achieves the best results in most

conditions. This approach successfully improves upon anomaly detection results using

limited training labels to detect insider threats. On CERT R4.2, the obtained test

AUC is 0.9997, with 99% of malicious users detected at only 1% false positive rate,

which is very competitive with the performance of supervised learning that uses all

the labels of the training set.

8.2 Future Research Directions

While this thesis presented a comprehensive ML-based insider threat detection frame-

work, there are still many interesting open directions that we can continue to explore

in the future to ensure successful deployments in real-world corporate environments.

As highlighted throughout this thesis, an insider threat detection system should not

only perform well, but also be robust, secure, transparent, and flexible. Thus some

research directions, as listed in the following, are particularly promising to advance

the detection system and fulfill the requirements.

• Given that different organizations may use a common monitoring solution,

which essentially generates similar data formats, transfer learning can be em-

ployed to enable the adaptation of a successful detection model from one or-

ganization to another. This may reduce the deployment and training time,

131

and allow a detection system to quickly reach production working level in new

environments.

• Given that insider threat is highly related to human factors, research into this

direction may enable further understanding of how to improve detection perfor-

mance, not only for ML based detectors but also for security analysts performing

investigations. Some examples are enhanced user profiles for feature extraction,

the impact of labelling mistakes in training, and learning under user behaviour

concept drift. Furthermore, informed attackers’ actions and adversarial attacks

can also be introduced to further examine the performance under adverse con-

ditions, and improve the robustness of detection systems.

• Transparency and explainability can be taken into account for detection system

design, either via balancing model performance and complexity or by making

use of recent advances in explainable ML. This can enable understanding of

ML-based system’s decisions (e.g. why a user is flagged anomalous), especially

to cyber-security analysts. This, in turn, could allow greater adoption of ML-

based solutions in real-world conditions. Furthermore, it is also noteworthy that

in this research, we aim to extract as much information (in terms of numerical

features) as possible from the data sources. Our experiments demonstrate that

the ML methods employed in this thesis cope well with feature redundancy.

Nevertheless, dimensionality reduction and feature selection is an interesting

avenue for future research in order to reduce model complexity, and improve

the ability to reason from ML system’s decisions.

• Finally, in real-world conditions, user identities may not be presented in some

types of collected logs. Therefore, machine-based detection and hybrid models

of user-based and machine-based detection can be explored to improve detection

performance, flexibility, and versatility of the detection system.

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. https://www.tensorflow.org/.

[2] Charu C. Aggarwal. Outlier Analysis. Springer Publishing, 2nd edition, 2016.

[3] Ioannis Agrafiotis, Jason RC Nurse, Oliver Buckley, Phil Legg, Sadie Creese,
and Michael Goldsmith. Identifying attack patterns for insider threat detection.
Computer Fraud & Security, 2015(7):9–17, 2015.

[4] J. Ahmed, H. H. Gharakheili, Q. Raza, C. Russell, and V. Sivaraman. Moni-
toring enterprise dns queries for detecting data exfiltration from internal hosts.
IEEE Trans. Netw. Service Manag., 2019.

[5] Maryam Aldairi, Leila Karimi, and James Joshi. A trust aware unsupervised
learning approach for insider threat detection. In IEEE Int. Conf. on Informa-
tion Reuse and Integration for Data Science, pages 89–98, 2019.

[6] Rana Aamir Raza Ashfaq, Xi-ZhaoWang, Joshua Zhexue Huang, Haider Abbas,
and Yu-Lin He. Fuzziness based semi-supervised learning approach for intrusion
detection system. Information Sciences, 378:484–497, 2017.

[7] A. Azaria, A. Richardson, S. Kraus, and V. S. Subrahmanian. Behavioral
analysis of insider threat: A survey and bootstrapped prediction in imbalanced
data. IEEE Transactions on Computational Social Systems, 1(2):135–155, June
2014.

[8] Kirstie Ball. Workplace surveillance: an overview. Labor History, 51(1):87–106,
2010.

[9] Maŕılia Barandas, Duarte Folgado, Let́ıcia Fernandes, Sara Santos, Mariana
Abreu, Patŕıcia Bota, Hui Liu, Tanja Schultz, and Hugo Gamboa. Tsfel: Time
series feature extraction library. SoftwareX, 11:100456, 2020.

