
Applying Machine Learning Techniques to Lithium-ion Cell Research

by

Samuel Buteau

Submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

at

Dalhousie University

Halifax, Nova Scotia

February 2021

© Copyright by Samuel Buteau, 2020

ii

Table of Contents

List of Tables ... viii

List of Figures ... xi

Abstract ... xiii

List of Symbols Used .. xiv

Chapter 1 Introduction ... 1

1.1 Optimization ... 2

1.1.1 The Optimization Problem .. 2

1.1.2 Gradients ... 3

1.1.3 Gradient Descent ... 4

1.1.4 Loss Functions Defined by Datasets ... 5

1.1.5 Stochastic Gradients.. 6

1.1.6 ADAM .. 7

1.2 Neural Networks .. 7

1.2.1 Tensors .. 7

1.2.2 Basic Mathematical Definition of Neural Networks .. 9

1.2.3 Universal Function Approximation .. 11

1.2.4 Backpropagation ... 11

1.2.5 Fully Connected Layers .. 12

1.2.6 Convolutional Layers .. 17

iii

1.2.7 Averaging and Self-Attention Layers ... 19

1.3 Advice for Building Intuition ... 24

Chapter 2 Mathematical Properties of Electrochemical Impedance Spectroscopy Data and

Equivalent Circuit Models of Lithium-ion Cells .. 26

2.1 Basic Mathematical Definitions of EC models and EIS Data .. 27

2.2 The Difficulty of Choosing an EC Model .. 31

2.3 A Realistic EC for Lithium-ion Cells ... 40

2.4 Enforcing Constraints on EC Parameters ... 44

2.5 Symmetries within a single EC Model ... 46

2.6 The Difficulty of Choosing EC Model Parameters Uniquely .. 50

2.7 A Simple Measure of EC Parameter Complexity .. 53

2.8 Acknowledgements .. 55

Chapter 3 Robust Fitting of Lithium-ion Cell EIS to EC Models ... 56

3.1 Introduction .. 56

3.1.1 Related Works ... 58

3.2 Formalizations of the Fitting Problem ... 60

3.3 A Comparison of Various Approaches to the Fitting Problem 63

3.3.1 Individual Fitting .. 63

3.3.2 Hybrid Approach .. 66

3.3.3 Supervised Approach .. 66

3.3.4 Unsupervised Approach .. 67

iv

3.4 Results .. 71

3.4.1 Reproducibility and Access to Code ... 85

3.5 Conceptual Discussion of Tricks.. 87

3.5.1 Defining a Prior Distribution on the EC Parameters .. 87

3.5.2 Leveraging Symmetries to Compress the Prior .. 88

3.5.3 Modelling Deviations from the Averaged Prior ... 89

3.5.4 Penalizing Deviations from the Prior .. 90

3.5.5 Breaking the Symmetry in the EC Model ... 91

3.5.6 Penalizing Complexity .. 92

3.5.7 Automatically Setting the Relative Importance of the Penalties 92

3.5.8 Generating Fake Data to Improve Robustness of the Inverse Model 93

3.5.9 Augmenting Real Data to Improve Robustness of the Inverse Model 94

3.5.10 Error Rescaling ... 94

3.6 Extension to Multiple EC Models .. 95

3.6.1 Multi-Task Learning, Positive Transfer, and Negative Transfer 102

3.7 Key Implementation Details and Intuitive Guide to their Impact on Performance 104

3.7.1 What Separates Good from Bad Choices of Neural Networks 104

3.7.2 Symmetry and Convolutional Layers ... 104

3.7.3 Variable Numbers of Frequencies and Fully-Convolutional Architecture 108

3.7.4 Coordination of Local Processes .. 108

v

3.7.5 Batch Diversity and Masks ... 109

3.7.6 Rebalancing the Dataset .. 111

3.7.7 Finetuning with ADAM .. 112

3.8 Future Work: The Transformer Architecture ... 114

3.8.1 The Transformer Architecture as a Coordination Mechanism 114

3.8.2 The Dual Role of Log-Frequencies as Inputs of Sequence Layers 115

3.8.3 Positional Encodings of Log-Frequencies .. 116

3.8.4 A Concrete Proposal for Implementing the Transformer Architecture for Future

Researchers ... 117

3.9 Conclusions .. 122

3.10 Acknowledgements .. 122

Chapter 4 Interpretability in the Determination of the Electrolyte Concentration in

Lithium-Ion Cells Using Fourier Transform Infrared Spectroscopy .. 123

4.1 Introduction .. 125

4.2 Methods .. 128

4.2.1 Data acquisition .. 128

4.2.2 Physical underpinnings, Beer's law, and the Proposed Models 132

4.2.3 Measuring performance and penalizing bad model properties. 136

4.2.4 All equations for the Linear-VM model ... 138

4.2.5 Code Structure and Content .. 140

4.2.6 Addendum: Spectra Measured on Other Apparatus ... 141

vi

4.2.7 Future Work: Fine-tuning ... 142

4.3 Results and Discussion ... 143

4.4 Conclusions .. 155

4.5 Acknowledgements .. 156

Chapter 5 A Database for Lithium-ion Data ... 157

5.1 Motivation for a Data Processing System .. 157

5.2 Requirements and Desired Properties of a Data Processing System 161

5.3 Design of the System and Fundamentals of its Workings ... 163

5.3.1 Lithium-ion Cell Ontology (Structure of the Cell Metadata) 163

5.3.2 Obtaining Unique Names at Scale .. 166

5.3.3 Linking Experimental Files to the Appropriate Cells ... 168

5.3.4 Searches Based on the Ontology of Lithium-ion Cells ... 171

5.3.5 Data Processing and Grouping the Cycles Automatically 177

5.3.6 Creating and Annotating Datasets .. 181

5.3.7 Outputting Experimental Data in a Simple Format (for Humans) 187

5.3.8 Outputting Data in a Complete Format (for Machine Learning Algorithms) 188

5.4 User Manual and Frequently Asked Questions .. 189

5.4.1 Access to the Universal Battery Database .. 190

5.4.2 Searching the Database ... 192

5.4.3 Datasets ... 215

vii

5.4.4 Registering Cells ... 221

5.4.5 Fixing Bad File Metadata and Bad Cycling Data ... 223

5.5 Future Work ... 227

5.5.1 Forms to Formsets... 227

5.5.2 Static Database Information .. 228

5.5.3 Anomaly Warnings and Troubleshooting Help .. 229

5.5.4 Outputting Data in a Complete Format through the User Interface 230

5.6 Acknowledgements .. 231

Chapter 6 Conclusion and Outlook ... 232

Bibliography .. 236

viii

List of Tables

Table 1 The weight ratios of the dataset samples with known weight ratios. (part 1) 129

Table 2 The weight ratios of the dataset samples with known weight ratios. (part 2) 130

Table 3 The weight ratios of the dataset samples with known weight ratios. (part 3) 131

Table 4 The weight ratios of the dataset samples with known weight ratios. (part 4) 132

Table 5: A few examples of how various informal searches can be represented as restricted

formal searches. ... 177

Table 7 Examples of dataset filters to isolate “Check-up” cycles. 185

Table 8 Examples of dataset filters to get the various cycles except the “Check-up”

cycles. ... 186

Table 9 Examples of dataset filters to get the various cycles in a “Rate Map”. 186

Table 10 The option combinations to trigger a simple search or a powerful search on

electrolytes or dry cells. ... 201

ix

List of Figures

Figure 2.1 Example of one equivalent circuit (left, original) that can mimic another's

impedance spectrum (right, converted) by using different values for the

parameters. ... 34

Figure 2.2 Impedance formulas of a resistor and a capacitor, respectively. 34

Figure 2.3 Example of how a simple trend in one equivalent circuit looks quite different and

more complicated in another equivalent circuit, even if the underlying impedance

spectra are exactly the same. .. 36

Figure 2.4 Example of explicit conversion from a Voight-type circuit configuration to a Ladder-

type circuit configuration. .. 40

Figure 2.5 Equivalent circuit used to fit the impedance spectra in this thesis............................. 42

Figure 2.6 Equivalent circuit components used in Section 2.3.. ... 44

Figure 2.7 Reparameterizations used in this thesis.. ... 46

Figure 2.8 Useful symmetry of the equivalent circuit model.. .. 49

Figure 3.1 Graphical illustration of the fitting problem’s structure. .. 61

Figure 3.2 Error of the inverse model for two test datasets before and after finetuning. 74

Figure 3.3 Complexity metric of the inverse model for two test datasets before and after

finetuning. .. 75

Figure 3.4 Some fits of the FRA test dataset using the inverse model. 78

Figure 3.5 Some fits of the EIS test dataset using the inverse model. .. 79

Figure 3.6 Some fits of the FRA test dataset using the inverse model followed by finetuning.. 80

Figure 3.7 Some fits of the EIS test dataset using the inverse model followed by finetuning. ... 81

Figure 3.8 Some fits in the FRA dataset shown in original scale.. 84

Figure 3.9 Error of an inverse model trained with 10 percent of the data. 86

x

Figure 3.10 Graphical illustration of the multiple-equivalent-circuit-models variant of the

fitting problem.. 96

Figure 3.11 Various equivalent circuits supported by the software (part 1). 100

Figure 3.12 Various equivalent circuits supported by the software (part 2). 101

Figure 4.1 Comparison of two models: the cross-validation performance overview.. 145

Figure 4.2 Comparison of two models: the cross-validation predictions of mass ratios 146

Figure 4.3 Evaluation of the linear-vibration-modes model: cross-validation reconstruction

of spectra .. 148

Figure 4.4 Evaluation of the constant-vibration-modes model: cross-validation

reconstruction of spectra ... 149

Figure 4.5 Evaluation of the physical plausibility of the vibration modes of the

linear-vibration-modes model. ... 151

Figure 4.6 Model parameters X during cross-validation. .. 152

Figure 4.7 Model parameters 𝑨 during cross-validation. .. 153

Figure 5.1 Schematic of the various modalities of battery data. ... 158

Figure 5.2 A hierarchical breakdown of a cell into components. .. 163

Figure 5.3 A more detailed breakdown of the components of the cell into subcomponents. ... 164

Figure 5.4 Illustration of the connection between filenames, cycling data, valid file

metadata, and cell IDs .. 171

Figure 5.5 The front page of the software accessed from a computer within the lab’s

network... 191

Figure 5.6 Overview of the search page, as it would show up when clicking on the hyperlink

Search Stuff. ... 195

Figure 5.7 Illustration of the structure of the possible searches, called the “search tree”. 196

Figure 5.8 Zoomed-in view of the electrolyte section of the search page 198

xi

Figure 5.9 Results of a simple search for electrolytes based on the input of Figure 5.8. 199

Figure 5.10 Zoomed-in view of the dry cell section of the search page, with an example

input for the dry cell substructure, as it would appear just before the search. 202

Figure 5.11 Results of a simple search for dry cells based on the input of Figure 5.10. 203

Figure 5.12 Results of a simple search for dry cell boxes. ... 204

Figure 5.13 Results of a powerful search for dry cells based on the dry cell box ID input

node .. 205

Figure 5.14 View of the search page, with an example input for the dry cell box ID and

the electrolyte substructure similar to Figure 5.13 and Figure 5.8 respectively. 207

Figure 5.15 Results of a simple search for wet cells based on the inputs of Figure 5.14. 208

Figure 5.16 Zoomed-in view of adding some cells to a dataset. .. 209

Figure 5.17 A search for valid cycling data based on experimental conditions and

filename substructure. .. 210

Figure 5.18 The results of the search from Figure 5.17.. 211

Figure 5.19 The results of the search from Figure 5.17 with the “Show Visuals” option

checked... 212

Figure 5.20 The steps required to force the system to reimport the files associated with

given cells .. 214

Figure 5.21 The overview of all datasets. ... 215

Figure 5.22 Creating a new dataset step by step. .. 216

Figure 5.23 The listing of an example dataset. ... 217

Figure 5.24 The default edit page for an example dataset. ... 218

Figure 5.25 How to give a specific name to a cell in the context of a dataset 218

Figure 5.26 The edit page after having set a specific name for cell “10001”....................... 219

Figure 5.27 How to set the most inclusive of all filters. ... 220

xii

Figure 5.28 How to output the dataset immediately to CSV format. 221

Figure 5.29 Registering Cells (part 1) .. 222

Figure 5.30 Registering Cells (part 2) .. 222

Figure 5.31 Fixing File Metadata. .. 224

Figure 5.32 The “Fix Bad Cycles” page. .. 225

Figure 5.33 Zooming into a given cycle number region on the “Fix Bad Cycles” page. 226

Figure 5.34 View of a cycle after “cursing” region C in Figure 5.33. 227

xiii

Abstract

Progress in lithium-ion cells research is largely a matter of determining which aspect of the cell’s

design and operation will lead to longer life, higher energy-density, and lower costs. These

attributes can easily be characterized empirically but determining if a cell will last 10 or 20 years

in the naïve way is much too slow (i.e. it would take between 10 to 20 years). The same attributes

could in principle be determined from theory alone, but this is a very challenging problem and is

currently unsolved.

It would therefore seem that the way forward is to leverage some experimental results obtained in

a reasonable time to estimate the key attributes of various cell designs and make progress towards

better designs. The development of models and tools using data (i.e. machine learning) is a

powerful and much studied toolbox which in principle is ideally suited to the task at hand, but care

must be taken in its application. If this thesis withstands the test of time, it will likely do so as the

initiation of a process of cross-pollination of the field of machine learning towards lithium-ion

cells research. To this end, we offer two clear applications of machine learning to the

understanding of specific measurements. We apply machine learning to impedance spectroscopy

and then to Fourier-transform infrared spectrometry. Finally, we offer an example of a data

processing system scaled to support the long-term cycling data of a laboratory in the real-world.

As such, it is our hope that the process of cross-pollination will be helped by these concrete in-

depth examples of applying the techniques of machine learning, and by a scalable system which

organized tens of thousands of experiments to be used for future inquiry.

xiv

List of Symbols Used

Symbol Definition

ℝ The set of all real numbers, such as 0, -1, 𝜋.

ℝ𝑁 The set of all tuples of N real numbers. Often considered as the set of

all real-valued vectors with N components.

ℝ𝑁 × ℝ𝑀 The set of pairs where the first element belongs to ℝ𝑁 and the second

belongs to ℝ𝑀.

∏ ℝ𝑁𝑗𝑛
𝑗=1 A shorthand notation for ℝ𝑁1 × ℝ𝑁2 ×. . .× ℝ𝑁𝑛 . The set of tuples

where the j-th element belongs to ℝ𝑁𝑗 .

𝑅, 𝑄, φ,ω𝑐, 𝑅1, 𝑅2, 𝑅3 Original parameters of the EC model from Figure 2.5. Not all of these

parameters are referred by name in the text, but 𝑅 denotes a resistance,

𝑅1, 𝑅2, 𝑅3 denotes the resistances of the 3 ZARCs respectively, ωc is a

"characteristic frequency," and φ is an "exponent" of the given circuit.

 σ(𝑥) The logistic function. The formula is σ(𝑥) =
1

1+exp(−𝑥)
.

r,q, ϕ, wc, wc1, wc2, wc3 Reparameterized parameters of the EC model from Figure 2.5, with the

reparameterization given in Figure 2.7. Not all of these parameters are

referred by name in the text, but r denotes a log-resistance, wc is a

"characteristic log-frequency," wc1, wc2, wc3 are the characteristic log-

xv

frequencies of the 3 ZARC elements respectively, and ϕ is a

"reparameterized exponent" of the given circuit.

(wi, 𝑍𝑖)𝑖=1
𝑁 A measured spectrum, given as a list of log-angular frequencies and

corresponding impedances. More precisely, wi is the logarithm of the

𝑖-th angular frequency, and 𝑍𝑖 is the corresponding complex

impedance.

rα, wα The scaling and shifting parameters, which allow to rescale (the

impedance of) and shift (the log-angular frequencies of) the measured

spectra. More precisely, rα is the logarithm of the scaling of the

impedance and referred to as "the log-resistance scale parameter."

Similarly, 𝑤α is the shifting of the log-angular frequencies and referred

to as "the log-frequency shift parameter."

θEC,μ, θEC,σ The prior distribution over EC parameters. More precisely, θEC,μ are

supposed to be the average values of the EC parameters (they are

defined or chosen before running the program, simply based on the

understanding of what constitutes typical reasonable values). Similarly,

θEC,σ are supposed to be the standard deviations of the EC parameters

(they are defined or chosen before running the program, simply based

on the understanding of the range of reasonable values).

𝐶(𝑅1, 𝑅2, 𝑅3)
The complexity metric, defined as 𝐶(𝑅1, 𝑅2, 𝑅3) =

(√𝑅1+√𝑅2+√𝑅3)
2

𝑅1+𝑅2+𝑅3
.

xvi

𝑙1, 𝑙1/2 The "L-1 norm" 𝑙1 is the sum of the absolute values of the elements of

a vector. Similarly, the "L-1/2 pseudo-norm" 𝑙1/2 is the square of the

sum of squared roots of the absolute values of the elements of a vector.

stopgrad(𝑥) The "stopgrad of 𝑥", stopgrad(𝑥), is the same as 𝑥 except that when

computing the derivatives with respect to some variable 𝑦, we set the

derivative of stopgrad(𝑥) with respect to 𝑦 to 0. In other words, we

treat it as a constant, but the value of the constant is set to 𝑥 after the

differentiation. For instance, the derivative of 𝑦 ⋅ stopgrad(𝑦𝑛) with

respect to 𝑦 is

1 ⋅ 𝑦𝑛 + 𝑦 ⋅ 0 = 𝑦𝑛, for any real number 𝑛.

𝑃𝑖(θInv; 𝑆) The 𝑖-th penality term added to the average MSE in the section Guiding

the optimization. For instance, 𝑃1(θInv; 𝑆) would be the penality due to

deviations from the prior, 𝑃2(θInv; 𝑆) would be the penality that breaks

the symmetry in the EC model between the various ZARCs, and so on.

θEC = (relec, wc1, …) The EC model's parameters are a small vector of real numbers. See

Figure 2.5 for the model. Note that here, we consider the

reparameterized parameters, given in Figure 2.7. For example, rohm is

the log-resistance of the electrolyte resistor, wc1 is the characteristic

log-frequency of the first electrochemical ZARC.

𝑍EC(ω; θEC) The impedance of the EC model is a function which returns a complex

number (the impedance) when evaluated at an angular frequency ω,

xvii

where the parameters of the EC model are given by θEC. Figure 2.5

shows the EC model itself, and Figure 2.7 gives the equations for each

component.

MSE(θEC; 𝑠) The mean squared error of a fit is a function which returns a positive

number (the error) when evaluated with some EC parameters θEC and a

measured spectrum 𝑠. Let the spectrum 𝑠 be given as a list of angular

frequencies ω𝑖 and the corresponding impedances 𝑍𝑖, where 𝑖 =

1,2, … ,𝑁.

Then,

MSE(θEC; 𝑠) =
1

𝑁
∑|𝑍EC(ω𝑖; θEC) − 𝑍𝑖|

2

𝑁

𝑖=1

In words, it is the mean of the squared differences between the

measured impedances and the impedance of the EC model.

θ
EC* The optimal EC parameters for a given measured spectrum is a small

vector of real numbers. Let 𝑠 be the measured spectrum under

consideration.

Then, θ
EC* = argminθEC

MSE(θEC; 𝑠)

xviii

In words, the optimal EC parameters for a given spectrum are the EC

parameters which minimize the mean squared error for that given

spectrum.

θInv The inverse model's parameters are a large vector of real numbers. In

this paper, they are the parameters of the neural network representing

the inverse model.

𝑓Inv(𝑠; θInv) The inverse model is a function which, given as input a spectrum 𝑠 as

well as the inverse model's parameters θInv, will return a small vector

of real numbers (an approximation of the optimal EC parameters for

the given spectrum). In Chapter 3, this function is computed as a neural

network.

ℒ(θInv; 𝑆) The average MSE error over a set 𝑆 of spectra is a function returning a

positive number (the average MSE) when evaluated with the inverse

model's parameters θInv and a set 𝑆 of spectra. Let 𝑠𝑗 be the 𝑗-th

spectrum in the set 𝑆 with 𝑗 = 1,2, …𝑀.

Then, ℒ(θInv; 𝑆) =
1

𝑀
∑ MSE𝑀

𝑗=1 (𝑓Inv(𝑠𝑗; θInv); 𝑠𝑗)

In words, the average of the MSE over a set of spectra.

θInv* The optimal inverse model's parameters for a given set of measured

spectra is a large vector of real numbers. Let 𝑆 be the set of measured

spectra under consideration.

xix

Then, θInv* = argminθInv
ℒ(θInv; 𝑆)

In words, the optimal inverse model's parameters for a given set of

spectra are the θInv parameters which minimize the average MSE for

that given set of spectra when the output from the inverse model is used

to produce the EC parameters for each spectrum.

1

Chapter 1 Introduction

This thesis discusses the development of models and tools using data (i.e. machine learning) in the

context of lithium-ion cell research. Machine learning is a powerful toolbox, but care must be

taken in its application, especially on a novel domain.

Chapter 1 provides a minimal foundation in machine learning. Chapter 2 analyses the topic of

electrochemical impedance spectroscopy to extract key mathematical properties. Chapter 3 then

leverages such properties to create a robust solution with machine learning techniques. Chapter 4

studies interpretable predictions (i.e. where the process is understandable by a human) in the

context of Fourier-transform infrared spectrometry. Finally, Chapter 5 illustrates how data

processing systems can be built to benefit the daily operation of a laboratory and increase the scale

of feasible machine learning projects.

The applications discussed were those that seemed most relevant and achievable at the time the

author studied in the lab. Namely, Chapter 2 and Chapter 3 focus on electrochemical impedance

spectrometry, Chapter 4 focusses on Fourier-transform infrared spectrometry, and Chapter 5

focussed on a database for long-term cycling data and structural description of lithium-ion cells.

Thorough introductions to the topic of lithium-ion cells, their known physical characteristics, and

the measurements which can be performed on them exist. We shall assume that the interested

reader can refer to those introductions as needed1–6.

Similarly, quality references on the topics of machine learning, optimization, and neural networks

exist. We shall assume that the interested reader can use these references as needed7–10. Indeed, all

that follows in the introduction is either directly discussed in these standard references7 or is a

straight-forward application of undergraduate mathematics.

2

Next, we recapitulate various important points in the theory of optimization (Section 1.1) and

neural networks (Section 1.2) useful to understand the rest of the thesis. Finally, Section 1.3 gives

guidelines for building a useful intuition about machine learning.

For readers with a “physics background” (if you want to see something used before it is built), the

thesis might be more enjoyable if Chapter 1 is treated as an occasional reference and Chapters 2

through 5 as the interesting applications. In the extreme case, it might be advisable to start at

Chapter 5 and work your way backwards until Chapter 1.

For readers with a “mathematical background” (if you want to start from nothing and build

concepts in order with the usage at the end), the thesis should probably be read in order, and the

main references7 should be kept nearby while reading the thesis.

1.1 Optimization

1.1.1 The Optimization Problem

Given a function from N real numbers to a single real number (henceforth called the loss function11–

13), the minimization problem (henceforth called the optimization problem) is to find settings of

the inputs such that the output is as small as possible. More formally, given a function Loss: ℝ𝑁 →

ℝ, we say that an input 𝑥∗ ∈ ℝ𝑁 is a minimum of the function Loss and we write

𝑥∗ = argmin
𝑥∈ℝ𝑁

Loss(𝑥)

if for every possible inputs 𝑥′ ∈ ℝ𝑁, Loss(𝑥∗) ≤ Loss(𝑥′).

The optimization problem is to find such a minimum.

The introductory literature is full of examples and the rest of this thesis contains various examples

as well. To keep things concrete and simple, we also give a minimalist example. Consider the

3

space of triplets of real numbers ℝ3 with (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, and consider the loss function given

by:

Loss((𝑥1, 𝑥2, 𝑥3)) = (1 − √𝑥1
2 + 𝑥2

2 + 𝑥3
2)

2

This loss function will be minimized whenever √𝑥1
2 + 𝑥2

2 + 𝑥3
2 = 1, which means that a

minimum 𝑥∗ = (𝑥1, 𝑥2, 𝑥3) must be a unit vector in the usual Euclidian 3-D space.

1.1.2 Gradients

To properly discuss optimization, we must remind the reader about a few mathematical objects.

Linear functions 𝑓:ℝ𝑁 → ℝ are functions which satisfy 𝑓(𝛼𝒖 + 𝛽𝒗) = 𝛼𝑓(𝒖) + 𝛽𝑓(𝒗) for all

scalars 𝛼, 𝛽 ∈ ℝ and all input vectors 𝒖, 𝒗 ∈ ℝ𝑁.

Affine functions are simply the sum of a linear function with a constant.

Differentiable functions 𝑓:ℝ𝑁 → ℝ are functions which can be approximated locally by a linear

(affine) function. Namely, for a point 𝒂 ∈ ℝ𝑁, and for any point 𝒂 + ∆𝒂 ∈ ℝ𝑁 such that |∆𝒂| is

small, there will exist a vector 𝛁𝒇 ∈ ℝ𝑁 such that 𝑓(𝒂 + ∆𝒂) ≈ 𝑓(𝒂) + ∆𝒂 ∙ 𝛁𝒇.

Here, 𝒖 ∙ 𝐯 is the dot product of two vectors.

This vector 𝛁𝒇 ∈ ℝ𝑁 is known as the gradient of f evaluated at point a. Each component of the

gradient is a partial derivative with respect to a component of the input.

Note that for a function with vector outputs, one can consider the gradients of each of the outputs,

and assemble them into a matrix where rows correspond to input indices and columns to output

indices (or vice-versa), and elements are the partial derivatives of a given output with respect to a

4

given input. This is called the Jacobian14,15. For instance, if 𝒚 = 𝑓(𝒙), then the position i,j in the

Jacobian would be
𝜕𝒚𝑗

𝜕𝒙𝑖
.

This can be applied recursively. For instance, the gradient of a scalar function f is a function with

vector outputs, so if everything is twice differentiable, we can take the Jacobian of the gradient of

f, which is known as the Hessian16 of f. Concretely, it is a matrix of second order partial derivatives

of f with respect to its inputs. For instance, if 𝒚 = 𝑓(𝒙), then the position i,j in the Hessian would

be
𝜕2𝑦

𝜕𝒙𝑖𝜕𝒙𝑗
.

1.1.3 Gradient Descent

Given a starting point a and an affine loss function which (by definition) can be written as

Loss(𝑎 + ∆𝑎) = Loss(𝑎) + ∆𝑎 ∙ ∇Loss, what is the direction in input space from 𝑎 which most

reduces the value of Loss? In other words, if we are restricted to producing a new input 𝑎 + ∆𝑎

such that |∆𝑎| = 𝜂 is fixed, then what choice of ∆𝑎 will yield the smallest possible value for Loss?

Simple algebra reveals that

∆𝑎 = −
𝜂

|∇Loss|
∇Loss

produces the smallest possible value under these constraints.

More generally, the negative direction of the gradient −
1

|∇Loss|
∇Loss is the direction in which

Loss diminishes most rapidly. This remains true locally for differentiable functions despite the fact

that the gradient of Loss(𝑥) is not constant with respect to x in general.

Therefore, a simple iterative algorithm to attempt to solve the optimization problem of a

differentiable loss function Loss(𝑥) is to:

5

1 Choose a starting point 𝑥(0) = 𝑥(𝑠𝑡𝑎𝑟𝑡).

2 Compute the gradient of the loss function at the present point 𝑔 = ∇Loss(𝑥(𝑡)).

3 Take a step 𝑥(𝑡+1) = 𝑥(𝑡) − 𝜂𝑔

4 Go back to step 2 with a higher value of 𝑡 unless Loss(𝑥(𝑡+1)) is sufficiently small or 𝑡 is

sufficiently large.

This procedure is known as gradient descent17–19.

1.1.4 Loss Functions Defined by Datasets

Typically in machine learning, there will be a model 𝑓:ℝ𝑁 × ℝ𝑀 → ℝ which is written as 𝑓(𝑥; 𝜃)

where 𝑥 ∈ ℝ𝑁 is the input of the model and 𝜃 ∈ ℝ𝑀 are the parameters of the model, and then a

possible loss function could be defined as the mean squared error20 over a dataset 𝒟 =

{(𝑥(𝑖), 𝑦𝑖)|𝑖 = 1,… ,  𝑚} where 𝑥(𝑖) ∈ ℝ𝑁 and 𝑦𝑖 ∈ ℝ for 𝑖 = 1,… ,  𝑚. Namely,

Loss(𝜃) =
1

|𝒟|
∑ |𝑓(𝑥(𝑖); 𝜃) − 𝑦𝑖|

2

(𝑥(𝑖),𝑦𝑖)∈𝒟

This example is a standard supervised learning problem setting. In general, though the optimizer

views the loss function as a function of a given set of parameters 𝜃, it is possible to construct such

a loss function out of pieces that have other dependencies (such as 𝑓(𝑥; 𝜃)) and data (such as

{(𝑥(𝑖), 𝑦𝑖)|𝑖 = 1,… ,  𝑚}).

A reader of a previous draft of this thesis remarked that the relationship between this section and

“the price of rice in China” was unclear and requested an example to clarify that.

Therefore, consider a setting where 𝑁 = 2, and 𝑥 represents a pair of values, where the first

element is the number of acres of land in China devoted to rice cultivation in a given year and the

6

second element is the number of people living in China in the same year. Correspondingly, y would

be the average price of rice sold in China over that same year relative to the value of gold. For this

example, the model could be selected with various forms, but an example of a linear model would

make 𝑀 = 2 and 𝜃 would represent a pair of values such that the model is defined as

𝑓((𝑥1, 𝑥2); (𝜃1, 𝜃2)) = 𝜃1𝑥1 + 𝜃2𝑥2.

Then, the dataset could consist of {(𝑥(𝑖), 𝑦𝑖)|𝑖 = 1,… ,  100}) with 𝑥(𝑖) representing the land and

population for the i-th year of the 19-th century, and similarly with 𝑦𝑖 representing the price of rice

in China (in grams of gold) for that given year. For a given setting of (𝜃1, 𝜃2), the value of Loss(𝜃)

would therefore represent the mean squared error over the dataset for the very simple pricing model

𝑓(𝑥; (𝜃1, 𝜃2)).

1.1.5 Stochastic Gradients

As the size of the dataset increases, the cost of computing the exact gradients of the loss function

described in Section 1.1.5 increases proportionally. For the large datasets often required to

properly define the loss function, such computations quickly become infeasible.

Since gradient descent is an iterative method, a key idea is to replace the gradients of the loss

function at each step by stochastic approximations which only depend on small subsets of the data.

For instance, the gradients of Loss(𝜃) =
1

|𝒟|
∑ |𝑓(𝑥(𝑖); 𝜃) − 𝑦𝑖|

2

(𝑥(𝑖),𝑦𝑖)∈𝒟 can be estimated by the

gradients of
1

|𝒟′|
∑ |𝑓(𝑥(𝑖); 𝜃) − 𝑦𝑖|

2

(𝑥(𝑖),𝑦𝑖)∈𝒟′ where 𝒟′ ⊂ 𝒟 is a random subset of the data with

size |𝒟′| < |𝒟| (typically can be any number of datapoints, from a single datapoint up to a million

points depending on what is practical to compute on the provided hardware). The key point is that

this subset of the data is chosen at random at each iteration of the gradient descent, essentially

imitating gradient descent but with some noise added due to the choice of random subset21.

7

1.1.6 ADAM

The famous ADAM (which stands for adaptive moment estimation) algorithm17,22,23 is a variation

on gradient descent which estimates running averages of the gradient (vector of partial derivatives)

and the averages of the squares of the gradient (vector of squares of partial derivatives), and takes

a step proportional to the ratio of the averaged gradient and the square root of the squares of the

gradient. In general, taking a step proportional to the averaged gradient provides a momentum to

the gradient descent algorithm such that the steps will only slowly change when the gradient

changes.

By dividing each average partial derivative by the square root of the average squares of the same

partial derivative, we will get a number close to +1 or -1 in cases where the gradient is constant

for several steps (since |𝑥| = |
1

𝑛
∑ 𝑥𝑛

𝑖=1 | = √
1

𝑛
∑ 𝑥2𝑛

𝑖=1 for any number x), but in cases where x

varies a lot over several steps, the denominator will become much larger relative to the numerator,

and we will get a number close to 0. Hence, for each partial derivative, the steps will be either

positive or negative (depending on the sign of the average partial derivative), and their magnitude

will be controlled by the relative scale of the variance over the last several steps of gradient descent.

1.2 Neural Networks

1.2.1 Tensors

To properly discuss neural networks, we must remind the reader about a few mathematical objects.

First, elements of a space such as ℝ𝑁 are referred to as vectors, and elements of ℝ𝑁 × ℝ𝑀 are

referred to as matrices. In general, such elements are collections of real numbers which can be

indexed by one natural number (vectors) or two natural numbers (matrices). This notion can be

generalized to collections of real numbers which can be indexed by n natural numbers (henceforth

8

called n-tensors), and denote the space to which they belong as ∏ ℝ𝑁𝑗𝑛
𝑗=1 , where the j-th index

must take values between 1 and 𝑁𝑗 inclusively. If this view is unclear, an equivalent view is that

n-tensors are real-valued functions from tuples of n natural numbers.

In this view, if A is a 3-tensor, in ℝ𝑁 × ℝ𝑀 × ℝ𝑃, then for every natural 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤

𝑀, 1 ≤ 𝑘 ≤ 𝑃, 𝐴 outputs a real number, written 𝐴𝑖𝑗𝑘. As a shorthand, we denote the bounds on

individual indices by saying that A is an N by M by P tensor. Here, (𝑁,𝑀, 𝑃) is called the

dimensionality of A and 3 is called the arity of A. Note that some important neural network

operations are defined for n-tensors of a fixed dimensionality, while others only require a fixed

arity.

A similar object would be a set 𝑆 of n-tensors S ⊂ ∏ ℝ𝑁𝑗𝑛
𝑗=1 where any given element of this set

is a n-tensor. Here the number of tensors in 𝑆 is called the size of 𝑆. Such sets of tensors with every

tensor having the same dimensionality are called uniform sets. In general sets of tensors need not

be uniform. Note that some important neural networks are defined for uniform sets of tensors with

arbitrary set size.

Finally, note that a n-tensor can be viewed as a sequence of (𝑛 − 1)-tensors. For instance with a

N by M by P tensor, we could say A is an N-sequence of M by P tensors and write (𝐴𝑖)𝑖=1
𝑁 where

each 𝐴𝑖 is a M by P tensor with elements defined as (𝐴𝑖)𝑗𝑘 = 𝐴𝑖𝑗𝑘 (this view of a tensor as a

sequence of tensors is sometimes called currying in reference to mathematician Haskell Curry24).

In this case, A would be viewed as a sequence of matrices. Here, N is the sequence length. Such

sequences where each tensor has the same dimensionality are called uniform sequences. In general,

sequences of tensors need not be uniform. Note that some important neural networks are defined

for uniform sequences of tensors with arbitrary sequence length.

9

When it will be desired to generically refer to a space potentially containing tensors, sets of tensors,

or sequences of tensors, we shall use the letters 𝒯, 𝒰, or 𝒱 and call it a space of tensor-like objects.

In the greatest generality, sequences of sequences (etc.) or sets of sets (etc.) of tensors are also

possible.

1.2.2 Basic Mathematical Definition of Neural Networks

A neural network is simply a function of a tensor-like object 𝑥 ∈ 𝒯 (the input of the neural

network), a tensor-like object 𝜃 ∈ 𝒰 (the neural network parameters), and returning a tensor-like

object 𝑦 ∈ 𝒱 (the output of the neural network). Mathematically, we denote a given model as

ymodel(x; θ) where “model” is replaced by a name to distinguish a given neural network from

another.

The reason for calling these objects networks is that they can be represented graphically as

networks (also known as graphs) and composed together into bigger networks. A name more

familiar to physicists might have been neural circuits, since the neural networks considered here

can be represented graphically as circuits and composed into bigger circuits, but for historical

reasons, the name is neural network. Indeed, if this section seems too abstract on first read, the

reader is encouraged to skip to Section 2.1 (discussing equivalent circuits to model impedance

spectra) and immediately come back to reread the current section. There is a strong parallel

between equivalent circuits and neural networks, though the specific ways of building a bigger

neural network out of smaller neural networks differs from the ways of building a bigger equivalent

circuit out of smaller equivalent circuits.

10

Given two neural networks denoted as y1(x; θ1) , y2(x; θ2) such that the set of possible outputs of

the first is contained in the set of inputs of the second, we can define a third neural network called

“serial composition of network 1 with network 2” as

y1→2(x; θ1, θ2) = y2(y1(x; θ1); θ2)

Similarly, if the two networks always produce outputs which can be summed given the same input,

we can define another neural network called “the parallel sum of models 1 and 2” as

y1+2(x; θ1, θ2) = y1(x; θ1) + y2(x; θ2)

This can be generalized further to “the parallel application of models 1 and 2”

y1||2(x; θ1, θ2) = (y1(x; θ1), y2(x; θ2))

which is a neural network outputting a 2-sequence of tensor-like objects.

If the neural network parameters θ are fixed, the neural network y(x; θ) can be viewed as a

function from input x to output y.

The main reasons for studying neural networks is that they can represent very complicated

functional dependencies (Section 1.2.3), and they give rise to tractable optimization problems

(Section 1.2.4). The optimization problem here is finding the parameters θ which minimize a loss

function over a dataset.

11

1.2.3 Universal Function Approximation

A reader skeptical that very complicated functional dependencies can be well approximated is

invited to look at the literature on Universal Function Approximation8 (especially the referenced

visual proofs). For many common instances of neural networks this literature proves the following:

For any function f (satisfying some non-pathology criteria), any probability distribution over the

inputs of f, and any given desired precision 𝜀, there always exists a setting of the parameters θ such

that the given neural network, when viewed as a function from input to output, approximates f

within precision 𝜀 on average over the given probability distribution on inputs.

Note that this only holds in the limit of very big neural networks.

The details are not of much relevance in the context of this thesis, since the primary question is to

achieve some practical precision with a given function and a given dataset.

However, it is worth noting that the results can often extend to not only approximate well the

function f itself, but also that the neural network’s derivatives can approximate the derivatives of

f while the outputs of the neural network approximates f itself25.

1.2.4 Backpropagation

Neural networks are usable in practice because the outputs are easily differentiable with respect to

the parameters and with respect to the inputs as well.

