

Deep Neural Network (DNN) Design: The Utilization of Approximate Computing and

Practical Considerations for Accuracy Evaluation

by

Issam Hammad

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

at

Dalhousie University

Halifax, Nova Scotia

July 2021

© Copyright by Issam Hammad, 2021

ii

TO HOLLY, LANNAH AND RYAN

iii

TABLE OF CONTENTS

List of Tables ... vi

List of Figures .. viii

Abstact .. x

List of Abbreviations Used .. xi

Aknowledgements .. xii

Chapter 1 Introduction .. 1

1.1 Thesis Objectives ... 2

1.2 Thesis Contributions .. 2

1.3 Thesis Outline .. 5

Chapter 2 Impact of Approximate Multipliers on VGG Deep Learning Network 6

2.1 Abstract .. 7

2.2 Introduction .. 7

2.3 Background on The Approximate Multiplier... 10

2.4 Approximate Multiplier Simulation ... 11

2.5 MRE Tests.. 14

2.6 Layers Impact Tests ... 20

2.7 Conclusion ... 22

Chapter 3 Deep Learning Training with Simulated Approximate Multipliers 24

3.1 Abstract .. 25

3.2 Introduction .. 25

3.3 Simulation Environment .. 28

3.4 Training with Simulated Approximate Multiplier Error 31

3.5 The Hybrid Training Approach .. 34

iv

3.6 Conclusion ... 36

Chapter 4 CNN Inference Using a Preprocessing Precision Controller And Approximate

Multipliers with Various Precisions ... 38

4.1 Abstract .. 39

4.2 Introduction .. 39

4.3 Segment Based Approximate Multiplier.. 43

4.4 Building a Precision Preprocessing Controller .. 48

4.5 Baseline Performance and Accuracy ... 52

4.6 Using The Precision Preprocessor To Control Various Precisions

Approximate Multipliers .. 55

4.6.1 Multi-Core Architecture .. 55

4.6.2 Single-Core Reconfigurable Architecture ... 60

4.7 Conclusion ... 65

Chapter 5 Practical Considerations For Accuracy Evaluation In Sensor-based Machine

Learning And Deep Learning ... 67

5.1 Abstract .. 68

5.2 Introduction .. 68

5.3 Background on the Proposed Practical Accuracy Tests 70

5.4 Dataset Details and Simulation Tools .. 71

5.5 Baseline Accuracy .. 73

5.6 Experimental Results ... 75

5.5.1 Thermal Noise Simulation .. 76

5.5.2 Quantization Levels Simulation .. 80

5.5.3 Impact of Sensor Failure on the Accuracy .. 85

5.7 Conclusion ... 86

v

Chapter 6 Using Machine Learning for Person Identification Through Physical Activities

 .. 89

6.1 Abstract .. 90

6.2 Introduction .. 90

6.3 Description of the Used Dataset and Tools .. 91

6.4 Person Identification Experimental Results ... 94

6.5 Multi-Label Shared DNN for Activity and Person Classification 97

6.6 Conclusion ... 99

Chapter 7 Conclusion .. 101

7.1 Thesis Conclusion .. 101

7.2 Future Work ... 103

References ... 105

Appendix A: IEEE Copyright Permission .. 114

Appendix B: MDPI Copyright Permission ... 118

vi

LIST OF TABLES

Table 2.1: Test results using CIFAR-10 ... 16

Table 2.2: Test results using CIFAR-100 ... 17

Table 2.3: Reported performance of approximate multipliers in the literature compared to

exact multipliers .. 17

Table 2.4: Number of MACs per layer ... 21

Table 2.5: Layers testing results using Uniform error matrix (MRE=~7.5%) 22

Table 2.6: Tests results for the hybrid approach ... 22

Table 3.1: Training configurations ... 29

Table 3.2: Inference accuracy based on training with simulated approximate multiplier

error ... 33

Table 3.3: Hybrid training configurations for different MRE values 34

Table 4.1: Precision controller overhead comparison... 51

Table 4.2: The SSM [39] approximate multiplier performance compared to an exact

multiplier ... 52

Table 4.3: The DSM (Based on DRUM [30]) approximate multiplier performance

compared to an exact multiplier .. 53

Table 4.4: CNN inference accuracy using the SSM [39] approximate multiplication 54

Table 4.5: CNN inference accuracy using the DSM (Based on DRUM [30]) approximate

multiplication .. 54

Table 4.6: Performance and accuracy for the hybrid use of approximate multipliers with

various precisions compared to an exact multiplier .. 58

Table 4.7: Performance comparison for single-core the separated and merged

reconfigurable designs using vgg19.. 62

Table 5.1: Baseline test accuracies using k-fold (k = 10). .. 74

Table 5.2: Average inference accuracy with simulated thermal noise. 79

Table 5.3: Average inference accuracy using low resolution inference accuracy. 82

Table 5.4: Average inference accuracies using lower resolution quantization applied to

training and testing. .. 84

Table 5.5: Inference accuracy with a device failure in one tracker. 86

vii

Table 5.6: Inference accuracy with one tracker failure. .. 86

Table 6.1: List of the performed activities during the dataset construction 93

Table 6.2: Average accuracies using raw data input... 94

Table 6.3: Average accuracies using PCA input .. 95

Table 6.4: Comparison between the ACDNN, PCDNN, and the shared DNN 99

viii

LIST OF FIGURES

Figure 2.1: VGGNET-16 as proposed by [3].. 8

Figure 2.2: A histogram for an error matrix using (500 bins). ... 12

Figure 2.3: Modified VGGNET as per [37].. 13

Figure 2.4: An estimated relationship between the MRE of approximate multipliers and

the additional error in the accuracy of VGGNet. .. 18

Figure 2.5 Accuracy results for 100 loops of simulation for the Uniform PDF with

MRE=~2.5% test case. .. 19

Figure 3.1: Modified VGGNet architecture which was used for this study 30

Figure 3.2: A histogram (500 bins) of a sample error matrix (MRE=~3.6%, SD=~4.5%)

... 30

Figure 3.3: The followed procedure for simulating the impact of approximate multipliers

on the training stage .. 33

Figure 3.4: The followed procedure for finding the optimal solution for the hybrid

training approach .. 36

Figure 4.1: High-level demonstration of the proposed concept. 42

Figure 4.2: Segment based approximate multiplier. ... 44

Figure 4.3: The SSM segmenter ... 45

Figure 4.4: SSM segmentation example using k=4. ... 45

Figure 4.5: SSM approximate multiplication example using m=8 46

Figure 4.6: The DSM segmenter ... 47

Figure 4.7: DSM segmentation example based on DRUM. ... 47

Figure 4.8: DSM approximate multiplication example using m=8 48

Figure 4.9: Developing a precision controller flowchart. ... 50

Figure 4.10: A proposed tiny CNN precision controller... 51

Figure 4.11: Using preprocessing precision controllers with multiple approximate-

multiplier based CNN accelerators with various precisions in a cluster. 57

Figure 4.12: Performance gains and accuracy loss using hybrid and single precision

approximate multipliers compared to an exact multiplier. 59

Figure 4.13: Reconfigurable design with two separated approximate multipliers. 61

ix

Figure 4.14: Reconfigurable design with a merged approximate multiplier for m=(4&8).

... 62

Figure 4.15: The single-core performance-accuracy trade-off for various approximate

multiplier precisions compared to an exact multiplier based on VGG19. 63

Figure 4.16: Hybrid m=(4&8) performance gains compared to a single-precision with

m=8 based on VGG19. ... 64

Figure 5.1: Xsens MTx 3-DOF (degrees of freedom) orientation tracker (photo from

[74])... 72

Figure 5.2: A histogram for a thermal noise sample added to one accelerometer axis in all

test instances. .. 78

Figure 5.3: A sample for thermal noise simulation for one accelerometer axis in one

instance with signal-to-noise ratio (SNR) of 5 dB. (a) Original sensor readings. (b)

Added white noise. (c) New values with SNR = 5 dB. ... 78

Figure 5.4: Accuracy trend for machine learning models with the increase of thermal

noise power. .. 80

Figure 5.5: A sample for low quantization simulation for one accelerometer axis in one

instance. (a) Original sensors readings with 16 bits quantization. (b) 5 bits

quantization (c) 6 bits quantization. ... 81

Figure 5.6: Accuracy trend in machine learning models with lower inference

quantization. .. 83

Figure 6.1: Xsens MTx 3-DOF orientation tracker [74] (courtsey of Xsens). 92

Figure 6.2:Xsens tracks location on the participants’ bodies ... 92

Figure 6.3: Proposed DNNs for person classification and activity classification............ 95

Figure 6.4: Models accuracy trends for the activity classification and the person

classifications using raw and PCA inputs. .. 97

Figure 6.5: Proposed multi-label shared DNN for simultaneous classification for the

physical activity and the activity performer.. 98

x

ABSTACT

Approximate computing is emerging as a viable way to achieve significant performance

enhancement in terms of power, speed, and area for system on chip (SoC) designs. Utilizing

approximate computing in the design of deep neural networks (DNNs) can significantly

reduce the system’s power, delay, and area at a cost of a tolerable drop in accuracy. This

thesis demonstrates how approximate computing methods such as approximate

multiplication, low quantization, and shared neural networks can achieve these

performance enhancements in DNN designs. In terms of approximate multipliers which

are the primary focus of the thesis, a study on the impact of approximate multipliers on the

inference accuracy of convolutional neural networks (CNNs) is presented. Additionally,

an efficient hybrid training approach using both exact and approximate multipliers is

proposed. Most importantly, the thesis introduces the new concept of boosting CNN

multiplication performance using a precision prediction preprocessor that controls

approximate multipliers with various precisions. Another important research contribution

of this thesis is studying practical considerations for accuracy evaluation of sensor-based

machine learning and deep learning designs. Certain aspects can negatively impact the

system’s accuracy in production. These aspects are not usually considered when evaluating

and comparing models’ accuracy during development and prototyping. Examples include

accuracy loss due to the component’s variable thermal noise, component failure or partial

failure, and analog-to-digital converter (ADC) quantization error. Finally, the thesis

presents the new concept of utilizing machine learning for person identification through

physical activity. This research finding demonstrates that machine learning can be applied

not only for the identification of physical activities but also for the identification of the

activity performer as well. Based on this finding, a novel multi-label shared deep neural

network (DNN) to identify both the physical activity and the activity performer

simultaneously is proposed.

xi

LIST OF ABBREVIATIONS USED

ADC analog-to-digital converter

ASIC application-specific integrated circuit

CIFAR Canadian Institute for Advanced Research

CPU central processing unit

CNN convolutional neural networks

DNN deep neural network

DOF degrees of freedom

DSM dynamic segment method

DTC decision tree classifier

ENOB effective number of bits

GANs generative adversarial networks

GNB Gaussian Naïve Bayes

GPU graphics processing unit

HDL hardware description language

IoT Internet of Things

KNN k-nearest neighbors

LOD leading one detector

LSB least significant bit

LSTM Long short-term memory

MCCV Monte Carlo cross-validation

MRE mean relative error

MAC multiply-and-accumulate

MUX Multiplexer

PCA principal component analysis

PE processing element

pJ Picojoules

PDF probability density function

RFC random forest classifier

ReLU rectified linear unit

RNN recurrent neural network

SD standard deviation

SNR signal-to-noise ratio

SNDR signal to noise and distortion ratio

SSM static segment method

SGD stochastic gradient descent

SoC system on chip

TPU tensor processing unit

UCI University of California Irvine

xii

AKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Dr. Kamal El-Sankary for

his guidance, encouragement, and support during my Ph.D. program.

Also, I would like to thank Dr. Jason Gu and Dr. Guy Kember for being part of my

supervisory committee, Moreover, I would like to thank Dr. Lihong Zhang from Memorial

University for serving as the external Ph.D. examiner.

I would also like to express my gratitude to the department faculty members and staff and

to the university employees who worked hard to enable an efficient and fast transition to

online learning during the COVID-19 pandemic.

Most of all, I would like to express my special thanks and appreciation to my wife Holly

Hammad for her support and encouragement throughout my Ph.D. program.

1

CHAPTER 1 INTRODUCTION

With the recent boom in computational power, deep learning [1] has become a viable

method to solve problems in areas such as image recognition, real-time video analysis, self-

driving cars, and biomedical engineering. In simple words, deep learning can be defined as

the process of training a deep neural network to act as a function approximator for a specific

problem. Computer scientists and engineers have proposed several successful deep

learning models that are being used in various industrial applications nowadays. Most of

these models rely on general-purpose processors such as a central processing unit (CPUs)

or a graphics processing unit (GPUs) for deep learning training and inference.

Using a general-purpose processor for a computationally heavy process such as deep

learning is slower and requires a higher power compared to using an application-specific

integrated circuit (ASIC). With the continuous increase in bandwidth and data, the demand

for systems that can operate with lower power and at a higher speed is increasing rapidly,

especially for Internet of Things (IoT) battery-operated devices and in large servers that

construct the backbone of cloud systems. In the last decade, the deep learning research

community focused on building new models that achieve better prediction accuracy. For

image recognition, several powerful models were proposed for using Convolutional Neural

Networks (CNN) examples include AlexNet [2], VGGNet [3], GoogleNet [4], DenseNet

[5], and Xception [6]. These CNNs have revolutionized the field of image classification

and computer vision in general.

Despite the rapid increase in deep neural network (DNN) model development, the focus on

providing optimized hardware solutions that can boost the performance of these models

started only in the last five years. One example is Google’s tensor processing unit (TPU)

[7] which supports the backend of deep learning on Google Cloud. Other examples include

the deep learning ASIC designs which are proposed in [8-11]. The primary focus of designs

[7-9] is to achieve high parallelism and near memory computation to achieve higher

performance in terms of power, area, and speed.

2

Besides high parallelism, reducing energy cost and improving the performance in terms of

speed, power, and area can be achieved by utilizing approximate computing which is the

focus of this thesis. Using approximate computing as a method to achieve energy-efficient

designs was previously discussed in [12-16]. Approximate computing can achieve

significant performance enhancement at a cost of certain inaccuracy in the output.

However, for systems such as a DNN, what matters is the accuracy impact on the entire

network and not on each neuron within the network.

1.1 Thesis Objectives

The primary objective of this thesis is to utilize approximate computing methods such as

approximate multiplication, low quantization, and shared neural networks to achieve

significant performance enhancement in deep learning hardware designs. The thesis aims

to study the impact of approximate computing on the accuracy of DNNs and to propose

efficient methods where approximate computing methods can be utilized in ways that can

achieve the best trade-off between performance gains in terms of power, area, and speed

and the cost in terms of accuracy loss. Additionally, the thesis aims to define practical

accuracy validation methods that can be applied in the production of sensor-based machine

learning and deep learning solutions. This includes studying the accuracy loss due to the

component’s variable thermal noise, component failure or partial failure, and analog-to-

digital converter (ADC) quantization error. These aspects are not usually considered when

evaluating and comparing sensor-based models’ accuracy during development and

prototyping.

1.2 Thesis Contributions

The thesis presents a combination of three published [17-19] journal papers and two

published international conference papers [20-21].

The published research papers [17][18][20] focused on utilizing approximate multipliers

in the design of DNNs. The research objective is to achieve significant performance gains

3

in terms of improving power, area, and speed while having a minimal cost in terms of

accuracy loss.

The research journal paper [17] presented an early research study on the impact of

approximate multipliers on the inference accuracy of the VGG deep neural network. The

paper demonstrated that utilizing approximate multipliers can achieve a significant

performance enhancement while having a negligible impact on the inference accuracy. The

simulations in [17] demonstrated that implementing a hardware solution for DNNs does

not necessarily require high precision floating-point multiplications which were used in

models such as [2-6]. DNNs are function approximators, therefore, using approximate

multipliers to implement these function approximators is an efficient way to significantly

improve the hardware performance while having a minimal impact on the accuracy.

Additionally, the work in [17] presented that the impact of approximate multipliers on the

network varies per layer, deeper layers are impacted less by the usage of approximate

multipliers, therefore a hybrid design can be adopted where approximate multipliers are

utilized only in these deep layers allowing for significant performance gains while having

a negligible accuracy loss.

The work in [20] was an expansion to the work presented in [17] to include the training

stage. The work in [20] presented by simulation how approximate multipliers can be

utilized to enhance the training performance of convolutional neural networks (CNNs).

The paper proposed a new hybrid training method. Using this method, the training can start

using approximate multipliers, then it can switch to exact multipliers during the last few

epochs. This attains the performance benefits of the approximate multipliers in terms of

speed, power, and area for a large portion of the training stage. On the other hand, the

negative impact on the accuracy is diminished by using the exact multipliers for the last

epochs of the training.

The journal [18] proposed a new method that allows for the utilization of approximate

multipliers with various precision simultaneously using a preprocessing precision

controller. The proposed controller is a tiny two-class CNN that determines the required

4

approximate multiplier precision for the input image. The controller can be utilized in a

system that contains multiple approximate-multiplier based CNN inference accelerators

with various precisions, or in a single CNN inference accelerator built with precision

reconfigurable approximate multipliers. The controller’s objective is to maximize the

overall performance gains by maximizing the usage of lower precision approximate

multipliers whenever this does not cause an additional accuracy loss. This augments the

performance of the CNN inference by allowing for the utilization of existing low precision

and high precision approximate multiplier hybridly. The journal also proposed a new

reconfigurable approximate multiplier to utilize this concept in single-core designs.

The published journal [19] presented a study on the practical considerations for accuracy

evaluation in sensor-based machine learning and deep learning. To select an appropriate

machine learning model for production in a sensor-based application, several practical

aspects should be considered beyond the basic train/test split when comparing different

models’ performance. These aspects include studying the impact of thermal noise on the

inference accuracy, finding the adequate level of quantization, and evaluating model

accuracy tolerance to sensor failure. By working in the industry, I have seen the importance

of studying such practical considerations and therefore it is crucial to select a machine

learning model that is resilient to these untested variables. It is common that machine

learning datasets are built using the same group of sensors. Therefore, even with the

train/test split, the model is generalizing only to the sensors used in building the dataset

which can lead to a significant unexpected accuracy drop in production.

The conference paper [21] proposed the new concept of person identification through

physical activity. The presented research contribution opens the door for sharing wearable

technologies where the user profile can be detected automatically from their physical

activity. The paper also proposed a multi-label shared DNN for simultaneous classification

of the physical activity and the activity performer.

5

This thesis excludes two additional two journal papers [22-23] and one conference paper

[24] that I have worked on during the period in which I commenced my Ph.D. degree.

These research articles are outside of the thesis scope.

1.3 Thesis Outline

The thesis is organized as follows with each chapter representing a published journal or

conference paper:

• Chapter 2 presents a study on the impact of approximate multipliers on the VGG

deep learning network. This work was published at the IEEE Access in October

2018 [17].

• Chapter 3 proposes a method for deep learning training with simulated approximate

multipliers. This work was presented at the 2019 IEEE International Conference on

Robotics and Biomimetics (ROBIO). It also received the best paper in AI award at

the conference [20].

• Chapter 4 proposes a method for CNN inference using a preprocessing precision

controller and approximate multipliers with various precisions. This work was

published at the IEEE Access in January 2021 [18].

• Chapter 5 proposes practical considerations for accuracy evaluation in sensor-based

machine learning and deep learning. This work was published at Sensors in August

2019 [19].

• Chapter 6 presents the concept of using machine learning for person identification

through physical activities. This work was presented at the 2020 IEEE International

Symposium on Circuits and Systems (ISCAS) [21].

• Chapter 7 presents the research conclusion and future work.

6

CHAPTER 2 IMPACT OF APPROXIMATE MULTIPLIERS ON VGG

DEEP LEARNING NETWORK

Issam Hammad and Kamal El-Sankary

© 2018 IEEE reprinted with permission, from: I. Hammad and K. El-Sankary, "Impact of

Approximate Multipliers on VGG Deep Learning Network," in IEEE Access, vol. 6, pp.

60438-60444, 2018, doi: 10.1109/ACCESS.2018.2875376.

7

2.1 Abstract

This paper presents a study on the applicability of using approximate multipliers to enhance

the performance of VGGNet deep learning network. Approximate multipliers are known

to have reduced power, area, and delay with the cost of an inaccuracy in output. Improving

the performance of the VGGNet in terms of power, area, and speed can be achieved by

replacing exact multipliers with approximate multipliers as demonstrated in this study. The

simulation results show that approximate multiplication has a very little impact on the

accuracy of VGGNet. However, using approximate multipliers can achieve significant

performance gains. The simulation was completed using different generated error matrices

that mimic the inaccuracy that approximate multipliers introduce to the data. The impact

of various ranges of the mean relative error (MRE) and the standard deviation (SD) was

tested. The well-known datasets CIFAR-10 and CIFAR-100 were used for testing the

network’s classification accuracy. The impact on the accuracy was assessed by simulating

approximate multiplication in all the layers in the first set of tests, and in selective layers

in the second set of tests. Using approximate multipliers in all the layers leads to very little

impact on the network’s accuracy. Additionally, an alternative approach is to use a hybrid

of exact and approximate multipliers. In the hybrid approach, 39.14% of the deeper layer’s

multiplications can be approximate while having a negligible impact on the network’s

accuracy.

2.2 Introduction

Deep learning using convolutional neural networks (CNNs) has gained increased

momentum in recent years. Image classification is one of the primary applications for deep

learning using CNN. Several successful CNN architectures were proposed in the literature.