132

https://www.tensorflow.org/

133

[10] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J D
Tygar. Can machine learning be secure? In ACM Symposium on Information,
Computer and Communications Security, volume 2006, pages 16–25, 2006.

[11] A. Barron. Approximation and estimation bounds for artificial neural networks.
IEEE Trans. on Inf. Theory, 39:930–944, 1993.

[12] J Bergstra, D Yamins, and D D Cox. Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures. In
30th International Conference on Machine Learning, pages 115–123, Atlanta,
Georgia, USA, 2013.

[13] Monowar H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network anomaly
detection: Methods, systems and tools. IEEE Communications Surveys & Tu-
torials, 16(1):303–336, 2014.

[14] Haibo Bian, Tim Bai, Mohammad A Salahuddin, Noura Limam, Abbas
Abou Daya, and Raouf Boutaba. Uncovering lateral movement using au-
thentication logs. IEEE Transactions on Network and Service Management,
18(1):1049–1063, 2021.

[15] Brock Bose, Bhargav Avasarala, Srikanta Tirthapura, Yung Yu Chung, and
Donald Steiner. Detecting insider threats using radish: A system for real-time
anomaly detection in heterogeneous data streams. IEEE Systems Journal, 2017.

[16] Benjamin Bowman, Craig Laprade, Yuede Ji, and H. Howie Huang. Detecting
lateral movement in enterprise computer networks with unsupervised graph
AI. In RAID 2020 Proceedings - 23rd International Symposium on Research in
Attacks, Intrusions and Defenses, pages 257–268, 2020.

[17] O. Brdiczka, J. Liu, B. Price, J. Shen, A. Patil, R. Chow, E. Bart, and N. Duch-
eneaut. Proactive insider threat detection through graph learning and psycho-
logical context. In 2012 IEEE Symposium on Security and Privacy Workshops,
pages 142–149, 2012.

[18] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, October 2001.

[19] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander.
Lof: Identifying density-based local outliers. SIGMOD Rec., 29(2):93–104, May
2000.

[20] Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. Recurrent
neural network attention mechanisms for interpretable system log anomaly de-
tection. In Proceedings of the First Workshop on Machine Learning for Com-
puting Systems, pages 1–8, 2018.

134

[21] Anna L. Buczak and Erhan Guven. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communications
Surveys & Tutorials, 18(2):1153–1176, 2016.

[22] Guilherme O Campos, Arthur Zimek, Jörg Sander, Ricardo JGB Campello,
Barbora Micenková, Erich Schubert, Ira Assent, and Michael E Houle. On
the evaluation of unsupervised outlier detection: measures, datasets, and an
empirical study. Data mining and knowledge discovery, 30(4):891–927, 2016.

[23] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of su-
pervised learning algorithms. In International Conference on Machine Learning
(ICML), pages 161–168, 2006.

[24] CERT and ExactData, LLC. Insider Threat Test Dataset. Carnegie Mellon Uni-
versity’s Software Engineering Institute. https://resources.sei.cmu.edu/

library/asset-view.cfm?assetid=508099. Accessed June 01, 2021.

[25] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: Synthetic minority over-sampling technique. J. Artif.
Intell. Res., 16(1):321–357, June 2002.

[26] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In
The 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
pages 785–794, 2016.

[27] Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, and J. Peng. Xgboost classifier
for ddos attack detection and analysis in sdn-based cloud. In IEEE Int. Conf.
on Big Data and Smart Computing, pages 251–256, 2018.

[28] Penny Chong, Yuval Elovici, and Alexander Binder. User authentication based
on mouse dynamics using deep neural networks: A comprehensive study. IEEE
Transactions on Information Forensics and Security, 15:1086–1101, 2019.

[29] Daniel Costa. Cert definition of ’insider threat’ - updated. Carnegie Mellon Uni-
versity’s Software Engineering Institute Blog, 2017. https://insights.sei.

cmu.edu/blog/cert-definition-of-insider-threat-updated/. Accessed
June 01, 2021.

