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ABSTRACT 

Pathology laboratory testing is central to medical practice as most diagnostic and 

therapeutic decisions are guided by the patient’s bloodwork results. Pathology laboratory 

tests are ordered by clinicians, and it has been observed that a significant number of tests 

ordered by physicians are inappropriate—i.e. the test is redundant, not clinically relevant, 

or not compliant with clinical guidelines. Inappropriate pathology test ordering not only 

affects laboratory utilization, but it also compromises patient safety by producing falsely 

abnormal results which may require unnecessary interventions. Recent laboratory 

utilization studies point to a discretionary behaviour in ordering tests which can be 

modified by providing physicians with peer comparisons, targeted education and an audit 

of physician’s test ordering profile.  

In this thesis, we aim to stratify physicians based on their patient case-mix as opposed to 

their order type and volume (which is circumstantial and inconclusive as comparator 

variables). The ensuing physician stratification will be used to generate physician 

phenotypes to both understand the physician’s ordering behaviour and to perform peer 

comparisons with a similar patient case-mix.  

Using pathology test ordering data spanning 6 years (2012-2017), we developed physician 

clusters for three temporal cohorts—i.e. 1-year, 2-year and 6-year—to track variations in 

the test ordering over time. We pursued a machine learning approach to investigate the 

phenotypical factors of physician ordering. We applied an ensemble clustering approach 

using three centroid models k-means, k-medoids and affinity propagation. We found the 

best physician clusters at k= 3 for 1st cohort, k= 4 for the 2nd cohort and k=3 for the 3rd 

cohort. We observed that ensemble clustering approach achieved the best results, 

compared to individual clustering algorithms in terms of cluster stability. We identified 

physician phenotypes, which interestingly change over time, which provides clear 

indications of underlying factors contributing to physicians test ordering pattern. 
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CHAPTER 1 INTRODUCTION 

Pathology laboratory testing is an essential part of health care. Laboratory test ordering 

involves the number of tests ordered by a physician on a consistent basis for various 

clinical purposes such as screening, monitoring of diseases, diagnosis, and management. 

Pathology tests ordered by the physician on a regular basis when reviewed, resulted in 

inappropriate, irrelevant order behaviour[1]. Nonetheless, the existence of inappropriate 

test orders occurs due to numerous reasons but still remains insignificant[2]. A 15-year 

meta-analysis stated about 4 – 5 billion of tests were estimated to be conducted every year 

due to laboratory testing, thereby increasing the volume of tests in the United States [2].  

If inappropriate test orders are not checked properly, it may lead to diverse effects of 

downstream activities, which is assumed as Ulysses syndrome[3]. The syndrome occurs if 

the patient has undergone an incorrect diagnosis with a false positive results due to 

excessive testing that was not required[4]. 

Laboratory utilization due to inappropriate laboratory testing orders comprises of two 

factors namely underutilization and over utilization.  Underutilization refers to the number 

of  test orders to be recommended, but not ordered, whereas in over utilization represents 

the number of tests that are ordered without being specified [2]. Over utilization outcomes  

in the arise of unwanted blood tests for patients, that inherently increases the possibility of 

false positive results or misdiagnose a disease[4,5].Previous studies have adopted 

electronic medical records and computerized or paper orders and yielded conflict results 

[6][7]. A study was conducted in USA, where over-utilization counted for about 16 percent 

and under-utilization accelerated to 44 percent in bleeding and thrombotic disorders for 

laboratory tests[8]. The WHO introduced the ‘Choosing Wisely Canada’ campaign to 

create awareness, for the physicians and patients, introduced a conversation that consists 

of  “Five Things Physicians and Patients Should Question” to determine the 

inappropriate use of laboratory testing[9]. Moreover, a list of impacts was observed and 

has improved the patient education during this health campaign. In order to reduce over 

utilization in laboratory testing, predictive analytics provides an effective solution. 
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Predictive analytics has emerged to plays a vital role to comprehend the test ordering 

pattern. Primarily, machine learning techniques are used to target the test ordering 

behaviour of physicians to tackle the problem of overutilization[1].Clustering analysis aids 

in reduction of unnecessary test orders and promotes better efficiency, quality by grouping 

the physicians ordering based on the patient case mix among the peers over a period of 

time. 

1.1  Research Objectives 

The project’s overall objective is to develop the physician phenotypes to stratify the 

physician test ordering pattern. In this regard, this study aims to group physicians on the 

basis of their test orders and patient characteristics to provide a peer comparison of test 

ordering patterns. Peer review provides a progressive way of comparing similar physicians 

against all physicians [1].  Our intent is to generate physician clusters, based on their test 

ordering pattern, so that peer comparison is performed with inter-cluster physicians who 

are deemed to have a similar practice profile.  To perform unbiased physician groups, we 

aim to use machine learning methods, particularly unsupervised clustering methods, 

applied to physician’s test order data. Our focus in this research, is to use an ensemble 

approach to clustering techniques that enhance the precision and coherence in 

understanding the cluster stability and provide an improved quality of solution in diverse 

time cohorts which in turn, aims to identify the physician phenotypes that contribute to the 

physician test ordering pattern. 

This thesis forms a set of research questions, 

a) Is ensemble clustering more robust and effective than individual clustering for 

identifying physicians clusters in the different time-based physicians? 

b) What is the most prominent dimensionality reduction algorithms in test ordering data? 

c) What are the physician phenotypes found inside the physician clusters? 

d) Can we identify the distinct clusters of physicians based on test ordering pattern? 

 

The first research question is explained in Section 4.4.4 presents a detailed comparison 

between the two approaches across the three time-cohorts. For the second question, 
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Section 4.2 provides the interpretation of the best dimensionality reduction technique. For 

the third and the fourth research question discovers the important physician phenotypes 

found in the physician clusters that contribute the test ordering pattern in Section 4.6.   

1.2 Solution Approach 

Our approach is to investigate an ensemble clustering method by combining multiple 

clustering methods and analysing multiple consensus functions.  We take a data mining 

methodology that involves data preparation, feature extraction, clustering, and evaluation. 

The task of feature extraction involves the exploration of different dimensionality 

reduction algorithms to extract the useful features suitable for clustering. Moreover, this 

thesis examines the evaluation of embeddings produced by introducing evaluation metrics 

to assess the quality of different dimensionality reduction algorithms for an unsupervised 

approach.  

1.3 Contribution 

The contributions of the thesis outline is as follows: 

• Investigation and application of ensemble clustering approach to cluster high-

dimension temporal pathology test order data to discover data-driven physician peer 

groups. Our research proposed a new approach to clustering that addresses the effects 

of utilizing clustering ensemble technique to determine the stability of the discovered 

clusters and its robustness. 

• Evaluation of linear and non-linear dimensionality reduction algorithms with respect 

to quality assessment criteria to recognize identify the best clustering model. 

• Experiments to identify temporal variations inherent in physician’s test order profiles, 

thus generating time-dependent peer groups, where physicians may be clustered with 

different peer groups in different time periods. Our clustering approach has yielded 

physicians clusters across three (3) different time periods. 

1.4 Organization of the thesis  

This thesis consists of five chapters. The first chapter proposes the introduction of the 

thesis, the second chapter presents the primary concepts of clustering ensemble, reviews 
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the literature prevailing to different consensus functions used in the thesis, and explores 

the distinct feature extraction algorithms. The third chapter demonstrates the data mining 

methodology of analysing and extracting features from high dimensional space in three 

different time-cohorts. Building a heterogeneous cluster ensemble model from the features 

extracted. 

The fourth chapter discusses about the results and analysis i) quality assessment of feature 

extraction models ii) comparison between the different base clustering methods and 

ensemble techniques in three time-cohorts. 

The fifth chapter concludes with a summary of the study's contributions, limitations and 

suggestions for future research.  
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CHAPTER 2  BACKGROUND STUDY 

In this chapter we provide the background study required to understand the rest of the 

thesis. We start discussing the clustering ensemble. This section involves a brief summary 

of cluster ensemble techniques and the context of consensus functions utilized on the 

ensemble approach and its evaluation metrics. Then, we discuss the different feature 

extraction algorithms used in reducing the features as well as the experimentation of 

quality assessment criteria implemented in different dimensions used in the literature. 

2.1 Clustering ensemble 

Cluster analysis is a preeminent technique implemented in various fields of research 

interests namely data mining, information retrieval, image recognition to understand the 

underlying structure of a dataset[10]. Clustering aids in uncovering the hidden pattern by 

grouping  similar objects into homogeneous clusters [11] by increasing the heterogeneity 

over clusters[12]. Many applications have cultivated the use of clustering to identify 

groups of  psychiatric patients based on the characteristics and symptoms experienced by 

the patients [13] clustering a group of genes that produce the similar biological 

functions[14], by recognizing medical patient groups who are in need of targeted 

interventions [15,16]. Over the years, there are numerous conventional approaches of 

clustering algorithms that have been designed and developed. Diverse clustering 

algorithms produce various clustering results for the same dataset by applying distinct 

structures on the data[17] i.e. arbitrary shaped-clusters and distance-based clusters. 

According to the popular “no-free-lunch” allegory, there is not an individual clustering 

algorithm which performs best for all data sets[18]. In addition, there is no definite 

clustering algorithm that could yield accurate results as well as there are no standard 

measures to follow to select the best individual algorithm for a given problem[17]. 

In order to improve and produce robust outcomes, the concept of cluster ensemble was 

introduced. The concept of combining different clustering algorithms appear to be a 

possible strategy for improving the quality and stability of the discovered clusters. Cluster 

ensemble otherwise known as consensus ensemble refers to the process of combining 

multiple clustering models to a single consolidated partition[19]. The cluster ensembles 
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strategy was initially defined for integrating multiple clustering by outputting the labels 

by each individual clusterer to a consensus function which yields an universal clustering 

[20].Moreover, it relies on the successive collaboration of supervised classifiers[10]. 

Topchy et al has endorsed that intelligent combination of these clusters could lead to novel 

and significant cluster structures, even in the existence of noise[21]. 

Bollacker and Ghosh designed a cluster ensemble framework for knowledge reuse, where 

the merger can only access the cluster labels without approaching the original features. 

However, developing a clustering ensemble is a difficult task as it takes the cluster labels 

into account as well as it has to resolve the correspondence problem[19]. The label 

correspondence problem illustrates the set of labels from one clustering algorithm has no 

relation with the clustering labels of another clustering algorithm in an ensemble[10]. But 

if there prevails an association between the labels, the voting technique is the most 

appropriate method to be used in this case[10].There are various ways to create cluster 

ensemble depending upon the domain and the quality of the solution required.   

2.2 Conventional Properties of Cluster Ensembles  

There are a variety of reasons to use a clustering ensemble in different domains designed 

and developed that aids to solve a problem.  Fred and Jain[22] and Topchy et al[23] framed 

the properties of a clustering ensemble namely robustness, stability, novelty and 

consistency[10]. The property of robustness and consistency indicate the performance of 

the ensemble should have better results and the combination used must be in accordance 

whereas stability and novelty represent clustering solutions with less prone to outliers, 

which is not feasible with the individual clustering algorithms[10].These properties 

indicate that the process of amalgamation acts more stable than an individual clustering. 

2.2.1 Improved Quality 

Ludmila and Stefan [18] designed a pairwise clustering ensemble to improve the quality 

of solution where the overproduced clusters is chosen as ensemble member, indicates the 

number of clusters produced is higher than the expected number of clusters. They 

introduced only the fundamental clustering algorithms that improved the accuracy of the 

ensemble members. In order to understand the quality of solution in the accuracy between 
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the diverse cluster ensemble and non-diverse cluster ensemble, they observed the diverse 

cluster ensemble performed well. Hu et al [24] developed a clustering ensemble on gene 

expression data in which the individual clustering algorithms outcomes were combined in 

the form of distance matrix by using the similarity between the two data points and graph 

based partitioning was applied to retrieve the final clustering results. In this study, 

minkowski score was significant to identify the quality of the clusters. From these studies, 

the cluster ensemble was recognized to enhance the standard of solution by considering 

the average and bias of the individual solutions [25]. The generation of high accurate and 

quality results is difficult to obtain in gene expression data as it contains outliers in the 

experimental data and there is no stability across the different clustering algorithms. An 

efficient way of selecting the combination of several algorithms is the best way to improve 

the quality and the stability of the clustering ensemble[24]. 

2.2.2 Robust Clustering 

Sevillano et al [26] conducted experiments on clustering of documents on diverse features 

to yield a global clustering for a collection of documents in an unsupervised way[8].The 

k-means was the clusterer consisting of four clusters supplied in parallel with these 

document representations and consensus clustering was introduced for ten cluster runs to 

reduce the random initialization of k-means. Furthermore, they investigated by taking into 

account supervised model order selection for each representation technique by computing 

the normalized mutual information (NMI) between each clustering and the documents 

original labeling. The NMI had better performance in terms of term based representations 

and was ranked with tf-idf weights. In the second experiment, they did not use the term 

based representation whereas continued with the extracted features and the consensus 

labeling was applied to the graph based partitioning algorithms such as CSPA, MCLA. 

Here, CSPA executed better with sub-optimal clustering and showed that the consensus 

function worked the best with the optimal order selection. The cluster ensemble 

implements robustly irrespective of data dimensionality as it adapts to produce better 

results and outcomes across wide variety of datasets with different dimensions. 
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2.2.3 Multi-view Clustering 

Different views and multiple feature sets are available in different applications. In market 

basket analysis, the customer’s preferences depend on various views and characteristics.  

The base clustering may be constructed on distinct views that involve non-identical sets 

of features or subsets of data points[25]. Strehl and Ghosh constructed two types of views 

for effectively combining the partitions in a cluster ensemble namely Feature distributed 

clustering and Objected distributed clustering[19]. In feature distributed clustering, 

multiple clustering is composed with different subsets of features but making use of all 

data points. Here, the clusterer forms clusters from the subspaces by utilizing the same 

clustering technique[19]. In the aggregation stage they are integrated using the consensus 

function. 

While in the prediction of gene functions, separate gene clustering could be acquired from 

diverse sources such as gene sequence comparisons, and microarray data consisting the 

combinations of DNA sequences from many independent experiments, and mining of 

different biological literatures such as MEDLINE requires feature distributed 

clustering[19]. A study on Yahoo dataset was experimented by Strehl with 20 clustering 

with 128 dimensions[27]. The quality of results was better as it yields 0.20 score of NMI 

normalized mutual information was higher than the average of individual clustering. 

Consensus clustering performed better in quality than the individual input clustering. On 

the other hand, different clustering uses different subsets of data points but readily uses all 

the features. In ODC, the original features are not accessed as well as the labeling obtained 

are biased. The consensus function produces a meaningful clustering result by combining 

the overlaps between the labels. This scenario happens to people who have access to more 

than one store in market basket analysis, overlapping tends to result in such situations. 

These ensemble strategies are implemented in a distributed way and re-use the knowledge 

accomplished from hierarchies in order to preserve privacy related cases. 

Fred and Jain[22] developed an ensemble with random initialisation of K-means algorithm 

for multiple cluster runs and mapped into a new co-association matrix. This matrix is 

partitioned into final clusters using hierarchical single link algorithm. Topchy et al 
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designed an ensemble with plural voting and introduced a metric especially on the space 

of partitions[21]. 

The study of Asur et al [21] carried out clustering ensemble using reduced dimension of 

Principal component analysis (PCA). The reduced dimension aided the ensemble solution 

to compute the consensus function more credibly. A soft clustering ensemble for protein 

interaction was created in order to observe the views of multifaceted proteins. 

2.3 Miscellaneous Generation Techniques  

Clustering ensemble works in two phases: The first step is to generate the clustering in 

different ways in the generation step. Second, is to join the clustered labels by using a 

consensus function[10]. The study of Vega-Pons and J. Ruiz-Shulcloper proposed five 

ways to use the generation step that combines the different clustering algorithms to be used 

before the consensus functions. There different ways of generating the clustering namely 

different clustering algorithms, the same algorithm with initialization of different 

parameters, different objects representations, different subsets of objects or object 

projections on different subspaces[10]. Topchy et al[28] explains that the weak clustering 

algorithms have the ability to produce better consensus results in consensus clustering, 

well joint with a perfect consensus function [10]. Iam and Simon[29] divided the 

generation method in various techniques namely homogeneous ensemble, heterogeneous 

ensemble, data subsampling and selection of k. In homogenous ensemble, a single 

clustering is used for multiple cluster runs and base clustering are produced whereas in a 

heterogeneous ensemble model uses multiple clustering algorithms to output a final 

clustering result. 

Figure 2.1 depicts the overview of cluster ensemble process discussed in Iam’s study[10].  

In the generation step, designing a clustering ensemble by selecting subsets of data from 

different clustering algorithms plays an effective role. But choosing the several subsets 

require better computation. Consensus clustering plays a vital role for running clustering 

algorithms multiple times for selecting subsets of data. Jain and Dubes emphasized the 

fact that the sub-populations could depict the members in each sub-population share 

common features and properties found within larger populations. This field of study was 
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employed in the improvement of molecular based diagnosis, prediction and treatments in 

cancer. 

 

      Figure 2.1  Overview of a cluster ensemble process[10] 

Monti et al[30] introduced consensus clustering with the resampling techniques to evaluate 

the cluster stability over multiple runs of clustering algorithms with random initializations. 

The main reason was to determine the optimal number of clusters obtained while running 

the clustering algorithms multiple times, to examine the boundaries, cluster number and 

membership[30]. During sampling variability, if a greater number of clusters are obtained, 

depicts the robust nature of the clustering algorithm to the resampling technique. It 

represents the structure of the cluster existence. 