One of the most used architectures is the VGGNet proposed by Karen Simonyan and

Andrew Zisserman [3]. One of the widely used VGG configurations is the VGGNet-16

(referred to as configuration D in [3]), which consists of 13 convolutional layers, and 3

fully connected layers with max pooling applied between the layers. VGGNet has a

8

uniform architecture and uses 3x3 convolutions. Figure 2.1 depicts the network architecture

as proposed in [3] including the number of channels in each stage.

Figure 2.1: VGGNET-16 as proposed by [3]

According to [3], the VGGNet-16 has 138 million parameters. Since the convolution in a

CNN is completed via multiplication and addition, any improvement on the performance

or the cost of multiplication will have a significant impact on the overall performance and

cost of the entire network. According to [25], the VGGNet-16 required 15.5G multiply-

and-accumulates (MACs) operations to complete the classification of one image.

The concept of approximate computing has emerged in recent years to increase systems

performance and power efficiency. Usage of approximate computing is promoted for

media related systems due to its ability to tolerate error. One of the applications of

approximate computing is the approximate multiplier. Compared to an exact multiplier, the

approximate multiplier has a reduced power, area, and delay. However, it has a cost of

inaccuracy which is usually defined by metrics such as the MRE and the SD.

9

The research objective is to demonstrate that approximate multipliers can be used to

optimize the performance of VGGNet in terms of power, area, and delay. This work

assesses the impact of various approximate multiplication error ranges on the VGGNet

accuracy and identifies the network layers that are the least impacted by approximate

multiplication. Additionally, the research provides a baseline for researchers to apply the

proposed simulation methods to explore the impact of approximate computing on various

deep learning architectures.

VGGNet was selected for this study as it is one of the most popular deep learning

architectures for image classification. Additionally, it has a very uniform architecture with

3x3 convolutions and with a modest number of layers comparing to other popular

architectures. These features enable a homogeneous evaluation of the impact of

approximate multiplication on the network layers.

The focus of this research is on the optimization of pre-trained networks which exclude the

training phase. Several systems rely on pre-trained weights especially in low power

applications. For these systems the training is done on a central server, then the weights

are downloaded to many client devices which usually have limited hardware resources.

One example is the internet of things (IoT) hardware accelerator presented in [26] which

uses pre-trained weights.

In this paper, a simulation for the impact of approximate multipliers on the accuracy of

VGGNet is presented. The simulation included testing the impact of approximate

multiplication on all the layers in the first set of tests and on selective layers in the second

set of tests. The simulation results of both approaches show approximate multipliers can

be used to achieve significant performance gains with a very minimal cost of added

accuracy error.

This paper is organized as follows: Section 2.3 provides a background on the approximate

multiplier. Section 2.4 demonstrates the concept of approximate multipliers simulation by

adding error matrices to the network’s layers. Section 2.5 presents the results of simulating

10

approximate multiplication in all VGGNet layers. Section 2.6 focuses on the impact of

applying approximate multiplication in selective network layers and proposes the hybrid

approach. Section 2.7 summarizes the research conclusion.

2.3 Background on The Approximate Multiplier

Approximate multipliers can be utilized in applications that are tolerant to inaccuracy.

Several different approximate multiplier designs were recently proposed as a replacement

for the exact multiplier such as [27-32]. Approximate multipliers can lower the design cost

in terms of power, delay and chip size, with the cost of having a certain calculation error.

The mean relative error (MRE) is used along with other metrics such as the SD to assess

inaccuracy of approximate multipliers. The MRE is the primary common metric used to

evaluate the error in approximate multipliers, this can be found in the approximate

multiplier publications [27-32]. The MRE is defined as:

𝑀𝑅𝐸 =

1

𝑛
∑

|𝑌𝑖′ − 𝑌𝑖|

|𝑌𝑖|

𝑛

𝑖=1

(2.1)

In equation (2.1), 𝑌𝑖 is the exact value while 𝑌𝑖′ is the approximate value. One example of

an approximate multiplier is the 16-bit design proposed by S. Venkatachalam et. al. [27].

The multiplier in [27] has achieved power, area and delay savings of 72%, 56%, and 31%

respectively while introducing an MRE of 7.6%. Another example is the approximate

multiplier in [30] which introduces an MRE of 1.47% while having a reduction of 59%,

50%, and 47% in the power, area, and delay. Several other implementations for the

approximate multiplier can be found in [28-29] and [31-33]. The design in [33] showed

that a decreased area and power in an approximate multiplier can be achieved by

introducing a higher error. Therefore, this allows for a flexibility in the design by balancing

the trade-off between the accuracy loss and the achieved savings in power and area.

11

2.4 Approximate Multiplier Simulation

This section presents the concept of approximate multiplier error simulation for deep learning

networks. To test the impact of approximate multipliers on the accuracy of the network, the

multiplication accuracy should contain a certain MRE that an approximate multiplier would

have introduced if it was used instead of an exact multiplier. To test the impact of

approximate multiplication on the accuracy of the VGGNet, a pre-trained VGGNet was used

[34]. This network was built using the python based deep learning platform Keras [35]. This

network was modified to add an error matrix prior to completing the convolution at certain

layers of the network, depending on whether they are part of the test case or not. The error

matrix was applied through element-wise multiplication with the layer input Y. The error

matrix was also applied to the fully connected layers in some test cases. In equation (2.2), Y’

is the modified layer input after applying a certain MRE.

 𝑌′ = 𝑌 ⊙ 𝐸 (2.2)

Where ⊙ is element-wise multiplication operator. The matrix E is tuned to apply the required

MRE value. For example, to simulate an MRE value of 2.5% using a Uniform probability

density function (PDF), the matrix E will contain random values ranging from (0.95-1.05) to

simulate the impact of approximate multipliers on the network’s accuracy. Several test cases

for Uniform and Gaussian PDFs error matrices were applied. These test cases are generic to

cover the characteristics of various approximate multipliers in the literature. The MRE and

the PDFs of these simulated test cases can be mapped to these published approximate

multipliers designs as demonstrated in the next section. Figure 2.2 shows the histogram of a

sample of Uniform and Gaussian error matrices used for one test image in the first layer of

the network.

12

Figure 2.2: A histogram for an error matrix using (500 bins).

 (a) a sample Uniform error matrix (MRE=~2.5%).

(b) a sample Gaussian error matrix (MRE=~1.4%).

In this simulation, each test case error range was divided into 10000 unique values. The

error matrix E was constructed randomly from these values using Uniform or Gaussian

PDFs. Each error matrix for a layer in a test case was generated using a different seed. All

the tests were executed using ‘float16’ precision.

To test the impact on the accuracy, CIFAR-10 and CIFAR-100 datasets were used. CIFAR-

10 dataset consists of 60000 32x32 color images in 10 classes, with 6000 images per class.

CIFAR-10 has 50000 training images and 10000 test images [36]. CIFAR-100 has 100

classes containing 600 images each divided as 500 training images and 100 testing images

13

per class. As CIFAR-10 and CIFAR-100 datasets are used, the network architecture in this

section is slightly different than the original VGGNet-16 as per [3]. The network architecture

contains changes that were proposed in [37] which handled the design of VGGNet for

CIFAR-10 and CIFAR-100 datasets. The network design in [37] is tailored for inputs with

size 32x32 instead of 224x224, consequently, the dimensions of this network’s layers are

smaller than the original VGGNet as proposed in [3]. The network changes also include

using 2 fully connected layers instead of 3 fully connected layers, and changes in other

settings such as batch normalization and dropout to reduce overfitting [37]. Figure 2.3

demonstrates this modified VGGNet that is used for the simulation. As the focus of this

simulation is to assess the impact of approximate multipliers on a pre-trained network, the

error matrices were applied to the test images only.

Figure 2.3: Modified VGGNET as per [37]

To evaluate the impact of approximate multipliers, two set of tests were executed. The first

set of tests are the “MRE Tests” while the second tests are “Layer Impact Tests”. In the

“MRE Tests”, the error matrix was added to each layer of the network. In each test case, a

specific MRE value was simulated to assess its impact on the network accuracy. In the “Layer

14

Impact Tests”, the error matrix was applied only to a selective group of layers in each test

case. This was done to evaluate the impact of having approximate multiplication in these

particular layers. The next two sections will discuss the simulation results for both the “MRE

Tests” and the “Layer Impact Tests”. During the simulation, each test case consisted of 100

loops, in each loop the entire dataset (CIFAR-10 or CIFAR-100) was applied. In each test

case, an error matrix with approximately the same MRE and PDF was applied to the tested

layers of the network. However, the error matrices had different seeds in each layer of every

loop. The tables in this section list the average network error of the 100 loops. Additionally,

due to having different random seeds for the error matrices the listed MRE and SD values in

all the tables are approximate.

2.5 MRE Tests

Several Uniform and Gaussian error matrices with different MRE values were simulated to

assess their overall impact on the network’s accuracy. Table 2.1 shows the results of the

simulation using CIFAR-10 dataset while Table 2.2 shows the results of the simulation using

CIFAR-100 dataset. For each test case, Table 2.1 and Table 2.2 list the MRE, the SD, the

network error rate, and the error difference compared to an exact multiplier. The network

error rate in Table 2.1 and Table 2.2 refers to the percentage of incorrect image classifications

by the network. The error difference reflects the additional error which resulted from using

an approximate multiplier instead of an exact multiplier. In the used architecture for this

simulation an execution with an exact multiplier using CIFAR-10 dataset results in a network

error rate of 6.4%, while the error is 29.51% for CIFAR-100 dataset. These numbers will be

used as a baseline to assess the impact of the approximate multiplier. The network error rate

can have minor variations based on the training settings and the used hyperparameters.

According to [37], the human rater for CIFAR-10 is 6%, therefore, the used baseline rate is

very close to the human classification error rate.

As can be seen from Table 2.1 and Table 2.2, the error difference resulting from the added

MRE is very minimal and can be considered negligible especially for lower MRE cases.

Similar or exceeding error differences can be a result of a tweak to one of the

15

hyperparameters during network training. Figure 2.4 illustrates the approximate relation

between the increase in MRE and the increase in the error difference. While all tests in Tables

I and II were executed using float-16 datatype, float-32 datatype was also simulated using a

subset of tests from Table 2.1 and Table 2.2. Using float-32 gave very similar results to float-

16, therefore, these simulation results are applicable to both 16 bits and 32 bits approximate

multipliers.

The error matrices used in Table 2.1 and Table 2.2 are generic to cover a broad spectrum of

possible errors resulting from the usage of approximate multipliers. However, these test cases

can be mapped to the reported performances of proposed approximate multipliers in the

literature as Table 2.3 presents. Table 2.3 lists the reported performance enhancements for

various approximate multipliers in comparison to exact multipliers. By mapping the

simulation results from Table 2.1 and Table 2.2 to the approximate multipliers performance

result in Table 2.3, the advantage of using approximate multipliers in VGGNet can be clearly

seen. An example is the approximate multiplier DRUM [30], this multiplier has a Gaussian

error with MRE of 1.47% and SD of 1.803%. By replacing the VGG’s exact multipliers by

DRUM’s approximate multipliers, the multiplication cost can have approximate savings in

power, area, and delay of 59%, 50%, and 47% respectively. One CIFAR image classification

using the modified VGGNet as per [37] requires 313.41M MACs. According to the Gaussian

simulation results in Table 2.1 and Table 2.2, this replacement will cause an approximate

additional network error of only 0.038% using CIFAR-10 and 0.064% using CIFAR-100.

This is based on the closest simulation test case with MRE of 1.4% and SD of 1.8%. This

additional network error is minimal considering the achieved reduction in power and area

and the significant increase in speed. The Speed increase is very critical for deep learning

applications, researchers are vigorously trying to speed up deep learning training and testing.

More examples can be seen by mapping the performance enhancements of the approximate

multipliers in [27-28] and [31-32] to the closest simulated test in Table 2.1 and Table 2.2.

Note that (G) and (U) in Table 2.3 refers to Gaussian and Uniform distribution, respectively.

16

Table 2.1: Test results using CIFAR-10

Matrix E

Type
MRE SD

Network Error

Rate

Error Diff. from

Exact Multiplier

No Error 0% N/A 6.4% 0%

Uniform ~0.75% ~0.087% 6.422% +0.012%

Uniform ~1.25% ~1.443% 6.43% +0.03%

Uniform ~2.5% ~2.887% 6.495% +0.095%

Uniform ~5% ~5.774% 6.598% +0.198%

Uniform ~7.5% ~8.66% 6.828% +0.428%

Uniform ~10% ~11.55% 7.358% +0.958%

Gaussian ~0.6% ~0.75% 6.423% +0.023%

Gaussian ~1.4% ~1.80% 6.438% +0.038%

Gaussian ~2.4% ~3.0% 6.477% +0.077%

Gaussian ~3.6% ~4.5% 6.53% +0.13%

Gaussian ~4.8% ~6.0% 6.599% +0.199%

17

Table 2.2: Test results using CIFAR-100

Matrix E

Type
MRE SD (σ)

Network Error

Rate

Error Diff. from

Exact Multiplier

No Error 0% N/A 29.51% 0%

Uniform ~0.75% ~0.087% 29.556% +0.046%

Uniform ~1.25% ~1.443% 29.563% +0.053%

Uniform ~2.5% ~2.887% 29.580% +0.070%

Uniform ~5% ~5.774% 29.779% +0.269%

Uniform ~7.5% ~8.66% 30.206% +0.696%

Uniform ~10% ~11.55% 30.937% +1.427%

Gaussian ~0.6% ~0.75% 29.563% +0.053%

Gaussian ~1.4% ~1.80% 29.574% +0.064%

Gaussian ~2.4% ~3.0% 29.626% +0.116%

Gaussian ~3.6% ~4.5% 29.718% +0.208%

Gaussian ~4.8% ~6.0% 29.85% +0.34%

Table 2.3: Reported performance of approximate multipliers in the literature compared to

exact multipliers

Design MRE
Power

Savings

Area

Reduction

Delay

Decrease

DRUM [30] 1.47% (G) 59% 50% 47%

Vasileios [28] 3.6% (G) 34.14% 34.17% 11.11%

Suganthi [27] 7.63% 71.7% 55.6% 30.9%

Georgios [31] 2.5% (U) 47% 38% 35%

Tongxin [32] 1.64% 59.9% 50.1% 36.3%

18

Figure 2.4: An estimated relationship between the MRE of approximate multipliers and

the additional error in the accuracy of VGGNet.

(a) Uniform MRE Impact

(b) Gaussian MRE Impact

The approximate multipliers listed in Table 2.3 proposes different design methods on the

hardware level for the approximate multiplication. For example, the design [28] uses a

method of approximation that is performed by rounding the high radix values to their nearest

power of two. The design [30] uses a different method which is applied by dynamic range

selection scheme and truncation. These different design methods lead to different PDF

characteristics for the MRE as specified in Table 2.3. The simulations presented in this

19

section are generic as presented in Table 2.1 and Table 2.2. These simulation results can be

used for approximate mapping between an approximate multiplier’s MRE error and the

impact on the accuracy of the VGGNet.

Using 8-bits and 12-bits approximate multipliers, [33] has shown that a decrease in the

required power and area can be achieved by increasing the error. For example, in the

proposed 12-bit approximate multiplier, an increase in the maximum relative error from 1%

to 2% has dropped the power from 475 μW to 284 μW and the area from 720.8 μm2 to 523.8

μm2. Also, the power has dropped from 247 μW to 125 μW and the area from 483 μm2 to

285 μm2 by increasing the error from 5% to 10%.

As mentioned earlier, Table 2.1 and Table 2.2 test cases list the network accuracy by

averaging the simulation results of 100 loops. Figure 2.5 shows the network error for 100

loops of simulation for the Uniform PDF with MRE=~2.5% test case. The figure shows the

loop number and the corresponding network accuracy. Interestingly, some of the loops

achieved better results compared to an exact multiplier. The applied error matrices in these

cases have randomly reshaped the layer’s input for a better classification by the network.

Figure 2.5 Accuracy results for 100 loops of simulation for the Uniform PDF with

MRE=~2.5% test case.

20

2.6 Layers Impact Tests

In this section, the impact of applying approximate multiplication on specific layers is

evaluated. Table 2.4 details the number of parameters per layer, the number of MACs in

each layer and their percentage of the total number of MACs in the network. Table 2.4

information is based on one CIFAR-10 image.

To apply the layer impact testing, several test cases were simulated, where, consecutive

layers were grouped together in each test case. A total of 6 sets of layer groups were used

to assess the impact of approximate multiplication on these segments of the network. Table

2.5 illustrates the details of the applied test cases. For all the test cases CIFAR-10 was used

with a uniform error matrix (MRE =~7.5%). The error matrix was applied on the specified

layers only. As can be seen from Table 2.5, having an approximate multiplier on groups

“L512-1” and “L512-2” have the least impact on the overall accuracy. These layers count

for 39.14% of the total multiplications required as per Table 2.4. Therefore, a hybrid

approach can be used in which the approximate multiplication is used in only these deeper

layers.

The hybrid approach simulation results are presented in Table 2.6. In this approach, the

approximate multiplication was applied only on the 512 channel layers of the network. A

subset of tests from Table 2.1 were repeated in Table 2.6 to test this hybrid approach. Table

2.6 lists the reduction in network error achieved compared to the “all layers” approach in

the previous section as per Table 2.1.

As can be seen from Table 2.5, the hybrid approach has a negligible impact on the accuracy

compared to an exact multiplier, for the case of Gaussian PDF with MRE=~1.4% which is

similar to the approximate multiplier proposed in [30], the added network error rate is only

0.017%. Additionally, this approach has a reduced additional network error compared to

the “all layers” approximate multiplier approach which was presented in the previous

section. In summary, using an approximate multiplier similar to [30], 39.14% of the

21

network’s MACs can have approximately half the power, area and delay with the cost of

0.017% of an added network error.

Table 2.4: Number of MACs per layer

Layer Param Count
MACs per

Image

(%) of

MACs.

Output Size per

Image

Conv-64-1 1.79k 1.77M 0.564% (32,32,64)

Conv-64-2 36.93k 37.75M 12.042% (32,32,64)

Conv-128-1 73.86k 18.87M 6.021% (16,16,128)

Conv-128-2 147.58k 37.75M 12.042% (16,16,128)

Conv-256-1 295.17k 18.87M 6.021% (8,8,256)

Conv-256-2 590.08k 37.75M 12.042% (8,8,256)

Conv-256-3 590.08k 37.75M 12.042% (8,8,256)

Conv-512-1 1.18M 18.87M 6.021% (4,4,512)

Conv-512-2 2.36M 37.75M 12.042% (4,4,512)

Conv-512-3 2.36M 37.75M 12.042% (4,4,512)

Conv-512-4 2.36M 9.44M 3.011% (2,2,512)

Conv-512-5 2.36M 9.44M 3.011% (2,2,512)

Conv-512-6 2.36M 9.44M 3.011% (2,2,512)

FC-1 262.66k 262.14k 0.084% (512)

FC-2 5.13k 5.12k 0.002% (10)

Total 15M 313.46M 100% N/A

22

Table 2.5: Layers testing results using Uniform error matrix (MRE=~7.5%)

Group

ID
Error Matrix Location

Network

Err. Rate

Error Diff.

from Exact

Multiplier

L64 The 2 conv-64 layers 6.715% +0.315%

L128 The 2 conv-128 layers 6.484% +0.084%

L256 The 3 conv-256 layers 6.513% +0.113%

L512-1 The first 3 conv-512 layers 6.445% +0.045%

L512-2 The second 3 conv-512 layers 6.42% +0.02%

LFC The fully-connected layers 6.612% +0.212%

Table 2.6: Tests results for the hybrid approach

Matrix E

Type
MRE

Network

Error Rate

Error Diff.

from Exact

Multiplier

Err. Diff from All

Layer Appr.

Multiplier

Uniform ~1.25% 6.414% +0.014% -0.016%

Uniform ~2.5% 6.419% +0.019% -0.076%

Uniform ~5% 6.437% +0.037% -0.161%

Uniform ~7.5% 6.488% +0.088% -0.340%

Uniform ~10% 6.502% +0.102% -0.856%

Gaussian ~1.4% 6.417% +0.017% -0.021%

Gaussian ~2.4% 6.420% +0.020% -0.057%

Gaussian ~3.6% 6.432% +0.032% -0.098%

Gaussian ~4.8% 6.436% +0.036% -0.163%

2.7 Conclusion

This research work demonstrates that deep learning can be optimized using approximate

computing. Approximate computing can reduce the chip power and area while increasing the

speed. The paper started by providing a background on the approximate multiplier, then the

23

concept of approximate multiplier simulation was introduced. The primary contribution was

to simulate the impact of the approximate multipliers on the accuracy of image classification

using VGGNet. The simulation included applying several error matrices with various MRE

values which cover the impact of several proposed approximate multipliers in the literature.

The simulation covered both Uniform and Gaussian PDFs and assessed their impact on the

network’s accuracy. The simulation results show that approximate multipliers have very little

impact on the network’s accuracy. This comes with the advantage of significant reductions

in power, area, and delay. Additionally, an alternative hybrid approach was proposed which

uses a mix of exact and approximate multipliers. In the hybrid approach, the approximate

multiplication can be used in deeper layers of the network which has the least impact on the

accuracy. The hybrid approach simulation leads to a reduced negligible impact on the

accuracy while having significant savings in power, area, and delay on a large portion of the

network.

