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Abstract: The stiffness of concrete columns is adjusted by a factor referred to as the stiffness reduction 
factor or the stability resistance factor when utilizing the simplified second-order moment magnification 
method for designing slender reinforced concrete (RC) columns. The stiffness reduction factor of 0.75 in 
ACI 318, CSA A23.3, and CSA S6 was calibrated for steel-RC columns using reliability analysis to account 
for the variability in concrete strength, steel strength, and applied loads. The upcoming ACI 440 code adopts 
the same stiffness reduction factor for the design of slender glass fiber-reinforced polymer (GFRP) RC 
columns when using the moment magnification method. The structural reliability of slender GFRP-RC 
columns designed using a stiffness reduction factor of 0.75 was not evaluated despite the difference in the 
GFRP statistical parameters and stiffness characteristics as compared with conventional steel. The 
objective of this research is to conduct a reliability analysis of slender GFRP-RC columns to evaluate the 
reliability index associated with the use of the stiffness reduction factor and provide recommendations 
regarding the optimum value of the factor to meet code target safety limits. Monte Carlo simulation is used 
to conduct the reliability analysis. Statistical input parameters (distribution type, bias ratio, and coefficient 
of variation) of GFRP based on an extensive experimental database are utilized in the study. The proposed 
research presents a necessary step toward quantifying the safety associated with the design provisions 
proposed in upcoming ACI 440 code. 

1 INTRODUCTION 

The moment magnification method is a simplified analysis method used for the design and analysis of 

slender steel-reinforced concrete columns as specified in concrete design standards/codes such as ACI 

318-19 (2019) and CSA A23.3-19 (2019). The moment magnification method involves the use of a stiffness 

reduction factor, also named as stability reduction factor, used to adjust the critical buckling strength of 

slender columns. 

The stiffness reduction factor is a reliability-based resistance factor calibrated by Mirza et al. (1987) for ACI 

318-83 (1983) and was later adopted by ACI 318-19 (2019). Mirza et al. (1987) performed a reliability 

analysis in which a single curvature 305 by 305 mm steel-reinforced concrete section with concrete strength 

of 34.5 MPa and steel yield strength of 414 MPa was used to conduct a parametric study regarding key 

influential design parameter. The parameters considered in the study by Mirza et al. (1987) included: 

reinforcement ratio, slenderness ratio, tributary areas, eccentricity ratio, and the effect of combined dead, 

live, snow, and wind loads. The analysis was based on the moment magnification method and second-
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order analysis method. A Monte Carlo simulation with 1000 trials was used to obtain the distribution of the 

resistance presented as the ratio of the second-order resistance to the factored capacity determined by the 

moment magnification method. First order second moment (FOSM) reliability method was then used to 

assess the reliability corresponding to each considered case. The study recommended the use of a stiffness 

reduction factor between 0.7 to 0.75. A value of 0.75 was adopted by ACI 318-83 (1983) and ACI 318-19 

(2019). 

ACI 440 committee is preparing a code for the design of glass fiber-reinforced polymer (GFRP) reinforced 

concrete (RC) columns in which the moment magnification method, including the stiffness reduction factors, 

is adopted from ACI 318-19. The stiffness reduction factor proposed in the upcoming ACI 440 code has not 

been validated for GFRP-RC columns. The difference between the statistical properties of GFRP and steel 

bars, the lack of yielding in GFRP, and the difference in the modes of failure necessitate an independent 

reliability-based study for GFRP-RC columns. In this research, a preliminary reliability analysis is conducted 

to examine the safety of slender GFRP-RC columns designed with the proposed stiffness reduction factor 

in ACI 440.  

2 METHODOLOGY 

The methodology adopted in this research is similar to Mirza et al. (1987) but with utilizing statistical 

parameters of GFRP bars, considering concrete crushing as the only failure mode, and considering dead 

and live loads only. The methodology was utilized to determine the reliability indexes, β, corresponding to 

multiple stiffness reduction factors, ϕs.  

The moment magnification method is presented followed by the finite difference method of analysis. The 

latter was augmented with an artificial neural network to account for the second-order effects. The methods 

were utilized to conduct the reliability analysis. 

2.1 Moment Magnification Method 

The moment magnification method is a simplified analysis method used for calculating the capacity of 

columns considering secondary moment effects through a magnification factor, δ. The magnification factor 

is applied to the maximum end moment, M2, to provide an equivalent magnified moment, Mc. 