The study was conducted based on the concept of consensus clustering with resampling 

for multiple cluster runs on three clustering algorithms such as Hierarchical clustering, 

Self-organized maps, and model-based Bayesian clustering. Consequently, there were 

defects in Hierarchical clustering because it was difficult to manifest the number of 

clusters as well as the boundaries. This behaviour of hierarchical clustering was due to 

deterministic nature of the agglomeration rule. The visualization of these clusters is 

univocal, irrespective the number of clusters given. With model-based clustering, chooses 

the number of clusters but results in complication due to distribution of the mixture 

produced. In order to understand their behaviour, cluster compactness was deployed by 

Dudoit and Fridlyand[31], Milligan and Cooper[32], Tibshirani, Walther and Hastie 

Yeung[33], Haynor and Ruzzo[34]. 
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The cluster validation of the number of clusters formed and tracking the cluster 

assignments becomes an important criterion. Eventually, the absence of known class labels 

which occurs in supervised learning, the process of cluster evaluation becomes evasive. 

Many statistical procedures exist in identifying the number of significant clusters in low 

dimensional data, but it lacks clarity in high dimensional data (Bock 1985). Another 

possible approach in cluster validation for resampling based techniques is consensus 

matrix. 

2.3.1 Generation Mechanism 

The study of Monti et al [30] resampling consists of partitioning the dataset into set of 

clusters non-overlapped in nature. The resampling techniques takes place in two ways 

bootstrapping and subsampling. Efron and Tibshirani instituted bootstrapping, where the 

items are sampled with replacement from the original dataset, but this method results in 

defects as it takes identical replicates of the same item are chosen during every iteration 

leading to increase in the compactness of the clusters. The main focus of the study will be 

on subsampling, as it takes the subsets of data as it samples without replacements from the 

original dataset. 

Suppose there exists a dataset D = {d1, d2, d3…. dN } where d1, d2 represent a set of  items 

to be used for clustering[30]. The K-formation of cluster partition E of  D is defined by[30], 

E ≡ {E1, E2, E3 …. E k  } such that ∪𝑘=1
𝐾  Ek = D and  Ei ∩ Ej ≠ ∅ ∀i,j   such that 𝑖 ≠ 𝑗. In the 

subsampling process, from the cluster partition of the items i and j are intersected if they 

occur in the same cluster, giving rise to the value 1 and otherwise its 0, because all samples 

will not be incorporated. 

Here, the context of gene expression was taken as example. The number of genes to be 

clustered will be taken as items indicating (di ∈ 𝐷 ). The features are observations 

expressed. over many experiments. 

Consensus matrix was utilized for assessing the correspondence in a dataset for multiple 

clustering runs. It is matrix (𝑁 × 𝑁) that holds two clustered items that occur together 
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during the distribution of cluster runs and the average of the connectivity matrices gives 

the result of consensus matrix.  

After the application of clustering algorithm on the dataset, the formation of connectivity 

matrix is given by the condition in Equation 2.1, 

                             Equation 2.1 

  M(h)
  (i , j) ={

𝟏, 𝒊𝒇 𝒊 𝒂𝒏𝒅 𝒋 𝒃𝒆𝒍𝒐𝒏𝒈 𝒕𝒐  𝒕𝒉𝒆 𝒔𝒂𝒎𝒆 𝒄𝒍𝒖𝒔𝒕𝒆𝒓 
𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

} 

Here I(h) is the indicator matrix that keeps in track of the items i and j occurring together 

with respective to resampling techniques such that it takes the subsamples from the 

original dataset, not all samples are included in the analysis. The number of iterations 

should be taken into account to keep the track the of two items appear jointly to form 

resampled dataset.  Consensus matrix is defined the number of times items i and j gets 

allocated to the same cluster during each cluster run divided by the total number of times 

both items are chosen given in the Equation 2.2, 

                      Equation 2.2  

                 𝑴 (i, j) = 
𝜮𝒉𝐌(𝐡)(ⅈ,𝒋̇)

𝜮𝒉𝑰(𝒉)(ⅈ,𝒋̇)
   

Here M (i, j) is the normalized sum of all connectivity matrices of the dataset given. The 

consensus index was initiated to indicate the entries of i, j appearing in the consensus 

matrix. Monti et al developed the visualisation pattern of a perfect consensus matrix 

represented in the form of dendograms with non-overlapping blocks along the diagonal 

depicts 1 that belong to the same cluster whereas the block referring to different cluster as 

0. In terms of perfect consensus matrix would represent either 1 or 0 only. They carried 

out the study on two different datasets for 500 iterations for K=3, in which one dataset had 

no structure with one block representing the only cluster formation. Conversely, the other 

dataset gave good results of a three-diagonal structure. The consensus matrix determines 

the best item order, and its visualization specifies the stability of the clusters found during 

multiple cluster iterations.  
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2.4 Classical Clustering Approaches  

2.4.1 k-means 

k-means is one of the most popular method from partitioning based clustering algorithms 

and widely used in health care[35] by grouping objects when the number of clusters are 

predefined[36].One of the advantages, the squared error difference between the mean of 

the cluster and the data points in that cluster is minimized in k-means[37]. Escudero et al 

utilized the k-means algorithm for detecting the onset of Alzheimer’s Disease by clustering 

patients into pathology and non-pathology profile [38].The k-means algorithm is 

improvised to predict diseases from hemogram blood test samples by using weighted k-

means algorithm in order increase the consistency and efficiency of the clusters[39]. 

Elbattah et al[40] in his study clustered elderly patients based on age characteristics to 

detect the inpatient LOS (length of stay)[40]. 

2.4.2 k-medoids 

k-medoids or partitioning around medoids is a centroid based model, a variation of k-

means, which chooses the members established on a minimum average cost within the 

cluster to be the centroid of the cluster in the next iterations[41]. Irwansyah et el [42] 

grouped the patients with cardiovascular disease to obtain the levels of complications 

inside the clusters using k-medoids that achieved a silhouette coefficient of 0.35[43].  

Acharya [44] used k-medoids for the robust nature to noise and outliers, to obtain WBCs 

from a image[44]. 

2.4.3 Affinity Propagation 

The affinity propagation method considers the data members in a network, by exchanging 

information during each iteration continues until the presence of good set of exemplars 

and clusters. Li et al grouped a set of brain images into different cluster partitions using 

affinity propagation to identify the similarity between the images. The affinity propagation 

has the potential to determine the number of  clusters automatically[45]. Buch et al  used 

affinity propagation to cluster bacteria for the robustness of the similarity measures with 

respect to the responsibility matrix and availability matrix used in the algorithm and 

observed that affinity propagation has the capacity to examine the humongous datasets 

with a greater speed[46].  
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2.5 Novel techniques in Consensus Functions 

The final step in a clustering ensemble is the consensus function that presents the final 

clustering result from the combination of multiple clustering algorithms. Vega-Pons and 

J. Ruiz-Shulcloper introduced two approaches object co-occurrence and median partition.  

The first approach consists of consensus partition that decides which cluster labels belong 

to each object. This approach follows the voting process, where each object will vote to 

the cluster that belongs to the consensus partition. Moreover, two methods are based on 

the voting process namely Relabeling and Voting method and Co-association matrix 

method. The second approach determines the median partition which maximizes the 

similarity measures in all the partitions of a clustering ensemble [10]. The median partition 

is given by the formula in Equation 2.3, 

                      Equation 2.3 

        𝑷 ∗ = 𝒂𝒓𝒈𝒎𝒂𝒙𝑷∈𝑷𝒋
∑ 𝜞(𝑷, 𝑷𝒋)𝒎

𝒋=𝟏   

where 𝜞 is the similarity measure. The median partition is NP-hard problem studied by 

Krivanek and Moravek and Wakabayashi. Topchy et al showed the validity of both the 

approaches, the outcome of consensus depends on the clustering solution produced by the 

clustering algorithm due to which the number of partitions in the ensemble expands. There 

are diverse consensus functions introduced over the recent years. 

2.5.1 k-modes 

The study of Zhexue et al devised a clustering algorithm that could perform well and faster 

in both categorical and numeric data in larger datasets. The k-modes were an extended 

version of k-means algorithm. The main objective was to minimise the cost function of the 

clustering process by utilizing a dissimilarity measure and replacing the means of a cluster 

by mode function and use a frequency-based method to update the modes. Initially, (Huang 

1997) proposed k-prototypes which uses a dissimilarity measure for numeric attributes 

determined by the squared Euclidean distance denoted as 𝑠𝑛 and for categorical attributes 

𝑠𝑐 decides the dissimilarity measure based on the number of mismatches of categories 

between two objects [47]. Moreover, a weight is assigned to circumvent favouring of the 

types of the attribute. Zhexue et al proposed a new method which updates the categorical 
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attribute and selects the weight based on the use of average standard deviation. One of the 

greatest advantages of using k-modes is its scalable in large datasets. 

The algorithm starts by taking k initial modes and assigning the objects to the nearest mode 

which is calculated by the distance d and reforming the modes for each assignment based 

on the set theory of modes. Following that, re-assessments take place if the current mode 

belongs to another cluster, re-allocation is made and continues until no changes are 

observed in the entire dataset.  The dissimilarity measure is calculated by the number of 

mismatches between the two objects, the objects will be similar if the mismatch is less 

given by the measures in Equation 2.4 and Equation 2.5    

                 Equation 2.4  

            𝒅( X, Y) = ∑ 𝜹(𝒎
𝒋=𝟏 𝒙𝒋, 𝒚𝒋)            

                         Equation 2.5  

  where,        𝜹(𝒙𝒋, 𝒚𝒋) ={
𝟎, (𝒙𝒋 ≠ 𝒚𝒋)

𝟏,   (𝒙𝒋 = 𝒚𝒋)
      

 d (X, Y) represents the dissimilarity measure between two categorical objects. By 

introducing two methods for initial mode selection, one that frequently takes the first 

distinct objects as initial mode and the other method by calculating the frequencies of all 

categories in descending order and allocates the most frequent ones as the initial mode. 

According to the study, the k-modes performs faster and clusters larger datasets containing 

millions of objects easily. Sun et al. (2002) applied k-modes and used subsamples 

depending on the size of the dataset, where subsamples were joined to a single set for a 

solution.  Wu et al. (2007) introduced a new initialization method by using maximum 

probability by taking into account the product of density of each point[48]. 

2.5.2 Cluster-based Similarity Partitioning Algorithm (CSPA) 

One of the consensus functions that comes under the category of co-occurrence of objects 

is Cluster based Similarity Partitioning algorithm. Strehl and Ghosh developed a clustering 

ensemble by modifying the clustering labels in the form hypergraphs. Hypergraphs 

consists of edges which can connect to any set of vertices. The entries in hypergraphs is a 

binary matrix (𝑛 × 𝑛) entered by checking the two objects in the same cluster gives a 
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similarity measure 1 otherwise it outputs 0. The overall similarity matrix S is calculated 

by taking the average of the entries in the same cluster given by the formula in Equation 

2.6, 

                  Equation 2.6 

                    S = 
𝟏

𝒓
 𝑯𝑯𝑻   

where S is the similarity matrix and r are the number of clustering and re-allocation of 

clusters takes place by similarity based clustering algorithm METIS. It is the simplest 

approach and quadratic in complexity and storage. The study of Faisal et al [49] used 

CSPA to improve the functionality of chemical structures in drug data report using 

consensus clustering. They used individual clustering algorithms with six distance 

measures for different threshold values to form a six-ensemble approach. The study 

concluded that CSPA works to produce stable clusters by reducing sensitivity to outliers 

in comparison with the other methods. 

2.5.3 Link-Based Cluster Ensemble (LCE) 

The study of Iam-on et al[29] designed link-based similarity measure to define a clustering 

ensemble. The link-based similarity matrix was used to improve the similarity values 

between the data points and will be created from the base clustering. Iam-on at al used 

various similarity measures namely Connected–Triple-based similarity (CTS), SimRank 

based similarity (SRS) and Approximate SimRank based similarity, an enhanced version 

of SRS. These similarity measures provide inherent relationships which is not possible 

with co-occurrence strategy. The connected triple (CTS) method was developed by Klink 

et al to evaluate the duplicates between the author names[50]. In the analysis of linking 

two authors, it consists of a graph (V, E) where each vertex coincides with an appropriate 

name and the edges join the two authors based on the information of the publication and 

calculated by the similarity measure in terms of connected triples. The SimRank (SRS) 

was initiated by Jeh and Widom and proposed as the standard method. The concept of 

similarity is based on the presumption that the neighbours are alike if their neighbours are 

similar. The bipartite graph includes a set of vertices V representing both the data points 
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as well as the clusters in the ensemble, whereas E is a set of edges between the clusters 

and data points to which they are allocated to it. 

The SRS matrix is the similarity matrix indicates the similarity between any two clusters 

or data points in the ensemble, given by the formula in Equation 2.7, 

                   Equation 2.7 

          SRS (a,b) =       
𝐃𝐂    ∑ ∑ 𝑺𝑹𝑺(𝒂′,𝒃′)𝒃′𝝐𝑵𝒃𝒂′𝝐𝑵𝒂

|𝑵𝒂||𝑵𝒃|
  

where DC denotes constant decay factor ranging (0,1] constituting the data points 

connected to the set of vertices. Moreover, the recent studies of  Iam-On & Boongoen, 

includes the data analysis of microarray experiments that works on feature transformation. 

2.5.4 Latent Class Analysis (LCA) 

Latent class analysis was designed for observing multivariate categorical  data[51]. It is 

mainly used to observe the statistics of unobserved groups in the data [14]. The algorithm 

has been carried out in variety of use cases in categorizing responses in public opinions 

surveys, individual-level voting data, consumer behaviour and decision making by 

clustering similar use cases and understanding the examination of the distribution[51]. 

Niels in his study recognized that LCA was utilized to inspect the unobserved target-

categories in a marketing firm by observing the diverse attitude structures of customers on 

the decision making in order to purchase any item [14]. The LCA represents a finite 

mixture model that considers the distribution of components as a multi-way cross 

classification in which all the variables are mutually independent[51]. The latent variables 

could be only inferred indirectly from other variables through a mathematical model that 

is observed. Dayton and Macready in their study, examined the responses received on a 

matrix algebra test, where the latent variables correspond to the knowledge of the matrix 

algebra of students and the latent classes indicate the masters and non-masters on matrix 

algebra. With respect to class membership, the conditional probabilities help identify 

various possibilities of certain answers are selected. The observed variables act statistically 

independent with each latent class. Drew et al introduced Polytomous Variable Latent 

https://www-sciencedirect-com.ezproxy.library.dal.ca/science/article/pii/S0957417415004534#b0140
https://www-sciencedirect-com.ezproxy.library.dal.ca/science/article/pii/S0957417415004534#b0140
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Class Analysis which utilizes the maximum likelihood estimates of the model parameters 

in the EM and Newton-Raphson algorithms given by the condition in Equation 2.8. 

                          Equation 2.8 

   𝐈𝐧 𝐋 = ∑ 𝐥𝐧𝐍
ⅈ=𝟏 ∑ 𝐩𝐫

𝐑
𝐫=𝟏 ∏ ∏ (

𝐊𝐣

𝐤=𝟏
𝐉
𝐣=𝟏 𝛑𝐣𝐫𝐤)𝐘ⅈ𝐣𝐤  

where J represents the polytomous categorical variables otherwise called as manifest 

variables containing Kj  with j  possible outcomes, Yijk  constitutes the values observed in 

J manifest variables, 𝜋𝑗𝑟𝑘stands for class-conditional probability, 𝑝𝑟 indicating the prior 

probabilities of latent class membership[51].Vidden, Vriens and Chen used latent class 

model to recover the identity of cluster members and stability to recognize the accurate 

number of clusters than the K-means clustering algorithm[52]. 

2.5.5 Majority Voting 

Ayad and Kamel suggested a relabeling and voting technique for solving a correspondence 

problem that appears when the consensus is partitioned. One of the main issues faced is 

the label correspondence that constructs the unsupervised combination to be difficult[10]. 

By analysis, the voting strategy and bipartite scheme could be applied to hard or soft 

ensembles[53].In most of the cases, an iterative pairwise relabeling is employed in voting-

based aggregation problem[54]. Dudoit and Fridlyand proposed a type of consensus which 

is similar to plurality voting in classifier ensembles[53]. Fischer and Buhmann 

[54]discussed the plurality voting for choosing the winning cluster for each object. 

Dimitriadou et al obtained a voting algorithm by reducing the squared-distance criteria 

between an ensemble of hard or fuzzy partitions and optimal fuzzy consensus [54]. 

The main idea is to permute the cluster labels such that best consensus between the cluster 

labels of two partitions is obtained and  all the partitions should be relabeled according to 

a fixed reference partition from the ensemble[55].They introduced a new strategy in which 

a voting works as a multi-response regression problem and bipartite matching. The 

cumulative voting introduced in [54] works as a linear regression problem. The main 

function of cumulative voting follows two approaches relabeling and aggregation of the 

consensus partition. In relabeling, the most appropriate relabeled partitions  is  taken, the 
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problem was viewed as supervised learning problem with continuous response variables 

leading to soft relabeled partition[53]. 

In aggregation, the ensemble partition is run multiple times with random ordering, in 

which Ayad and Kamel proposed two algorithms namely bVote and Ada-cVote. 

Moreover, Ada-cVote performs well and saves computational time than bVote. The study 

was applied on three artificial datasets and three real datasets namely Yahoo, E. coli 

proteins and LandSat in which Ada-cVote achieved greater accuracy when compared with 

other ensembles such as CSPA, MCLA and HGPA. 