24

CHAPTER 3 DEEP LEARNING TRAINING WITH SIMULATED

APPROXIMATE MULTIPLIERS

Issam Hammad, Kamal El-Sankary and Jason Gu

© 2019 IEEE reprinted with permission I. Hammad, K. El-Sankary and J. Gu, "Deep

Learning Training with Simulated Approximate Multipliers," 2019 IEEE International

Conference on Robotics and Biomimetics (ROBIO), 2019, pp. 47-51, doi:

10.1109/ROBIO49542.2019.8961780.

25

3.1 Abstract

This paper presents by simulation how approximate multipliers can be utilized to enhance

the training performance of convolutional neural networks (CNNs). Approximate

multipliers have significantly better performance in terms of speed, power, and area

compared to exact multipliers. However, approximate multipliers have an inaccuracy

which is defined in terms of the Mean Relative Error (MRE). To assess the applicability of

approximate multipliers in enhancing CNN training performance, a simulation for the

impact of approximate multipliers error on CNN training is presented. The paper

demonstrates that using approximate multipliers for CNN training can significantly

enhance the performance in terms of speed, power, and area at the cost of a small negative

impact on the achieved accuracy. Additionally, the paper proposes a hybrid training

method which mitigates this negative impact on the accuracy. Using the proposed hybrid

method, the training can start using approximate multipliers then switches to exact

multipliers for the last few epochs. Using this method, the performance benefits of

approximate multipliers in terms of speed, power, and area can be attained for a large

portion of the training stage. On the other hand, the negative impact on the accuracy is

diminished by using the exact multipliers for the last epochs of training.

3.2 Introduction

With the accelerated increase in computational power, cloud computing resources, and the

availability of data, deep learning [1] has become a viable approach to solve artificial

intelligence problems in various fields. Deep learning is used nowadays in many fields and

applications such as self-driving cars, image recognition and classifications, robotics,

health care, and security. One of the major challenges that deep learning faces is the slow

training time especially using very deep neural networks with enormous data to train.

Training a deep convolutional neural network usually requires thousands of feed-forward

and back-propagation iterations. In each iteration, all the network weights are updated.

These weights can be in millions as in the case of the VGGNet-16 network in

26

[2] which has 138M weights. The primary mathematical operation in a deep convolutional

network is multiplication, therefore, any reduction in the cost of the multiplication will lead

to a major enhancement to the performance of the entire system.

Approximate computing provides a solution to enhance performance in terms of speed,

power, and area at the cost of a pre-defined error range in the obtained output. One of the

primary applications for approximate computing is the approximate multipliers. Several

approximate multiplier designs were proposed in the literature such as [27-28],[30], and

[32]. Using these multipliers can lead to significant performance enhancements. However,

these enhancements have a cost of inaccuracy in the output which is usually defined by the

Mean Relative Error (MRE). As an example, the multiplier in [30] achieves performance

enhancements of 47% in speed, 50% in area, and 59% in power. However, these

enhancements have a cost of an inaccuracy in the output defined by a Gaussian MRE of

1.47% with Standard Deviation (SD) of 1.803%. Like [30], the approximate multiplier

designs [27-28] and [32]. have different performance enhancements with a predefined

MRE error. The MRE is defined in equation (3.1), where, 𝑋𝑖 is the exact multiplication

value, 𝑋𝑖’ is approximate multiplication value from an approximate multiplier, and n is the

total number of samples.

𝑀𝑅𝐸 =

1

𝑛
∑

|𝑋𝑖′ − 𝑋𝑖|

|𝑋𝑖|

𝑛

𝑖=1

(3.1)

In a previous work [18], we have studied the impact of using approximate multipliers on

the inference stage of a pre-trained CNN network. The simulated MRE and SD in [18]

were selected to approximately simulate the reported inaccuracies by various approximate

multipliers in the literature such as [27-28],[30], and [32]. The work in [18] has

demonstrated that with minimal cost of added inaccuracy, approximate multipliers can be

used to enhance to significantly boost the inference performance of a pre-trained deep

convolutional neural network (CNN) in terms of speed, power, and area.

27

Lower the training cost in terms of the power, area, and speed can be very beneficial in the

case of training on the edge. Training is computationally very expensive, and it is usually

performed using high powerful servers. However, in certain instances, training will have

to be performed at least partially on the edge. When training on the edge is performed, the

model will be trained partially or fully using the low power embedded hardware.

Fully autonomous mobile robots with image classification abilities are a perfect example

of the need for training on the edge at least partially. These robots are used in various

industries today such as aerospace applications, nuclear power plants, oil refineries,

chemical factories, underwater and military applications. In many instances, these robots

will be operating in offline areas without any connection to the main server. Therefore, for

the purpose of improving prediction accuracy, continuous model training could be required

and will have to be performed on the edge. Hence, as a result of this need for deep learning

train the edge, proposing methods to improve training performance in terms of power, area,

and speed becomes vital. This can be achieved by utilizing approximate multipliers during

training as this paper will present.

This paper’s objective is to propose new methods to enhance the training stage performance

for a deep CNN by simulating the impact of the approximate multiplier error during

training. One of the primary research contributions is a new training methodology which

enhances the training performance of deep convolutional networks without any negative

impact on the accuracy. This is accomplished by training the network using two phases. In

the first phase, the training starts using approximate multipliers, then in the second phase

the training switches to exact multipliers. Using this methodology all the performance gains

of approximate multipliers can be obtained during the first phase of the training, while in

the second phase, any negative impact on the accuracy caused by the approximate

multipliers will be diminished. The number of iterations for each phase is a variable that is

determined by the inaccuracy of the approximate multiplier.

This paper is structured as follows, in section 3.3 presents the details of the used deep CNN

and dataset. Section 3.4 demonstrates the achieved inference accuracy by training the deep

28

CNN with simulated approximate multiplier error. Section 3.5 presents the new proposed

hybrid training approach. In Section 3.6 the research conclusions are summarized.

3.3 Simulation Environment

For the simulation, a modified version of the VGGNet was used as a model. This modified

version was proposed by [37] and it slightly differs from the original design which was

proposed by [2]. The design in [37] is tailored to work with CIFAR-10 image dataset [36]

which is used in this study. The model in [37] is smaller than the original model in [2] as

it has a 32x32 input size rather than a 224x224 input, additionally, it has 2 fully dense

layers rather than 3 fully dense layers. It also includes batch normalization and dropout to

reduce overfitting. Figure 3.1 demonstrates the modified architecture of the VGGNet which

is used for the simulations in this paper. Note that in Figure 3.1, the first two numbers in

the brackets contain the image dimension while the third number reflects the number of

filters. CIFAR-10 dataset [36] consists of 60000 color images divided equally into 10

classes with 50000 images used for training and 10000 images used for testing.

For development, the popular deep learning Python library Keras was used [35]. The used

model was adopted from the repository in [34], which presents an implementation of the

design proposed in [37]. In this paper, the repository in [34] was modified to evaluate the

applicability of training with approximate multipliers. Table 3.1 specifies the used training

configurations for all the test cases in this paper. During the simulation, the type “float16”

was used. To simulate the impact of approximate multipliers on the training, the

multiplication should have an inaccuracy defined by a certain MRE and SD. This was

implemented using a Keras custom layer functionality. These layers were added before

every convolutional and dense layer. These custom layers were programmed to mimic the

impact of the error in approximate multipliers by creating a multiplication inaccuracy based

on a specific MRE and SD during both backpropagation and forward propagation. These

layers simulate this inaccuracy through elementwise multiplication between the weights

and a generated error matrix. Each network layer had a unique error matrix which simulated

29

a certain MRE and SD. Having these custom layers throughout the network simulated the

impact of the approximate multiplier error on the overall accuracy.

Table 3.1: Training configurations

Parameter Value/Method

Epochs 200

Batch Size 128

Output Classes 10

Activation Function ReLU

Loss Function Categorical crossentropy

Optimizer Stochastic gradient descent (SGD)

optimizer with learning rate decay

Dataset CIFAR-10

Training Images 50000

Testing Images 10000

Regularization L2 Regularization with weight decay

(0.0005) and Dropout of 30%-50%

Normalizaion Input Normalization and Batch

Normalization

Figure 3.2 illustrates a histogram of a sample error matrix which is used to simulate an

MRE of ~3.6% and an SD of ~4.5%. Many of the reported approximate multipliers MREs

have a near zero-mean Gaussian distribution, this can be seen in the approximate

multipliers [30] and [28]. Therefore, to provide a generic simulation that can be applicable

to many approximate multiplier models, all the simulated MRE values in this paper were

based on a near zero-mean Gaussian distribution.

30

Figure 3.1: Modified VGGNet architecture which was used for this study

Figure 3.2: A histogram (500 bins) of a sample error matrix (MRE=~3.6%, SD=~4.5%)

31

3.4 Training with Simulated Approximate Multiplier Error

As described in the previous section, simulating the approximate multiplier error during

the training stage was achieved using Keras custom layers. These layers create a

multiplication inaccuracy based on the tested MRE and SD. The error simulation is

achieved by multiplying the layers' weights with an error matrix which is generated to

simulate the desired MRE.

Figure 3.3 demonstrates the followed process for this simulation. After loading the data,

an error matrix with an approximate MRE and SD was generated for each layer. This

simulated the impact of an approximate multiplier on the accuracy of the network. By using

Keras custom layers as described in the previous section, the approximate multiplier error

simulation was applied during all forward propagation and backpropagation iterations.

During the training, the weights after certain training epochs were downloaded. This

allowed the training to resume from that epoch when reloading the model, also this was

needed to implement the hybrid approach which will be discussed in the next section. After

completion, the final model weights were downloaded, and the model was reloaded for

testing purposes. The testing stage excluded the simulation of the approximate multiplier

error, therefore, all the added Keras custom layers were removed. This ensured that any

impact on the inference accuracy is resulting from applying the approximate multipliers

simulation during the training stage only.

Table 3.2 presents the achieved inference accuracy as a result of training with simulated

approximate multiplier error. The table lists the results for different approximate multiplier

configurations based on their MRE and SD. The first row presents the inference accuracy

achieved as a result of training with an exact multiplier which excludes any error

simulations. This achieved accuracy will be referred to as the baseline accuracy (93.6%).

The remaining cases are reported based on the simulated MRE and SD values. In each test

case, the achieved inference accuracy and the difference in accuracy compared to the

baseline accuracy are reported. The simulation differences between the presented test cases

were limited to the ranges of MRE and SD, this guaranteed a fair performance comparison

32

among the presented test cases. As can be seen from the table the impact of the approximate

multiplier error during training on the achieved inference is very small, especially for lower

MRE cases.

To clearly demonstrate the benefit of this simulation, a mapping can be done between the

simulated test cases and the reported performances of approximate multipliers in the

literature. For example, DRUM [30] reported performance enhancements of 47%, 50% and

59% in the speed, area, and power, respectively with a cost of a near zero-mean Gaussian

distribution with MRE=1.47% and SD=1.803%. This is very close to test case 2 in Table

3.2 with MRE=~1.4% and SD=~1.8% which also has a zero-mean Gaussian distribution.

In other words, using the approximate multiplier DRUM [28] in a custom design can

approximately accelerate all the multiplications of the network during training by 47% with

a cost of a drop in the inference accuracy by only 0.07%.

Any improvement in the multiplication performance will directly boost the convolution

performance as convolution is just a series of Multiplication and Accumulation (MACs)

operations. Based on [38], the convolution in a CNN consumes 90.7% of the total

computational time required by the network. Thus, any performance improvement on the

multiplication will directly affect the performance of the entire network.

Based on [33], there is a high correlation between the approximate multiplier error and the

performance gains achieved. Hence, using approximate multipliers with higher error leads

to higher performance gains for a custom hardware design for CNN training. Nevertheless,

the network’s ability to tolerate error is limited, after a certain level the network accuracy

will collapse. This can be seen in the significant drop in accuracy in test cases 7 and 8 in

Table 3.2. Therefore, a balance must be maintained between the approximate multiplier

error and the CNN performance gains.

33

Figure 3.3: The followed procedure for simulating the impact of approximate multipliers

on the training stage

Table 3.2: Inference accuracy based on training with simulated approximate multiplier

error

Test ID MRE SD(σ)
Achieved

Accuracy
Diff. From Exact

0 0% 0% 93.6% N/A

1 ~1.2% ~1.5% 93.59% -0.01%

2 ~1.4% ~1.8% 93.53% -0.07%

3 ~2.4% ~3.0% 93.35% -0.25%

4 ~3.6% ~4.5% 93.23% -0.37%

5 ~4.8% ~6.0% 93.11% -0.49%

6 ~9.6% ~12% 93% -0.60%

7 ~19.2% ~24% 92.23% -1.37%

8 ~38.2% ~48% 65.65% -27.95%

34

3.5 The Hybrid Training Approach

As presented in the previous section, despite the great performance gains that can be

achieved by training with approximate multipliers, a cost of a slight drop in the network

accuracy is inevitable. To eliminate this cost, a hybrid training methodology can be

applied which involves using both approximate multipliers and exact multipliers. Using

this methodology, the training starts with approximate multipliers then switches to exact

multipliers for the last epochs of the training By evaluating this hybrid training

methodology, test cases 1-6 in Table 3.2 and up to MRE=~9.6% reached an accuracy

within 0.02% of baseline accuracy.

Table 3.3 illustrates, the number of epochs that were used by the approximate multipliers

then the exact multipliers to achieve an inference accuracy which is equal or greater than

93.58% (0.02% less than the baseline accuracy).

In deep learning, neural network weights can be downloaded at any point and the training

can be resumed from pre-loaded weights. Therefore, realizing the hybrid approach using a

custom hardware design is not complicated. For example, one chip can be designed for

training using approximate multipliers and the other using exact multipliers, the exact

multiplier training chip can resume and finish what was partially training by the

approximate multiplier training chip.

Table 3.3: Hybrid training configurations for different MRE values

Test ID MRE

 Approximate

Multiplier

Epochs

 Exact

Multiplier

Epochs

Approximate

Multiplier

Utilization

1 ~1.2% 200 0 100%

2 ~1.4% 191 9 95.5%

3 ~2.4% 180 20 90%

4 ~3.6% 176 24 88%

5 ~4.8% 173 27 86.5%

6 ~9.6% 151 49 75.5%

35

The results in Table 3.3 were obtained by following the procedure presented in the

flowchart in Figure 3.4. Table 3.3 presents the optimal hybrid solution found for each test

case and. In this procedure, the training started by loading partially trained model weights

from a simulated approximate multiplier up to certain epoch. These weights were saved

after certain epochs during the simulations which were presented in the previous

section. After loading these partially trained models, the remainder of the training was

resumed by an exact multiplier up to 200 epochs as specified in Table 3.1. Finding this

optimal solution required tuning the switching epoch between the approximate and the

exact multiplier increasing it or decreasing it until finding the optimal combination.

Table 3.3 presents the optimal hybrid solution for this hybrid approach. Nevertheless, in

production, any repeat in training must be avoided as it defeats the purpose of performance

enhancement. Subsequently, it will be challenging to obtain this optimal switching epoch

prior to training and without computational costs. However, using a non-optimal solution

by approximating the switching epoch index for the hybrid approach still achieves

significant performance gains. If the final achieved inference accuracy by the hybrid

approach is almost equal to the exact multiplier accuracy, any utilization of the

approximate multipliers for the initial epochs are pure performance gain with almost no

cost.

In general, developers usually keep training until there are no further improvements to the

cross-validation accuracy. Therefore, regardless of what the initial switching epoch index

was, the target accuracy can be achieved if the approximate multiplier error is suitable for

the application. In the case of starting with an initial switching epoch index less than the

optimal, the target accuracy should be achieved by the final epoch. On the other hand, if

the initial switching epoch was larger than the optimal, the target accuracy can be achieved

by training for a few additional epochs. In both cases, the norm is to keep training until the

cross-validation accuracy flattens. Therefore, the advantage of training the initial epochs

with approximate multipliers can be attained regardless.

36

Figure 3.4: The followed procedure for finding the optimal solution for the hybrid

training approach

3.6 Conclusion

In this paper, the concept of utilizing approximate multipliers to enhance the training

performance of deep CNN was proposed. Simulation results show that using approximate

multipliers for CNN training result in a minimal drop in accuracy while having the potential

to achieve significant performance gains in custom hardware designs. Additionally, a

hybrid approach was proposed in which the training starts approximate multipliers then

switches to exact multipliers after a certain epoch. The simulation results of the hybrid

37

approach show that using exact multipliers for the last epochs can eliminate any accuracy

drop caused by the usage of approximate multipliers initially. Therefore, significant

performance gains can be achieved by utilizing approximate multipliers for a large portion

of the training while having almost no negative impact on the final achieved accuracy.

While this concept can be used to enhance the performance of deep learning training in

general, it is particularly beneficial in the case of training on the edge. Training on the edge

is required in the case of offline systems such as in the case of offline mobile robots

performing in remote harsh environments. Lowering the edge training cost for these robots

in terms of power, area, and speed is vital for performance. This performance enhancement

can be achieved using approximate multipliers for the training with minimal impact on the

accuracy as the paper presented.

38

CHAPTER 4 CNN INFERENCE USING A PREPROCESSING
PRECISION CONTROLLER AND APPROXIMATE

MULTIPLIERS WITH VARIOUS PRECISIONS

Issam Hammad, Ling Li, Kamal El-Sankary, and W. Martin Snelgrove

© 2021 IEEE reprinted, with permission I. Hammad, L. Li, K. El-Sankary and W. M.

Snelgrove, "CNN Inference Using a Preprocessing Precision Controller and Approximate

Multipliers with Various Precisions," in IEEE Access, vol. 9, pp. 7220-7232, 2021, doi:

10.1109/ACCESS.2021.3049299.

39

4.1 Abstract

This paper proposes boosting the multiplication performance for convolutional neural

network (CNN) inference using a precision prediction preprocessor which controls various

precision approximate multipliers. Previously, utilizing approximate multipliers for CNN

inference was proposed to enhance the power, speed, and area at a cost of a tolerable drop

in the accuracy. Low precision approximate multipliers can achieve massive performance

gains; however, utilizing them is not feasible due to the large accuracy loss they cause. To

maximize the multiplication performance gains while minimizing the accuracy loss, this

paper proposes using a tiny two-class precision controller to utilize low and high precision

approximate multipliers hybridly. The performance benefits for the proposed concept are

presented for multi-core multi-precision architectures and single-core reconfigurable

architectures. Additionally, a design for a merged reconfigurable approximate multiplier

with two precisions is proposed for utilization in single-core architectures. For performance

comparison, several segments-based approximate multipliers with different precisions

were synthesized using CMOS 15nm technology. For accuracy evaluation, the concept was

simulated on VGG19, Xception, and DenseNet201 using the ImageNetV2 dataset. The

paper will demonstrate that the proposed concept can achieve significant performance

gains with a minimal accuracy loss when compared to designs that utilize exact multipliers

or single-precision approximate multipliers.

4.2 Introduction

Approximate computing is emerging as a viable way to achieve significant performance

enhancement in terms of power, speed, and area for computationally heavy digital system

on chip (SoC) designs [12-16]. Even though a significant performance enhancement can

be achieved using approximate computing, these techniques have the obvious cost of

certain levels of inaccuracy in the output. However, for large systems, what matters is the

impact of the approximate computing on the accuracy of the entire system and not on each

sub-module that resides within the system. Approximate multipliers are one of the most

common operators for approximate computing. These multipliers produce an approximated

40

output for the multiplication which contains a certain inaccuracy, However, they can

achieve significant performance gains in terms of power, speed, and area compared to exact

multipliers when utilized in SoC design. Improving the performance by increasing the

speed and lowering the power allows for reducing the energy consumption per operation.

Several approximate multiplier designs have been proposed in the literature such as [29-

31] and [39-41].

Image recognition using deep learning [1] has been booming in the last few years. Using

fixed-point arithmetic to improve the performance of convolutional neural network (CNN)

accelerators was proposed by the industry as can be seen in the articles published by

Qualcomm in [42] and IBM in [43]. Additionally, several application-specific integrated

circuit (ASIC) designs for fixed-point CNN accelerators have been proposed in the

literature such as [8-9],[11] and [44]. Using a 16-bit base for the design of ASIC CNN

accelerators is common as can be seen in [8-9] and [44]. Additionally, several field-

programmable gate array (FPGA) designs for 16-bit based fixed-point CNN accelerators

have been proposed such as [45-47].

 Based on the architectures in [8-9],[11], and [44-47] CNN accelerators are designed using

arrays of processing elements (PEs), at the core of each PE, a multiply and accumulate

(MAC) unit exists. Hence, the multiplier is a primary component in the design of CNN

accelerators, and any improvement in the performance of the multiplier will scale up to

improve the performance of the entire accelerator. The focus of CNN accelerators has been

on improving the inference performance. This is because CNN training is usually done

once using powerful graphics processing units (GPUs), following that inference is

performed thousands or even millions of times before a model update or retraining is

required.

