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Abstract 

Progress in lithium-ion cells research is largely a matter of determining which aspect of the cell’s 

design and operation will lead to longer life, higher energy-density, and lower costs. These 

attributes can easily be characterized empirically but determining if a cell will last 10 or 20 years 

in the naïve way is much too slow (i.e. it would take between 10 to 20 years). The same attributes 

could in principle be determined from theory alone, but this is a very challenging problem and is 

currently unsolved.  

It would therefore seem that the way forward is to leverage some experimental results obtained in 

a reasonable time to estimate the key attributes of various cell designs and make progress towards 

better designs. The development of models and tools using data (i.e. machine learning) is a 

powerful and much studied toolbox which in principle is ideally suited to the task at hand, but care 

must be taken in its application. If this thesis withstands the test of time, it will likely do so as the 

initiation of a process of cross-pollination of the field of machine learning towards lithium-ion 

cells research. To this end, we offer two clear applications of machine learning to the 

understanding of specific measurements. We apply machine learning to impedance spectroscopy 

and then to Fourier-transform infrared spectrometry. Finally, we offer an example of a data 

processing system scaled to support the long-term cycling data of a laboratory in the real-world. 

As such, it is our hope that the process of cross-pollination will be helped by these concrete in-

depth examples of applying the techniques of machine learning, and by a scalable system which 

organized tens of thousands of experiments to be used for future inquiry.  
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where the parameters of the EC model are given by θEC. Figure 2.5 

shows the EC model itself, and Figure 2.7 gives the equations for each 

component. 

MSE(θEC; 𝑠) The mean squared error of a fit is a function which returns a positive 
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measured spectrum 𝑠. Let the spectrum 𝑠 be given as a list of angular 

frequencies ω𝑖 and the corresponding impedances 𝑍𝑖, where 𝑖 =
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Then, 

MSE(θEC; 𝑠) =
1

𝑁
∑|𝑍EC(ω𝑖; θEC) − 𝑍𝑖|

2

𝑁

𝑖=1

 

 

In words, it is the mean of the squared differences between the 

measured impedances and the impedance of the EC model. 

θ
EC* The optimal EC parameters for a given measured spectrum is a small 

vector of real numbers. Let 𝑠 be the measured spectrum under 

consideration.  

Then,  θ
EC* = argminθEC

MSE(θEC; 𝑠) 
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In words, the optimal EC parameters for a given spectrum are the EC 

parameters which minimize the mean squared error for that given 

spectrum. 

θInv The inverse model's parameters are a large vector of real numbers. In 

this paper, they are the parameters of the neural network representing 

the inverse model. 

𝑓Inv(𝑠; θInv) The inverse model is a function which, given as input a spectrum 𝑠 as 

well as the inverse model's parameters θInv, will return a small vector 

of real numbers (an approximation of the optimal EC parameters for 

the given spectrum). In Chapter 3, this function is computed as a neural 

network. 

ℒ(θInv; 𝑆) The average MSE error over a set 𝑆 of spectra is a function returning a 

positive number (the average MSE) when evaluated with the inverse 

model's parameters θInv and a set 𝑆 of spectra. Let 𝑠𝑗 be the 𝑗-th 

spectrum in the set 𝑆 with 𝑗 = 1,2, …𝑀.  

Then,   ℒ(θInv; 𝑆) =
1

𝑀
∑ MSE𝑀

𝑗=1 (𝑓Inv(𝑠𝑗; θInv); 𝑠𝑗)  

In words, the average of the MSE over a set of spectra. 

θInv* The optimal inverse model's parameters for a given set of measured 

spectra is a large vector of real numbers. Let 𝑆 be the set of measured 

spectra under consideration.  
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Then,  θInv* = argminθInv
ℒ(θInv; 𝑆)  

In words, the optimal inverse model's parameters for a given set of 

spectra are the θInv parameters which minimize the average MSE for 

that given set of spectra when the output from the inverse model is used 

to produce the EC parameters for each spectrum. 
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Chapter 1 Introduction 

This thesis discusses the development of models and tools using data (i.e. machine learning) in the 

context of lithium-ion cell research. Machine learning is a powerful toolbox, but care must be 

taken in its application, especially on a novel domain. 

Chapter 1 provides a minimal foundation in machine learning. Chapter 2 analyses the topic of 

electrochemical impedance spectroscopy to extract key mathematical properties. Chapter 3 then 

leverages such properties to create a robust solution with machine learning techniques. Chapter 4 

studies interpretable predictions (i.e. where the process is understandable by a human) in the 

context of Fourier-transform infrared spectrometry. Finally, Chapter 5 illustrates how data 

processing systems can be built to benefit the daily operation of a laboratory and increase the scale 

of feasible machine learning projects.  

The applications discussed were those that seemed most relevant and achievable at the time the 

author studied in the lab. Namely, Chapter 2 and Chapter 3 focus on electrochemical impedance 

spectrometry, Chapter 4 focusses on Fourier-transform infrared spectrometry, and Chapter 5 

focussed on a database for long-term cycling data and structural description of lithium-ion cells. 