2.6 Performance Metrics 

2.6.1 Cumulative Distribution Function (CDF)  

Monti et al study initiated to evaluate the stability of clusters, as well as to obtain the 

optimal number of clusters in consensus clustering by taking a consensus distribution with 

the help of a histogram from consensus matrix. The histogram produces two bins 0 and 1 

for good consensus clustering, which in turn plotted as an empirical cumulative 

distribution (CDF) ranging between 0 and 1 given by the formula in Equation 2.9, 

                 Equation 2.9 

           CDF(c) =  
∑ 𝟏𝒊<𝒋  { 𝑴(𝒊,𝒋)≤𝒄 }  

𝑵(𝑵−𝟏)/ 𝟐
  

where 1{. . .} represents the indicator function, M (i, j) illustrates the consensus matrix (i, 

j) and N delineates the number of rows and columns of M.  The CDF graph curves 

illustrates a step function across 0 and a flat line passing between 0 and 1, and a second 

step function around 1. If the curve gradually climbs and constitutes a different a shape, 

then the clusters formed lacks the characteristics of stability. If the CDF curves forms a 

shape of bimodality, it estimates the presence of significant clusters. 

2.6.2 Proportion of Ambiguous Clustering (PAC) 

The study of Monti et al examined the optimal number of clusters in consensus clustering. 

But the method lacked sensitivity and specificity in assessing the optimality of clusters. 

Senbabaoglu extended the study by introducing a new metric called the Proportion of 

ambiguously clustered pairs (PAC) which evaluates the optimal number of clusters and 
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the stability.  The assessment of cluster strength is quite difficult in a hypothesis testing 

framework because of the unique covariance structure, and the other factors such as 

sensitivity and specificity that influence the cluster results[56]. According to the study, 

they introduced a condition in which all pairs of samples, the calculation of consensus rate 

defines the frequency in which a pair of samples is clustered together in multiple cluster 

runs with each run occurring with certain possibility of degree of permutation taken by 

random initialization.  

The main hypothesis of this study is that there exist well separated and stable clusters for 

the true K value taken from the different subsamples and the visualization was illustrated 

in the form of consensus heat map. They introduced four methods for finding the optimal 

K value namely Cumulative Distribution function, the area of change under the CDF curve 

upon an increase of K, GAP statistic and CLEST. The GAP statistic method was used to 

determine the optimal number of clusters by taking the consideration of log(Wk) and 

differentiating with null distribution[33]. On the other hand, CLEST method estimates the 

number of clusters based on resampling technique, specifically designed for forecasting 

the cluster assignments[31]. Out of which, they chose the CDF curve method that predicts 

the true value K and performs well than the other metrics. In CDF curve of a consensus 

matrix, predicted the portions with samples of pairs that were hardly clustered in lower 

left side whereas the upper right side was always clustered together. The co-assignments 

appear in the middle portion for different cluster runs. The existence of a flat line in the 

middle segment stands for the true K, become ambiguous for a rare number of sample 

pairs observed. The PAC value is calculated using consensus index that refers to the 

fraction of sample pairs with values ranging in the intermediate sub-interval (x1, x2) g [0, 

1] [56]. The lowest possible PAC value indicates the optimal value of K showing the flat 

line segment that appears in the middle proportion. Merely, the PAC outperformed well 

than the other methods when checked with simulated dataset. But no method is commonly 

the best according to the study. 

2.6.3 Internal Evaluation Indices  

Jain et el proposed the internal evaluation criteria for final data partition when the true 

cluster labels are not known by assessing the quality of a data partition based on the 
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quantities and features assumed from the data[29].The evaluation is more reliable and 

provides efficiency in various scenarios as it does not use reference labels which is not 

possible to acquire in some cases. Assessing the quality of a clustering ensemble depends 

on the final data partition produced by the ensemble. The main factors that influence the 

internal evaluation indices are Compactness, Dunn index, Silhouette, Calinski Harabarz 

and Connectivity. 

2.6.3.1  Compactness 

In the study of Nguyen and Caruana[29] (2007) describes compactness as inherent 

property that measures the average distance between every pair of data points, which lie 

in the same cluster[29], the data points in the cluster will be close to each other which is 

given by the formula in Equation 2.10, 

               Equation 2.10 

  CP (𝝅 ∗) =  
𝟏

𝑵
 ∑ 𝒏𝒌 𝑲

𝒌=𝟏 ( 
∑ 𝒅(𝒙𝒊,𝒙𝒋)𝒙𝒊𝒙𝒋∈𝑪𝒌

𝒏𝒌(𝒏𝒌−𝟏)/𝟐
)  

where N represents the total number of data points in the data, K indicates the number of 

clusters, and 𝑛𝑘 is the number of data points belonging to the k-th cluster and 𝑑(𝑥𝑖,𝑥𝑗) 

denotes the distance between the data point 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 . The compactness value should be 

low as possible for better clustering results. 

2.6.3.2  Dunn Index 

Dunn introduced the Dunn index to recognize the compactness and well separated 

clusters[29] given by the condition Equation 2.11, 

                   Equation 2.11 

      D = 
𝐦ⅈ𝐧𝒊 𝒎𝒊𝒏𝒋( 𝒎𝒊𝒏𝒙∈𝑪𝒊,𝒚∈𝑪𝒋  𝒅(𝒙,𝒚))

𝒎𝒂𝒙 𝒌( 𝒎𝒂𝒙𝒙,𝒚∈𝑪𝒌  𝒅(𝒙,𝒚))
  

The larger the value of Dunn index indicates optimal clusters as it takes the inter-cluster 

separation and intra-cluster compactness[57]. 
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2.6.3.3  Silhouette Index 

Rousseeuw et al[41] proposed silhouette index that depicts the closeness of well separated 

clusters. Silhouette index indicates the average distance to objects in the same cluster as 

well as the distance to the objects in the alternate clusters. The silhouette index is 

calculated as in Equation 2.12 [58], 

                      Equation 2.12  

          𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥 {𝑎(𝑖),𝑏(𝑖)}
 

The silhouette range lies between -1 and 1, high values represent good clustering with no 

overlaps between the clusters. In terms of convex clusters, silhouette score is low. The 

silhouette index is to be maximized for forming well separated clusters. 

2.6.3.4  Calinski Harabasz 

The Calinski Harabasz takes into account compactness and separation parallel within the 

cluster sum of squares[57]. Its ratio of separation by compactness where the degree of 

separation inspects the cluster centre extends and how the in-cluster objects are close to 

the cluster centre[57]. The CH index  is calculated by the separation metric in the Equation 

2.13[58]. 

                     Equation 2.13 

                          𝑪𝑯 =

𝑺𝑺𝑩𝑴

(𝑴−𝟏)
𝑺𝑺𝑬𝑴

(𝑴)

 

Higher the value of this index provides better compactness and separation. Calinski 

concludes that the index presents better execution and prohibits the common errors in 

centroid based clustering models. 

2.6.3.5  Connectivity  

Connectivity defines the neighbouring data items that share the same cluster[59]. Handl et 

el in his study proposes that the index is used for clustering algorithms of arbitrary shapes 

and provides a degree partitioning that captures the local densities and number of items 

grouped together in the data with the nearest neighbours. Connectivity is given by 
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                    Equation 2.14 

                   C = ∑ ∑ 𝒙𝒊,𝒏𝒏𝒊(𝒋)

𝑳
𝒋=𝟏

𝑵
𝒊=𝟏   

 The connectivity index should be minimum as possible having a value between 0 and 1. 

2.7 Feature Extraction Techniques  

Feature extraction is an essential step for handling high dimensional data. In a medical 

dataset, a large number of features are found in a gene expression data, clinical scores and 

medical imaging. Feature reduction aids in solving the curse-of-dimensionality problem 

by reducing the redundant features, noise and avoids over-fitting, improves the accuracy 

in a machine learning model[60]. The use of feature extraction in clustering is influential, 

because it’s easier to find clusters in low-dimensional space, but it’s quite challenging to 

discover the clusters in a high dimensional space due to existence of highly skewed and 

sparse data[61]. As the number of features increases, it’s harder to understand the 

patterns[62].One of the primary purposes of dimensionality reduction is to decrease the 

computational complexity in data pre-processing and extract useful features with no prior 

loss of information[63]. 

2.7.1 Linear and Non-linear Dimensionality Reduction Algorithms  

Dimensionality reduction is a extensively used approach to find interpretable 

representations of data in low dimensional space that are projected from high-dimensional 

spaces[64]. The use of dimensionality reduction algorithm is influential in medical 

applications, as the data is often dealt with high dimensional data consisting of proteomic 

data, raw hospital records and medical images [65]. Maaten et al[66] proposed a taxonomy 

and divided dimensionality algorithms into convex and non-convex dimensionality 

reduction algorithms based on local optima criteria. Friedman in his study, points that 

dimensionality reduction algorithms may help in predictive modelling draws on the bias 

and variance trade-off in predictive error. The latent structure in the data could be 

visualised by the algorithms [67]. 

Many dimensionality reduction algorithms have emerged with linear dimensionality 

algorithms with popular being principal component analysis and classical metric 

multidimensional scaling whereas non-dimensionality reduction algorithms with 
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Sammon’s nonlinear mapping and auto-encoders. With non-linear dimensionality 

reduction algorithms, the concept of manifold learning tries to reduce the dimension 

without disrupting the topological properties of the data. 

2.7.2 Principal Component Analysis (PCA) 

PCA is a widely used techniques in feature reduction algorithms. Zhang et al in his clinical 

studies containing electronic healthcare records (EHR) consisting of large number of 

variables used PCA to solve the multi-collinearity problem[68]. Laura and Matthew 

utilized PCA for demonstrating the variance of a normal tissue cDVHs with the first 

principal component showing the large variation.[69]. PCA is utilized for reducing a huge 

set of correlated variables to a less number of uncorrelated components[70]. Rohan and 

Amarda suggested the performance of PCA was better when compared with other 

dimensionality reduction algorithms using the metrics such as Trustworthiness, LCMC 

and Continuity for the de novo protein structure[71].  

2.7.3 Isomaps 

In order to overcome the shortcomings of spatial metrics, geodesic distances were 

initiated[63]. The most important feature of Isomaps is it replace the conventional distance 

measurement, such as Euclidean distance between data points in the input space, with the 

geodesic distances[72]. Zhang et al utilized Isomaps in mining the gene expression data of 

lung cancer and pathological dataset of breast cancer data its performance was tested using 

residual variance. Though isomaps executed well, the projections of the non-linear axes 

produced is more complex and the clinical decision depends on medical 

experts[72].Isomaps have immensely helped in reducing dimensions of EEG signals which 

consists of recordings of electrical signals[73]. 

2.7.4 Deep Autoencoders 

Auto-Encoders  are unsupervised learning model comprises of single-layer neural network 

that transforms the input into a compressed representation by trying to minimize the 

reconstruction errors in the network between input and output values[74].Ahmad and 

Mehmet developed a deep sparse auto-encoder model to understand 

medical waveform datasets with differing dimensionality in Epilepsy Serious Detection, 

https://www.sciencedirect.com/topics/engineering/waveform
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SPECTF Classification and Diagnosis of Cardiac Arrhythmias.[75]. Suk and Shen 

introduced a stacked auto-encoder with latent feature representation because of the 

existence of non-linear patterns in the relationship of features in the diagnosis of 

Alzheimer disease.[76]. In summary, deep auto-encoders play significant role in image 

analysis of medical applications.  

2.8 Quality Assessment Metrics 

There are variety of methods for assessing the quality and the evaluating the performance 

of dimensionality reduction algorithms. Two approaches have been followed in preserving 

the dimensions namely local and global approaches. 

Though linear and non-linear dimensionality algorithms have emerged for the purpose of 

manifold learning but assessing the Non-linear dimensionality reduction (NLDR) 

techniques requires the preservation of topological properties. The reconstruction error 

acts as a universal measure, this property is possible with PCA and non-linear auto-

encoders[77]. In order to evaluate the faithful embeddings as well as preserve the structure 

while reducing into low dimensional space from high dimensional space produced by LDR 

and NLDR techniques, a rank-based criteria was proposed. 

2.8.1 co-Ranking 

Lee and Verleysen introduced a metric called the co-Ranking, where the distance is 

calculated from every pair of data points in a low dimensional space from a high 

dimensional space. In the study, this criterion takes K –ary neighbourhoods are the 

outcomes from ranking the distance measures between every pair of data points found in 

high dimensional space and low dimensional space for different values of k [77].  

The structure of the data is defined by the neighbours, the relationship between the 

neighbourhoods and their similarities[78].  The co-ranking is defined by Lee and 

Verleysen in Equation 2.15 and Equation 2.16, 

                   Equation 2.15 

    𝒒𝒌𝒍 = |{(𝒊, 𝒋): 𝒑𝒊𝒋 = 𝒌 𝒂𝒏𝒅 𝒓𝒊𝒋 = 𝒍}|        
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                     Equation 2.16   

                 Q = [𝒒𝒌𝒍]𝟏≤𝒌,𝒍≤𝑵−𝟏  

where Q is a co-Ranking matrix, 𝑝𝑖𝑗 represents the rank matrix in the high dimensional 

space and 𝑟𝑖𝑗 indicates the rank matrix in low dimensional space from xi and xj. The errors 

are found in the non-diagonal entries of co-ranking matrix after the process of 

dimensionality reduction process and defines two terms in the matrix namely intrusion and 

extrusion. The intrusion indicates the positive rank error where the number of points enters 

a neighbourhood erroneously[54,60]. On the other hand, extrusion is called the negative 

rank error specifying the number of points exiting the neighbourhood wrongly[54,60]. 

co-Ranking has been useful in providing 3D representation of high dimensional feature 

space extracted from the data and provide the user the base of exploratory data analysis 

for visualization based approach in Earth observation data[78]. 

2.8.2 Area under RNX Curve 

Lee and Verleysen initiated a new criteria called RNX, that constitutes the neighbourhood 

preservation of K-th nearest neighbours with random point distribution which depicts a 

value between 0 considered as random embedding and 1 as a perfect embedding. In the 

study, Lee introduced the metric the total area under the RNX graph (AUC) to assess the 

average quality of DR on all scales with most appropriate weights higher the value of 

AUC, better the working of the DR algorithm. Lee et al tested the measure in different 

dimensionality reduction algorithms and classical Multidimensional Scaling(MDS), Non-

metric Multidimensional Scaling(NMDS)[79], Curvilinear Component Analysis (CCA), 

Stochastic Neighbour Embedding (SNE), Neighbour retrieval and visualisation (NeRV), 

and Jensen-Shannon embedding (JSE) performed better in preserving mid- to small-size 

neighbourhoods[80]. 

2.8.3 Local Continuity Meta-Criteria (LCMC) 

Chen et al proposed the Local Continuity Meta Criteria which is defined as the average 

size of the overlap of K-nearest neighbourhoods in the configuration of  high-dimensional 

data and the low-dimensional data[81]. The LCMC reaches 100% when the number of 

nearest neighbours is high and higher the size of the expected overlap, in addition, higher 
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the values of LCMC with less number of neighbours produce faithful embeddings in high 

dimensional space[71].  Rohan and Amarda utilized LCMC in five dimensionality 

algorithms such as PCA, Isomaps, LDFMap, KPCA and LLE for differentiating near-

native from non-native structures predicted from de novo structure[71]. 

2.9 Summary 

In summary, a complete background study and related conventional approaches for 

clustering ensemble is discussed. At first, an introduction of a cluster ensemble and its 

applications of various backgrounds they have been applied and explored. Moreover, an 

overview of clustering ensemble process i.e. different generation techniques is possible 

with clustering ensembles, in the overall studies, one of the significant ones analysed in 

the literature are homogeneous, heterogeneous ensemble models. Following that, the data 

has been subsampled or resampled and run multiple times for checking the cluster stability 

before feeding into the consensus functions. With respective to find an optimal k value in 

consensus clustering using cumulative distribution, and introduction to Proportion of 

ambiguous clustering and performance metrics for evaluating clustering ensembles. 

Next, a detailed review of different consensus functions with their functionalities to handle 

enormous datasets and their implementation apparent in diverse fields. According to the 

studies, each consensus function has a unique role i.e. k-modes and LCA has the ability to 

manage humongous amount of categorical data and hypergraph based ensembles such as 

CSPA to utilize knowledge reuse framework for joining the consensus partition. 

Feature extraction algorithms play vital role in reducing the dimensions effectively, before 

feeding the data to a clustering algorithm.  From the studies, we summarize linear and non-

linear dimensionality reduction algorithms such as PCA, Isomaps and Deep auto-encoders, 

where PCA execute superior in some medical applications whereas stacked deep auto-

encoder perform well in the image analysis and depicting the behaviour of electric wave 

signals in EEG, Isomaps helps in understanding the manifolds of the data by preserving 

the topological structure. 

Lastly, the quality assessment of feature extraction algorithms, we initiated a rank based 

criteria to evaluate the embedding formed in the low dimensional space from a high 
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dimensional space. Moreover, co-Ranking aids in recognizing the data ranked and 

according to the study, they have been effective in visualizing 3D images when projected 

from high dimensional space.  
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CHAPTER 3 METHODOLOGY 

This chapter presents our methodology followed to achieve our research objectives.  

Figure 3.1 illustrates our overall methodology. The methodology was divided into four 

phases, starting with the data preparation of the cohorts, extracting the meaningful features 

from the feature extraction process, assessing the best dimensions and comparing the 

different feature extraction algorithms, employing the reduced features to the formation of 

cluster ensembles, and the evaluation of the ensemble. 