This property in turn has the advantage that if it holds for neural network 1 and for neural network

2, then it also holds for the serial composition of network 1 with network 2 and similarly with the

parallel sum. More generally, when making big networks out of smaller networks each having this

property, the big network with also have this property, allowing gradients to be computed and

optimization to be performed in a tractable manner.

12

Recall the rules of differentiation such that the derivative of the sum is the sum of the derivatives,

the derivative of the products follows the Leibnitz rule, and the derivative of a composition follows

the chain rule. These rules can be applied in a generic algorithm called backpropagation which in

essence allows one to simply define the partial derivatives for individual simple neural networks,

as well as the way in which the simple neural networks are composed together into the final

complex neural network, and from these pieces of information, to mechanically express the partial

derivatives of the outputs of the final complex neural network with respect to its parameters and

inputs26.

Backpropagation is the way gradients of the loss function are computed in practice for neural

networks. And it is why there is a constant emphasis on the differentiability of the neural networks

introduced in the literature.

Typically, neural networks which are very simple in structure, and which are not implemented as

compositions of other smaller neural networks are called layers, and practical neural networks are

often defined as combinations of predefined layers.

Once again we mention that many excellent references exist on the topic7, but we also recapitulate

a few key layers for each type of tensor-like object described in Section 1.2.1.

• For tensors of fixed dimensionality, Section 1.2.5 discusses fully connected layers.

• For uniform sequences of tensor, Section 1.2.6 discusses convolutional layers.

• For uniform sets of tensors, Section 1.2.7 discusses averaging and self-attention layers.

1.2.5 Fully Connected Layers

The most basic neural network worthy of the name is a linear function from vectors to vectors. For

1-tensor inputs 𝑥 ∈ ℝ𝑁 with dimensionality N, and 1-tensor outputs 𝑦 ∈ ℝ𝑀 with dimensionality

13

M, the parameters of the linear layer are 𝜃 = 𝑊 ∈ ℝ𝑁 × ℝ𝑀 a 2-tensor (i.e. a matrix) often denoted

by the letter W.

Then, the layer is defined such that 𝑦 = 𝑦linear(𝑥,𝑊), with 𝑦𝑗 = ∑ 𝑊𝑖𝑗𝑥𝑖
𝑁
𝑖=1 .

A close cousin of the linear function is the affine function27, with parameters 𝜃 = (𝑊, 𝑏) with

𝑊 ∈ ℝ𝑁 × ℝ𝑀 and 𝑏 ∈ ℝ𝑀. Then the affine layer is defined such that 𝑦 = 𝑦affine(𝑥, (𝑊, 𝑏)), with

𝑦𝑗 = 𝑏𝑗 + ∑𝑊𝑖𝑗𝑥𝑖

𝑁

𝑖=1

Note that it is possible to define affine or linear transformations between any space of n-tensors

with fixed dimensionality. For instance, if the inputs are 3 by 4 by 5 tensors and the outputs are 7

by 8 tensors, then the parameters will be 𝜃 = (𝑊, 𝑏) with W a 3 by 4 by 5 by 7 by 8 tensor and b

a 7 by 8 tensor such that 𝑦𝑙𝑚 = 𝑏𝑙𝑚 + ∑ ∑ ∑ 𝑊𝑖𝑗𝑘𝑙𝑚𝑥𝑖𝑗𝑘
5
𝑘=1

4
𝑗=1

3
𝑖=1 .

Note on the Input and Output Dimensionality for Linear Models

The dimensionality of the input will determine how large a dataset this neural network will require

to generalize well.

This is because a linear function is entirely determined by its output on a basis of the input space.

If P vectors 𝑥(1), . . . 𝑥(𝑃) are chosen at random in ℝ𝑁, then with probability 1,

• If P is smaller than N, then these vectors will be linearly independent, and no matter the

choice of corresponding vectors in the output space 𝑦(1), . . . 𝑦(𝑃), there will be an infinity

of possible linear functions which sends these inputs to these outputs. Namely, for

k=1,…,P, 𝑦(𝑘) = 𝑦linear(𝑥
(𝑘),𝑊). We say that any dataset thus chosen will

underdetermine the parameters of the neural network.

14

• If P equals N, then these vectors will be linearly independent, and no matter the choice of

corresponding vectors in the output space 𝑦(1), . . . 𝑦(𝑃), there will be a single possible

linear function which sends these inputs to these outputs. We say that any dataset thus

chosen will exactly determine the parameters of the neural network.

• If P is greater than N, then these vectors will not be linearly independent, and there will

therefore exist choices of corresponding vectors in the output space 𝑦(1), . . . 𝑦(𝑃), for

which no linear function could send these inputs to these outputs. We say that any dataset

thus chosen will overdetermine the parameters of the neural network (indeed either the

constraints cannot be satisfied or there is a smaller subset of the dataset which would lead

to the same linear functions being possible).

This means that, for a fixed dimensionality of the input space, the same size of dataset is needed

to exactly determine the linear function’s parameters no matter how large the output space is! For

instance, with an input dimensionality of 3 and output dimensionality of 1010000, a dataset

containing 3 linearly independent input values will exactly determine the parameters of the linear

function. This neural network has 3 × 1010000 parameters!

A first order approximation to this phenomenon would relate linearly the number of parameters to

the smallest number of datapoints in a dataset that exactly determines (or at least overdetermines)

a neural network. As a formula:

𝐷𝑎𝑡𝑎 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑖𝑜𝑛 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ

Where the supervision strength is simply the ratio of number of parameters to data requirement,

but very roughly speaking, it tells us “how many parameters does a single datapoint in the dataset

allow to determine.”

15

Based on this simple view, what happens is that for a given input dimensionality, as the output

dimensionality is increased, the number of parameters increases linearly, but so does the

supervision strength.

In order to reproduce exactly a dataset given by 𝑥(1), . . . 𝑥(𝑃) and 𝑦(1), . . . 𝑦(𝑃), one can define an

optimization problem over a linear neural network by giving the following loss function:

𝐿𝑜𝑠𝑠(𝑊) =
1

𝑃
∑|𝑦(𝑘) − 𝑦linear(𝑥

(𝑘),𝑊)|
2

𝑃

𝑘=1

which can be more explicitly given as:

𝐿𝑜𝑠𝑠(𝑊) =
1

𝑃
∑ ∑(𝑦𝑗

(𝑘)
− ∑𝑊𝑖𝑗𝑥𝑖

(𝑘)

𝑁

𝑖=1

)

𝑀

𝑗=1

2𝑃

𝑘=1

This formula allows us to understand why the “supervision strength” is proportional to the output

dimensionality in this case. Indeed, the loss function can be viewed as the sum over j of

1

𝑃
∑ (𝑦𝑗

(𝑘)
− ∑𝑊𝑖𝑗𝑥𝑖

(𝑘)

𝑁

𝑖=1

)

2𝑃

𝑘=1

which constrains directly only the j-th component of the output, and without which all the

parameters 𝑊𝑖𝑗 for that fixed j value (in total N parameters in our case) would be underdetermined.

We could view the number of independent loss functions contained within the actual loss as a

measure of the “supervision strength,” though many other factors can contribute when considering

more complicated neural networks with more complicated loss functions.

16

Non-linearities

Finally, it is common practice to serially compose linear and affine functions with a so-called

elementwise non-linearity. Let 𝜌:ℝ → ℝ be any function from real numbers to real numbers, then

we define a simple neural network called the elementwise application of 𝜌 such that for 1-tensor

inputs 𝑥 ∈ ℝ𝑁 with dimensionality N, and 1-tensor outputs 𝑦 ∈ ℝ𝑁 with the same dimensionality,

it is defined as 𝑦 = 𝑦𝜌(𝑥), with 𝑦𝑗 = 𝜌(𝑥𝑗). Note that there are no parameters for this operation,

but the serial composition of an affine layer with the elementwise application of 𝜌

is 𝑦 = 𝑦affine→𝜌(𝑥, (𝑊, 𝑏)), with 𝑦𝑗 = 𝜌(𝑏𝑗 + ∑ 𝑊𝑖𝑗𝑥𝑖
𝑁
𝑖=1).

There are various common choices for the non-linearity28 such as:

• 𝑟𝑒𝑙𝑢 (𝑥), such that 𝑟𝑒𝑙𝑢 (𝑥) = 𝑥 if 𝑥 ≥ 0, but 𝑟𝑒𝑙𝑢 (𝑥) = 0 if 𝑥 < 0. It stands for

rectified linear unit.

• 𝑡𝑎𝑛ℎ (𝑥) such that 𝑡𝑎𝑛ℎ (𝑥) =
𝑒𝑥𝑝(𝑥)−𝑒𝑥𝑝(−𝑥)

𝑒𝑥𝑝(𝑥)+𝑒𝑥𝑝(−𝑥)
, which tends to -1 when x goes to −∞, +1

when x goes to ∞, and equals 0 when x equals 0. It stands for hyperbolic tangent.

• 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) such that 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

2
+

1

2
𝑡𝑎𝑛ℎ (𝑥). It has limits between 0 and 1.

As a shorthand, the serial composition of an affine layer with the elementwise application of a

well-known non-linearity would be called for instance a fully-connected layer with relu

activation29.

Non-linearities are not always needed (for instance, at the very output of a complicated neural

network which predicts values between −∞ and ∞, there would be no use for a non-linearity).

However, in order to satisfy the conditions of the Universal Function Approximation discussed in

Section 1.2.3, it is not possible to simply serially compose affine layers without non-linearities.

17

Indeed, it can be shown that serially composed affine layers are always equivalent to a single affine

layer. Yet, through the magic of the Universal Function Approximation theorems, any of the three

non-linearities discussed above, as well as many others, would allow a net gain in the kinds of

functions which may be expressed through the serial composition of many fully-connected layers

with such activations. Readers still confused about how this all works are invited to look at proofs

of the Universal Function Approximation theorems, since these proofs construct an actual neural

network (by explaining how to choose its parameters) to approximate the target function8.

1.2.6 Convolutional Layers

Given a fully connected layer with 𝜌 activations 𝑦 = 𝑦affine→𝜌(𝑥, (𝑊, 𝑏)) between 1-tensors of

dimensionality N and 1-tensors of dimensionality M, there is a trivial way to produce a neural

network which takes uniform sequences of 1-tensors to uniform sequences of 1-tensors. Namely,

by applying 𝑦affine→𝜌 elementwise. In other words, if x is now a sequence of 1-tensors and y is a

sequence of 1-tensors, define 𝑦 = 𝑦conv,1(𝑥, (𝑊, 𝑏)) by 𝑦𝑘 = 𝑦affine→𝜌(𝑥𝑘, (𝑊, 𝑏)) for all the

values of the sequence index k.

More generally, given a fully connected layer with 𝜌 activations 𝑦 = 𝑦affine→𝜌(𝑥, (𝑊, 𝑏)) between

2-tensors of dimensionality K by N and 1-tensors of dimensionality M, it is possible to define a

neural network which takes as input any sequence of 1-tensors (dimensionality N) and returns a

sequence of 1-tensors (dimensionality M) by applying 𝑦affine→𝜌 repeatedly on all possible

segments of K consecutive 1-tensors in the input. There are three obvious ways to do this.

• First, by only applying 𝑦affine→𝜌 to places in the sequence where K consecutive 1-tensors

exist. In other words, 𝑦𝑘 = 𝑦affine→𝜌((𝑥𝑘+𝑑)𝑑=0
𝐾 , (𝑊, 𝑏)) is only defined for elements k

18

in the sequence such that elements k to k+K exist in the sequence. In this way, the output

sequence will be shorter than the input sequence.

• Second, by applying 𝑦affine→𝜌 to all places in the sequence with the convention that

anytime the equation requires a 𝑥𝑘+𝑑 outside the sequence, a tensor of appropriate size

filled with 0 values will be used instead. In this way, the output sequence will have the

same length as the input.

If K is an odd number, then there is another set of possibilities which is intuitively nicer to keep

track of, namely, at each element in the input sequence, the segments are centered around that

element instead of starting at that element:

• First, by only applying 𝑦affine→𝜌 to places in the sequence surrounded by
𝐾−1

2
 1-tensors.

In other words, 𝑦𝑘 = 𝑦affine→𝜌 ((𝑥𝑘+𝑑)
𝑑=−

𝐾−1

2

𝐾−1

2 , (𝑊, 𝑏)) is only defined for elements k in

the sequence such that elements 𝑘 −
𝐾−1

2
 to 𝑘 +

𝐾−1

2
 exist in the sequence. In this way, the

output sequence will be shorter than the input sequence.

• Second, by applying 𝑦affine→𝜌 to all places in the sequence with the convention that 𝑥𝑘+𝑑

outside the sequence are substituted by tensors filled with 0 values.

Section 3.7.2 illustrates these general ideas with a concrete example and attempts to justify this

type of layers on an actual problem of relevance to lithium-ion research.

Due to strange historical reasons, such neural network is called a 1-D convolution30 with kernel W

and bias b, even though the mathematical name for such operation should be autocorrelation.

Compared to the convolutions seen in physics textbooks, the summation indices run backwards.

19

In precisely the same way that a single index may be extended to arbitrary values (going from 2-

tensors to sequences of 1-tensors), it is possible to extend two indices (going from 3-tensors to

sequences of sequences of 1-tensors), and this is routinely done in images (2-D convolutions).

Indeed, the same concepts can be generalized to n-D convolutions for any positive integer n.

In the literature, the various numbers of dimensions have names. The output dimension is the

number of filters, the last dimension of the input is the number of channels, and the other

dimensions of the input are the kernel width (for 1-D convolutions), the kernel width and height

(for 2-D convolutions), and generally the receptive field dimensions.

Why is it called the receptive field dimensions? This is because the output at position k or position

(w,h) in the output only depends on part of the input (a segment of positions corresponding to the

receptive field dimensions).

1.2.7 Averaging and Self-Attention Layers

Fully-Connected layers go from tensors of fixed dimensionality to tensors of fixed dimensionality.

Convolutions go from sequences to sequences. What about cases where the input or output is a

uniform set? To address this, we first consider cases where the input is a uniform sequence and the

output is a single tensor of fixed dimensionality.

A simple solution is to average elementwise across the sequence. For instance given a sequence of

vectors 𝑥(1), . . . 𝑥(𝑃) in ℝ𝑁, one can produce a single output vector 𝑥(average) in ℝ𝑁 with

𝑥(average)
𝑖 =

1

𝑃
∑ 𝑥(𝑘)

𝑖
𝑃
𝑘=1 .

20

Notice that indeed, this works for uniform sets as well as uniform sequences. For instance, if 𝑆 ⊂

ℝ𝑁 is a finite set of vectors, then one can produce a single output vector 𝑥(average) in ℝ𝑁 with

𝑥(average)
𝑖 = ∑

1

|𝑆|
𝑥𝑖𝑥∈𝑆 .

In cases where a more complicated relationship between inputs and outputs must be approximated,

simple averaging does not suffice. In simple averaging, the multiplier for all the elements is the

same, (namely
1

|𝑆|
). A generalization which unlocks much more powerful function approximation

is to allow weighted averaging. Indeed, if the input is a set of pairs where the first element of the

pair is a positive real number and the second element of the pair is a vector (i.e. 𝑆 ⊂ ℝ × ℝ𝑁), then

one can produce a single output vector 𝑥(average) in ℝ𝑁 with

𝑥(average)
𝑖 =

∑ 𝑤𝑥𝑖(𝑤,𝑥)∈𝑆

∑ 𝑤′(𝑤′,𝑥′)∈𝑆

Note that the denominator is simply a renormalization constant to ensure that the multipliers

𝑤

∑ 𝑤′(𝑤′,𝑥′)∈𝑆
 sum to 1.

The restriction that the weights should be positive is annoying when they come from the output of

previous neural network layers, so it can be removed by taking as input the logarithms of weights

ɰ instead of the weights 𝑤 themselves, then one can produce a single output vector 𝑥(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) in

ℝ𝑁 with

𝑥(average)
𝑖 =

∑ 𝑒𝑥𝑝 (ɰ)𝑥𝑖(ɰ,𝑥)∈𝑆

∑ 𝑒𝑥𝑝 (ɰ′)(ɰ′,𝑥′)∈𝑆

21

In general, the logarithms of weights will be the outputs of some neural network, and the vectors

to be averaged will themselves be the outputs of some neural network. This way of averaging is

referred to as an attention mechanism.

This arrangement is useful as a final conversion from a set (or sequence) to a single tensor, but it

assumes that a neural network converted the initial inputs to a form suitable for averaging. In the

case of sequences, this can be done with convolutions, but what about the case of sets?

To answer this question, we shall proceed in three steps. First, we shall describe a scheme to

capture interactions of a single tensor with a whole set of tensors. Second, we shall generalize to

sets interacting with other sets. Third, we shall consider the special case of a set of tensors

interacting with itself.

First, imagine the task of learning the dynamics of a small comet as it travels through a solar system

filled with large planets and stars. Though this example is motivating, the task is really to define a

simple neural network layer which will be applicable to many problems.

In particular, imagine that each large body in the solar system is represented as a tensor (a vector

in ℝ𝑁 for simplicity), and the small comet is represented as a tensor (a vector in ℝ𝑀 for simplicity).

These tensors are given as inputs, and the task is to predict the final position of the comet.

Furthermore, assume that the large bodies in the solar system are held in a static configuration by

some external force.

Then, an intuitive way the problem may be approached is by composing layers which each take a

small time step for the comet, where the dynamics are hopefully simpler, but there could be other

less intuitive ways of decomposing the problem into a large sequence of neural network layers.

22

The attention mechanism which has seen the largest successes31 circa 2020 AD can be presented

in this setting as follows:

For a set of 1-tensor inputs 𝑆 ⊂ ℝ𝑁 with dimensionality N, a 1-tensor input 𝑧 ∈ ℝ𝑀 and 1-tensor

output 𝑦 ∈ ℝ𝑂 , the parameters of the simple dot-product attention layer are 𝜃 = (𝑄,𝐾, 𝑉) with

the query projection 𝑄 ∈ ℝ𝑀 × ℝ𝑃, the key projection 𝐾 ∈ ℝ𝑁 × ℝ𝑃 and the value projection 𝑉 ∈

ℝ𝑁 × ℝ𝑂.

Then, the layer is defined such that 𝑦 = 𝑦dot−attention((𝑆, 𝑧), (𝑄, 𝐾, 𝑉)), with

𝑦𝑗 =
∑ 𝑒𝑥𝑝 (ɰ)𝑣𝑗(ɰ,𝑣)∈𝑇

∑ 𝑒𝑥𝑝 (ɰ′)(ɰ′,𝑣′)∈𝑇

and

𝑇 = {(ɰ, 𝑣)|ɰ = ∑ 𝑞𝑝𝑘𝑝
𝑃
𝑝=1 , 𝑣𝑗 = ∑ 𝑉𝑖𝑗𝑥𝑖

𝑁
𝑖=1 , 𝑞𝑝 = ∑ 𝑄𝑗𝑝𝑧𝑘

𝑀
𝑗=1 , 𝑘𝑝 = ∑ 𝐾𝑖𝑝𝑥𝑖

𝑁
𝑖=1 , 𝑥 ∈ 𝑆}

Since this is a bit hard to read, we summarize it step by step:

1. The query projection is applied to the input z (the comet) to obtain the query q given by

𝑞𝑝 = ∑ 𝑄𝑗𝑝𝑧𝑘
𝑀
𝑗=1 .

2. For every 𝑥 ∈ 𝑆 (large body in the solar system),

a. The key projection is applied to produce a key k given by 𝑘𝑝 = ∑ 𝐾𝑖𝑝𝑥𝑖
𝑁
𝑖=1 .

b. The value projection is applied to produce a value v given by 𝑣𝑗 = ∑ 𝑉𝑖𝑗𝑥𝑖
𝑁
𝑖=1 .

c. The dot product of the unique query q and the key k (for that element of the set) is

computed to produce the logarithm of the weight ɰ = ∑ 𝑞𝑝𝑘𝑝
𝑃
𝑝=1 .

3. The values are averaged according to the logarithms of the weights to produce the output.

23

One can see how such a layer may produce the necessary information to compute the force exerted

on the comet by the large bodies in the solar system, which could then be used to update the

representation of the comet, and so on.

In the same way, one could imagine having many comets in the same solar system, and the simple

dot product layer between a set and a single tensor generalizes as follows:

For a set of 1-tensor inputs 𝑆 ⊂ ℝ𝑁 with dimensionality N, a set of 1-tensor input 𝑍 ⊂ ℝ𝑀 and a

set of 1-tensor outputs 𝛺 ⊂ ℝ𝑂 with |𝑍| = |𝛺| but allowing |𝑍| ≠ |𝑆|, the parameters of the

simple dot-product cross-attention layer are 𝜃 = (𝑄, 𝐾, 𝑉) with the query projection 𝑄 ∈

ℝ𝑀 × ℝ𝑃, the key projection 𝐾 ∈ ℝ𝑁 × ℝ𝑃 and the value projection 𝑉 ∈ ℝ𝑁 × ℝ𝑂.

Then, the layer is defined such that 𝛺 = 𝑦dot−cross−attention((𝑆, 𝑍), (𝑄, 𝐾, 𝑉)), where

𝑦dot−cross−attention((𝑆, 𝑍), (𝑄, 𝐾, 𝑉)) = {𝑦dot−attention((𝑆, 𝑧), (𝑄, 𝐾, 𝑉)), |𝑧 ∈ 𝑍} is simply the

elementwise application of the simple dot-product attention.

Finally, imagine that it is desired to describe the dynamics of all the solar system objects (large

bodies and comets) interacting together without artificial statis of the large bodies. By making the

two input sets in cross-attention the same, one obtains a powerful layer which captures pairwise

interactions within a set, and it is called self-attention.

Formally, For a set of 1-tensor inputs 𝑆 ⊂ ℝ𝑁 with dimensionality N and a set of 1-tensor outputs

𝛺 ⊂ ℝ𝑂 with |𝑆| = |𝛺|, the parameters of the simple dot-product self-attention layer are 𝜃 =

(𝑄,𝐾, 𝑉) with the query projection 𝑄 ∈ ℝ𝑁 × ℝ𝑃, the key projection 𝐾 ∈ ℝ𝑁 × ℝ𝑃 and the value

projection 𝑉 ∈ ℝ𝑁 × ℝ𝑂.

24

Then, the layer is defined such that 𝛺 = 𝑦dot−self−attention(𝑆, (𝑄, 𝐾, 𝑉)), where

𝑦dot−self−attention(𝑆, (𝑄, 𝐾, 𝑉)) = 𝑦dot−cross−attention((𝑆, 𝑆), (𝑄, 𝐾, 𝑉)).

Note that in practice31–33 𝐷 of these layers with outputs in ℝ
𝑂

𝐷 can be applied in parallel to obtain

a set of 2-tensor outputs 𝛺 ⊂ ℝ𝐷 × ℝ
𝑂

𝐷 and this is called multi-headed dot-product self-attention.

1.3 Advice for Building Intuition

The performance of machine learning system is difficult to predict, and in general no method is

better than another on all problems34. However, in the opinion of the author, the greatest boost to

success is to develop a strong intuition about the relationship between the model architecture, the

mathematical properties of the application domain, and the performance of the system.

Therefore, the text attempts to capture arguments and reasoning about machine learning system

performances at the level of rigor the author used to guide his decisions. It would be quite

challenging to formalize all these arguments into proofs (indeed, most of these arguments are not

valid in general settings and depend strongly on various features of the given problem) and it would

be counter productive since the value of such arguments is to reduce the number of trial and errors

necessary to obtain an adequate solution to a given problem. As such, these arguments represent

near-immediate intuitions to guide exploration, they cannot afford a lengthy validation and

correction process, and their use can tolerate a degree of inaccuracy. Of course, seeing specific

instances of the author’s far-from-perfect intuition in action is not enough to fully develop this

skill in the reader. To this more ambitious end, the author offers the following advice:

1. When modifying a machine learning design and running a numerical experiment,

seek not to increase the performance metrics at all cost; instead, seek to be the least

confused by the differences in performance between various alternative designs, and

25

when a change in performance is confusing, strive to understand it. In the author’s

experience, not only does this lead to much simpler and bug-free code, but it also is

the most powerful way to improve one’s intuition on the relevant problems one is

tasked to solve.

2. Once adequate performance has been demonstrated, attempt to reproduce a similar

performance with the minimal possible complexity of design. Here, complexity refers to

the length of the code.

3. Once a simple implementation has adequate performance, attempt to reproduce a similar

performance using components commonly used in the machine learning literature.

4. If the common components cannot reproduce the target performance, investigate, and find

the smallest change to the common component which reproduces the target performance.

26

Chapter 2 Mathematical Properties of Electrochemical

Impedance Spectroscopy Data and Equivalent Circuit

Models of Lithium-ion Cells

Despite the accuracy and non-intrusive nature of Electrochemical Impedance Spectroscopy (EIS),

the impedance spectra of commercial lithium-ion cells are notoriously hard to interpret. Such

measurements contain information about multiple distinct steps that the lithium ions must undergo

to travel from one electrode to the other. To extract physical insights from EIS datasets, one must

• Choose an Equivalent Circuit (EC) model which will represent the data.

• Reliably find estimates for the parameters of the EC model which closely match a given

impedance spectrum (henceforth called the inference problem).

• Investigate trends across time, state of charge, and even different chemistries.

High quality introductions to EIS, EC models, and their relationship to lithium-ion cells exist1,35–

37, and a passing familiarity with these concepts will be assumed of the reader. This Chapter will

instead focus on illustrating a key component of a robust tool based on machine learning model:

understanding the mathematical properties of the data.

The Chapter is organised as follows:

• Section 2.1 defines EIS data and EC models as mathematical objects

• Section 2.2 discusses the difficultly of the choosing an EC model

• Section 2.3 presents a reasonable choice of EC model

27

• Section 2.4 rewrites the model equations to simplify the parameter space, helping to

simplify the inference problem

• Section 2.5 defines symmetries of the model equations, also helping to simplify the

inference problem.

• Section 2.6 describes the multiplicity of EC parameters which may lead to approximately

the same EIS observations

• Section 2.7 defines a simple metric to help compare different solutions to the inference

problem and thus reduce the multiplicity mentioned in Section 2.6

As will be shown in this Chapter and Chapter 3, basic physical and mathematical insights about

the data can be leveraged to guide design decisions of machine learning solutions, both enabling

better outcomes, and building confidence into the solution.

This chapter is substantially taken from a corresponding paper38 though the paper explores the

conversions between various ECs more thoroughly and was published along with a simple

implementation of the conversion formulas, accessible at https://github.com/Samuel-

Buteau/Explicit-Conversion-Equivalent-Circuits-EIS. Furthermore, to streamline the thesis as a

whole, substantial components of the paper39 corresponding to Chapter 3 have been refactored into

this Chapter.

2.1 Basic Mathematical Definitions of EC models and EIS

Data

When modulating the voltage across the terminals of a lithium-ion cell with a small amplitude

sinusoidal wave, there will be a time-dependent current response. In the linear regime, the response

will also be sinusoidal. Furthermore, the ratio of amplitudes between the excitation and the

https://github.com/Samuel-Buteau/Explicit-Conversion-Equivalent-Circuits-EIS
https://github.com/Samuel-Buteau/Explicit-Conversion-Equivalent-Circuits-EIS

28

response, as well as the phase shift, will be independent of the excitation amplitude, only

depending on frequency. This amplitude ratio and phase shift (an angle) can be represented

together as a complex number, called impedance.

Generally, using angular frequency (i.e. frequency multiplied by 2π) will make the formulas nicer.

Therefore, unless otherwise mentioned, ω shall be used to denote angular frequency of the

excitation, and the notation will be abused by calling ω the frequency.

Equivalent Circuit Model Definition

An Equivalent Circuit (EC) model is simply a function which takes as inputs the frequency ω and

a vector of 𝑛 real numbers θ𝐸𝐶 ∈ ℝ𝑛 called the EC model parameters, and which returns a complex

number, called the impedance of the model at the given frequency. Mathematically, we denote a

given model as Zmodel(ω; θEC) where “model” is replaced by a name to distinguish a given EC

model from another.

The reason for calling these objects circuits is that they can be represented graphically as circuits

(graphs) and can be composed together into bigger circuits.

For instance, given two EC models denoted as Z1(ω; θEC,1) and Z2(ω; θEC,2), we can define a new

EC model called “model 1 in series with model 2” as

Z1−2(ω; θEC,1, θEC,2) = Z1(ω; θEC,1) + Z2(ω; θEC,2)

Similarly, we can define yet another EC model called “model 1 in parallel with model 2” as

Z1∥2(ω; θEC,1, θEC,2) =
1

1

Z1(ω; θEC,1)
+

1

Z2(ω; θEC,2)

29

If the EC model parameters are fixed, an EC model can be viewed as a function from frequency to

impedance. Compare these definitions to those of a neural network found in Section 1.2.2.

Impedance Spectrum Definition and Relationship to Equivalent Circuit models

An EIS, or an impedance spectrum is a set of pairs of frequencies and impedances

{(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚}.

Obviously, if an EC model Zmodel(ω; θEC) together with the corresponding EC parameters θEC,

and a set of frequencies {ω𝑖|𝑖 = 1, … ,  𝑚} are all fixed, then they can be combined into an

impedance spectrum, namely {(ω𝑖, Zmodel(ω𝑖; θEC))|𝑖 = 1, … ,  𝑚}. This procedure will be called

sampling EC model Zmodel(ω; θEC) with parameters θEC at the frequencies {ω𝑖|𝑖 = 1, … ,  𝑚}.

In general, an impedance spectrum measured from an actual physical system

{(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚}, could be arbitrary, and need not correspond to sampling a sampling EC

model.

However, the abstraction with which physical systems are typically modelled is that there exists

an EC model Zideal(ω; θEC) together with fixed EC parameters θEC underlying the physical system

during the measurement, and that under idealized conditions, the measured spectrum

{(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} would be approximately equal to the sampling of the ideal model with

appropriate parameters at the given frequencies. In other words, 𝑍𝑖 ≈ Zideal(ω𝑖; θEC) under ideal

conditions. However, since things are not ideal, what is measured is instead the ideal impedance

plus some noise term so that 𝑍𝑖 = Zideal(ω𝑖; θEC) + 𝜀𝑖 for some set {ε𝑖|𝑖 = 1, … ,  𝑚}.

Actually, these noise terms again don’t have to obey any assumption, but for good quality data

with small noise terms, these terms can usually be modelled adequately by a complex random

variable where both the real and imaginary part are each the sum of a normally distributed real

30

random variable (the absolute error) and a normally distributed real random variable multiplied by

the modulus of the ideal impedance Zideal(ω𝑖; θEC) (the relative error).

To make things simple, consider the case where only the absolute error is significant.

The main problem around experimental impedance spectra is the inference problem. Namely,

given an EC model which is thought to adequately approximate the ideal EC model for a given

physical system, and given an impedance spectrum from that physical system, the problem is to

estimate the plausible values of the EC parameters θEC which produced the observation.

To make things even simpler, the problem may be further broken into two subproblems: 1) finding

the most plausible EC parameters θ𝐸𝐶
∗ given the observation {(ω𝑖, 𝑍𝑖)|𝑖 = 1, … ,  𝑚} and 2)

estimating the uncertainties on the parameters such that any parameter within these uncertainties

are still quite plausible.

If all possible values of the parameters are equally likely before seeing the data, and the noise is

assumed to be normally distributed, then finding the most plausible EC parameters is equivalent

to minimizing the mean squared error of reconstruction

MSE(θEC) =
1

𝑚
∑|𝑍𝑖 − Zideal(ω𝑖; θEC)|

2

𝑚

𝑖=1

This would imply that the noise terms are as small as possible which is the most likely outcome

when observing independent normally distributed random variables centered around 0.

Since one almost never has access to the exact ideal model underlying a physical system, the ideal

model is replaced by some other model chosen to represent the physical system, so the mean

squared error of reconstruction henceforth refers to

31

MSE(θEC) =
1

𝑚
∑|𝑍𝑖 − Zchosen(ω𝑖; θEC)|

2

𝑚

𝑖=1

where Zchosen(ω𝑖; θEC) is the choice for the EC model under consideration.

Note however that minimizing an equation which is non-linear in the parameters θEC, such as the

one above, can itself be a challenging task. This minimization problem is henceforth called the

fitting problem.

To clarify, to solve the inference problem, one must solve the fitting problem, but solving the

fitting problem may not be sufficient by itself, since other considerations may make one solution

to the fitting problem more plausible as a solution to the inference problem than another.

2.2 The Difficulty of Choosing an EC Model

Chapter 3 considers the problem of fitting tens of thousands of impedance spectra to a physical

model to extract some trends. Perhaps the most basic part of this problem is to choose an EC model

to fit the spectra. However, there are multiple models discussed in the literature with various

interpretations. Choosing between these models based only on the spectra themselves is difficult.

For instance, it is known36,40 that many of the circuits discussed in the literature, despite having

different physical interpretations, are mathematically equivalent or approximately equivalent to

each other in the sense that they can produce exactly the same spectra, although not with the same

parameters.

To better understand this phenomenon at a theoretical level, the simple case of circuits made up of

resistors and capacitors is explored, though circuits used in practice contain more realistic

components (constant phase elements) and correspondingly are plagued with a larger set of

possible conversions between EC models.

32

Furthermore, the existence of relatively simple formulas to convert between various circuit

topologies helps explain why, in the context of Chapter 3, a neural network model which estimates

the parameters of one EC could easily be extended to estimate the parameters of various ECs for

which conversion rules exist.

Note, however, that the conversions alluded to below are only tools, and not meant to replace a

physical analysis of the impedance. Most ECs that will fit a complex spectrum have nothing to do

with the underlying physics, and yet these conversions will allow them to fit equally well the

experimental data than the physically meaningful EC. Many unusual topologies are reachable with

these conversions, but this is just a consequence of making the transformations as general and

simple as possible. Judgement must be used when using these tools.

It is worth illustrating what is meant by “converting between two ECs.” To accomplish this, the

simplest non-trivial example will be investigated.

Figure 2.1 shows two ECs and Figure 2.2 gives a reference for the two components used in this

introductory discussion. The two ECs look different, but they can produce exactly the same

impedance spectra, when their parameters are chosen appropriately. Below Figure 2.1, the formula

for the impedance of each EC is shown. Each EC contains two resistors and one capacitor. The

original EC on the left has three parameters (𝑅11, 𝑅12, 𝐶11). If these values are fixed (e.g. 𝑅11= 1

Ω, 𝑅12 = 10 Ω, 𝐶11 = 1 F), then the impedance spectrum is fully determined. To say that the original

EC can be converted to the converted EC is to say that one can determine the values of the

converted parameters (𝑅21, 𝑅22, 𝐶21) so that the impedance of the converted EC will be exactly

the same as the impedance of the original EC at all frequencies. This conversion is given in

the third column of Figure 2.1 and has previously been published40.

33

The notation works as follows. The parameters have two indices. The first index determines

whether the parameter belongs to the original EC (index 1) or the “converted” EC (index 2). The

second index serves to differentiate the various resistors and the various capacitors within a single

EC.

34

Figure 2.1 Example of one EC (left, original) that can mimic another's impedance spectrum

(right, converted) by using different values for the parameters. The impedance

formulas are shown under the ECs.

Figure 2.2 A reference for the impedance formulas of a resistor and a capacitor, respectively.

By tracking the impedance of a given electrochemical cell through time, charge-discharge cycle

number, cell potential, etc., a dynamic characterization of the cell could be obtained. Yet, different

models might produce very different trends. Figure 2.3 shows an example of this phenomenon

based on the conversion in Figure 2.1. On the left side, the original EC of Figure 2.1 has three

35

parameters, and all parameters except one are kept constant. R12 is increased linearly in 1 Ω steps

from 1 Ω to 10 Ω. All the parameters of the two ECs are plotted as a function of R12. On the right

side of Figure 2.3, the “converted” EC parameters are plotted against the original value of R12.

As Figure 2.3 shows, the trends in the converted parameters are more complicated. Indeed, all

three parameters change, most trends are non-linear, and even though the capacitance does not

vary in the first EC, it has a very dramatic variation in the second.

36

Figure 2.3 Example of how a simple trend in one EC (original EC of Figure 2.1) looks quite

different and more complicated in another EC (converted EC of Figure 2.1), even if

the underlying impedance spectra are exactly the same.

Looking at Figure 2.1 and Figure 2.3, it is natural to wonder if there are some limits on the

conversion formulas. In other words, are there any parameter choices in the original EC which,

after applying the conversion formula, would not yield the same impedance spectrum?

37

As it turns out, the only case where this happens is if the formulas require a division by zero. In

the case of Figure 2.1, this would correspond to cases where R11 is zero or R11 + R12 is zero.

Assuming that resistances are positive, this corresponds to cases where R11 is zero. For more

complicated formulas the story is the same. If the conversion formula requires division by zero,

then the ECs most likely cannot give identical spectra. In the exceptional case that the ECs can

give identical spectra with the problematic parameters, then a different formula would be required.

Looking at Figure 2.1, one might get the impression that conversions, either implicit or explicit,

only work for simple ECs. However, this is not the case. To illustrate this, Figure 2.4 shows two

complicated ECs which look quite different, and whose topologies are quite different. Despite this,

one can explicitly convert from the upper EC to the lower based on the formulas described in the

paper38.

To keep the focus of the thesis on developing robust machine learning models in the context of

lithium-ion research, most of the details present in the paper are omitted here. But here follows a

sketch of the construction of the formulas:

• The various core components of all the circuits are represented in a unified form.

• Formulas are given to convert to this unified form from various circuits of interest.

• Formulas are given to convert to various circuits of interest from this unified form.

• This creates a graph of conversions where each node is an EC and each arrow is an

elementary conversion. Then, for various common cases, the conversions are composed

(i.e. applied one after the other) to create a simple program to convert between ECs of

interest, such as in Figure 2.4

38

Figure 2.4 uses the code to convert from a Voight configuration (with a series capacitor) to a ladder

configuration (with a capacitor embedded in the inner part of the ladder). Figure 2.4c) shows the

two circuits considered. Concretely, Figure 2.4 shows 3 examples of conversion. For each

example, parameter values were chosen for the Voight configuration, and the impedance spectrum

was computed and plotted. Next, the circuit was converted to the ladder configuration, and the

impedance spectrum computed and plotted again for the new configuration. The impedance curves

from the two configurations are on top of each other in the figure. For simplicity, the parameter

values of the Voight configuration are all the same in the three examples except for the series

capacitor, which took on the values, 10, 100, and 1000 F, respectively.