The utilization of approximate multipliers in the hardware design of convolutional neural

networks (CNNs) has been proposed previously to enhance the performance in terms of

power, speed, and area [18][20][33][48-50]. Moreover, using a reconfigurable approximate

multiplier based on calculating the error variance was proposed in [51]. Lower precision

41

approximate multipliers can achieve higher performance gains as can be seen in

[18],[20],[33], and [48-49]. However, this performance enhancement has a cost of a drop

in the CNN accuracy which is inversely proportional to the precision. This creates a trade-

off in terms of how much performance gains can be achieved vs. how much accuracy can

be sacrificed. Hence, utilizing low precision approximate multipliers might not be feasible

when the accuracy loss is large. Based on the challenge that this trade-off presents, the

paper proposes the concept of predicting and dynamically configuring the precision of

approximate multipliers for CNN inference. The paper will demonstrate that the impact of

approximate multipliers’ precision on the inference accuracy varies widely between the

different image classes. An image class contains a group of images that belong to the same

category. (e.g: hen, bee, zebra … etc). For certain image classes, the CNN achieves a lower

accuracy when lowering the approximate multiplier precision, for other image classes the

CNN accuracy stays constant, and interestingly, in other smaller percentages of image

classes, the CNN achieves higher accuracy with lower precision approximate multipliers.

Reaching this finding was accomplished experimentally, were utilizing lower precision

approximate multiplier results in a more optimal CNN solution for certain image classes.

Accordingly, the image classes in a dataset can be divided into two precision categories, a

low precision category which contains image classes that can be predicted with the same

CNN accuracy or better using lower precision approximate multipliers, and a high

precision category which contains the rest of the image classes.

To predict the adequate processing precision for each image as low or high, the paper

proposes using a tiny two-class CNN preprocessing precision controller. The controller can

be utilized in a system that contains multiple approximate-multiplier based CNN inference

accelerators with different precisions, or in a single CNN inference accelerator built with

precision reconfigurable approximate multipliers. The controller’s objective is to

maximize the overall performance gains by maximizing the usage of lower precision

approximate multipliers whenever this does not cause an additional accuracy loss. This

paper proposes a methodology which augments the performance of CNN inference using

the concept of the precision controller to enable the utilization of existing low precision

and high precision approximate multiplier hybridly. It also proposes a new precision

42

reconfigurable approximate multiplier to utilize the precision controller concept in single-

core designs. Figure 4.1 illustrates a high-level design for the proposed concept which

includes a preprocessing precision controller which controllers a CNN network complied

on inference accelerators with reconfigurable approximate multipliers.

Figure 4.1: High-level demonstration of the proposed concept.

To demonstrate the performance gains of the proposed concept in terms of power, speed,

and area, several approximate multiplier designs using the static segment method (SSM)

and the dynamic segment method (DSM) with different precisions were synthesized using

CMOS 15nm technology. For CNN accuracy analysis and comparison, Keras [35] was

used to simulate the proposed design on VGG19 [3], Xception [6], and DenseNet201 [5]

using ImageNetV2 TopImages dataset [52]. Two architectures for utilizing the proposed

concept are presented in the paper. The first is a multi-core architecture that uses

approximate-multiplier based CNN inference accelerators with various precisions, and the

second is using a single-core accelerator built with precision reconfigurable approximate

multipliers. To enable the utilization of the proposed concept in single-core designs, a new

merged reconfigurable approximate multiplier with two precisions is proposed. This is an

additional research contribution that the paper presents. Using both architectures, the paper

will demonstrate that the proposed concept can achieve significant performance

enhancements with minimal accuracy loss compared to architectures with 16-bit exact

signed multipliers or a single-precision approximate multiplier. All simulations were based

on a 16-bit representation as it is common in CNN accelerators as can be seen in [8-9],[11],

and [45-47].

43

This paper is structured as follows: In section 4.3 the architecture of the segment based

approximate multipliers using the static segment method (SSM) and the dynamic segment

method (DSM) is presented. Section 4.4 presents the concept of training the precision

prediction preprocessing controller. Section 4.5 presents the baseline performance and

accuracy simulation SSM and DSM approximate multipliers with various segment sizes

using VGG19, Xception, and DenseNet201. Section 4.6 illustrates how the proposed

concept of using a precision controller with reconfigurable approximate multipliers can be

utilized in both multi-core and single-core architectures. Section 4.7 concludes the research

findings of this article.

4.3 Segment Based Approximate Multiplier

Several approximate multipliers techniques are proposed in the literature such

Segmentation, High Radix, Rounding, and Perforation [53]. The proposed concept of using

a pre-processing precision controller can be applied to any approximate multiplier

technique with controllable precision. Nevertheless, segment-based approximate

multipliers using both SSM and DSM were selected for the simulation to present the

precision controller concept in this paper. This provides a comparison between a high

precession multiplier (the DSM) and lower power and area one (the SSM). The DSM based

multiplier using DRUM’s design [30] can provide notably high accuracy, although it has a

larger area and energy consumption compared to other multipliers such as [29],[39-40].On

the other hand, the SSM based multiplier [39] has a more efficient circuit compared to

other approximate multipliers such as [29-30] and [40]. Moreover, the segment-based

technique allows for an efficient implementation for the merged reconfigurable

approximate multiplier which is presented in this paper. Segment based approximate

multiplication is one of the efficient and simple techniques used to design approximate

multipliers. Using this technique, only a segment of the multiplicand is passed to the

multiplier to approximate the multiplication. This allows for the multiplication of n × n

number using an m × m multiplier, where m < n. As an example, a 16 × 16 bit multiplication

can be approximated using an 8 × 8 bit multiplier with a byte segment or even 4 × 4 bit

44

multiplier with a nibble segment. Controlling the precision of these multipliers is

performed by adjusting segment size (m). Figure 4.2 demonstrates the general design of a

segment based approximate multiplier for an n × n number.

Figure 4.2: Segment based approximate multiplier.

Several techniques for the segment selection have been proposed in the literature, this

includes the segment static segment method (SSM) which was adopted in the approximate

multiplier design Narayanamoorthy et al. in [39] and the dynamic segment method (DSM)

which was also proposed by [39] and was implemented in the approximate multiplier

design DRUM in [30]. Based on [30] and [39], an inversely proportional relationship exists

between the segment size and the achieved performance gains.

Using an SSM segmenter, an n-bit integer number is divided into a static i (m-bit) segments

with a (k) offset between the starting bits of two consecutive segments. The m-bit segment

with the leading one is selected to approximate the multiplication. Figure 4.3 demonstrates

the circuit implementation of the SSM segmenter. As can be seen from the Figure 4.3, the

SSM segmenter consists of a multiplexer (MUX) to select between the (i) segment. On the

selection lines, the m-bits of each segment are passed through an OR gate.

45

Figure 4.3: The SSM segmenter

Figure 4.4 illustrates an example of the possible segments for SSM using k=4 for with

segment sizes of m=8 and m=4. The example shows the segmentation based on a signed

16-bit integer number. This slightly differs compared to the presented unsigned format in

[39].

Figure 4.4: SSM segmentation example using k=4.

46

Figure 4.5 shows an example for an SSM based approximate multiplication using m=8. As

can be seen in Fig 5., the 16 × 16 bit number can be estimated using two SSM segmenters,

an 8 × 8 bit multiplier, a shifter, and an XOR for the sign bit. For the most significant

segment, the sign bit is replaced by zero to create equal size segments.

Figure 4.5: SSM approximate multiplication example using m=8

The DSM segmenter is more complicated and costly compared to the SSM segmenter. The

DSM segmenter detects the leading one in an n-bit number then extracts the following m-

1 bits to enable the utilization of an m × m bit multipliers to approximate n × n bit

multiplication. The DSM method as originally proposed by [39] but was further improved

in the approximate multiplier DRUM [30]. DRUM’s approximate multiplier works by

detecting the leading one in the number then extracting the following m-2 bits, any

remaining truncated portion is estimated by setting the segment’s least significant bit (LSB)

to ‘1’. Figure 4.6 shows the circuit implementation for the DSM segmenter. The segmenter

consists of a leading one detector (LOD) circuit in addition to an encoder and a MUX.

47

Figure 4.6: The DSM segmenter

Figure 4.7 shows an example of the DSM segmentation based on DRUM for both m=8 and

m=4. As can be seen in Figure 4.7, the segment starts with the leading one, followed by

the next m-2 bits. The segment’s LSB is set to ‘1’ to approximate the remaining truncated

bits assuming a uniform distribution for the operands [30].

Figure 4.7: DSM segmentation example based on DRUM.

48

Figure 4.8 shows an example of the DSM multiplication using m=8. As can be seen in the

figure, both 16 × 16 input numbers are segmented by extracting the leading one followed

by the next m-2 bits while the segments LSB bit is set to ‘1’. Following the segmentation,

an 8x8 bit multiplier is used then the multiplier’s output is shifted. For the sign bit, an XOR

is used.

Figure 4.8: DSM approximate multiplication example using m=8

4.4 Building a Precision Preprocessing Controller

As previously discussed, utilizing a low precision approximate multiplier in CNN inference

will not be feasible if it leads to large accuracy loss despite the massive performance gains

it can achieve. As an example, an SSM approximate multiplier with m=4 can achieve a

153% speed increase, an 88% power reduction, and an 82% area reduction compared to an

exact multiplier. However, using it in VGG19 inference based on ImageNetV2 causes a

15.3% accuracy loss compared to an exact multiplier as will be seen in the next section.

This dilemma has created a motivation for finding a solution that allows for partial

utilization of these multipliers only when the accuracy loss is minimal. A solution was

found after studying the impact of the approximate multiplier precision on each image class

49

individually, it was found that the CNN’s inference accuracy with low precision

approximate multipliers varies widely between image classes. Surprisingly, certain image

classes can be classified with higher accuracy using low precision approximate multipliers

such as m=4 compared to higher precision approximate multipliers such as m=8. For

another set of image classes, there was no difference in CNN classification accuracy

between low and high precision approximate multipliers. The remaining larger set of image

classes achieves better classification using a higher precision approximate multiplier.

To utilize this important finding in improving the overall performance by maximizing the

usage of low precision approximate multipliers while minimizing the cost in terms of

accuracy loss, a preprocessing precision controller was developed to predict the adequate

precision category for the input image. This allows for the development of a system that

contains approximate multipliers with different precisions or precision reconfigurable

approximate multipliers. Such a system can maximize performance by utilizing low

precision approximate multipliers only when achieving a better or the same CNN

classification accuracy is predicted. This preprocessing controller is a two-class tiny CNN

network that can predict the adequate approximate multiplier precision as either low or

high. The exact segment sizes for what is considered low and what is considered high will

depend on how the training was performed.

To train a preprocessing precision controller a labeled dataset with the adequate

approximate multiplier precision for each image class must be created for each CNN

network. To do that, the CNN predictions for each image using different approximate

multiplier precisions should be obtained. Following that, if it was determined that on

average an image class can be classified with the same or better accuracy using the lower

precision mode, the entire images in this class will be labeled ‘0’. If using higher precision

mode achieves better classification accuracy for that image class, the entire images in that

class will be labeled as ‘1’. Figure 4.9 illustrates using a flowchart the process for

developing a precision preprocessing controller for the CNN’s approximate multipliers.

Using the illustrated process in Figure 4.9, a precision controller with different precisions

(m) was trained for VGG19, Xception, and DenseNet201 using a subset of ImageNet [54].

50

The training set consisted of 50 images from each image class with a total of 50000 images,

while the cross-validation test set consisted of 10 images from each image class with a total

of 10000 images. For the final accuracy evaluation, the controller along with the image

classification CNN networks were tested using ImageNetV2 Top-Images dataset which

consists of 10000 images using both SSM and DSM

Figure 4.9: Developing a precision controller flowchart.

51

Figure 4.10 demonstrates the architecture of the preprocessing precision controller. The

controller is a tiny CNN that has two output nodes with Softmax activation and contains

three 2D convolution layers. These layers have shapes of (224,224,3), (56,56,6), and

(14,14,12) consecutively. Following each convolutional layer, a (4x4) max-pooling layer

exists. ReLU [55] activation was used in all the layers. The controller was designed to have

a minimal overhead in terms of the number of parameters and the multiply and accumulate

(MAC) operations. Therefore, the smallest possible design with the least parameters but

with an acceptable accuracy was selected. Table 4.1 details the controller overhead

compared to VGG19, Xception, and DenseNet201.

Figure 4.10: A proposed tiny CNN precision controller.

Table 4.1: Precision controller overhead comparison

As can be seen in Table 4.1, the controller parameters overhead is as low as 0.008% in

the case of VGGNet19 and as high as 0.0056% in the case of DenseNet201. In terms of

the MACs, overhead is as low as 0.0239% in the case of VGGNet19 and as high as

Network
Total

Param.

Total

MACs

Controller

Param.

Overhead

Controller

MACs

Overhead

Controller 1130 4.7M N/A N/A

VGG19[3] 143.7M 19.64G 0.0008% 0.0239%

Xception[6] 22.9M 8.404G 0.0049% 0.0559%

DenseNet201[5] 20.2M 3.347G 0.0056% 0.1404%

52

0.1404% in the case of DenseNet201. Based on these numbers, the preprocessing

precision controller overhead can be considered negligible.

The next section will present a performance comparison between the SSM and the DSM

approximate multipliers using m=4, m=6, and m=8 against the exact multiplier. Also, it

will present the inference accuracy simulation for using these approximate multipliers

using VGG19, Xception, and DenseNet201. Section V will build on section III and section

IV to demonstrate how the precision controller can be utilized in multi-core and single-

core architectures. Section V will also present the achieved controller accuracy for each

network and accordingly, the achieved image classification accuracy with hybrid precision

approximate multipliers.

4.5 Baseline Performance and Accuracy

To demonstrate and compare the performance gains that the SSM and DSM approximate

multipliers can achieve, they were implemented using Verilog hardware description

language (HDL) using Nangate 15nm FinFET standard cell library [56]. The Verilog

implementation was synthesized using Synopsys Design Compiler. The analysis is applied

to check the setup violations of the multipliers. The delay-annotated netlists of the

multipliers are simulated using Modelism SE to verify their operations. In this

implementation, the delay, power, and area using m=4, m=6, and m=8 precisions were

obtained. Table 4.2 details the SSM performance and performance gains compared to an

exact multiplier for each precision. Table 4.3 details the DSM performance and

performance gains compared to an exact multiplier for each precision.

Table 4.2: The SSM [39] approximate multiplier performance compared to an exact

multiplier

Design
Delay

(ps)

Power

(µW)

Area

(µm2)

Speed

Increase

Power

Reduction

Area

Reduction

Exact 330.8 230.1 337.03 N/A N/A N/A

m=8 206.06 69.22 108.28 60.54% 69.92% 67.87%

m=6 182.75 52.09 83.705 81.01% 77.36% 75.16%

m=4 130.91 27.66 60.65 152.69% 87.98% 82.00%

53

Table 4.3: The DSM (Based on DRUM [30]) approximate multiplier performance

compared to an exact multiplier

Design
Delay

(ps)

Power

(uW)

Area

(µm2)

Speed

Increase

Power

Reduction

Area

Reduction

Exact 330.8 230.1 337.03 N/A N/A N/A

m=8 305.26 181.9 204.16 8.37% 20.95% 39.42%

m=6 261.61 133.3 170.289 26.45% 42.07% 49.47%

m=4 199.98 65.63 125.154 65.42% 71.48% 62.87%

As can be seen from Table 4.2 and Table 4.3, both the SSM and DSM can achieve

significant performance gains compared to the exact multiplier. These gains are inversely

proportional to the segment size (m). The SSM multipliers can achieve higher performance

gains compared to the DSM multipliers due to having a simpler segmenter as was presented

in Section II.

To evaluate the impact of the SSM and DSM approximate multiplication techniques on the

CNN’s inference accuracy, a simulation for these techniques were performed using three

popular CNN networks, the VGG19, Xception, and DenseNet201. Pretrained models using

ImageNet for these CNN networks are available as part of the deep learning platform Keras

[35]. For the inference simulation, ImagenetV2 Top-Images [52] dataset was used.

ImageNetV2 is a new test set built based on the ImageNet benchmark and was released

primarily for inference accuracy evaluation. ImageNetV2 contains 10000 images based on

1000 different classes which are identical to the classes in the ImageNet dataset.

 To simulate the impact of the approximate multiplication on the inference accuracy,

Keras’s custom layer functionality was utilized. This functionality allows for the addition

of custom mathematical or logical operations anywhere inside the CNN. By utilizing this

functionality, the SSM and DSM segmenters were simulated by creating segmentation

layers. These segmentation layers were injected before all convolution layers and fully

connected layers. In these layers, the previous layer’s outputs were scaled and cast to Int16

numbers, then using bitwise operations, the segmenter was simulated by masking the

numbers using a mask which was created based on the segment size (m). For the model

54

weight, all weights were scaled, cast, and masked to simulate the segmentation before

starting the inference.

Table 4.4 lists the achieved CNN inference accuracy for VGG19, Xception, and

DenseNet201 using the SSM technique with m=4, m=6, and m=8 precisions. Table 4.5

lists similar information but by utilizing the DSM technique. In both tables, the

approximate multipliers’ accuracies are compared against the accuracy of an exact signed

Int16 multiplier. In both tables, the accuracy loss compared to an exact multiplier is listed

between brackets.

Table 4.4: CNN inference accuracy using the SSM [39] approximate multiplication

Design

VGG-19[3] Xception[6] DenseNet-201[5]

Top-1

Accuracy

Top-5

Accuracy

Top-1

Accuracy

Top-5

Accuracy

Top-1

Accuracy

Top-5

Accuracy

Exact 73.59% 92.28% 80.78% 95.92% 79.9% 95.59%

m=8
73.12%

(-0.47%)

92.06%

(-0.62%)

79.88%

(-0.90%)

95.11%

(-0.81%)

78.41%

 (-1.49%)

94.38%

(-1.21%)

m=6
64.94%

(-8.65%)

88.23%

(-4.45%)

71.51%

(-9.27%)

89.56%

(-6.36%)

75.20%

(-4.70%)

92.39%

(-3.20%)

m=4
58.28%

(-15.31%)

85.78%

(-6.90%)

62.36%

(-18.42%)

85.22%

(-10.70%)

29.45%

(-50.45%)

62.58%

(-33.01%)

Table 4.5: CNN inference accuracy using the DSM (Based on DRUM [30]) approximate

multiplication

Design

VGG-19 [3] Xception [6] DenseNet-201 [5]

Top-1

Accuracy

Top-5

Accuracy

Top-1

Accuracy

Top-5

Accuracy

Top-1

Accuracy

Top-5

Accuracy

Exact 73.59% 92.28% 80.78% 95.92% 79.9% 95.59%

m=8
73.38%

(-0.21%)

92.15%

 (-0.13%)

80.55%

(-0.23%)

95.61%

(-0.31%)

79.31%

(-0.59%)

95.38%

(-0.21%)

m=6
66.86%

(-6.73%)

89.39%

(-2.89%)

72.13%

(-8.65%)

91.06%

(-4.86%)

76.40%

(-3.50%)

93.54%

(-2.05%)

m=4
62.20%

(-11.39%)

88.31%

(-3.97%)

63.36%

(-17.42%)

86.65%

(-9.27%)

33.29%

 (-46.61%)

65.20%

(-30.39%)

55

As can be seen in Table 4.4 and Table 4.5, the inference accuracy loss for all simulated

networks increases when reducing the precision (m). Nevertheless, the inference accuracy

loss using approximate multipliers with m=8 was very minimal. In the case of DSM, the

accuracy loss was 0.21% for VGG19, 0.23% for Xception, and 0.59% for DenseNet201.

For SSM, the difference was a bit higher with 0.47% for VGG19, 0.62% for Xception, and

1.49% for DenseNet201. Using SSM with a precision of m=4, the accuracy losses were

significant where the losses were 15.31%, 18.42%, and 50.45% for VGG19, Xception, and

DenseNet201, respectively. The losses were also significant using DSM as can be seen in

Table 4.5.

For both the SSM and the DSM, DenseNet201 had a significant drop in accuracy when the

precision was dropped from m=6 to m=4. In the case of SSM, the accuracy loss increased

from 4.7% to 50.45%, while for DSM, the loss increased from 3.5% to 46.61%. This

eliminated the possibility of utilizing the case of m=4 for DenseNet201 in any hybrid

precision design as the loss is very large.

4.6 Using The Precision Preprocessor To Control Various

Precisions Approximate Multipliers

4.6.1 Multi-Core Architecture

As CNN networks vary in terms of input shape, depth, and the number of filters, ASIC

CNN accelerators are designed using a large-scale integration of PEs. This allows the

accelerators to be reconfigurable which allows for the compilation of the CNN network

that the user wants to deploy. The core component in the PE is the multiplier. This design

can be seen in the fixed-point CNN accelerators such as [8-9],[11], and [44-47]. In addition

to the floating-point accelerators such as [7] and [57].

The proposed concept of using a preprocessing precision controller with approximate

multiplier-based CNN accelerators can be utilized in a large system such as a cluster of

inference accelerators. Such a cluster can contain hundreds or thousands of approximate

multiplier-based CNN inference accelerators with various precisions and can be deployed

56

in a data center or in a cloud backbone. Once a CNN model is compiled on the cluster for

inference, a small overhead of PEs can be allocated for the deployment of the preprocessing

precision controller as well. As was presented in Table 4.1, the controller overhead is

negligible and can be as low as 0.008% in the case of VGGNet19 and as high as 0.0.056%

in the case of DenseNet201. In terms of the MACs, the overhead is as low as 0.0239% in

the case of VGGNet19 and as high as 0.1404% in the case of DenseNet201. If needed, the

controller can be mimicked to (i) number of controllers to allow for parallel inference of

the compiled model. The controller training can occur as part of the model’s compilation

on the cluster or prior to that where the controller’s parameters and shape can be provided

alongside with the model’s parameter and shape.