 

  Figure 3.1. An overview of the methodology 

PHASE 1—Data Preparation: The pathology dataset spans six years. We divided the data 

into three time cohorts namely 1-year from, 2-year and 6-year for observing the seasonal 

changes among the physicians. The pathology dataset encompasses of different age 

groups, laboratory tests and disease information of the patients. In this phase, we also filter 

the unwanted features and standardize the features in the dataset.  

PHASE 2— Feature Extraction: In the feature extraction phase, we applied three feature 

extraction algorithms namely PCA, Isomaps and Deep Autoencoders, one to analyse the 

dataset with projection related to linear and non-linear dimensionality reduction with PCA 

acting as a baseline in linear and two non-linear dimensionality reduction algorithms such 

as Isomaps and Deep auto-encoders. Moreover, we assess the quality of the three 
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algorithms using three quality measures in this phase and two preeminent techniques with 

the best feature set was taken to the clustering ensemble phase.  

PHASE 3—Ensemble Clustering: This phase involves developing the ensemble clustering 

model using the features from the previous phase. We selected and used only centroid 

based clustering models namely k-means, k-medoids and affinity propagation as they are 

suited for the dataset. We applied five consensus functions to combine the three algorithms 

to build a robust cluster ensemble model. 

PHASE 4—Cluster Evaluation: In this phase, we evaluate the ensemble clustering output, 

finding the optimal k- cluster value using internal evaluation indices and proportion of 

ambiguous clustering (PAC). We visualized the resulting cluster of physicians for all three 

time-cohorts using t-distributed stochastic neighbor embedding(t-SNE) as a two 

dimensional plot. 

3.1 Cohort Preparation 

The pathology dataset comprises of six years of data commencing from 2012-2017. It 

provides information about the laboratory test orders and patient’s diagnosis information 

which is significant to determine the physician’s case-mix. Abidi et al in their studies, took 

the specified test orders that are ordered to indicate the presence or absence of specific 

disease by considering that the physicians will consequently order more tests related to 

those diseases as well as the results of the test will affirm that patient suffering from the 

particular disease is consulted by the physician[1]. We performed a test-disease mapping 

between 15 pathology laboratory tests and 27 diseases over the span of 6 years. The main 

reasons for splitting the dataset into time cohorts was to determine the test ordering 

behaviour of the physicians over time, and whether this behaviour is consistent over time 

or subject to seasonal influences. We also were interested in examining whether the peer 

groups remain consistent across time or is there a pattern of change that is worth 

investigating further. 

3.1.1 Dataset 

In order to comprehend the similarities of the physician ‘s case mix among the peers over 

a period of time, the dataset was partitioned into three cohorts of 1-year, 2-year interval 
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and 6 –year interval. This segregation of the data aids to recognize whether the test 

ordering behaviour of the physicians coincides with the peers across the given period of 

time. During this time period, the dataset comprises of 15 laboratory tests and 27 disease 

information. 

There are about 15 laboratory tests such as CBC, PT, Electrolyte Panel, Glucose AC, 

Creatinine, Alkaline Phosphate, GGT, ALT, AST, Triglycerides, Cholesterol, HDL 

Cholesterol, TSH, Urea and Glucose Random. Table 3.1 illustrates the 27 disorders which 

were mapped from the test orders. 

           Table 3.1 Disorders 

Hemolytic Anemia Bleeding Disorder Diabetes ketoacidosis 

Hemorrhagic Anemia Kidney Disorder  Hypoglycemia 

Iron Deficiency Anemia Liver Biliary Disorder Hemodilution SIADH 

Vitamin B12 Folate 

Deficiency 

Addison Disease Metabolic Bone 

Disease 

Bone marrow Failure Thyroid Disorder  Low Muscle Disease  

Polycythemia Vera Lung Disorder  Muscle Injury 

Hemolysis 

Lymphoma Dehydration Parasitic Infection 

Allergy 

Leukemia Mineralocorticoid Excess 

Disorder  

Inflammatory 

Conditions  

Thrombocytopenia Diabetes mellitus Cardiovascular Disease  

 

Initially, the number of test orders were split into four categories namely Normal, 

Abnormal, Unknown and ALL orders. A threshold value is set to decide if the order is a 

Normal test order or Abnormal test order. All the tests go to “Unknown” category if there 

is no threshold value to select if its normal or abnormal. Similarly, the diseases are derived 

from the test types where tests have a result i.e. (Normal or Abnormal) and were 

categorized into Normal, Abnormal and Unknown based on the test order category. 
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Consequently, the ALL category consists of the sum of Normal, Abnormal and Unknown 

order. Table 3.2 represents the other features present in the dataset apart from the test 

orders and disease information and provides the classification of different age groups and 

the gender attributes of the patient case-mix. 

 Table 3.2 List of features present in the pathology dataset 

PMB ID  NB Order Female 

NB Order NB Order Male 

NB Order 0-18 NB Order Ratio 0-18 

NB Order 19-30 NB Order Ratio 19-30 

NB Order 31-50 NB Order Ratio 31-50 

NB Order 50-65 NB Order Ratio 50-65 

NB Order 66 above NB Order Ratio 66 above 

NB Order Female Ratio NB Order Age_min 

NB Order Male Ratio NB Order Age_max 

NB Order Age_mean NB Order Age_median 

 

3.1.2 Cohort Separation 

Table 3.3 provides the separation of time-cohorts. In the first cohort, the test orders were 

treated and separated as an individual year on a yearly basis. With respective to the second 

cohort, the data was segregated on a 2-year period merged together with 2012-2013 versus 

2014-2015 versus 2016-2017 with no overlaps between them.  

The main reason was to observe the behaviour of the physician’s ordering by considering 

the first two years together and then the next two years, which constitutes to analyse the 

changing effects in different time periods.  

           Table 3.3 Separation of time cohorts based on physician’s patient case-mix  

Time-cohorts  Year 

 2012 
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1st Cohort  
2013 

2014 

2015 

2016 

2017 

 

2nd Cohort  

2012-2013 

2014-2015 

2016-2017 

3rd Cohort  2012-2017 

            

The third cohort represents the overall study of six years indicating the physicians 

occurring together for all the six years. The ensemble clustering was implemented for all 

the three time-cohorts i.e. on a yearly based, 2-year based and 6-year based partitions. 

3.2 Data Pre-processing 

3.2.1 Null column deletion 

Firstly, the data was dealt with some unwanted rows and columns. Before the cohort 

separation, there were some universal columns to be removed indicating null values from 

all the tests and disease information observed under the three categories Normal, 

Abnormal and Unknown. Most of the columns, with the respect to the “Unknown” 

category with both test orders and disease information will be removed from the entire 

analysis as it never contributes nor declared as normal or abnormal. Likewise, the ‘ALL’ 

category will be filtered out since it’s the sum of all three categories. Furthermore, the 

other features such as the pmb id, age min, age max, age mean will be removed, only age 

median will be used.  The rest of the columns that were removed under Normal and 

Abnormal test orders from all the six years were Triglycerides, HDL Cholesterol, and 

Cholesterol. From the disease information, the Cardiovascular disease was refined from 

the both the test orders, indicating null values present in both columns. After the cohort 
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separation, from the overall study of six years, there only 26 diseases and 12 tests orders 

were taken into analysis to the feature extraction process. In the remaining cohorts with 

respective to first and second cohort, there were some null columns still present in the test 

orders and disorders were filtered as it does not aid the analysis in the next phase. During 

the first two years of 2012 and 2013, the test order Glucose Random was removed. 

Following the next two years, the test ordering was carried out with 12 test orders. During 

the last two years, the column electrolyte panel test was discarded due to presence of null 

values that leads to 11 test orders in total, this test removal has concluded by taking only 

25 diseases in the last two years, i.e. Mineralocorticoid Excess Disorder was also excluded 

because of null values present in it, in addition, age group 0-18 was only discarded, 

because of the presence of null values in the last two years of 2016 and 2017. 

After the removal of null columns from the number of test orders in each time-cohort, the 

resultant test orders from (Normal and Abnormal) were left with 11 and 12 test orders in 

total. Table 3.4 shows the total number of laboratory test orders and disorders found in 

different time cohorts, the number of Normal and Abnormal test orders, Normal and 

Abnormal Disorders available in 1-year, 2-year and 6-year interval from 2012 to 2017.  

            Table 3.4 Laboratory test orders and disorders on different time-cohorts  

Time-cohorts  Year Normal 

Test 

Orders  

Abnormal 

Test 

Orders 

Normal 

Disorders 

Abnormal 

Disorders 

 

1st Cohort  

2012 11 11 26 26 

2013 11 11 26 26 

2014 12 12 26 26 

2015 12 12 26 26 

2016 11 11 25 25 

2017 11 11 25 25 

 

2nd Cohort  

2012-2013 11 11 26 26 

2014-2015 12 12 26 26 
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2016-2017 11 11 25 25 

3rd Cohort  2012-2017 12 12 26 26 

 

3.2.2 Removal by Criteria  

In the first cohort, there were many physicians with less number of test orders, hence this 

confers that they received less number of patient case mix with disease information. We 

cleared the number of physicians who had placed less than or equal to five orders, which 

aids the next phase. Specifically, this condition occurs only in the first cohort, but not in 

the second or third cohort because we are considered two or six years together.  

3.2.3 Variance Threshold 

This technique was used to filter the features of low variance to improve the performance 

of the model in the next phase. In this dataset, the ratio feature of different age groups and 

gender information was present namely NB Order Ratio 0-18, NB Order Ratio 19-30, NB 

Order Ratio 31-50, NB Order Ratio 50-65, NB Order Ratio 66 above, NB Order Male 

Ratio, NB Order Female Ratio. All these features had a low variance score of less than 1. 

In order to discard these features, we use the scikit-learn package Variance Threshold 

library. After experimenting with different threshold values, we finalized the cut-off value 

to be 0.6 in the three time-cohorts. The features that fall under the particular threshold 

value were removed. As the feature selection filter method was applied on all the three 

cohorts, it filtered the seven attributes that holds ratio information of variance less than 1. 

Finally, after removing the unwanted features and rows by criteria, Table 3.5 Provides the 

feature set to be used in the feature extraction process. All the features found were 

continuous in nature. Table 3.6 illustrates the number of features present in each cohort 

after pre-processing the data.  

              Table 3.5    Main Feature Set 

Features Description 

NB Order Continuous 

NB Order Patient Age Median Continuous 
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NB Order Age group 0-18 Continuous 

NB Order Age group 19-30 Continuous 

NB Order Age group 31-50 Continuous 

NB Order Age group 50-65 Continuous 

NB Order Age group 66+ Continuous 

NB Order Sex Male  Continuous 

NB Order Sex Female Continuous 

NB Order Normal Test Orders Continuous 

NB Order Abnormal Test Orders Continuous 

NB Order Normal Disorders Continuous 

NB Order Abnormal Disorders Continuous 

     

  Table 3.6  Feature set in three time-cohorts 

Time-cohorts  Year Number of features 

 

 

 

1st Cohort  

2012 83 

2013 83 

2014 85 

2015 85 

2016 80 

2017 80 

2nd Cohort  2012-2013 83 

2014-2015 85 

2016-2017 80 

3rd Cohort  2012-2017 85 
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3.2.4 Standardization 

The next pre-processing step was to standardize the features with zero mean and standard 

deviation 1 which is a suitable scaler to be applied for dimensionality reduction algorithms. 

The scikit-learn Standard Scaler library was implemented, and the features were 

standardized with the distribution of mean value around 0 and standard deviation as 1.  

3.3 Feature Extraction 

Feature extraction has the potential to increment the performance of the learned models 

by extracting features from the input data[82]. With the huge amount of data which 

primarily leads to the problem called the curse of dimensionality that occurs due to the 

increase in demand for processing and storage requirements[83]. The general framework 

of this phase is to reduce the dimensionality of data by eliminating the redundant data and 

with minimal information loss after the transformation[82,83]For the purpose of 

understanding the features of the data, and to project the data from a high dimensional 

space, there are two ways to present them by ensuring that the original features fall under 

the category of linear combinations or if there exists a non-linear relationship among the 

variables. In this dataset, there are many relevant features that include test orders, disease 

information, and other features related to age and gender. Moreover, it is difficult to obtain 

whether the features form linear or non-linear relation. So, we experimented three feature 

extraction algorithms namely PCA, Isomaps and Auto-encoders, one deals with linear 

dimension and other two algorithms represent non-linear dimensions. John A. Lee et al. 

provided a different taxonomy of DR-FE techniques [62] of evaluating the reduced 

dimension by keeping the shape of the geometry, the local properties and neighbourhood 

information of the data. 

3.3.1 Principal Component Analysis (PCA)  

PCA-based feature extraction authorizes to reduce the dimension into limited number of 

components from a large number of features[84]. Interestingly, PCA-based feature 

extraction has been implemented in many medical applications that involves the diagnosis 

of valvular heart diseases[85], a medical segmentation technique using 3D Discrete 

Wavelet Transform [86]. 
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We implemented PCA-based feature extraction as a baseline method and compared with 

the other non-linear dimensionality reduction methods to conclude the results. Table 3.7 

presents the parameters used for PCA. 

              Table 3.7 Parameter for PCA 

Parameters  Default values  Optimized values  

n_components    2 10, 15, 20  

whiten false false 

svd_solver auto auto 

 

We utilized the scikit-learn implementation as it provides various parameters for checking 

the dimensionality and explains the cumulative variance of the principal components. A 

scree plot provides the information about the variability of each principal component. For 

selecting the best number of components, we plot the cumulative variance on a graph, 

which gives the information of the explained variance ratio. We start with the cut-off value 

95 % of the variance as it covers 10 principal components. At last, three dimensions were 

chosen till it reaches a maximum variance of 99% resulting in 15 components and with 

99.8 %, the PCA was able to capture 20 principal components. The parameter svd_solver 

is set to ‘auto’ based on the shape and number of components to reduce to the lowest 

dimension. We used the svd_solver in the scikit-learn package that illustrates the linear 

dimensionality in PCA. The parameter whiten was set to false because it removes some 

information from the transformation.  

3.3.2 Isomaps 

Isomaps is one of the non-linear dimensionality reductions method that operates on by 

preserving the distances of the underlying data. Furthermore, the data present may contain 

essential multiple nonlinear relationships between features that cannot explained by linear 

models[63]. Antonio and Santiago described that Isomaps were proposed in order to 

overcome the shortcomings of spatial distances[63] and the use of Euclidean distances 

could not indicate their intrinsic similarity as well as its not appropriate for obtaining the 

embedding[87].  



48 
 

From a diverse set of NLDR techniques present in the literature that depend on less 

geometric concepts and prefer to use other distance measures. We selected Isomaps as it 

uses geodesic distances and extends the classical Multidimensional scaling method. Table 

3.8 presents the parameters for Isomaps. 

              Table 3.8  Parameter for Isomaps 

Parameter Default values  Optimized values  

n_components    2 10,15,20,32 

neighbours   5 20,25,30,35 

metric Minkowski Minkowski 

max_iter None 30 

p 2 2 

 

We used the scikit-learn package of Isomaps as it advances numerous choices of selecting 

distances. From the package, in unsupervised non-linear dimensionality reduction, the two 

optimal parameters that provide faithful embeddings of Isomaps depends on the number 

of components and number of neighbours. The optimal parameter required perform better 

is to choose the right number of neighbours with respect to the minimization of the 

reconstruction error as low as possible. Samko et al in the study, implemented by choosing 

the neighbours manually but this resulted in removing the small structures of data in the 

manifold[88].We explored with different metrics by using Minkowski and precomputed 

which uses distance matrix as input. The parameters for the Minkowski and precomputed 

metrics were evaluated with trials of Euclidean distance, Manhattan distance and arbitrary 

distance.  

3.3.3 Deep Autoencoders 

We used deep auto-encoders which works by flattening the input to a reduced dimension, 

and then reconstructs the output from the reduced one. We executed the keras framework 

for building a five-layered deep auto-encoder with two encoder layers, one bottleneck or 

code layer and two decoder layers. In this case, we employed an under complete auto-
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encoder where the bottleneck layer has the lowest dimension than the input dimension and 

introduced some sparsity. Table 3.9 presents the layers used in the deep auto-encoders.  

We deployed different activation functions such relu, sigmoid and softplus but finalized 

the encoded layers and decoded layers with sigmoid and softplus. In the code layer, we 

initiated a tanh activation that tends to preserve the manifold and topological properties in 

the reduced dimension.  

   Table 3.9 Layer for Deep Auto-encoders 

Layer Type Layers Activation functions 

encoder layer_1 64 sigmoid  

encoder layer_2 40 softplus 

code_layer 32, 20,10 tanh 

decoder layer_1 40 softplus 

decoder layer_2 64 sigmoid  

 

Table 3.10 illustrates the parameters used in the layers. The reconstruction error was 

calculated and appears to be reduce the RE when the tanh activation function was utilized. 

We employed the penalty term L1 regularizer and tried different threshold values, that 

helps retrieving a meaningful feature during feature extraction process and provides 

regularized outcome. The mean squared error loss was implemented while training the 

unsupervised input data. The adaptive moment estimation (ADAM) optimizer was utilized 

as the learning rate for the parameters in the neural net.  

  Table 3.10 Parameter for Deep Auto-encoders 

Hyperparameters Default values Optimized values  

Loss mse mse 

regularizer L1, L2 L1 
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regularization penalties   - kernel 

threshold 0.001,0.000001 1e-05,1e-04 

optimizers  0.99 0.9 

 

3.3.4 Quality Assessment of Feature Extraction Algorithms 

There are a variety of quality assessment criteria to evaluate dimensionality reduction 

algorithms. Interestingly, there are both local and global approaches for the assessment. 