Figure 2.4a) shows the impedance spectra. From left to right, Figure 2.4 shows a Nyquist plot,

then the real Bode plot, then the imaginary Bode plot. The different grayscale colors correspond

to different initial values for the series capacitor.

Figure 2.4b) lists the parameter values before and after conversion. Each row corresponds to a set

of parameter values for a given circuit. The first three rows are the original parameter values for

the Voight configuration, and the last three rows are the corresponding parameter values for the

ladder configuration. The differences before/after conversion are relatively small when the series

capacitance is large, but these differences are very large when the series capacitance is small. This

phenomenon is related to the overlap between different subcomponents in frequency space (little

overlap when C is large; much overlap when C is small).

Note that, despite having the same spectra, and therefore the same relaxation times, the two ECs

show very different relationships between the capacitances and resistances. In a Voight-type

circuit, it is easy to find the various time constants that determine the relaxation behavior by simply

computing 𝑅𝑖𝐶𝑖. But the same approach would yield different results for the ladder-type circuit.

39

This highlights that the physical meaning cannot be the same for the corresponding components

in the two circuits. More concretely, the same observation, if we assume that it comes from a series

of successive electrochemical processes in the cell, will give a picture very different than if we

assume that the chain of electrochemical processes is embedded in a ladder configuration.

40

Figure 2.4 An example of explicit conversion from a Voight-type circuit configuration to a

Ladder-type circuit configuration.

2.3 A Realistic EC for Lithium-ion Cells

Though it would be possible to carry the full discussion without ever mentioning a specific choice

of EC model, we give a reasonable one here before proceeding with the full discussion. However,

see Section 3.6 to see how the results can be extended to encompass various other reasonable

choices.

41

First, we describe the data itself. About 100000 individual impedance spectra were collected from

various lithium-ion chemistries, using more than 4 distinct experimental setups1,41. Approximately

90000 spectra were collected automatically for various cells at various cycle numbers and various

voltages (a typical cell producing more than 100 spectra across its lifetime). These systems were

run at 20 and 40 degrees Celsius. This dataset will be referred to as the FRA dataset.

Also, approximately 10000 spectra were collected manually for various cells, including pouch

cells, coin cells, cells with both a positive and a negative electrode (full cells), cells with two

negative electrodes (symmetric negative cells), cells with two positive electrodes (symmetric

positive cells), at various temperatures ranging from -10 to 40 degrees Celsius. A typical cell

would have less than 10 spectra measured on this system. This dataset will be referred to as the

EIS dataset.

42

Figure 2.5 The EC model used to fit the spectra. The various sub-ECs connected serially are

framed with different colors. From left to right, we have: “Electrolyte”, a series

resistor, to model the electrolyte resistance. “Diffusion”, a Constant Phase Element

(CPE) representing diffusion; “Inductive tail”, a CPE representing an imperfect

inductance and a Resistor-CPE in parallel, also known as ZARC, representing an

imperfect inductance with a finite time-constant. Finally, “Electrochemical

processes”, three ZARCs each representing an electrochemical process giving rise

to a relatively sharp distribution of time-constants.

Given this large dataset, a single EC model was chosen to fit all the spectra. Figure 2.5 illustrates

this EC and Figure 2.6 defines the various components mathematically, namely the resistor, the

constant phase element (CPE), and the ZARC (literally stands for impedance which looks like an

“arc”). Note that similar ECs to the one studied in this paper have been used in the litterature42.

Note that a CPE can represent various more traditional components when the exponent φ is fixed

to certain values. For instance, with an exponent of 1, we obtain an ideal capacitor; with an

exponent of 0.5, we obtain a Warburg element; with an exponent of -1, we obtain an ideal

inductance. Also note that a ZARC element can represent a resistor in parallel with a capacitor

43

(when the exponent is 1). For such an EC, there is a frequency (characteristic frequency) above

which the current primarily flows through the capacitor, and below which it flows primarily

through the resistor. In a lithium-ion cell, the same particle is repeated across an electrode, with

fluctuations in the local shape, composition, and even currents. Therefore, it is more typical to see

a distribution over a range of characteristic frequencies. This is what is modelled by a ZARC

element with an exponent less than 1. The lower the exponent, the broader the distribution.

As presented, only three different components intervene in this EC model. For instance, the

inductance and the diffusion are both modelled by a CPE. This is possible since the exponent

(denoted by φ in Figure 2.6) of the diffusion CPE must take values between 0 and 1, and typically

will be around 0.5, whereas the exponent of the inductive CPE must take values between -1 and 0,

and will be approximately -1. Similarly, the exponent of the electrochemical ZARCs must be

between 0 and 1, with typical values between 0.6 and 0.9. These constraints will be generalized

below to the notion of “prior knowledge” on the values of the parameters. This leads to the problem

of enforcing these constraints.

44

Figure 2.6 The EC model components used in this section. The formulas for the impedance are

given in terms of the angular frequency ω of oscillation of the voltage signal applied

to the terminals of the sub-ECs.

2.4 Enforcing Constraints on EC Parameters

As a sub-problem of the inference problem, the fitting problem is to find the EC parameters θEC

which minimize the mean squared error of reconstruction (see Section 2.1). However, only a

restricted set of possible θEC may be considered. As discussed earlier, the exponents of the

inductive CPE and ZARC must be between -1 and 0 (negative), while the exponents of the

diffusion CPE and electrochemical ZARCs must be between 0 and 1 (positive). Furthermore, all

45

resistances must be positive or zero, while all characteristic frequencies, all frequencies, and the

Q parameters must be greater than 0 (positive).

It is possible to enforce these constraints without having to deal with constrained minimization7,43,

namely by rewriting the formulas in a way that has no constraints but is equivalent to the original

way. More precisely, the EC model is reparametrized such that 1) the same set of spectra can be

modelled, 2) the original parameters can easily be recovered from the reparametrized version, and

3) any value for the new parameters leads to a valid spectrum (i.e. respects the constraints on the

original parameters).

Figure 2.7 shows the reparameterizations used in this Chapter as well as Chapter 3.

Note that the log scale version of R, Q, frequency, and characteristic frequency is used.

Exponentiating ensures positive values. For the exponents φ, we use the logistic44 function 𝜎 for

Diffusion and Electrochemical, which always is more than 0 and less than 1. This function also

has nice derivatives around an output of 0.5 (where the derivative is 1), and the derivatives are still

large enough until we reach an output of 0.9. However, this function’s derivative vanishes as the

output approaches 0 or 1. In contrast, the function used for the exponent of the inductance CPE45

and Inductance ZARC has good derivatives everywhere (including for outputs near -1), but it isn’t

invertible (indeed, it is a symmetric function around its origin).

Note that the choice made here might not be the optimal choice46. Yet, it satisfies the above goals

and is easily implemented in code. When applying this methodology to a different fitting problem,

choosing a good reparameterization might require some trial and error. A special care should be

taken with the derivative of the model with respect to the new parameters, as this might affect the

ability of the neural network to converge to a good “inverse model” (to be defined later). In this

46

case, the first reparameterization considered was adequate, and generally ease of implementation

and conceptual simplicity are also important factors in the choice.

Figure 2.7 The reparameterizations used in this thesis. For each EC component (under

“Component Name”), the new parameters are enumerated together with a visual

representation of the EC component (under “Circuit Representation”), and the

conversion formulas connecting these new parameters to the old are given under

“Conversion Rules”, with the new impedance formula given under “New Formula”.

2.5 Symmetries within a single EC Model

In order to illustrate the process of creating a robust solution, it is useful to consider some further

mathematical properties of the EC model and corresponding EIS, which will then be exploited as

47

part of the solution: transformations of the EC parameters which lead to simple transformations of

the spectra and vice versa.

The transformations work as follows: given a spectrum and its associated optimal EC parameters,

apply special transformations to both the spectrum and the EC parameters to obtain a new spectrum

and the optimal EC parameters for the new spectrum.

Thus, we can scale and shift the spectra to ensure that the inverse model need only be applied to

spectra with frequencies centered around a log frequency of 0 and with impedances within the

complex unit circle. It may not seem like much, but this is a substantial factor in the robustness of

the solution.

Figure 2.8 gives the details. If the optimal parameters are transformed according to Figure 2.8,

then they will remain the optimal parameters for the transformed spectrum. The point of these

transformations is that it is easy to undo them, as long as the scale and shift parameters are

recorded. (We can simply apply the transformations with the negative of the scale and shift

parameters to undo the transformation). Note that in the case of CPE, the conversion rule is given

in terms of the original exponent φ so that the formula would be the same for both the diffusive

CPE and the impedance CPE. It should be understood that in both cases, the original exponent

should be computed from the reparameterized exponent.

As a future reference, a translation of 𝑤𝛼 of the spectra is denoted as

Trans𝑤𝛼
({(w𝑖, 𝑍𝑖)|𝑖 = 1, … ,  𝑚}) = {(w𝑖 + 𝑤𝛼, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} and the corresponding action

on the EC parameters is denoted as Trans𝑤𝛼
(θEC) (the specific transformation should be clear

based on the context).

48

Similarly, a scaling of exp 𝑟𝛼 is denoted as

Scale𝑟𝛼
({(w𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚}) = {(w𝑖, exp 𝑟𝛼 𝑍𝑖)|𝑖 = 1,… ,  𝑚}

and the corresponding action on the EC parameters is denoted as Scale𝑟𝛼
(θEC).

49

Figure 2.8 A useful symmetry of the EC model. It is possible to shift the log-frequencies of the

observed spectrum, and scale the observed impedances. For each component of the EC

model, the parameters of Figure 2.7 are shown. Then, the log-frequency shift

parameter 𝑤𝛼 and the log-resistance scale parameter 𝑟𝛼 are applied to transform the

original spectrum according to the first row of the Figure. This transformation

corresponds to transformations of the EC parameters given under “Conversion

Rules”. For instance, as the impedance is scaled by exp (𝑟𝛼) , the log-resistance of the

series resistor must be changed to 𝑟 + 𝑟𝛼.

50

2.6 The Difficulty of Choosing EC Model Parameters

Uniquely

Section 2.2 discussed how essentially the choice of EC models acts as the choice of “coordinate

system”, with well-defined conversion rules when switching between “coordinate-systems”. No

one would be tempted to look for trends in the position of a particle with each time step given in a

randomly chosen coordinate system. Similarly, if trends in the EC parameters of the fitted EIS of

a cell are to be investigated, then a single EC model must be chosen for the investigation. Things

will look different for different choices, but there is still a chance of finding a reasonable

interpretation, since the conversion rules between EC models are understood (see Section 2.2).

Yet, this does not exhaust the scope of the problem. Indeed, for a given spectrum and a given EC

model, there may still be multiple EC parameters which have approximately the same mean

squared reconstruction error.

When considering multiple EIS and the trends which may exist across them but individually

choosing among the multiple EC parameters fitting equally well each spectrum, trends can be

obscured.

The simplest trend possible (i.e. EIS more or less constant across measurements) illustrates well

the phenomenon. If several EIS are nearly identical, but each fitting problem makes a different

choice among the multiple good EC parameters, then each individual number in θEC may appear

to change, oscillate, fluctuate randomly, etc.. It is very difficult to notice even the constant trend

if the individual fitting problems are not coordinated in some way. Some examples of these

multiple choices follow shortly.

51

Note also, that what is really desired is a global coordination such that across hundreds of

thousands of spectra measured and fitted at different times in different labs by different people,

the choices of parameters have been coordinated to at least make visible the constant trends, and

hopefully many other common trends as well. This global coordination cannot be added artificially

in practice since it would be too computationally expensive to solve the fitting problem anew for

all existing EIS every time a new EIS was measured.

Formally speaking, global coordination relative to the constant trend can be stated as follows: the

process which assigns a choice θ𝐸𝐶
∗ to a given EIS {(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} must be deterministic.

In other words, there must exist a function from EIS to EC parameters which perfectly reproduces

the solutions to the fitting problem.

Intuitively, other trends should also be respected by the solution to the fitting problem. For

instance, small changes to the EIS should lead to small changes to θ𝐸𝐶
∗ (sometimes known as

continuity).

Despite the fact that most physicists are not accustomed to taking “derivatives” of functions from

indexed sets to vectors, for appropriately defined versions of notions like the Jacobian and the

hessian of such functions, the intuitive picture of what a global coordination on simple trends

would look like is faithfully captured by saying that the averaged norm of these measures of slope

(Jacobian) and curvature (hessian of every individual parameter) should be minimized across

almost every plausible EIS. (See Section 1.1.2 for definitions of Jacobians and Hessians.)

In case this principle of encoding trends as penalties on slopes and curvatures is of interest, a sketch

of them would be that for any EIS {(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚}, the EIS can be thought of as a vector in

ℝ3𝑚 (for each 𝑖, one number for frequency, one for the real part of 𝑍𝑖 and one for the imaginary

52

part), and the output of the function θ𝐸𝐶
∗ is a vector in ℝ𝑛. On this EIS, the Jacobian is the matrix

of partial derivatives of each EC parameter with respect to each input real value, and the norm

squared for instance can be the squared sum of all entries in the matrix (a single number per EIS).

One could also take all the second partial derivatives of every output component with respect to

every input real number, for which the norm could be computed in a similar way (yielding a single

number per EIS). Then, the average of these norms across a set of EIS can be minimized, thus also

minimizing the underlying average norms. Reference 25 also mentions some tricks to reduce the

computational requirements for the minimization.

To conclude this section, some examples of multiple choices for θ𝐸𝐶
∗ will be discussed.

First, under a limited range of observed frequencies, a ZARC element may either have no

contribution to the circuit impedance, or it may be essentially equivalent to a resistor in series with

the other components. Indeed, when all observed frequencies are far below the characteristic

frequency of a given ZARC, its contribution to the overall impedance is well approximated by a

resistor, while far above the characteristic frequency, it has no contribution. Therefore, for θ𝐸𝐶
∗

with a ZARC having a very low characteristic frequency, there is a family of other possible θ𝐸𝐶
∗

which would fit the data equally well, by increasing the value of the series resistor and decreasing

the value of the low frequency ZARC’s resistor, or vice-versa.

A second example which is a bit more worrisome in practice is that two ZARC sub circuits may

be interchanged without changing the resulting impedance. Indeed, any permutation of EC

parameters corresponding to permuting the order of the ZARCs in the circuit will constitute

equivalent choices in terms of mean squared error of reconstruction.

53

Finally, the main concern is that ZARC elements are essentially a distribution over Voight

elements47. In other words, the impedance of a single ZARC can be rewritten as an integral over

characteristic frequencies of ZARCs with an exponents equal to 1 (equivalent to a resistor in

parallel with a capacitor). The exact formula is not important, but for those interested, it has a

hyperbolic sequent shape, namely
1

𝑒𝑥+𝑒−𝑥, in the space of logarithmic frequencies, and is similar in

appearance to a gaussian though it decays slower away from the peak48.

The important part is that a ZARC is essentially a “peak” with the broadness of the peak

determined by the exponent, and similarly to the case of gaussian peaks, a single broad peak can

often be approximated by two or more narrower peaks. Since typical EIS data contain two or

more overlapping such peaks, there are many cases where the noise in the data creates ambiguities

in the number of peaks and their proportions.

Yet with all the possible choices of parameters which are in some sense equally good, but which

must be coordinated globally, there are also choices which solve the fitting problem equally well

but which can in fact be shown to be inferior based on other considerations, which is the subject

of the next section.

2.7 A Simple Measure of EC Parameter Complexity

Following the principle that the simplest explanation is the most likely, if a single electrochemical

ZARC accurately reconstructs the observed spectrum, then a fit using a single ZARC is preferred

to a fit using three ZARCs, even if the three ZARCs can fit the data slightly better.

This can be understood as the principle that the simplest explanation has the highest likelihood to

be physically relevant. Indeed, having several ZARCs in the idealized model of the physical

system coincide in their characteristic frequencies to appear as a single ZARC is less likely

54

(requires more coincidences) than a single ZARC accounting for the observations. The difference

in likelihood is not astronomical and so a significant improvement in the mean squared error of

reconstruction can overcome the simplicity consideration.

Having a numerical metric to track the “simplicity” or “complexity” of a given circuit is quite

useful to incorporate this consideration into algorithms, but how to do it?

 In our model, setting a ZARC resistor to 0 is equivalent to removing that component from the

circuit. Let 𝐶(𝑅1, 𝑅2, 𝑅3) =
(√𝑅1+√𝑅2+√𝑅3)

2

𝑅1+𝑅2+𝑅3
 which we call the complexity metric. This function is

related to counting the number of non-zero resistances. For instance, we can see that 𝐶(𝑅, 0,0) =

𝐶(0, 𝑅, 0) = 𝐶(0,0, 𝑅) = 1, 𝐶(𝑅, 𝑅, 0) = 𝐶(𝑅, 0, 𝑅) = 𝐶(0, 𝑅, 𝑅) = 2, and 𝐶(𝑅, 𝑅, 𝑅) = 3 for

any positive value of 𝑅. More generally, the complexity metric measures the degree to which the

sum of resistances is spread across all three resistances. As defined, the complexity metric is

related to some well studied mathematical objects. Namely, it is also the quotient of the “𝑙1/2

pseudo-norm” and the “𝑙1 norm.” Such norms are known to induce sparsity when used as penality49

and usually, simply using the “𝑙1 norm” would work. However, in our application, the “𝑙1 norm”

is the sum of resistances across the ZARCs which is conserved in the context of an infinite span

of measured frequencies no matter how many ZARCs are used due to the fact that it represents the

difference between the real part of impedance in the low frequency and the high frequency limit

for the collection of ZARC components, so the “𝑙1/2 pseudo-norm” is used instead, and we divide

by the “𝑙1 norm” in order to properly compare the complexity of spectra with different scales. Note

that, in the case where a ZARC has a characteristic frequency far above or below the observed

frequencies, the “𝑙1 norm” is not conserved, so we penalize the “𝑙1 norm” 𝑅1 + 𝑅2 + 𝑅3 directly

as well as the “𝑙1/2 pseudo-norm” (√𝑅1 + √𝑅2 + √𝑅3)
2
.

55

In conclusion, the “𝒍𝟏 norm” and the “𝒍𝟏/𝟐 pseudo-norm” are tools to distinguish between solutions

to the fitting problem with comparable mean squared error of reconstruction, and can readily be

applied in practice. Furthermore, the complexity metric is a human friendly metric to assess the

relative quality of a set of solutions to the fitting problem not explained by a difference in mean

squared error of reconstruction.

Armed with these conceptual tools, we next describe the actual solution to the inference problem.

2.8 Acknowledgements

This work was supported financially by the Natural Sciences and Engineering Research Council

of Canada (NSERC), and Tesla Motors.

56

Chapter 3 Robust Fitting of Lithium-ion Cell EIS to EC

Models

Easy collection of electrochemical impedance spectra (EIS) at various cycle numbers and various

state of charges produce vast amounts of data. The fitting problem, i.e. fitting each spectrum to an

equivalent circuit (EC) can lead to physical insights about the evolution of the lithium-ion cell, but

it requires good human initial guesses for the EC parameters to reliably converge, making the

fitting process labor intensive and difficult to scale. This chapter presents a paradigm to automate

the fitting of measured data to physical models, replacing the good human first guesses with an

inverse model parametrized with an artificial neural network. This method is simple to implement,

uses principles applicable to a wide variety of fitting problems, and leads to reliable and accurate

initial guesses of the EC parameters for a given spectrum. The performance of the system is

evaluated on a dataset of about 100000 impedance spectra from lithium-ion cells, achieving a

failure of fitting approximately 1% of the dataset, corresponding to the percentage of poor quality

data in the dataset.

This chapter is taken in whole from the corresponding paper39, except for some minor reformatting

and refactoring into Chapter 2. However, more details are given about the neural network

implementation, and the work is expanded to demonstrate how a single neural network can produce

good initial guesses for various EC topologies of interest.

3.1 Introduction

As it turns out, for many EC models encountered in the literature, the problem of fitting is difficult.

It is a difficult optimization problem for which the typical optimization algorithms are often

sensitive to the starting point, and sometimes prone to divergence.

57

In practice, this means a human has to choose the initial values of the parameters of the EC model,

and verify the output to make sure the fitting converged properly. Thus, this analysis method is

expensive to use, hard to automate and repeat, and, therefore, less ubiquitous than it otherwise

would be.

The key contributions of Chapter 3 can be summarized as:

1. Converting 100000 separate optimization problems into a single optimization problem to

which human effort, tuning, and (potentially) ad-hoc solutions can be applied and

validated.

2. Applying various insights from the large-scale machine learning literature to solve the

single optimization problem.

3. A complete open-source solution (with and without a graphical user interface) to the fitting

system which can be easily adapted to various impedance fitting workloads, and finally

4. Formulating the problem such that the insights can be generalized to potentially any other

problems of fitting the parameters of a physics model to measured data reliably.

As an overview,

• In Section 3.2, the fitting problem is formalized through various approaches. Among these

are mentioned individual fitting, clustering of spectra combined with human interaction, a

supervised learning approach, and finally the more successful and principled approach of

unsupervised learning.

• In Section 3.3, the various approaches are compared both at an abstract level and in terms

of the challenges of implementation.

58

• In Section 3.4, the unsupervised approach is put to the test on a large dataset, conclusively

demonstrating the robustness and power of this approach.

• In Section 3.5, the various tricks and practical considerations which can be discussed at a

theoretical level are explored.

• In Section 3.6, the ideas are extended to allow a single program to simultaneously solve

the fitting problem for a variety of relevant EC models.

• In Section 3.7, the precise details of the neural network7 having a material impact on

performance are discussed to hopefully help the reader make good choices on their own

application domains.

• In Section 3.8, we present future work by discussing ways of making the core model more

powerful (using the Transformer architecture).

3.1.1 Related Works

Though the core ideas of this paper have not been applied to electrochemical impedance

spectroscopy before, there are some related works.

For some EC models, some reparameterizations (the same model written with a different

mathematical formula) have been shown to reduce the impact of poor initial guesses50. Similarly,

in an application, the actual physical model has been approximated with a simpler “empirical”

model in order to make fitting feasible51.

Also, in order to stabilize fitting and impose some a priori preferences for ‘sensible parameter

values’, a so-called “prior distribution of the model parameters” has been added to the fitting

problem, penalizing both the fit error and the deviation from the a priori sensible parameter

values52. The optimization problem resulting from the combination of a priori preferences and

59

fitting of measured data is well studied and also called “Bayesian” or “maximum a posteriori”

parameter estimation.

Furthermore, the use of machine learning to predict the values of EC model parameters (shortened

to “EC parameters” from now on) is not new. For instance, there has been an application where

design parameters for a physical system were linked directly to values for an EC model53. In other

words, the conversion from a detailed model of a physical system to a simpler EC model was

accomplished using a neural network.

Finally, perhaps the closest related work conceptually, is that of visual estimation of the EC

parameters54,55 where a set of simple rules is developed to estimate a subset of the EC parameters

by first visualizing the impedance spectrum, and for instance, measuring the high frequency limit

of the real part of the impedance to estimate a series resistor. By formalizing these rules into a

program, one gets automated initial guesses for a subset of the EC parameters, which can be used

to initialize the fitting procedure (in our terminology, we would call such a program a “partial

inverse model”). However, developing these rules can be tedious and error prone, and requires

special knowledge of the EC model equations. For instance, if one adds a single component to an

existing EC model, the whole set of rules might have to change, not to mention that special care

has to be taken to make the rules robust to unforeseen special cases such as noisy spectra. In

contrast, we develop a general method, which can be applied to a wide variety of fitting problems

(i.e. not limited to EIS) and can produce a robust set of rules to estimate all the EC parameters

based on the raw impedance spectrum. Indeed, the estimates thus produced, even for the

complicated EC model used, are robust and accurate, even removing the need for a separate fitting

procedure on a significant percentage of the spectra.

60

3.2 Formalizations of the Fitting Problem

Given an observed impedance spectrum, an optimization algorithm can be applied to the

constrained fitting problem, to produce a set of EC parameters θEC
∗ minimizing the mean squared

error of reconstruction. Therefore, any deterministic optimization algorithm defines a function

from spectrum to EC parameters. We call such a function an “inverse model”, since the EC model

goes from parameters to spectra, and this function goes in the “inverse” direction. Hopefully, the

EC parameters thus produced will be close to optimal, leading to a good fit of the data. If this is

reliably the case, across the set of interesting spectra, we say that the inverse model is a “good

inverse model.” In practice, for the EC model shown in Figure 2.5, this requires a human in the

loop, to find initial guesses for the EC parameters, and potentially restart the procedure.

Figure 3.1 illustrates how the various elements of the fitting problem relate to each other. Given

some EC parameters (and a set of frequencies), a synthetic impedance spectrum can be sampled

(this spectrum is represented by 𝑍reconstructed(𝜔) in Figure 3.1). Given some measured impedance

spectrum and a synthetic spectrum, the mean squared error of reconstruction may be computed.

These are represented by solid arrows since they can be directly expressed as equations.

Furthermore, given a measured spectrum, the previous two relations allow one to choose a set of

parameters, and this choice (the output of the inverse model) is a dashed arrow since it cannot

easily be given as an equation. The colors and shapes simply represent the fact that 𝑍measured(𝜔)

is observed while 𝜃EC is not directly observed (unobserved variables are called latent variables).

61

Figure 3.1 A graphical illustration of the fitting problem’s structure.

Based on Figure 3.1, there are still various distinct ways of formalizing the idea that “the mean

squared error of reconstruction is the criterion for the inverse model.”

• Individual Fitting (Human in the Loop). The usual way, often known as least squares

fitting, is to say that the inverse model is implicit. Any given spectrum will constitute a

separate optimization problem of minimizing the mean squared error of reconstruction

using a given optimizer and initial parameter guesses provided by a human in the loop.

Note that this formalization does not make the inverse model a deterministic function of

the measured spectrum, and any properties related to trends are left for the human to

enforce. Also note that poor typical initial guesses create the need to use a powerful

optimizer. This typically comes at the cost of being prone to divergence.

• Human-Augmented Individual Fitting (Clustering). As a historical point of interest, the

first attempt by the author to improve trends and reduce the work of fitting 100000 EIS

consisted of a distance metric over impedance spectra which was used to group 30 to 60

spectra together for the purpose of choosing the same initial guesses for multiple fits. This

was combined with one of the two transformations discussed in Section 2.6 in order to

further reduce the differences between spectra in a group. The spectra were then plotted

together and initial guesses were given according to visual heuristics54,55. Note that

62

estimating only a few key parameters (in this case, mostly the characteristic frequencies

and resistances of the ZARC elements) is enough to make a reasonable optimizer behave

more or less deterministically.

• Supervised Learning of a Partial Inverse Model (No Humans). Based on the insight

that a human could visually estimate a few key parameters which is a process called a

partial inverse model (in this case, mostly the characteristic frequencies and resistances of

the ZARC elements), it was decided to replace the human by a neural network. The most

common approach to training such networks is to create a dataset of pairs (𝑥𝑖, 𝑦𝑖)𝑖=1
𝑁 of

inputs and outputs and then train a function 𝑓(𝑥) = 𝑦 to produce the outputs when given

the inputs. In this case, the dataset was generated by first selecting 𝜃EC at random, then

sampling 𝑍reconstructed(𝜔) based on some randomly chosen frequencies. In the above

notation, the input 𝑥 was a visual representation of 𝑍reconstructed(𝜔) and the output 𝑦 was

a vector of the few key parameters mentioned earlier, all extracted from the randomly

selected 𝜃EC. In other words, a dataset was created where the 𝜃EC were known (not latent),

and a neural network was trained to reproduce these values from the dataset. Note that this

is not the same as minimising the mean squared error of reconstruction. The error is

computed directly on the EC parameters instead. Informally, we would say that the error

“has units of EC parameters 𝜃EC rather than units of impedance 𝑍reconstructed(𝜔).”

• Unsupervised Learning of an Inverse Model. All previous approaches have major

setbacks which are explored in Section 3.3. This leads one to ask: What is the actual

problem of interest and is there a way to pursue that more directly? The problem is to find

an inverse model (i.e. a function from measured spectra to EC parameters) which is best

according to some criterion. As such, it is itself a single optimization problem. The criterion

63

is as follows: For the distribution of impedance spectra encountered in practice (in this

case, they will be from lithium-ion cells), the best inverse model is that which minimizes

the average mean squared error of reconstruction over these spectra and which behaves

best with respect to simple trends of interest. Note that this can be implemented on a dataset

of actual measured impedance spectra, but spectra generated some other way (such as those

used for the supervised approach) could also be used. Indeed, by connecting a neural

network to an implementation of the sampling of EC parameters, as in Figure 3.1, one

obtains a function which takes impedance spectra as input and returns impedance spectra

as outputs. The “right” choices of EC parameters for the spectra in a dataset need not be

known for the optimization over possible inverse models to be performed.

3.3 A Comparison of Various Approaches to the Fitting

Problem

At a conceptual level, there is only one problem (finding a good inverse model according the

various criteria) and pursuing this as directly as possible (using the unsupervised learning

approach) has the advantage of elegance. However, understanding the actual trade-offs between

the various approaches is instructive, useful, and sometimes the most elegant approach is not the

most practical (though it definitely is practical in this case).

3.3.1 Individual Fitting

First, consider the Individual Fitting approach. In theory, it confers the following:

• Flexibility. If the EC model is changed, an optimization algorithm can immediately be

used to fit spectra to the new EC model. For both the supervised and unsupervised

64

approach, the whole multi-day process of finding a good neural network must be redone

for each new EC model (though we note that Section 3.6 overcomes this to some extent).

• Adaptability. A very unusual spectrum might benefit from the fact that the optimization

algorithm treats each spectrum separately. By default, an inverse model trained on a fixed

set of spectra has no defined behavior when applied to a spectrum very different from those

in that fixed set used for training. This problem is mitigated by the fact that a very unusual

spectrum occurs rarely and can be treated separately. Also, unless the optimization

algorithm is of a special kind, there is no convergence guarantee for any spectrum, hence

no guarantees for very unusual spectra. Similarly, if the kind of spectra in need of analysis

changes significantly over time (for instance, if a laboratory changes their research focus),

the criterion at the time the model is used will diverge from the criterion at the time the

model is trained. However, this issue is solved by periodically reoptimizing the neural

network using all the data available, including the newer spectra, or by somehow having a

robust enough selection process such that the inverse model chosen is good over a much

wider distribution of possible spectra than those available during training.

• Component Simplicity. The general software complexity of setting up and maintaining

an inverse model is significant compared with simply using an off-the-shelf fitting software

for individual fitting. If such off-the-shelf software gave equal or better fit quality without

other software components required, it would be a better practical solution. However,

ensuring quality solutions when using individual fitting may require many more

components and process complexity in practice (i.e. human-in-the-loop).

65

On the bad side, individual fitting as an optimization problem on the EC model of Section 2.3 is

plagued with bad local minima and as a solution to the inference problem described in Section 2.1

does not address the global coordination at all.

Regarding the first issue, there are in fact many different optimization algorithms varying

dramatically in their characteristics.

On one extreme, random search56 is a very simple and robust algorithm which has no problem

with local minima as it searches the set of possible EC parameters globally and is therefore not

attracted to local minima but is incredibly slow to find a good solution.

In contrast, gradient descent and its variations are moderately fast and stable, but they are attracted

to local minima, especially in small parameter spaces such as the EC parameters. In other words,

for a given impedance spectrum, the space of possible EC parameters is divided into many sub-

regions which are the basins of attraction of various local minima, and the optimizer will converge

to the local minimum within the sub-region where the initial guesses are chosen. Note that

depending on the precise details, the convergence may still be slow, but much faster than random

search. Furthermore, with appropriately small steps, convergence is highly likely, if left to

optimize long enough.

On the other extreme, various second order methods can converge very fast, but will also diverge

more readily, and still will have some trouble with local minima, though their interaction with the

basins of attraction is less clear for the same reasons that these algorithms are more prone to

divergence: they take larger steps, and the justification for the steps taken helping the optimization

have stronger assumptions built-in.

66

There are ways of trading-off the strengths and weaknesses of the various approaches (for instance

by doing a random search on initial guesses each followed by a short gradient descent), and there

are many approaches not mentioned here, but the more time spent selecting the perfect algorithm

here, the more this “individual fitting” approach becomes similar to the unsupervised approach,

since the optimizer will be selected based on a global criterion over plausible impedance spectra.

If the search for a good inverse model is performed over a big enough and diverse enough set of

possible optimizers, then it is reasonable to expect similar or greater performance to that discussed

in Section 3.4 could be achieved. In other words, the unsupervised approach is not in principle

limited to considering only neural networks as possible inverse models; more general objects

including optimizers could also be considered. Note however, that global coordination may still

be a problem and it is beyond the scope of the thesis to optimize over optimizers.

3.3.2 Hybrid Approach

There is not much to say about the human-machine hybrid approach.

3.3.3 Supervised Approach

However, the supervised approach is quite interesting:

• This is the approach that most people with a passing familiarity with machine learning

would think of first. It indeed was the case for the author.

• It works much less well than the unsupervised approach, not quite matching the human

ability to visually estimate the key EC parameters.

• It works sufficiently well to build a good solution to the fitting problem, when used to

constrain the initial guesses. However, it required many human-written heuristics, a well-

chosen proprietary optimizer from Mathematica for the individual fitting portion, and many

67

weeks of tweaking and patching the code. However, the global coordination problem was

not properly addressed by this code and the complexity of maintenance was much too high.

3.3.4 Unsupervised Approach

In retrospect, it is obvious that the unsupervised approach is superior. But the real question is what

type of reasoning would have led one to conclude beforehand that the unsupervised approach

would work much better?

The elegance and simplicity argument for using a problem setting which directly corresponds to

the desired outcome would have advocated for the unsupervised approach. However, this argument

would not have predicted that the supervised approach would fail to meet the human level of

performance, or that the unsupervised method would exceed it.

Similarly, this argument would not have predicted that the unsupervised method would naturally

(i.e. without special effort) display good global coordination, or that the supervised approach

would not display it even with some significant special effort (i.e. the clustering approach57,58). To

emphasize the point, it is unclear to the author whether the supervised approach can in practice

display a high level of global coordination even with a lot more special effort. If such a thing is

possible, the author would bet that the special effort contains something akin to the unsupervised

approach and that the supervised part plays at best no role and at worse a detrimental role.

While the elegance argument fails to make bold enough predictions, some intuitive arguments

predict boldly in the wrong direction. For instance, focussing purely on the apparent difficultly

of selecting a neural network would misguide greatly. Indeed, it seems that the supervised dataset

simplifies the optimization problem over neural networks by providing the “correct” EC

parameters for the given spectra. While both the supervised and unsupervised problem must learn

68

to correlate the spectrum shape to the correct EC parameters, the unsupervised problem must first

determine what the correct EC parameters are. In other words, the unsupervised task must solve

the individual fitting problem whereas the supervised task is handed a perfect solution to imitate.

Since the task of solving the individual fitting problem is difficult (otherwise this Chapter would

not exist), the argument goes that the unsupervised task would do poorly. This of course is a wrong

prediction.

Now that some insufficient arguments and wrong arguments have been presented, let us attempt

to give good arguments/considerations.

First, since the supervised approach was only tried on parameters which could successfully be

estimated visually, the possible solutions for the supervised approach are strictly less powerful,

but assuming the supervised approach is extended to predict all parameters, the possible candidate

inverse models are the same in both approaches. Figure 3.1 illustrates that the two approaches

place the neural network in the same place.

Second, assume access to a perfect optimizer for neural networks which takes a loss function

defined by the dataset and the selection criterion, and produces a neural network which has the

lowest possible loss on the dataset while respecting some continuity condition. Furthermore,

assume the largest possible dataset was collected according to the methodology of either the

unsupervised or supervised approach. In such a scenario, it is still possible to predict some aspects

of the inverse model produced using either the supervised or unsupervised approach:

• In the case of the unsupervised method, the inverse model would perfectly solve the

individual fitting problem on every single spectrum in the dataset (i.e. it would associate

69

to every spectra the choice of EC parameters which minimizes the mean squared

reconstruction error).

• However, in the case of the supervised method, assuming there are multiple choices of EC

parameters which produce identical spectra (also nearly identical spectra in case the

continuity condition would force the neural network to produce nearly identical EC

parameters for such spectra), the best which can be achieved is an inverse model which

predicts the average of all the multiple choices of EC parameters.

When presented with identical spectra from the dataset, the neural network must produce a unique

EC parameter vector. If these identical spectra are associated with distinct EC parameter vectors

in the dataset, the loss function cannot be perfectly satisfied. The best that can be done is to produce

the average of all the EC parameters associated with the same spectrum.

In a slightly more realistic dataset creation effort, there would be imbalances in the multiple

choices of EC parameters for a given spectrum. In general, the imbalances would be inconsistent

from one spectrum type to the next, which would hurt the global coordination of the solution.

In short, the unsupervised approach has no fundamental limits on its achievable performance, but

the supervised approach is limited by the quality of its supervised EC parameters, even in the limit.

Third, the unsupervised approach allows the use of datasets which are strictly larger than those

available to the supervised approach. Indeed, any spectrum for which the EC parameters are known

can be included in either dataset, but the unsupervised dataset can also include spectra from

experiments, as well as spectra sampled from more complicated and diverse EC models than the

one presented in Section 2.3.

70

Furthermore, any transformation of the impedance spectrum which has an unpredictable effect on

the corresponding optimal EC parameters may still be included in the unsupervised dataset.

In short, the unsupervised dataset can be much larger and diverse than the supervised dataset.

Indeed, there are no limitations on the dataset size for the unsupervised approach and in practice a

small amount of effort yielded significant improvements in the quality of the dataset in the

unsupervised case.

Based on these considerations, the main imagined hurdle for the unsupervised approach is the fact

that it must solve the individual fitting problem which is difficult to do. However, this is not quite

accurate. The optimizer applied to the parameters of the neural network will follow gradients in a

space with a completely different geometry; one which is much less plagued by bad local

minima59,60. Indeed, it is a general result for many domains of application of neural networks that

optimization in these very large spaces of neural network parameters is feasible, and various tricks

exist to successfully solve these seemingly challenging optimization problems for up to hundreds

of billions of parameters31. In short, solving the complete fitting problem of finding a good inverse

model is not harder than solving every individual fitting problems on a given dataset. Indeed,

applying relatively straightforward tricks is expected to solve any issues encountered most of the

time on these problems.

