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Abstract

A recent study by Taw�k et al. [Phys. Rev.

Mater., 2 (2018) 034005] found that few density
functionals, none of which are asymptotic pair-
wise dispersion methods, describe the geome-
try and binding of layered materials accurately.
Here, we show that the exchange-hole dipole
moment (XDM) dispersion model attains ex-
cellent results for graphite, hexagonal BN, and
transition-metal dichalcogenides. Contrary to
what has been argued, succesful modeling of
layered materials does not necessitate meta-
GGA exchange, non-local correlation function-
als, or the inclusion of three-body dispersion
terms. Rather, a GGA functional, combined
with a simple asymptotic pairwise dispersion
correction, can be reliably used provided that it
properly accounts for the geometric dependence
of the dispersion coe�cients. The overwhelm-
ing contribution to the variation of the pairwise
dispersion coe�cients comes from the immedi-
ate vicinity of an atom, and is already present
for single layers, although longer-range e�ects
must also be captured in delocalized systems,
such as graphite.
Layered materials consist of aggregates of

two-dimensional sheets, with strong in-plane
and weak out-of-plane interactions. The inter-
est in layered materials arises from their ex-
∗To whom correspondence should be addressed
†Universidad de Oviedo
‡Dalhousie University

otic electronic properties and easy exfoliation,
which allows manufacturing atomically thin sin-
gle layers, or stacks of these layers, with po-
tential technological applications.1 These ma-
terials have received much recent attention
due to their desirable properties for superlu-
bricity,2 photodetectors,3 optical modulators,4

non-linear optics,5 and other optoelectronics
applications.6

Because of the weak van der Waals na-
ture of interlayer binding, layered materi-
als have served as stringent tests to assess
the performance of various computational
methods for the description of London dis-
persion.7�10 Within density-functional theory
(DFT), a large number of dispersion corrections
and dispersion-including functionals,11�14 with
varying degrees of empiricism, are now avail-
able. Some of these methods are highly success-
ful for interactions between organic molecules
(e.g. the DFT-D family of dispersion correc-
tions15�17), while others are more suited to the
description of condensed materials (e.g. the
vdw-DF non-local functionals18,19). Ideally, it
would be desirable to have dispersion-corrected
functionals that are able to treat all kinds of
systems on an equal footing.14

There are signi�cant di�erences in the qual-
ity of various dispersion-corrected DFT meth-
ods for inorganic applications, such as sur-
face adsorption20 and, particular to the focus
of this work, layered materials.8�10 Taw�k et
al.10 and Björkman et al.9,21 performed exten-
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sive benchmark tests on di�erent dispersion-
corrected functionals for simple layered sys-
tems. According to their results, asymptotic
pairwise dispersion methods, and most non-
local dispersion functionals, are not able to pro-
vide a reasonable treatment of both the bind-
ing energies and interlayer separations simulta-
neously.10 Good performance for one quantity
tends to be o�set by large errors for the other.
Only the fractionally-ionic (FIA) variant22 of
the many-body dispersion23 (MBD) model, the
SCAN functional coupled with non-local rVV10
dispersion,24 and some non-local vdw-DF func-
tionals9 have been shown to give consistently
accurate performance for both geometry and
energetics. Taw�k et al. conclude that �meta-
GGAs may o�er a superior starting point for
dispersion corrections� and propose combining
meta-GGAs with dispersion corrections such as
FIA for better performance.10 This is an un-
desirable state of a�airs because the practical
application of these methods is hampered by
poor scaling with system size, computational
complexity (non-local functionals with meta-
GGA exchange), and convergence di�culties
(MBD), and also because their wider appli-
cability to other types of systems is unclear.
In this letter, we argue that a simple GGA
with an asymptotic pairwise dispersion correc-
tion can described layered materials accurately,
provided it captures the non-additivity of the
pairwise coe�cients correctly.
Asymptotic pairwise dispersion corrections

are both simple to calculate and accurate for
interactions between organic molecules. How-
ever, there are open questions concerning the
importance of non-additivity in the pairwise co-
e�cients and arising from atomic many-body
terms, the leading-order being the Axilrod-
Teller-Muto (ATM)25,26 three-body contribu-
tion.10 In this letter, we attempt to answer
these questions by analyzing the performance
of the exchange-hole dipole moment (XDM)
dispersion model14,27,28 for layered materials.
XDM is an asymptotic pairwise dispersion cor-
rection that has demonstrated excellent per-
formance for systems typically studied in gas-
phase chemistry,29 as well as for molecular crys-
tals,14,30 metal surfaces,20 and graphene ad-