[30] Critical Infrastructure Directorate, Public Safety Canada. Enhancing
canada’s critical infrastructure resilience to insider risk, 2019. https://

www.publicsafety.gc.ca/cnt/rsrcs/pblctns/nhncng-crtcl-nfrstrctr/

index-en.aspx. Accessed June 01, 2021.

[31] Cybersecurity and Infrastructure Security Agency. Insider Threat Mitigation
Guide, 2020. https://www.cisa.gov/insider-threat-mitigation. Accessed
June 01, 2021.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099
https://insights.sei.cmu.edu/blog/cert-definition-of-insider-threat-updated/
https://insights.sei.cmu.edu/blog/cert-definition-of-insider-threat-updated/
https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/nhncng-crtcl-nfrstrctr/index-en.aspx
https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/nhncng-crtcl-nfrstrctr/index-en.aspx
https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/nhncng-crtcl-nfrstrctr/index-en.aspx
https://www.cisa.gov/insider-threat-mitigation

135

[32] Cybersecurity Insiders. 2020 Insider Threat Report. Technical report,
Gurucul, 2020. https://www.cybersecurity-insiders.com/portfolio/

2020-insider-threat-report-gurucul/. Accessed June 01, 2021.

[33] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on
evolutionary computation, 6(2):182–197, 2002.

[34] Hervé Debar and Andreas Wespi. Aggregation and correlation of intrusion-
detection alerts. In International Workshop on Recent Advances in Intrusion
Detection, pages 85–103. Springer, 2001.

[35] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine learning research, 7(Jan):1–30, 2006.

[36] Sukhpreet Singh Dhaliwal, Abdullah-Al Nahid, and Robert Abbas. Effective
intrusion detection system using xgboost. Information, 9(7):149, 2018.

[37] William Eberle, Jeffrey Graves, and Lawrence Holder. Insider threat detection
using a graph-based approach. Journal of Applied Security Research, 6(1):32–
81, 2010.

[38] Pedro Ferreira, Duc C. Le, and Nur Zincir-Heywood. Exploring feature nor-
malization and temporal information for machine learning based insider threat
detection. In International Conference on Network and Service Management
(CNSM 2019), Halifax, Canada, October 2019.

[39] Milton Friedman. A comparison of alternative tests of significance for the prob-
lem of m rankings. The Annals of Mathematical Statistics, 11(1):86–92, 1940.

[40] Anagi Gamachchi, Li Sun, and Serdar Boztas. Graph based framework for ma-
licious insider threat detection. In Proceedings of the 50th Hawaii International
Conference on System Sciences, 2017.

[41] Gaurang Gavai, Kumar Sricharan, Dave Gunning, John Hanley, Mudita Sing-
hal, and Rob Rolleston. Supervised and unsupervised methods to detect insider
threat from enterprise social and online activity data. Journal of Wireless Mo-
bile Networks, Ubiquitous Computing, & Dependable Applications, 6(4):47–63,
December 2015.

[42] Zoubin Ghahramani. Hidden markov models. In An Introduction to Hidden
Markov Models and Bayesian Networks, pages 9–42. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 2002.

[43] Joshua Glasser and Brian Lindauer. Bridging the gap: A pragmatic approach
to generating insider threat data. In IEEE Security and Privacy Workshops,
pages 98–104, 2013.

https://www.cybersecurity-insiders.com/portfolio/2020-insider-threat-report-gurucul/
https://www.cybersecurity-insiders.com/portfolio/2020-insider-threat-report-gurucul/

136

[44] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In
Int. Conf. on Artificial Intelligence and Statistics, pages 315–323, 2011.

[45] Henry G Goldberg, William T Young, Matthew G Reardon, Brian J Phillips,
and Ted E Senator. Insider threat detection in PRODIGAL. In The Annual
Hawaii International Conference on System Sciences, pages 2648–2657, 2017.

[46] Frank L Greitzer and Deborah A Frincke. Combining traditional cyber secu-
rity audit data with psychosocial data: towards predictive modeling for insider
threat mitigation. In Insider threats in cyber security, pages 85–113. Springer,
2010.

[47] Frank L. Greitzer and Ryan E. Hohimer. Modeling human behavior to antici-
pate insider attacks. Journal of Strategic Security, 4(2):25–48, 2011.