Finally, could the good global coordination of the unsupervised approach have been predicted by

a good argument? In other words, assuming that the unsupervised approach can reach a given

inverse model as a good solution to the fitting problem, and comparing all such inverse models

with each other, is it going to be easier to reach solutions with good global coordination or

solutions with bad global coordination? This is in the end an empirical question, but some

intuitions can be used to attempt to estimate these questions beforehand.

71

If nearby spectra A and B produce incompatible EC parameter choices 𝜃𝐸𝐶,𝐴 and 𝜃𝐸𝐶,𝐵, then

essentially the neural network could easily be used to distinguish between A and B more or less

reliably. Then, the ability to distinguish A from B must come about and persist in conjunction with

the ability to send A to a good choice 𝜃𝐸𝐶,𝐴 and B to a significantly different good choice 𝜃𝐸𝐶,𝐵.

It seems unlikely to come about compared to a system which doesn’t have the ability to distinguish

A from B, and just predicts the same choice for both 𝜃𝐸𝐶,𝐶, and which then incrementally

specialises the predictions to lower the mean squared error of reconstruction without a big change

in the predictions themselves. Indeed, what would be the incentives for developing the ability to

distinguish A from B before the ability to send A to 𝜃𝐸𝐶,𝐴 and B to 𝜃𝐸𝐶,𝐵? A similar analysis would

predict that these two separate abilities are difficult to maintain through the training process. This

style of though is still not completely formalized, but it seems useful to develop good expectations

about outcomes of sophisticated neural network training processes61.

3.4 Results

If the only requirement was to produce adequate fits for a fixed set of impedance spectra, then the

inverse model could always be optimized precisely on all the spectra of interest. Initial experiments

showed that the basic setup can accomplish this relatively easily. However, optimizing the inverse

model on a large set of spectra can take some time, and if new spectra are constantly measured,

this approach would introduce latency and management complexity. It is also quite inefficient to

constantly train on a growing set of spectra every time a new spectrum is measured.

Therefore, the proper context to evaluate the performance of the proposed fitting system is as

follows: Once the inverse model has been optimized on a set of spectra, it is applied to a set of

new unseen spectra. Then the following are measured:

72

• The accuracy of the fits (in the sense of reconstruction error) on the new spectra, as

produced by the inverse model.

• The accuracy of the fits on the new spectra when the inverse model is used as initial guesses

for a gradient descent optimizer.

If the inverse model produces relatively good EC parameters for a given spectrum, then the simple

optimization pass should converge, since only small adjustments of the EC parameters would be

required. After doing this, the actual quality of the fits can be determined.

The numerical experiment proceeds as follows.

As detailed in Section 2.3, around 100000 experimental impedance spectra were collected over

many years, and are organized into two datasets with different characteristics (the FRA dataset and

the EIS dataset). Section 2.3 also details the main differences in those datasets (mostly the

temperature of measurement, the types of cells measured, and the ratio of spectra to different cells

within the dataset). Each dataset is split at random into two disjoint sets (called train set and test

set respectively), with 1% of the spectra for the train set and 99% for the test set. Since the FRA

dataset contains potentially many spectra from the same cell, we enforced the constraint that there

be no cell for which spectra exist both in the train FRA dataset and the test FRA dataset.

Then, the inverse model is optimized on a mixture of data from three separate sources: 1) generated

data (20 percent of the spectra seen, including repetition), 2) data from the FRA train set (40

percent of the spectra seen, including repetition), and 3) data from the EIS train set (40 percent of

the spectra seen, including repetition). Finally, the inverse model is fixed, and is applied to both

the FRA test set and the EIS test set to produce EC parameters for each spectrum in the test set.

73

These EC parameters are used to produce a reconstruction, and the difference between the original

spectra and their reconstructions is calculated. Smaller differences mean a better inverse model.

However, to visualize these results, we compute a metric (the mean error divided by the standard

deviation of the data). Then, the test set is sorted by this metric, and some fits at various points on

this sorted list are plotted. Note that, in order to save space, the fits are shown using Nyquist plots

(negative imaginary part vs. real part), instead of showing Bode62 plots (real part vs. frequency,

and imaginary part vs. frequency). From a Nyquist plot, there is no way of knowing whether the

frequencies are aligned between fit and original data, as a uniform shift of log-frequency would

not change a Nyquist plot. Yet, the optimization has no way of producing good looking Nyquist

plots without proper frequency alignment. In all cases shown, the Bode plots would all look better

than the corresponding Nyquist plots.

It is not practical to show all the fits in the test set, but Figure 3.4 through Figure 3.7 show fits that

have not been “cherry-picked” and illustrate qualitatively the results of Figure 3.2 and Figure 3.3.

Similarly, the complexity measure introduced in Section 2.7 is computed once the EC parameters

are known, and it is plotted across the dataset. Ideally, the fits should have both low error and low

complexity, but experimental data can never have 0 error, and some spectra clearly exhibit more

than one active electrochemical ZARC, hence the complexity measure must be superior to 1.

74

Figure 3.2 The error for both the FRA and EIS test datasets, for the EC parameters directly

produced by the inverse model, and those produced by applying 1000 steps of ADAM

finetuning to the output of the inverse model. The mean squared error, scaled by the

standard deviation, was computed by comparing the reconstructed spectra and the

original. These errors were sorted and plotted against the percentile. Therefore, a

percentile of 1 represents a fit worse than 99% of all the fits. The horizontal axis

represents the whole set of spectra. The inverse model trained for a day. One thousand

steps of ADAM finetuning is roughly 0.05 seconds per spectrum. Note that the times

were obtained on a 2016 laptop, with an NVIDIA Quadro M1000M graphical

processing unit.

75

Figure 3.3 The complexity metric is shown for both the FRA and EIS test datasets, for the EC

parameters directly produced by the inverse model, and those produced by applying

1000 steps of ADAM finetuning to the output of the inverse model. Figure 3.2 gives

details of how the fits were obtained. The complexity decreases slightly during ADAM

finetuning.

Figure 3.2 and Figure 3.3 show a quantitative evaluation of the performance of the system

(respectively the error and the complexity metrics). The strength of the inverse model optimization

is to be able to avoid bad local minima and explore the landscape of possible fits to find an overall

good solution. The strength of the finetuning is its stability and precision (it will simply converge

to the nearest local minimum).

76

Initially, the finetuning was a simple gradient descent algorithm (i.e. the derivative of the MSE

error is taken with respect to the EC parameters, and the EC parameters are updated by shifting a

small amount in the direction that most reduces the error, namely the negative of the gradient).

However, the performance was not good. Hence, we implemented the ADAM optimization

algorithm22, a variant of gradient descent which in our case performs much better (see Section

1.1.6). Roughly speaking, by computing the gradient at each step, the average and the standard

deviation can be estimated, and a step can be taken in the direction of negative average gradient

but the size of the step will be smaller if the standard deviation is large.

Figure 3.4 through Figure 3.7 evaluate the fits qualitatively.

For instance, Figure 3.4 shows some fits of the FRA test dataset using the inverse model, at various

percentiles of error. The actual data is shown as the dots whereas the spectra reconstructed from

the fitted EC parameters are shown with a line of the same color. The big stars are the datapoints

which have an angular frequency closest to the characteristic frequency of the corresponding

ZARC. There are 3 ZARCs, so three stars should be visible, with the ZARC having the lowest

characteristic frequency usually showing up to the right in a Nyquist plot. Furthermore, to help

understand the complexity metric, the resistance corresponding to each ZARC was calculated, and

is written in the legend. For instance, the blue spectrum in the percentile 50 plot had its first ZARC

at a relatively low frequency, with a resistance of 20, its second ZARC at a medium frequency

with a resistance of 21, and its third ZARC at a relatively high frequency with a resistance of 8.

Note that the resistances computed would have units of ohm (since they are the bona fide

resistances in the original circuit, before reparameterization), but the whole spectrum was scaled

such that the maximal observed impedance had magnitude 100. This was done only to simplify

77

the visualization. Also note that the resistances shown were rounded to the nearest integer to save

space. The same goes for Figure 3.4 through Figure 3.7.

78

Figure 3.4 Some fits of the FRA test dataset using the inverse model, at various percentile of

error. The fits shown are of acceptable quality, but the data itself is of poor quality for

the lowest 2 percentiles. The dots and lines represent actual data and reconstructed

spectra respectively. The actual data was rescaled such that the largest impedance

within each spectrum would equal 100. There are 3 ZARCs, so three stars (each

positioned at the dot nearest to the corresponding characteristic frequency) should be

visible, with the rightmost star typically representing the lowest characteristic

frequency ZARC. The legend shows the resistance corresponding to each ZARC. For

instance, the blue spectrum in the percentile 50 plot had resistances of 20, 21, and 8

for the low, medium, and high frequency ZARCs respectively (when rounded to the

nearest integer).

-Im(Z)
(unitless)

Re(Z) (unitless)

79

Figure 3.5 Some fits of the EIS test dataset using the inverse model, at various percentile of error.

The fits shown are of acceptable quality, but the data itself is of poor quality for the

lowest 4 percentiles. See Figure 3.4 for details about the legend.

-Im(Z)
(unitless)

Re(Z) (unitless)

80

Figure 3.6 Some fits of the FRA test dataset using the inverse model followed by 1000 steps of

ADAM finetuning, at various percentile of error. The fits shown are of good quality,

but the data itself is of poor quality for the lowest 2 percentiles. See Figure 3.4 for

details about the legend.

-Im(Z)
(unitless)

Re(Z) (unitless)

81

Figure 3.7 Some fits of the EIS test dataset using the inverse model followed by 1000 steps of

ADAM finetuning, at various percentile of error. The fits shown are of good quality,

but the data itself is of poor quality for the lowest 4 percentiles. See Figure 3.4 for

details about the legend.

Looking at Figure 3.4 through Figure 3.7, and confirming by plotting more spectra, the following

qualitative conclusions can be reached:

• The inverse model properly fits 98% of the spectra, give or take 2%, but the precision is

not optimal.

-Im(Z)
(unitless)

Re(Z) (unitless)

82

• The inverse model combined with the finetuning optimization properly fits 99% of the

spectra, give or take 1%, and the precision is close to optimal.

• These conclusions hold both on the FRA dataset and the EIS dataset.

Though it is not possible to compare to every other fitting software, the author’s experience with

freely available fitting software applied to similar data suggests that the inverse model combined

with the finetuning optimization is much more reliable than alternatives, and that fitting such a

large and diverse dataset with freely available fitting software would be very labor intensive.

By looking at Figure 3.4 and Figure 3.5, anyone who has tried to guess the value of EC parameters

visually from the spectra for a circuit such as displayed in Figure 2.5 will see that the inverse model

is effective at estimating the optimal EC parameters. Furthermore, given better data and perhaps a

larger neural network parametrizing the inverse model, there is no reason why the performance

could not be even better. Also, by looking at the low-percentile spectra (i.e. those not well fitted

by the inverse model), it is possible to augment the generated data and tweak things until the

inverse model properly handles this type of spectrum. However, at any given point, the available

data will be incomplete, and there will be corner cases not represented. Therefore, when assessing

the performance of a system and quantifying the success rate, it is better to not tweak or generally

not try to improve the inverse model on specific cases. Since we have followed this principle, the

98% number given above should be roughly accurate.

These results are encouraging both for the application of EC model fitting, but also for the general

approach of training an inverse model, represented as a neural network, and then using a finetuning

optimization. We hope that this can be applied to many different difficult fitting problems.

83

Finally, Figure 3.8 shows a sample of fits in their original scale (before the scaling and shifting),

using the combined method (inverse model + finetuning), together with the error metric and the

complexity metric for each fit. Though the fitting itself happens in a space where the scales of

different spectra are very similar (see Figure 3.4 through Figure 3.7), this method can effectively

fit a variety of different spectra at different scales.

84

Figure 3.8 Some fits in the FRA dataset shown in original scale. The fits shown were chosen to

demonstrate the variety of spectra which can be handled by the system. From

thousands of ohms, down to hundreds of milliohms in scale, some fits of various

shapes, together with their error metric and complexity metric, are shown. These fits

are from the combined method, using the inverse model as well as the fine tuning with

ADAM.

-Im(Z)
(ohm)

Re(Z) (ohm)

85

3.4.1 Reproducibility and Access to Code

A barebones version of the code is available at https://github.com/Samuel-Buteau/EISFitting with

all the documentation contained in the README.md file. This codebase contains a pretrained

model and the ability to run the model on a directory containing EIS measurements to receive the

results. The inverse model is also able to produce results for tens of different EC models. This can

be done through a very simple command line interface We leave the integration of the core

software with a truly outstanding user interface as future work.

Many labs interested in applying this technique might be worried that they do not have 100000

spectra available to make this work. However, similar techniques can be applied on a smaller scale

to yield good results.

First, note that the two datasets (FRA and EIS) are quite different and producing an inverse model

which works well across both tasks is harder than solving each task individually. For the case of

the EIS dataset, it contains around 10000 spectra, and we have shown that 1% of the dataset (100

spectra) was sufficient to reach quite good performance.

We note that with more data, the inverse model becomes more precise (for instance, Figure 3.9

shows the performance of a model trained with 10 percent of the data instead of 1 percent,

compared with Figure 3.2), but in order to get reasonable starting points for the finetuning,

precision is not required for the vast majority of spectra.

https://github.com/Samuel-Buteau/EISFitting

86

Figure 3.9 The error of a model trained with 10 percent of the data is shown for both the FRA and

EIS test datasets, for the EC parameters directly produced by the inverse model, and

those produced by applying 1000 steps of ADAM finetuning to the output of the

inverse model. The mean squared error, scaled by the standard deviation, was

computed by comparing the reconstructed spectra and the original. These errors were

sorted and plotted against the percentile. Therefore, a percentile of 1 represents a fit

worse than 99% of all the fits. The horizontal axis represents the whole set of spectra.

The inverse model trained for a week, but the performance remained stable from day

3 onward.

87

3.5 Conceptual Discussion of Tricks

Now that the general considerations are spelled out, we detail the various tricks and specific

solutions which improve the performance of the system on this particular problem setting of fitting

EIS spectra.

The optimization of the inverse model is still a considerable problem, and some tricks go a long

way to making it converge quicker, more stably, and favor some desired properties of the solution.

These tricks are discussed below. Note that this and the following sections of this chapter are heavy

in details, and readers primarily interested in the use of a fitting software need not read them.

3.5.1 Defining a Prior Distribution on the EC Parameters

Even before seeing the spectrum, some values of the EC parameters are less likely than others.

Formally, we can represent this knowledge as a probability distribution over θEC henceforth called

the prior. Formally speaking, a prior is entirely subjective, and it can be interpreted as a guess of

the likelihood of any given θEC being appropriate for a randomly chosen impedance spectrum. For

simplicity, an average value 𝜃EC,𝜇 and a standard deviation θEC,σ is chosen for all the EC

parameters (more formally, each parameter follows an independent gaussian distribution), and

these values do not depend on individual impedance spectra. Note that the prior only represents

one’s best guess in a simple form and so it may not have much to do with the actual distribution

of θEC over plausible impedance spectra. When a prior precisely corresponds to the actual

distribution of θEC over plausible impedance spectra, it is called the optimal prior. When it is

necessary to distinguish an actual choice of prior from the optimal prior, the actual choice is called

a subjective prior. For the form of prior chosen, increasing the standard deviations is said to

broaden the prior and decreasing the standard deviations is said to compress the prior.

88

In some sense, choosing a subjective prior63 is related to the supervised approach, but these are

different concepts. The supervised approach defines implicitly a prior if one simply ignores the

correspondence between specific spectra and specific EC parameters and only looks at the set of

EC parameters (to get a gaussian prior out of this, simply compute the average and standard

deviation of each parameter). In the case of the unsupervised approach, this correlation between

specific spectra and specific EC parameters is not explicitly given, and instead is chosen to serve

the overall criterion of producing good reconstructions. On the other hand, the prior can be used

as a form of weak supervision such that EC parameters unlikely according to the prior may be

slightly penalized as shall be discussed later.

In general, there is nothing preventing one from using criteria more like the supervised approach

(i.e. directly defined on EC parameters) in conjunction with criteria more like the unsupervised

approach (i.e. directly defined on the reconstructed spectra). Supervised and unsupervised were

convenient words for separating the two approaches, but the generalizable insight from Chapter 3

should not be that “unsupervised is better than supervised” (which is false for many problems).

Instead, the insight is that considering many different mechanisms to produce a model may yield

better results than simply using the most obvious one.

3.5.2 Leveraging Symmetries to Compress the Prior

Impedance spectra gotten from experiments are extremely diverse in their scale (coin cells

typically have much smaller surface area, and thus correspondingly higher impedance than pouch

cells), and the frequency ranges over which the characteristic frequencies reside. Therefore,

coming up with fixed reasonable values for θEC to suit all these spectra would be challenging,

forcing relatively poor match between the prior and any given spectrum’s actual parameters (i.e.

the optimal prior would be very broad).

89

However, the symmetries discussed in Section 2.5 can be leveraged to scale each impedance

spectrum such that the average absolute value of the impedance with respect to frequency equals

1 and such that the logarithm of the frequency averaged by the absolute value of the impedance

equals 0. This would compress the optimal prior greatly, since impedance spectra with

disproportionately large resistances would have their resistances diminished, and vice-versa.

Correspondingly, it is relatively simple to choose reasonable ranges for each EC parameters

knowing that the spectra have been manipulated as above. Indeed, the code has been run with two

versions of the prior: once simply by guessing reasonable values (a subjective prior), and once by

looking at the final parameters of all the fits, and choosing the average value and standard deviation

for each (an approximation to the optimal prior). We note that none of the results change, despite

the huge gap between the subjective prior and the (approximated) optimal prior.

Indeed, these symmetries compressed the optimal prior enough to make it easy to choose a

relatively good prior. Starting with a good prior when searching for an inverse model is akin to

starting with a good initial guess when solving the fitting problem for an individual spectrum, but

the process of searching for an inverse model is a lot more resilient, so the only difference between

a good and a bad prior in practice is the time it takes the neural network to converge to a good

inverse model.

3.5.3 Modelling Deviations from the Averaged Prior

Let θEC,μ be the average values chosen for the EC parameters as defined in the prior distribution

above. Then, instead of representing the inverse model by a neural network directly, we represent

the difference between outputs of the inverse model and the average values 𝛉EC,𝛍 by a neural

network, and it is initialized such that the output is 0. This has the effect of beginning with an

90

inverse model which is constant and which always produces θEC,μ at the beginning, which are

chosen to be reasonable. Then, as the neural network is trained, its outputs will deviate from θEC,μ

more and more until it reaches different EC parameter values appropriate for individual spectra.

This trick is similar to residual networks64 (i.e. make the default prediction better).

3.5.4 Penalizing Deviations from the Prior

As we minimize the mean squared error of reconstruction across the set of spectra with respect to

the neural network parameters θInv, a penalty which shall be denoted by ℒ(θInv; S) (see List of

Symbols), some EC parameters might fall into a range of values where they have very little impact

on the reconstructed spectrum (see Section 2.6).

Furthermore, following the gradient of ℒ(𝜃Inv; 𝑆) can lead to exploring inverse models that

produce EC parameters where, for instance, the error becomes so large that the numerical precision

is insufficient to represent it. By adding a small term in the minimization that pushes the

predictions towards typical values, the optimization is more stable. In general, given a probability

distribution 𝑃 and a prediction 𝜃EC, we can compute the likelihood of the prediction according to

that probability distribution (in our case it is the probability density of sampling the prediction 𝜃EC

from the probability distribution 𝑃). In practice, we minimize the negative logarithm of the

likelihood. For our choice of prior, this is easily computed and essentially is the squared error

between θEC,μ and the predictions, weighted by the inverse of the standard deviation θEC,σ such

that parameters which are very broad in the prior will suffer a smaller penalty for predictions which

are far from θEC,μ, but parameters which are compressed in the prior65 will suffer a larger penalty.

91

3.5.5 Breaking the Symmetry in the EC Model

Since there are 3 ZARC elements all modelling similar processes, the reconstructed spectrum does

not change when we interchange the parameters of two ZARCs (see Section 2.6). Therefore, there

is nothing in the mean squared error of reconstruction across the set of spectra ℒ(𝜃Inv; 𝑆) to break

this symmetry66. Indeed, there exists multiple distinct inverse models which minimize equally well

ℒ(𝜃Inv; 𝑆) and in fact display the exact same degree of global coordination. Namely, all prediction

of a given inverse model can be permuted as above to obtain an equally valid inverse model.

To simplify the interpretation of the solution, and to simplify the prediction task, we penalize

predictions of 𝜃EC where the electrochemical ZARCs are not ordered by characteristic frequencies

(from lower to higher). Letting 𝑤𝑐1, 𝑤𝑐2, 𝑤𝑐3 be the characteristic log-frequencies of the 3

electrochemical ZARCs, this is done by minimizing a penalty which is positive when 𝑤𝑐1 > 𝑤𝑐2

or when 𝑤𝑐2 > 𝑤𝑐3, and 0 otherwise. To make this differentiable with useful gradients, we

compute relu(𝑤𝑐1 − 𝑤𝑐2) = max(0,  𝑤𝑐1 − 𝑤𝑐2). When 𝑤𝑐1 > 𝑤𝑐2, this function gives a penalty

equal to the difference 𝑤𝑐1 − 𝑤𝑐2, but when 𝑤𝑐1 ≤ 𝑤𝑐2, this function is 0. By taking the gradient,

we see that this penalty “pushes” 𝑤𝑐1 toward 𝑤𝑐2 with a constant “force” when 𝑤𝑐1 > 𝑤𝑐2, but

has no impact when 𝑤𝑐1 ≤ 𝑤𝑐2. Similarly, we compute relu( 𝑤𝑐2 − 𝑤𝑐3) for the same reason.

Note that despite not having a term to ensure that 𝑤𝑐1 < 𝑤𝑐3, this will be optimized for because if

𝑤𝑐1 < 𝑤𝑐2 and 𝑤𝑐2 < 𝑤𝑐3, then it follows that 𝑤𝑐1 < 𝑤𝑐3.

Finally, previous numerical experiments have revealed that it is possible to set 𝑤𝑐3 to a very large

value, in which case the third ZARC will simply behave as a resistor. Similarly, it is possible to

set 𝑤𝑐1 to a very large negative value, in which case the first ZARC has no impact on the

impedance spectrum. Both of these are undesirable for two reasons. First, this is against the prior

and therefore quite unlikely to represent some real process in the lithium-ion cell. Second, there is

92

nothing in the measured spectrum which can indicate the presence of ZARC elements with

characteristic frequencies far outside the range of measured frequencies. As a safety precaution,

we also add the penalties relu( 𝑤𝑚𝑖𝑛 − 𝑤𝑐1) and relu( 𝑤𝑐3 − 𝑤𝑚𝑎𝑥), where 𝑤𝑚𝑖𝑛 is the logarithm

of the smallest observed frequency for a given spectrum, and 𝑤𝑚𝑎𝑥 is similarly the logarithm of

the largest observed frequency.

3.5.6 Penalizing Complexity

Section 2.7 defined a quantitative measure to track complexity of a given solution. To select an

inverse model which produces better solutions, we also penalize the “𝑙1 norm” 𝑅1 + 𝑅2 + 𝑅3

directly as well as the “𝑙1/2 pseudo-norm” (√𝑅1 + √𝑅2 + √𝑅3)
2
. In the literature, many ways of

penalizing complexity exist67, though the penalties often are applied directly to the neural network

parameters instead of its output.

3.5.7 Automatically Setting the Relative Importance of the Penalties

Since the most important thing to optimize is the mean squared error of reconstruction across the

set of spectra ℒ(𝜃Inv; 𝑆) and we don’t really know the target values of all the penalties, instead of

minimizing the sum of the penalties, we minimize ℒ(𝜃Inv; 𝑆) + ℒ(𝜃Inv; 𝑆) ∑ 𝑃𝑖(𝜃Inv; 𝑆)𝑖 where 𝑃𝑖

are the penalties. Yet, when taking the gradient of this number with respect to 𝜃Inv, there are some

terms without use. Empirically, we observe that the most stable objective to minimize is

implemented as ℒ(θInv; 𝑆) + stopgrad(ℒ(θInv; 𝑆))∑ 𝑃𝑖(θInv; 𝑆)𝑖 , where stopgrad(ℒ(θInv; 𝑆)) is

treated as a constant with respect to differentiation68, but the value of the constant is ℒ(θInv; 𝑆). It

is also possible to use statistical properties of the individual terms to set their relative weights,

though this was not done here69.

93

3.5.8 Generating Fake Data to Improve Robustness of the Inverse Model

We can use the prior distribution over EC parameters to generate fake spectra, simply by choosing

a range of frequency, sampling from the prior distribution of EC parameters and evaluating the EC

model on the chosen frequencies and parameters to produce a spectrum. However, to increase

robustness, we allow for between 0 and 9 electrochemical ZARCs to be present (the number is

chosen at random, with expected number around 3). In practice, spectra generated this way look

varied and realistic. However, we have found that by replacing gaussian priors with uniform-over-

a-range priors (with the range of possible values centered on the mean of gaussian prior, and the

length of the range being proportional to the standard deviation), and playing around with the

values, we could increase perceived variation and realism of the fake data70. As future work, it

would be useful to automatically determine the adjustable parameters of the generating process

such that the fake data has a good similarity with the real data, but also has a more

broad/comprehensive distribution.

The most straightforward way of doing this is to maintain a table of the N most recent predictions

associated with each actual spectra in the dataset. Then, instead of using the prior as a basis for

generating fake data, a subset of these previous predictions may be sampled, and some priors (one

prior per prediction) with the same standard deviations as the subjective prior for the dataset but

the average values taken from the predictions themselves may be created and used in the fake data

generation procedure. At the beginning of training, this process would produce the same fake data

distribution as the process based on the subjective prior for the whole dataset, but as the inverse

model began specializing its predictions to the actual spectra in the dataset, the variation in the

generated data would grow.

94

This future work may allow the system to work even with an experimental dataset with smaller

variety, quality or quantity.

3.5.9 Augmenting Real Data to Improve Robustness of the Inverse Model

Instead of simply optimizing the inverse model on a fixed number of experimental impedance

spectra, we can apply some transformations to these precious experimental spectra to produce a

larger set of spectra to optimize on. First, we remove a random number of the higher frequencies

from the spectrum (technically, we never remove frequencies lower than the first high frequency

where the imaginary impedance becomes non-positive). Then, after the rescaling and frequency

shifting, we scale and shift by a small random amount. These transformations71,72 extend the set of

actual spectra to a continuous manifold of spectra and imposes better robustness constraints on the

inverse model. As future work, it may be useful to extend the data manipulations (e.g. superposing

real spectra with generated spectra, resampling the frequencies and linearly interpolating).

3.5.10 Error Rescaling

The rescaling of the impedance spectra makes the spectra unitless. Some spectra have a huge

spread in their values, while others have a small spread in their values. Without rescaling the error

to be comparable, the training signals will be dominated by the samples with large spread in their

values. In our case, this is not desirable since most often, this means a fair bit of noise in the

spectrum, or a large tail either coming from diffusion or inductance. The rescaling is done by

dividing the difference between the reconstructed spectrum and the original by the “empirical

standard deviation” of the real part and the imaginary part (respectively). Explicitly, taking all the

real parts of impedance for a given spectrum, computing the mean, and then taking the average

squared deviation from the mean, we get the empirical variance. The square root of the empirical

variance gives the empirical standard deviation.

95

3.6 Extension to Multiple EC Models

In terms of general usability, an EIS fitting software should allow the user to choose which EC

model to use in the fit. The most straightforward way to do this is to train a separate inverse model

for each EC model of interest and invoke it on request. However, in practice there are many

potential EC models of interest, and the repetition does become prohibitive once more than 10

inverse models must be maintained. In reality, this “problem” is a minor concern for this specific

application, but solving it illustrates how the machine learning toolkit may be wielded in creative

ways once the basic setup works properly.

The goal is to use a single neural network to act as the inverse model for multiple EC models.

More formally, instead of finding a function from measured spectra 𝑍measured(𝜔) to EC

parameters 𝜃EC, we must now construct a function from measured spectra 𝑍measured(𝜔) and EC

model identifier IDEC to EC parameters 𝜃EC for that EC model. Since some EC models may have

a different number of parameters, we will require a space large enough to contain any EC model’s

parameters, and from that space, we will define a projection operation to convert from the larger

space to a given EC model’s parameter space.

96

Figure 3.10 A graphical illustration of the multi EC model variant of the fitting problem. The

inverse model must now take as inputs 𝑍measured(𝜔) and IDEC (i.e. the representation

of the equivalent circuit used) to produce EC parameters in a common space to all the

EC models 𝜃EC,Universal. Given IDEC and 𝜃EC,Universal, as well as some frequencies, the

reconstructed spectrum may be sampled. Finally, given IDEC and 𝜃EC,Universal, the

parameters of the EC model 𝜃EC can be obtained in the space suitable for that given

EC model.

A complete list of the various supported circuits can be found in the user manual at

https://github.com/Samuel-Buteau/EISFitting/blob/master/UserManual/manual.pdf. Figure 3.11

and Figure 3.12 give six examples of circuits which may be of interest.

First, we describe how given IDEC and 𝜃EC,Universal, as well as some frequencies, the reconstructed

spectrum may be sampled. This is in fact straightforward to do with the notion of an EC model

https://github.com/Samuel-Buteau/EISFitting/blob/master/UserManual/manual.pdf

97

being optionally present within a larger EC model. Recalling Section 2.1 and the concept of two

circuits being connected in series, now we introduce a similar definition for two EC models being

serial options:

Given two EC models denoted as Z1(ω; θEC,1) and Z2(ω; θEC,2), as well as a switch variable 𝑠

(either 0 or 1), we can define a third EC model called “serial option of model 1 and model 2” as

Z1⊕2(ω; s, θEC,1, θEC,2) = 𝑠Z1(ω; θEC,1) + (1 − 𝑠)Z2(ω; θEC,2)

In the case where 𝑠 = 1, we say that model 1 is active and model 2 is inactive (and vice versa).

Note that the impedance of a serial option is constant with respect to the parameters of the

inactive model. This means that, in practical terms, they can be set to e.g. 0. When both models

can be expressed with the same number 𝑁𝑝 of parameters and the parameters for the inactive

model are always set to 0, it is possible to view the serial option model as only having 𝑁𝑝

parameters instead of 2𝑁𝑝 parameters:

 Z1⊕2(ω; s, θEC,1, θEC,2) = Z1⊕2(ω; s, θEC) = 𝑠Z1(ω; θEC) + (1 − 𝑠)Z2(ω; θEC)

where θEC = 𝑠θEC,1 + (1 − 𝑠)θEC,2. In other words, by adding the parameters of the active model

to zeroed out parameters for the inactive model, the combined model always has access to the

appropriate parameters. Similarly, if model 1 has a smaller number of parameters 𝑁𝑝1, as model

2’s number of parameters 𝑁𝑝2 (or vice-versa), then the parameters of model 1 can be “padded”

with an appropriate number of zeros in order to obtain the same number of parameters as model 2.

Therefore, the serial option of model 1 and model 2 can be viewed as having max(𝑁𝑝1, 𝑁𝑝2)

parameters (excluding the switch variable). Note that this would not be feasible if the switch

variable were allowed to take intermediate values between 0 and 1.

Finally, a useful special case is when model 2 is trivial, in which case we have:

98

Z1⊕(ω; s, θEC) = 𝑠Z1(ω; θEC)

As a shorthand, such models would be called “optional model 1”.

Before moving on, let us address similar concepts which might have occurred to the keen reader.

First, the equation for the serial option of model 1 and model 2 may remind one of the

correspondence between the impedance of the negative electrode, the positive electrode, and the

complete cell. More specifically,

Zfull(ω; s, θEC,pos−pos, θEC,neg−neg)

=
1

2
Zpos−pos(ω; θEC,pos−pos) + (1 −

1

2
) Zneg−neg(ω; θEC,neg−neg)

where the impedance of a cell Zfull(ω; s, θEC,pos−pos, θEC,neg−neg) containing both a positive

electrode and a negative electrode can be expressed in terms of the impedance of two different

cells each containing two electrodes of the same type.

However, this is a different concept since the values of s in a serial option must be either 0 or 1.

Second, if Z1⊕2(ω; s, θEC,1, θEC,2), Z1(ω; θEC,1), and Z2(ω; θEC,2) are known, then as long as

Z1(ω; θEC,1) ≠ Z2(ω; θEC,2), the value of the switching variable s can be determined through

fitting. However, if only Z1⊕2(ω; s, θEC,1, θEC,2) is known, and the equations for Z1(ω; θEC,1) and

Z2(ω; θEC,2) have a scaling symmetry, then it follows that the switching variable s cannot be

determined through fitting alone. More concretely, we say that e.g. Z1(ω; θEC,1) has a scaling

symmetry if for every parameter setting θEC,1 and every scaling factor x, then there exists another

parameter setting θEC,1’ such that Z1(ω; θEC,1′) = 𝑥Z1(ω; θEC,1). With that said, let us come back

to the discussion of serial options.

99

Serial options form a building block and can be applied as many times as required. The EC models

thus obtained have two types of parameters. Namely, they have a set of switch variables which can

only take values 0 or 1 and they have a set of usual parameters θEC, which can vary continuously.

Given a bigger EC model with switch variables and an smaller EC model without switch variables,

if there exists a set of choices for the switch variables that makes the bigger EC model equivalent

to the smaller EC model, then we say that the bigger EC model encompasses the smaller EC model

(with the given choices for the switch variables). In this way, an EC model with switch variables

can be viewed as the set of all the smaller EC models which it can encompass with appropriate

choices for the switch variables.

Also note that, for any finite set of small EC models, it is always possible to construct a single big

EC model which can encompass all the given set. For instance, Figure 3.11 shows three different

EC models, which can all be encompassed by a model which has a ZARC in series with two

optional ZARCs. Similarly, to encompass all the models within Figure 3.11 and Figure 3.12

simultaneously, it would suffice to have a serial option of a “CPE in series with a ZARC” and a

“ZARC with a nested CPE” instead of “ZARC 1” and “Warburg” in the Figures.

Then, the actual values of the switch variables is the representation of IDEC since it determines

which small EC model is encompassed by the big EC model. Furthermore, 𝜃EC,Universal is simply

the usual parameters of the big EC model, and the projection to θEC for any given value of IDEC

(i.e. for any choice of a small EC model) is straightforward, amounting to removing the positions

in the vector 𝜃EC,Universal which are not used by the given choice of EC model.

Then, as it turns out, the training procedure is precisely the same as the unsupervised approach

from Section 3.5, except that every time a spectrum is presented to the model, a random choice of

100

IDEC is made, and fed to the inverse model, with the same choice used to produce 𝑍reconstructed(𝜔)

(see Figure 3.10). For the neural networks described in Section 3.7, the way to include IDEC as an

input to the neural network is to replicate it and append it to every observed frequency, so that the

neural network will receive {(IDEC , ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} as input. This is because the neural

network is comprised of local processes, each of which may need to adapt depending on the choice

of IDEC.

This approach is essentially representing the wanted circuit as a vector, and teaching the network

to interpret this representation properly73.

Figure 3.11 Various EC models supported by the software (part 1). Note the decreasing

complexity of the EC models from top to bottom which is the inspiration behind the

notion of complexity presented in Section 2.7. More spectra can be represented by the

EC model on the top row than on the bottom row, but every spectrum that can be

101

represented on a given row can still be represented on the rows above. This can easily

be achieved by setting the resistance of one or more ZARC element to 0. This would

in turn be reflected in the complexity metric of Section 2.7. For instance, on the first

row, setting a single ZARC’s resistance to 0 would force the complexity metric to be

less than or equal to 2, and setting two ZARC’s resistances to 0 would force the

complexity metric to be equal to 1. In fact, enforcing a complexity metric of 1

guarantees that two ZARC's resistances must be set to 0. Note however that a

complexity metric less than 2 may also be achieved with 3 non-zero ZARC resistances

(i.e. 98, 1, and 1).

Figure 3.12 Various EC models supported by the software (part 2).

102

3.6.1 Multi-Task Learning, Positive Transfer, and Negative Transfer

Using a single neural network to solve the fitting problem for multiple EC models is an

architectural choice which may well have an impact on the performance of the system.

This choice is akin to the choice of solving the global fitting problem with a single model instead

of solving each individual fitting problem separately.

In general, there are multiple tasks to be solved and there is a choice between solving them with

independent neural networks or combining them into a single more challenging task and solving

it all with a single model. There are also hybrid possibilities where parts of the neural network are

independent for each task and parts are shared but we focus on the two extremes for now.

The question of whether a choice is favorable to another with respect to performance, robustness,

data requirements, etc. is referred to as the valence of transfer74,75 between the individual tasks.

The two main possibilities are positive transfer76, in which case each task benefits from being

solved together with all other tasks in a single model (i.e. the best choice is a single model), and

negative transfer77, in which case each task suffers from being solved together with all other tasks

(i.e. the best choice is independent models for each task).

This question is ultimately empirical, but how to develop an intuition for whether a multi-task

setting would lead to positive or negative transfer? We sketch a mental model to understand the

problem:

• For each specific task, there may be various viable solutions on the limited dataset

available. Multiple tasks may share general solutions, but there may also be specialized

solutions for given tasks. Each learning process has some probability of producing a given

solution.

103

• When going from individual models for each task to a single multi-task model, the

probability associated with general solutions will increase and the probability associated

with specialized solutions will decrease.

The extent to which general solutions can compete with specialized solutions on performance,

robustness, etc. will determine if positive transfer or negative transfer will be observed.

• In the best of cases, the general solution displays better performance than specialized

solutions and has a reasonable probability of being produced by the training process. This

would entail significant positive transfer.

• In the worst of cases, there is no competitive general solution and the multi-task model

simply struggles more to produce specialized solutions for each task. This would entail

significant negative transfer.

In the case of supporting multiple EC models, there are two convincing arguments to expect

significant positive transfer.

• First, a general purpose optimizer is a decent solution to the individual fitting problem for

a very large set of possible EC models, and the global coordination problem could be

reasonably solved through a penalty term for lack of smoothness of the inverse model,

which can be expressed similarly for a very large set of possible EC models.

• Second, Section 2.2 presented various conversion formulas, allowing the solution to the

fitting problem for a given EC model to be leveraged to solve the fitting problem for a

different EC model. The existence of simple formulas in the simple cases leads one to

expect that generalizations thereof would be straightforward to learn in the context of a

multi-task model. In other words, the easiest fitting problem among various equivalent such

104

problems for various EC models could be solved, and then the solution could be converted

to solve the fitting problem for the other EC models.