[1] 𝑀𝑐 = 𝛿𝑀2  

The magnification factor is calculated using Eq. 2, where Cm accounts for end moment effects (equal 1 for 
single curvature), Pu is the factored load, Pc is the critical buckling load, and ϕs is the stability reduction 
factor. 

[2] 𝛿 =
𝐶𝑚

1− 𝑃𝑢
∅𝑠𝑃𝑐

 

The critical buckling load, Pc, is calculated using Eq. 3, where k is the effective length of the column (equal 
1 for simply supported columns), lu is the length of the column, and EIeff is the effective stiffness (ACI 318-
19 2019).  

[3] 𝑃𝑐 =
𝜋2𝐸𝐼𝑒𝑓𝑓

(𝑘𝑙𝑢)
2   

The effective stiffness, EIeff, is calculated using Eq. 4 as proposed by Zadeh and Nanni (2017) and adopted 
by the upcoming ACI 440 code, where Ec is the modulus of elasticity of concrete, Ef is the modulus of 
elasticity of GFRP bars, Ig and If are the moment of inertia of the gross cross-section and GFRP bars, 
respectively. 
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[4] 𝐸𝐼𝑒𝑓𝑓  =  0.2𝐸𝑐𝐼𝑔 + 0.75𝐸𝑓𝐼𝑓 

The factored load, Pu, is calculated by setting the utilization ratio (ratio of factored load to factored 
resistance) equal to unity, as included in Eq. 5.  

[5] 𝜙𝑛𝑃𝑛  =  𝑃𝑢  

where, ϕn is the resistance reduction factor applied to the axial and flexural capacities of the column, and 
Pn is the nominal capacity of the column cross-section per upcoming ACI 440 code. Pn is evaluated at the 
ultimate compressive strain of 0.003 mm/mm.  

The value of ϕn is considered as 0.65 in this study since experimental research indicates that the 
compressive failure of concrete is the only observed mode of failure (Hadhood et al., 2018, Khorramian and 
Sadeghian 2017a, 2017b, 2020). To find the axial factored capacity of the column using the moment 
magnification method, the factored load moment interaction diagram is developed, while the intersection of 
the loading path derived from the moment magnification method and the interaction diagram is considered 
as the factored axial capacity as shown in Figure 1.  

 

Figure 1: Illustration of the moment magnification procedure 

2.2 Second-Order Analysis 

The second-order analysis performed in this study is based on an artificial neural network (ANN) model. 

The model considered material and geometric nonlinearities. The ANN model is a surrogate model to the 

finite difference method (FDM) with a coefficient of determination of 1.0 and an RMSE of 1.0 kN (Khorramian 

et al. 2021). The column is divided into a finite number of segments in FDM, while equilibrium is satisfied 

at each node. An iterative procedure is used at each load step to determine the deflected shape of the 

column using moment-curvature. The column capacity is determined once material or stability failure 

occurs. Figure 2(a) presents a summary of the FDM analysis. More details about the FDM used in this 

study can be found in the literature (Khorramian 2020). 

The schematic ANN model by Khorramian et al. (2021) is presented in Figure 2(b). The ANN model consists 
of one input layer with 11 neurons, 1 output layer corresponding to the axial capacity of the column, and 
three hidden layers with 35, 30, and 15 neurons in the first, second, and third hidden layers of ANN. A 
sigmoid function was used as the activation function for the hidden layers and a linear function was used for 
the output layer. Further information is available in the literature (Khorramian et al. 2021). 
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Figure 2: Second-Order Analysis: (a) finite difference method (FDM); and (b) artificial neural network 
(ANN) method 

2.3 Reliability Analysis 

The reliability analysis utilized in this study is based on the procedure used to assess the safety of steel-

reinforced concrete columns by Mirza et al. (1987), with the following two modification: statistical properties 

of GFRP were used in this study, and only concrete compression failure mode was considered in this study.   

The statistical properties of the input random variables include bias (ratio of actual to predicted), coefficient 

of variation (COV), and distribution type. The bias, COV, and distribution type for FDM-to-experimental test 

results were 1.1, 0.14, normal, respectively. The bias, COV, and distribution type for dead load were 1.05, 

0.15, and normal, respectively. The bias, COV, and distribution type for live load were 1.0, 0.18. and normal 

respectively. For concrete compressive strength, fc, a normal distribution with a coefficient of variation of 

0.1 and a bias calculated from Eq. 7, was considered (Nowak and Szerszen 2003). 