[48] Frank L. Greitzer, Jeremy Strozer, Sholom Cohen, John Bergey, Jennifer Cow-
ley, Andrew Moore, and David Mundie. Unintentional insider threat: Con-
tributing factors, observables, and mitigation strategies. In 47th Hawaii Inter-
national Conference on System Sciences, pages 2025–2034, 2014.

[49] Athul Harilal, Flavio Toffalini, Ivan Homoliak, John Henry Castellanos, Juan
Guarnizo, Soumik Mondal, and Mart́ın Ochoa. The Wolf Of SUTD (TWOS): A
dataset of malicious insider threat behavior based on a gamified competition. J.
Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl., 9(1):54–85, 2018.

[50] Malcolm I. Heywood. Evolutionary model building under streaming data for
classification tasks: opportunities and challenges. Genetic Programming and
Evolvable Machines, 16(3):283–326, 2015.

[51] Shuyuan Mary Ho, Michelle Kaarst-Brown, and Izak Benbasat. Trustworthiness
attribution: Inquiry into insider threat detection. Journal of the Association
for Information Science and Technology, 69(2):271–280, 2018.

[52] Ivan Homoliak, Flavio Toffalini, Juan Guarnizo, Yuval Elovici, and Mart́ın
Ochoa. Insight into insiders and IT: A survey of insider threat taxonomies,
analysis, modeling, and countermeasures. ACM Computing Surveys, 52(2):30:1–
30:40, April 2019.

[53] Jianguo Jiang, Jiuming Chen, Tianbo Gu, Kim-Kwang Raymond Choo, Chao
Liu, Min Yu, Weiqing Huang, and Prasant Mohapatra. Anomaly detection
with graph convolutional networks for insider threat and fraud detection. In
MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM),
pages 109–114. IEEE, 2019.

[54] H. G. Kayacik, N. Zincir-Heywood, and M. I. Heywood. On the capability of
an som based intrusion detection system. In International Joint Conference on
Neural Networks, pages 1808–1813, July 2003.

137

[55] Alexander D. Kent. Cybersecurity data sources for dynamic network research.
In Dynamic Networks in Cybersecurity. Imperial College Press, June 2015.
https://csr.lanl.gov/data/cyber1/. Accessed June 01, 2021.

[56] Alexander D. Kent, Lorie M. Liebrock, and Joshua C. Neil. Authentication
graphs: Analyzing user behavior within an enterprise network. Computers and
Security, 48:150–166, July 2015.

[57] Krishnaram Kenthapadi, Ilya Mironov, and Abhradeep Guha Thakurta.
Privacy-preserving data mining in industry. In ACM Int. Conf. on Web Search
and Data Mining, pages 840–841, 2019.

[58] T. M. Khoshgoftaar, M. Golawala, and J. V. Hulse. An empirical study of
learning from imbalanced data using random forest. In IEEE Int. Conf. on
Tools with Artificial Intelligence, pages 310–317, October 2007.

[59] D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

[60] Duc C. Le, Malcolm I. Heywood, and Nur Zincir-Heywood. Benchmarking
genetic programming in dynamic insider threat detection. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 385–386,
July 2019.

[61] Duc C. Le, Sara Khanchi, Nur Zincir-Heywood, and Malcolm I. Heywood.
Benchmarking evolutionary computation approaches to insider threat detec-
tion. In Genetic and Evolutionary Computation Conference (GECCO ’18),
pages 1286–1293, 2018.

[62] Duc C. Le and Nur Zincir-Heywood. Big data in network anomaly detection. In
Sherif Sakr and Albert Zomaya, editors, Encyclopedia of Big Data Technologies,
pages 1–9. Springer International Publishing, 2018.

[63] Duc C. Le and Nur Zincir-Heywood. Evaluating insider threat detection work-
flow using supervised and unsupervised learning. In IEEE Security and Privacy
Workshops (SPW ’18), pages 270–275, San Francisco, CA, USA, 2018.

[64] Duc C. Le and Nur Zincir-Heywood. Learning from evolving network data
for dependable botnet detection. In International Conference on Network and
Service Management (CNSM 2019), Halifax, Canada, October 2019.

[65] Duc C. Le and Nur Zincir-Heywood. Machine learning based insider threat
modelling and detection. In IFIP/IEEE International Symposium on Integrated
Network Management, Washington DC, USA, April 2019.