Though these arguments likely do not truly capture the actual solution learned in practice by the

multi-task model, they nevertheless should increase our confidence in the positive transfer

hypothesis. Empirically, this hypothesis was confirmed.

3.7 Key Implementation Details and Intuitive Guide to

their Impact on Performance

Of course, after reading Section 1.2, the reader7 will know that “neural network” is a generic term

and more details are needed to distinguish between a good versus a poor implementation.

3.7.1 What Separates Good from Bad Choices of Neural Networks

For a given problem, different choices of neural networks will principally vary by:

• Their ability to represent arbitrary relations between their inputs and outputs (called the

network capacity).

• The difficultly of the optimization problem their training process defines (called the

optimizability).

• Their computational requirements (memory, time, etc.).

• Their data requirements or data efficiency (i.e. the amount and quality of data needed to

achieve a given accuracy).

3.7.2 Symmetry and Convolutional Layers

Since the spectra sampled from an EC model together with the EC model parameters admit of a

symmetry under translation in log frequency space (see Section 2.5), and based on the way humans

105

visually estimate the parameters of an EC model, it is reasonable to expect that a convolutional

architecture would increase the data efficiency without compromising too much the network

capacity when compared with a fully-connected architecture. Indeed, for a fixed computational

budget, a convolutional architecture (i.e. using convolutional layers) may improve the network

capacity.

Convolutions have two important features:

1. They have a local receptive field78 (i.e. their operation is applied to parts of the input at a

time, see Section 1.2.6).

2. The operation applied at every point is the same.

Namely, instead of representing an arbitrary function from a sequence of input features

{(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} to a sequence of output features {F𝑖|𝑖 = 1,… ,  𝑚}, they represent a smaller

function 𝑓 (say from 3 neighboring vectors of input features to 1 vector of output features), and

the output features are each computed according to 𝐹𝑖 = 𝑓((ω𝑖−1, 𝑍𝑖−1), (ω𝑖, 𝑍𝑖), (ω𝑖+1, 𝑍𝑖+1)).

The boundary conditions must be dealt with somehow, since for 𝐹1, we do not have (ω1−1, 𝑍1−1) =

(ω0, 𝑍0) available, but this is not an interesting choice as it does not affect performance much.

Essentially, any request of input features that do not exist are replaced by zeros.

In general, determining the choice of neural network architecture is an empirical problem. But

when a lot is known about the underlying setting, it is possible to construct strong arguments to

determine which architecture is most suitable, and this type of thinking is useful in the context of

lithium-ion research.

Therefore, let us imagine a solution to the fitting problem (i.e. an inverse model) using a

convolutional architecture.

106

First, imagine there exists a non-convolutional approximation to the optimal inverse model which

takes as inputs fixed sequences of log-frequencies, and impedances and returns EC parameters in

the reparameterized space discussed in Section 2.4. Without loss of generality, consider odd

sequences of length 2𝑚fix + 1, and express this inverse model as

𝑓fix ((w𝑖−𝑚fix
, 𝑍𝑖−𝑚fix

), . . . , (w𝑖 , 𝑍𝑖), . . . , (w𝑖+𝑚fix
, 𝑍𝑖+𝑚fix

))

It seems reasonable to assume that such inverse models can be selected for any 𝑚fix. Furthermore,

though they may not be as accurate, inverse models with smaller 𝑚fix belong to much smaller

function spaces, and hence are more data efficient than their counterparts with larger 𝑚fix. As shall

be seen, a reasonable approximation to larger models could be obtained by combining smaller

models in a way easily expressed with a convolutional architecture.

First, the symmetries discussed in Section 2.5 (e.g. Trans𝛼) can be applied to the input and the

output of 𝑓fix such that, if 𝑓fix ((w𝑖−𝑚fix
, 𝑍𝑖−𝑚fix

), . . . , (w𝑖 , 𝑍𝑖), . . . , (w𝑖+𝑚fix
, 𝑍𝑖+𝑚fix

)) is a good

inverse model, then so too should

Trans𝑤𝑖
𝑓fix ((w𝑖−𝑚fix

− w𝑖 , 𝑍𝑖−𝑚fix
), . . . , (w𝑖 − w𝑖 , 𝑍𝑖), . . . , (w𝑖+𝑚fix

− w𝑖, 𝑍𝑖+𝑚fix
))

In the reasonable case where the log frequencies are equally spaced with spacing ∆𝑤, this would

correspond to

 Trans𝑤𝑖
𝑓fix ((−𝑚fix∆𝑤, 𝑍𝑖−𝑚fix

), . . . , (0, 𝑍𝑖), . . . , (𝑚fix∆𝑤, 𝑍𝑖+𝑚fix
))

In other words, a good inverse model fundamentally only depends on the spacing between the

frequencies, and not on the absolute values of the frequencies.

Furthermore, more or less all of the serial components of the EC model of Figure 2.5 have a

relatively small frequency range over which their impedance is not almost constant. Since the

107

information necessary to estimate a given EC parameter only exists on a smaller range of

frequencies, it would likely be feasible to produce a good inverse model in two stages:

1. Produce {(w𝑖 , 𝜃EC,𝑖)|𝑖 = 1,… ,  𝑚} where 𝜃EC,𝑖 is the output of smaller 𝑓fix (with 𝑚fix <

𝑚) applied to each localized subsets of the input

(w𝑖−𝑚fix
, 𝑍𝑖−𝑚fix

), . . . , (w𝑖 , 𝑍𝑖), . . . , (w𝑖+𝑚fix
, 𝑍𝑖+𝑚fix

).

2. Produce 𝜃EC by using {(w𝑖 , 𝜃EC,𝑖)|𝑖 = 1,… ,  𝑚} as inputs.

When combining the previous two considerations, the decomposition could be:

1. Produce {(w𝑖 , 𝜃′EC,𝑖)|𝑖 = 1, … ,  𝑚} where

𝜃′EC,𝑖 = 𝑓fix ((−𝑚fix∆𝑤, 𝑍𝑖−𝑚fix
), . . . , (0, 𝑍𝑖), . . . , (𝑚fix∆𝑤, 𝑍𝑖+𝑚fix

))

is only determined by the “shape of the localized impedances”.

2. Produce 𝜃EC by using {(w𝑖 , 𝜃′EC,𝑖)|𝑖 = 1,… ,  𝑚} as inputs.

Let us consider how the global estimate of the EC parameters may be simply constructed from

local estimates {(w𝑖 , 𝜃EC,𝑖)|𝑖 = 1,… ,  𝑚}.

For instance, it could be done by averaging each parameter across frequency, or by averaging

across frequency according to an estimate of the relevance of each localized subsets of the input

(w𝑖−𝑚fix
, 𝑍𝑖−𝑚fix

), . . . , (w𝑖 , 𝑍𝑖), . . . , (w𝑖+𝑚fix
, 𝑍𝑖+𝑚fix

) for the prediction of a given EC parameter.

There may be a need to correlate the predictions across various frequencies in order to reliably

solve ambiguity problems, but it may still be a simpler task to learn this correlation than to learn

𝑓fix for 𝑚 inputs.

In general, by allowing each localized model to output a general vector of features, the model gains

in flexibility without sacrificing significant data efficiency.

108

But this decomposition of an inverse model with many inputs into the application of many smaller

inverse models can be repeated for the individual smaller inverse models (using the same

arguments).

In the end, this solution to the problem is quite natural to represent as a convolutional architecture.

3.7.3 Variable Numbers of Frequencies and Fully-Convolutional Architecture

Since the number of frequencies measured per spectrum varies across the dataset, we have chosen

a fully convolutional79,80 neural network architecture, which means that at no point in the sequence

of operations does a layer of computation require a fixed input length (though such layers may

apply an operation with fixed input lengths repeatedly to a sequence). In practice, this means the

layers are either averages over frequencies, or convolutions over frequencies, or generalized

averages over frequencies known as attention mechanisms.

As is standard practice with most architectures, various details have been chosen to improve

optimizability such as residual blocks64, batch renormalization81, and dropout82.

3.7.4 Coordination of Local Processes

Until this point, the neural network can be though of as a local process which estimates all the EC

parameters on subsets of the observed spectra centered around each frequencies, and finally

obtains a coherent guess by averaging all the local guesses with equal weight. This does work

relatively well for this problem, but in general, it intuitively seems like local processes would have

a difficult time coordinating their outputs for parameters which require a global view of the

measured spectrum. As a step to allow a bit more coordination between local processes, instead of

averaging with uniform weights, the weights are themselves produced by the local processes, and

then normalized globally (this is known as attention, or attentive33 pooling).

109

3.7.5 Batch Diversity and Masks

Just like it is important to have a diverse dataset to train a neural network robustly, it is also

important to produce diverse batches of datapoints in order to compute gradients in a stable way

and improve the optimizability of the neural network. Usually, each datapoint has the same

dimensionality, and therefore it is quite simple to create such batches: if a datapoint is a tensor

with 𝑁1 elements by 𝑁2 elements, …, by 𝑁𝑚 elements, then 𝐵 such datapoints can be assembled

into a tensor with 𝐵 elements by 𝑁1 elements by 𝑁2 elements, …, by 𝑁𝑚 elements.

However, in the case of impedance spectra, each spectrum may have a different number of

frequencies. One solution would be to separate the dataset into subdatasets each only containing

spectra with a fixed number of frequencies, allowing the formation of batches of datapoints

belonging to a single subdataset.

As it turns out, this greatly reduces the diversity of the possible batches, thus introducing noise

into the computed gradients, and reducing the optimizability.

Instead, notice that it is possible to insert a smaller tensor into a bigger tensor by simply adding

zeroes into the remaining positions. For instance, it is possible to represent a spectrum

{(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} of 𝑚 frequencies as an “𝑚 by 3” tensor, but it is also possible to represent

it as an e.g. “𝑚 + 10 by 3” tensor (simply by adding zeroes at the end).

In order to keep track of which frequencies are actual and which were just added to make a

spectrum fit into a larger tensor space, we add a mask variable mask𝑖 which will equal 1 if the

frequency is actual and will equal 0 if the frequency was added artificially. As a concrete example,

110

imagine the spectrum {(−1,−2 + −3𝑗), (1,2 + 3𝑗), (4,5 + 6𝑗)}. When representing it as a tensor

with 5 frequency positions, it would end up being a “5 by 4” tensor given as

[

−1 −2 −3 1
1 2 3 1
4 5 6 1
0 0 0 0
0 0 0 0]

.

This flexibility allows to combine any set of 𝐵 spectra, compute the maximum number of

frequencies 𝑁𝑓 for that set of spectra, and construct a batch as a “𝐵 by 𝑁𝑓 by 4” tensor. As

mentioned in Section 3.6, for the case where multiple EC models are supported, each frequency

would also receive the set of switch variables, and so the last dimension of the tensor would be

larger than 4.

Then, this mask83 must integrate with the various components of the neural network. Most

obviously, when computing the mean squared error of reconstruction, each frequency term must

be multiplied by the corresponding mask to ensure that the added frequencies do not contribute.

Furthermore, when taking averages across frequencies, the weights are multiplied by the masks to

ensure that the local processes centered around an artificial frequency do not influence the

averages.

Finally, for the fully convolutional part of the neural network, it turns out to be sufficient to simply

feed the mask variables as an input to the neural network. During training a given spectrum will

be encountered within different batches of different sizes, and so with a sufficiently wide and deep

model, the neural network can learn the irrelevance of the artificial frequencies. The alternative is

to carefully craft each layer of convolution to ensure their output are unchanged by the addition of

artificial frequencies.

111

As a matter of computational efficiency, it is faster to sample from a single dataset, so in practice

all spectra are represented as large tensors with potentially many artificial frequencies and the

whole dataset is kept as a single tensor. Furthermore, the number of actual frequencies for each

spectrum is stored into another tensor. Then when a batch is selected, the maximum number of

frequencies across the batch is computed, and the batch tensor is sliced (i.e. some artificial

frequencies are removed from all the spectra) to the smallest such tensor which still contains all

the actual frequencies.

3.7.6 Rebalancing the Dataset

In the case of the impedance spectra dataset (see Section 2.3), there were two distinct sources of

data with quite different properties (referred to as the EIS dataset and the FRA dataset), but at

bottom, the goal is to find an inverse model which works robustly across many different spectra

and these datasets are the only tools we had to accomplish this goal.

As it turns out, there were approximately 10 times more spectra in the FRA dataset. This means

that if gradients were computed by sampling spectra at random, the model would have a clear

incentive to focus almost exclusively on spectra found in the FRA dataset. A similar trade-off

could apply when considering the artificially generated spectra as a separate, essentially infinite

dataset.

Often, the prevalence of a type of data is imperfectly correlated with the importance it should

have in shaping the neural network (mathematically, the coefficient multiplying the term in the

loss function corresponding to a type of data represents its importance). In our case, the goal is to

have an inverse model which performs just as well on data similar to FRA dataset or to EIS dataset.

To better control the importance of each type of data, one must be able to sample a datapoint at

random from each type of data. At the most basic level, the EIS dataset and the FRA dataset

112

should be kept separate, and then when the stochastic gradient algorithm used to select the neural

network requires a batch of N spectra, a separate batch of
𝑁

2
 spectra should be created from each

dataset, and then these batches should be combined.

For the model in this Chapter, all sources of data were sampled more or less equally (see Section

3.4 for the actual rebalancing), but for different applications, it might be better to rebalance

differently84–86.

An important consideration when the number of datapoints in a given group is small is that by

rebalancing the dataset in this way, not only do you control the relative weight in the loss function

for every group of data, but also you affect the quality and diversity of the dataset. An extreme

example would be the case where one group has only one datapoint, and the second group has one

million datapoints. Then, by rebalancing the dataset equally between these groups, the quality and

diversity of the dataset is dramatically reduced (the neural network will encounter a single

datapoint over and over).

3.7.7 Finetuning with ADAM

Once sufficiently accurate estimates for the EC parameters of given spectra have been produced

by an inverse model, it is possible for a simple optimizer to increase the accuracy of those estimates

with respect to the mean squared error of reconstruction without the usual drawbacks of the

individual fitting problem. Indeed, by combining good initial guesses (i.e. close to a local

minimum) with a restricted optimizer (i.e. only small adjustments), we can improve the reliability

of the system. For a sufficiently powerful inverse model, this finetuning step is unnecessary, but

robustness is about reducing the requirements on the challenging parts of the system.

113

Having decided to implement a solution to the individual fitting problem on top of the global fitting

problem, the question is how to do so without unnecessary complication.

To this end, we present a way of viewing the individual fitting problem as a special case of the

global fitting problem, such that the implementation of both systems may share many redundant

components.

Imagine a matrix with as many rows as there are spectra in a given dataset and where each row

contains a vector of numbers which could be interpreted as EC parameters. Each spectrum has a

unique index (the row number).

How can such a matrix be interpreted as an inverse model? When presented with a given spectrum,

instead of using the spectrum itself as an input, it is given the index of the spectrum, and simply

outputs the row of numbers corresponding to that index. This “inverse model” can only be applied

to the specific spectra in the training dataset.

Note that the training process for such an inverse model corresponds precisely to solving individual

fitting problems for each spectrum independently, using the optimizer of the training process.

Furthermore, the initial values in a given row of the matrix correspond to the initial guesses for the

EC parameters of the corresponding spectrum.

Typically, neural networks are optimized with ADAM, which means that the same training

procedure can be applied to this matrix of parameters in order to achieve finetuning on individual

fitting problems.

Models which grow with the dataset and do not represent the relationship between input and output

using a parameterized function directly are sometimes called nonparametric models.

114

The main advantages of implementing the finetuning in this way are the simplification of the code

and the ability to use the fast parallel computations of neural network libraries without additional

work.

Note that it would also be possible to include a gradient descent procedure within our neural

network and train this procedure using ADAM; this type of learned optimization87 is interesting

but in the overkill category for this work.

3.8 Future Work: The Transformer Architecture

3.8.1 The Transformer Architecture as a Coordination Mechanism

In retrospect, given the recent successes of architectures fully based on attention (i.e. the

Transformer31,33,88), it seems reasonable that coordination between local processes would be easily

achieved by adding a few Transformer31 layers after the fully convolutional layers, followed by

attentive pooling. Such layers also admit inputs with varying sizes (a basic form of these layers

has been introduced in Section 1.2.7) and the fact that every element of the sequence can “interact”

with every element of the sequence in every layer is a robust way to allow the neural network to

capture arbitrary interactions and coordination across the sequence.

As a future work, the Transformer31–33 architecture could be included in the inverse model. In such

case, it would be necessary to consider positional encodings as well. This is because situating two

samples in a spectrum by their characteristic frequencies is not data efficient for a dot-product

attention mechanism (i.e. the attention mechanism of the Transformer, see Section 1.2.7). What

matters is the difference between frequencies, but the attention mechanism of Transformers

computes similarity between vectors, and therefore the frequencies by themselves are awkward to

work with.

115

3.8.2 The Dual Role of Log-Frequencies as Inputs of Sequence Layers

In the inverse model, the log frequencies within each element of the spectrum are useful for two

reasons:

1. Each local process of estimation of the parameters which transform during a log-frequency

shift can use the input log-frequency of the center sample to adjust its prediction. For

instance, the same shape in the real and imaginary part of impedance seen by a local

process must lead to shifted predictions for the characteristic log-frequencies if all the log-

frequencies are shifted. See Section 2.5.

2. The “shape” of the impedance spectrum is a feature of the relationship between

impedances measured at different log-frequencies. Therefore, there must be a way to

compute distances between the log-frequencies at which various impedances were

measured.

For the fully-convolutional architecture, the first role of log-frequency is well accomplished by the

log-frequency itself (see Section 3.7.2). However, the second use of these log-frequencies is not

needed, because convolutional architectures have fixed expectations for the spatial relationship of

their inputs (see Section 3.7.2). All that is needed is the spacing between the log-frequencies. Since

the convolution is a linear function of its inputs, it can internally compute differences of log-

frequencies and therefore has access to all the necessary information in a convenient form.

Contrast this with the self-attention dot-product architecture (i.e. Transformer). Shifting the

predictions based on the log frequency at the “center” sample (i.e. the first task) would still easily

be accomplished directly on the log frequency as an input. However, determining the distance

between the “center” and a given sample (i.e. the second task) could not be done in a data efficient

manner by the Transformer’s attention process, which only computes dot-products between

116

vectors. For instance, there would be no exact way to compute the difference in log-frequencies

such that it would be invariant to a uniform shift of all the log-frequencies. Therefore, in order to

allow distances between samples to be computed within the self-attention mechanism, some

additional values would have to be appended to each sample. These values, referred to as a

positional encoding88–90 of in this case the log-frequency, are vectors.

3.8.3 Positional Encodings of Log-Frequencies

Each log-frequency is mapped to a vector of values. Each element 𝑖 of the vector is a periodic

function of the log-frequency, such as the complex number exp (𝑗
2𝜋𝑤

𝑝𝑖
), but each element has a

unique period 𝑝𝑖. Alternatively (like in the original paper and most commonly in the machine

learning literature89), each period 𝑝𝑖 can be shared by two real numbers in the output vector, namely

sin (
2𝜋𝑤

𝑝𝑖
) and cos (

2𝜋𝑤

𝑝𝑖
). Typically, the periods form a geometric progression such that 𝑝𝑖+1 =

𝑝𝑖

2
.

This representation has empirically been shown to allow learning of dependence on distance

between positions in a data efficient way.

In case the reader is puzzled by how the information of the distance between the two positions is

accessed by the attention mechanism, consider the following illustrative example.

When multiplying elementwise two of these positional encodings (one for a log-frequency 𝑤 and

the other for a log-frequency 𝑤′) in the natural way for complex numbers (the first number times

the conjugate of the second), one gets exp (𝑗
2𝜋𝑤

𝑝𝑖
) exp (−𝑗

2𝜋𝑤′

𝑝𝑖
) = exp (𝑗

2𝜋(𝑤−𝑤′)

𝑝𝑖
), a quantity

which only depends on the difference between the two positions (in this case, the log-frequencies).

Both the real and imaginary parts will vary between 1 and -1 periodically on a scale given by 𝑝𝑖.

By choosing 𝑝0 = 1, we get a continuous and complex analog to the binary representation of

117

𝑤 − 𝑤′

where each position in the binary expansion becomes either 0 or 1 with a smaller and smaller

period. Explicitly, each element of the positional encoding would give rise to a positive number in

the case that the binary coefficient would be 0 and a negative number when the corresponding

coefficient would be 1.

By applying a projection of the positional encodings onto one of their components (a linear

operation), the dot product will yield a continuous “detector” of the distance between positions

𝑤 − 𝑤′ with periodicity 𝑝𝑖.

Therefore, with a relatively simple example of a query projection, the attention mechanism could

depend on the distance between the log-frequencies at many scales. Similarly to a Fourier series,

various complicated dependencies on 𝑤 − 𝑤′ could be obtained by a linear combination of simple

dependencies on this decomposition into features of various periodicities. In the literature, the

positional encodings do not use complex numbers since the same effects may be obtained in a less

direct way with different linear operations but only using real numbers.

3.8.4 A Concrete Proposal for Implementing the Transformer Architecture for

Future Researchers

Now that the various pieces of the transformer puzzle have been discussed, future researchers

might be interested in trying it. Below, we describe a concrete proposal for future researchers to

hopefully get started.

The architecture will represent a spectrum as a matrix with one dimension varying with

frequency and one dimension containing the various pieces of information such as the real and

imaginary parts of the impedance, the log-frequency itself etc.. Then, this matrix will be passed

118

through a standard Transformer sequence-to-sequence model, ending with again a matrix where

one dimension varies with frequency and the other varies with the “channels” of information.

Then, there will be some sequence-to-vector operation for instance the Transformer used with an

output sequence of only one element or alternatively some simple averaging. Finally, there will

be a projection into EC parameter space.

This directly corresponds to the convolution-based implementation available at the moment, so

the code can be a good starting point here.

Since the transformer architecture to be used is in fact the standard one, we point to the

pedagogically excellent implementation https://github.com/karpathy/minGPT.

To turn this into a concrete proposal, what remains is to 1) describe the non-standard use of

masking within the transformer, 2) describe the precise way in which the initial sequence must

be given to the transformer, and 3) give some practical advice about the code.

First the masking. As discussed in Section 1.2.7, any given output of the self-attention

mechanism will be a weighted average of the values across the sequence. In the sequence-to-

sequence context, these weights will be a tensor with one index for potentially multiple spectra in

a batch, one index for the multiple heads of attention, one index for the output position in the

sequence, and one index for the input position in the sequence. This tensor is usually referred to

as the attention mask and in the context of transformer, we start with so called attention logits

(produced by dot-product attention) and apply a softmax along the dimension of input position in

the sequence to obtain the attention weights.

This attention mask allows some information to travel from an input position to an output

position. If the corresponding weight is 0, then no information travels. For numerical stability

https://github.com/karpathy/minGPT

119

reasons, we typically make the attention logit equal to negative infinity before taking the softmax

in order to ensure that no information flows from an input position to an output position. This is

called masking. Confusingly enough, we would say that we can mask the attention mask in order

to artificially ensure that no information may travel from a given input position to a given output

position. In the language modelling implementation https://github.com/karpathy/minGPT, it

makes sense to mask any of the attention logits linking a given input position to some earlier

output position since the model is supposed to forecast the next word based on all previous

words. In our case, this would be detrimental. Therefore, we do not use this type of masking.

However, when gathering multiple impedance spectra into a “minibatch” during training, some

will have different lengths, and therefore we already have the concept of a mask specifying

which position in the sequence corresponds to a measured frequency and which position is just

padding.

In the case of a convolutional architecture, it made sense to pass such mask as an input channel,

but for the transformer, it does not make sense. Instead, this mask should be used to always mask

the attention mask within the transformer so that only positions corresponding to valid measured

frequencies could send information to any position.

Similarly, for the last transformation from sequence to vector, a transformer architecture could

be used in the setting of sequence-to-vector, and positions in the sequence not corresponding to

actual measurements should be masked in the attention mask.

This is how the transformer could be used where the convolutional network was used before.

However, now that the concept of masking the attention mask has been introduced, we can do

something even better. Namely, during training, when trying to minimize the distance between

measured and reconstructed spectrum, we could generate a random mask and use it to further

https://github.com/karpathy/minGPT

120

mask the attention mask of the transformer. This would correspond to trying to estimate the EC

parameters from partial observations of the impedance spectra. By turning off the low

frequencies systematically, one could force the model to develop some extrapolation capability

to infer diffusion parameters based on correlations with other parts of the circuit visible at high

frequencies (and vice-versa). By turning off every other frequency, this would force the model to

develop some interpolation capability to infer EC parameters which would not act erratically in

between observed frequencies. These are simply some illustrative special cases. Generally

speaking, one could obtain all these effects by just sampling a random mask every time a

spectrum is presented to the network during training. Note that this effect cannot be easily

achieved with a convolutional architecture which relies on the spacing between sequence

elements.

Second, the presentation of the initial sequence. Concretely, for each frequency, there will be a

fixed set of “channels” and this will create a sequence of vectors or matrix to be passed to the

transformer. It is crucial to provide the real part of impedance, the imaginary part of impedance,

as well as the logarithm of the frequency. This is because some of the EC parameters are not

invariant to a translation in log-frequency (for instance the characteristic frequencies of the

ZARC elements would change). Beyond this, it is crucial to provide, at each frequency, a copy of

the Equivalent Circuit identity in the form of the switch variables discussed in Section 3.6. As

stated earlier, it does not make sense to provide the masks indicating measured frequency versus

padding since only the measured frequencies will have impact on the answer (and therefore this

input channel would effectively be constant across all inputs).

There needs to be some mechanism to do frequency distance comparisons in a translation-

invariant way. As discussed in Section 3.8.3, positional encodings should be used here. The

121

simplest way to implement this is to compute a vector of scaled log-frequencies (i.e. first element

is the log frequency, second element is 2 time the log frequency, third element is 4 times,…) and

then compute the sine (call it vector A) as well as the cosine (call it vector B). Then the vector A

and B would be concatenated onto the channels for each position in the sequence. It is not

necessary to introduce these positional encodings at every layer of the transformer; it should only

be placed in the very first input.

Once this sequence of vectors has been assembled for each spectrum in the “minibatch”, a linear

projection should be applied to every element of the sequence to make the number of channels

(i.e. the dimension of the vectors in the sequence of vectors) match what the transformer will

operate on. This can be accomplished with a convolution with kernel size of 1 (i.e. a convolution

that only depends on a single element of the sequence at a time). This would be the first layer of

the neural network, and then the data is ready to be fed into a standard transformer

implementation.

Third, the advice about the code. The original paper39 was first implemented using Tensorflow

version 1 and then rewritten to work with version 2. However, now that the author has tried

using Pytorch10 instead, he can attest that redoing all of this in Pytorch would be a good thing.

Furthermore, the author highly recommends the combination of Pytorch with Einops91 to allow

one to write the various tensor operations much closer to the mathematics, to get much easier to

understand error messages when something goes wrong, and to trivially insert sanity checks

about the dimensions of various tensors at crucial points in the code. To the extent that it is easier

to start with a working model, using the available implementation of this Chapter’s model might

be good, but if a future researcher is interested in moving forward and tackling their own

projects, one should consider at least trying Pytorch in combination with Einops.

122

3.9 Conclusions

This chapter presented a general paradigm to automate the fitting of empirical data to physical

models, namely to determine an inverse model parametrized with a deep neural network by directly

minimizing the mean squared error of the reconstructed empirical data, with a successful

application to EC model fitting of impedance spectra of lithium-ion cells (a failure rate of less than

1% and good fit quality on two large and diverse datasets with a single inverse model and using

ADAM to finetune the EC parameters). Crucially, this method does not require knowledge of the

true EC parameters corresponding to the empirical data, allowing the use of generated data, as well

as any available impedance spectra to train the inverse model. This makes the method easy to

implement, as well as being flexible.

This application allowed us to illustrate the process by which deeper understanding of the

underlying application domain may be leveraged to produce robust machine learning solutions.

3.10 Acknowledgements

This work was supported financially by the Natural Sciences and Engineering Research Council

of Canada (NSERC), and Tesla Motors. Sam Buteau acknowledges scholarship support from

NSERC. Furthermore, Sam Buteau would like to thank Prof. Yoshua Bengio and the Mila

community for useful discussion groups and seminars.

123

Chapter 4 Interpretability in the Determination of the

Electrolyte Concentration in Lithium-Ion Cells Using

Fourier Transform Infrared Spectroscopy

Understanding the changes in the electrolyte during lithium-ion cell aging is valuable to improve

longevity. Studying this in hundreds or thousands of cells requires a fast and widely available

measurement such as Fourier Transform Infrared Spectroscopy (FTIR) of electrolyte samples.

This Chapter presents a machine learning model to determine electrolyte composition from FTIR

measurements. A carefully prepared dataset of mixtures of 5 electrolyte components (i.e. LiPF6,

EC, EMC, DMC, and DEC), and the code to replicate and extend the model to different electrolyte

mixtures are made available. With this model, the mass ratio of salt to total is predicted within an

error of 0.4%, and each solvent’s mass ratio to total is predicted within an error of 2%.

Furthermore, a spectrum calculated based on the predicted component ratios can be compared to

the measured spectrum which allows one to detect if unexpected species are present in the

electrolyte in significant quantity. A model for mixtures of 5 components can be calibrated well

with between 25 and 50 carefully prepared samples so this work can be extended to other systems

by simply adding more data and retraining.

This Chapter provides another example of applying machine learning to lithium-ion research,

which contrasts with the example contained in Chapters 2 and 3 by only having access to a small

dataset (20 to 50 carefully measured samples). As such, it illustrates how to improve the reliability

of the model under duress or when some degree of inaccuracy is inevitable. This is done using

simple physical models and various additional penalties (other than minimizing prediction errors)

along with some other design tricks.

124

For some inputs, the “axioms” of the system are respected and so the system can be trusted to have

a reasonable accuracy, while for others, the “axioms” of the system are not respected and the

system may have poor accuracy. Contrary to many machine learning prediction systems, our

system knows on which inputs its “axioms” are respected and on which they are not. More

specifically

• Instead of always giving confident predictions, the model accompanies its predictions

with a measure of its confidence.

• The predictions are accompanied by an explanation to make them interpretable.

o When the model has high confidence, the explanation can be read as: “I believe

that the concentration of each components is this; at these concentrations, I

believe that each component’s contribution should be this, which appropriately

reconstructs the measurement. i.e. my reconstruction for this sample falls within

the typical reconstruction error throughout the spectrum.”

o When the model has low confidence, the explanation can be read as: “My best

estimate for the concentration of each components is this; at these concentrations,

I believe that each component’s contribution should be this, but it does not

appropriately reconstruct the measurement. i.e. my reconstruction for this sample

falls outside the typical reconstruction error in these regions of the spectrum.”

o In cases where the model’s confidence is low, it is possible, through finetuning, to

determine to what extent the error is due to a wrong prediction or to a wrong

reconstruction, though this is left as future work.

125

• The system’s “axioms” can be characterized and understood to a much larger extent than

those of a typical neural network, which allows greater trust even when the dataset only

allows weak testing.

This chapter is entirely taken from a corresponding paper92 (henceforth called the corresponding

article to Chapter 4) with the only exception of Section 4.2.6 discussing the use of the model on

data taken with different experimental settings and Section 4.2.7 which offers a straightforward

adaptation of the fine-tuning technique described in Chapter 3 as future work. The other

modifications are only to make the thesis more uniform in style. Unfortunately, “EC” stood for

“Equivalent Circuit” in Chapters 2 and 3, and it stands for “ethylene carbonate” in the

corresponding article to Chapter 4. To remove possible confusion, the acronym has been replaced

by Equivalent Circuit in section 4.2.7 or “ethylene carbonate” in the rest of Chapter 4 whenever

confusion might occur. EC never stands for “Equivalent Circuit” within the bounds of

Chapter 4.

4.1 Introduction

Understanding the evolution of the electrolyte during charge-discharge cycling or storage of

lithium-ion cells would be valuable to design improved cell chemistries. However, as discussed

in a previous paper93, quantitative analysis of electrolyte solutions to determine composition

typically employ nuclear magnetic resonance94, gas chromatography95 and other methods, which

have several drawbacks for routine analysis at scales of hundreds to thousands of cells per month.

Therefore, a method based on a fast, simple, and inexpensive measurement is useful to develop,

with Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR

spectroscopy, or simply FTIR) being a prime candidate. The previous paper mentioned earlier93

focussed on a prototype system, only looking at electrolytes consisting of the salt lithium

126

hexafluorophosphate (LiPF6), the single linear carbonate dimethyl-carbonate (DMC), and ethylene

carbonate (EC). The previous study provided a proof of concept despite being flawed in a few

respects:

1. The units of molarity and solvent volume ratios used in that study are dependent on

temperature and are not used in industry. Instead, the mass ratios of each component to

the total mass is a more robust unit.

2. The samples were prepared by serial dilution, either by hand or with a robot, which

allowed the rapid production of a large dataset of samples. However, it was later realized

and confirmed experimentally that the rate of evaporation of DMC is substantial and

therefore the concentrations produced were not precise. In summary:

a. Serial dilutions done by volume (mixing known volumes of solutions obtained

themselves by having mixed known volumes of primary solutions) did not produce

mass ratios which can be computed without knowing all the intermediate densities.

b. Our robot prepared samples with vials opened on the order of tens of minutes even

after optimization of the robot's procedure. It was therefore not able to produce

samples of known mass ratios, given the evaporation of DMC.

3. Because of these first two points and because of the choice of normalizing absorbance

spectra in the analysis by the total absorbance, the article suggested non-linearities, yet

after more careful sample preparations (i.e. using known mass and minimizing

evaporation) and thinking, a linear prediction model was deemed appropriate.

4. It is desired to analyse electrolytes containing ethyl-methyl carbonate (EMC), which can

undergo a transesterification process, requiring full mixtures of LiPF6, EC, DMC, EMC,

and diethyl-carbonate (DEC) to be analysable.

127

5. The code and data required to reproduce that work and extend it were not made available.

The key contributions of the corresponding article to Chapter 4 can be summarized as:

1. More than 40 samples carefully prepared by hand and covering the whole space of LiPF6,

EC, EMC, DMC, DEC, minimizing evaporation, were prepared (see Table 1 through Table

4 for a listing of all the samples’ mass ratios). The precise mass ratios for these samples

are known. This dataset is included in the code (as an SQL96 database).

2. A large dataset of more than 300 samples which were prepared by a robot. They span the

whole space of LiPF6, EC, EMC, DMC, DEC, but because of the preparation procedure,

the mass ratios for these samples are not exactly known.

3. A new model which combines an understanding of the underlying physics and practical

machine learning to yield a partly linear model that can be calibrated effectively given a

small set of samples with known mass ratios together with (optionally) a large set of

samples with unknown mass ratios within the same space of potential components.

4. Code to replicate the study and to extend the model on different devices as well as to a

potentially larger spaces of electrolytes by retraining the model on more data.

5. An assessment of the model's performance and physical underpinnings. On samples not

used for calibration, the model predicts the mass ratios of linear carbonates (EMC, DMC,

and DEC) to within 2% error over the full range going from 0% to 100%, the mass ratio of

ethylene carbonate (EC) to within 2% error over a range from 0 to 50% (the available

dataset’s upper bound on ethylene carbonate), and the mass ratio of LiPF6 within 0.4%

over a range from 0 to 20%, which corresponds to a relative error within 2% of upper

bound.

128

The closest related work is a previous paper from the same lab as the author93 which applies FTIR

to analysing the electrolyte of aged lithium-ion cells in proof of concept form, but quantitative

analysis using FTIR has been done mostly in the context of a straightforward application of Beer's

law97. Note that in the electrolyte system under study, Beer’s law (which roughly states that

absorbance is a linear function of concentration) is not directly applicable (see Section 4.2.2), yet

it provides a decent baseline upon which we build. This Chapter combines the two approaches to

yield a more practical, production-ready solution to analysing the electrolyte of aged lithium-ion

cells.

4.2 Methods

4.2.1 Data acquisition

See the previous paper from the same lab as the author93 for the details of equipment and electrolyte

solution preparation. To apply the code directly, one ought to use similar settings for the FTIR

apparatus, but see Section 4.2.6 for an addendum which removes this limitation. FTIR spectra

were collected using a Cary 630 FTIR (Agilent Technologies) equipped with a germanium crystal

attenuated total reflectance (ATR) accessory. Sixteen scans were collected for each background

and sample measurement, at a resolution of 4 cm-1, using MicroLab PC software. Fourier

transforms were performed using HappGenzel apodization, Mertz phase correction, and a zero-fill

factor of 2.

With this approach, a dataset of measured spectra has been collected with known mass ratios.

Table 1 through Table 4 list all the samples’ mass ratios.

129

LiPF6

mass ratio

EC

mass ratio

EMC

mass ratio

DMC

mass ratio

DEC

mass ratio

0 0 0 0 1

0.076 0 0 0 0.924

0.1519 0 0 0 0.8481

0.2279 0 0 0 0.7721

0 0.3333 0 0 0.6667

0.076 0.308 0 0 0.616

0.1519 0.2827 0 0 0.5654

0.2279 0.2574 0 0 0.5148

0 0.1 0.1 0.8 0

0.076 0.0924 0.0924 0.7392 0

0.1519 0.0848 0.0848 0.6785 0

0.2279 0.0772 0.0772 0.6177 0

Table 1 The weight ratios of the dataset samples with known weight ratios. (part 1)

130

LiPF6

mass ratio

EC

mass ratio

EMC

mass ratio

DMC

mass ratio

DEC

mass ratio

0 0 1 0 0

0.076 0 0.924 0 0

0.1519 0 0.8481 0 0

0.2279 0 0.7721 0 0

0 0.5 0 0 0.5

0.076 0.462 0 0 0.462

0.1519 0.424 0 0 0.424

0.2279 0.3861 0 0 0.3861

0 0.5 0 0.5 0

0.076 0.462 0 0.462 0

0.1519 0.424 0 0.424 0

0.2279 0.3861 0 0.3861 0

0 0.3 0.7 0 0

0.076 0.2772 0.6468 0 0

Table 2 The weight ratios of the dataset samples with known weight ratios. (part 2)

131

LiPF6

mass ratio

EC

mass ratio

EMC

mass ratio

DMC

mass ratio

DEC

mass ratio

0.1519 0.2544 0.5937 0 0

0.2279 0.2316 0.5405 0 0

0 0.25 0.05 0.7 0

0.076 0.231 0.0462 0.6468 0

0.1519 0.212 0.0424 0.5937 0

0.2279 0.193 0.0386 0.5405 0

0 0 0 1 0

0 0.25 0.05 0.7 0

0.0727 0.2318 0.0464 0.6491 0

0.1364 0.2159 0.0432 0.6045 0

0.2091 0.1977 0.0395 0.5536 0

0.0748 0 0 0.9252 0

0.1402 0 0 0.8598 0

0.215 0 0 0.785 0

Table 3 The weight ratios of the dataset samples with known weight ratios. (part 3)

132

LiPF6

mass ratio

EC

mass ratio

EMC

mass ratio

DMC

mass ratio

DEC

mass ratio

0 0.3 0 0.7 0

0.0699 0.279 0 0.6511 0

0.131 0.2607 0 0.6083 0

0.2009 0.2397 0 0.5594 0

0 0.3 0.7 0 0

0.0734 0.278 0.6486 0 0

0.1376 0.2587 0.6037 0 0

0.211 0.2367 0.5523 0 0

Table 4 The weight ratios of the dataset samples with known weight ratios. (part 4)

4.2.2 Physical underpinnings, Beer's law, and the Proposed Models

ATR-FTIR measurements produce spectra of absorbance as a function of wavenumber. The peaks

in this spectrum correspond to vibration modes in the molecules of the sample under analysis.