sorption.31,32 The XDM dispersion coe�cients
are non-empirical, semilocal functions of the
electron density, its derivatives, and the kinetic
energy density, and therefore include electronic
many-body e�ects to all orders through use of
a fully self-consistent set of Kohn-Sham states.
For comparison with previous literature, we

consider both the same benchmark set of
11 layered materials studied by Taw�k and
co-workers10 (graphite, h-BN, MoS2, MoSe2,
MoTe2, WS2, TaS2, HfS2, HfSe2, HfTe2, and
PdTe2) and the full set of 26 layered mate-
rials proposed by Björkman et al.9,21 All cal-
culations were carried out with the Quantum
ESPRESSO program33 using the projector-
augmented wave (PAW) approach.34 For consis-
tency, the PBE functional35 was used for calcu-
lations performed with the D2,15 D3,16 D3BJ,36

and XDM14,28 dispersion corrections. Addi-
tional calculations were also performed with
B86bPBE,35,37 which is the recommended func-
tional for use with XDM in solid-state calcu-
lations.14 MBD23 calculations were also per-
formed using the CASTEP program38 with ul-
trasoft pseudopotentials for graphite to investi-
gate the variation in dispersion coe�cients with
interlayer separation. However, MBD calcula-
tions could not be converged for the transition-
metal dichalcogenides, in agreement with previ-
ous reports.10 Further details regarding compu-
tational methods and reference data are given
in the Supporting Information (SI).
Figure 1 shows the mean absolute errors in

the lattice parameters and exfoliation ener-
gies obtained for Taw�k's subset of 11 lay-
ered materials.10 Data reported9,10 for several
other dispersion-corrected DFT methods are
also given for comparison. Full tables for both
this subset, and for Björkman's full set of 26
layered materials, are given in the SI. To put the
errors in context, the exfoliation energies range
from 16.1 eV/Å2 for HfS2 to 40.2 eV/Å2 for
PdTe2, with an average value of 20.3 meV/Å2.
In agreement with Taw�k et al.,10 most

asymptotic pairwise dispersion corrections (D2,
D3(0), D3(BJ), TS, and SCS-TS in Figure 1)
give reasonable geometries, but signi�cantly
overestimate exfoliation energies. Conversely,
some non-local vdW-DF methods and PBE-
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Figure 1: Distribution of errors obtained
with various dispersion-corrected DFT meth-
ods (only the optPBE result reported by Taw�k
et al.10 is shown). The shaded box represents
an acceptable margin of error (5 meV/Å2 and
0.2 Å).
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dDsC give reasonable exfoliation energies, but
substantially overestimate the interlayer sepa-
rations. PBE-MBD-FIA, SCAN-rVV10, and
several non-local vdw-DF correlation plus pur-
posely �tted exchange functionals were found
to give accurate predictions of both geome-
tries and energies for the benchmark systems.
Among the pairwise dispersion correction meth-
ods, only XDM (in combination with either
PBE or B86bPBE) yields accurate interlayer
separations and exfoliation energies.
Focussing on the pairwise dispersion correc-

tions, all members of the DFT-D family sig-
ni�cantly overestimate the exfoliation energies.
PBE-D3(BJ) results in worse exfoliation ener-
gies than the older PBE-D2, but the perfor-
mance depends on which damping function is
used. PBE-TS, according to Taw�k et al.,10

overestimates the exfoliation energy nearly as
much as PBE-D3(BJ). Inclusion of the three-
body ATM term improves the PBE-D3(BJ)
results, but the overestimation of the exfo-
liation energies is still present. This could
be interpreted as an argument for the inclu-
sion of the three-body ATM term. However,
it is important to note that neither XDM,
nor SCAN-rVV10, nor any of the other non-
local functionals in the �good quality� zone
of Figure 1, include three-body ATM disper-

sion terms (although it is possible to calculate
the corresponding dispersion coe�cients within
XDM39). This suggests that a more likely ex-
planation for the ATM term improving the per-
formance of PBE-D3(BJ) is that it almost al-
ways gives a repulsive contribution, and the ex-
foliation energies predicted by PBE-D3(BJ) are
severely overestimated.
While three-body dispersion e�ects are phys-

ical, Jankiewicz et al.40 recently showed that
most dispersion-corrected functionals, includ-
ing the MBD method, fail to predict reason-
able three-body interaction energies. The ATM
term seems to mainly correct for other errors,
such as the incorrect dependence of the pair-
wise dispersion coe�cients on chemical envi-
ronment, missing higher-order pairwise terms
(shown to lead to overbinding39), or errors from
the base density functional. Indeed, in molecu-
lar systems, di�erences between the three-body
interaction energies obtained with di�erent base
functionals are larger than the three-body dis-
persion energy itself.11,41