[66] Duc C. Le and Nur Zincir-Heywood. Exploring adversarial properties of insider
threat detection. In 2020 IEEE Conference on Communications and Network
Security (CNS), June 2020.

https://csr.lanl.gov/data/cyber1/

138

[67] Duc C. Le and Nur Zincir-Heywood. Exploring anomalous behaviour detec-
tion and classification for insider threat identification. International Journal of
Network Management, Early access, March 2020.

[68] Duc C. Le and Nur Zincir-Heywood. A frontier: Dependable, reliable and
secure machine learning for network/system management. Journal of Network
and Systems Management, 28(4):827–849, October 2020.

[69] Duc C. Le and Nur Zincir-Heywood. Anomaly detection for insider threats
using unsupervised ensembles. IEEE Transactions on Network and Service
Management, Early access, April 2021.

[70] Duc C. Le, Nur Zincir-Heywood, and Malcolm I. Heywood. Dynamic insider
threat detection based on adaptable genetic programming. In IEEE Symposium
Series on Computational Intelligence (SSCI ’19), 2019.

[71] Duc C. Le, Nur Zincir-Heywood, and Malcolm I. Heywood. Analyzing data
granularity levels for insider threat detection using machine learning. IEEE
Transactions on Network and Service Management, 17(1):30–44, March 2020.

[72] Duc C. Le, Nur Zincir-Heywood, and Malcolm I. Heywood. Training regime
influences to semi-supervised learning for insider threat detection. In IEEE
Security and Privacy Workshops, San Francisco, CA, USA, 2021.

[73] Trang T Le, Weixuan Fu, and Jason H Moore. Scaling tree-based automated
machine learning to biomedical big data with a feature set selector. Bioinfor-
matics, 36(1):250–256, 2020.

[74] Philip Legg, Nick Moffat, J.R.C. Nurse, Jassim Happa, Ioannis Agrafiotis,
Michael Goldsmith, and Sadie Creese. Towards a conceptual model and reason-
ing structure for insider threat detection. Journal of Wireless Mobile Network,
Ubiquitous Computing, & Dependable Applications, 4(4):20–37, 2013.

[75] Philip A Legg, Oliver Buckley, Michael Goldsmith, and Sadie Creese. Auto-
mated insider threat detection system using user and role-based profile assess-
ment. IEEE Systems Journal, 11(2):503–512, June 2017.

[76] Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large
scale optimization. Mathematical Programming, 45(1):503–528, August 1989.

[77] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly
detection. ACM Trans. Knowl. Discov. Data, 6(1), March 2012.

[78] Fucheng Liu, YuWen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng.
Log2vec: A Heterogeneous Graph Embedding Based Approach for Detecting
Cyber Threats within Enterprise. In ACM SIGSAC Conference on Computer
and Communications Security, volume 18, New York, NY, USA, 2019. ACM.

139

[79] Liu Liu, Chao Chen, Jun Zhang, Olivier De Vel, and Yang Xiang. Insider threat
identification using the simultaneous neural learning of multi-source logs. IEEE
Access, 7:183162–183176, 2019.

[80] Liu Liu, Chao Chen, Jun Zhang, Olivier De Vel, and Yang Xiang. Unsupervised
insider detection through neural feature learning and model optimisation. In
Lecture Notes in Computer Science, volume 11928 LNCS, pages 18–36. Springer,
2019.

[81] Liu Liu, Olivier De Vel, Qing-Long Han, Jun Zhang, and Yang Xiang. Detecting
and preventing cyber insider threats: A survey. IEEE Communications Surveys
& Tutorials, pages 1397 – 1417, 2018.

[82] Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary re-
views: data mining and knowledge discovery, 1(1):14–23, 2011.

[83] Market Connections, Solarwinds. Public sector cybersecurity sur-
vey report, 2020. https://www.solarwinds.com/resources/survey/

solarwinds-public-sector-cybersecurity-survey-report-2020. Ac-
cessed June 01, 2021.

[84] Jason Matterer and Daniel Lejeune. Peer group metadata-informed LSTM en-
sembles for insider threat detection. International Florida Artificial Intelligence
Research Society Conference, pages 62–67, 2018.