Indeed, infrared light interacts with a certain volume of sample, occupied by a given number of

molecules, each contributing additively to the spectrum by their vibration modes.

When varying the concentration of various molecules, in a textbook case (which is not our case)

the following hold:

133

1. The volume of interaction with the infrared light is constant with respect to concentration.

2. The vibration modes of a given molecule type is the same across the volume of interaction.

3. The vibration modes of a given molecule type are constant with respect to

concentration.

Together, these give rise to Beer’s law. In our case, the third point is problematic since peaks in

the absorbance spectrum shift in wavenumber as a function of concentration, and this cannot be

explained by constant vibration modes. However, for some wavenumber regions, the vibration

modes are more or less constant with respect to concentration.

The corresponding article to Chapter 4 mostly proposed and described two models, since no

improvement was observed with more complex variations.

The first model assumes constant vibration modes for each component, and will be referred to as

the Constant-Vibration-Mode model (Constant-VM) and is closely related to Beer’s law97.

The second model assumes vibration modes which depend linearly on the mass ratios of all the

electrolyte components, while at the same time assumes there are enough wavenumbers for which

vibration modes are constant to just use these regions during prediction. This model will be referred

to as the Linear-Vibration-Modes model (Linear-VM).

This section is quite detailed, trying to precisely describe the models implemented in the code.

Most readers mainly interested in using the software or even adapting it to different electrolyte

components should skip to Section 4.3 for an evaluation of the performance of the models, and use

the current and next subsections as a reference if code modifications are needed, or if they want to

propose an alternative model.

134

To directly apply Beer’s law, one must introduce units of mass per total volume, but if the mass-

over-volume values for all components are known, then we can compute the mass ratios. If the

mass of each component over the total volume of the sample are gathered into a vector of

concentrations 𝑐, and every absorbance for all measured wavenumbers are gathered into a vector

𝑠, then, Beer’s law implies that absorbance spectrum 𝑠 is a linear function of concentration vector

𝑐 and this relationship can be represented by a matrix multiplication 𝑠 = 𝐴 ∙ 𝑐. In this case, 𝐴 is a

matrix and it is constant over the dataset, corresponding to an absorbance spectrum for each

component. These absorbance spectra are called the fundamental spectra here. This linear

relationship is sometimes referred to as Beer's Law97.

However, we wish to go in the opposite direction. Starting with absorbance spectra, we want to

predict the mass ratios. Therefore, we define the Constant-VM model as:

𝑐 = 𝑋 ∙ 𝑠

𝑚′ =
1

∑ 𝑐𝑖
𝑁
𝑖=1

𝑐

𝑠′ = 𝐴 ∙ 𝑐

Where 𝑋 and 𝐴 are the tunable parameters of the model and are constant matrices. 𝑚′ is the

predicted vector of mass ratios, and 𝑠′ represents a calculated spectrum based on the predicted

mass ratios that can be compared to experiment. 𝑠′ is called the reconstructed spectrum here. In

the cases where Beer’s law perfectly holds, then the whole dataset can always be perfectly

described by a suitable choice of 𝑋 and 𝐴. Note that the code introduces slight tweaks, but they

would distract from the point of the article. See the code https://github.com/Samuel-

Buteau/Electrolyte_Analysis_FTIR for details.

https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR
https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR

135

The Constant-VM model works well and is simplest to implement and understand. However, the

dataset is such that it simply cannot be described with constant 𝑋, 𝐴. Therefore, we consider a

simple generalization where 𝐴 depends on the computed mass ratios 𝑚′ linearly. This is called the

Linear-VM model. Whereas 𝐴 used to be a constant matrix, indexed by electrolyte component

and wavenumber such that 𝐴𝑖𝑗 would correspond to wavenumber 𝑖 and electrolyte component 𝑗,

we replace it by the product of the mass ratios with a 3-dimensional tensor 𝑨𝑖𝑗𝑘. More concretely,

we replace the constant 𝐴𝑖𝑗 by

𝐴𝑖𝑗 = ∑ 𝑚′𝑘

𝑁

𝑘=1

𝑨𝑖𝑗𝑘

Or in other words, the matrix to convert concentrations into reconstructed spectra is now a linear

combination of matrices with the coefficients being the predicted mass ratios.

Now, based on this model, it is not immediately obvious that a constant matrix 𝑋 can convert from

spectra to concentrations. In general, the prediction would need to use non-linearities. However, if

we assume that a sufficiently large wavenumber region has constant vibration modes (i.e. would

be well fitted with the Constant-VM model), then a constant 𝑋 could simply use these regions. To

see that this is possible, consider that the number of electrolyte components (i.e. 5) is much smaller

than the number of measured wavenumbers (above 1000). In our numerical experiments, we

considered more complicated functions to go from 𝑠 to 𝑐, but there was no benefit, so we focus on

the Linear-VM model and the Constant-VM model, recommending the Linear-VM model. The

fact that there was no benefit to adding non-linearities to the prediction is evidence in favor of the

existence of enough linear regions to get good predictions.

136

4.2.3 Measuring performance and penalizing bad model properties.

For the Constant-VM model, given a dataset containing some samples with known mass ratios and

some without known mass ratios, the parameters 𝐴, 𝑋 are optimized to minimize various penalties

using the ADAM optimizer22.

The penalties to minimize are:

1. The mean squared error between actual mass ratios and predicted mass ratios. (If the

samples have known mass ratios).

2. The mean squared error between the original spectra and the reconstructed spectra.

3. Any negative values for the predicted mass ratios are penalized. (In reality, the model

would always clamp any negative mass ratio to 0, but this clamping leads to the

optimization getting stuck without the penalty on negative values.)

4. We maximize the sum of squares of elements of 𝑐 while minimizing the sum of squares of

elements of 𝑋, because this encourages 𝑋 to ignore the noise in the calibration dataset’s

absorbance spectra. The details follow. As described in Section 1.2.5, 𝑋 sends a basis of

the space of spectra to the space of concentrations. Assuming no noise in the dataset, and

considering the case where Beer’s law is valid, we can see that the dataset itself will be

contained within a subspace of very small dimension (e.g. 5 out of thousands). As such,

this dataset can only constrain the action of 𝑋 on a basis of that subspace (e.g. 5 independent

vectors). For simplicity, consider an orthonormal basis of the smaller subspace which is

extended into an orthonormal basis of the full input space. Then, for all these additional

basis vectors, the output of 𝑋 is not determined by the dataset. Ideally, we would like all

these basis vectors to be sent to the null vector in the concentration space since this would

make X robust to noise (which can always be decomposed into the additional basis vectors).

137

But this need not happen. In fact, it would be possible for the inverse situation to occur

where all the basis vectors corresponding to the dataset without noise would be sent to 0

by 𝑋, and only the noise on each element of the dataset would have a non-zero contribution

in the multiplication by 𝑋. (this can be accomplished since noise on different elements of

the dataset is likely to span a large enough subspace such that the whole noise dataset

underdetermines 𝑋). However, since for a given spectrum, the noise has a much smaller

norm than the actual signal, in order to produce the right mass ratios (with comparable

norm in the concentration), 𝑋 would need to itself have a large norm. All things being

equal, minimizing the norm of 𝑋 should force it to use the signal rather than the noise.

For the Linear-VM model, we additionally penalize:

1. Any superfluous dependence of 𝐴 on the predicted mass ratios. Concretely, if the 3-

dimensional tensor 𝑨𝑖𝑗𝑘 is as discussed previously, then we want 𝑨𝑖𝑗𝑘 to not depend

strongly on the index 𝑘.

2. The second derivatives of 𝑨 and 𝑋 with respect to wavenumbers should be small, since

all the FTIR spectra considered are smooth with respect to wavenumbers. Concretely, if

the 3-dimensional tensor 𝑨𝑖𝑗𝑘 is as discussed previously, we want the absolute value of

𝑨𝑖𝑗𝑘 − 𝟐𝑨𝑖−1,𝑗𝑘 + 𝑨𝑖−2,𝑗𝑘 to be small, where 𝑖 is the wavenumber index. Similarly, if 𝑋𝑗𝑖

is as discussed previously, then we want the absolute value of 𝑋𝑗𝑖 − 2𝑋𝑗,𝑖−1 + 𝑋𝑗,𝑖−2 to be

small.

The complete penalty is simply a linear combination of all these penalties, and the precise code

defining this is reproduced in the next section.

In both of these cases, two types of data can be used for training the model.

138

1. Supervised data, where the precise mass ratios are known, will be used to tune both the

mass ratio predictions and the spectrum reconstruction.

2. Unsupervised data, where the precise mass ratios are not known (in our case this is a

much greater dataset), will be used to tune only the spectrum reconstruction. However,

since the reconstruction is done by first predicting mass ratios, it will still be useful for

improving the quality of the mass ratio predictions.

Finally, since the equation for the reconstructed spectrum does not change as long as 𝑨𝑖𝑗𝑘 + 𝑨𝑖𝑘𝑗

doesn’t change. This equation can be rewritten as follows.

𝑠′𝑖 =
1

∑ 𝑐𝑘
𝑁
𝑘=1

∑ 𝑐𝑘𝑨𝑖𝑗𝑘

𝑁

𝑘=1,𝑗=1

𝑐𝑗

Without loss of generality, we set all 𝑨𝑖𝑗𝑘 = 0 for 𝑘 > 𝑗.

4.2.4 All equations for the Linear-VM model

In case more details about the penalties are useful, the equations used are given below. However,

it is strongly advised to skip this section if such details are not wanted. First, the function relu is

defined in Section 1.2.5 as relu(𝑥) = 𝑥 if 𝑥 > 0 and relu(𝑥) = 0 if 𝑥 ≤ 0.

The equations relating spectra to mass ratios are:

𝑐 = 𝑋 ∙ 𝑠

𝑐̅ = relu(𝑐)

𝑚′ =
1

𝜀 + ∑ 𝑐𝑖̅
𝑁
𝑖=1

𝑐̅

Here, 𝜀 is a very small number added to prevent dividing by 0.

139

Then the equations for the reconstruction of the spectrum is:

𝑠′𝑖 =
1

𝜀 + ∑ 𝑐𝑘̅
𝑁
𝑘=1

∑ 𝑐𝑘̅𝑨𝑖𝑗𝑘

𝑁

𝑘=1,𝑗=1

𝑐𝑗̅

Then, the various penalties are:

Lreconstruction = ∑(si − s′
i)

2

M

i=1

Lprediction = 𝑧 ∑(mj − m′
j)

2
N

j=1

Here, 𝑧 is 0 if the data is unsupervised and 1 if supervised.

Lpositivity = ∑relu(−𝑐𝑗)

N

j=1

Lnormalization = (1 −
1

𝑁2𝑀
∑ 𝑨𝑖𝑗𝑘

𝟐

𝑖,𝑗,𝑘

)

2

Lsmallx =
√ 1

𝑁𝑀
∑ 𝐗𝑗𝑖

𝟐
𝑖,𝑗,𝑘

𝜀 + ∑ 𝑐𝑖̅
𝑁
𝑖=1

Let 𝑨̃𝑖𝑗𝑘 = 𝑨𝑖𝑗𝑘 + 𝑨𝑖𝑘𝑗, then

Llinear = ∑ (𝑨̃𝑖𝑗𝑘 −
1

𝑁
∑ 𝑨̃𝑖𝑗𝑘

𝑘

)

𝟐

𝑖,𝑗,𝑘

140

Lsmooth = ∑(𝑨𝑖𝑗𝑘 − 𝟐𝑨𝑖−1,𝑗𝑘 + 𝑨𝑖−2,𝑗𝑘)
𝟐

𝑖,𝑗,𝑘

+ ∑(𝑋𝑗𝑖 − 2𝑋𝑗,𝑖−1 + 𝑋𝑗,𝑖−2)
𝟐

𝑖,𝑗

The total penalty is simply the weighted sum

𝐿 = Lreconstruction + 𝛼1Lprediction + 𝛼2Lpositivity + 𝛼3Lnormalization + 𝛼4Lsmallx + 𝛼5Llinear

+ 𝛼5Lsmooth

With this, most of the details of the code have been formulated precisely. Now, we discuss the

structure of the code.

4.2.5 Code Structure and Content

The code was written to have a simple way to run the model on some measurements and may be

accessed at https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR.

There are many possible ways to call the code:

1. After having put some measurement files in a directory, the model can be called by

specifying this directory. It will return an excel file with the predicted mass ratios, as well

as a directory with a graph of the reconstructed spectra together with the original data for

each input file (the extension of the files will be changed from .asp to .png). This is the

run_on_directory option. For convenience, an excel sheet with the numerical data for

measured and reconstructed spectra is outputted as well so the user can make their own

graphs (e.g. for publication).

2. The training can be run on the calibration dataset, and thus the model can be updated. This

is the train_on_all_data option.

https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR

141

3. Cross-validation studies of the model can be run to evaluate it on the calibration dataset.

This is the cross_validation option.

4. The figures in this paper can be reproduced. This is the paper_figures option.

5. There is a functionality to create a dataset, allowing the extension of the dataset, but it

might require some modification to adapt to a different lab's workflow. This is the

create_dataset option.

4.2.6 Addendum: Spectra Measured on Other Apparatus

Note that it is possible to take a spectrum measured at different wavenumbers than those used in

the dataset, and through interpolation, estimate what would have been measured at the

wavenumbers required by the system.

This was not done in the corresponding article to Chapter 4, but the predictions do not depend on

the scale of the FTIR spectrum, and the reconstruction of samples measured on different systems

were anecdotally adequate. Since the FTIR spectra live in a very large vector space (dimension

greater than 1000), the fact that reconstruction was adequate is strong evidence that the predictions

can be transferred adequately from one system to another simply by first interpolating the

measurements to the wavenumbers used in the calibration dataset.

Indeed, one can be confident that the system can still determine when its “axioms” are respected

or not. Accurate reconstructions should be a strong evidence of accurate predictions. Yet, without

a careful empirical study, there is no way to know the degradation in the typical reconstruction

accuracy that this transfer (i.e. using interpolation to transfer spectra to the wavenumbers used

during calibration) may cause. In other words, if reconstruction works, prediction works, but

reconstruction might work less often when using some different measurement settings. This latter

142

limitation could be overcome with more data, but Chapter 4 focusses on the cases where data is

not plentiful.

4.2.7 Future Work: Fine-tuning

After reading Chapter 3, the perceptive reader may have gotten the idea that the linear prediction

of the electrolyte concentrations is merely an inverse model, and its output may be used as initial

guesses for an optimizer such as ADAM to minimize the reconstruction error. This indeed could

be done with much of the same code, except that the reconstruction model’s parameters (namely

𝐀𝑖𝑗𝑘) must be kept fixed during this fine-tuning. Indeed, the equations for the impedance of a given

Equivalent Circuit model are fixed, and only the Equivalent Circuit parameters change.

On the supervised training set, the reconstruction model has already been optimized together with

the linear inverse model, so it should be expected that the “initial guesses” would be nearly optimal.

However, for new samples which are unlike those in the training set, it is possible that the linear

inverse model produces an initial guess which is significantly suboptimal. Indeed, there is a whole

subfield of machine learning exploring the deliberate construction of so called adversarial

examples98 which make a given neural network produce a spurious prediction by carefully altering

a sample in the dataset. In general, it is hard to characterize how a given component of a neural

network might fail, but it is possible that the linear inverse model fails to produce a good initial

guess on some atypical samples. For those samples, the question remains of whether a different

choice of concentrations would produce a significantly better reconstruction or not for the fixed

reconstruction model used. This could be answered directly by the fine-tuning approach.

143

4.3 Results and Discussion

In order to assess the performance of the model, a percentage of the dataset is held out so that the

model does not see this data during training. Then, the trained model is fixed, and applied to the

held-out part of the dataset. Thus, we can obtain an approximation of how the model performs on

data which was not used during calibration. This can be repeated many times such that all the data

is held out at least once, and then the results can be plotted and compiled. This is called Cross-

Validation. To simplify the computational demands, we consider held out datasets of 10%, 20%,

... up to 90% successively, and repeat the procedure 8 times or more for each setting, only showing

the results on the held-out sets and compiling the various held-out sets to cover the whole dataset.

To be clear, there is no selection of the best outcome of this procedure, and during each isolated

experiment, the held-out set is only used for testing. Furthermore, when the predictions are shown

visually, all the errors for all the held-out sets are shown, thus showing a worst case scatter, and

when the prediction errors are averaged, then the average is over all such experiments.

Figure 4.1 shows a quantitative overview comparison of the cross-validation performance of the

two models. The performance is shown as a function of the percentage of data which was held-out

of the calibration and only used for testing.

On the left we have the absolute value of the difference between measured spectra and the

reconstruction of the model. This error is averaged over all wavenumbers and divided by the

average absorbance of the measured spectrum. An error of 100% corresponds to as much error as

signal. The two models are shown with the same axes, which shows that b) Linear-VM

significantly improves over a) Constant-VM.

144

On the right, we have the absolute difference between actual mass ratio and the prediction of the

model, given as a percent of the largest mass ratio for that component within the calibration set

(i.e. 0.22 for LiPF6, 0.5 for EC, and 1 for the linear carbonates EMC, DMC, and DEC). Within

the randomness of cross-validation, there is no significant difference between the two models here.

We can also see the error bars, which represent the standard deviation of the average error over

the various trials in the cross validation (for instance, if 8 times the dataset has been split into

training and testing subsets and the training algorithm has converged to a solution, then the

standard deviation of the total error across these 8 trials is given).

145

Figure 4.1 Comparison of the cross-validation performance of the two models (overview). Each

row corresponds to a different model a) Constant-VM and b) Linear-VM. The

performance is shown as a function of the percentage of data which was held-out of

the calibration and only used for testing. On the left is shown the reconstruction error

between the measured spectrum and the predicted spectrum from the model. Linear-

VM is clearly better. On the right is shown the prediction error between the prepared

mass ratios and the predicted mass ratios.

a)

b)

146

Figure 4.2 Comparison of the cross-validation predictions of the two models for the mass ratios

with 30% of the data which was held-out of the calibration and only used for testing.

Each row corresponds to a different model a) Constant-VM and b) Linear-VM. For

each FTIR spectrum in the test set, the predicted mass ratios are plotted vs the actual

known mass ratios, as discrete points, whereas the theoretical "perfect prediction line"

which simply shows where perfect predictions would be on the graphs is shown as a

full line.

Figure 4.2 shows a visual overview comparison of the prediction performance of the two models.

Every single error in prediction over 10 cross-validation experiments is shown, and therefore, the

visual scatter of the predictions represents a worst case estimate for this type of data when using

70% of the data was used for training and 30% of the data was used for testing.

Actual Mass Ratio (kg/kg)

a)

b)

P
re

d
ic

te
d

 M
as

s
R

at
io

 (
kg

/k
g)

147

Figure 4.3 shows an evaluation of the Linear-VM model's cross-validation reconstruction

performance with 30% of the data which was held-out of the calibration and only used for testing.

Figure 4.3 should be studied in conjunction with Figure 4.1 as Figure 4.3 gives a qualitative

reference to the quantitative study presented in Figure 4.1. In order to compare between the Linear-

VM and the Constant-VM model, we look at averages over the held-out data to get a single average

absorbance spectrum and a single average absolute error spectrum (the average of absolute error

for each wavenumber across all held-out data is plotted versus wavenumber). In order to show that

different wavenumber regions have different quality of reconstruction, the wavenumber range has

been split into 3 regions (low, medium, high), and plotted on separate rows. As can be seen, most

of the reconstruction error occurs in the 800-900 𝑐𝑚−1 range, while the middle range (second row)

has a decent reconstruction, and the high wavenumber range is quite good. It is instructive to

correlate the regions of high error with known vibrational modes. For instance, around 780, the

cause is CO3 non-planar rock on the ethylene carbonate (EC) molecule, around 840, the cause is

the LiPF6 t1u mode. Also, around 1150, the cause is CO2 symmetric stretch on EC, while around

1250, the cause is CO2 symmetric stretch on linear carbonates. For more details on the causes, see

our previous work93.

148

Figure 4.3 Evaluation of the Linear-VM model's cross-validation reconstruction performance

with 30% of the data which was held-out of the calibration and only used for testing.

In black, the mean absorbance spectrum over the whole dataset is shown, while in red,

the mean absolute error of reconstruction (measured in the same units) across the held-

out data is shown.

Figure 4.4 shows an evaluation of the Constant-VM model's cross-validation reconstruction

performance with 30% of the data which was held-out of the calibration and only used for testing.

Figure 4.4 should be studied in conjunction with Figure 4.1 as Figure 4.4 gives a qualitative

reference to the quantitative study presented in Figure 4.1. See Figure 4.3 for the details of how

this plot was obtained. The error regions from Figure 4.3 are amplified here, but in addition the

A
b

so
rb

an
ce

 (
ab

u
)

Wavenumber (𝑐𝑚−1)

149

high wavenumber region has substantial error. The cause for the high region is mostly the C=O

stretch. For more details on the causes, see our previous work.

Figure 4.4 Evaluation of the Constant-VM model's cross-validation reconstruction performance

with 30% of the data which was held-out of the calibration and only used for testing.

In black, the mean absorbance spectrum over the whole dataset is shown, while in red,

the mean absolute error of reconstruction (measured in the same units) across the held-

out data is shown.

A
b

so
rb

an
ce

 (
ab

u
)

Wavenumber (𝑐𝑚−1)

150

Figure 4.5 shows an evaluation of the physical plausibility of the vibration modes of the Linear-

VM model. Each component of the electrolyte produces a partial spectrum, revealing the

vibrational modes and these partial spectra produced by the model are shown in dashed colored

lines. After calibration over the full dataset (i.e. 0% held-out), the model is used to reconstruct the

spectra of the calibration set. By looking at the contribution from each electrolyte component, we

can see if the vibration modes make sense. The total reconstruction tracks the measured spectrum

as expected. Yet, the individual contributions for each component are smooth and the DEC

vibration modes appear more or less constant over most of the spectrum. The components behavior

here is representative across the calibration set. Note that despite providing plausible components,

there is no guarantee that these exactly reflect the individual vibrational modes, but rather they are

a sign of the model's health.

151

Figure 4.5 Evaluation of the physical plausibility of the vibration modes of the Linear-VM model.

Each component of the electrolyte produces a partial spectrum, revealing the

“vibrational modes” and these partial spectra produced by the model are shown in

dashed colored lines. The four panels show mixtures of DEC and LiPF6, and the

predicted amounts are accurate up to 0.01kg/kg. The measured data has been down-

sampled for visibility.

A
b

so
rb

an
ce

 (
ab

u
)

Wavenumber (𝑐𝑚−1)

152

In order to assess how the trained model varies across various runs of the cross validation, Figure

4.6 and Figure 4.7 show the learned parameters of 𝑋 and 𝑨. Indeed, both figures show the mean

value of each parameters as well as the standard deviation as error bars. Figure 4.6 shows that the

parameters of X do not strongly vary from trial to trial when 30% of the data is held-out, and that

X does indeed vary smoothly with respect to wavenumber.

Figure 4.6 Parameters of X during the cross-validation with 30% of the data which was held-out

of the calibration and only used for testing. Each color corresponds to the slice through

X where the concentration index is set to a given component. The solid line

corresponds to the average across different trials while the error bars correspond to the

standard deviation.

A
b

so
rb

an
ce

 (
ab

u
)

Wavenumber (𝑐𝑚−1)

153

Figure 4.7 Parameters of 𝑨 during the cross-validation with 30% of the data which was held-out

of the calibration and only used for testing. Each color corresponds to the slice through

𝑨 where the concentration indices are set to the given components. The solid line

corresponds to the average across different trials while the error bars correspond to the

standard deviation.

Figure 4.7 shows that the parameters of 𝑨 do vary more from run to run. More specifically, the

variation is mostly localized in ranges of wavenumbers where the reconstruction error is larger.

A
b

so
rb

an
ce

 (
ab

u
)/

U
n

it
le

ss

Wavenumber (𝑐𝑚−1)

154

Since 𝑨 has been chosen with many elements 0, we can visualize each distinct pair of indices 𝑗, 𝑘

as a function of wavenumber.

In summary:

• In terms of predicting the mass ratios the two proposed models are virtually identical in

their performance. (As a percentage of the maximum value within the dataset, the mass

ratio prediction errors for LiPF6 and the linear carbonates is around 1 percent, while the

ethylene carbonate error is between 2 and 3 percent.) Figure 4.1 shows how the prediction

performance depends on held-out percentage, while Figure 4.2 shows the exact predictions

for 30% held-out sets.

• However, in terms of the reconstruction of the absorbance spectra, Linear-VM is clearly

superior, with total absolute error around 10 percent of the total measured absorbance,

which can be compared to Constant-VM with total absolute error around 20 percent of the

total measured absorbance (Figure 4.3 and Figure 4.4 suggest that the main difference

occurs in the high wavenumber region, but the error is worse across all wavenumbers for

Constant-VM). Note that even the predicted spectra from the Linear-VM do not agree

perfectly with the measurement, but they still correspond to a useful reconstruction

allowing the user to identify samples far outside of the LiPF6, EC, EMC, DMC, DEC

system. It seems plausible that a more sophisticated model could improve the

reconstruction further, but in cases of complicated models, false positives become a worry

(i.e. samples outside the space of the components in the training set which can nevertheless

be well reconstructed by using extreme values of the concentrations). Figure 4.1 shows the

quantitative picture, as a function of held-out percentage, while Figure 4.3 and Figure 4.4

155

show a qualitative analysis of typical reconstructions from the Linear-VM and Constant-

VM models for the 30% held-out sets.

• The reconstruction can even be decomposed by electrolyte components to give some idea

of the underlying features of the spectra (i.e. the vibrational modes), with plausible shapes.

This might be worth future work in cases where the vibrational modes themselves are of

interest. As the model is, it is hard to guarantee that the vibrational modes extractable from

calibration on a limited dataset are unique. Figure 4.5 shows a sequence of samples starting

from pure DEC, with increasing amounts of LiPF6, where the partial spectra due to each

component are shown together with the reconstruction. As can be seen, the vibration

modes of DEC and LiPF6 are recognizable throughout, while changing slightly in shape in

addition to being scaled by the predicted concentrations. Furthermore, the individual

contributions to the absorbance spectrum from each molecule type are smooth with respect

to wavenumber (note that without the derivative penalty discussed in Methods section, we

can instead get noisy contributions from each components that perfectly cancel out to give

a smooth reconstruction).

4.4 Conclusions

In this Chapter we showed how the concentration of electrolyte components in lithium-ion cells

can be determined using Fourier transform infrared spectroscopy, Beer's law, and machine

learning. A physically grounded model was used. We have also open-sourced a carefully prepared

dataset and the code to replicate and extend to different electrolyte mixtures. With this new model,

a prediction error of around 1-2% for the LiPF6-to-total mass ratio, as well as all the linear

carbonates, and around 2-3% for ethylene carbonate is achieved. Furthermore, this model allows

156

for a useful reconstruction of the FTIR spectrum of an unknown sample. This allows the user to

detect samples significantly different from those in the dataset (e.g. due to a bad measurement, to

a significant amount of a different molecule, or to a significant change in apparatus). Furthermore,

the model is data efficient such that a model for mixtures of 5 components can be calibrated well

with less than 50 carefully prepared samples. Therefore, it should be possible to easily extend this

work to other systems.

This work refines and generalizes our previous work93 and improves the physical underpinnings

of the model. The composition of unknown electrolyte samples, with a specified set of

components, can be well determined using inexpensive and rapid measurements with attenuated

total reflectance fourier transform infrared spectroscopy.

The code is available at https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR, with all

the documentation in the README.md file.

4.5 Acknowledgements

This work was supported financially by the Natural Sciences and Engineering Research Council

of Canada (NSERC), and Tesla Motors. Sam Buteau acknowledges scholarship support from

NSERC. Furthermore, Sam Buteau would like to thank Prof. Yoshua Bengio and the Mila

community for useful discussion groups and seminars.

https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR

157

Chapter 5 A Database for Lithium-ion Data

Previous chapters have discussed big ideas and theoretical insights to ensure the robustness of

machine learning models in the context of lithium-ion cell research, yet the underlying data

processing system may well determine the success or failure of projects based on such models.

Obviously, models developed based on data are not a closed system since their performance is

directly influenced by the data they are fed, and how they are used. Similarly, these models may

influence research decisions down the line, leading to different data being collected and the models

being used differently.

To plan for success, it is helpful to look at the whole system (the lab) filled with researchers,

equipment, computer programs, etc.. The lab produces various data, develops tools to analyse this

data, and the whole process is very hard to characterize since research direction is influenced by

an evolving understanding which in turn depends on the previous research as well as the inputs

from other labs or industrial partners. Yet some features are simple to understand.

Just like a big machine, there can be friction, effort, and frustration associated with processing

data, storing it, retrieving it, understanding it, developing tools for it, etc.. The ease with which

these operations are performed, henceforth called data processing efficiency, is the subject of this

chapter. Unless explicitly noted, this Chapter is a documentation of the features already

implemented and already in active use.

5.1 Motivation for a Data Processing System

Now that the importance of data processing efficiency has been described generally, let us dive

into the specifics of the lithium-ion research.

158

Figure 5.1 Schematic of the various modalities of battery data. The rounded bubbles contain some

important metadata which have their own structure. The black arrow indicates the

temporal relationship between various experimental observations. The cycling data is

spread across three files in this case. There are some other types of observations, such

as the formation data and the electrochemical impedance spectra taken at the beginning

and end of cycling, respectively.

Figure 5.1 shows a schematic of some typical experimental observations for a single cell. First,

there is the metadata associated with the cell itself (Chemistry/Blueprint, henceforth called Cell

Metadata), including the geometry of the cell, the composition of the electrolyte, the electrodes,

etc.. Second, there is the metadata of how the cell was cycled, typically allowing for each cycle to

select a charge current, discharge current, limit upper and lower voltages, etc.. Third, the cycling

data itself, which contains the precious information about the capacity of the cell, the impedance

159

of the cell in the form of polarization in the voltage curve between charge and discharge, and how

these characteristics evolve through time (see Section 5.3.5 for a more in-depth discussion of the

structure of cycling data). The cycling data may be split across multiple files and each file may

encode the information in a different format. Indeed, even a single manufacturer (e.g. Neware) can

produce the data in many different formats and variants, totalling more than 20 different commonly

used variations. This in itself is a significant friction factor for the analysis of the data and in

practice required substantial effort and iteration to manage.

There are typically also many different types of observations such as formation, impedance

spectroscopy (see Chapter 2), but also some chemical composition measurements (see Chapter 4),

some pressure measurements, and so on. Though the data processing system already can

recognize files of these various modalities and was designed to be easily extendable, it only

fully supports cycling data as of the writing of this thesis.

Unless explicitly noted, this Chapter is a documentation of the features already implemented

and already in active use.

Other difficulties exist:

• Cycling experiments are ongoing for weeks, months, or years, with the experimental

equipment updating the files once per day. Furthermore, the output of these experiments

must be studied in real time in order to prioritize limited resources and guide future

experiments.

• Given all the files produced by the various experiments, maintaining knowledge of what

each file contains (i.e. which cell it measures, under what condition, at what point in the

lifecycle of the cell, henceforth called Valid File Metadata) is quite challenging. This is a

160

major issue when the work of many students must be combined, especially once students

have left the lab. At one level, this problem comes down to each student creating their

own ad-hoc system to keep track of their experiments, but on a deeper level, it takes more

information to situate an experiment in the complete context of tens of students across

many years than it takes to situate an experiment in the limited context of a small study.

Without special care, the incentives of individual students are pushing them to only keep

track of the limited information relevant to their current project in their own format

specific to that project. There is also a perverse correlation, which is obvious in the data

the author studied, that the most prolific producers of experiments are typically the least

compliant to any systematic way of entering the metadata. (It makes sense that larger

projects benefit most from developing their own special-purpose formats). Without

considering the human factor of using a given system, the “best” of designs will fail.

• When coming up with a common format which needs to encapsulate all the various

activities in a lab studying lithium-ion batteries, it becomes clear that lithium-ion cells are

complicated.

• For any software solution to the various issues of data processing, no matter how elegant

the solution is, in order to be used, it must interface with the large unstructured legacy

systems (i.e. handwritten notes or similar).

• Entering all the information manually would be prohibitively tedious and time-

consuming, yet any automation scheme will run into the human factor: at any point, in

any stage of the data processing, incorrect data exists and will continue to exist and be

generated.

161

• The absence of a good solution to these problems not only plagues individual students in

a given lab, but also forces different labs and companies to spend years “inventing the

same wheel”.

Given these issues, creating large reliable datasets (on the scale of 10 000 to 100 000 cells) for the

development of various models and analysis tools is not feasible without a suitable data processing

system.

However, the emphasis in this chapter will be on how such a system can enhance the operation of

a lab even without considering the downstream effects on model creation. In order to be useful at

all, such a system must become an integral part of the lab’s operation. The curation and

maintenance of very large-scale diverse datasets is a by-product here.

5.2 Requirements and Desired Properties of a Data

Processing System

Before diving into the implementation of the data processing system (henceforth called the

Universal Battery Database), the various requirements must be discussed.

In overview,

• Information must be accessible by any lab member, even years after the experiment was

completed, and hopefully also from other labs.

• Finding a given experiment among hundreds of thousands of experiments must be easy,

without prior knowledge of what experiments do or do not exist.

• Tracking given experiments across years and comparing them should be easy.

• Visualizing the data should be automatic.

162

• Extracting different types of cycles (slow or fast discharge, different depths of discharge,

etc.) should be integral and automatic.

• Producing and maintaining simple CSV files for further analysis should be automatic.

• Producing and maintaining datasets friendly for machine learning models should be

automatic.

• Cells should be described systematically.

• Information should be curated automatically.

• Easy corrigibility at every stage through user interface.

• Flexibility to grow and maintainability.

Unless explicitly noted, this Chapter is a documentation of the features already implemented

and already in active use.

163

5.3 Design of the System and Fundamentals of its

Workings

5.3.1 Lithium-ion Cell Ontology (Structure of the Cell Metadata)

Figure 5.2 A hierarchical breakdown of a cell into components, which are themselves made of

components. At the top level, a cell “has” a dry cell as well as an electrolyte. The

electrolyte is itself a weighted combination of molecules, and the dry cell has a

cathode, an anode, a separator, and some geometric information. Similarly, the anode

and cathode are each a weighted combination of various active materials and inactive

materials.

164

Figure 5.3 A more detailed breakdown of the components of the cell into subcomponents. As in

Figure 5.2, the anode, cathode, and separator are each a weighted combination of

various active materials and inactive materials. Each active material has various

attributes such as material type, particle size, crystal type, etc.. Additionally, they can

have stoichiometry information represented as a weighted combination of atoms, and

an optional coating.

Figure 5.2 and Figure 5.3 illustrate the structured description of lithium-ion cells. Most important

for searchability, the electrolyte is a weighted combination of molecules. Ideally, a simple weight

ratio would be enough to describe all electrolytes in a standard way. Unfortunately, various

conventions and ways of making electrolytes were used in the past. Typically, molecules are used

either as salts, solvents, or additives. Furthermore,

165

• salt ratios should be given in molal units (mols of salt per kilogram of solvents), but are

sometimes given in molar units (moles of salt per liter of solution)

• solvent ratios are given as weight ratios such that the sum of all solvents is 100 percent

• additive ratios are normally given as weight percent of the complete electrolyte.

Anodes, cathodes, and separators are always given as weight combinations such that the weight

ratios of active materials sum to 100 percent and the inactive materials are given as weight percent

of total material. Also, each molecule is unique, but the same molecule could be used as a salt in

one context and an additive in another context (similarly with a solvent). Therefore, each molecule

has a default type, but each electrolyte can override the type of its molecules.

Another important feature of this hierarchy is that each node has an “unstructured” field where

information can be written as text. This is important since for every part of the hierarchy, there

could be cells which do not “fit the mold”. For instance, “anode-free” cells do not really have

active and inactive materials in their anode. Their anode is entered in the system as an anode with

“anode-free” in the unstructured field, and an empty set for the combination of materials. Similarly,

some cells are proprietary and so the details are not known. It is possible to distinguish different

proprietary dry cells and electrolytes by simply filling the unstructured field with an appropriately

unique name.

Finally, for each node in the hierarchy, we can have a “blueprint” or a specific “lot”. Concretely,

imagine the recipe for an electrolyte (the blueprint), and different people may produce an actual

electrolyte following the same recipe at different times and get different results (each would be

different electrolyte lots of the same electrolyte). In order to accommodate the fact that often the

specific lot is known but sometimes it isn’t, and different labs might not keep track of the lots at

all whereas other labs might assign lots to everything, the system allows lots and blueprints to be

166

used more or less interchangeably. Concretely, the hierarchies are made of lots, but for each

blueprint, there is a “default” lot which only has the blueprint information.

5.3.2 Obtaining Unique Names at Scale

In order to stay sane, name uniqueness properties must be both automatically enforced and well-

defined.

Entities exist at every level of the hierarchy, and every entity has a name (e.g. an anode is an entity,

a molecule is an entity, a dry cell lot is an entity). The desired properties are as follows:

1. The name of an entity is a subset of the information contained within the entity.

2. If two entities have different names, the entities must be truly different.

3. No two distinct entities have the same name.

4. To call two names different, they must be semantically different (must never have e.g.

merely a different spelling for something, or a different ordering of elements).