One of the primary technique was to minimize the reconstruction error followed by PCA 

and nonlinear auto-encoders[77]. In order to assess the more complex quality criteria of 

NLDR and LDR techniques, is to preserve the structure of data. The objective is to 

evaluate dimensionality reduction algorithms specifically linear dimensionality reduction 

namely PCA and non-linear dimensionality reduction techniques such as Isomaps and 

Deep Autoencoders using ranking strategy when the features are reduced from a high 

dimensional space. 

3.3.4.1  co-Ranking 

Here co-Ranking provides an assessment of embeddings of the data points in low 

dimensional space projection from high dimensional space. Initially, we implemented the 

scikit-learn package for co-Ranking that calculates the Trustworthiness, Continuity and 

LCMC but it lacked important details of how much neighbours were covered. We utilized 

the co-Ranking package in R focused on the data projected on a low dimensional space. It 

provides many parameters to measure LCMC, RNX   and Area under the RNX Curve. At 

first, the co-ranking matrix is formed from the inputs of the reduced dimension and original 

dimension. Mainly focuses on K-ary neighbourhood for different values of K, where the 

neighbourhood values are determined from ranking the distance measures[77]. The 

visualization of the co-ranking matrix was implemented by using image plot function. 

3.3.4.2  Local Continuity Meta Criteria (LCMC) 

Local continuity meta-criteria represent the maximum overlap of the neighbours by tracing 

the k - nearest neighbours in high dimensional and low dimensional space[71]. We 

evaluated the LCMC score from the co-ranking matrix. We visualized the line plot which 
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reflects the information about the embeddings such as Qlocal and Qglobal proposed by Lee 

and Verleysen which describes the left and right mean values of k neighbours, especially 

Qlocal is observed more than Qglobal. 

3.3.4.3  Area under RNX Curve 

The RNX (K) Curve was executed using the co-Ranking matrix to check the overall 

performance level of K [89]. The curve indicated the refinement of the embedding over a 

random embedding for the size K of the neighbourhood by Lee and Verlysen[80]. The 

Area under RNX curve was carried out and was the best metric to check the overall 

performance of DR on all scales. 

3.4 Cluster Ensemble  

This phase involves the clustering ensemble process. We built heterogeneous clustering 

ensemble model that entails to use three or more different clustering algorithms resulting 

in a final clustering. We utilized a package in R called diceR (diverse cluster ensemble in 

R) to construct ensemble model. Derek and Aline[90] the authors who developed the diceR 

framework to understand the behaviour of clustering the patients into sub-populations that 

helps in detection, prevention of cancer in response to drugs and analysis of genomics data. 

The framework provides extensive functions such as producing diverse clustering, 

ensemble partition from the consensus functions, and selection of algorithms that is best 

suitable for the data. Firstly, it presents diverse clustering algorithms where each clustering 

algorithm has its unique function namely k-means, hierarchical clustering, divisive 

analysis clustering, k-medoids, affinity propagation, self-organizing map, spectral 

clustering, Gaussian mixture model, bi-clustering, fuzzy c-means clustering, hdbscan and 

nonnegative matrix factorization. Interestingly, there are a variety of consensus functions 

offered in the package such as k-modes, LCA, LCE, majority voting and CSPA. 

Furthermore, the final clustering is evaluated by using the internal evaluation indices and 

visualization of the evaluation is also processed. 

3.4.1 Clustering Algorithm Selection 

After the execution of the methodology, we selected k-means, k-medoids and affinity 

propagation for the analysis of clustering ensemble process. The selection was based on 
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validation of internal evaluation indices i.e., by taking metrics of compactness, how well 

the clusters are separated and cluster stability for multiple cluster runs, visualization of the 

clusters produced by the algorithms to produce homogeneous clusters and existence of 

consistent clusters. Primarily, for some algorithms the stability of the cluster becomes 

insignificant and leads to the formation of univocally defined clusters and cluster 

boundaries[30]. We tested various clustering algorithms agglomerative clustering, divisive 

clustering which formed univocal clusters indicating the existence of single cluster. 

Following that, we experimented on gaussian mixture model, spectral clustering, fuzzy 

clustering was not selected for this dataset based on the low validation scores obtained 

from the internal evaluation indices.   

3.4.2 Centroid models  

Centroid based algorithm constitutes a set of objects [91], that are assigned to the clusters, 

based on the distance between the cluster and central vector is minimized as possible as 

one of the primary objectives and are suitable to handle spherical based clusters. k-means 

computes the mean of the objects and choose its initial cluster centres, whereas k-medoids 

uses the medoids and assigns the objects to the nearest medoid and employs the 

dissimilarity measures such as Euclidean distance, whereas Manhattan distance provides 

robust solutions, because its uses the sum of the absolute distances and the most 

appropriate measure to handle outliers if its resides in the data. With affinity propagation 

acts similar to that of k-medoids, where the initialization is not required, and takes the 

advantage of exemplars to find the similarity between data points. At first, the data points 

are treated as possible exemplars, the message-passing process occurs with all the data 

points exchanging information, the process is continued until a good set of clusters with 

the best exemplars have reached a consensus[92].  We selected the three centroid models 

for the ensemble process. 

3.4.3 Cluster Ensemble Generation 

We constructed the clustering ensemble process in five steps. Interestingly, the five steps 

involve cluster generation from the three algorithms, imputation of the missing NA values 

using k-nearest neighbours, joining the partition using the five consensus functions and 

evaluation of the final clustering. We implemented the pipeline function of dice function 
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in diceR, that executes the process sequentially of the three functions consensus_cluster 

(), impute_knn () and consensus_evaluate (). Table 3.11 demonstrates the parameter 

description used in the ensemble process of diceR. 

   Table 3.11 Parameter description of diceR 

Parameters  Description Values 

data data matrix data matrix 

nk number of clusters  k =2 to 7 

reps  number of subsamples 10,15,20,25 

prep.data performed on a raw data or bootstrap 

samples. 

raw 

nmf. method non-negative matrix factorization with 

lee and brunet methods. 

lee 

distance distance measures such as Euclidean, 

Manhattan, spearman, minkowski etc. 

Euclidean and Manhattan 

algorithms number of algorithms  k-means, k-medoids and 

affinity propagation 

cons 

functions 

consensus functions – majority voting, k-

modes, CSPA, LCA and LCE. 

majority voting, k-modes, 

CSPA, LCA and LCE 

sim.mat  similarity matrix for LCE asrs, cts, srs 

seed imputation seed for k-nn.  1 

n ranks the algorithm based on 

performance. 

n=1 

evaluate Internal evaluation indices TRUE 

trim Trimming the poor algorithms. TRUE 

reweigh Re-assigning the weights after trimming  TRUE 

plot visualization of CDF graphs  TRUE 
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3.4.4 Cluster Generation Mechanism 

The cluster generation process involves the generation of the clustering obtained from the 

three clustering algorithms such as k-means, k-medoids and affinity propagation. We 

initialized the best 15 features of PCA and Isomaps was given as a data matrix, the cluster 

size was carried out from k = 2 to k = 7, the number of subsamples, the clustering 

algorithms, two distance measures namely Euclidean and Manhattan distance was applied 

for k-medoids, the non-negative matrix factorization was also initiated. During this 

process, Monti et al subsampling technique with multiple cluster runs was used, in which 

each algorithm is executed by engaging various subsets of data and about 80 percent of 

the actual observation  was taken into account for the analysis[30][90]. We experimented 

with reps parameter that indicates the subsamples, and the cluster runs for the algorithms 

applied. Since several subsets of data was utilized, there will be some missing values due 

to subsampling which are rectified in the next step. The prep.data was checked between 

raw and bootstrap samples. 

3.4.5 Imputation 

The missing values occurs in the data matrix, since 80 percent of the data is taken from 

every clustering algorithm with cluster runs maintained at reps =20, with random subset 

chosen at each cluster run with respect to the subsampling method[90]. In order to remove 

the missing NA entries, the imputation of the k-nearest neighbour was set to the random 

seed. After imputation, the resultant matrix  is a clustering matrix, with resample data 

obtained from the number of columns equivalent to the clustering [90]. 

3.4.6 Implementation of Consensus Functions 

We experimented all the five consensus functions to examine which consensus function is 

best suitable for this data. Table 3.12 illustrates the parameters for the consensus functions. 

Each consensus function has a unique methodology of joining the ensemble partition. We 

implemented k-modes, majority voting, LCA, CSPA and LCE by taking the matrix of 

clustering obtained from imputation. For LCE, the similarity matrix was checked and 

finalized with approximated similarity rank matrix. The ASRS matrix was the improved 

version of sim-based similarity matrix[29] and the decay constant was also set. 
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   Table 3.12 Parameter for consensus functions 

Parameters  Default values  Optimized values  

reps  10 15, 20, 25 

prep.data raw raw 

distance Euclidean distance Euclidean and Manhattan 

sim.mat  cts asrs 

 

3.5 Internal Evaluation Indices 

We evaluated the final clustering with the internal evaluation indices. The internal 

evaluation indices examine the cluster labels itself without any reference labels. The diceR 

package provided 16 internal evaluation indices from the imported packages such as 

clValid, clusterCrit and LinkClue. The five internal evaluation indices were chosen based 

on the importance measures of compactness, connectivity, and separation [59] of the 

clusters formed. We used five internal validation indices namely Calinski Harabasz, 

Compactness, Dunn index, Silhouette index, Connectivity into the analysis. The 

Proportion of ambiguous clustering was acquired for finding the optimal value of K for 

the three clustering algorithms. The validation indices were assessed for both individual 

clustering algorithms obtained after multiple cluster runs and the consensus functions. 

3.6 Visualization 

We visualized the clusters on a two-dimensional space using t-distributed stochastic 

neighbor embedding(t-SNE). The t-SNE is a statistical technique developed to visualize 

the data points projected on a high dimensional space[93]. Moreover, t-SNE was able to 

determine the well separated clusters over different values of K. For obtaining the optimal 

value of K, the cluster range values were plotted in the cumulative distribution function 

graphs with the consensus index values for the three clustering algorithms. For cluster 

stability of the clusters for cluster runs, the consensus matrix is displayed in a heat map 
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which depicts how well the clusters are connected and the number of clusters to be found 

and significant.
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CHAPTER 4 RESULTS AND DISCUSSION 

The study was conducted on a total of 997 physicians who appear in the overall study of 

six years from 2012 to 2017. We developed heterogeneous cluster ensemble approaches 

for the 1-year, 2-year and 6-year intervals. We evaluated the consensus individual 

clustering and ensemble clustering in the different cohorts (as mentioned in the Chapter 3) 

with the internal evaluation indices. Based on the evaluation, we compared the two 

techniques to conclude and analyse which method appears to be a suitable technique for 

the three different cohorts. Moreover, the comparative analysis aids to understand the 

changing effects and significance of clustering towards individual clustering and ensemble 

clustering. Though the analysis was carried out for various cluster ranges starting from k 

= 2 to k = 7 in the three time cohorts, the comparison was made between the two techniques 

by identifying the optimal k-value in consensus clustering. In a centroid based models, the 

optimal k-value is an important criterion to determine the best number of homogeneous 

clusters with the extracted features. The cluster ranges were checked to recognize how 

well the clusters are separated, but only the best k-value was included in the analysis. 

Secondly, we differentiated the homogenous clusters obtained from two feature extraction 

methods such as PCA and Isomaps were assessed, to check whether the linear or non-

linear dimensionality reduction algorithm works the best for this pathology dataset.  

Firstly, the analysis was carried out on all physicians occurring from 2012 to 2017 with 

their patient case mix’s tests and disease information.  From the beginning, there were no 

missing values in the dataset, but the existence of numerous unwanted columns was 

removed because of null values and low frequency threshold of some features, in addition, 

with respect to first cohort, physicians with few test orders were filtered.  So, the complete 

cases with the number of physicians having the patient case mix from 1-year interval, 2-

year interval and 6-year interval varies. The total number of features taken into the analysis 

were about 85 features in the overall study of six years. With the respect to the first cohort 

and second cohort, there was a count of 83 features appearing in the first two years, with 

85 features occurring in the next two years. Finally, there were less number of features of 
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80 in the last two years. Most of the features present in the entire analysis were only 

continuous features.  

 As for the feature extraction models, we utilized one linear dimensionality reduction 

algorithm (i.e., PCA) and two non-linear dimensionality reduction algorithms one which 

concerns with geodesic distance and topology preservation (i.e., Isomaps) and the latter 

that deals with neural networks to extract features in the three cohorts. Mainly, PCA was 

set as a baseline method among the feature extraction methods. The unsupervised feature 

extraction algorithms were assessed and compared based on the rankings of the embedding 

produced. During this validation, there is a quite variation and difference of the resultant 

embeddings produced between the linear and non-linear dimensionality reduction 

algorithms. With the assessment of quality, two feature extraction methods were chosen 

for carrying out the clustering tasks. 

As mentioned in the Clustering ensembles, we selected only the centroid based partitioning 

algorithms for the ensemble formation by examining and eliminating the other models 

based on the evaluation and visualization of the consensus matrix in the consensus 

clustering. Interestingly, k-means performed well when compared with the other two 

algorithms namely k-medoids and affinity propagation for multiple cluster runs. The 

performance of the five cluster ensembles, majority that that works on relabeling and 

voting method achieves better clustering based on the evaluation of the internal validity 

indices for all the cluster ranges from k = 2 to k = 7. On the other hand, k-modes and LCA 

executed equally well in comparison with LCE and CSPA. Lastly, the visualization of the 

t-SNE enables to visualize the highly separated clusters more effectively. 

The first phase of the analysis, all the computations were carried out using Python, 

especially the feature extraction methods utilizing the scikit-learn library[43]. The entire 

phase of clustering analysis is conducted using R packages, specifically the clustering 

ensemble computation is carried out using diceR package. We ran the simulations on an 

Intel Core i7 -4770 CPU 3.4GHz PC, equipped with 12.00 GB of RAM Windows 10 64-

bit machine.  
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In the next sections 4.1, we will discuss about the feature extraction results from the 

experiments in the three time cohorts then in section 4.4 we will discuss the clustering 

ensemble and individual clustering results of the two feature extraction methods in the 

three-time cohorts and finally in section 4.5, we will present the visualization of the 

clusters. 

4.1 Results of Feature Extraction Models  

The three feature extraction models namely PCA, Isomaps and Deep Autoencoders were 

assessed based on the embeddings produced on a low dimensional space when projected 

from a high dimensional space. The quality of the embedding is evaluated by applying co-

Ranking matrix, Local Continuity Meta Criterion, RNX and Area under RNX curve metrics.  

The co-Ranking matrix indicates whether the data points are intact and assessing the loss 

of quality of the reduced data from a high dimensional space[77]. The image function plot 

of co-Ranking matrix shows of how the projection is reflected in the values of the upper 

triangle and the lower triangle of the diagonal matrix representing the rank errors[77]. 

The Local Continuity Meta Criterion select the best dimension suitable for the three feature 

extraction models. The evaluation depends on the number of K neighbours. Moreover, 

higher LCMC scores with less number of neighbours indicates perfect embedding in a 

high dimensional data[71]. A perfect embedding of the data produces a score 1 whereas 

the value 0.5 indicate random embedding. In LCMC, we defined two criteria namely Qlocal 

and Qglobal, indicating a higher Qlocal maintains the local neighbourhood when compared to 

others and considered superior method than Qglobal[94].  The number of K neighbours could 

be extended as much as possible. The overall performance of the Area under the RNX   curve 

reaches 1 that determines the best quality of the embedding produced. 

4.1.1 Baseline Results  

PCA was set as a baseline because of its classical approach used in the literature as to other 

non-linear dimensionality reduction algorithms. Initially, we examined Isomaps and Deep 

Autoencoders with quality assessment metrics but the performance of baseline algorithm 

namely PCA was superior and consistent at all the three dimensions namely 10, 15 and 20 

and produced a better quality in a low dimensional space.  
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We implemented Principal Component Analysis (PCA) using the scikit-learn package. 

The quality was assessed using co-Ranking R package. Table 12 illustrates the LCMC 

criteria with Qlocal score obtained by the line plot. The Qlocal score is considered in all the 

three dimensions. The three dimensions were selected based on the cumulative variance 

explained ratio which reaches 99 percent at the 20 dimension and further dimensions were 

not considered as it will result in higher complexity. Table 4.1 provides the Area under 

RNX curve score for the three different dimensions for the three-time cohorts. The PCA 

produces a perfect embedding of LCMC score of 0.8-0.9 in all three dimensions in the 

three different time-cohorts when the number of neighbours by default was set to the 1000 

neighbours in the line plot. The AUC_ln_K[95] performs well in PCA and yields better 

scores at two dimensions namely 15 and 20 respectively.  