For each compiled network, (n) low precision accelerators (p) high precision accelerators

can be allocated. The (n/p) ratio can be determined based on the expected usage of the low

vs. high precision for that model. The allocated accelerators can be shared among different

complied CNN networks. The cluster resource manager and scheduler will handle the

sharing of the various accelerators among the various complied CNN networks. The design

of hardware accelerators in data centers is discussed in [58]. Figure 4.11 provides a high-

level illustration of how preprocessing precision controllers can be used with multiple

approximate-multiplier based CNN accelerators with various precisions in a cluster.

57

Figure 4.11: Using preprocessing precision controllers with multiple approximate-

multiplier based CNN accelerators with various precisions in a cluster.

To demonstrate the performance benefits of the hybrid use of approximate multipliers with

various precisions based on precision prediction, preprocessing precision controllers were

trained using a subset of ImageNet for VGG19, Xception, and DenseNet201 by following

the process in Figure 4.9 For each network both, the SSM and the DSM techniques were

simulated. Table 4.6 details the performance gains in terms of power and speed that the

hybrid use of approximate multiplier with various precisions can achieve compared to an

exact multiplier. For VGG19 and Xception the controller was trained to select either a

precision of m=4 or precision of m=8. In the case of the DenseNet201, the lower precision

was selected as m=6 because m=4 had extremely low accuracy. As can be seen in Table

4.6, using a hybrid of approximate multipliers with various precisions can achieve large

performance gains with minimal accuracy loss compared to exact multipliers. Overall, the

SSM achieves significantly higher speed and lower power compared to the DSM in all the

cases, however, the cost in terms of the network’s accuracy loss is higher.

58

Table 4.6: Performance and accuracy for the hybrid use of approximate multipliers with

various precisions compared to an exact multiplier

Type
Delay

(ps)

Power

(µW)

Speed

Inc.

Power

Reduct

-ion

Accuracy
Accuracy

Loss

Controller

Accuracy

Low

Precision

Utilization

VGG-SSM

(m=4&8)
174.42 51.72 89.66% 77.52% 72.13% 1.46% 79.4% 42.1%

VGG-

DSM

(m=4&8)

260.31 132.25 27.08% 42.52% 72.61% 0.98% 80.2% 42.7%

Xception-

SSM

(m=4&8)

180.73 55.21 83.03% 76.00% 78.20% 2.58% 78.1% 33.7%

Xception -

DSM

(m=4&8)

269.25 142.14 22.86% 38.23% 79.37% 1.41% 78.6% 34.2%

Dense-

SSM

(m=6&8)

191.96 58.86 72.33% 74.42% 78.76% 1.14% 77.9% 60.5%

Dense-

DSM

(m=4&8)

278.15 151.72 18.93% 34.06% 79.52% 0.38% 78.5% 62.1%

For each simulation in Table 4.6, the accuracy of the precision controller is listed as well.

As can be seen from the table, the controller’s accuracy ranges between 77.9% and 80.2%

depending on the network, the segmentation type, and the precision modes. Therefore, the

approximate multiplier precision prediction is not ideal. Nevertheless, the accuracy loss

and performance gains calculations in Table 4.6 includes simulating this imperfection in

the controller. Table 4.6 includes the low mode utilization percentage which represents the

actual usage of the low precision mode including the false positives. If an ideal controller

with 100% accuracy existed, the hybrid precision accuracy will surpass the accuracy of an

exact multiplication. That is because a subset of image classes can be classified with better

accuracy using lower precision approximate multipliers compared to higher precision

approximate multipliers or even exact multipliers.

 Using hybrid approximate multipliers with predicted precision can also achieve a better

performance-accuracy trade-off compared to using a single-precision approximate

multiplier. This is illustrated in Figure 4.12 where the performance gains and the accuracy

loss compared to the exact multiplier are plotted for both designs. Figure 4.12 contains a

59

sub-plot for each scenario listed in Table 4.6. An example can be seen in Figure 4.12 (a),

where the hybrid SSM multiplier with m=(4&8) achieved an 89.66% speed increase and

a 77.52% power reduction which is better compared to the performance gains for the case

of m=6 with an 81.01% speed increase and a 77.36% power reduction. Nevertheless, the

network’s accuracy loss was only 1.5% in the case of m=(4&8) compared to 8.7% in the

case of m=6. From the energy perspective, the SSM multiplier with m=(4&8) can achieve

an 88.15% energy reduction compared to 87.49% in the case of m=6. The energy of each

multiplier was obtained by calculating the product of the power and the delay.

Figure 4.12: Performance gains and accuracy loss using hybrid and single precision

approximate multipliers compared to an exact multiplier.

Another example can be seen in the case of DenseNet201 in Figure 4.12 (c) and (f), wherein

both the SSM and the DSM, using hybrid approximate multiplier precisions with m=(6&8)

achieved better performance gains with lower accuracy loss compared to the case of m=8.

Having a lower accuracy loss in the hybrid configuration might be surprising. However,

60

this is due to having a subset of image classes which can be classified with better accuracy

using m=6 compared to m=8 as explained previously.

On the cluster level, an additional performance advantage can be also achieved in terms of

the total area. The area is proportional to the approximate multiplier precision as per Table

4.2 and Table 4.3. Therefore, building a cluster using (n) accelerators with high precision

approximate multipliers only will require more area than a cluster which contains (n)

accelerators built using various approximate multipliers precisions.

4.6.2 Single-Core Reconfigurable Architecture

Utilizing the proposed concept of predicting and configuring the precision of approximate-

multiplier based CNN accelerators is not limited to the multi-core architecture. This section

will present how a reconfigurable approximate multiplier with two precisions can be

implemented to allow for the utilization of the concept in single-core systems. This will

expand the proposed concept to include the design of approximate multiplier-based CNN

accelerators for embedded systems and low power applications such as [59-60].

Figure 4.13 demonstrates how a reconfigurable approximate multiplier with two precisions

can be implemented inside each MAC unit. Using this design either the high or the low

precision approximate multiplier will be power up or down based on the precision

controller signal “CN”. Tri-state buffers are used to control the multiplier's output flow.

As can be seen from Figure 4.13, this architecture requires implementing two approximate

multipliers with high and low precisions inside the MAC. This will result in area overhead

compared to a single-precision approximate multiplier design. Nevertheless, this hybrid

reconfigurable precision design can achieve better performance in terms of speed and

power compared to the single-precision design. Also, its total area is still less than an exact

multiplier design. Optimizing the design in Figure 4.13 can be achieved by designing a

merged reconfigurable approximate multiplier that supports two precisions.

61

Figure 4.13: Reconfigurable design with two separated approximate multipliers.

Figure 4.14 shows a proposed design for a merged reconfigurable approximate multiplier

that supports precisions of m=(4&8). As can be seen from the figure, the merged

reconfigurable multiplier can be designed using four (4x4) bit multipliers, segmenters, a

shifter, tri-state buffers for flow control, and an XOR for the sign bit. This multiplier will

be partially turned off when m=4 is activated using a VDDxCN control signal allowing for

higher speed and lower power execution. In terms of component sharing, one 4x4

multiplier is shared between the two precision, in addition to the shifter, the merged

segmenter, and the sign bit XOR. Figure 4.14 illustrates a generic merged reconfigurable

multiplier for both the SSM and DSM, the difference between these two techniques is

contained in the design of the merged segmenter.

62

Figure 4.14: Reconfigurable design with a merged approximate multiplier for m=(4&8).

Table 4.7 lists the performance comparison between the merged and the separated

reconfigurable design using VGG19 and based on the low precision utilization rate as per

Table 4.6.

Table 4.7: Performance comparison for single-core the separated and merged

reconfigurable designs using vgg19

Hybrid

Design

Type for

m=(4&8)

Seg.

Type

Delay

(ps)

Power

(µW)

Area

(µm2)

Speed

Increase

vs.

Exact

Power

Reduction

vs. Exact

Area

Reduction

vs. Exact

Accuracy

Loss

Separated SSM 175.240 52.641 171.100 88.77% 77.12% 49.23% 1.46%

Merged SSM 181.239 55.223 114.930 82.52% 76.00% 66.20% 1.46%

Separated DSM 262.312 137.203 332.114 26.11% 40.37% 1.46% 0.98%

Merged DSM 273.432 146.410 214.980 20.98% 36.37% 36.21% 0.98%

63

Figure 4.15 Illustrates the performance-accuracy trade-off for various approximate

multiplier precisions compared to an exact multiplier based on VGG19. As can be seen in

the figure, the reconfigurable approximate multiplier achieves a better performance-

accuracy trade-off compared to single-precision approximate multipliers. The SSM

m=(4&8) merged design achieves an 82.52% speed increase, a 76% power reduction, and

a 65.9% area reduction with a 1.46% accuracy loss compared to an exact multiplier. On

the other hand, the DSM m=(4&8) merged design achieves a 20.98% speed increase, a

36.37% power reduction, and a 36.21% area reduction with a 0.98% accuracy loss

compared to an exact multiplier. The merged m=(4&8) reconfigurable designs have a slight

area overhead and a slightly higher accuracy loss compared to a single-precision design

with m=8. Nevertheless, the performance gains in terms of speed and power are large.

Figure 4.15: The single-core performance-accuracy trade-off for various approximate

multiplier precisions compared to an exact multiplier based on VGG19.

Figure 4.16 illustrates the speed and power performance gains of the hybrid m=(4&8)

designs compared to a single-precision design with m=8. As can be seen in the figure, the

SSM m=(4&8) merged design can achieve a 13.7% speed increase and 25.35% power

reduction compared to a single-precision design with m=8. For DSM, the gains are an

11.64% increase in speed and a 24.24% power reduction. This is an additional energy

64

savings of 29.83% in the case of merged SSM and 27.9% in the case of merged DSM. The

cost in terms of the area overhead is 5.3% for DSM merged design and 6.1% for SSM

merged design. While the accuracy loss difference is 0.77% for DSM merged design and

0.99% for SSM merged design.

For cases where reducing the area is less important, the hybrid separated design can be

utilized to achieve higher speed and power lower and therefore lower energy consumption.

The SSM separated m=(4&8) design can achieve a higher speed gain and a comparable

power reduction compared to the case of m=6 with far less accuracy loss. The SSM

separated m=(4&8) design achieved a speed increase of 88.77% and a power reduction of

77.12% and an accuracy loss of 1.46% which is better than m=6 with a speed increase of

81.01% and 77.36%. and an accuracy loss of 8.65%.

Overall, the merged hybrid design achieves more balanced power-speed-area gains

compared to the separated hybrid design. Nevertheless, the merged design achieves lower

gains in terms of the speed increase and the power reduction and therefore in energy saving.

Hence, for designs that prioritize increasing the speed or reducing the energy consumption

over reducing the area, the separated design might be a better option.

Figure 4.16: Hybrid m=(4&8) performance gains compared to a single-precision with m=8

based on VGG19.

65

4.7 Conclusion

This paper proposed a new architecture for improving the multiplication performance for

CNN inference. The proposed architecture consists of a preprocessing precision controller

at the system level and approximate multipliers with various precisions at the PE level. The

proposed preprocessing controller determines the adequate precision for the network’s

approximate multipliers to classify the input image. The precision controller concept was

inspired after discovering that a subset of image classes can be classified with the same or

better accuracy using lower precision approximate multipliers. Based on this finding, the

controller was trained to determine if the input image belongs to that subset or not. The

controller is built using a tiny two-class CNN which has a negligible overhead in terms of

parameters and MACs compared to the controlled image classification CNN. A

performance analysis was presented based on the SSM and DSM methods using CMOS

15nm technology. Additionally, an accuracy analysis using VGG19, Xception, and

DenseNet201 was presented. Overall, utilizing the SSM achieves a better performance-

accuracy trade-off compared to using the DSM. As an example, for VGG-19 using a multi-

core hybrid design with m=(4&8), the SSM achieves 89.66% speed increase and 77.52%

power reduction with an accuracy loss of 1.46% compared to a speed increase of 27.08%

and power reduction of 42.52% and an accuracy loss of 0.98% in the case of the DSM.

Additionally, the total area of two DSM multipliers with m=(4&8) is 94.9% larger than

two SSM multipliers with m=(4&8). Using the DSM is an option if minimizing the

accuracy loss is critical for the designer. Maximizing the benefits of the proposed design

can be achieved in a multi-core architecture with a large number of CNN inference

accelerators, where the accelerators are built using different approximate multiplier

precisions. Using the multi-core architecture, the proposed concept can achieve significant

performance gains compared to designs with exact multipliers. Additionally, it can achieve

a significantly better performance-accuracy trade-off compared to designs that uses single-

precision approximate multipliers. The paper has also presented the performance benefits

of utilizing the proposed concept in single-core designs. To optimize this utilization, a new

merged approximate multiplier with two configurable precisions was proposed. The

proposed concept of using a tiny preprocessing controller to determine the adequate

66

processing precision is not limited to the DSM and SSM architectures and can be expanded

to other approximate multiplier designs, also it is expandable beyond approximate

multipliers. The concept can be investigated in floating-point designs to control cores with

variable precisions. It is also not limited to image classification and can be explored to

improve the hardware performance of other problems such as video and audio

classification.

67

CHAPTER 5 PRACTICAL CONSIDERATIONS FOR ACCURACY
EVALUATION IN SENSOR-BASED MACHINE LEARNING AND

DEEP LEARNING

Issam Hammad and Kamal El-Sankary

© 2019 MDPI reprinted, with permission Hammad, I.; El-Sankary, K. Practical

Considerations for Accuracy Evaluation in Sensor-Based Machine Learning and Deep

Learning. Sensors 2019, 19, 3491. https://doi.org/10.3390/s19163491

68

5.1 Abstract

Accuracy evaluation in machine learning is based on the split of data into a training set and

a test set. This critical step is applied to develop machine learning models including models

based on sensor data. For sensor-based problems, comparing the accuracy of machine

learning models using the train/test split provides only a baseline comparison in ideal

situations. Such comparisons won’t consider practical production problems that can impact

the inference accuracy such as the sensors’ thermal noise, performance with lower

inference quantization, and tolerance to sensor failure. Therefore, this paper proposes a set

of practical tests that can be applied when comparing the accuracy of machine learning

models for sensor-based problems. First, the impact of the sensors’ thermal noise on the

models’ inference accuracy was simulated. Machine learning algorithms have different

levels of error resilience to thermal noise, as will be presented. Second, the models’

accuracy using lower inference quantization was compared. Lowering inference

quantization leads to lowering the analog-to-digital converter (ADC) resolution which is

cost-effective in embedded designs. Moreover, in custom designs, analog-to-digital

converters’ (ADCs) effective number of bits (ENOB) is usually lower than the ideal

number of bits due to various design factors. Therefore, it is practical to compare models’

accuracy using lower inference quantization. Third, the models’ accuracy tolerance to

sensor failure was evaluated and compared. For this study, University of California Irvine

(UCI) ‘Daily and Sports Activities’ dataset was used to present these practical tests and

their impact on model selection.

5.2 Introduction

The primary objective of solving a problem using machine learning is to obtain a model

for generalized predictions. In production, when deploying a pretrained machine learning

model for inference, it should be expected that this model will perform predictions with an

accuracy close to the achieved test accuracy during prototyping. Large deviations between

the reported test accuracy and the actual accuracy in production can be a serious design

problem. Therefore, the test accuracy should consider any practical aspects or variables

69

that don’t necessarily exist in the development but can occur in production. In the early

stages of machine learning research, many papers reported the training accuracy as the

model’s prediction accuracy. This practice doesn’t truly reflect how the model can

generalize to new data, instead, it reflects how good the model can fit the training set, which

often can be a case of overfitting. Achieving a low generalization error that characterizes

prediction performance and avoids overfitting and underfitting is discussed with more

details in [61] and [62]. One of the early research papers that emphasized the importance

of using a separate test set for model evaluation is [63]. Nowadays, machine learning model

accuracy evaluation is performed by splitting the available data into training, cross-

validation, and test sets. The cross-validation set is usually used to tune the models’

hyperparameters, while the test set determines the prediction accuracy of the model. In

many instances, the dataset is split into training and testing sets only, where the test set is

used for cross-validation and to determine the prediction accuracy.

Using the train/test split is very common and is considered an acceptable practice in

machine learning research today. Many train/test split techniques are used in the literature

such as k-fold cross-validation and Monte Carlo cross-validation (MCCV). These

techniques were used in different sensor-based machine learning research problems such

as [64–68]. These papers built different machine learning models for sensor-based

problems and compared their accuracy using the common train/test split. It is common in

machine learning to build multiple models using different algorithms for one problem, then

determine the best model for that problem based on the top achieved test set accuracy.

However, for sensor-based machine learning problems, models’ accuracy and suitability

comparison should take into consideration practical factors that can occur in production.

Presenting these practical production considerations and their impact on model selection

in sensor-based problems is the focus of this paper. These presented practical tests include

the impact of thermal noise on the models’ inference accuracy, models’ accuracy tolerance

to lower inference quantization, and model tolerance to sensor failure. The next section

will provide a detailed background on these practical tests and their purpose. The paper

70

will demonstrate that when considering these practical production problems, the decision

regarding the appropriate machine learning model for a problem can be majorly impacted.

For this study, the University of California Irvine (UCI) ‘Daily and Sports Activities’

dataset was employed. The dataset was constructed by [64] and is posted on the online

repository [69]. The dataset contains sensor readings from accelerometers, gyroscopes, and

magnetometers which correspond to a number of physical activities performed by different

participants.

This paper is divided as follows, Section 5.4 provides a background on the proposed

practical accuracy tests and their role in model selection. Section 5.5 describes the details

and structure of the dataset used in this study. Section 5.6 presents the achieved baseline

accuracies for various machine learning models using k-fold train/test split. In Section 5.6

the experimental results for the proposed practical tests are demonstrated. Finally, Section

5.7 presents the research conclusions.

5.3 Background on the Proposed Practical Accuracy Tests

According to [70], it can be reasonably assumed that each accelerometer creates its own

independent thermal noise. Based on [71], an accelerometer’s thermal noise can be

modeled as an additive zero-mean Gaussian noise. The presented thermal noise simulation

in this paper will demonstrate that machine learning models can have significantly different

levels of accuracy loss due to thermal noise. Another practical production aspect is finding

the adequate inference quantization level and the best model for this level of quantization.

With the rise of edge artificial intelligence (AI) technology, pretrained machine learning

models are deployed directly on embedded hardware, which is often low-power. Lowering

the inference quantization can reduce the hardware cost of the analog-to-digital converter

(ADC) and other digital signal processing (DSP) components. Speed–power–accuracy

trade-offs in high-speed complementary metal-oxide-semiconductor (CMOS) ADCs are

detailed in [72]. Based on [72], higher bit accuracy requires larger devices that result in

lower speed and/or higher power consumption. Evaluating models’ inference accuracy

71

using different quantization levels will determine the adequate level and will impact the

decision on the model selection. Also, it is known that the ADC effective number of bits

(ENOB) is usually lower than the ideal number of bits [73]. Hence, it will be critical to

evaluate models’ tolerance with lower inference quantization to simulate this practical

ADC problem. A final aspect to consider is the impact of sensor failure on machine learning

inference accuracy. Models with more tolerance to sensor failure might be favorable for

production. Also, redundancy or other failure mitigation solutions can be applied for

sensors with greater impact on the accuracy. The simulation for all these practical problems

is presented in Section 5.

5.4 Dataset Details and Simulation Tools

For this study, the UCI ‘Daily and Sports Activities’ dataset was employed. The dataset

was published by [64] and is posted on the UCI online repository [69]. This dataset was

constructed by using five Xsens MTx 3-DOF (degrees of freedom) orientation trackers.

Figure 5.1 illustrates the used orientation tracker which was developed by Xsens

Technologies. A total of 8 participants, 4 males and 4 females aged 20–30 contributed in

the construction of the dataset [69]. For each participant, the orientation trackers were

placed on the torso (tracker #1), the right arm (tracker #2), the left arm (tracker #3), the

right leg (tracker #4), and the left leg (tracker #5). Data from these orientation trackers

were captured during 19 different physical activities that the participants performed. These

19 activities were [64]: (1) sitting, (2) standing, (3) lying on back, (4) lying on right side,

(5) ascending stairs, (6) descending stairs, (7) standing in an elevator still, (8) moving

around in an elevator, (9) walking in a parking lot, (10) walking on a treadmill in flat with

a speed of 4 km/h, (11) walking on a treadmill with 15° incline with a speed of 4 km/h,(12)

running on a treadmill with a speed of 8 km/h, (13) exercising on a stepper, (14) exercising

on a cross trainer, (15) cycling on an exercise bike in horizontal position, (16) cycling on

an exercise bike in vertical positions, (17) rowing, (18) jumping, and (19) playing

basketball. This dataset presents a classification problem, where the input is constructed

from the readings of the 5 orientation trackers, while the output represents one of the 19

72

physical activity classes. Based on the Xsens MTx manual [74], each orientation tracker

contains a 3D accelerometer, 3D gyroscope, and a 3D magnetometer.