The solution to this problem is simple: instead of maintaining names for each entity, we maintain

a list of Boolean variables for each entity. The name of an entity is defined recursively on the

hierarchy (i.e. molecules have names, then electrolyte names are defined by assembling the names

of the molecules and the amounts, etc..).

The Boolean variables simply state whether a given piece of information should be part of the

name or not (e.g. a dry cell has a Boolean for the cathode, a Boolean for the anode, and a Boolean

for the separator, etc.).

Then, whenever we modify the set of entities, we ensure that

1. The entities without their Boolean variables are unique.

167

2. The masked entities without their Boolean variables are unique.

Masked entities are obtained by replacing each sub-component associated with a Boolean variable

by a special value when the Boolean is False. For instance, if the anode Boolean is true, the anode

is just the entity ID, but if the anode Boolean is False, the anode is replaced by a special ID.

In case that was confusing, here is a more mathematical treatment:

Entities contain many fields, and each field could either be a basic type: a string, a number, an

entity ID which is itself only a positive integer, a set of entity IDs, or they could be a flagged type,

which is a Boolean and a basic type.

On entities, we first define two projection operators:

1. Object Projection. The object projection maps tuples (i.e. finite sequences) of either basic

types or flagged types to tuples of basic types in the natural way. Namely, for each

component of the tuple, a basic type maps to itself, but a flagged type maps to the

contained basic type.

2. Name Projection. The name projection maps tuples of either basic types or flagged types

to tuples of either basic types or a special value denoted with the symbol ┴ (an upside-

down “T”). Namely, for each component of the tuple, a basic type maps to itself, but a

flagged type maps to the contained basic type if the contained Boolean type is True but

otherwise it maps to a special value denoted by the symbol ┴.

For each projection, we can define a notion of equivalence by saying that two entities are

equivalent according to the projection if the two outputs of the projection are equal.

168

Then, when adding or modifying an entity, we simply check that no other entity is equivalent to it

either according to the object projection or the name projection.

Intuitively speaking, the task of maintaining good unique names then boils down to selecting which

aspects of an entity should be included in the name in order to distinguish it from other entities at

a glance. It is always safe to set all the Booleans to True (meaning that the name will contain all

the details), but this has the disadvantage of making very long names which are hard to read.

Ideally, there are a few key properties that make an entity stand out, and those can be made visible.

Finally, when converting entities and their Booleans to a string, it must be ensured that, no matter

the contents of the entities:

1. If two entities are not equivalent according to the name projection, then their strings will

be distinct.

2. Strings are a function of masked entities.

5.3.3 Linking Experimental Files to the Appropriate Cells

There are at least three almost independent subsystems to the Universal Battery Database; the first

dealing with what cells are (i.e. what electrolyte is in them, the cell metadata), the second dealing

with what files are (i.e. what experiment is contained in a given file, the file metadata), and the

third dealing with the data content of the files (i.e. what are the results inside of a given file, the

cycling data). It is important to understand that the only safe assumption about files is that each

filename is an address on the file system at which experimental equipment will write periodically.

Figure 5.4 shows the relationship between filenames, cycling data, valid file metadata, and cell

IDs. Cell IDs exist in cell metadata (results of searches, see Section 5.3.1) and in valid file

metadata. The link between a Cell ID and the cycling data has to go through the valid file

169

metadata. Furthermore, many files can have the same Cell ID contained within their valid file

metadata. The cycling data of a single file contains information for each cycle and this information

is indexed by the relative cycle number (each file begins at cycle 0) and the absolute time. Yet, the

cycling data of a Cell ID (the cycling data from each file gathered together), is indexed by the

absolute cycle number and time differences between a given cycle and the first cycle. As can be

seen, valid file metadata for cycling files contains the Cell ID, the start cycle, which is used to

offset the relative cycles contained within the file, the start date, as well as an ID for the creator of

the experiment (Char ID), and finally some data about the experimental conditions such as the

temperature the cell was operated at and the maximum voltage the cell was submitted to (Upper

Cut-off Voltage).

The fundamental unit which always exists is the filename (viewed as an address on a file system).

No matter what, if a file exists on the file system, the filename will enter the database.

Then, depending on whether the filename has encoded the valid file metadata information in an

understandable format, this information will be decoded and stored automatically as a Valid File

Metadata object. The file metadata subsystem is written to treat many different kinds of data,

coming from many different equipment, and therefore, this Valid File Metadata object also

contains information about the type of experiment (in the case of interest, “Cycling”) and the

equipment used (in the case of interest, Neware99).

If the valid file metadata information is not understood from the filename, no Valid File Metadata

object is created for that filename. However, it is simple and quick to manually enter this

information in the Universal Battery Database (see Section 5.4.4), as well as correct this

information if it was somehow incorrect (for instance if a typo led the filename to mention the

wrong Cell ID).

170

Therefore, the system only loads the actual cycling data (reads the content of the file) if the

filename has a Valid File Metadata object associated to it. This automatic loading occurs at a fixed

time every night, but it is possible to request a reading of the contents of a file through the Universal

Battery Database (see Section 5.4.2).

The connection between filename and the Cell ID metadata (see Section 5.3.1) need not be

maintained separately. Every time the search system looks for the data associated with a given Cell

ID, it simply gets all the Valid File Metadata object containing the right Cell ID. If we are

visualizing the data for a given cell, the system will find all the appropriate filenames as before,

and the filenames for which some file content has been imported into the system will show up

together in a unified view of the cycling data (called Valid Cycling Data for that cell, see Section

5.4.2).

171

Figure 5.4 Illustration of the connection between filenames, cycling data, valid file metadata, and

cell IDs. The first two filenames have valid file metadata associated with them as well

as cycling data. The third file has valid file metadata associated to it, but no cycling

data. It is impossible to have cycling data associated to a filename without valid file

metadata. The fourth file does not have valid file metadata.

5.3.4 Searches Based on the Ontology of Lithium-ion Cells

When an entity is made of a combination of many entities at a lower level of the hierarchy, there

can be many fewer sub-entities than the top level entity (i.e. if there are five possible widths, four

possible heights, and three possible lengths, then there are sixty possible rectangular prisms). A

prime example are the electrolyte entities (a few thousand unique electrolytes) which are a

172

combination of potentially many molecules (less than a hundred unique molecules, with only ten

or so being commonly used). If the search mechanism cannot understand this hierarchy, searching

for electrolytes is inconvenient. On the other hand, if the search mechanism allows to search

electrolytes in terms of their molecules (and the amounts of each molecules), this suddenly

becomes a very convenient tool to navigate thousands of electrolytes, and by the same logic,

hundreds of thousands of cells.

On the other hand, very sparsely populated hierarchies can have the opposite effect where there

are approximately the same number of top-level entities as their constituents. For instance, anodes

are combinations of active and inactive materials, so we would expect that the number of distinct

anodes is much greater than the number of distinct materials. However, almost every distinct anode

uses a distinct active material. In such cases, forcing the structure of the ontology into the search

mechanism has less clear benefits. There are no search mechanisms which will be optimal for all

use cases and all data distributions. However, for the Universal Battery Database project, the

search mechanism tries to strike a balance by allowing various searches for:

• electrolyte based on molecules

• dry cell based on anode, cathode, separators, and dry cell lots

• dry cell lots, which in the lab’s case are physical boxes of dry cells which are supposedly

identically manufactured, based on same inputs as for dry cell search

• wet cells based on electrolyte search, dry cell search, experimental conditions, filenames,

and a higher level of organization called datasets. (the search can take into account the

wet cells defined in the system, or the wet cells which appear in valid experimental files)

• distinct electrolytes based on wet cell search (i.e. which electrolytes have been tried with

this cathode?)

173

• distinct dry cells based on wet cell search (i.e. which dry cells have been tried with X

solvent combination under Y experimental condition)

The search mechanism can:

• simply list the names of the entities (see Section 5.4.2)

• allow the creation of groups of wet cells called datasets (see Sections 5.3.6 and 5.4.3)

• visualize the valid cycling data associated with the cell IDs (see Section 5.4.2)

• allow reimporting of missing data and various mechanisms to “fix” problems with the

data (see Section 5.4.5)

It should be clear that the real measure of success of a search mechanism is whether the users can

find what they are looking for and how easy it is to perform their searches. Therefore, a different

search mechanism would have to be implemented for a laboratory dealing with several thousand

cathodes and only a few electrolytes. Hopefully, many of the challenging types of search required

for different labs already have analogue components within the current system.

Without discussing in detail the implementation of searches (also known as Queries) in the

Structured Query Language (SQL) based database96, it is insightful to discuss electrolyte searches

in particular at the mathematical level.

For simplicity, assume that each molecule can be represented by a unique molecule ID. Then,

electrolytes can be thought of as:

1. An unstructured field called notes.

2. A Boolean field called proprietary.

3. A list of triplets, where each triplet is made of:

a. An integer representing a molecule ID

174

b. Either a number representing the weight of the given molecule or a special token

representing an unknown weight.

c. Either an overridden type (solvent, salt, or additive) or a special token

representing the default type for the molecule

Then, each search has to produce a list of such electrolytes. A list of some common searches

follows as a motivation. In order to remove unnecessary intellectual property from the discussion,

assume that A, B, C, D, E, F, G, H, … stand for actual molecules in the system.

• Electrolytes with 2 percent additive A, 1 percent additive B

• Electrolytes with C

• Electrolytes with only D as an additive

• Electrolytes with D as an additive, potentially A, but no other additives

• Electrolytes without any C

• Electrolytes with 30 percent solvent F, and salt G

• Electrolytes with around 2.3 (+/- 0.2) molal of salt H and only E and F as solvents

• Proprietary electrolytes

• Electrolytes with “company 5” in the notes

• Electrolytes with “1% H + 10%E” in the notes

Based on such examples, what are searches? Coming up with a restrictive definition of what a

search is allows design of a robust search mechanism. Coming up with a definition which includes

all the searches one might like to do ensures the search mechanism is useful.

Therefore, we define an electrolyte search as follows:

175

1. A triplet of Boolean fields called “complete salt”, “complete solvent”, “complete

additive” or collectively “completes”

2. A real-valued positive number called “relative tolerance”

3. A Boolean field called “proprietary”

4. A triplet of unstructured fields called “notes 1”, “notes 2”, and “notes 3” or collectively

“notes”

5. A list of quadruplets, with each quadruplet containing:

a. A molecule ID

b. A requirement type, either mandatory, allowed, or prohibited

c. A real-valued positive number called amount which could alternatively be set to

an optional value denoted by the symbol ┴

d. A real-valued positive number called tolerance, could alternatively be set to a

special value denoted by the symbol ┴

As an example, Table 5 illustrates the purpose of the various components of a search by giving

examples of how to represent various informal searches into the restricted domain.

Now the question is how to map these searches to a set of electrolytes. Beside suggesting interested

parties to explore the code itself for the fully general search case, a few more details follow. In

addition, see Section 5.4.2 for various examples in the user interface.

1. For each electrolyte, we can go through the list of tuples, and filter out those electrolytes

which contain a prohibited molecule.

2. If one of the “completes” is set to True (without loss of generality, consider “complete

additive” set to True), we can go through the list of tuples in each electrolytes, and for

every molecule either marked as additive or marked as default with the default type of the

176

molecule being additive, we can check if the molecule is contained within the set of

molecules in the search marked either as mandatory or as allowed.

3. We can go through the list of quadruplets in the search marked as “mandatory” and then

for every electrolyte, verify the presence of the molecule (if no amount was specified) or

verify that the molecule is present and the amount falls within the range proscribed in the

search (if an amount was specified).

177

Search in words Completes

(default is

all false)

relative

tolerance

(default is

5 percent)

Proprietary

(default is

false)

notes quadruplets

2 percent additive A

1 percent additive B

 (A, mandatory, 2, ┴)

(B, mandatory, 1, ┴)

with C (C, mandatory, ┴ , ┴)

with only D as an additive complete

additive: True

 (D, mandatory, ┴ , ┴)

with D as an additive,

potentially A, but no

other additives

complete

additive: True

 (D, mandatory, ┴ , ┴)

(A, allowed, ┴ , ┴)

without any C

 (C, prohibited, ┴ , ┴)

with 30 percent solvent F,

and salt G

 (F, mandatory, 30 , ┴)

(G, mandatory, ┴, ┴)

with 2.3 (+/- 0.2) molal of

salt H only E and F as

solvents

complete

solvent: True

 (H, mandatory, 2.3, 0.2)

(F, allowed, ┴ , ┴)

(E, allowed, ┴ , ┴)

Proprietary Proprietary:

True

with “company 5” in the

notes

 Notes 1:

“company 5”

Table 5: A few examples of how various informal searches can be represented as restricted

formal searches.

5.3.5 Data Processing and Grouping the Cycles Automatically

Lithium-ion cycling data has a repeating structure where every cycle the cell must undergo charge

and discharge. More generally, a cycle will contain a sequence simple steps, where each step is

typically controlled via a drive profile. For instance,

178

1. Charge the cell with a constant current of X milliamperes until the voltage across the

terminal reaches Y volts.

2. Discharge the cell with a constant current of X until the voltage reaches Y.

3. Charge at a constant current of X until voltage reaches Y, but then hold a constant

voltage of Y until the current drops below Z.

4. Rest for W minutes (open circuit).

5. Hold a constant voltage for W minutes.

Each step is made of a sequence of observations, typically of the voltage, the current, and the time.

By integrating the current multiplied by differences in time, we get the capacity, and by integrating

the current multiplied by the voltage multiplied by the differences in time, we get the energy.

The choice of drive profile has two main impacts:

1. The observed results for that step strongly depend on the drive profile for that step. For

instance, at higher currents, there is typically less capacity, and more polarization in the

voltage between charge and discharge (i.e. drive profile determines what information is

extracted).

2. The state of the cell, both in terms of reversible short-term changes to the expected results

for the next few steps and in terms of the irreversible long-term degradation of the cell, is

affected a little bit every step, based on the precise drive profile (i.e. drive profile

determines degradation).

The first point is important since one can get useful information by periodically adding a few

“check-up” cycles which by either using a low or high current, or by setting different bounds on

the voltages, will reveal different information about the cell.

179

The second point is mostly important in aggregate. For instance, there will be differences in aging

if every cycle uses a very high current, in comparison to a different experiment where every cycle

uses a very low current.

Due to the presence of rare “check-up” cycles, there is a very large imbalance between

observations for different drive profiles within a single experiment. This both makes it tricky to

separate these cycles by hand (for humans), but also necessary to separate these cycles properly

for various algorithms (otherwise, models will have trouble with the information in the rare cycles

since they are overwhelmed with the more common cycles).

If every cycle had a precise, exact, intended drive profile, which only had a few possible values

for each cell, then it would be trivial to group cycles (i.e. they would effectively be already grouped

in the raw data).

However, for many data formats and many chargers, the intended drive profile is not included, the

currents are approximate and rarely exactly constant, and generally things are messy.

We therefore identify five attributes that every charge or discharge possesses and apply an

approximate clustering algorithm to generate a small number of meaningful “groups” across these

attributes.

The details of the clustering methods are not critical, but the goals are that:

1. Every cycle’s charge/discharge must belong to at least one group.

2. The number of groups should be as small as possible.

3. The five attributes should be as uniform within a given group as possible. Namely, the

standard deviation of each attribute should be as small as possible when taken within a

group.

180

Now, given a clustering method which optimizes these three objectives, the attributes themselves

must be chosen such that the groups thus obtained would explain as much of the variance in

observations between groups as possible.

Intuitively, we want attributes which capture the most glaring variations between observations

from cycle to cycle.

In case the mathematical details are of interest, a step typically contains a set of tuples containing

voltage, capacity, current, and time which can be abstracted to a function of voltage, capacity and

current versus time through some form of interpolation. Then, for nearby cycles, such functions

may be compared to each other by the integral of the squared sum of their differences.

To summarize, the attributes must be chosen in order to minimize those distances for cycles in a

given group.

Technically, more is needed to really describe what we want (for instance, the attributes which

must explain the variance are the average attributes of a given group; they can’t change as a

function of cycle number; and we are interested in all possible drive profiles). However, the

intuition given can hopefully explain the choice of attributes used, even though there may be better

attributes yet to be discovered.

 The attributes chosen are:

1. Constant Rate. The current during the “constant current” portion of the given step. (For

ease of comparison, the current is normalized by the theoretical capacity of a cell.)

2. End Rate. The current at the end of a given step. (Again, normalized to the theoretical

capacity of the cell). This will differ from the Constant Rate in cases where e.g. the

181

charge has a constant current portion followed by a voltage hold until the current falls

below a certain threshold.

3. Previous End Rate. The End Rate of the previous step. (For instance, the previous step

of a discharge is a charge and vice-versa.)

4. End Voltage. The voltage at which the given step terminated.

5. Previous End Voltage. The End Voltage of the previous step.

These attributes can distinguish between slow charge and fast charge, similarly with discharge.

They can also distinguish between different cycles which may cycle across a restricted voltage

range. However, they do not capture short-term effects where having a slow cycle at a given point

will affect a handful of subsequent cycles100,101.

Yet, this ability to isolate various types of cycles designed to study different aspects of the cell is

quite useful for visualization purposes, as well as for balancing the data prevalence in the context

of developing a model.

See Table 6 through Table 8 for some examples of filters applied to the five attributes.

5.3.6 Creating and Annotating Datasets

The search mechanisms allows one to find individual cells. Yet, for the purpose of a given project,

one is usually interested in a fixed subset of cells.

Furthermore, when the set of cells is small (for instance, ~10 cells), then finding meaningful names

for each cells is much easier and the names can be much shorter. For instance, if there are five

cells which are identical but for the fact that they respectively incorporate 1%, 2%, 3%, 4%, and

5% of a given additive in their electrolytes, then it may be much easier to simply name them “1%”,

182

“2%”, “3%”, “4%”, and “5%” in the context of this dataset, even if such a name would be

completely inadequate in a complete database of tens of thousands of cells. Indeed, it might still

be useful to give them such names, even if they were not completely identical in other respects, as

long as they were the best controlled cells which could be assembled to compare the given

additive’s impact.

Finally, in the context of a given project, the kinds of cycles which are of interest for a given cell

will usually be restricted. Indeed, it would be rare to require the five attributes mentioned in Section

5.3.5 to describe a group of cycles in this context. As an example, if the End Voltage and Previous

End Voltage attributes are always the same for every discharge, but the Constant Rate is different,

then it could be easier to give a special name to a subset of cycles, such as “1C” to denote a

discharge at a constant current equal to the theoretical capacity of a given cell divided by one hour.

Furthermore, the name could be kept consistent across different cells of the dataset, even if some

cells were in fact cycled at “0.87C” while others were cycled at “1.12C”, for the purpose of visual

clarity.

With those ideas in mind, the design of the “dataset” system is as follows:

1. Creating a dataset is as easy as finding a name for the dataset that has not already been

used.

2. The output of a cell search can be added to any dataset (it is not possible to add a cell to a

dataset multiple times).

3. Any cell may be renamed in the context of any dataset. This name does not affect

anything outside of the given dataset. The “dataset specific name” of a cell must be

unique within the dataset.

183

4. For a given cell, we can define a number of “filters”, each of which requires a different

name. These filters can put range constraints on any of the five attributes for the charge

or the discharge of a cycle. Namely, either any value is accepted for a given attribute, or

an upper and lower limit is provided. These filters each represent the subset of all the

cycles for the given cell which satisfy all the constraints on their attributes.

5. When defining filters, one can define the same filter for any subset of cells in the dataset.

Consider a couple of examples.

First, imagine a dataset of various cells where most cycles are charging and discharging over a

restricted voltage range (could vary cell to cell) at a given rate (could vary cell to cell). Then,

approximately every 500 hours, a “check-up” cycle is inserted: the cells are cycled over a larger

range of voltages (from 3.2 to 4.2 volts for some cells; from 2.8 to 3.9 volts for others) at a rate of

charge and discharge of 1/20 hours-1 (often referred as C/20, said “Sea over twenty”). Then, the

goal is to design a filter which only captures the “check-up” cycle, and a filter which excludes the

“check-up” cycle.

In words, the check-up filter would be “C/20 constant rate for charge and discharge; charge starting

at 3.2 and ending at 4.2 volts; discharge starting at 4.2 and ending at 3.2 volts”. Depending on the

data in the set, the tolerance on these quantities should be set appropriately, but to a first

approximation, “C/20” would be 0.05, so we could accept a range of 0.03 to 0.07. For the voltage,

we could tolerate up to 0.02 volts. In this scenario, Table 6 shows two plausible filters which could

be applied to the whole dataset, though only one of them would be active for any given cell.

Furthermore, consider the cases where the cells with “check-up” cycle between 3.2 and 4.2 volts

have their restricted ranges between 3.2 and some voltage lower than 4 volts (could vary cell to

184

cell), while the cells with check-up cycle between 2.8 and 3.9 have their restricted ranges between

some voltage higher than 2.9 volts and 3.9 volts. In this scenario, Table 7 shows two plausible

filters which could be applied to the whole dataset, though only one of them would be active for

any given cell, and would essentially exclude the check-up cycles, which may be useful for some

analysis.

Second, imagine a different dataset of various cells where most cycles are charging and

discharging at a given rate (could vary cell to cell, either 1C or C/3 charge and discharge, but

consistent for a given cell). Then, approximately every 100 cycles, a “Rate map” set of cycles is

inserted: the cells are charged at 1C, discharged at C/20, then charged and discharged at C/20, then

charged at 1C and discharged progressively faster (C/2, 1C, 2C, 3C). The goal is to design filters

for each of the Rate map cycles and which does not include the regular cycles. In this scenario,

Table 8 shows an example of such filters.

185

Name: Attribute Polarity Minimum Maximum

Check-up High V Constant Rate Charge 0.03 0.07

Constant Rate Discharge 0.03 0.07

End Voltage Charge 4.18 4.22

Previous End

Voltage

Charge 3.18 3.22

Previous End

Voltage

Discharge 4.18 4.22

End Voltage Discharge 3.18 3.22

Check-up Low V Constant Rate Charge 0.03 0.07

Constant Rate Discharge 0.03 0.07

End Voltage Charge 3.88 3.92

Previous End

Voltage

Charge 2.78 2.82

Previous End

Voltage

Discharge 3.88 3.92

End Voltage Discharge 2.78 2.82

Table 6 Examples of dataset filters to isolate “Check-up” cycles.

186

Name: Attribute Polarity Minimum Maximum

No Check-up

High V

End Voltage Charge 4.0

Previous End

Voltage

Charge 3.18 3.22

No Check-up

Low V

End Voltage Charge 3.88 3.92

Previous End

Voltage

Charge 2.9

Table 7 Examples of dataset filters to get the various cycles except the “Check-up” cycles.

Name: Attribute Polarity Minimum Maximum

1C C/20 Constant Rate Charge 0.85 1.5

Constant Rate Discharge 0.03 0.1

C/20 C/20 Constant Rate Charge 0.03 0.1

Constant Rate Discharge 0.03 0.1

C/2 Constant Rate Discharge 0.3 0.7

1C (Check-up) Constant Rate Discharge 0.85 1.5

 Previous Constant

Rate

Charge 0.3 0.7

2C Constant Rate Discharge 1.5 2.4

3C Constant Rate Discharge 2.4 4

Table 8 Examples of dataset filters to get the various cycles in a “Rate Map”.

187

5.3.7 Outputting Experimental Data in a Simple Format (for Humans)

The observations contained in cycling data in their raw form are pretty complex in structure and

this acts as a constant source of friction for analysis and visualization tasks. Among the

complications, the data for a given cell may exist across multiple files, it is updated regularly,

and there are many types of cycles useful for studying different aspects of the performance of

lithium-ion cells. The observations for a single cycle are also quite complex in structure and

difficult to easily compare from cycle to cycle. Cycles are split across various steps, each

containing some set of observations (voltage, current, capacity, time), but the voltages are not

typically “aligned” from cycle to cycle, with the number of observations per cycle rarely constant

from cycle to cycle, and the time given is sometimes unreliable. This data structure is difficult to

work with. Therefore, summary quantities are typically used, such as the total discharge capacity,

the average voltages of charge, the average voltage of discharge, their differences called delta V,

etc..

To the summary quantities can be added “index quantities” such as the cycle number and the time

difference between the first cycle and a given cycle (called the cumulative time). Then, successive

cycles will produce the rows of a matrix, with the columns corresponding each to a specific

summary quantity, or a specific index quantity.

This format can be produced for any cell and any filter, and it can easily be formatted as a Comma-

Separated Values (CSV) file, which can be manipulated with various programs such as Microsoft

Excel, and can be read in by almost all graphing programs worth the name102.

188

In practice, when outputting the data,

1. every dataset becomes a folder,

2. every cell becomes a subfolder, and

3. every filter becomes a CSV file.

Every CSV file has the same columns in the same order, corresponding to the various summary

quantities and index quantities.

The same general idea may be applied for more special-purpose uses. For instance, the differential

capacity as a function of voltage (also known as dQ/dV versus V) can be useful to look at for cycles

with a relatively low current (such as C/20).

Then, by having a filter which selects only the appropriate cycles, the data could either be presented

in a single CSV file with columns Cycle Number, dQ/dV, V, or it could be presented as a multitude

of files in a sub subfolder with only dQ/dV and V as columns but with the Cycle Number as the

filename. For instance, a file named 105.csv would exist in a sub subfolder named

DifferentialCapacityVersusVoltage.

The general idea is to unroll nested data structures as matrices (CSV files) within a hierarchy (the

filesystem).

5.3.8 Outputting Data in a Complete Format (for Machine Learning

Algorithms)

In order for a machine learning algorithm to be easily applied to a dataset, the format should:

189

1. provide as much information as possible since different models may require different

levels of details

2. Store things compactly but in a way which can quickly be loaded

3. Be easily translatable into uniform tensors as much as possible

4. No customization, good automation

In the context of producing an output suitable for machine learning algorithms, a process which

we call “compiling a dataset”, there are two difficulties:

1. Describing the cell metadata

2. Describing the cycling data (including the relevant valid file metadata)

The cell metadata is represented by assigning a unique integer to every unique entity.

The cycling data is represented as groups containing sequences of cycles. Each cycle contains

some metadata, including temperature, as well as some conditions like the Constant Current.

Furthermore, each cycle contains a sequence of voltage and capacity pairs. As future work, it

may be worth representing time along with voltage and capacity.

For most users of the database, this feature will not be useful, so we do not go into all the details,

but we refer interested readers to the code for all the details.

5.4 User Manual and Frequently Asked Questions

Here are listed the most common usages, organized by subsections corresponding to tasks one

might use the Universal Battery Database for. In each case, the most frequently encountered

confusions are discussed in more details.

190

Since the database contains sensitive content, some of the specific values have been obscured by

a grey “sensitive content” sign. In cases where the general structure of the content is important, a

grey box containing a fake content with the appropriate structure was superimposed on the image.

5.4.1 Access to the Universal Battery Database

The code is freely and openly available at https://www.github.com/Samuel-Buteau/universal-

battery-database and the system can be deployed in various ways.

Figure 5.5 shows the way to interact with the software within a lab network. From any computer

within the lab “intranet”, visiting a given URL from a browser will connect the user to the software.

By following the hyperlinks at the top, the user can visit the various subsystems, again from the

browser of a computer on the local network of the lab (in this configuration, the IP address of the

server must be visible to the other computers on the lab network).

https://www.github.com/Samuel-Buteau/universal-battery-database
https://www.github.com/Samuel-Buteau/universal-battery-database

191

Figure 5.5 The front page of the software accessed from a computer within the lab’s network. The

front page shows only the various hyperlinks to leading to the various subsystems of

the software. These hyperlinks are present at the top of every page within the software.

In the absence of any internet connection, the software may still be set up and used from a browser

on the computer hosting the software (also known as the “server”).

Finally, it would be possible to allow connections from all across the internet, but in such a

scenario, an authentication mechanism should be deployed and maintained, in order to minimize

theft of intellectual property. However, setting up a secure system which can hold valuable

intellectual property with a perpetually available surface of attack from across the world is beyond

the scope of this work. Security is easy to do poorly, and all the details potentially matter a great

deal. While it would be beneficial to have a robust security-oriented design for the Universal

Battery Database project, it is left as future work. Also worth noting that a good security design

for the Universal Battery Database could still be insecure when deployed side-by-side with the

various legacy systems keeping the lab running.

192

5.4.2 Searching the Database

There are various levels at which searches may be performed, corresponding to various levels in

the ontology of lithium-ion cells.

Figure 5.6 shows an overview of the search page, as it would show up when clicking on the

hyperlink Search Stuff. There are four main sections to the search page. At the top, the results for

the wet cell searches and for the valid cycling data searches will show up, then there is a table

subdivided into the three remaining sections: the valid cycling data section, the electrolyte section,

and the dry cell section. Each section will be explored further below.

Figure 5.7 shows the structure of the possible searches in the form of a search tree. The rounded

nodes on this diagram can be searched for (for instance, we can search for some electrolytes),

whereas the square nodes are what the searches are based on (for instance, we can search for some

electrolytes based on their substructure). Generally, Figure 5.7 depicts a tree. An arrow connecting

node A to node B indicates that node A is a child of node B. There are two types of searches:

simple and powerful. Simple searches are performed based on the square descendants of the node.

Powerful searches, on the other hand, can follow arrows in both directions, essentially projecting

a search (simple or powerful) for the direct parent of a node (e.g. wet cell) onto the node itself (e.g.

electrolyte).

The projection of a search for a parent onto a child node is defined as follows: given the set of

results for the parent node (e.g. wet cell), extract the values for the child node (e.g. electrolyte) of

each element of the set of results (e.g. the electrolyte of each wet cell), and list the set of distinct

values for the child node (e.g. the distinct set of electrolytes). Note that this projection can be based

193

on a simple search (e.g. a wet cell search based on electrolyte substructure and dry cell

substructure) or on a powerful search (e.g. a valid cycling data search projected onto the wet cell

node).

The following subsections explore various possibilities, but to clarify the general principle, here

follows a list of three different searches for electrolytes:

1. A simple search for electrolytes based on some additive molecules being present at

certain percentages (electrolyte substructure).

2. A powerful search for electrolytes based on the same additive molecules, as well as the

dry cell box ID. This is interpreted as a simple search on wet cells projected onto

electrolytes.

3. A powerful search for electrolytes based on the same additive molecules, the same dry

cell box ID, and the temperature of cycling (experimental conditions). This is

interpreted as a simple search on valid cycling data projected onto wet cells (a powerful

search on wet cells) which is itself projected onto electrolytes.

Note that the first search is completely independent of which dry cells might exist or which wet

cells might be registered, or which valid file metadata may be defined. However, the second search

does depend on which wet cells are registered, and the third search depends on which wet cells

and which valid cycling data exist within the system.

Furthermore, for every square node in Figure 5.7, we can define a trivial input as the input which

will allow every possible variations of the node to match in the search (e.g. if everything is left

blank in the electrolyte substructure node, then a search on electrolytes will return all existing

electrolytes). These trivial inputs are a useful tool to find and fix problems in the database.

194

For any given simple search, we can define one or more corresponding powerful searches, as

powerful searches which have exactly the same nontrivial inputs as the simple search. For

instance, the following three searches are corresponding searches:

1. A simple search for electrolytes based on some additive molecules being present at

certain percentages (electrolyte substructure).

2. A powerful search for electrolytes based on the same additive molecules, as well as a

trivial input for the dry cell box ID, dry cell substructure, dataset, and cell ID.

3. A powerful search for electrolytes based on the same additive molecules, the same

trivial inputs as before, and trivial inputs for the dataset, cell ID, experimental

conditions, and file substructure.

If all data were present and properly entered in the database, then corresponding searches most

likely should all return the same results. In other words, there should not be unused electrolytes

which never appear in a wet cell. Similarly, if a wet cell is registered into the system and this cell

is or has been cycled, it would be expected that it should appear in a valid cycling data.

Therefore, if these searches do not produce the same results, the most likely explanation is that a

wet cell has been registered improperly, or not at all, or that the experimental data for a given cell

is named incorrectly or the format of the file is corrupted.

In a perfect world, every contributor to the database would ensure correct data entry, but in

practice, it is necessary from time to time to fix inconsistencies. Yet, because of the persistent

nature of the database, incorrect data need only be corrected once, and so the quality and reliability

of the powerful searches should only increase with usage.

195

Figure 5.6 Overview of the search page, as it would show up when clicking on the hyperlink

Search Stuff. The searches are arranged hierarchically according to the search tree of

Figure 5.7. At the top, the results for the Wet Cell searches and for the Valid Cycling

Data searches will show up, then there is a table subdivided into the three remaining

sections. From left to right, the valid cycling data section, the electrolyte section, and

the dry cell section. The results of electrolyte searches and dry cell searches will show

up in their respective sections.

196

Figure 5.7 Illustration of the structure of the possible searches, called the “search tree”. The

rounded nodes on this diagram can be searched for (for instance, we can search for

some electrolytes), whereas the square nodes are what the searches are based on (for

instance, we can search for some electrolytes based on their substructure). Generally,

this figure depicts a tree and an arrow connecting node A to node B indicates that node

A is a child of node B. There are two types of searches: simple and powerful. Simple

searches are performed based on the square descendants of a node. Powerful searches,

on the other hand, can follow arrows in both directions, essentially projecting a search

(simple or powerful) for the direct parent of a node (e.g. wet cell) onto the node itself

(e.g. electrolyte).

The following sub sections explore various examples of searches in more detail.

197

Simple Electrolyte Search

Figure 5.8 shows a zoomed-in view of the electrolyte section of the search page, with an example

input for the electrolyte substructure node corresponding to the first entry in Table 5, as it would

appear just before the search. Note that dark grey boxes are masking actual molecules and instead

use abstract letters. This input corresponds to an electrolyte with 2 of A and 1 of B. For instance,

if A and B were used as additives, it would mean 2 percent of total weight of electrolyte is made

of molecule A and one percent made from B (the default tolerance is 5 percent, so the actual ranges

of acceptable total weight ratios are 1.90 to 2.10 and 0.95 to 1.05 respectively). To perform a

search for electrolytes, simply click on the Preview Electrolyte button. To perform a simple search,

make sure that Only wet cell electrolytes is unchecked. To perform a powerful search, check the

Only wet cell electrolytes box. To use a simple search for wet cells in the powerful search for

electrolytes, Limit other searches should be left unchecked. To use a simple search for valid

cycling data in the powerful search for electrolytes, Limit other searches should be checked

together with Only wet cell electrolytes. Table 9 illustrates these options.

Figure 5.9 shows the results of the simple electrolyte search. The electrolytes shown are fictitious

but the format is actual.

1. Solvents are listed in decreasing order of weight percent (normalized to 100% for the

total solvents).

2. Salts are listed in decreasing order of molality.

3. Additives are listed in decreasing order of weight percent of total electrolyte. In this

particular search, there are many results.

In order to keep response times short and to display effectively the list, a page number must be

provided with the search, and only a certain number of electrolytes will be displayed on each page.

198

This page mechanism is only active at the node searched for. In other words, when searching for

a wet cell, the page number of the electrolyte search does not matter; all electrolytes in all pages

will be used in the wet cell search.

Figure 5.8 Zoomed-in view of the electrolyte section of the search page, with an example input

for the electrolyte substructure node corresponding to the first entry in Table 5, as it

would appear just before the search. This input corresponds to an electrolyte with 2 of

A and 1 of B.

199

Figure 5.9 Results of a simple search for electrolytes based on the input of Figure 5.8.

Simple Dry Cell Search

Figure 5.10 shows a zoomed-in view of the dry cell section of the search page, with an example

input for the dry cell substructure, as it would appear just before the search. This input corresponds

200

to a dry cell with either a pouch, coin, or missing geometry category, as well as the cathode D5 E4

F[LMO] and anode [Stone, ART]. These names mean that the active material for the cathode is a

Lithium Metal Oxide (LMO) with stoichiometry ratios for atoms D, E, F of 5, 4, 1 without any

specified inactive materials, and the anode’s active material is of type Stone and has attribute

artificial. The searches are performed on subsets of all possible cathodes, anodes, and separators.

By holding down the Ctrl key and clicking on the various choices, it is possible to select exactly

the subset of cathodes which would match the search. Selected entries appear blue and

unselected entries appear with a white background. To perform a search for dry cells, simply click

on the Preview Dry Cell button, similarly with a search for dry cell lots (also known as dry cell

boxes), simply click on the Preview Box IDs button. Table 9 gives the options to control the type

of search. To perform a simple search, make sure that Only wet cell dry cells is unchecked. To

perform a powerful search, check the Only wet cell dry cells box. To use a simple search for wet

cells in the powerful search for dry cells, Limit other searches should be left unchecked. To use a

simple search for valid cycling data in the powerful search for dry cells, Limit other searches

should be checked together with Only wet cell dry cells.

Figure 5.11 and Figure 5.12 show the results of simple searches for dry cells and dry cell boxes

respectively. Figure 5.13 reproduces the same result as Figure 5.11 by using the dry cell box ID

input node.

201

X= Electrolyte

Y=Dry Cell/Dry Cell Box

X=Only wet cell electrolytes

Y=Only wet cell dry cell

Limit other searches

Simple Search

Powerful Search (projected

from Wet Cell search)

✓

Powerful Search (projected

from Valid Cycling Data

✓ ✓

Table 9 The option combinations to trigger a simple search or a powerful search on electrolytes

or dry cells.

202

Figure 5.10 Zoomed-in view of the dry cell section of the search page, with an example input

for the dry cell substructure, as it would appear just before the search. This input

corresponds to a dry cell either in with a pouch, coin, or missing geometry category,

as well as the cathode D5 E4 F[LMO] and anode [Stone, ART]. Any separator as well

as a missing separator would also be acceptable.

203

Figure 5.11 Results of a simple search for dry cells based on the input of Figure 5.10.

204

Simple Dry Cell Box Search

Figure 5.12 Results of a simple search for dry cell boxes based on the input of Figure 5.10.

205

Powerful Dry Cell Search using a Simple Dry Cell Box Search

Figure 5.13 Results of a powerful search for dry cells based on the dry cell box ID input node.

The results are equivalent to Figure 5.11 despite having a trivial dry cell substructure

input.

206

Simple Wet Cell Search

Figure 5.14 shows how simple searches for wet cells can combine elements of electrolyte searches

and dry cell boxes searches, with Figure 5.15 showing the results.

207

Figure 5.14 View of the search page, with an example input for the dry cell box ID and the

electrolyte substructure similar to Figure 5.13 and Figure 5.8 respectively.

208

Figure 5.15 Results of a simple search for wet cells based on the inputs of Figure 5.14.