Additional calculations were carried out for
the full set of 26 layered materials studied by
Björkman9,21 (see SI). Again, the B86bPBE-
XDM and PBE-XDM functionals are the only
asymptotic pairwise dispersion methods that
fall within the �good quality� zone of 0.2 Å and
5 meV/Å2 error for interlayer lattice paremeters
and exfoliation energies, respectively. There-
fore, we conclude that XDM in its canonical
pairwise form can be added to the small set of
density-functional dispersion methods that per-
form reliably for layered materials.
To try to explain the large di�erences be-

tween asymptotic pairwise dispersion correc-
tions, we turn to the analysis of the dispersion
coe�cients. Dobson recently classi�ed various
non-additive contributions to the dispersion en-
ergy into three categories (A, B, and C).42 The
Dobson-A contribution corresponds to the non-
additivity caused by the variation in dispersion
coe�cients with the immediate environment of
an atom. Dobson-B refers to non-pairwise dis-
persion energy terms, of which the leading-
order is the ATM contribution. Dobson-C
arises in the interaction between extended con-
ducting systems at the in�nite-separation limit
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and is unlikely to be important here.10

The good performance of SCAN+rVV1024

and several other non-local dispersion function-
als9 that do not include Dobson-B e�ects,10,42

support the idea that Dobson-B e�ects seem
not to be a requirement for good performance of
a dispersion-corrected functional. We now con-
sider Dobson-A, i.e., the change in atomic pair-
wise dispersion coe�cients with the system's
geometry, by focusing on the leading-order, C6,
dispersion coe�cients. We note that, unlike TS,
XDM is sensitive to many-body e�ects through
changes in the exchange-hole dipole moment in-
tegrals and, therefore, our analysis of the non-
additivity in the C6 is not limited to the imme-
diate vicinity of an atom.
We consider pairwise non-additivity in two

steps: �rst, we analyze the change when go-
ing from a free atom to a single layer, and
then from a single layer to the layered material.
The average homoatomic C6 dispersion coe�-
cients for each element in the layered-materials
benchmark obtained with D2, D3, and XDM
are collected in Table 1, and compared to the
free-atom reference value. XDM predicts large
changes in homoatomic C6 for the layered ma-
terials relative to the free atoms, which stem
primarily from decreases in the exchange-hole
dipole moment integrals, and cannot be cap-
tured by a simple scaling of the coe�cients with
the atomic volume. Similar behaviour was ob-
served previously for metal surfaces and in bulk
metals.14,20,32

While the D2 method uses �xed (empiri-
cal) atomic dispersion coe�cients, and is pair-
wise additive by design, the more sophisticated
D3 method employs dispersion coe�cients that
vary with coordination number and hence in-
clude some non-addivity. The reduction in C6

for the layered materials seen with XDM is par-
tially captured by D3, with the homoatomic
C6's for the transition metals being in fairly
good agreement. However, the D3 C6's are
roughly twice the XDM values for the chalco-
gen atoms. The chalcogens lie at the edges of
the 2D layers and most-closely approach their
neighbours from the adjacent layers, perhaps
explaining the systematic overbinding seen with
D3. The results suggest that, while the ad hoc

Table 1: Average homoatomic C6 dispersion co-
e�cients (in atomic units) used for the Taw�k
subset of 11 layered materials with selected dis-
persion methods.

Atom Freea D2b D3c XDMc,d,e

B 99.5 54.29 31.45 29.43
C 46.6 30.35 24.28 17.98
N 24.2 21.33 15.61 11.69
S 134.0 96.61 125.8 64.01
Se 210.0 219.2 210.5 98.01
Te 396.0 550.6 418.6 175.7
Mo 1029 427.9 337.1 365.8
Pd 157.5 427.9 265.9 112.9
Hf 1275 1409 421.0 562.8
Ta 1020 1409 458.8 399.7
W 847.9 1409 398.1 307.9

aThe reference free-atom dispersion coe�cients
employed in the TS model. bThe D2 values are
constant for each element. cValues in the limit
of large interlayer separations are reported.

dResults use PBE densities, although they are
e�ectively identical with B86bPBE. eValues
correspond to the average over all materials

sharing a given element.