[85] W. Meng, K. R. Choo, S. Furnell, A. V. Vasilakos, and C. W. Probst. Towards
bayesian-based trust management for insider attacks in healthcare software-
defined networks. IEEE Trans. Netw. Service Manag., 15(2):761–773, June
2018.

[86] S. Miller and A. Pickering. Insider threat incidents: Communi-
cation channels. Carnegie Mellon University’s Software Engineer-
ing Institute Blog, 2020. http://insights.sei.cmu.edu/blog/

insider-threat-incidents-communication-channels/. Accessed June
01, 2021.

[87] National Cybersecurity and Communications Integration Center. Combating
the insider threat. The US Department of Homeland Security, 2014. https:

//www.us-cert.gov/security-publications/Combating-Insider-Threat.
Accessed June 01, 2021.

[88] Jason RC Nurse, Oliver Buckley, Philip A Legg, Michael Goldsmith, Sadie
Creese, Gordon RT Wright, and Monica Whitty. Understanding insider threat:
A framework for characterising attacks. In 2014 IEEE Security and Privacy
Workshops, pages 214–228. IEEE, 2014.

https://www.solarwinds.com/resources/survey/solarwinds-public-sector-cybersecurity-survey-report-2020
https://www.solarwinds.com/resources/survey/solarwinds-public-sector-cybersecurity-survey-report-2020
http://insights.sei.cmu.edu/blog/insider-threat-incidents-communication-channels/
http://insights.sei.cmu.edu/blog/insider-threat-incidents-communication-channels/
https://www.us-cert.gov/security-publications/Combating-Insider-Threat
https://www.us-cert.gov/security-publications/Combating-Insider-Threat

140

[89] Markus Ojala and Gemma C. Garriga. Permutation tests for studying classifier
performance. Journal of Machine Learning Research, 11:1833–1863, August
2010.

[90] Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore.
Evaluation of a tree-based pipeline optimization tool for automating data sci-
ence. In Proceedings of the Genetic and Evolutionary Computation Conference
2016, GECCO ’16, pages 485–492, New York, NY, USA, 2016. ACM.

[91] Keshnee Padayachee. An assessment of opportunity-reducing techniques in
information security: An insider threat perspective. Decision Support Systems,
92:47–56, 2016.

[92] Pallabi Parveen, Jonathan Evans, Bhavani Thuraisingham, Kevin W Hamlen,
and Latifur Khan. Insider threat detection using stream mining and graph
mining. In IEEE Third International Conference on Privacy, Security, Risk
and Trust, pages 1102–1110, 2011.

[93] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[94] Jian Peng, Kim-Kwang Raymond Choo, and Helen Ashman. User profiling in
intrusion detection: A review. Journal of Network and Computer Applications,
72:14–27, 2016.

[95] Tomáš Pevný. Loda: Lightweight on-line detector of anomalies. Machine Learn-
ing, 102:275–304, 2016.

[96] Ponemon Institute. 2020 Cost of Insider Threats Global Report. Techni-
cal report, Proofpoint, Observe IT, 2020. https://www.proofpoint.com/

us/resources/threat-reports/2020-cost-of-insider-threats. Accessed
June 01, 2021.

[97] Tabish Rashid, Ioannis Agrafiotis, and Jason R.C. Nurse. A new take on detect-
ing insider threats. In International Workshop on Managing Insider Security
Threats, pages 47–56, New York, New York, USA, 2016. ACM Press.

[98] Shailendra Rathore and Jong Hyuk Park. Semi-supervised learning based dis-
tributed attack detection framework for IoT. Applied Soft Computing, 72:79–89,
2018.

[99] S. C. Roberts, J. T. Holodnak, T. Nguyen, S. Yuditskaya, M. Milosavljevic,
and W. W. Streilein. A model-based approach to predicting the performance of
insider threat detection systems. In 2016 IEEE Security and Privacy Workshops
(SPW), pages 314–323, 2016.

https://www.proofpoint.com/us/resources/threat-reports/2020-cost-of-insider-threats
https://www.proofpoint.com/us/resources/threat-reports/2020-cost-of-insider-threats

141

[100] Malek Ben Salem, Shlomo Hershkop, and Salvatore J. Stolfo. A survey of
insider attack detection research. In Salvatore J. Stolfo, Steven M. Bellovin,
Angelos D. Keromytis, Shlomo Hershkop, Sean W. Smith, and Sara Sinclair,
editors, Insider Attack and Cyber Security: Beyond the Hacker, pages 69–90.
Springer US, Boston, MA, 2008.