Dataset Creation from Wet Cell Search

Figure 5.16 shows how to add cells to a dataset once results of a search for wet cells have been

produced.

209

Figure 5.16 Zoomed-in view of adding some cells to a dataset, from the outputs of the search

in Figure 5.15. In this case, clicking on “Register to Dataset” would ensure that cells

10001 and 10101 would be part of dataset “Testing”.

Simple Valid Cycling Data Search

Generally, a simple search for a given node performed based on an input node not directly

connected to the searched for node will rely on the existence of all the nodes on the path connecting

the input node to the searched for node. However, there are two exceptions to this rule. First, even

if a dry cell box ID does not exist for a given dry cell, the system could still find a wet cell based

210

on the dry cell substructure if a wet cell exists with the “default” dry cell box ID (see Section

5.3.1).

The other exception is the case where a valid cycling data exists, with the corresponding valid file

metadata mentioning a cell ID, but no wet cell registered with that cell ID. In the case of a simple

search for the valid cycling data based only on the given cell ID, the system would still return the

valid cycling data. In this way, a search for wet cells based on cell ID will return existing registered

wet cells even if valid cycling data is missing and vice versa.

Figure 17 shows a search for valid cycling data based on experimental conditions and filename

substructure. Figure 18 shows the result.

Figure 5.17 A search for valid cycling data based on experimental conditions and filename

substructure.

211

Figure 5.18 The results of the search from Figure 5.17.

212

Valid Cycling Data Visualization

Figure 5.19 The results of the search from Figure 5.17 with the “Show Visuals” option

checked.

213

Figure 5.19 shows the visualization of the results of the search from Figure 17. This visualization

is obtained by checking the “Show visuals” box. In this case, the cell experienced two groups of

discharge. In grey are the cycles with slow discharge and in yellow are the cycles with faster

discharge. The legend has been masked. This cell only has a single file active, and the visualization

shows a colored bar coextensive with the cycles within that file (also masked).

Valid Cycling Data Re-importing

Figure 5.20 shows how to force the system to reimport the data contained in the files with valid

file metadata associated with the given cell IDs. This data is automatically updated every day for

all files with valid file metadata.

214

Figure 5.20 The steps required to force the system to reimport the files associated with given

cells. Starting with Figure 5.19 (or Figure 5.18), first uncheck all the exclude boxes

for the cells to be reimported, then click on the “Trigger Re-Importing” button.

215

5.4.3 Datasets

By following the “Datasets” hyperlink at the top of any page, one is taken to the overview of all

datasets. Figure 5.21 shows the overview of all datasets. This is where one can create a new

dataset or click on an existing dataset to view it.

Figure 5.21 The overview of all datasets.

216

Create

Figure 5.22 Creating a new dataset step by step. a) start at the overview. b) enter a new name

a click on “Create a new Dataset”, c) the new dataset shows up in the overview and a

message of success appears.

217

Figure 5.22 shows the creation of a new dataset, simply by entering a new name. After the

dataset is created it will be empty. To add Wet Cells to the dataset, see Section 5.4.2 (Dataset

Creation from Wet Cell Search).

View

Figure 5.23 The listing of an example dataset.

To view a dataset, click on it on the overview of all datasets. Then the wet cells along with their

description is visible. Figure 5.23 shows the listing of an example dataset.

Annotate

By clicking on “View”, one is taken to the edit page for that dataset. Figure 5.24 shows the

default view of the edit page. Figure 5.25 shows how to change the name of a cell in the context

of the dataset. Figure 5.26 shows how the edit page changes with the new name.

218

Figure 5.24 The default edit page for an example dataset.

Figure 5.25 How to give a specific name to a cell in the context of a dataset. First, type the

name in the box circled in red. Finally, click “Change Specific Name”.

219

Figure 5.26 The edit page after having set a specific name for cell “10001”. Now the specific

name is visible in the dropdown menus.

Analyse

By setting filters, it is possible to separate different cycles into different data tables to be

outputted. Figure 5.27 shows how to set the most basic filter which encompasses all cycles for all

cells.

220

Figure 5.27 How to set the most inclusive of all filters. When no cell is selected, a filter is

created for every cell in the dataset. When no rules are given, the filter will match

every valid cycle for a given cell. First, enter a name for the filter in the box circled

in red, then click on “Change Filter”.

Output

The filters are used to produce CSV files every night, but in case the data is needed more

urgently, it is possible to request an immediate output. Figure 5.28 shows how to request an

immediate output of the CSV files based on the filters defined for a given dataset.

221

Figure 5.28 How to output the dataset immediately to CSV format. Simply click the “Export

Dataset” button.

5.4.4 Registering Cells

To register cells, first one must follow the “Register Cells in Bulk (Electrolyte Definition)”

hyperlink. Figure 5.29 and Figure 5.30 show the two parts of the process. First, one selects either

a range of Cell IDs or a number of Cell IDs, then one selects the appropriate box whence the

cells came (each box must be registered separately), then one selects a set of molecules, and

chooses both the default amount and whether to use the molecules in an unconventional way.

When clicking on “Change Defaults”, an array of values is generated with the defaults prefilled.

All these values can be changed, and finally, when clicking on “Register These Cells,” the

corresponding Wet Cells will be created. Note however that unless the “Override Existing

Registration” option is selected, only Cell IDs which did not already have a Wet Cell will be

222

created. When the option is selected, the previous Wet Cells are also replaced by newly created

ones.

Figure 5.29 Registering Cells (part 1). a) specify a range of Cell IDs, b) select a box, c) choose

a set of molecules and default amounts, d) override how a molecule should be used, e)

click on “Change Defaults.”

Figure 5.30 Registering Cells (part 2). A table similar to an Excel document is prefilled with

the defaults.

223

5.4.5 Fixing Bad File Metadata and Bad Cycling Data

To access the existing files, whether they have valid file metadata or not, one must follow the “All

Files” hyperlink at the top. One is then taken to the page shown in Figure 5.31, which shows how

to fix bad file metadata. After checking the “only invalid files” option and clicking on “Search

database and fix errors”, one will see a set of rows, each corresponding to a filename (on the left)

and the information deduced automatically (on the right). This information can be overridden if

inaccurate or entered if missing. To impact the desired files, remove the “Exclude” option for all

the desired files, make sure that the metadata has either been corrected, entered properly, or that

the file was marked as “Deprecated” which ignores that file henceforth and does not require valid

metadata. As a final step, press the “Make Changes” button all the way at the bottom of the screen.

224

Figure 5.31 Fixing File Metadata. The “Exclude” box must be unchecked for the system to

process a given row. Here the “Deprecate” box has been checked for the first file,

which will remove that file from the rest of the database. Both files show up after a

search for “only invalid files” because they have some missing data, including

“Temperature”.

In order to remove bad cycles, first find a small visual of the desired cell, such as in Figure 5.19,

and click on the small image. The image is a hyperlink to the page shown in

225

Figure 5.32 The “Fix Bad Cycles” page.

226

Figure 5.33 Zooming into a given cycle number region. The top panel represents all the cycles.

Then, the middle panel only shows the cycles contained within region K in the top

panel. Similarly, the bottom panel only shows the cycles within region I in the middle

panel. Zoomed-in legends have been added for readability.

227

Figure 5.34 View of a cycle after “cursing” region C in Figure 5.33. Inactive cycles are

represented visually by smaller dots. The first datapoint is obscured by the top left

legend but is visible under the “2” in “2018” on the website itself.

5.5 Future Work

In order for the Universal Battery Database to remain useful, it must be maintained, adapted, and

improved as the needs and desired uses change. To perform these operations in the code requires

a basic level of proficiency with the tools (Python, Django, HTML, SQL) and it can be hard to

find good starting points which are relatively simple but which can improve one’s skills. Therefore,

the author has assembled a basic set of improvements which should be accessible to a beginner.

5.5.1 Forms to Formsets

In Django and HTML, the interaction with the software is quite basic and essentially consists of

the server sending partially filled forms (i.e. the software equivalent of a bureaucratic paper forms,

228

but this is a technical term found in Django’s documentation103), and the user completing them,

sending them back to the server, and the server reacting to the input.

In cases where information must be specified for a set of entities (i.e. a set of cells in a dataset), it

is quite inconvenient for the user to fill a form for each separate entities, but it is a bit simpler to

write the software to support the simple case. To help with easier user interaction, there is a concept

called formsets which simply handles the transition from a single form to a set of identical forms

of variable length. With these the idea is to partially fill an array of forms with information, send

the array to the user and let the user interact with the formset essentially as they would in a program

like Excel.

The future work is as follows: look through the website and identify tasks that are currently done

with forms but would be faster and nicer to user as formsets, then rewrite the code to implement

the change.

This is a nice first future work since there are many examples of both forms and formsets in the

website and by studying a few examples, the implementation becomes clear. Furthermore, these

two ways of providing interactivity are some of the most documented, often appearing in the first

steps of any Django tutorial.

A good first case could be the form to give a specific name to a cell in the context of a specific

dataset.

5.5.2 Static Database Information

Most of the work on the Universal Battery Database has been focussed on users actively interacting

with the database, since this was the trickiest aspect to implement. However, now that the

interaction aspect is in a tolerable state, a lot of value can be added with a lot less work, simply by

229

displaying data from the database in key places. This is the simplest form of interaction since the

server need only perform a query and format the output as HTML instead of worrying about

interaction, and is among the first features discussed in the official Django tutorial.

Here are a few examples:

• The database contains a set of molecules which are displayed by an acronym. The

database has a description field (and a SMILES104 code) which can be optionally

provided, and it keeps track of which molecule is by default a solvent, a salt, or an

additive. It is trivial to create a static page which tabulates all the molecules with their

important attributes, and it could provide value when a user is unsure if their “new”

molecule has been defined before with a different name. The same goes for electrodes,

and other entities, but the set of molecules is always going to be of manageable size and

fast to query, so it is the natural place to start.

• The database contains a set of acceptable experiments, equipment, and file formats,

which could be displayed as a table, though this would require some care. This would add

value by removing the need to maintain a separate rule sheet outside the database. If the

rules displayed by the database look right, the database would enforce them. If the

separate rule sheet looks right, it has no impact on the database.

• Each valid cycling data has different groups of cycles. When looking at a cell, it would be

simple and fast to get that information and display it. Furthermore, in the case of a

dataset, it is often useful to know which groups of cycles exist when defining filters.

5.5.3 Anomaly Warnings and Troubleshooting Help

The majority of issues users encounter are quite similar. For instance,

230

• Visualizing a dataset with cells that do not have valid cycling data.

• Filenames that do not specify the start cycle when it is 0.

• Valid cycling data for a Cell ID exists, but there is no Wet Cell defined for that cell (the

cell was not registered).

• An electrolyte does not show up in a search because the correct values of salt, solvent,

and additives have not been extracted and are all written as text in the “notes”.

Many of these issues can be proactively detected, while some require the knowledge that there is

an issue.

For the proactively identifiable issues, the idea would be to write simple programs which

periodically search the database for patterns which resemble typical problems, and lists them so

that they can be displayed statically on a “potential problems” page.

For the issues which require knowledge of a problem, a “troubleshoot” page could be created, with

different options such as looking for different types of issues on a given Cell ID, Wet Cell, dataset,

etc..

5.5.4 Outputting Data in a Complete Format through the User Interface

There is a command line program which takes as input a list of Cell IDs and constructs compiled

data in a format suitable for modelling and machine learning (see Section 5.3.8). Yet, there is

already a system for organizing Cell IDs, namely the dataset system. A quite simple

improvement over the current system is to allow one to select a subset of all datasets in the

overview of all datasets page, and click a button called “Export for Modelling”. Behind the

scenes, all that would be required would be to query to database for all the wet cells belonging to

at least one of the selected datasets, and call the function used in the command line export

231

program with that list of wet cells (their Cell IDs). This would add value by making it convenient

to carefully curate specific datasets to test specific aspects of a model, as well as easily amass a

large amount of data meeting quality and diversity requirements.

5.6 Acknowledgements

This work was supported financially by the Natural Sciences and Engineering Research Council

of Canada (NSERC), and Tesla Motors.

232

Chapter 6 Conclusion and Outlook

This thesis aimed at presenting insights into the data-driven development of models and tools (i.e.

machine learning) in the context of lithium-ion cell research.

Chapter 1 recapitulated concepts in machine learning. Chapter 2 illustrated how a deep

mathematical understanding of an applied problem could be sought. Chapter 3 then illustrated how

such understanding could be leveraged to create a robust solution with machine learning

techniques. Chapter 4 illustrated how the failures of a machine learning system can be made benign

and its workings interpretable when the problem setting does not admit of a perfect solution.

Finally, Chapter 5 illustrated how data processing systems could be built to benefit the daily

operation of a laboratory and increase the scale of feasible machine learning projects.

Whenever possible, the author sought to transmit the intuition acquired during his exploration of

the topic. This was done in the text by to capturing arguments and reasoning about machine

learning system performances at the level of rigor the author used to guide design decisions. Such

arguments represent near-immediate intuitions to guide exploration and therefore are not validated

and corrected as thoroughly as proofs would be since their use can tolerate a degree of inaccuracy.

As a reminder of the principle used to develop such intuition: when modifying a machine

learning design and running a numerical experiment, seek not to increase the performance

metrics at all cost; instead, seek to be the least confused by the differences in performance

between various alternative designs, and when a change in performance is confusing, strive

to understand it. In the author’s experience, not only does this lead to much simpler and bug-

233

free code, but it also is the most powerful way to improve one’s intuition on the relevant

problems one is tasked to solve.

The set of insights for the application of machine learning techniques to relevant problems in

lithium-ion research and science more broadly is much larger than a single thesis and it evolves as

people gain more experience and reflect more on the topic. Therefore, this whole thesis was only

a preliminary introduction to this set of insights. Hopefully, the future work sections will be useful

to the next travellers on this path.

Furthermore, the applications discussed were those that seemed most relevant and achievable at

the time the author studied in the lab. Namely, Chapter 2 and Chapter 3 focus on electrochemical

impedance spectrometry, Chapter 4 focusses on fourier transform infrared spectrometry, and

Chapter 5 focussed on a database for long-term cycling data and structural description of lithium-

ion cells. As time changes, the most promising applications of machine learning will change.

Indeed, it is the hope of the author that the systems discussed in Chapter 5 will enable ambitious

studies of the forecast of lithium-ion cell degradation to be completed.

Chapter 3 presented a general paradigm to automate the fitting of empirical data to physical

models, namely to determine an inverse model parametrized with a deep neural network by directly

minimizing the mean squared error of the reconstructed empirical data, with a successful

application to EC model fitting of impedance spectra of lithium-ion cells (a failure rate of less than

1% and good fit quality on two large and diverse datasets with a single inverse model and using

ADAM to finetune the EC parameters). Crucially, this method does not require knowledge of the

true EC parameters corresponding to the empirical data, allowing the use of generated data, as well

as any available impedance spectra to train the inverse model. This makes the method easy to

implement, as well as being flexible.

234

This application allowed us to illustrate the process by which deeper understanding of the

underlying application domain may be leveraged to produce robust machine learning solutions.

In Chapter 4 we showed how the concentration of electrolyte components in lithium-ion cells can

be determined using Fourier transform infrared spectroscopy, Beer's law, and machine learning.

A physically grounded model was used. We have also open-sourced a carefully prepared dataset

and the code to replicate and extend to different electrolyte mixtures. With this new model, a

prediction error of around 1-2% for the LiPF6-to-total mass ratio, as well as all the linear

carbonates, and around 2-3% for ethylene carbonate is achieved. Furthermore, this model allows

for a useful reconstruction of the FTIR spectrum of an unknown sample. This allows the user to

detect samples significantly different from those in the dataset (e.g. due to a bad measurement, to

a significant amount of a different molecule, or to a significant change in apparatus). Furthermore,

the model is data efficient such that a model for mixtures of 5 components can be calibrated well

with less than 50 carefully prepared samples. Therefore, it should be possible to easily extend this

work to other systems.

This work refines and generalizes our previous work93 and improves the physical underpinnings

of the model. The composition of unknown electrolyte samples, with a specified set of

components, can be well determined using inexpensive and rapid measurements with attenuated

total reflectance fourier transform infrared spectroscopy.

The code is available at https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR, with all

the documentation in the README.md file.

In Chapter 5 we documented a working battery database deployed on more than 20000 long-term

cycling experiments. We described a structure of cell metadata allowing intricate searches and

https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR

235

unique naming at scale. We described how experiments spread across multiple files could be

reliably gathered, searched, visualized, organized in datasets, etc.. We also explained how the

search was implemented, how it could be used, how new cells could be added to the system, and

how inaccurate data could be fixed within the system.

236

Bibliography

1. Nelson K. STUDIES OF THE EFFECTS OF HIGH VOLTAGE ON THE

PERFORMANCE AND IMPEDANCE OF LITHIUM-ION BATTERIES. Published online

December 11, 2017. Accessed January 25, 2019.

https://DalSpace.library.dal.ca//handle/10222/73493

2. Ellis L. Probing the Causes and Effects of Parasitic Reactions in Lithium-Ion Cells.

Published online 2018. Accessed August 24, 2020. http://hdl.handle.net/10222/74117

3. Li H. STUDIES OF Ni-RICH POSITIVE ELECTRODE MATERIALS FOR LITHIUM

ION BATTERIES. Published online 2020. Accessed August 24, 2020.

http://hdl.handle.net/10222/77688

4. Weber R. Advanced Materials for Lithium Batteries. Published online 2020. Accessed

August 24, 2020. http://hdl.handle.net/10222/78832

5. Glazier S. ISOTHERMAL MICROCALORIMETRY AS A TOOL TO PROBE

PARASITIC REACTIONS IN LITHIUM-ION CELLS. Published online 2019. Accessed

August 24, 2020. http://hdl.handle.net/10222/76690

6. Louli AJ. Probing the Reversible and Irreversible Volume Expansion Observed in Li-Ion

Pouch Cells. Published online 2017. Accessed August 24, 2020.

http://hdl.handle.net/10222/73460

7. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. Accessed

December 19, 2018. https://www.deeplearningbook.org/

8. Nielsen MA. Neural Networks and Deep Learning. Published online 2015. Accessed

August 21, 2020. http://neuralnetworksanddeeplearning.com

9. Dive into Deep Learning — Dive into Deep Learning 0.15.1 documentation. Accessed

December 28, 2020. http://d2l.ai/

10. Deep Learning with PyTorch: A 60 Minute Blitz — PyTorch Tutorials 1.7.1

documentation. Accessed December 28, 2020.

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

11. Loss Functions — ML Glossary documentation. Accessed December 28, 2020. https://ml-

cheatsheet.readthedocs.io/en/latest/loss_functions.html

12. Rosasco L, Vito ED, Caponnetto A, Piana M, Verri A. Are Loss Functions All the Same?

Neural Comput. 2004;16(5):1063-1076. doi:10.1162/089976604773135104

13. Clyde M, Cetinkaya-Rundel M, Rundel C, Banks D, Chai C, Huang L. Chapter 3 Losses

and Decision Making | An Introduction to Bayesian Thinking. Accessed July 27, 2020.

https://statswithr.github.io/book/losses-and-decision-making.html#loss-functions

237

14. Kaplan W. Advanced Calculus. Subsequent edition. Addison-Wesley; 1991.

15. Griewank A. Complexity of gradients, Jacobians, and HessiansComplexity of Gradients,

Jacobians, and Hessians. In: Floudas CA, Pardalos PM, eds. Encyclopedia of Optimization.

Springer US; 2009:425-435. doi:10.1007/978-0-387-74759-0_78

16. An Intuitive Introduction to the Hessian for Deep Learning Practitioners | Machine

Learning Explained. Published February 2, 2018. Accessed December 28, 2020.

https://mlexplained.com/2018/02/02/an-introduction-to-second-order-optimization-for-

deep-learning-practitioners-basic-math-for-deep-learning-part-1/

17. Bottou L, Curtis FE, Nocedal J. Optimization Methods for Large-Scale Machine Learning.

ArXiv160604838 Cs Math Stat. Published online February 8, 2018. Accessed December 28,

2020. http://arxiv.org/abs/1606.04838

18. Kiefer J, Wolfowitz J. Stochastic Estimation of the Maximum of a Regression Function.

Ann Math Stat. 1952;23(3):462-466. doi:10.1214/aoms/1177729392

19. Robbins H. A Stochastic Approximation Method. Published online 2007.

doi:10.1214/AOMS/1177729586

20. 5 Regression Loss Functions All Machine Learners Should Know | by Prince Grover |

Heartbeat. Accessed December 28, 2020. https://heartbeat.fritz.ai/5-regression-loss-

functions-all-machine-learners-should-know-4fb140e9d4b0

21. Brownlee J. How to Control the Stability of Training Neural Networks With the Batch Size.

Machine Learning Mastery. Published January 20, 2019. Accessed December 28, 2020.

https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-

neural-networks-with-gradient-descent-batch-size/

22. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs.

Published online December 22, 2014. Accessed January 12, 2019.

http://arxiv.org/abs/1412.6980

23. IPRally blog: Recent improvements to the Adam optimizer. Accessed December 28, 2020.

https://www.iprally.com/news/recent-improvements-to-the-adam-optimizer

24. Currying - HaskellWiki. Accessed December 28, 2020. https://wiki.haskell.org/Currying

25. Czarnecki WM, Osindero S, Jaderberg M, Świrszcz G, Pascanu R. Sobolev Training for

Neural Networks. ArXiv170604859 Cs. Published online July 26, 2017. Accessed July 27,

2020. http://arxiv.org/abs/1706.04859

26. Automatic differentiation. In: Wikipedia. ; 2020. Accessed December 28, 2020.

https://en.wikipedia.org/w/index.php?title=Automatic_differentiation&oldid=995938170

238

27. 4. Fully Connected Deep Networks - TensorFlow for Deep Learning [Book]. Accessed

December 28, 2020. https://www.oreilly.com/library/view/tensorflow-for-

deep/9781491980446/ch04.html

28. Nwankpa C, Ijomah W, Gachagan A, Marshall S. Activation Functions: Comparison of

trends in Practice and Research for Deep Learning. ArXiv181103378 Cs. Published online

November 8, 2018. Accessed December 28, 2020. http://arxiv.org/abs/1811.03378

29. Rectifier (neural networks). In: Wikipedia. ; 2020. Accessed December 28, 2020.

https://en.wikipedia.org/w/index.php?title=Rectifier_(neural_networks)&oldid=992119472

30. Saha S. A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way.

Medium. Published December 17, 2018. Accessed December 28, 2020.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53

31. Brown TB, Mann B, Ryder N, et al. Language Models are Few-Shot Learners.

ArXiv200514165 Cs. Published online July 22, 2020. Accessed August 14, 2020.

http://arxiv.org/abs/2005.14165

32. Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. ArXiv170603762 Cs.

Published online December 5, 2017. Accessed July 27, 2020.

http://arxiv.org/abs/1706.03762

33. Hu D. An Introductory Survey on Attention Mechanisms in NLP Problems.

ArXiv181105544 Cs Stat. Published online November 12, 2018. Accessed January 12,

2019. http://arxiv.org/abs/1811.05544

34. Wolpert DH. The Lack of A Priori Distinctions Between Learning Algorithms. Neural

Comput. 1996;8(7):1341-1390. doi:10.1162/neco.1996.8.7.1341

35. Petibon R, Aiken CP, Sinha NN, et al. Study of Electrolyte Additives Using

Electrochemical Impedance Spectroscopy on Symmetric Cells. J Electrochem Soc.

2013;160(1):A117-A124. doi:10.1149/2.005302jes

36. Orazem ME, Tribollet B, Wiley Online Library (Online service). Electrochemical

Impedance Spectroscopy. Wiley; 2008. Accessed October 27, 2017.

http://onlinelibrary.wiley.com/book/10.1002/9780470381588

37. Equivalent Circuits - an overview | ScienceDirect Topics. Accessed December 28, 2020.

https://www.sciencedirect.com/topics/engineering/equivalent-circuits

38. Buteau S, Dahn DC, Dahn JR. Explicit Conversion between Different Equivalent Circuit

Models for Electrochemical Impedance Analysis of Lithium-Ion Cells. J Electrochem Soc.

2018;165(2):A228-A234. doi:10.1149/2.0841802jes

239

39. Buteau S, Dahn JR. Analysis of Thousands of Electrochemical Impedance Spectra of

Lithium-Ion Cells through a Machine Learning Inverse Model. J Electrochem Soc.

2019;166(8):A1611. doi:10.1149/2.1051908jes

40. Lasia A. Modeling of Experimental Data. In: Electrochemical Impedance Spectroscopy and

Its Applications. Springer, New York, NY; 2014:301-321. doi:10.1007/978-1-4614-8933-

7_14

41. Nelson KJ, d’Eon GL, Wright ATB, Ma L, Xia J, Dahn JR. Studies of the Effect of High

Voltage on the Impedance and Cycling Performance of Li[Ni0.4Mn0.4Co0.2]O2/Graphite

Lithium-Ion Pouch Cells. J Electrochem Soc. 2015;162(6):A1046-A1054.

doi:10.1149/2.0831506jes

42. Dai H, Jiang B, Wei X. Impedance Characterization and Modeling of Lithium-Ion Batteries

Considering the Internal Temperature Gradient. Energies. 2018;11(1):1-18. Accessed

December 19, 2018. https://ideas.repec.org/a/gam/jeners/v11y2018i1p220-d127410.html

43. Amey S. 7 - Constrained optimization. Accessed December 28, 2020.

https://economics.uwo.ca/math/resources/calculus-multivariable-functions/7-partial-

derivatives-constrained-optimization/content/

44. Verhulst P-F. Notice sur la loi que la population poursuit dans son accroissement. Corresp

Mathématique Phys. 1838;10:113-121.

45. Pandey S, Kumar D, Parkash O, Pandey L. Equivalent circuit models using CPE for

impedance spectroscopy of electronic ceramics. Integr Ferroelectr. 2017;183(1):141-162.

doi:10.1080/10584587.2017.1376984

46. The Reparameterization Trick. Accessed December 28, 2020.

http://gregorygundersen.com/blog/2018/04/29/reparameterization/

47. Dion F, Lasia A. The use of regularization methods in the deconvolution of underlying

distributions in electrochemical processes. J Electroanal Chem. 1999;475:28-37.

doi:10.1016/S0022-0728(99)00334-4

48. Weisstein EW. Hyperbolic Secant. Accessed December 28, 2020.

https://mathworld.wolfram.com/HyperbolicSecant.html

49. Ng AY. Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance. In:

Proceedings of the Twenty-First International Conference on Machine Learning. ICML

’04. ACM; 2004:78-. doi:10.1145/1015330.1015435

50. Zoltowski P. The power of reparametrization of measurement models in electrochemical

impedance spectroscopy. J Electroanal Chem. 1997;424(1):173-178. doi:10.1016/S0022-

0728(96)04928-5

240

51. Hooten MB, Leeds WB, Fiechter J, Wikle CK. Assessing First-Order Emulator Inference

for Physical Parameters in Nonlinear Mechanistic Models. J Agric Biol Environ Stat.

2011;16(4):475-494. Accessed December 13, 2018. https://www.jstor.org/stable/23238828

52. Rahimi A, Sapp J, Xu J, Bajorski P, Horacek M, Wang L. Examining the Impact of Prior

Models in Transmural Electrophysiological Imaging: A Hierarchical Multiple-Model

Bayesian Approach. IEEE Trans Med Imaging. 2016;35(1):229-243.

doi:10.1109/TMI.2015.2464315

53. Busuioc D. Circuit Model Parameter Extraction and Optimization for Microwave Filters.

Published online 2002. Accessed December 13, 2018.

https://uwspace.uwaterloo.ca/handle/10012/804

54. Jiang J, Lin Z, Ju Q, Ma Z, Zheng C, Wang Z. Electrochemical Impedance Spectra for

Lithium-ion Battery Ageing Considering the Rate of Discharge Ability. Energy Procedia.

2017;105:844-849. doi:10.1016/j.egypro.2017.03.399

55. Stević Z, Vujasinović MR, Radunović M. Estimation of Parameters Obtained by

Electrochemical Impedance Spectroscopy on Systems Containing High Capacities. Sensors.

2009;9(9):7365-7373. doi:10.3390/s90907365

56. Buteau S. Finding Hadamard and (epsilon,delta)-Quasi-Hadamard Matrices with

Optimization Techniques. Published online 2016. doi:10.20381/ruor-5427

57. Seif G. The 5 Clustering Algorithms Data Scientists Need to Know. Medium. Published

December 13, 2020. Accessed December 28, 2020. https://towardsdatascience.com/the-5-

clustering-algorithms-data-scientists-need-to-know-a36d136ef68

58. Clustering | Types Of Clustering | Clustering Applications. Accessed December 28, 2020.

https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-

methods-of-clustering/

59. Kawaguchi K, Bengio Y. Depth with nonlinearity creates no bad local minima in ResNets.

Neural Netw. 2019;118:167-174. doi:10.1016/j.neunet.2019.06.009

60. Kawaguchi K, Huang J. Gradient Descent Finds Global Minima for Generalizable Deep

Neural Networks of Practical Sizes. ArXiv190802419 Cs Math Stat. Published online June

16, 2020. Accessed August 14, 2020. http://arxiv.org/abs/1908.02419

61. The Simple Math of Evolution - LessWrong. Accessed December 28, 2020.

https://www.lesswrong.com/s/MH2b8NfWv22dBtrs8

62. Bode plot. In: Wikipedia. ; 2020. Accessed December 28, 2020.

https://en.wikipedia.org/w/index.php?title=Bode_plot&oldid=994123816

63. Prior probability. In: Wikipedia. ; 2020. Accessed December 28, 2020.

https://en.wikipedia.org/w/index.php?title=Prior_probability&oldid=995025735

241

64. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition.

ArXiv151203385 Cs. Published online December 10, 2015. Accessed January 1, 2019.

http://arxiv.org/abs/1512.03385

65. Bayesian inference. In: Wikipedia. ; 2020. Accessed December 28, 2020.

https://en.wikipedia.org/w/index.php?title=Bayesian_inference&oldid=995551877

66. Brownlee J. Why Initialize a Neural Network with Random Weights? Machine Learning

Mastery. Published July 31, 2018. Accessed December 28, 2020.

https://machinelearningmastery.com/why-initialize-a-neural-network-with-random-weights/

67. Complexity Penalties in Statistical Learning - LessWrong. Accessed December 28, 2020.

https://www.lesswrong.com/posts/boBSTYL3K4KSbh4ec/complexity-penalties-in-

statistical-learning

68. tf.stop_gradient | TensorFlow Core v2.4.0. Accessed December 28, 2020.

https://www.tensorflow.org/api_docs/python/tf/stop_gradient

69. Kendall A, Gal Y, Cipolla R. Multi-Task Learning Using Uncertainty to Weigh Losses for

Scene Geometry and Semantics. In: ; 2018:7482-7491. Accessed December 28, 2020.

https://openaccess.thecvf.com/content_cvpr_2018/html/Kendall_Multi-

Task_Learning_Using_CVPR_2018_paper.html

70. Sarkar T. Synthetic data generation — a must-have skill for new data scientists. Medium.

Published July 18, 2019. Accessed December 28, 2020.

https://towardsdatascience.com/synthetic-data-generation-a-must-have-skill-for-new-data-

scientists-915896c0c1ae

71. Iwana BK, Uchida S. An Empirical Survey of Data Augmentation for Time Series

Classification with Neural Networks. ArXiv200715951 Cs Stat. Published online July 31,

2020. Accessed December 28, 2020. http://arxiv.org/abs/2007.15951

72. Shorten C, Khoshgoftaar TM. A survey on Image Data Augmentation for Deep Learning. J

Big Data. 2019;6(1):60. doi:10.1186/s40537-019-0197-0

73. Reed S, de Freitas N. Neural Programmer-Interpreters. ArXiv151106279 Cs. Published

online February 29, 2016. Accessed December 28, 2020. http://arxiv.org/abs/1511.06279

74. Zhang Y, Yang Q. A Survey on Multi-Task Learning. ArXiv170708114 Cs. Published

online July 26, 2018. Accessed December 28, 2020. http://arxiv.org/abs/1707.08114

75. Honchar A. Multitask learning: teach your AI more to make it better. Medium. Published

December 2, 2018. Accessed December 28, 2020.

https://towardsdatascience.com/multitask-learning-teach-your-ai-more-to-make-it-better-

dde116c2cd40

76. Kocmi T. Exploring Benefits of Transfer Learning in Neural Machine Translation.; 2020.

242

77. Wang Z, Dai Z, Poczos B, Carbonell J. Characterizing and Avoiding Negative Transfer. In:

; 2019:11293-11302. Accessed December 28, 2020.

https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_Characterizing_and_Avoi

ding_Negative_Transfer_CVPR_2019_paper.html

78. Alake R. Understand Local Receptive Fields In Convolutional Neural Networks. Medium.

Published June 12, 2020. Accessed December 28, 2020.

https://towardsdatascience.com/understand-local-receptive-fields-in-convolutional-neural-

networks-f26d700be16c

79. Understanding and implementing a fully convolutional network (FCN) | by Himanshu

Rawlani | Towards Data Science. Accessed December 28, 2020.

https://towardsdatascience.com/implementing-a-fully-convolutional-network-fcn-in-

tensorflow-2-3c46fb61de3b

80. Piramanayagam S, Saber E, Schwartzkopf W, Koehler F. Supervised Classification of

Multisensor Remotely Sensed Images Using a Deep Learning Framework. Remote Sens.

2018;10:1429. doi:10.3390/rs10091429

81. Ioffe S. Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-

Normalized Models. ArXiv170203275 Cs. Published online February 10, 2017. Accessed

January 1, 2019. http://arxiv.org/abs/1702.03275

82. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A Simple

Way to Prevent Neural Networks from Overfitting. J Mach Learn Res. 2014;15:1929-1958.

Accessed January 1, 2019. http://jmlr.org/papers/v15/srivastava14a.html

83. [Coding tutorial] Padding and masking sequence data - Sequence Modelling. Coursera.

Accessed December 28, 2020. https://www.coursera.org/lecture/customising-models-

tensorflow2/coding-tutorial-padding-and-masking-sequence-data-4cbXR

84. Brownlee J. A Gentle Introduction to Imbalanced Classification. Machine Learning

Mastery. Published December 22, 2019. Accessed December 28, 2020.

https://machinelearningmastery.com/what-is-imbalanced-classification/

85. Understanding Data Bias. Types and sources of data bias | by Prabhakar Krishnamurthy |

Towards Data Science. Accessed December 28, 2020.

https://towardsdatascience.com/survey-d4f168791e57

86. Rocca B. Handling imbalanced datasets in machine learning. Medium. Published March 30,

2019. Accessed December 28, 2020. https://towardsdatascience.com/handling-imbalanced-

datasets-in-machine-learning-7a0e84220f28

87. Andrychowicz M, Denil M, Gomez S, et al. Learning to learn by gradient descent by

gradient descent. ArXiv160604474 Cs. Published online November 30, 2016. Accessed

December 28, 2020. http://arxiv.org/abs/1606.04474

243

88. Alammar J. The Illustrated Transformer. Accessed December 28, 2020.

http://jalammar.github.io/illustrated-transformer/

89. Kazemnejad A. Transformer Architecture: The Positional Encoding. Published September

20, 2019. Accessed August 18, 2020.

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

90. Ke G, He D, Liu T-Y. Rethinking Positional Encoding in Language Pre-training.

ArXiv200615595 Cs. Published online July 8, 2020. Accessed December 28, 2020.

http://arxiv.org/abs/2006.15595

91. Einops — a new style of deep learning code. Accessed February 19, 2021.

https://arogozhnikov.github.io/2018/12/06/einops.html

92. Buteau S, Lee E, Young S, Hames S, Dahn JR. User-Friendly Freeware for Determining the

Concentration of Electrolyte Components in Lithium-Ion Cells Using Fourier Transform

Infrared Spectroscopy, Beer’s Law, and Machine Learning. J Electrochem Soc.

2019;166(14):A3102. doi:10.1149/2.0151914jes

93. Ellis LD, Buteau S, Hames SG, Thompson LM, Hall DS, Dahn JR. A New Method for

Determining the Concentration of Electrolyte Components in Lithium-Ion Cells, Using

Fourier Transform Infrared Spectroscopy and Machine Learning. J Electrochem Soc.

2018;165(2):A256-A262. doi:10.1149/2.0861802jes

94. Sahore R, Dogan F, Bloom ID. Identification of Electrolyte-Soluble Organic Cross-Talk

Species in a Lithium-Ion Battery via a Two-Compartment Cell. Chem Mater. 2019;31(8).

doi:10.1021/acs.chemmater.9b00063

95. Thompson LM, Stone W, Eldesoky A, et al. Quantifying Changes to the Electrolyte and

Negative Electrode in Aged NMC532/Graphite Lithium-Ion Cells. J Electrochem Soc.

2018;165(11):A2732-A2740. doi:10.1149/2.0721811jes

96. Bowman J, Emerson S, Darnovsky M. The Practical SQL Handbook: Using SQL Variants.

4th Edition. Addison-Wesley Professional

97. Griffiths PR, De Haseth JA. Fourier Transform Infrared Spectrometry. 2nd ed. Wiley;

1986.

98. Goodfellow IJ, Shlens J, Szegedy C. Explaining and Harnessing Adversarial Examples.

ArXiv14126572 Cs Stat. Published online March 20, 2015. Accessed August 25, 2020.

http://arxiv.org/abs/1412.6572

99. Du K. Neware BTS9000 – The most sophisticated tester ever. Published January 9, 2019.

Accessed August 6, 2020. https://newarebattery.com/neware-bts9000-the-most-

sophisticated-tester-ever/

244

100. Fath JP, Alsheimer L, Storch M, et al. The influence of the anode overhang effect on the

capacity of lithium-ion cells – a 0D-modeling approach. J Energy Storage.

2020;29:101344. doi:10.1016/j.est.2020.101344

101. Gyenes B, Stevens DA, Chevrier VL, Dahn JR. Understanding Anomalous Behavior in

Coulombic Efficiency Measurements on Li-Ion Batteries. J Electrochem Soc.

2014;162(3):A278. doi:10.1149/2.0191503jes

102. CSV, Comma Separated Values (RFC 4180). Published online November 27, 2012.

Accessed August 3, 2020.

https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml

103. Django Software Foundation. Django.; 2020. Accessed July 27, 2020.

https://djangoproject.com

104. SMILES Tutorial | Research | US EPA. Accessed December 28, 2020.

https://archive.epa.gov/med/med_archive_03/web/html/smiles.html