For analog to digital conversion, 16 bits ADC is used [74]. This configuration resulted in

having 9 sensor readings per tracker and a total of 45 sensor readings per record. The

dataset was constructed using a sampling frequency of 25 Hz with 5 s representing each

labeled instance. Therefore, 125 records, with 45 sensor readings each, construct one

labeled instance. Accordingly, each instance had 5625 attributes. The entire dataset

contained 9120 instances. The dataset was balanced as there were 60 instances for each

activity per participant.

Figure 5.1: Xsens MTx 3-DOF (degrees of freedom) orientation tracker (photo from

[74]).

This dataset was selected to study the proposed practical considerations for accuracy as it

provides the raw data readings of the sensors. Also, it specifies that Xsens MTx orientation

trackers [74] were used, which is unlike many machine learning datasets that don’t include

information on the hardware used. Providing the raw data and the hardware details

facilitated the presented theory and simulations in this paper. Many research papers have

proposed different machine learning models for this dataset, including the dataset publisher

in [64-65]. In addition to that, several other papers proposed additional machine learning

models and techniques such as [75–77]. The research goal was to demonstrate how the

baseline accuracy achieved by the train/test split can be significantly impacted when

considering the proposed practical tests such as the thermal noise impact, the impact of

73

lower inference quantization, and model’s accuracy tolerance sensor failure. Model

development and the simulation of the practical tests were implemented using the popular

machine learning and data analysis python libraries: Keras [35], Sci-kit-learn [78], and

NumPy.

5.5 Baseline Accuracy

Prior to presenting the proposed practical accuracy tests, baseline accuracies should be

established using the basic train/test split. These baseline accuracies will be used later to

demonstrate the impact of the proposed practical on the models’ accuracy. Several machine

learning models were trained as part of this research work on the dataset [69] using two

different input sizes. One, by applying dimensionality reduction using principal component

analysis (PCA), while the other keeps the original raw data size without any reduction. The

number of attributes for each instance was reduced from 5626 to 30 when PCA was applied.

Several popular machine learning algorithms were employed in this study. For each

algorithm, multiple models with different hyperparameter settings were tested.

Table 5.1 lists the achieved test accuracy for the top model using each listed algorithm.

Selecting these top models was achieved by iterating over multiple possible models

representing different configurations for each algorithm, then performing the training and

the cross-validation. The test accuracy results were logged and filtered, then the models

with top test accuracies were trained again for confirmation. The purpose of the models’

accuracies listed in Table 5.1 is to act as a reference when studying the impact of thermal

noise, low quantization, and sensor failure on the overall accuracy of each model. The

paper uses its own baseline model for the purpose of presenting the practical accuracy with

the same training setting and testbench when using the baseline models for comparison.

Therefore, any drop in the accuracy will be due to introducing the proposed practical tests.

This determines how resilient the accuracy of these models is when considering these

practical considerations.

74

Table 5.1 accuracies were obtained by applying k-fold cross-validation with k = 10. The

data were divided as 90% for training and 10% for testing. This resulted in having 912 test

instances in each k-fold iteration. As can be seen in Table 5.1, the deep neural network

(DNN) model without PCA achieved the top accuracy, while the random forest classifier

(RFC) without PCA achieved the second-best accuracy. The accuracy difference between

the two models was 0.3%, which is considered very minimal and can be negligible.

Additionally, the results indicated that using PCA increased the accuracy of some models,

while for other models it had a negative impact. The DNN model was built using the

popular deep learning [1] platform Keras [35], while the remaining machine learning

models were built using scikit-learn [78]. Table 5.1 lists the DNN test accuracy for the best

deep learning model. This DNN has five dense layers with the following sizes: Layer #1

(512 neurons), layer #2 (128 neurons), layer #3 (128 neurons), layer #4 (64 neurons), layer

#5 (19 neurons). Layers 1–4 used ReLU activation function, while the output layer (layer

#5) used a softmax activation function. Dropout was used for regularization and batch

normalization was used in all the layers. For RFC, the model used 250 trees. For k-nearest

neighbors (KNN) model, it was determined that the algorithm performs the best with eight

neighbors. For the remaining algorithms, it was determined that the default scikit-learn

settings achieved the best accuracy for each model.

Table 5.1: Baseline test accuracies using k-fold (k = 10).

Algorithm
Train/Test

Sample Size

Test Accuracy

without PCA

Test Accuracy

with PCA

Deep Neural Network (DNN) 8208/912 99.26% 97.87%

K-Nearest Neighbors (KNN) 8208/912 78.34% 98.12%

Decision Tree Classifier (DTC) 8208/912 90.30% 90.72%

Random Forest Classifier (RFC) 8208/912 98.96% 98.65%

Gaussian Naïve Bayes (GNB) 8208/912 93.49% 78.55%

In the next section, the simulation results for the proposed practical accuracy tests will be

presented. In order to have a manageable number of simulations that can be clearly

75

compared, one model per algorithm is used to present the practical accuracy simulations in

this paper. The selection was done based on the model with higher accuracy, either

including PCA or excluding it. An exception was applied in the cases of RFC and DTC as

the test accuracies including and excluding PCA were extremely close, therefore, both

models were included. This allows for an evaluation of the impact of dimensionality

reduction when applying the proposed practical tests as well.

5.6 Experimental Results

This section presents the experimental results for the proposed practical accuracy tests. In

the first set of tests, models’ inference accuracy loss due to thermal noise was evaluated.

This was achieved by simulating different levels of signal-to-noise ratio (SNR) for possible

sensors’ thermal noise. The results demonstrate that even though different machine

learning models can have similar baseline test accuracies, their tolerance to the thermal

noise can vary significantly. Therefore, the selection of the appropriate machine learning

model should consider the expected levels of SNR that the sensors have.

The second set of tests evaluate models’ accuracy tolerance to different quantization levels

applied to the test set. The aim of these tests was to determine the adequate inference

quantization level and the model that can achieve the highest accuracy at this level.

Accordingly, for any custom design, the accuracy loss with lower inference quantization

and the complexity of the model can be balanced against the required ADC resolution and

the cost of any DSP components. Lower inference quantization also simulated the ADC

ENOB problem. Models can have close baseline accuracies using high inference

quantization; however, the accuracy loss with lower inference quantization can vary

significantly from model to model. Additionally, a simulation for the inference accuracy

with lower training quantization levels is presented. This determined whether or not a lower

level training quantization is required to achieve better accuracy with lower inference

quantization.

76

The third set of tests presents models’ accuracy tolerance to sensor failure. Models with

higher tolerance to sensor failure might be favorable for embedded designs. Such analysis

will enable designers to evaluate the impact of a failure in a specific sensor or tracker on

the models’ accuracy. Therefore, more design constraints or a failure mitigation solution

can be applied to sensors with higher impact on the accuracy.

The experimental results for the proposed practical accuracy tests are presented in the next

three subsections. In Section 5.1, the simulation for the thermal noise impact on the

accuracy is presented. Section 5.2 demonstrates the impact of low inference quantization

on the accuracy, while in Section 5.3, the simulation results for the impact of sensor failure

on the accuracy are presented.

5.5.1 Thermal Noise Simulation

Thermal noise, or Johnson–Nyquist noise, exists in all electrical circuits and it is caused by

the random thermal motion of electrons. Thermal noise is approximately white with a

Gaussian probability density function (PDF) amplitude [79]. Thermal noise is independent

for each component. For example, in accelerometers, according to [70], each accelerometer

has its own independent thermal noise. Also, based on [71], the thermal noise in

accelerometers can be modeled as an additive zero-mean Gaussian noise. For gyroscopes,

according to [80], the thermal noise in the gyroscope can be also modeled as Gaussian

zero-mean independent noise. Even though the original dataset readings contain thermal

noise as part of the reading, this noise is specific to the sensors used during the capture of

the original dataset at the time of capture. During training, these captured sensor readings

with this noise included will establish the foundations of any machine learning model.

Therefore, the impact of thermal noise due to changes in the components, the timing, or

the environment will impact the inference accuracy and not the training accuracy.

Examples can be provided from the literature for thermal noise SNR levels. For instance,

in [81], a low noise accelerometer which can be used in medical applications can have a

threshold of 20 dB SNR. Based on [70], SNR of 0 dB or above for 2D accelerometers is

77

considered good. In [82], an example is provided for search coil magnetometer with a

thermal noise of 23 dB. Based on this information, a simulation for various levels of SNR

resulting from adding zero-mean Gaussian noise is practical and realistic. For this

simulation, various ranges of SNR were simulated, starting with 40 dB and going to 0 dB,

with a 5 dB reduction between the test cases. These SNR values were simulated by adding

a randomly generated zero-mean Gaussian noise with specific power to the test set.

Table 5.2 demonstrates the accuracy for machine learning models at each specific SNR

value. The listed accuracy for each test case in Table 5.2 was obtained by averaging 25

random simulations of thermal noise for each k-fold. Hence, each listed accuracy resulted

from averaging a total of 250 iterations. Figure 5.2 illustrates a histogram for a sample

thermal noise distribution which was added to one accelerometer axis during one test

iteration. Figure 5.2 was constructed from 11,400 points, resulting from adding the noise

to one accelerometer axis for all 912 test instances. As previously mentioned, each instance

represents a period of 5 s with a sampling frequency of 25 Hz. Figure 5.3 illustrates an

example of thermal noise simulation for one accelerometer axis in one test instance. As can

be seen from Table 5.2, the accuracy tolerance for models significantly varied due to

thermal noise. For example, when comparing DNN and RFC, both models had very close

baseline accuracies with a difference of 0.3% only. Therefore, a developer might prefer to

deploy RFC over DNN based on certain design or performance aspects. However, when

considering the models’ tolerance to thermal noise, it becomes clear that DNN is superior

over RFC. As an example, when considering 20 dB SNR level, the accuracy difference

between these two models changed from 0.3% to 4.36%, which is significant. Another

example can be seen when comparing KNN + PCA and RFC.

78

Figure 5.2: A histogram for a thermal noise sample added to one accelerometer

axis in all test instances.

Figure 5.3: A sample for thermal noise simulation for one accelerometer axis in

one instance with signal-to-noise ratio (SNR) of 5 dB.

(a) Original sensor readings.

(b) Added white noise.

(c) New values with SNR = 5 dB.

79

Table 5.2: Average inference accuracy with simulated thermal noise.

SNR

Machine Learning Model

DNN KNN + PCA DTC DTC + PCA RFC RFC + PCA GNB

Baseline 99.26% 98.12% 90.30% 90.72% 98.96% 98.65% 93.49%

40 dB 99.28% 98.11% 89.62% 90.54% 98.93% 98.59% 93.34%

35 dB 99.25% 97.97% 88.30% 90.47% 98.84% 98.51% 93.28%

30 dB 99.25% 97.98% 85.70% 89.89% 98.35% 98.44% 93.03%

25 dB 99.27% 98.02% 81.69% 88.90% 97.08% 98.24% 85.06%

20 dB 99.24% 98.03% 76.28% 87.53% 94.88% 97.60% 69.61%

15 dB 99.25% 98.01% 68.33% 84.79% 91.51% 95.74% 69.60%

10 dB 99.24% 97.82% 55.65% 80.77% 85.55% 92.35% 68.81%

5 dB 99.11% 97.73% 40.13% 74.56% 69.12% 86.90% 46.82%

0 dB 98.43% 96.37% 25.46% 63.98% 45.40% 77.61% 17.07%

According to the baseline accuracies, RFC is better than KNN + PCA. However, at 25 dB

SNR, KNN + PCA surpassed the RFC model and the accuracy gap increased accuracy with

higher noise Figure 5.4 shows the models’ accuracy trend with the increase of thermal

noise power. This analysis will enable designers to choose the appropriate model for their

sensor-based machine learning problem according to the expected level of thermal noise.

Also, the Figure provides a trade-off between the feasibility of using sensors with higher

thermal noise, which has lower cost including the power and the willingness to have

machine learning designs with lower accuracy.

80

Figure 5.4: Accuracy trend for machine learning models with the increase of

thermal noise power.

5.5.2 Quantization Levels Simulation

Lowering the inference quantization level can reduce the costs for possible embedded/edge

AI implementations for the machine learning model. Using lower inference quantization

will lower the resolution for the used ADC and the other DSP components. This will be

cost-efficient in embedded implementations as lower resolution ADCs have lower power

and higher bandwidth [72]. In addition to reducing the ADC resolution during inference, it

is known that ADCs ENOB is usually lower than the ideal ADC bits due to the quantization

error [73]. As an example, the 8 bits ADC in [73] achieved 6.6 ENOB. Therefore, applying

inference on lower resolutions can simulate the ADC ENOB as well. The ADC itself, can’t

fully ensure the accuracy of results. Many factors including voltage reference, PCB layout,

I/O switching, and analog source impedance can affect the overall ADC accuracy [83].

The proposed practical tests for lower inference quantization will answer the following

questions. First, what is the accuracy loss for each model when lowering the inference

quantization? This should allow the designer to determine the trade-off between the

81

possible ADC resolutions and accuracy loss in each model. It will also provide a practical

accuracy evaluation when considering the ADC ENOB problem. Second, which model

achieves the highest accuracy at the required quantization level? Third, is there a

performance difference between training with high quantization, then applying inference

with lower quantization vs. implementing both the training and the inference with lower

quantization? Table 5.3 lists the models’ inference accuracies using a range of simulated

resolutions for the ADC. For the training stage, the quantization used the original dataset

levels [69] at 16 bits, and the lower quantization was applied on the test set. Figure 5.5

demonstrates the simulation for 5 bits (32 levels) and 6 bits (64 levels) ADC for one

accelerometer axis in one instance. In Figure 5.6 models’ accuracy trend with lower

inference quantization is illustrated.

Figure 5.5: A sample for low quantization simulation for one accelerometer axis

in one instance.

(a) Original sensors readings with 16 bits quantization.

(b) 5 bits quantization

(c) 6 bits quantization.

82

Table 5.3: Average inference accuracy using low resolution inference accuracy.

Resolution

Machine Learning Model

DNN
KNN +

PCA
DTC

DTC +

PCA
RFC

RFC +

PCA
GNB

16

bits{baseline}
99.26% 98.12% 90.30% 90.72% 98.96% 98.65% 93.49%

14 bits 99.25% 97.95% 90.28% 90.68% 98.95% 98.61% 93.40%

12 bits 99.25% 98.02% 90.23% 90.64% 98.93% 98.61% 93.47%

10 bits 99.25% 97.99% 89.62% 90.31% 98.89% 98.56% 93.44%

8 bits 99.20% 97.93% 88.80% 87.30% 98.33% 97.50% 93.72%

7 bits 99.20% 97.74% 85.33% 83.68% 96.94% 94.53% 93.74%

6 bits 98.90% 95.48% 78.63% 76.33% 94.89% 88.11% 90.65%

5 bits 98.11% 89.12% 71.01% 63.81% 90.51% 76.29% 86.69%

4 bits 89.74% 60.91% 58.62% 38.89% 82.71% 54.52% 82.26%

As can be seen from Table 5.3 and Figure 5.6, DNN has a very high tolerance to lower

quantization. For the DNN model, lowering the inference quantization from 16 bits to 6

bits resulted in an accuracy loss of only 0.36%. DNN also achieved higher tolerance to

thermal noise as per the previous section. However, for the other models, the accuracy loss

trend with lower quantization was different compared to the thermal noise impact, which

was simulated in the previous section. This is due to the fact that the nature of these

problems is different. The thermal noise is uncorrelated [84], while the quantization noise

is partly correlated [85]. For example, the GNB model was intolerant to thermal noise,

while it tolerated lower quantization relatively well compared to the other models. KNN +

PCA showed more resilience in the case of thermal noise. On the other hand, RFC showed

more resilience in the case of lower quantization. Additionally, it can be seen from Table

5.3 that models with dimensionality reduction using PCA have higher accuracy loss with

lower quantization compared to models that excluded PCA. This can be seen when

comparing DTC vs. DTC + PCA and RFC vs. RFC + PCA.

83

Figure 5.6: Accuracy trend in machine learning models with lower inference

quantization.

Lowering the resolution of an ADC is directly proportional to its energy. An ideal N-bit

ADC SNR is calculated as [52]:

SNR = 6.02 N + 1.76 dB.

Using Murmann’s popular ADC survey [87]. A proportional relationship can be

established between an ADC signal to noise and distortion ratio (SNDR) and its energy in

picojoules (pJ). Hence, the number of bits in an ADC is directly proportional to its energy.

Therefore, tolerating a lower inference quantization leads to a reduction in the required

conversion energy for the ADC in any custom design. For embedded and low power

applications, lowering quantization is primarily beneficial for inference and not for

training. For such applications, it is expected that training is done using powerful

computers, then machine learning models can be deployed on chip for inference.

84

Nevertheless, some models require training with lower quantization to achieve better

accuracies with low inference quantization. Table 5.4 lists the achieved inference accuracy

when applying lower quantization to the training phase as well. As can be seen, the

accuracies were different compared to Table 5.3. For example, DNN with 5 bits inference

quantization achieved an accuracy of 98.11%. However, if the 5 bits quantization is applied

for both training and inference, the accuracy drops to 89.29%. Like DNN, GNB performed

better when lower quantization was applied during the inference level only. On the other

hand, DTC and RFC performed better when the lower quantization was applied for training

as well. In summary, for low inference quantization, it will be critical to determine if low

quantization is required during the training stage or not. This will vary from model to

model, as can be seen. It is advisable in such cases to capture the dataset using high

resolution ADCs, then based on the selected model, decide if the training set quantization

level should be lowered or not.

Table 5.4: Average inference accuracies using lower resolution quantization applied

to training and testing.

Model
Simulated ADC Bits

8 bits 7 bits 6 bits 5 bits 4 bits

DNN 99.19% 98.72% 98.54% 89.29% 81.87%

KNN + PCA 98.03% 95.29% 91.56% 72.48% 51.65%

DTC 89.06% 86.32% 87.41% 79.96% 75.35%

DTC + PCA 86.29% 81.91% 79.17% 50.88% 36.73%

RFC 98.80% 97.48% 97.70% 92.77% 89.81%

RFC + PCA 96.24% 94.59% 87.91% 67.73% 41.31%

GNB 85.62% 82.55% 81.67% 54.04% 32.11%

85

5.5.3 Impact of Sensor Failure on the Accuracy

Sensor failure is common and can occur at any time. In [88], statistics regarding sensor

failures in smart homes are presented. Based on [88], the most common failure modes for

sensors in smart homes are: Data link loss, either wired or wireless; dead battery or the loss

of power’ and loss of internet connection. Also, sensors can fail due to different mechanical

issues. Hence, a practical machine learning design could require a certain level of tolerance

to sensor failure during inference. Models with higher accuracy tolerance to sensor failure

might be preferable for production. Also, such analysis will allow designers to apply a

failure mitigation solution for sensors with greater impact on the accuracy. This includes

using hardware redundancy or using higher quality sensors. Table 5.5 lists the accuracy for

each model given a device in a tracker has failed. The table assumes one device

(accelerometer, gyroscope, or magnetometer) with all 3-dimensional sensors has failed in

one of the trackers. The listed accuracies are based on averaging all possible failure

scenarios for each device type. Device failure is simulated by setting the device 3-

dimensional readings to zero in the test set.

As can be seen from Table 5.5, the gyroscope has the least influence on the accuracy in all

the models. Therefore, for production, using a lower quality gyroscope might be

acceptable. On the other hand, depending on the model, the accelerometer, the

magnetometer, or both, have a great impact on the accuracy. For example, the failure of a

magnetometer had the greatest impact on the DNN’s accuracy. However, the case was

different for models with PCA, where the magnetometer had significantly less impact

compared to the accelerometer. Therefore, based on the model, applying a failure

mitigation solution for sensors with the greatest impact on the accuracy could be an option.

This will ensure that the final design in production has a greater accuracy tolerance towards

such failures.

Table 5.6 lists the inference accuracy for each model, assuming an entire tracker with all

its nine sensors has failed. The same analogy that was applied to Table 5.5 can be applied

86

to Table 5.6. Based on the selected model, one or more trackers with the greatest impact

on the accuracy can have a failure mitigation solution.

Table 5.5: Inference accuracy with a device failure in one tracker.

Model
Failed Device

Accelerometer Gyroscope Magnetometer

DNN 93.75% 98.81% 83.92%

KNN + PCA 64.42% 94.77% 94.74%

DTC 63.98% 90.28% 66.26%

DTC + PCA 30.46% 90.72% 90.48%

RFC 87.55% 98.82% 82.58%

RFC + PCA 41.38% 98.26% 96.26%

GNB 76.87% 92.79% 86.08%

Table 5.6: Inference accuracy with one tracker failure.

Model
Failed Tracker

#1 #2 #3 #4 #5

DNN 74.29% 86.15% 72.59% 74.69% 68.65%

KNN + PCA 78.08% 48.69% 51.07% 71.53% 72.16%

DTC 38.6% 66.89% 55.27% 64.37% 16.15%

DTC + PCA 27.89% 33.43% 30.63% 31.56% 28.9%

RFC 57.73% 82.69% 73.26% 88.59% 39.62%

RFC + PCA 42.98% 40.48% 38.88% 43.84% 40.25%

GNB 57.21% 83% 67.55% 63.45% 64.5%

5.7 Conclusion

This paper proposed a set of practical tests that can be applied to compare the accuracy of

sensor-based machine learning models. To select an appropriate machine learning model

87

for production in a sensor-based application, several practical aspects should be considered

beyond the basic train/test accuracy comparison. Using the UCI ‘Daily and Sports

Activities’ dataset, these practical aspects were presented. First, in production, sensors’

independent thermal noise will impact the models’ inference accuracy negatively.