[101] Malek Ben Salem and Salvatore J. Stolfo. Modeling user search behavior for
masquerade detection. In International Symposium on Recent Advances in In-
trusion Detection, pages 181–200. Springer Berlin Heidelberg, 2011.

[102] Security Magazine. Half of U.S. companies hit with privileged credential
theft, insider threats in last year, 2020. https://www.securitymagazine.

com/articles/95302. Accessed June 01, 2021.

[103] Ted E. Senator, Edmond Chow, Irfan Essa, Joshua Jones, Vinay Bettadapura,
Duen Horng Chau, Oded Green, Oguz Kaya, Anita Zakrzewska, Erica Briscoe,
Rudolph IV L. Mappus, Henry G. Goldberg, Robert McColl, Lora Weiss,
Thomas G. Dietterich, Alan Fern, Weng-Keen Wong, Shubhomoy Das, An-
drew Emmott, Jed Irvine, Jay-Yoon Lee, Danai Koutra, Alex Memory, Chris-
tos Faloutsos, Daniel Corkill, Lisa Friedland, Amanda Gentzel, David Jensen,
William T. Young, Brad Rees, Robert Pierce, Daniel Huang, Matthew Reardon,
and David A. Bader. Detecting insider threats in a real corporate database of
computer usage activity. In The 19nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1393–1401, 2013.

[104] Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. Intro-
duction to Data Mining. Pearson, 2nd edition, 2018.

[105] Michael C. Theis, Randall F. Trzeciak, Daniel L. Costa, Andrew P. Moore,
Sarah Miller, Tracy Cassidy, and William R. Claycomb. Common sense guide
to mitigating insider threats, sixth edition. Technical Report CMU/SEI-2018-
TR-010, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, 2019. http://resources.sei.cmu.edu/library/asset-view.

cfm?AssetID=540644. Accessed June 01, 2021.

[106] F. Toffalini, I. Homoliak, A. Harilal, A. Binder, and M. Ochoa. Detection of
masqueraders based on graph partitioning of file system access events. In 2018
IEEE Security and Privacy Workshops (SPW), pages 217–227, 2018.

[107] Anh Truong, Austin Walters, Jeremy Goodsitt, Keegan Hines, C Bayan Bruss,
and Reza Farivar. Towards automated machine learning: Evaluation and com-
parison of automl approaches and tools. In 2019 IEEE 31st International Con-
ference on Tools with Artificial Intelligence (ICTAI), pages 1471–1479. IEEE,
2019.

https://www.securitymagazine.com/articles/95302
https://www.securitymagazine.com/articles/95302
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=540644
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=540644

142

[108] Aaron Tuor, Samuel Kaplan, Brian Hutchinson, Nicole Nichols, and Sean
Robinson. Deep learning for unsupervised insider threat detection in struc-
tured cybersecurity data streams. In AAAI Workshop on Artificial Intelligence
for Cyber Security, pages 224–231, 2017.

[109] L Van Der Maaten and G Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9:2579–2605, 2008.

[110] Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning.
Machine Learning, 109(2):373–440, 2020.

[111] Terrence Walker. Practical management of malicious insider threat–an enter-
prise csirt perspective. Information Security Technical Report, 13(4):225–234,
2008.

[112] Rodrigo Werlinger, Kirstie Hawkey, Kasia Muldner, Pooya Jaferian, and Kon-
stantin Beznosov. The challenges of using an intrusion detection system: Is
it worth the effort? In Symposium on Usable Privacy and Security. USENIX,
2008.

[113] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs
in statistics, pages 196–202. Springer, 1992.

[114] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with
noisy student improves imagenet classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10687–10698,
2020.

[115] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised
methods. In 33rd Annual Meeting of the Association for Computational Lin-
guistics, pages 189–196, 1995.