[7] 𝑘𝑓𝑐 =  −0.0081𝑓𝑐
3 + 0.1509𝑓𝑐

2 − 0.9338𝑓𝑐 + 3.0649, (𝑓𝑐 𝑖𝑠 𝑖𝑛 𝑘𝑠𝑖) 

The depth of bars in the ultimate compressive and tensile reinforcement layers was considered to have a 

normal distribution with a bias of 1 and COV of 0.11 (Khorramian 2020). For GFRP bars in tension, a bias 

of 1.15 and COV of 0.07 with a lognormal distribution was considered (Shield et al. 2011). For the modulus 

of elasticity of GFRP bars, a lognormal distribution with a mean of 1.04 and COV of 0.08 was considered 

(Shield et al. 2011). To find the distribution and statistical characteristics of GFRP bars in compression, 

twelve different groups of GFRP bar tested in compression were collected from the literature, including 72 

compression tests of GFRP bars by AlAjarmeh et al. (2019) and 35 compression tests of GFRP bars by 

Khorramian and Sadeghian (2018, 2019). Test data was normalized to the average compressive strength 

of each test group to form a database of 107 compressive tests of GFRP bars. Figure 3 shows the 

distribution of the relative compressive strength of GFRP bars. The distribution is considered as lognormal 

with a bias of 1 and COV of 0.13. 

The first step in the reliability calculation is to determine the mean values of dead, D, and live, L, loads. The 

moment magnification method is used to calculate the factored resistance, which is set equal to the factored 

loads. Then, for a given dead-to-live load ratio, the nominal values of the D and L loads are calculated using 

the load combination including D and L for the upcoming ACI 440  code presented in Eq. 8, which is adapted 

from ACI 318-19 (2019). The nominal values were multiplied by load bias to obtain the mean value of dead 

and live loads. 

M

ψ

@P1

M

ψ

@Pi

M

ψ

@Pn

Strain Stress

(b)(a)

ANN: [11,35,30,15,1]



 

   

STR181-5 

 

[8] 𝑈 = 1.2𝐷 + 1.6𝐿  

Monte Carlo simulation (MCS) with 1000 trials was utilized to find the resistance distribution. The nominal 
section and material properties were multiplied by their corresponding bias to obtain the mean values. One 
thousand randomly generated distinct input sets were provided for the ANN model to determine the 
corresponding resistance. Each distinct input set includes randomly generated concrete strength, 
reinforcement depth, strength of GFRP bars in compression and tension, reinforcement ratio of GFRP bars, 
modulus of elasticity of GFRP bars, eccentricity ratio, and slenderness ratio. The ratio of the ANN model-
to-experimental test data was applied to the resistance. The distribution of the resistance, R, minus the 
distribution of D and L loads defines the performance function, G, as presented in Eq. 9.  

[9] 𝐺(𝑋) = 𝑅(𝑋) − 𝐿 − 𝐷 

Failure occurs when the resistance is less than the sum of load effects or when the performance function 
is negative. To calculate the reliability index, a first-order second moment (FOSM) analysis was performed 
using three random variables (i.e., R, D, and L). The value of the reliability index can be found using Eq. 10 
(Nowak and Collins 2012).  

[10] 𝛽 =
𝐺(𝜇𝑋1,𝜇𝑋2,…,𝜇𝑋𝑛)

√∑ (𝑎𝑖𝜎𝑋𝑖)
2𝑛

𝑖=1

, 𝑎𝑖 =
𝜕𝐺
𝜕𝑋𝑖

| @ 𝜇𝑋1,𝜇𝑋2,…,𝜇𝑋𝑛
 

 

Figure 3: Distribution of GFRP bars in compression 

3 PARAMETRIC STUDY 

A parametric study was conducted to evaluate the reliability indexes corresponding to a select range of 

stability resistance factors. The considered sections had the following properties: 254 mm wide square 

sections, two layers of reinforcement, GFRP bar tensile and compression strength of 700 MPa and 560 

MPa, respectively, GFRP bar modulus of elasticity of 45 GPa, reinforcement depth ratio of 0.8, and end 

moment ratio of 1. The parameters considered in the parametric study are summarized in Table 1.  