Therefore, practical evaluation of the models’ accuracy should consider the expected level

of sensor’s thermal noise. By simulating different levels of SNR, it was demonstrated that

models’ accuracy tolerance to thermal noise can vary significantly from model to model.

Consequently, the decision on the appropriate model for deployment in production could

be impacted. As an example, at 20 dB SNR, DNN had an average accuracy loss of 0.02%,

while RFC had an average accuracy loss of 4.08%. Both models had a close baseline

train/test accuracy with only 0.3% difference. The second presented practical tests aimed

to find the adequate inference quantization level. For embedded AI applications, lowering

inference quantization leads to lowering the required ADC resolution. Additionally, ADC

ENOB is usually lower than its ideal number of bits. Accordingly, a simulation of lower

inference quantization addressed both problems. Simulation results showed that the

models’ accuracy tolerance to lower inference quantization can vary significantly. DNN

had the lowest accuracy loss using low inference quantization levels. DNN achieved an

accuracy of 98.11% with only 5 bits quantization, which is only a 1.15% of accuracy loss

compared to 16 bits quantization. The simulation results also showed that the models’

dimensionality reduction using PCA were intolerant to lower inference quantization levels.

Additionally, some models required lower training quantization levels to achieve better

accuracies using lower inference quantization levels. This could be seen in the cases of the

RFC and the DTC models, which were in contrast with the DNN and the GNB models.

Therefore, to lower the ADC resolution, lower quantization should either be applied during

both the training stage and inference stage or during inference only. This varies based on

the model. Finally, the impact of sensors failure on the models’ accuracy was presented.

The proposed sensor failure tests can help designers in selecting models with higher

accuracy tolerance to such failures for deployment in production. Also, it will allow

designers to apply failure mitigation solutions on sensors with greater impact on the

model’s accuracy. While the UCI ‘Daily and Sports Activities’ dataset was used in this

88

paper, the proposed practical accuracy tests are generic and are not limited to this dataset.

The same practical accuracy tests can apply to any sensor-based machine learning problem.

89

CHAPTER 6 USING MACHINE LEARNING FOR PERSON

IDENTIFICATION THROUGH PHYSICAL ACTIVITIES

Issam Hammad and Kamal El-Sankary

© 2020 IEEE reprinted, with permission I. Hammad and K. El-Sankary, "Using Machine

Learning for Person Identification through Physical Activities," 2020 IEEE International

Symposium on Circuits and Systems (ISCAS), 2020, pp. 1-5, doi:

10.1109/ISCAS45731.2020.9181231.

90

6.1 Abstract

In this paper, the concept of utilizing machine learning algorithms for person identification

through physical activity is proposed. Many previous machine learning research articles

focused on building models to identify physical activities using a sensor fusion input.

Nevertheless, there has been no focus on building models that can identify the activity

performer as well. This paper will demonstrate that machine learning can be applied not

only for the identification of physical activities but also for the identification of the activity

performer as well. The paper will present the achieved accuracies for the person

identification through physical activities using different machine learning algorithms.

Additionally, a novel multi-label shared deep neural network (DNN) is proposed for

identifying both the physical activity and the activity performer simultaneously. The

proposed design allows for a single training/re-training which is advantageous over having

to train two separate DNNs. Moreover, it is 30% smaller compared to a design that consists

of two separate DNNs for identifying the physical activity and the activity performer.

6.2 Introduction

The last decade has witnessed a surge in the development of machine learning algorithms

for various science and engineering problems. One of these problems is the classification

of physical activities based on a sensor fusion. The University of California Irvine (UCI)

‘Daily and Sports Activities’ dataset [69] provides an example for a classification problem

based on physical activities. The dataset contains a sensory input from five orientation

trackers that were placed on the participant’s bodies and the corresponding output which

presents the performed physical activity. Each orientation tracker contains readings from

3-axis accelerometer, gyroscope, and magnetometer units. The dataset was constructed by

collecting the orientation trackers data during the execution of 19 different physical

activities by 8 participants. The dataset [69] was published by the authors of the research

papers [64-65]. The focus of [64-65] was to find the most accurate machine learning

algorithm for the classification of these 19 activities. Additionally, a large number of

research papers which followed [64-65] used the dataset in [69] primarily for the same goal

91

which is building machine learning models for the activity classification. Examples can be

seen in the research papers [19] and [89-91]. Moreover, additional examples can be found

for research articles that also focused on the principle of activity classifications using other

single or multiple physical activity datasets including the dataset [69]. This can be seen in

research papers [65], [75-77], and [91-93]. Unlike the research articles [19],[64-

65],[75],[77], and [89-93] this paper’s focus is to evaluate and compare the accuracy of

various machine learning algorithms for person identification through physical activities

using a sensor fusion input. The dataset [69] will be utilized for this purpose. Additionally,

the paper will present a novel multi-label shared deep neural network (DNN) design which

can be used for identifying the physical activity and the performer in parallel.

Having reliable machine learning models for person identification through physical activity

can have a major impact on the manufacturing of activity trackers and the field of wearable

technology in general. In such a case, a user can be automatically detected through the

performed physical activity rather than using manual entry. Also, person identification

through physical activity can have applications in the field of biomedical engineering.

This paper is divided into the following sections. In Section 6.3 a description of the dataset

structure details is provided. The section also discusses the used simulation tools in this

study. Section 6.4 presents the achieved accuracy results for person identification through

physical activities using different machine learning models. The section includes a

comparison of the achieved physical activity identification accuracy and person

identification accuracy in each model. Section 6.5 demonstrates the design details of the

proposed multi-label shared DNN for simultaneous identification of the physical activity

and the performer. Finally, in section 6.6 the research conclusions are presented.

6.3 Description of the Used Dataset and Tools

The dataset [69] is used to present the concept of utilizing machine learning algorithms for

person identification through physical activity. Each row in the dataset contains readings

92

from five Xsens MTx 3-Degrees of Freedom (DOF) orientation trackers. Figure 6.1

illustrates the used orientation tracker which is developed by Xsens Technologies [74].

Figure 6.1: Xsens MTx 3-DOF orientation tracker [74] (courtsey of Xsens).

Each Xsens orientation tracker contains 3-axis accelerometer, gyroscope, and

magnetometer units. Therefore, each row in the dataset contains readings from 45 sensors

representing 9 sensor readings from each sensor. During the construction of this data set,

these five orientation trackers were placed on the participant’s torso (T1), right-arm (T2),

the left arm (T3), right leg (T4), and left-leg (T5). Figure 6.2 demonstrates a visualization

for the trackers' locations.

Figure 6.2:Xsens tracks location on the participants’ bodies

93

The dataset was constructed using a total of 8 participants, 4 males and 4 females aged 20-

30, where each of these participants performed 19 different physical activities. Table 6.1

lists all the physical activities that the participants performed during the construction of

this dataset.

Table 6.1: List of the performed activities during the dataset construction

ID Description

A1 Sitting

A2 Standing

A3 Lying on back

A4 Lying on right side

A5 Ascending stairs

A6 Descending stairs

A7 Standing in an elevator still

A8 Moving around in an elevator

A9 Walking in a parking lot

A10 Moving around in an elevator

A11 Walking on a treadmill in flat with a speed of 4km/h

A12 Walking on a treadmill with 15° incline with a speed of 4km/h

A13 Exercising on a stepper

A14 Exercising on a cross trainer

A15 Cycling on an exercise bike in horizontal position

A16 Cycling on an exercise bike in vertical positions

A17 Rowing

A18 Jumping

A19 Playing basketball

A sampling frequency 25Hz was used during the capture of the sensors’ readings. Each

labeled instance in the dataset represents a 5 seconds duration of physical activity. Hence,

each instance has 5625 attributes representing 125 rows with 45 sensors readings in each

row. The dataset contains a total of 9120 5-second instances. These instances were divided

equally between the 8 participants, where each participant has 1140 instances with 60

instances for each activity. For models development, the python libraries Keras [35], Sci-

kit-learn [78] and NumPy were used. Keras was used to build the proposed Deep Neural

Network Designs (DNN), while Sci-kit-learn was used to build the other machine learning

models.

94

6.4 Person Identification Experimental Results

Various machine learning and deep learning models were trained to assess their

applicability for person identification through physical activity. This included training and

evaluating Deep Neural Network (DNN) models, K-Nearest Neighbors (KNN) models,

Decision Tree Classifier (DTC) models, Random Forest Classifier (RFC) models, and

Gaussian Naïve Bayes (GNB) models. For each category, different model settings were

evaluated by tuning the model’s hyper-parameter. These models were trained using two

input modes. In the first mode, dimensionality reduction was applied using Principle

Component Analysis (PCA), while in the second mode the raw data from the trackers were

used as-is. In the case of the dimensionality reduction, the input size was reduced from

5625 to 30 for each instance, while in the second mode the input size was kept as 5625. All

tests were applied using k-fold cross-validation using k=10 with a data split of 90% for

training and 10% for testing. Applying this 90/10 split resulted in having 8208 training

instance and 912 testing instance in each k-fold.

Table 6.2 lists the average achieved test accuracies using raw input size, while Table 6.3

lists the average achieved test accuracies with PCA on the input. Both tables list the

achieved accuracies for the person classification which was obtained during this study and

the activity classification accuracies as per [19].

Table 6.2: Average accuracies using raw data input

Algorithm
Person Classification

Accuracy

Activity Classification

Accuracy [19]

Deep Neural Network (DNN) 95.81% 99.26%

K-Nearest Neighbors (KNN) 79.08% 78.34%

Decision Tree Classifier (DTC) 75.03% 90.30%

Random Forest Classifier (RFC) 91.29% 98.96%

Gaussian Naïve Bayes (GNB) 37.91% 93.49%

95

Table 6.3: Average accuracies using PCA input

Algorithm
Person Classification

Accuracy

Activity Classification

Accuracy [19]

Deep Neural Network (DNN) 94.86% 97.87%

K-Nearest Neighbors (KNN) 91.40% 98.12%

Decision Tree Classifier (DTC) 85.75% 90.72%

Random Forest Classifier (RFC) 91.24% 98.65%

Gaussian Naïve Bayes (GNB) 28.51% 78.55%

Figure 6.3: Proposed DNNs for person classification and activity classification

(a) Person classificatier DNN (PCDNN)

(b) Activity classifier DNN (ACDNN) [4]

As can be seen from Table 6.2 and Table 6.3, the DNN model with the raw input achieved

the highest person classification accuracy with an average of 95.81%. This result is

homogenous with the best design for activity classification as per [19], where a DNN

design with raw input has achieved an average accuracy of 99.26%.

Figure 6.3 (a) illustrates the proposed person classifier DNN (PCDNN), while Figure 6.3

(b) illustrates the top activity classification DNN (ACDNN) as per [19]. As can be seen

from the figure, the proposed PCDNN has an input size of 5625 representing the 5 seconds

input from the 45 sensors with a sampling rate of 25 Hz. This is followed by 4 fully

96

connected layers with the sizes of 256, 128, 64, and 8 neurons, respectively. The proposed

person classifier CNN (PCDNN) design in Figure 6.3 (a) included using batch

normalization at each network layer and having a 15% dropout for regularization. The

network has used rectified linear unit (ReLU) activation function in all the hidden layers

while softmax activation function was used in the output layer. Besides this proposed DNN,

other models have achieved acceptable accuracies for both person classification and

activity classification. For example, RFC achieved the second top accuracy after DNN with

average accuracies of 91.29% and 98.96% for person and activity classifications

respectively.

Figure 6.4 illustrates models accuracy trends for the activity classification and the person

classifications using raw and PCA inputs. Based on Figure 6.4, it can be clearly seen that

some models have failed in terms of person classification even though they had an

acceptable success in terms of activity classification. An example can be seen in the case

of the GNB model where an average activity classification accuracy of 93.49% was

achieved. However, the accuracy has dropped to 37.91% for person classification. Overall,

machine learning models achieved higher activity classification accuracies. Also, DNN

with the raw input was found to be the best model in terms of accuracy for both activity

classification and person classification.

97

Figure 6.4: Models accuracy trends for the activity classification and the person

classifications using raw and PCA inputs.

6.5 Multi-Label Shared DNN for Activity and Person

Classification

The previous section demonstrated that using DNN models with the raw input has achieved

the best accuracy for both person classification and activity classification. Accordingly,

one critical question can be raised, can both DNNs be combined into one multi-label shared

DNN which can identify the activity and the activity performer simultaneously?

To answer this question, this paper proposes the DNN design which is illustrated in Figure

6.5. This design represents a multi-label shared DNN which can identify the activity and

the activity performer simultaneously. This DNN has an input size of 5625 representing

the readings from the 5 trackers.

98

Figure 6.5: Proposed multi-label shared DNN for simultaneous classification for the

physical activity and the activity performer

As mentioned earlier, each tracker has 9 sensors and the sampling rate is 25Hz based on 5

seconds instances. The first two layers in this design are shared and have 512 and 128

neurons, respectively. Following the 128-neurons layer, the neural network branches into

two sections. One section is responsible for identifying the activity performed and the other

is responsible for identifying the activity performer. The activity identification sub-

network consists of 2 hidden layers with sizes of 128 and 64 neurons, and one output

softmax layer with the 19 neurons representing all possible activities. The person

identification sub-network has only one 64 neurons hidden layer and one 8 neurons softmax

output layers representing all the possible performers.

Similar to proposed models in the previous section, this network was trained and tested

based on applied k-fold cross-validation using k=10 with a 90/10 split. In this network

batch normalization and a dropout regularization of 10% were used. The network has used

ReLU activation function in all the hidden layers. The network has achieved an average

accuracy of 99.24% for the activity classification and an average accuracy of 96.32% for

the person classification. While the activity classification accuracy had a negligible drop

99

of 0.02% compared to the stand-alone ACDNN, the average accuracy for the person

classification has increased by 0.51% compared to the PCDNN. This accuracy

enhancement in the person classifier was as a result of having activity labels available

during the training of the shared DNN. Table 6.4 summarizes the differences between the

ACDNN, PCDNN and the shared DNN in terms of size and accuracy.

Table 6.4: Comparison between the ACDNN, PCDNN, and the shared DNN

Architecture

Activity

Classification

Accuracy

Person

Classification

Accuracy

Total Neurons

 ACDNN 99.26% N/A 851

PCDNN N/A 95.81% 456

Two separate DNNs

[ACDNN + PCDNN]

99.26% 95.81% 1307

Shared DNN 99.24% 96.32% 913

In addition to the improvement in the person classifier accuracy, the shared DNN has 913

neurons which is a 30% smaller design compared to a two separate ACDNN and PCDNN

with a total of 1307 neurons. Moreover, having a shared DNN design allows for

simultaneous training and inference which is a significant improvement and replaces the

need of training and deploying two separate networks.

6.6 Conclusion

This paper presented the concept of utilizing machine learning algorithms to construct a

person identification system through physical activity. UCI Daily and Sports Activities

dataset was used to train and evaluate different machine learning models to evaluate the

applicability of this concept. The experimental results showed that using a DNN model

achieves the best accuracy compared to other machine learning models with an average

accuracy of 95.81%. Moreover, the paper proposed a novel multi-label shared DNN

network which can identify the activity performed and the activity performer

simultaneously. The shared DNN is 30% smaller in size compared to using two separate

DNN networks for identifying the activity and the activity performer. Moreover, the

proposed shared DNN allows for simultaneous training and inference. The presented

100

research findings in this paper can be utilized in the fields of wearable technology and

biomedical engineering.

101

CHAPTER 7 CONCLUSION

7.1 Thesis Conclusion

This thesis has presented several research contributions which focused on utilizing

approximate computing in the design of DNNs. The primary focus of the thesis was on

studying the applicability of approximate multipliers in DNN design and proposing new

methods to maximize the performance gains in terms of power, speed, and area while

minimizing the accuracy loss. The thesis also focused on other concepts which allow for

lower power and higher speed designs such as low quantization and shared DNNs.

Additionally, the thesis filled a gap in terms of addressing practical considerations for

accuracy evaluation in the production of sensor-based machine learning and deep learning

designs. These aspects include the accuracy loss due to the component’s variable thermal

noise, component failure or partial failure, and analog-to-digital converter (ADC)

quantization error. The proposed solutions in this thesis can be utilized in both low-power

designs such as battery-operated devices and in high-speed servers in data centers. The

thesis included research contributions from three published journal papers and two

published conference papers.

Chapters 2-4 demonstrated how CNN designs can be optimized using approximate

multipliers. Approximate multipliers can achieve significant performance enhancements in

terms of power, speed, and area while having minimal impact on the accuracy. Chapter 2

presented a study on the impact of approximate multipliers on the inference accuracy of

VGGNet. The chapter presented simulations using various MRE and SD values that mimic

the impact of several proposed approximate multipliers in the literature. The simulation

covered both Uniform and Gaussian PDFs and assessed their impact on the network’s

accuracy. The simulation results showed that approximate multipliers have very little impact

on the network’s accuracy while having significant performance gains in terms of power,

area, and delay. Additionally, a hybrid approach was proposed which uses a mix of exact and

approximate multipliers. By applying the hybrid approach, the approximate multiplication

102

can be implemented only in the deeper layers of the network which was determined to have

the least impact on the accuracy. The hybrid approach simulation leads to a reduced

negligible impact on the accuracy while having significant savings in power, area, and delay

on a large portion of the network.

The work of Chapter 2 was expanded in Chapter 3 by simulating deep learning training using

approximate multipliers. The chapter presented a new hybrid training method that uses a

combination consisting of exact multipliers and approximate multipliers. Based on the

proposed method, the training can start using approximate multipliers, then it switches to

exact multipliers for the last few epochs. The utilization of the approximate multipliers in the

initial portion of the training can achieve significant performance gains in terms of speed,

power, and area for a large portion of the training stage. On the other hand, any resulting

accuracy loss is compensated for by using the exact multipliers for the last epochs of training.

Chapter 4 proposed the new concept of CNN inference using a preprocessing precision

controller and approximate multipliers with various precisions. The proposed concept

allows for the utilization of approximate multipliers with various precision simultaneously

by pre-determining the required precision for the input image. The proposed controller is

a tiny two-class CNN that can be utilized in large clusters that contain multiple approximate

multiplier-based CNN inference accelerators with different precisions, or in a single CNN

inference accelerator built with precision reconfigurable approximate multipliers. The

controller aims to maximize the performance in terms of power and speed by using low

precision approximate multiplier whenever it is predicted that this does not cause an

accuracy loss. This augments the performance of CNN inference by allowing for the

utilization of existing low precision and high precision approximate multiplier hybridly.

The chapter also proposed a new design for a reconfigurable approximate multiplier to

allow for the utilization of the proposed concept in single-core designs.

Chapter 5 proposed several practical considerations for accuracy evaluation in sensor-

based machine learning and deep learning. This includes studying the impact of thermal

noise, determining the adequate quantization level, and evaluating the accuracy tolerance

103

to sensor failure. In terms of thermal noise, it was demonstrated that models’ accuracy

tolerance to thermal noise can vary significantly from model to model. This should impact

the designer's selection in terms of the appropriate machine learning model to deploy for

production. Another aspect that was studied is the impact of different ADC quantization

levels on accuracy. Finding the adequate quantization level for inference is crucial for low-

power embedded AI applications. Lowering the quantization level will lead to lowering the

required ADC resolution which will lower the power. Additionally, the chapter simulated

the ADC ENOB and its impact on the model’s accuracy. This was performed by simulating

lower than ideal quantization levels in each model. The chapter also studied the impact of

sensor failure on accuracy. This test allows for selecting models which are more resilient

to such failures.

Chapter 6 proposed the new concept of person identification through physical activity. This

contribution opens the door for sharing wearable technologies where the user profile can

be detected automatically from their physical activity. The chapter also included an

architecture for a multi-label shared DNN for simultaneous classification for the physical

activity and the activity performer.

7.2 Future Work

Chapters 2-4 focused on presenting solutions to enable the utilization of approximate

multipliers in CNN designs to achieve high-performance gains in terms of power, area, and

speed while keeping the accuracy loss minimal. The usage of approximate multipliers can

be explored in other types of DNN networks, this includes:

• Exploring the usage of approximate multipliers in Recurrent Neural Networks

(RNNs), particularly for Long Short-Term Memory (LSTM) hardware designs.

This can help in achieving significant performance enhancement in time-series

applications such as video/audio.

104

• Exploring the usage of approximate multipliers for generative models with a focus

on Generative adversarial networks (GANs). GANs can create new examples that

resemble the training data. It will be interesting to study the impact of approximate

multipliers on GANs.

Moreover, studying the applicability of other approximate computing applications such as

approximate adders and approximate memory in conjunction with the usage of

approximate multipliers is another area that is worth exploring. This will allow for the

implementation of approximate MAC units which are designed end to end based on

approximate computing concepts allowing for further performance enhancements.

Chapter 6 presented the concept of using machine learning for person identification

through physical activity. The study used one dataset to present the concept and propose a

shared DNN for simultaneous classification of the performed activity and the activity

performer. To solidify the proposed concept of using machine learning for person

identification through physical activity it is worth expanding the study using multiple

different datasets. Additionally, other forms of classifications can be explored such as

gender and age classification through physical activity.