[116] Suya Zhao, Renzheng Wei, Lijun Cai, Aimin Yu, and Dan Meng. Ctlmd:
Continuous-temporal lateral movement detection using graph embedding. In
International Conference on Information and Communications Security, pages
181–196. Springer, 2019.

[117] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable
outlier detection. Journal of Machine Learning Research, 20(96):1–7, 2019.

[118] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bern-
hard Schölkopf. Learning with local and global consistency. Advances in neural
information processing systems, 16(16):321–328, 2004.

[119] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled
data with label propagation. Technical report, Carnegie Mellon University,
2002. CMU-CALD-02–107.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Research Objectives
	Contributions
	Organization of the Thesis

	Background and Related Work
	Background
	Related Work
	Literature Surveys and Guidelines
	Non-ML Detection Approaches
	Machine Learning based Insider Threat Detection
	Anomaly detection
	Other ML based approaches

	Related Cyber-security Problems

	Summary

	Overview of the Insider Threat Detection Framework
	Framework Overview
	Summary

	Data and Pre-processing
	Data Sources
	CERT Insider Threat Test Datasets (CERT datasets)
	Comprehensive, Multi-Source Cyber-Security Events (LANL dataset)
	TWOS (The Wolf of SUTD) Dataset

	Data Extraction
	Data Aggregation
	User Profiles
	Feature Extraction
	Data Granularity

	Temporal Representation of Extracted Data
	Concatenation
	Comparing to a Time Window – Percentile and Mean/Median Difference Representations

	Comparisons of Data Extraction Approaches
	Compare against Sequential Data Extraction
	Compare against Time Series Data Extraction

	Summary

	Initial Detection Step – Anomaly Detection
	Anomaly Detection System for Insider Threat
	Unsupervised Machine Learning for Anomaly Detection
	Autoencoder
	Isolation Forest
	LODA – Lightweight On-line Detector of Anomalies
	Local Outlier Factor
	Combination of Anomaly Detection Scores

	Experiment Settings
	Training the Anomaly Detection Algorithms
	Performance Metrics

	Anomaly Detection Results
	Results by Learning Algorithms
	Results by Data Representations
	Results on Different Conditions for Training Anomaly Detection Algorithms
	Anomaly detection performance under training data poisoning conditions
	Effects of the number of users in training data
	Effects of training data duration

	Ensembles of Anomaly Detection Models

	Discussions and Comparisons
	Case Study of Anomaly Alerts
	Detection Performance on Insider Threat Scenarios
	Robustness of the Trained Models
	Comparative Study

	Summary

	Insider Threat Detection using Machine Learning
	Overview of the Insider Threat Detection System
	Machine Learning for Data Analytics
	Logistic Regression (LR)
	Neural Network (NN)
	Random Forest (RF)
	XGBoost (XG)
	Automatic Optimization of Classifier – TPOT

	Experimental Evaluations
	Experiment Settings – Realistic training condition
	ML Training Configuration and Parameterization
	Performance Metrics

	Evaluation Results
	Results by Training conditions
	Realistic vs Idealistic
	Learning algorithm – Supervised vs Unsupervised

	Results by Data Representations
	Detection Performances by ML algorithms
	TPOT results

	Results by Data Granularity Levels
	Instance-based results
	User-based results

	Analysis of Insider Threat Scenarios
	Scenarios 1 and 4 – Data Exfiltration
	Scenario 2 – Intellectual Property Thief
	Scenario 3 – IT Sabotage
	Traitors vs Masqueraders
	Data Granularity Effects
	Test Results on Different Organizational Data

	Discussion
	DR - FPR trade-off
	Data Imbalance Problem
	Overfitting and Effect of Training Data
	Feature Analysis

	Summary

	Semi-supervised Learning for Insider Threat Detection
	Overview of the Semi-supervised Learning based Approach to Insider Threat Detection
	Semi-supervised Learning Methods
	Label Propagation
	Label Spreading
	Self-Training

	Label Availability for Semi-supervised Learning
	Experiment Settings
	Evaluation Results
	Compare to Anomaly detection and Supervised learning
	Visualizing the Training Data
	Data Granularity
	Anomaly Detection Algorithm
	Effect of the Initially Labelled Training Set Size

	Summary

	Conclusion and Future Work
	Conclusion
	Future Research Directions

	Bibliography