       Table 4.1 Results of LCMC score of PCA 

 

Time-cohorts  

LCMC score  

Dimensions  

10 15 20 

1st Cohort  
0.8 0.9 0.9 

2nd Cohort  
0.8 0.9 0.9 

3rd Cohort  
0.8 0.86 0.9 

 

      Table 4.2 Results of AUC_ln_K score of PCA  

  AUC_ln_K score 

 

Time-cohorts  

 

Year 

 Dimensions 

10  15 20 

1st Cohort  

2012 0.81 0.90 0.94 

2013 0.81 0.90 0.94 

2014 0.80 0.93 0.88 
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2015 0.76 0.86 0.93 

2016 0.81 0.90 0.95 

2017 0.81 0.90 0.95 

2nd Cohort 

2012-2013 0.82 0.91 0.95 

2014-2015 0.81 0.89 0.94 

2016-2017 0.83 0.95 0.90 

3rd Cohort  2012-2017 0.83 0.91 0.95 

 

4.1.2 Isomaps 

We executed Isomaps in two different metrics namely pairwise and minkowski, Table 4.3 

demonstrates the minkowski metric was appropriate with Euclidean distance in the three 

time cohorts, as resulted in better LCMC score and reduced reconstruction error when 

compared with the other distances. The pairwise metric was examined with three distances 

namely euclidean, manhattan and arbitrary distances but was not included in the analysis 

because of poor embedding produced.  Moreover, we checked for four dimensions, but the 

best dimension was evident at dimension 15. Interestingly, the outcome of the embeddings 

was slightly above the random embedding threshold of 0.5. Mainly, the AUC_ln_K and 

LCMC scores in the three cohorts were around 0.6. Table 4.4 describes the outcomes of 

AUC_ln_K in Isomaps. 

  Table 4.3 Results of LCMC score of Isomaps  

 

Time-cohorts  

          LCMC score   

 
          Dimensions  

10 15 20 32 

1st Cohort  
0.65 0.65 0.65 0.65 

2nd Cohort  
0.65 0.65 0.65 0.65 

3rd Cohort  
0.60 0.60 0.60 0.60 
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   Table 4.4 Results of AUC_ln_K score of Isomaps 

 

       AUC_ln_K score 

 

Time-cohorts  

 

Year 

       Dimensions 

10  15 20 32 

1st Cohort  

2012 0.65 0.66 0.66 0.65 

2013 0.64 0.65 0.65 0.65 

2014 0.62 0.63 0.64 0.64 

2015 0.61 0.62 0.62 0.62 

2016 0.64 0.65 0.65 0.64 

2017 0.65 0.66 0.66 0.65 

2nd Cohort 

2012-2013 0.65 0.669 0.667 0.668 

2014-2015 0.65 0.66 0.668 0.660 

2016-2017 0.66 0.669 0.67 0.660 

3rd Cohort  2012-2017 0.683 0.694 0.699 0.696 

     

4.1.3 Deep Autoencoders 

We implemented Deep Auto-encoders using keras framework. The reconstruction error 

was trained and minimized to the lowest value of 0.45.  Different activation functions were 

tried in the bottle neck layer, but tanh activation function and the kernel regularizer L1 

used were able to achieve the lowest reconstruction error as possible. The encoded 

dimension was evaluated for three dimensions 10, 20 and 32 respectively. The unlabeled 

data was trained at different epochs and the batch size was maintained to 64. With quality 

assessment of deep auto-encoders, the resultant embeddings when projected from a high 

dimensional space into a low dimensional space were random at 0.5 to 0.6. From Table 

4.5 demonstrates the random embeddings as the Qlocal score of LCMC lies between 0.5 

and 0.6. Similarly, Table 4.6 indicates the AUC_ln_K scores of deep auto-encoders. The 

random embeddings were less than 0.5 in the first cohort indicating the poor performance 
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of deep auto-encoders for this dataset.  

    Table 4.5 Results of LCMC score of DAE 

 

Time-cohorts  

LCMC score  

Dimensions  

10 20 32 

1st Cohort  
0.5 0.6 0.6 

2nd Cohort  
0.6 0.6 0.6 

3rd Cohort  
0.5 0.5 0.6 

 

   Table 4.6 Results of AUC_ln_K score of DAE 

 

AUC_ln_K score 

 

Time-cohorts  

 

Year 

 Dimensions 

10  20 32 

1st Cohort  

2012 0.52 0.57 0.56 

2013 0.52 0.57 0.56 

2014 0.45 0.36 0.55 

2015 0.50 0.46 0.51 

2016 0.494 0.55 0.58 

2017 0.5 0.5 0.54 

2nd Cohort 

2012-2013 0.54 0.56 0.61 

2014-2015 0.52 0.57 0.61 

2016-2017 0.586 0.592 0.60 

3rd Cohort  2012-2017 0.528 0.538 0.57 
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4.2 Analysis of Feature Extraction models  

From the results of the three feature extraction models, PCA performs the best based on 

the metrics of AUC_ln_K and LCMC metrics. The PCA presents a near perfect 

embeddings of the data in the three time cohorts with respect to the two metrics as 

illustrated in the Table 4.7 and Table 4.8.  

Isomaps exhibit embeddings that are slightly random—i.e. above the threshold of 0.5, but 

it performed better than Deep Auto-encoders. The embeddings and the rankings of the 

neighbourhood values produced by Deep auto-encoders were random and poor at two 

dimensions 10 and 20, so we selected only PCA and Isomaps for the analysis for 

clustering.  

For the next phase, we utilized the best dimension 15 from PCA, by considering the 99% 

of variance and for Isomaps, the best dimension occurs at 15 with the help of the quality 

assessment metrics. We considered the reduced dimension 15 by feature extraction process 

as it does not increase the complexity of the two models.  

                    Table 4.7 Results of AUC_ln_K score for the three time-cohorts  

Feature Extraction Models  
Dimensions 

10 15 20 

3rd Cohort 

PCA 0.83 0.91 0.95 

ISOMAP 0.68 0.69 0.69 

DAE 0.52 - 0.53 

2nd Cohort 2012-2013 

PCA 0.82 0.91 0.95 

ISOMAP 0.65 0.66 0.66 

DAE 0.54 - 0.56 

2nd Cohort 2014-2015 

PCA 0.81 0.89 0.94 

ISOMAP 0.65 0.66 0.66 
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DAE 0.52 - 0.57 

2nd Cohort 2016-2017 

PCA 0.83 0.95 0.90 

ISOMAP 0.66 0.67 0.66 

DAE 0.58 - 0.59 

1st Cohort 2012  

PCA 0.81 0.90 0.94 

ISOMAP 0.65 0.66 0.66 

DAE 0.52 - 0.57 

1st Cohort 2013  

PCA 0.81 0.90 0.94 

ISOMAP 0.64 0.65 0.65 

DAE 0.52 - 0.57 

1st Cohort 2014 

PCA 0.80 0.93 0.88 

ISOMAP 0.62 0.63 0.64 

DAE 0.45 - 0.36 

1st Cohort 2015 

PCA 0.76 0.86 0.93 

ISOMAP 0.61 0.62 0.62 

DAE 0.50 - 0.46 

1st Cohort 2016 

PCA 0.81 0.90 0.95 

ISOMAP 0.64 0.65 0.65 

DAE 0.49 - 0.55 

1st Cohort 2017 

PCA 0.81 0.90 0.95 

ISOMAP 0.65 0.66 0.66 
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DAE 0.50 - 0.50 

  
                     Table 4.8 Results of LCMC score for the three time-cohorts  

 

Time-cohorts  

 

FE MODELS  

      Dimensions 

10  15 20 

1st Cohort  

PCA 
0.8 0.9 0.9 

Isomaps 
0.65 0.65 0.65 

DAE 
0.5 - 0.6 

2nd Cohort 

PCA 
0.8 0.9 0.9 

Isomaps 
0.65 0.65 0.65 

DAE 
0.6 - 0.6 

3rd Cohort  

PCA  
0.8 0.86 0.9 

Isomaps 
0.60 0.60 0.60 

DAE 
0.5 - 0.5 

 

The LCMC score was used for selection of the dimension, where the best dimension was 

observed at 15 for the feature extraction process (illustrated in Table 4.8). We examined 

the Qlocal score for the three feature extraction models in the three time-cohorts. PCA 

performed better at all the three dimensions compared to the other models whereas the 

latter Deep Autoencoders produced random embeddings at the two dimensions. 

4.3 Visualization of Quality Assessment Metrics 

We implemented the line plots to visualize the dimensions of the reduced features and to 

observe the difference of projection between a linear and non-linear dimensionality 

reduction algorithm when reduced from a high dimensional space. The visualization of the 

metrics namely co-Ranking, Local Continuity Meta Criterion and RNX curve provide the 

visual examination of the data in a low dimensional space and the quality of the 

embeddings produced by PCA and Isomaps. 
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4.3.1 co-Ranking   

Figure 4.1 depicts the imageplot function of co-Ranking matrix of the third cohort under 

dimension 15. The co-Ranking matrix of PCA indicating the reduced dimension illustrates 

a straight diagonal, as the points of the data remain intact and uniform throughout the 

dataset. On the other hand, the Isomaps compresses the points and diminishes in the middle 

and reflects in more values on the lower right part of the co-Ranking matrix. The co-

Ranking matrix are log scaled for better visualization purposes[95].  

Moreover, the embeddings in the PCA preserves the smaller distances, where the points 

close to the diagonal are higher in the upper part whereas the Isomaps detains to keep 

larger distances where more values are populated in the upper and the middle part of the 

diagonal.  

                       

   Figure 4.1 Plot of co-Ranking of PCA and Isomaps for dimension 15 of Cohort III 

4.3.2 Local Continuity Meta Criterion (LCMC) 

We executed the line plots for PCA and Isomaps to examine the difference between the 

three different dimensions namely 10,15, 20 in linear and non-linear dimensionality 

reduction algorithms. Figure 4.2 depicts the line plot of LCMC criteria for different 

dimensions of PCA and Isomaps in the third cohort. By checking the different dimensions 

of PCA, the Qlocal criteria of LCMC increases steadily for the different dimensions and 

reaches the maximum of 0.95 at the dimension 20 with number of neighbours set to 1000. 
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Figure 4.2  Line plot of LCMC of PCA and Isomaps for different dimensions in Cohort III  

The Isomaps (in Figure 4.2) remains equivalent for all the four dimensions with Qlocal score 

at 0.66 for 1000 neighbours indicating that the overlaps of the neighbours in the 

neighbourhood values were minimum.  

Moreover, PCA achieves better overall performance in all the three dimensions for the K 

neighbours when reduced to a low dimensional space, the LCMC score increases as the 

dimension increases. On the contrary, in Isomaps the LCMC score remains the same in all 

three dimensions. 

4.3.3 RNX  Curve  

The RNX  curve  reflects the neighbourhood values and ranks along the diagonal[95]. Figure 

4.3 illustrates the RNX curve of PCA under dimension 15 where the points of the curve 

start from 0.80 and reaches to 1, thus indicating better neighbour values on a low 

dimensional space. On the other hand, the curve begins from 0.4 by increasing steadily 

and extends to 1. The difference between the two RNX curves is that there are slight bumps 

in the projection of data of Isomaps, whereas in PCA, the curve is flat and remains stable. 

Our experiments conclude that the data is stable with the projection of PCA. The RNX curve 

of a perfect embeddings is 1 and the randomized curve indicates 0. The data in both curves 

does not fall steeply down, but the steepness of the data is observed in Deep auto-encoders, 

where the projection of data starts from the lowest point and falls down after a point 

indicating random embeddings formed in the reduce dimension. 
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 Figure 4.3 Line plot of RNX Curve of PCA and Isomaps for dimension 15 of Cohort III 

The outcome of the feature extraction phase, as per the above experiments with the three 

feature extractions models, we conclude the following: For the three dimensions (shown 

in Table 4.7 and Table 4.8) as evaluated by the two metrics of Area under the RNX curve 

and Local continuity meta-criteria, and the line plots of co-Ranking matrix, LCMC and 

RNX curve, the features from PCA and Isomaps are to be used for the clustering ensemble. 

It may be further noted that, PCA performs better and produces a perfect embedding than 

the non-linear dimensionality reduction algorithms.  

From the quality assessment metrics used co-Ranking, Local Continuity Meta Criterion, 

and Area under RNX curve indicate that linear dimensionality reduction algorithm PCA is 

the most effective and suitable algorithm in the pathology test ordering data because of the 

linear dependencies found in the variables when the data is reduced from a high 

dimensional space. The features extracted by PCA did not suffer the loss of quality when 

experimented at various dimensions. The visualization of the three metrics provided a clear 

coherence and interpretability of the reduced dimensions. 

4.4 Results of Clustering  

We applied the k-means, k-medoids and affinity propagation clustering algorithms to 

generate the clustering ensemble using the diceR package. We experimented with cluster 

ranges from k = 2 to k = 7 and determined the optimal k-value by applying the proportion 

of ambiguous clustering which provides the best k-value for multiple cluster runs. We 
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selected five evaluation indices for both the cluster ensemble and the individual clustering 

algorithms—the metrics take into account the structure and behaviour of clustering 

algorithms—i.e., k-modes, CSPA, majority, LCA and LCE. Our evaluation intent is also 

to ascertain whether we can get better clusters using a cluster ensemble as opposed to the 

use of single clustering algorithms. 

4.4.1 Results of Clustering Ensemble and Individual Clustering   

Table 4.9 and Table 4.10 demonstrates the individual clustering results and clustering 

ensemble results obtained by using 15- dimensional space of PCA with optimal values of 

k obtained in the three time-cohorts. From Table 4.9 and Table 4.10 provides the details 

of PAC and the internal evaluation indices to check the Compactness, Connectivity, 

Calinski Harabasz, Dunn index, Silhouette coefficient denoted by the notations CP, C, CH, 

D and S [29,66,96].The outcome for the best performing clustering ensembles was 

presented among the five ensembles used. Similarly, the best individual clustering 

algorithm was taken among the three clustering algorithms. The cluster k-values were 

chosen from the range of k = 2 to k = 7 respectively. 

  Table 4.9  Results of internal evaluation indices of PCA  

Individual Clustering Clustering Ensemble 

Algorithms k CH D S Cons.function CH D S 

3rd Cohort 2012-2017 

k-means 2 1070 0.020 0.48 Majority vote 1070 0.025 0.49 

k-means 3 859 0.018 0.342 Majority vote 859 0.018 0.342 

2nd Cohort 2012-2013 

k-means 2 1518 0.021 0.495 Majority vote 1518 0.021 0.50 

k-medoid 4 977 0.008 0.25 LCA 969 0.009 0.25 

2nd Cohort 2014-2015 

k-means 2 1695 0.024 0.504 Majority vote 1697 0.025 0.51 
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k-means 3 1372 0.019 0.352 Majority vote 1372.1 0.017 0.353 

2nd Cohort 2016-2017 

k-medoid 2 1654 0.013 0.46 Majority vote 1781 0.029 0.496 

k-means 3 1390 0.018 0.341 Majority vote 1390 0.0181 0.341 

1st Cohort 2012 

k-means 2 1462 0.016 0.484 Majority vote 1462 0.016 0.484 

k-means 3 1221 0.013 0.359 k-modes 1220 0.0133 0.361 

1st Cohort 2013 

k-means 2 1576 0.015 0.492 Majority vote 1576 0.015 0.492 

k-means 3 1274 0.015 0.354 k-modes 1273 0.015 0.354 

1st Cohort 2014 

k-means 2 1726 0.028 0.506 LCE 1726 0.028 0.506 

k-medoid 3 1056 0.008 0.227 LCE 1057 0.009 0.228 

1st Cohort 2015 

k-means 2 1645 0.027 0.493 Majority vote 1645 0.028 0.50 

k-medoid 3 1134 0.012 0.306 Majority vote 1336 0.026 0.342 

1st Cohort 2016 

k-means 2 1754 0.027 0.495 Majority vote 1754 0.027 0.495 

k-medoid 4 1047 0.008 0.227 Majority vote 1047 0.009 0.228 

1st Cohort 2017 

k-means 2 1846 0.033 0.498 Majority vote 1847 0.033 0.497 

ap 3 1305 0.017 0.30 Majority vote 1305 0.018 0.31 

 

Table 4.9 illustrates the three internal evaluation indices such as Calinski Harabasz, Dunn 

index and Silhouette coefficient, as all three indices possess both the properties of 
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compactness and separation together. So, these three indices were used as comparison for 

individual clustering and clustering ensemble.  

Table 4.10 represents the indices the compactness and connectivity indicate the intra-

cluster homogeneity and connectedness among the clusters. These two indices were 

compared on the two approaches. The proportion of ambiguous clustering (PAC) is shown 

for the individual clustering algorithms such as k-means, k-medoids and affinity 

propagation. 

 Table 4.10 Results of internal evaluation indices of PCA  

Individual Clustering Clustering ensemble  

Algorithms k PAC CP C Cons.function CP C 

3rd Cohort 2012-2017 

k-means 2 0.03 6.04 57 Majority vote 6.05 53 

k-means 3 0.04 5.22 101 Majority vote 5.23 104 

2nd Cohort 2012-2013 

k-means 2 0.02 5.57 57 Majority vote 5.57 57 

k-medoid 4 0.09 4.27 175 LCA 4.26 167 

2nd Cohort 2014-2015 

k-means 2 0.03 5.58 68.8 Majority vote 5.60 62 

k-means 3 0.02 4.80 112 Majority vote 4.80 112 

2nd Cohort 2016-2017 

k-medoid 2 0.007 5.23 71 Majority vote 5.44 76 

k-means 3 0.03 4.64 140 Majority vote 4.64 140 

1st Cohort 2012 

k-means 2 0.03 5.617 75 Majority vote 5.617 75 
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k-means 3 0.08 4.87 94 k-modes 4.88 93 

1st Cohort 2013 

k-means 2 0.04 5.51 72 Majority vote 5.52 73 

k-means 3 0.09 4.87 109 k-modes 4.87 101 

1st Cohort 2014 

k-means 2 0.03 5.60 68 LCE 5.60 68 

k-medoid 3 0.11 4.30 203 LCE 4.30 201 

1st Cohort 2015 

k-means 2 0.01 5.61 84 Majority vote 5.63 75 

k-medoid 3 0.11 4.72 134 Majority vote 4.83 110 

1st Cohort 2016 

k-means 2 0.02 5.41 77 Majority vote 5.40 71 

k-medoid 4 0.19 4.2 210 Majority vote 4.2 203 

1st Cohort 2017 

k-means 2 0.03 5.44 63 Majority vote 5.43 65 

ap 3 0.13 4.59 170 Majority vote 4.59 170 

 

Table 4.11 and Table 4.12 illustrates the individual clustering results and clustering 

ensemble results produced by using 15- dimensional space of Isomaps with optimal values 

of k produced by the three cohorts. 