The results of the parametric study are shown in Figure 4. The points in Figure 4 correspond to the average 

points obtained for each select case. The reliability index decreases with the increase in concrete strength, 

slenderness ratio, and eccentricity ratio as shown in Figure 4(a), Figure 4(c), and Figure 4(d), respectively. 

The reinforcement ratio was not considered as effective as the other studied parameters as shown in Figure 

4(b).  

As expected, the reliability index decreases with the increase in the eccentricity ratio and slenderness ratio 

since the latter magnifies the secondary moment effects. The decrease in column reliability as the concrete 

N = 107
Bias = 1
CoV = 0.13
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compressive strength increases may seem counterintuitive at first. This trend is explained as follows: higher 

concrete strength is associated with higher load mean values for a utilization ratio of 1.0 (ratio of factored 

loads to factored capacity). The higher loads applied on the section with high concrete strength cause the 

reliability of the section to drop as compared with counterpart sections having lower concrete strength.   

Table 1: Parameters considered in the parametric study 

Parameter Value No. of cases 

concrete strength (fc) 20, 40, 60 3 

Reinforcement ratio (ρ) 1, 2, 4 % 3 

Eccentricity ratio (e/h) 0.1, 0.3, 0.5, 1 4 

Dead-to-live load ratio (D/L) 1, 2, 3, 4 4 

Slenderness ratio (λ) 17, 22, 27, 33 4 

Stability reduction factor (Φs) 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 6 

Total cases 
6 x 576 

3,456 

 

Figure 4: Effect of considered parameters on the reliability index, β: (a) effect of concrete strength, fco; (b) 
effect of FRP reinforcement ratio, ρf (%); (c) effect of eccentricity ratio, e/h; and (d) effect of slenderness 

ratio, λ 

4 RESULTS AND DISCUSSION 

The reliability indexes for a select range of stability reduction factors, Φs, and dead-to-live load ratios, D/L,  

are shown in Table 2 and Figure 5. The results showed that a D/L ratio of 4 correlates to the worst-case 

(c) (d)

(b)(a)
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loading scenario (Oudah et al. 2019). The stability reduction factors are equal to or greater than 3.0 which 

corresponds to the target reliability index set by Mirza et al. (1987) for calibrating the stiffness reduction 

factor for compression-controlled steel-reinforced concrete columns. It is concluded that the safety 

associated with the stiffness reduction factor of 0.75 for GFRP-RC columns proposed by ACI 440 aligns 

with the safety margin defined for steel-reinforced counterparts designed according to ACI 318-19 (2019) 

for the limited cases used in this study. Further research is needed to validate this conclusion for a wider 

range of input parameters and design cases.   

Table 2: Reliability indexes for a select range of stiffness reduction factors and load ratios 

D/L 
Stiffness reduction factors,ϕs 

0.65 0.7 0.75 0.8 0.85 0.9 

1 3.30 3.28 3.26 3.26 3.25 3.25 

2 3.18 3.17 3.15 3.13 3.13 3.11 

3 3.09 3.09 3.08 3.06 3.03 3.03 

4 3.06 3.04 3.02 3.01 3.00 2.99 

Mean* 3.16 3.14 3.13 3.12 3.10 3.09 

STD* 0.28 0.27 0.28 0.29 0.28 0.28 

COV*(%) 8.88 8.73 8.88 9.16 9.02 9.06 

* the mean was calculated based on all results. 

 

Figure 5: Reliability index, β, versus stiffness reduction factor, ϕs: (a) effect of dead-to-live ratios, D/L; and 
(b) average of all analyses plus and minus one standard deviation 

5 CONCLUSION 

The reliability indexes corresponding to a select range of stiffness reduction factors (0.65 to 0.9) used in 

the moment magnification method for the second-order analysis of GFRP-RC columns were quantified in 

this study. A parametric reliability-based analysis was conducted to quantify the reliability indexes. The 

parametric study considered 3,456 cases with various concrete strengths, dead-to-live load ratios, 

eccentricity ratios, slenderness ratios, and GFRP bar reinforcement ratios. Analysis results indicated a 

reliability index of 3.02 for a stability reduction factor of 0.75 (the value used in ACI 440) which approximately 

corresponds to the target reliability index used for calibrating the stiffness reduction factor in ACI318-19. 

The analysis results are preliminary. Further research is needed to validate the conclusions drawn from this 

study by considering a wider range of input parameters and design cases.   

(b)(a)
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