Thorough introductions to the topic of lithium-ion cells, their known physical characteristics, and 

the measurements which can be performed on them exist. We shall assume that the interested 

reader can refer to those introductions as needed1–6.  

Similarly, quality references on the topics of machine learning, optimization, and neural networks 

exist. We shall assume that the interested reader can use these references as needed7–10. Indeed, all 

that follows in the introduction is either directly discussed in these standard references7 or is a 

straight-forward application of undergraduate mathematics.  
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Next, we recapitulate various important points in the theory of optimization (Section 1.1) and 

neural networks (Section 1.2) useful to understand the rest of the thesis. Finally, Section 1.3 gives 

guidelines for building a useful intuition about machine learning. 

For readers with a “physics background” (if you want to see something used before it is built), the 

thesis might be more enjoyable if Chapter 1 is treated as an occasional reference and Chapters 2 

through 5 as the interesting applications. In the extreme case, it might be advisable to start at 

Chapter 5 and work your way backwards until Chapter 1. 

For readers with a “mathematical background” (if you want to start from nothing and build 

concepts in order with the usage at the end), the thesis should probably be read in order, and the 

main references7 should be kept nearby while reading the thesis. 

1.1 Optimization 

1.1.1 The Optimization Problem 

Given a function from N real numbers to a single real number (henceforth called the loss function11–

13), the minimization problem (henceforth called the optimization problem) is to find settings of 

the inputs such that the output is as small as possible. More formally, given a function Loss: ℝ𝑁 →

ℝ, we say that an input 𝑥∗ ∈ ℝ𝑁 is a minimum of the function  Loss and we write 

𝑥∗ = argmin
𝑥∈ℝ𝑁

Loss(𝑥) 

if for every possible inputs 𝑥′ ∈ ℝ𝑁, Loss(𝑥∗) ≤ Loss(𝑥′).  

The optimization problem is to find such a minimum. 

The introductory literature is full of examples and the rest of this thesis contains various examples 

as well. To keep things concrete and simple, we also give a minimalist example. Consider the 
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space of triplets of real numbers ℝ3 with (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, and consider the loss function given 

by: 

Loss((𝑥1, 𝑥2, 𝑥3)) = (1 − √𝑥1
2 + 𝑥2

2 + 𝑥3
2)

2

 

This loss function will be minimized whenever √𝑥1
2 + 𝑥2

2 + 𝑥3
2 = 1, which means that a 

minimum 𝑥∗ = (𝑥1, 𝑥2, 𝑥3) must be a unit vector in the usual Euclidian 3-D space.  

1.1.2 Gradients 

To properly discuss optimization, we must remind the reader about a few mathematical objects.  

Linear functions 𝑓:ℝ𝑁 → ℝ are functions which satisfy 𝑓(𝛼𝒖 + 𝛽𝒗) = 𝛼𝑓(𝒖) + 𝛽𝑓(𝒗) for all 

scalars 𝛼, 𝛽 ∈ ℝ and all input vectors 𝒖, 𝒗 ∈ ℝ𝑁. 

Affine functions are simply the sum of a linear function with a constant. 

Differentiable functions 𝑓:ℝ𝑁 → ℝ are functions which can be approximated locally by a linear 

(affine) function. Namely, for a point 𝒂 ∈ ℝ𝑁, and for any point 𝒂 + ∆𝒂 ∈ ℝ𝑁 such that |∆𝒂| is 

small, there will exist a vector 𝛁𝒇 ∈ ℝ𝑁 such that 𝑓(𝒂 + ∆𝒂) ≈ 𝑓(𝒂) + ∆𝒂 ∙ 𝛁𝒇.  

Here, 𝒖 ∙ 𝐯 is the dot product of two vectors.  

This vector 𝛁𝒇 ∈ ℝ𝑁 is known as the gradient of f evaluated at point a. Each component of the 

gradient is a partial derivative with respect to a component of the input. 

Note that for a function with vector outputs, one can consider the gradients of each of the outputs, 

and assemble them into a matrix where rows correspond to input indices and columns to output 

indices (or vice-versa), and elements are the partial derivatives of a given output with respect to a 
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given input. This is called the Jacobian14,15. For instance, if 𝒚 = 𝑓(𝒙), then the position i,j in the 

Jacobian would be 
𝜕𝒚𝑗

𝜕𝒙𝑖
. 

This can be applied recursively. For instance, the gradient of a scalar function f is a function with 

vector outputs, so if everything is twice differentiable, we can take the Jacobian of the gradient of 

f, which is known as the Hessian16 of f. Concretely, it is a matrix of second order partial derivatives 

of f with respect to its inputs. For instance, if 𝒚 = 𝑓(𝒙), then the position i,j in the Hessian would 

be 
𝜕2𝑦

𝜕𝒙𝑖𝜕𝒙𝑗
. 