 Table 4.11  Results of internal evaluation indices of Isomaps  

Individual Clustering Clustering ensemble 

Algorithms k CH D S Cons.function CH D S 

3rd Cohort 2012-2017 
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k-means 2 969 0.021 0.474 LCE 969 0.22  0.474 

k-means 3 735 0.018 0.33 Majority vote 735 0.0184 0.33 

2nd Cohort 2012-2013 

k-means 2 1307 0.023 0.469 Majority vote 1307 0.0234 0.47 

k-medoid 4 754 0.010 0.223 Majority vote 757 0.010 0.224 

2nd Cohort 2014-2015 

k-means 2 1485 0.0223 0.48 Majority vote 1485 0.0223 0.49 

k-medoid 3 1015 0.011 0.30 LCA 1121 0.0133 0.34 

2nd Cohort 2016-2017 

k-means 2 1485 0.015 0.475 LCE 1476 0.020 0.476 

ap 3 1017 0.0137 0.303 LCA 1017 0.0137 0.304 

1st Cohort 2012 

k-means 2 1251 0.016 0.462 Majority vote 1251 0.016 0.462 

k-means 3 1009 0.016 0.351 LCA 1009 0.016 0.351 

1st Cohort 2013 

k-means 2 1351 0.016 0.462 Majority vote 1351 0.021 0.463 

k-medoids 4 680 0.0013 0.23 LCE 704 0.0009 0.25 

1st Cohort 2014 

k-means 2 1513 0.020 0.484 Majority vote 1513 0.020 0.484 

k-medoid 3 1142 0.011 0.331 LCA 1170 0.015 0.340 

1st Cohort 2015 

k-means 2 1413 0.018 0.48 LCE 1414 0.029 0.48 

k-means 7 351 0.0009 0.127 Majority vote 570 0.001 0.16 

1st Cohort 2016 
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k-means 2 1476 0.025 0.480 k-modes 1476.8 0.0253 0.480 

k-medoid 7 380 0.0008 0.101 Majority vote 613 0.0013 0.15 

1st Cohort 2017 

k-means 2 1494 0.028 0.474 Majority vote 1494 0.025 0.470 

k-medoids 5 659 0.0011 0.220 Majority vote 667 0.0015 0.22 

 

 Table 4.12 Results of internal evaluation indices of Isomaps  

     Individual Clustering Clustering ensemble  

Algorithms k PAC CP C Cons.function  CP C 

3rd Cohort 2012-2017 

k-means 2 0.01 8.01 43.4 LCE 8.01 43 

k-means 3 0.03 7.11 91 Majority vote 7.11 89 

2nd Cohort 2012-2013 

k-means 2 0.01 7.72 59 Majority vote 7.71 59 

k-medoid 4 0.05 6.17 212 Majority vote 6.17 209 

2nd Cohort 2014-2015 

k-means 2 0.01 7.410 58 Majority vote 7.410 53 

k-medoids 3 0.07 6.29 141 LCA 6.49 113 

2nd Cohort 2016-2017 

k-means 2 0.04 7.53 63.1 Majority vote 7.54 61.1 

ap 3 0.01 6.44 142.84 LCA 6.44 142 

1st Cohort 2012 

k-means 2 0.01 7.94 66 Majority vote 7.94 66 

k-means 3 0.04 7.10 86 k-modes 7.10 87 
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1st Cohort 2013 

k-means 2 0.03 7.92 65 Majority vote 7.9 62 

k-medoids 4 0.07 6.393 205 LCE 6.392 202 

1st Cohort 2014 

k-means 2 0.03 8.01 69.9 Majority vote 8.01 69.9 

k-medoid 3 0.11 7.0 119 LCA 7.05 128 

1st Cohort 2015 

k-means 2 0.01 8.21 51.68 LCE 8.24 46 

k-means 7 0.22 6.3 266 Majority vote 5.8 212 

1st Cohort 2016 

k-means 2 0.02 7.64 65 k-modes 7.64 65 

k-medoid 7 0.11 5.66 338 Majority vote 5.44 284 

1st Cohort 2017 

k-means 2 0.02 7.72 73.2 Majority vote 7.68 61.12 

k-medoids 5 0.04 5.858 270 Majority vote 5.8 252 

 

The clustering ensemble results obtained from the Table 4.9, 4.10, 4.11 and 4.12, were 

based on multiple cluster runs. The cluster run was set to 20 for all the time cohorts which 

gave better results. The cluster runs used optimizes the proportion of ambiguous clustering 

value and aids to obtain the optimal cluster k-value and emphasize the cluster stability 

which are visualized in the form of heat maps namely consensus matrix in section 4.5.1. 

The comparison between the two approaches namely individual clustering and clustering 

ensemble were based on the PAC value and the five internal evaluation indices. 

4.4.2 Determination of optimal k-value  

To determine the optimal k-value (i.e., the number of clusters), we utilized the Cumulative 

Distribution Function (CDF) graph for the individual clustering algorithms. Senbabaog˘lu 
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et al [32] extended the idea of understanding the PAC value using CDF graphs. The PAC 

value was calculated for each clustering algorithm for k-means, k-medoids and affinity 

propagation to determine the optimal number of clusters in consensus clustering. Figure 

4.4 illustrates the cumulative distribution for the cluster ranges from k = 2 to k =7 with the 

optimal k-value occurring at k = 2 and k = 3 for the clustering algorithms. 

                  

  Figure 4.4   CDF graph of k-means, k-medoids and affinity propagation in Cohort III  

The lowest value of PAC specifies a flat line segment in the middle is shown by the CDF 

graphs and lies between intervals [0,1] with 0 indicating a perfect clustering for 

understanding the cluster stability [62] indicating the optimal K value [32]. The optimal 

k-value occurs at k=2, k =3, k =4 in all the three time-cohorts, where the PAC value 

remains the lowest. For all the three time-cohorts, using both PCA and Isomaps based 

features, the flat line segment appears at k = 2, k = 3 and k = 4 which was consistent on all 

the three clustering algorithms—i.e., k-means, k-medoids, and affinity propagation. The 

other cluster ranges i.e., k = 7 and k = 5 were retrieved in rare cases in Isomaps, because 

there is a possibility of the lowest PAC value in the three time cohorts. Mainly, the optimal 

k-value of the clustering results were evaluated at cluster runs reps = 20. Table 4.13 

demonstrates the optimal k-values for all the time-cohorts in PCA. Though the cluster 

value k = 2, produces better internal evaluation indices scores, the centroid models such 

k-means are convex and isotropic because of inertia, always converges and remains 
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optimal at lower cluster values. Thus, the optimal cluster k values were deemed to be k = 

3 for the 3rd cohort, and k = 3 or 4 for the 1st and 2nd cohort in PCA. 

             Table 4.13  Optimal k-values 

Time-cohorts  Optimal k-value 

1st Cohort 2012, 2013, 2015, 2017 3 

1st Cohort 2014, 2016 4 

2nd Cohort 2012-2013  4 

2nd Cohort 2014-2015, 2016-2017 3 

3rd Cohort 2012-2017      3 

  

4.4.3 Performance of Clustering based on Feature Extraction 

In order to analyse the difference between linear and non-linear dimensionality reduction 

algorithms and its effect of changes in clustering was mainly determined by the factor 

termed Compactness. The measure of compactness is an important criterion which assess 

the intra-cluster homogeneity and illustrates how well the data points of the cluster are 

closed to each other[29].  

                  

                     Figure 4.5 Compactness score of PCA and Isomaps at k =2 and k=3. 
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The clustered bar charts as in the Figure 4.5 represent the compactness score on three time-

cohorts between PCA and Isomaps at cluster value k =2, k = 3. The overall value of internal 

evaluation index Compactness in PCA achieves lower compactness by providing better 

clustering profile than Isomaps. In the first cohort and the second cohort of PCA at optimal 

cluster values 2,3 and 4, the compactness value lies around 5 and 4 as well as reaches a 

maximum score of 6 in the third cohort. Conversely, the compactness score is high in 

Isomaps was reaching a compactness value of around 8 and 7 at the two cluster values. 

Moreover, the internal evaluation index Calinski Harabasz causes a difference between 

two dimensionality reduction algorithms. The Calinski Harabasz index should be 

maximum and apprehends the combination of compactness and separation together. This 

value is higher in PCA than Isomaps at optimal k-values. 

4.4.4 Comparison between Individual Clustering and Clustering Ensemble  

We compared the two clustering approaches namely the individual clustering and 

clustering ensemble approaches in a 15 dimensional space data of PCA and Isomaps. We 

assessed the comparison based on internal evaluation indices at the optimal cluster k 

values. The clustering results were calculated at reps = 20 for each cluster value that 

determines the cluster runs and the number of subsamples considered. 

                        

Figure 4.6  Internal evaluation indices of PCA and Isomaps at optimal clusters of Cohort III 
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Figure 4.6 depicts the comparison between the two approaches in the third cohort of PCA 

and Isomaps for the optimal cluster ranges. When using the PCA features, for k = 2 and 

k=3, the Dunn index, Silhouette score was significantly higher and connectivity score was 

minimal for the clustering ensemble approach at k = 2 as compared to all the individual 

clustering algorithms, with k =3 , the internal evaluation indices were comparably similar  

to only k-means and not the latter algorithms k-medoids and affinity propagation —the 

majority voting ensemble technique provided the best clusters when using the ensemble 

clustering approach. For comparison purposes, the k-means was used as it provided the 

lowest PAC value score when compared with the other clustering algorithms. Similarly, 

for clustering results generated using the Isomaps features, the clustering ensemble 

performed better than the individual clustering algorithms. 

Figure 4.7 illustrates that comparison between the ensemble clusters and the individual 

clusters for k= 2, 3 and 4 of Cohort II. The cluster ensemble technique performs 

significantly better for all evaluation metrics based on the PCA features. However, the 

clustering results are inconclusive based on Isomaps features. The indices of Dunn, 

silhouette and Calinski Harabasz scores and Connectivity show a huge difference between 

the ensembles and k-means, k-medoids and affinity propagation.  

    

  Figure 4.7 Internal evaluation indices of PCA and Isomaps at optimal clusters of Cohort II  
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Lastly, the first cohort results in Figure 4.8 using PCA, for k = 2, 3 and 4 follow a similar 

pattern as cohorts 3 and 2, where the cluster ensemble performs better than the individual 

algorithms.  whereas, for Isomaps the comparison is indecisive to draw a meaningful 

interpretation.  

 

 Figure 4.8 Internal evaluation indices of PCA and Isomaps at optimal clusters of Cohort I 

In conclusion, our evaluation results confirm that the clustering ensemble approach 

performs significantly better—i.e., provides more robust clusters—compared to the 

individual clustering algorithms throughout all the three cohorts of the 15 dimensional data 

of PCA. In most of the cases, the Majority voting consensus function performs the best 

amongst all other cluster ensemble models. With the reduced dimensions of PCA applied 

to both the clustering approaches, there is a small degree of difference between the two 

approaches. This was due to multiple cluster runs and subsampling technique applied to 

individual clustering algorithms which make them perform equally well with the clustering 

ensemble techniques only in some cases.  

We also noted that the performance of clustering ensembles is further enhanced with 

higher k values, in comparison to individual clustering approach. Interestingly, the k-

means and k-medoids algorithms were prominent in most of the individual clustering 

experiments. Topchy et al proposed that the weaker clustering performed effectively when 

utilized with proper consensus function [10]. Moreover, PCA provides better clustering 

configuration by achieving the main criteria of compactness, separation, and connectivity, 



82 
 

as compared to Isomaps. The compactness and connectivity indices were also greater in 

non-linear dimensions.  

                  

               Figure 4.9  Overall Comparison 

From diverse experiments of the two clustering approaches as in the Figure 4.9 of overall 

analysis, i.e. ensemble clustering executed is superior across the three time-cohorts than 

the three individual clustering algorithms k-means, k-medoids and affinity propagation by 

comparing the internal validity indices with respective criteria to the structure of the cluster 

i.e. Compactness and Connectivity and well-separation of the cluster i.e Silhouette index, 

Dunn index, and Calinski Harabasz. Out of the five consensus functions experimented, the 

relabeling and voting strategy – majority voting  performed better as it solves the label 

correspondence problem and appears to be the most accurate ensemble approach for the 

existence of relation[10] between the three clustering algorithms. The ensemble of the 

three centroid models fits the best for the pathology test ordering data. 

4.5 Cluster Visualization 

The clusters formed by the clustering ensemble was visualized using the CDF and 

consensus matrix as it provides insights to the cluster stability. Finally, we visualized the 

clusters using t-SNE in order to retrieve a well-defined clusters. 
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4.5.1 Consensus Matrices  

Consensus matrix determines the cluster stability for each cluster run of the individual 

clustering k-means, k-medoids and affinity propagation before applying the consensus 

functions. Monti et al proposed the consensus matrix, otherwise called the connectivity 

matrix to determine the cluster stability for multiple cluster runs using resampling 

technique[30]. Figure 4.10 indicates the clustering stability of k-means, k-medoid or PAM 

(Partitioning around medoids) and affinity propagation for multiple cluster runs at the 

optimal cluster k = 3.  

                  

                                

Figure 4.10 Consensus matrix for k-means, k-medoids and affinity propagation at k = 3   

The consensus matrix is calculated only for the individual clustering algorithms such as k-

means, k-medoid and affinity propagation. The consensus heat map shows lucid clusters 

at the three ranges without any distortion. If the distortion occurs, the clustering stability 

starts to fade and turns into a unimodal distribution without the ability to form clusters.  
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4.5.2 Visualization of Clusters 

We visualized the clusters generated by the clustering ensemble approach by applying the 

t-distributed stochastic neighbor embedding visualization, using Rtsne package in R. 

       

 Figure 4.11 Visualization of cluster at k = 2 of Cohort III 

   

 Figure 4.12 Visualization of cluster at k = 3 of Cohort III 

Figure 4.11 and Figure 4.12 illustrates the results of the clustering ensemble (using the 

majority voting consensus metric) for the optimal k-values of   k = 2 and k =3. We 

experimented different cluster values from k =2 to k =7 to visualize the clarity of the 

clusters, but only the important optimal cluster k- values with the best consensus function 
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was chosen in Figure 4.11 and Figure 4.12 t-SNE provided well-separated and accurate 

clusters in a two dimensional plot. 

4.6 Interpretation of Clusters 

The analysis of the clusters was performed to interpret the characteristics of physicians 

and patient case-mix. This analysis is done to understand the test ordering behaviour of 

the physicians remains similar or varies in the three time cohorts namely 1st cohort, 2nd 

cohort and 3rd cohorts. We analysed the clusters generated by the clustering ensemble 

approach as follows: 

4.6.1 Feature Importance 

We retrieved the clusters for the three time cohorts. The data was labeled for the entire 

dataset, we included all the features such as the number of orders, pmb id, different age 

groups, sex (male and female), ratio of age groups and gender information, normal and 

abnormal test orders, normal and abnormal disorders. We used the optimal cluster k-value 

for each cohort as in the Table 4.13. 

In order to interpret the clusters, we scaled all the features using z-score normalization and 

calculated the variance of means between the clusters for each feature, finally choosing 

the best features based on high variance.  

We classified the 26 disorders into four groups such as anemia, hematology, biochemical1 

biochemical2 based on disease ontology i.e., the hematology group deals with the blood 

disorders such as lymphoma, leukaemia, thrombocytopenia, and bleeding disorder 

whereas anemia group represents the blood deficiency disorders namely hemolytic 

anemia, hemorrhagic anemia, iron deficiency, vitamin B12 folate deficiency, bone marrow 

failure and polycythemia vera. Moreover, the disorders that is genetically present and 

affects the biochemical process of the body results in biochemical disorders. The first set 

of biochemical disorders consists of liver biliary, lung, kidney, thyroid, dehydration and 

addison disease and mineralocorticoid excess disorder. The second set of biochemical 

disorders consists of diabetics mellitus, diabetics ketoacidosis, hemodilution SIADH, 

metabolic bone disease, low muscle mass, hypoglycemia, muscle injury hemolysis, 

inflammatory conditions, parasitic infection allergy. 
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We conducted the variance analysis by taking the mean of the z-scores and grouping the 

features based on the clusters for all the three time cohorts. The range of mean score falls 

between 0 and 3.5 in the time-cohorts. The mean score of less than 0 represent a negative 

mean score which does not contribute the importance of the feature in the analysis. 

•  AGE GROUPS AND GENDER INFORMATION 

Firstly, we analysed the different age groups of 0-18, group 19-30, group 31-50, group 50-

65 and group 66+ in the three time -cohorts. The features containing ratio of the age groups 

and gender information was taken for the feature importance analysis, as it represents the 

proportion. Figure 4.13 illustrates the bar chart of different ratio of age groups present in 

the three clusters of Cohort III reaching a mean score of 0.40 for age group ratio 66 in 

cluster 2. The most important feature found was age group ratio 66 and group ratio 50-65 

in all the three time cohorts because of high mean variance in the clusters, whereas the age 

groups 31, 19 and 0 were important and in some cases, provided a variance score of less 

than 0. So, the features that provided less variance score below 0, were clipped off due to 

low feature importance as well as it does not contribute in the feature analysis in the 

clusters.     