105

References

[1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature

521.7553 (2015): 436.

[2] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification

with deep convolutional neural networks." Advances in neural information

processing systems. 2012.

[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for

large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

[4] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the

IEEE conference on computer vision and pattern recognition. 2015.

[5] Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of

the IEEE conference on computer vision and pattern recognition. 2017.

[6] Chollet, François. "Xception: Deep learning with depthwise separable

convolutions." Proceedings of the IEEE conference on computer vision and pattern

recognition. 2017.

[7] Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor

processing unit." 2017 ACM/IEEE 44th Annual International Symposium on

Computer Architecture (ISCA). IEEE, 2017.

[8] Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for

deep convolutional neural networks." IEEE Journal of Solid-State Circuits 52.1

(2016): 127-138.

[9] Cavigelli, Lukas, et al. "Origami: A convolutional network accelerator."

Proceedings of the 25th edition on Great Lakes Symposium on VLSI. 2015.

[10] Yin, Shouyi, et al. "A high energy efficient reconfigurable hybrid neural network

processor for deep learning applications." IEEE Journal of Solid-State Circuits 53.4

(2017): 968-982.

106

[11] Yuan, Zhe, et al. "STICKER: An Energy-Efficient Multi-Sparsity Compatible

Accelerator for Convolutional Neural Networks in 65-nm CMOS." IEEE Journal

of Solid-State Circuits 55.2 (2019): 465-477.

[12] Liu, Weiqiang, Fabrizio Lombardi, and Michael Shulte. "A Retrospective and

Prospective View of Approximate Computing [Point of View." Proceedings of the

IEEE 108.3 (2020): 394-399.

[13] Han, Jie, and Michael Orshansky. "Approximate computing: An emerging

paradigm for energy-efficient design." 2013 18th IEEE European Test Symposium

(ETS). IEEE, 2013.

[14] Xu, Qiang, Todd Mytkowicz, and Nam Sung Kim. "Approximate computing: A

survey." IEEE Design & Test 33.1 (2015): 8-22.

[15] Chippa, Vinay K., et al. "Analysis and characterization of inherent application

resilience for approximate computing." Proceedings of the 50th Annual Design

Automation Conference. 2013.

[16] Mittal, Sparsh. "A survey of techniques for approximate computing." ACM

Computing Surveys (CSUR) 48.4 (2016): 1-33.

[17] Hammad, Issam, and Kamal El-Sankary. "Impact of Approximate Multipliers on

VGG Deep Learning Network." IEEE Access 6 (2018): 60438-60444.

[18] Hammad, Issam, et al. "CNN Inference Using a Preprocessing Precision

Controller and Approximate Multipliers With Various Precisions." IEEE Access 9

(2021): 7220-7232.

[19] Hammad, Issam, and Kamal El-Sankary. "Practical considerations for accuracy

evaluation in sensor-based machine learning and deep learning." Sensors 19.16

(2019): 3491.

[20] Hammad, Issam, Kamal El-Sankary, and Jason Gu. "Deep learning training with

simulated approximate multipliers." 2019 IEEE International Conference on

Robotics and Biomimetics (ROBIO). IEEE, 2019.

107

[21] Hammad, Issam, and Kamal El-Sankary. "Using Machine Learning for Person

Identification through Physical Activities." 2020 IEEE International Symposium

on Circuits and Systems (ISCAS). IEEE, 2020.

[22] Hammad, Issam, et al. "Using Deep Learning to Automate the Detection of Flaws

in Nuclear Fuel Channel UT Scans." arXiv preprint arXiv:2102.13635 (2021).

[23] Hammad, Issam, Kamal El-Sankary, and Holly Hornibrook. "RETSManager:

Real-estate database builder and synchronizer." SoftwareX 10 (2019): 100351.

[24] Hammad, Issam, Kamal El-Sankary, and Jason Gu. "A Comparative Study on

Machine Learning Algorithms for the Control of a Wall Following Robot." 2019

IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE,

2019.

[25] Sze, Vivienne, et al. "Efficient processing of deep neural networks: A tutorial and

survey." Proceedings of the IEEE 105.12 (2017): 2295-2329.

[26] Du, Li, et al. "A reconfigurable streaming deep convolutional neural network

accelerator for Internet of Things." IEEE Transactions on Circuits and Systems I:

Regular Papers 65.1 (2018): 198-208.

[27] Venkatachalam, Suganthi, and Seok-Bum Ko. "Design of power and area efficient

approximate multipliers." IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 25.5 (2017): 1782-1786.

[28] Leon, Vasileios, et al. "Approximate Hybrid High Radix Encoding for Energy-

Efficient Inexact Multipliers." IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 26.3 (2018): 421-430.

[29] Zendegani, Reza, et al. "RoBA multiplier: A rounding-based approximate

multiplier for high-speed yet energy-efficient digital signal processing." IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 2 (2017): 393-401.

[30] Hashemi, Soheil, R. Bahar, and Sherief Reda. "DRUM: A dynamic range unbiased

multiplier for approximate applications." Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design. IEEE Press, 2015.

[31] Zervakis, Georgios, et al. "Design-efficient approximate multiplication circuits

through partial product perforation." IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 24.10 (2016): 3105-3117.

108

[32] Yang, Tongxin, Tomoaki Ukezono, and Toshinori Sato. "Low-Power and High-

Speed Approximate Multiplier Design with a Tree Compressor." Computer Design

(ICCD), 2017 IEEE International Conference on. IEEE, 2017.

[33] Mrazek, Vojtech, et al. "Design of power-efficient approximate multipliers for

approximate artificial neural networks." Proceedings of the 35th International

Conference on Computer-Aided Design. ACM, 2016.

[34] Yonatan Geifman, VGG16 models for CIFAR-10 and CIFAR-100 using Keras,

GitHub rep., https://github.com/geifmany/cifar-vgg

[35] F. Chollet, 2015 Keras, https://github.com/fchollet/keras

[36] Krizhevsky, Alex, and Geoffrey Hinton. Learning multiple layers of features from

tiny images. Vol. 1. No. 4. Technical report, University of Toronto, 2009 [online].

Available: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[37] Liu, Shuying, and Weihong Deng. "Very deep convolutional neural network based

image classification using small training sample size." Pattern Recognition

(ACPR), 2015 3rd IAPR Asian Conference on. IEEE, 2015.

[38] Cong, Jason, and Bingjun Xiao. "Minimizing computation in convolutional neural

networks." International conference on artificial neural networks. Springer, Cham,

2014

[39] Narayanamoorthy, Srinivasan, et al. "Energy-efficient approximate multiplication

for digital signal processing and classification applications." IEEE transactions on

very large scale integration (VLSI) systems 23.6 (2014): 1180-1184.

[40] Vahdat, Shaghayegh, et al. "TOSAM: An energy-efficient truncation-and

rounding-based scalable approximate multiplier." IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 27.5 (2019): 1161-1173.

[41] Liu, Weiqiang, et al. "Design of approximate radix-4 booth multipliers for error-

tolerant computing." IEEE Transactions on Computers 66.8 (2017): 1435-1441.

[42] Lin, Darryl, Sachin Talathi, and Sreekanth Annapureddy. "Fixed point quantization

of deep convolutional networks." International conference on machine learning.

2016.

[43] Gupta, Suyog, et al. "Deep learning with limited numerical precision." International

Conference on Machine Learning. 2015.

https://github.com/geifmany/cifar-vgg
https://github.com/fchollet/keras
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

109

[44] Yin, Shihui, and Jae-Sun Seo. "A 2.6 TOPS/W 16-Bit Fixed-Point Convolutional

Neural Network Learning Processor in 65-nm CMOS." IEEE Solid-State Circuits

Letters 3 (2019): 13-16.

[45] Wei, Xuechao, et al. "Automated systolic array architecture synthesis for high

throughput CNN inference on FPGAs." Proceedings of the 54th Annual Design

Automation Conference 2017.

[46] Li, Huimin, et al. "A high performance FPGA-based accelerator for large-scale

convolutional neural networks." 2016 26th International Conference on Field

Programmable Logic and Applications (FPL). IEEE, 2016.

[47] Liang, Feng, et al. "Design of 16-bit fixed-point CNN coprocessor based on

FPGA." 2018 IEEE 23rd International Conference on Digital Signal Processing

(DSP). IEEE, 2018.

[48] Liu, Zhenhong, et al. "Simul: An algorithm-driven approximate multiplier design

for machine learning." IEEE Micro 38.4 (2018): 50-59.

[49] Ansari, Mohammad Saeed, et al. "Improving the accuracy and hardware efficiency

of neural networks using approximate multipliers." IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 28.2 (2019): 317-328.

[50] Moons B., Bankman D., Verhelst M. (2019) Circuit Techniques for Approximate

Computing. In: Embedded Deep Learning. Springer, Cham.

[51] Tasoulas, Zois-Gerasimos, et al. "Weight-Oriented Approximation for Energy-

Efficient Neural Network Inference Accelerators." IEEE Transactions on Circuits

and Systems I: Regular Papers (2020).

[52] Recht, Benjamin, et al. "Do imagenet classifiers generalize to imagenet?." arXiv

preprint arXiv:1902.10811 (2019).

[53] Leon, Vasileios, et al. "Cooperative arithmetic-aware approximation techniques for

energy-efficient multipliers." Proceedings of the 56th Annual Design Automation

Conference 2019.

[54] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE

conference on computer vision and pattern recognition. Ieee, 2009.

110

[55] Agarap, Abien Fred. "Deep learning using rectified linear units (relu)." arXiv

preprint arXiv:1803.08375 (2018).

[56] NanGate FreePDK15 Generic Open Cell Library. (2020). Silicon Integration

Initiative, Inc (Si2). [Online]. Available: https://si2.org/open-cell-library/

[57] Lian, Xiaocong, et al. "High-performance fpga-based cnn accelerator with block-

floating-point arithmetic." IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 27.8 (2019): 1874-1885.

[58] Kachris, Christoforos, Babak Falsafi, and Dimitrios Soudris, eds. Hardware

Accelerators in Data Centers. Vol. 1. No. 1. Springer, 2019.

[59] Mao, Huizi, et al. "Towards real-time object detection on embedded systems."

IEEE Transactions on Emerging Topics in Computing 6.3 (2016): 417-431.

[60] Sun, Baohua, et al. "Ultra power-efficient cnn domain specific accelerator with 9.3

tops/watt for mobile and embedded applications." Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops. 2018.

[61] Emmert-Streib, F.; Matthias, D. Evaluation of Regression Models: Model

Assessment, Model Selection and Generalization Error. Mach. Learn. Knowl. Extr.

2019, 1.1, 521–551.

[62] Emmert-Streib, F.; Salisou, M.; Matthias, D. A comprehensive survey of error

measures for evaluating binary decision making in data science. Wiley Interdiscip.

Rev. Data Min. Knowl. Discov. 2019, e1303, doi:10.1002/widm.1303.

[63] Karystinos, G.N.; Dimitrios, P.A. On overfitting, generalization, and randomly

expanded training sets. IEEE Trans. Neural Netw. 2000, 11.5, 1050–1057.

[64] Altun, K.; Billur, B.; Orkun, T. Comparative study on classifying human activities

with miniature inertial and magnetic sensors. Pattern Recognit. 2010, 43, 3605–

3620.

https://si2.org/open-cell-library/

111

[65] Barshan, B.; Murat, C.Y. Recognizing daily and sports activities in two open source

machine learning environments using body-worn sensor units. Comput. J. 2014, 57,

1649–1667.

[66] Chung, S. Sensor Data Acquisition and Multimodal Sensor Fusion for Human

Activity Recognition Using Deep Learning. Sensors 2019, 19.7, 1716.

[67] Miao, F. A Wearable Sensor for Arterial Stiffness Monitoring Based on Machine

Learning Algorithms. IEEE Sens. J. 2018, 19.4, 1426–1434.

[68] Yeh, C. Machine Learning for Long Cycle Maintenance Prediction of Wind

Turbine. Sensors 2019, 19.7, 1671.

[69] University of Califonia Irvine Machine Learning Repository, Daily and Sports

Activities Data Set. 2013. Available online:

https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities (accessed on 1

March 2019).

[70] Villeneuve, E. Signal quality and compactness of a dual-accelerometer system for

gyro-free human motion analysis. IEEE Sens. J. 2016, 16, 6261–6269.

[71] Madgwick, S.O.H.; Harrison, A.J.L.; Sharkey, P.M.; Vaidyanathan, R.; Harwin,

W.S. Measuring motion with kinematically redundant accelerometer arrays:

Theory, simulation and implementation. Mechatronics 2013, 23, 518–529.

[72] Uyttenhove, K.; Michel, S.; Steyaert, J. Speed-power-accuracy tradeoff in high-

speed CMOS ADCs. IEEE Trans. Circuits Syst. Analog Digit. Signal Proc. 2002,

49.4, 280–287.

[73] Belcher, R.A. ADC standard IEC 60748-4-3: Precision measurement of alternative

ENOB without a sine wave. IEEE Trans. Instrum. Meas. 2015, 64.12, 3183–3200.

[74] Xsens Technologies MTi, B.V. MTx User Manual, Document MT0100P, Revision

N, 27 May 2009. [online], http://www.xsens.com (accessed on 2 April 2019).

[75] Attal, F. Physical human activity recognition using wearable sensors. Sensors 2015,

15.12, 31314–31338.

112

[76] Wang, Z. An incremental learning method based on probabilistic neural networks

and adjustable fuzzy clustering for human activity recognition by using wearable

sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16.4, 691–699.

[77] Trabelsi, D. An unsupervised approach for automatic activity recognition based on

hidden Markov model regression. IEEE Trans. Autom. Sci. Eng. 2013, 10.3, 829–

835.

[78] Pedregosa, F. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011,

12, 2825–2830.

[79] Jeong, B.G. Simplified noise model parameter estimation for signal-dependent

noise. Signal Process. 2014, 96, 266–273.

[80] Robert, L.P. Mechanical-thermal noise in MEMS gyroscopes. IEEE Sens. J. 2005,

5.3, 493–500.

[81] Lent, B. Practical considerations of accelerometers noise. Available online:

https://www. endevco. com/news/arc hivednews/2009/2009_12/TP324. pdf>

(accessed on 1 May 2019).

[82] Abolghasem, N. A generalized study of coil-core-aspect ratio optimization for

noise reduction and SNR enhancement in search coil magnetometers at low

frequencies. IEEE Sens. J. 2015, 15.11, 6454–6459.

[83] How to Increase the Analog-to-Digital Converter Accuracy in an Application;

Freescale Semiconductor, Inc.: Austin, TX, USA, 2016.

[84] Large, D.; James, F. The HFC Plant. In Broadband Cable Access Networks;

Elsevier Inc.: Amsterdam, The Netherlands, 2009.

[85] Alink, M.; Oude, S. Spurious-free dynamic range of a uniform quantizer. IEEE

Trans. Circuits Syst. Express Briefs 2009, 56.6, 434–438

[86] Johns, D.A.; Ken, M. Analog Integrated Circuit Design; John Wiley & Sons:

Hoboken, NJ, USA, 2008.

113

[87] Murmann, B. ADC Performance Survey 1997–2019. Available online:

http://web.stanford.edu/~murmann/adcsurvey.html (accessed on 8 June 2019).

[88] Timothy, H.W. The hitchhiker’s guide to successful residential sensing

deployments. In Proceedings of the 9th ACM Conference on Embedded Networked

Sensor Systems, Seattle, WA, USA, 1–4 November 2011.

[89] Wang, Lukun. "Recognition of human activities using continuous autoencoders

with wearable sensors." Sensors 16.2 (2016): 189.

[90] Lu, Feng, et al. "A multi-classifier combination method using sffs algorithm for

recognition of 19 human activities." International Conference on Computational

Science and Its Applications. Springer, Cham, 2016.

[91] Wang, LuKun, and RuYue Liu. "Human Activity Recognition Based on Wearable

Sensor Using Hierarchical Deep LSTM Networks." Circuits, Systems, and Signal

Processing (2019): 1-20.

[92] Ramasamy Ramamurthy, Sreenivasan, and Nirmalya Roy. "Recent trends in

machine learning for human activity recognition—A survey." Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8.4 (2018):

e1254.

[93] Hu, Chunyu, et al. "A novel random forests based class incremental learning

method for activity recognition." Pattern Recognition 78 (2018): 277-290.

114

Appendix A: IEEE Copyright Permission

The IEEE does not require individuals working on a thesis to obtain a formal reuse

license. This applied to the following published articles which were reused in the thesis

• Hammad, Issam, and Kamal El-Sankary. "Impact of Approximate Multipliers on

VGG Deep Learning Network." IEEE Access 6 (2018): 60438-60444.

• Hammad, Issam, et al. "CNN Inference Using a Preprocessing Precision

Controller and Approximate Multipliers with Various Precisions." IEEE Access 9

(2021): 7220-7232.

• Hammad, Issam, Kamal El-Sankary, and Jason Gu. "Deep learning training with

simulated approximate multipliers." 2019 IEEE International Conference on

Robotics and Biomimetics (ROBIO). IEEE, 2019.

• Hammad, Issam, and Kamal El-Sankary. "Using Machine Learning for Person

Identification through Physical Activities." 2020 IEEE International Symposium

on Circuits and Systems (ISCAS). IEEE, 2020.

The following is a printout obtained from the IEEE copyright Clearence Center

(RightsLink ®) as a proof:

115

Additionally, the following correspondence with IEEE confirms the permission for reuse.

From: Issam Hammad (Issam.hammad@gmail.com) on April 23rd 2021, 1:26pm

“Hi,

I am seeking permission to reuse the following published articles in my Ph.D. thesis

which will be submitted to the Faculty of Graduate Studies at Dalhousie University,

Halifax, NS, Canada.

1) Hammad, Issam, and Kamal El-Sankary. "Impact of approximate multipliers on VGG

deep learning network." IEEE Access 6 (2018): 60438-60444.

2) Hammad, Issam, Kamal El-Sankary, and Jason Gu. "Deep learning training with

simulated approximate multipliers." 2019 IEEE International Conference on Robotics

and Biomimetics (ROBIO). IEEE, 2019.

3) Hammad, Issam, et al. "CNN Inference Using a Preprocessing Precision Controller

and Approximate Multipliers With Various Precisions." IEEE Access 9 (2021): 7220-

7232.

4) Hammad, Issam, and Kamal El-Sankary. "Using Machine Learning for Person

Identification through Physical Activities." 2020 IEEE International Symposium on

Circuits and Systems (ISCAS). IEEE, 2020.

Thanks,

116

Response from M.E. Brennan (me.brennan@ieee.org) on April 26th at 12:58pm:

“Dear Issam Hammad,

The IEEE does not require individuals working on a dissertation/thesis to obtain a formal

reuse license however, you must follow the requirements listed below:

Textual Material

Using short quotes or referring to the work within these papers) users must give full

credit to the original source (author, paper, publication) followed by the IEEE copyright

line © [Year of publication] IEEE.

In the case of illustrations or tabular material, we require that the copyright line © [Year

of original publication] IEEE appears prominently with each reprinted figure and/or

table.

If a substantial portion of the original paper is to be used, and if you are not the senior

author, also obtain the senior author’s approval.

Full-Text Article

If you are using the entire IEEE copyright owned article, the following IEEE copyright/

credit notice should be placed prominently in the references: © [year of original

publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE

publication title, and month/year of publication]

Only the accepted version of an IEEE copyrighted paper can be used when posting the

paper or your thesis on-line. You may not use the final published version

In placing the thesis on the author's university website, please display the following

message in a prominent place on the website: In reference to IEEE copyrighted material

which is used with permission in this thesis, the IEEE does not endorse any of

[university/educational entity's name goes here]'s products or services. Internal or

personal use of this material is permitted. If interested in reprinting/republishing IEEE

copyrighted material for advertising or promotional purposes or for creating new

collective works for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html

to learn how to obtain a License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada

may supply single copies of the dissertation.

mailto:me.brennan@ieee.org

117

Kind regards,

M.E. Brennan

Ms M.E. Brennan

IEEE

501 Hoes Lane

Piscataway, NJ 08854-4141 USA

me.brennan@ieee.org

+1 (732) 562-2660”

118

Appendix B: MDPI Copyright Permission

All articles published by MDPI are made immediately available worldwide under an open

access license. This means:

• everyone has free and unlimited access to the full-text of all articles published in

MDPI journals;

• everyone is free to re-use the published material if proper accreditation/citation of

the original publication is given;

• open access publication is supported by the authors' institutes or research funding

agencies by payment of a comparatively low Article Processing Charge (APC) for

accepted articles.

Permissions:

 No special permission is required to reuse all or part of article published by

 MDPI, including figures and tables. For articles published under an open access

 Creative Common CC BY license, any part of the article may be reused without

 permission provided that the original article is clearly cited. Reuse of an article

 does not imply

The statement above applies to the following reused MDPI article:

• Hammad, Issam, and Kamal El-Sankary. "Practical considerations for accuracy

evaluation in sensor-based machine learning and deep learning." Sensors 19.16

(2019): 3491.

The printout below can confirm the permission for reuse (source:

https://www.mdpi.com/openaccess)

https://www.mdpi.com/openaccess

119