formulas used in the calculation of the D3 coef-
�cients work very well for non-covalent interac-
tions between organic molecules, they may not
be adequate for more exotic systems, such as
transition metal chalcogenides, due to an incor-
rect treatment of non-additivity in the pairwise
coe�cients.
Now we examine the variation in dispersion

coe�cients due to the presence of neighbour-
ing layers within the materials. We focus on
graphite, since the C6 is identical for all atoms
within the unit cell and also because MBD
calculations can be performed for the purpose
of comparison. The TS coe�cients are calcu-
lated by scaling the reference C6 for carbon
(32.89 a.u.) with the Hirshfeld volumes calcu-
lated in XDM.
The relative change in C6 with interlayer sep-

aration is shown in Figure 2 (top) for the D3,
TS, XDM, and MBD dispersion models. The
D3 dispersion coe�cient depends only on the
coordination number, and its value decreases
smoothly with interlayer separation as the co-
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Figure 2: Change in C6 dispersion coe�cients
with interlayer separation in graphite (top) and
with layer type (bottom). In the upper plot,
changes in the dipole-moment integrals, 〈d2X〉,
and atomic volumes, V , are also shown. Values
are expressed relative to those obtained in the
limit of large interlayer separation.
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ordination number decreases, with the slope be-
coming steeper at shorter distances. In con-
trast, the integrated atomic volume, used in the
evaluation of the TS and XDM dispersion coef-
�cients, increases at shorter distances. While
an increase in atomic volume with compres-
sion is counterintuitive, this can be explained
by the use of Hirshfeld partitioning and the
way volumes are calculated.43 As the layers
are compressed, the region of space where the
corresponding Hirshfeld weights are signi�cant
is reduced but, at the same time, the density
tails from adjacent layers contribute to the vol-
ume integrals, which results in an overall in-
crease in atomic volume. As the TS dispersion
coe�cients are proportional to the square of

the atomic volumes,44 they increase even more
steeply with decreasing interlayer separation.
This behaviour of TS is opposite to all other
dispersion corrections and, importantly, to its
successor, the MBD method.
The XDM and MBD dispersion models have a

more sophisticated dependence on chemical en-
vironment, fully accounting for e�ects of neigh-
bouring atoms on the electron density distri-
bution and C6. The results of these models
for graphite are in striking agreement, partic-
ularly considering how di�erent the two disper-
sion models are. Both predict an initial rise in
C6 on compression, followed by a sharp decrease
at small interlayer separations. In XDM, this
can be explained by the interplay between vol-
ume (or polarizability), which provides the ini-
tial rise in C6, and the exchange-hole dipole mo-
ment integral, which leads to a rapid decrease in
C6 at small separations. From the graphite ex-
ample, it is clear that XDM and MBD are cap-
turing the same e�ects regarding non-additivity
of the pairwise term (referred to as many-body
e�ects in the MBD literature12,45).
In the Dobson classi�cation, it is assumed

that Dobson-A non-additivity comes exclu-
sively from the local environment of an atom.42

To test this, we examined the variation in the
carbon C6 with exfoliation in graphite and com-
pared it to the same interlayer geometries but
with graphene layers replaced with benzene and
coronene molecules (Figure 2, bottom). There
are signi�cant di�erences in C6 variation in
these three cases, indicating that there is a sig-
ni�cant contribution to non-additivity from dis-
tant atoms within the same or opposing layers.
Combined with previous �ndings regarding the
large variation of the exchange-hole dipole mo-
ment integrals for bulk metals and surfaces,20,32

and the high non-locality of the exchange-hole
in graphite,46 our observations strongly suggest
that interatomic delocalization plays a funda-
mental role in pairwise non-additivity.
To summarize, layered systems are an ex-

tremely sensitive benchmark for density-
functional dispersion methods. In agreement
with Taw�k et al., we found no evidence that
the inclusion of three-body ATM terms is neces-
sary for modeling layered materials accurately.
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However, we demonstrated that, contrary to
previous works,9,10 a GGA plus an asymptotic
pairwise dispersion correction can be highly ac-
curate for layered materials, provided pairwise
non-additivity is captured correctly. Speci�-
cally, XDM gives similar performance to much
more computationally complex methods, such
as the non-pairwise PBE-MBD-FIA and the
non-local meta-GGA SCAN-rVV10, for inter-
layer separations. Our study of graphite in-
dicates that the dependence of the XDM dis-
persion coe�cients on the system geometry is
similar to that of MBD (although MBD calcu-
lations cannot be applied to transition metal
dichalcogenides without modi�cation22 because
the calculations do not converge10), and that
there is signi�cant pairwise non-additivity, pri-
marily arising from variations in the electron
distribution within a single atomic layer.
XDM retains all the advantages of a pairwise

dispersion correction, namely, a simple imple-
mentation, low scaling with system size, and
negligible computational cost. No modi�ca-
tion or reparametrization of XDM was needed
and the exact same methodology also excels for
organic molecules,14,29 molecular crystals,14,30

metal surfaces,20 and graphene adsorption,31,32

enabling the use of XDM-corrected functionals
for modeling complex chemistry in layered ma-
terials.
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