              

                              Figure 4.13  Different age groups in Cohort III   

The age group ratio 50-65 was high in the last two years (2016-2017) of the laboratory 

utilization. Following that, the gender information consisting of male and female, variance 
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of male was higher than the female in all the three time cohorts whereas the female ratio 

was high only in the last year of 2017.We visualized the features using bar charts which 

illustrates the important features in each cluster and removes the unimportant features 

which falls below variance 0.  

• NORMAL TEST ORDER AND ABNORMAL TEST ORDER 

The physician test ordering behaviour of normal and abnormal test order remains similar 

throughout the 1st cohort, 2nd cohort and 3rd cohort. By using the z-score normalization and 

grouping the clusters by taking the mean of all the normal and abnormal test orders, the 

most important features were chosen. The normal test orders such as CBC, Urea, 

Creatinine, Electrolyte panel, Glucose AC, ALT, AST, TSH have higher importance 

because of high mean score were found in the clusters. On the other hand, the PT, GGT, 

Glucose Random and Alkaline Phosphatase were present low in all the three time-cohorts. 

Figure 4.14 illustrates the normal test orders present in the clusters of Cohort III. 

     

                   Figure 4.14 Normal test orders present in the clusters of Cohort III  

With the abnormal test orders namely CBC, ALT, Electrolyte Panel, Glucose AC, 

Creatinine, TSH, AST and PT were recurrent test orders in the three time-cohorts whereas 
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Urea, Alkaline Phosphatase, GGT and Glucose Random represent low mean in the clusters 

of 1st, 2nd and 3rd Cohort. 

• NORMAL DISORDER AND ABNORMAL DISORDER 

The normal and abnormal disorders were categorised into four groups in all the time 

cohorts. Figure 4.15 indicates all the features in the anemia group. Firstly, the anemia 

group consisting of the features namely hemolytic anemia, hemorrhagic anemia, iron 

deficiency, vitamin B12 folate deficiency, bone marrow failure and polycythemia vera 

were highly significant because of high mean seen in the clusters from both the normal 

and abnormal disorder section.  

              

           Figure 4.15  Features present in the clusters of anemia group of Cohort III 

Figure 4.16 represents the features from the hematology group. From the group of 

haematology, the bleeding order remains less important feature among the other disorders 

namely lymphoma, leukemia and thrombocytopenia having a high score of variance in the 

three time-cohorts in all the three clusters. 
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        Figure 4.16 Features present in the clusters of hematology group of Cohort III 

From the first set of biochemical disorders, the most important features that occur in the 

normal disorder section were kidney disorder, lung disorder, mineral excess corticoid and 

dehydration, liver biliary disorder, addison disease and thyroid disorder. All the features 

were considered important.  

Figure 4.17 represents the features present the clusters of biochemical 1 group from the 

normal disorder section. In the abnormal section, we found some disorders were highly 

significant such as lung disorder, dehydration, kidney disorder, addison disease, mineral 

excess corticoid, liver biliary disorder whereas thyroid disorder feature present is relatively 

low.  

From the second set of biochemical disorders namely hemodilution SIADH, low muscle 

mass, diabetics mellitus, diabetics ketoacidosis, inflammatory conditions, parasitic 

infection allergy are the important features in the clusters from both the normal disorder 

and abnormal disorder section as in the Figure 4.18. On the other, metabolic bone disease, 

muscle injury hemolysis and hypoglycemia are relatively low. The features such as 

diabetic mellitus, and diabetics ketoacidosis, parasitic infection allergy and inflammatory 

conditions remain in the same level of variance in the three time cohorts. 
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 Figure 4.17  Features present in the clusters of biochemical 1 group of Cohort III 

        

 

  Figure 4.18  Features present in the clusters of biochemical 2 group of Cohort III 

Figure 4.19, Figure 4.20 and Figure 4.21 indicates the importance features obtained from 

the overall analysis of cluster values in Cohort III, Cohort II (2014-2015) and Cohort I 

(2015).  
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              Figure 4.19  Overall Feature Importance Scores in Cohort III 

     

        Figure 4.20  Overall Feature Importance Scores in Cohort II 2014-2015 
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            Figure 4.21 Overall Feature Importance Scores in Cohort I 2015 

From the overall feature importance scores across the three time-cohorts, the phenotypes 

starting from the important age groups such as age group ratio 66 and age group ratio 50-

65, gender information namely male and female. The patient characteristics remain the 

same and stable in three time-cohorts with these four presiding phenotypes in the clusters. 

Following that, the hemolytic anemia, hemorrhagic anemia, iron deficiency, vitamin B12 

folate deficiency, bone marrow failure and polycythemia vera from the anemia group and 

the hematology group consisting of important features such as lymphoma, leukemia and 

thrombocytopenia remain undeviating with high mean score between 3.0 and 3.3 across 

Cohort III, Cohort II and Cohort I. 

Moreover, the highest peak disorders observed from the Figure 4.19, 4.20 and 4.21 such 

as kidney disorder, lung disorder, mineral excess corticoid disorder, and dehydration from 

biochemical1 group and hemodilution SIADH, low muscle mass, diabetic mellitus, and 

diabetics ketoacidosis from biochemical2 group show the cluster consistency across the 

physician clusters.  
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The tests important in the cluster values were CBC, creatinine, electrolyte panel, urea, 

ALT, TSH and Glucose AC in the three different time-cohorts. Thus, the important 

phenotypes the patient characteristics, tests and important disorders found inside each 

physician cluster value from the three time-cohorts namely Cohort III, Cohort II and 

Cohort I is persistent and maintain the cohesiveness in the test ordering pattern. 

• SIMILARITY PATTERNS OF PHYSICIAN CLUSTER ACROSS TIME 

To acknowledge the physician clusters are consistent or vary over time in the first cohort. 

We took a same subset of 20 physicians on all the three time-cohorts chosen for the 

analysis by taking the physician id i.e. PHY1, PHY2, PHY3 with their cluster labels who 

fall in the same or different clusters in 2012, 2013 and so on.  

                      

                 Figure 4.22  Correlation of physicians 



94 
 

Figure 4.22 gives correlation and similarity of physicians with the clustering results across 

the years. We used the external validity Rand Index statistic to identify the clustering 

similarities across years, by comparing the distinctive and similar pair of items found in 

the physician clusters. The Rand index value lies between 0 and 1, with 1 presenting the 

clustering are most similar whereas 0 represent clusters are not the same. The Rand index 

works with conditions by pairing items with four combinations of same and different 

subsets[97].  

We compared the clustering results of the physicians across the different years from 2012, 

2013, 2014, 2015, 2016 and 2017 of the first cohort. From the correlation matrix, the 

physicians in the clusters from 2012 and 2013 have similarity and consistent with the rand 

index score of 0.91. Secondly, the years across 2016 and 2017 have the most similar score 

of 0.884, indicating that the physicians are correlated. Likewise, the physicians correspond 

across the years of 2014 & 2016, 2014 & 2017, 2013 & 2017 have a rand index score of 

around 0.8. On an overall basis, the rand index score of the physicians clusters lies in the 

range between 0.7-0.9 similarity score, which presents the clusters are precisely similar 

for the 20 physicians across 2012, 2013 and so on in the first cohort. 

4.6.2 Discussion 

In this research, we presented the clustering ensemble approach to identify the physician 

phenotypes that determine the test ordering pattern of physicians in the three time-cohorts. 

We compared two clustering approaches such as individual clustering approach and 

clustering ensemble approach. Since the clustering ensemble approach has the ability to 

predict the groups based on the combination of two or three algorithms together, it has 

better cluster stability and since it utilizes the subsampling method for multiple cluster 

runs. 

Before clustering, we extracted the features in the three time-cohorts using two approaches 

linear and non-linear dimensionality reduction. The baseline was set as PCA that reduces 

the data in a linear way whereas the non–linear dimensionality reduction algorithms 

Isomaps and Deep Auto-encoder (DAE) were experimented. We analysed different 

dimensions to select the best dimension for clustering ensemble approach. In order to 

evaluate and assess the quality of the reduced dimensions in an unlabelled data, we 
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introduced ranking techniques termed as co-Ranking, LCMC and AUC_ln_K, RNX which 

ranks the data based on the projection from a high dimensional data into a low dimensional 

space. We tested the two metrics for three dimensionality reduction algorithm for different 

dimensions. The PCA performed better than the non-linear dimensionality reduction 

algorithms and reduced into 15 dimensional space with AUC_ln_K scores of 0.86-0.93, 

0.91-0.95, 0.91 in the 1st, 2nd and 3rd cohorts. The LCMC score of PCA produced a perfect 

embedding that is visualized in the form of line plot that peaked a score of 0.8. The main 

of purpose of co-Ranking is to assess the quality of the reduced dimension does not tear 

data apart in dimensionality reduction algorithm. Conversely, the Isomaps produced 

moderate embedding of 0.66, 0.67 and 0.69 in the 1st, 2nd and 3rd cohorts. Moreover, 

random embeddings were exhibited by using deep auto-encoders of 0.57, 0.59 and 0.53 in 

the 1st, 2nd and 3rd cohorts. The linear dimensionality reduction algorithm performed better 

than the non-dimensionality reduction algorithms in the pathology data.  

We built clustering ensembles based on the centroid models k-means, k-medoids and 

affinity propagation and applied five consensus functions namely majority, k-modes, 

LCA, LCE and CSPA for generating the ensemble. The cluster ensemble majority voting 

performed better than the individual clustering algorithms based on the five internal 

evaluation indices. We utilized 15- dimensional space of PCA and Isomaps to compare 

the linear and non-linear dimensionality reduction algorithms as an input for clustering. 

Compactness and Calinski Harabasz were the two indices which differentiates PCA from 

Isomaps, where PCA provides better clustering structure and yields better clustering 

results.  

In order to obtain the best k-value in a clustering ensemble approach, we used proportion 

of ambiguous clustering (PAC) to identify the lowest possible value from the three 

clustering algorithms. We visualized the optimal cluster value using Cumulative 

distribution function (CDF) for multiple clusters runs for the clustering algorithms. The 

optimal cluster k values were found at k = 3 in the 3rd cohort, and k = 3, 4 in the 2nd and 

1st cohort respectively. The consensus matrix was used, to check how accurate the 

clustering and stable. The k-means and k-medoids executed better PAC values in the three 

time-cohorts than affinity propagation. We took the optimal cluster values for comparing 
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the two approaches. The clustering ensemble majority in 3rd cohort in PCA executed better 

than the individual clustering algorithms based on internal evaluation indices such as 

Calinski Harabasz, Silhouette coefficient, Dunn index, Compactness and connectivity. 

Following that, majority and LCA performed better in the 2nd cohort than k-means and k-

medoids, in addition, majority, LCE and k-modes achieved in the 1st cohort. By overall 

analysis of all the ensemble approaches, the object occurrence based method Majority 

performed well in the pathology dataset. 

Menger and Spruit utilized the clustering ensemble approach for identifying the sub-types 

of psychiatric patients. In their study, k-means, GMM and affinity propagation was used 

as an ensemble combination and used five consensus functions such as majority, k-modes, 

CSPA, LCA and LCE. But the best performing algorithm was graph-based clustering 

ensemble approach CSPA to identify the sub-types namely depressive disorder, speech 

and behaviour problems in each cluster[98]. The study was carried out for 12 weeks for 

understanding the behaviour of the psychiatric patients. 

Similarly, the most significant features were found using the variance analysis in the three 

time-cohorts. The age group 66 and group 50 were the most evident features in the age 

group criteria in the 1st, 2nd and 3rd cohorts. With the gender information, most of the 

cluster falls to the male population except the last year of 2017 in the 1st cohort shows the 

higher female ratio.   

Different groups of disorders were sorted in the three time-cohorts such as anemia group, 

hematology group, biochemical1 group and biochemical2 group. By analysis, the anemia 

group and hematology group, biochemical1 group and biochemical2 group follow the 

same pattern proportion in the clusters throughout the time intervals of 1st, 2nd and 3rd 

cohorts. 

To begin with, hemorrhagic anemia, iron deficiency, vitamin B12 Folate deficiency, bone 

marrow failure and polycythemia vera, hemolytic anemia has the same level proportion in 

the three time-cohorts. Adversely, the most principal features that conquer the cluster 

significance in biochemical1 group are kidney disorder, lung disorder, mineral excess 

corticoid, dehydration, liver biliary, thyroid disorder and addison disease in normal 
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disorders, whereas the hemodilution SIADH and low muscles mass, diabetics mellitus, 

diabetics ketoacidosis, inflammatory conditions, parasitic infection allergy were the 

prominent features dominating the three time-cohorts. The abnormal disorders have the 

same pattern as that of the normal disorders of anemia and hematology group. But this 

pattern differs in the abnormal disorders of biochemical1 group with lung disorder and 

dehydration conquering the highest in the clusters.  

The most significant features in the number of tests ordered in the cohorts was CBC, 

electrolyte panel, creatinine, urea, ALT TSH and Glucose AC were dominant in the 

clusters. On the other hand, test orders such as GGT, PT remain low important features. 

We interpreted the similarity pattern of the physician clusters who remain similar and 

consistent over time. 

To conclude the above discussion was solely based on the results produced by the 

clustering ensemble models and the significant features were obtained from the significant 

clusters of these models in the three time-cohorts. We made a comparison between the 

linear dimensionality reduction algorithm and non-linear dimensionality reduction 

algorithm. We compared two clustering approaches such as individual clustering and 

clustering ensemble approach. We interpreted the significant features found from each 

cluster and concluded the overall variance analysis.  
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CHAPTER 5 CONCLUSION 

5.1 Summary 

Pathology laboratory test ordering is beneficial for understanding the outcomes of 

laboratory utilization process. It entails the number of test orders ordered by the physicians 

and is essential to give the right amount of treatment at the right time for the patients. In 

this research, we clustered physicians among the peers having the similar patient case-mix 

by utilizing the Nova Scotia Health Authority (NSHA) pathology data from 2012-2017. 

We conducted the study into three time cohorts based on 1-year, 2-year and 6-year interval 

to understand the physician ordering behaviour of test orders. Test-disease mapping was 

retrieved from the previous studies, was utilized in this study between the number of tests 

and resulted about 26 disorders in the overall study of six years. We introduced an 

ensemble approach for clustering, by building heterogeneous cluster ensemble based on 

the centroid models such as k-means, k-medoids and affinity propagation. We initiated 

five cluster ensembles namely majority, LCA, k-modes, LCE and CSPA. Before the 

clustering process, we extracted the features using three dimensionality reduction 

algorithms such as PCA, Isomaps and Deep auto-encoder and assessed the quality of the 

feature extraction algorithms using co-Ranking. Our results indicate that PCA performed 

the best with area under the RNX curve score of 91% at the best dimension with LCMC 

curve at 0.9 in the overall study. We utilized a 15-dimensional space data from PCA and 

Isomaps on clustering. Our results for clustering ensemble were based on the five internal 

evaluation indices, in which majority is based on cumulative voting performed well than 

the individual clustering algorithms on all five indices in the time-cohorts. We used the 

proportion of ambiguous clustering (PAC) metric for identifying the best k-value as well 

as cumulative distribution functions and consensus matrix for understanding the cluster 

stability in a clustering ensemble approach. The best cluster k values were obtained at k = 

3 in the 3rd cohort, and k = 3, 4 in the 1st and 2nd cohort respectively. We discovered the 

physician phenotypes in the three cohorts by using the ensemble cluster labels and the 

feature importance scores in clusters were calculated by using variance analysis. We found 

the inherent characteristics depend on the important disorders from the list of 26 disorders, 
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tests, age groups, and sex that influence in the physician test ordering in laboratory 

utilization for different time-cohorts respectively. 

5.2  Limitations 

One of the main limitations was computational restraint while training the cluster 

ensemble process. The dataset was adequate, but the training process in the ensemble 

process took a lot of computational time. For the feature extraction process using scikit-

learn was easy to train the unlabeled data. Conversely, for the cluster ensemble process we 

used the diceR package, we conducted experiments for a range of cluster values, it took a 

lot of computational time for training one cluster value. The system crashes several times 

while running high cluster values as well as when the clustering runs are increased above 

the limit of the system due to unavailable space in the RAM. In addition, for LCE 

ensemble, we faced several crashes while training with ‘srs’ and ‘cts’ matrix because loss 

of computational power. Following that, one of the functional limitation of diceR package, 

we were not able to train five or six clustering algorithms together at once while selecting 

algorithms because of high computational power and time, we had to try it only three 

algorithms at a time separately. We implemented co-Ranking in R but not in scikit-learn 

package, because the package was useful for visualizing purpose, but it did not obtain the 

important details of assessing the quality of the dimensions. 

5.3 Future Works 

The approach presented open wide opportunities for various dimensions. Since we had 

worked on an unlabeled data, we were able to validate the clustering with few internal 

validation indices. By the expert’s domain and their knowledge to provide class labels on 

the pathology data, could help us train the ensemble approach on supervised data with 

different indices such as NMI, ARI, accuracy, f-measure, Cohen’s kappa and various 

others external validity indices could be tested for validating clustering for the future work.  

The main purpose for clustering ensembles was to provide views of multiple clustering 

algorithms to achieve one robust clustering and deploying the clustering ensemble model 

for laboratory utilization process aids in day-to-day to track the physician test ordering 

behaviour. 
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