1.1.3 Gradient Descent 

Given a starting point a and an affine loss function which (by definition) can be written as 

Loss(𝑎 + ∆𝑎) = Loss(𝑎) + ∆𝑎 ∙ ∇Loss, what is the direction in input space from 𝑎 which most 

reduces the value of Loss? In other words, if we are restricted to producing a new input 𝑎 + ∆𝑎 

such that |∆𝑎| = 𝜂 is fixed, then what choice of ∆𝑎 will yield the smallest possible value for Loss?  

Simple algebra reveals that 

∆𝑎 = −
𝜂

|∇Loss|
∇Loss 

produces the smallest possible value under these constraints. 

More generally, the negative direction of the gradient −
1

|∇Loss|
∇Loss is the direction in which 

Loss diminishes most rapidly. This remains true locally for differentiable functions despite the fact 

that the gradient of Loss(𝑥) is not constant with respect to x in general. 

Therefore, a simple iterative algorithm to attempt to solve the optimization problem of a 

differentiable loss function Loss(𝑥) is to: 
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1 Choose a starting point 𝑥(0) = 𝑥(𝑠𝑡𝑎𝑟𝑡). 

2 Compute the gradient of the loss function at the present point 𝑔 = ∇Loss(𝑥(𝑡)). 

3 Take a step 𝑥(𝑡+1) = 𝑥(𝑡) − 𝜂𝑔 

4 Go back to step 2 with a higher value of 𝑡 unless Loss(𝑥(𝑡+1)) is sufficiently small or 𝑡 is 

sufficiently large. 

This procedure is known as gradient descent17–19. 

1.1.4 Loss Functions Defined by Datasets 

Typically in machine learning, there will be a model 𝑓:ℝ𝑁 × ℝ𝑀 → ℝ which is written as 𝑓(𝑥; 𝜃) 

where 𝑥 ∈ ℝ𝑁 is the input of the model and 𝜃 ∈ ℝ𝑀 are the parameters of the model, and then a 

possible loss function could be defined as the mean squared error20 over a dataset 𝒟 =

{(𝑥(𝑖), 𝑦𝑖)|𝑖 = 1,… ,  𝑚} where 𝑥(𝑖) ∈ ℝ𝑁 and 𝑦𝑖 ∈ ℝ for 𝑖 = 1,… ,  𝑚. Namely,  

Loss(𝜃) =
1

|𝒟|
∑ |𝑓(𝑥(𝑖); 𝜃) − 𝑦𝑖|

2

(𝑥(𝑖),𝑦𝑖)∈𝒟

 

This example is a standard supervised learning problem setting. In general, though the optimizer 

views the loss function as a function of a given set of parameters 𝜃, it is possible to construct such 

a loss function out of pieces that have other dependencies (such as 𝑓(𝑥; 𝜃)) and data (such as 

{(𝑥(𝑖), 𝑦𝑖)|𝑖 = 1,… ,  𝑚}).  

A reader of a previous draft of this thesis remarked that the relationship between this section and 

“the price of rice in China” was unclear and requested an example to clarify that. 

Therefore, consider a setting where 𝑁 = 2, and 𝑥 represents a pair of values, where the first 

element is the number of acres of land in China devoted to rice cultivation in a given year and the 
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second element is the number of people living in China in the same year. Correspondingly, y would 

be the average price of rice sold in China over that same year relative to the value of gold. For this 

example, the model could be selected with various forms, but an example of a linear model would 

make 𝑀 = 2 and 𝜃 would represent a pair of values such that the model is defined as 

𝑓((𝑥1, 𝑥2); (𝜃1, 𝜃2)) = 𝜃1𝑥1 + 𝜃2𝑥2. 

Then, the dataset could consist of {(𝑥(𝑖), 𝑦𝑖)|𝑖 = 1,… ,  100}) with 𝑥(𝑖) representing the land and 

population for the i-th year of the 19-th century, and similarly with 𝑦𝑖 representing the price of rice 

in China (in grams of gold) for that given year. For a given setting of (𝜃1, 𝜃2), the value of Loss(𝜃) 

would therefore represent the mean squared error over the dataset for the very simple pricing model 

𝑓(𝑥; (𝜃1, 𝜃2)). 

1.1.5 Stochastic Gradients 

As the size of the dataset increases, the cost of computing the exact gradients of the loss function 

described in Section 1.1.5 increases proportionally. For the large datasets often required to 

properly define the loss function, such computations quickly become infeasible.  

Since gradient descent is an iterative method, a key idea is to replace the gradients of the loss 

function at each step by stochastic approximations which only depend on small subsets of the data. 

For instance, the gradients of Loss(𝜃) =
1

|𝒟|
∑ |𝑓(𝑥(𝑖); 𝜃) − 𝑦𝑖|

2

(𝑥(𝑖),𝑦𝑖)∈𝒟  can be estimated by the 

gradients of 
1

|𝒟′|
∑ |𝑓(𝑥(𝑖); 𝜃) − 𝑦𝑖|

2

(𝑥(𝑖),𝑦𝑖)∈𝒟′  where 𝒟′ ⊂ 𝒟 is a random subset of the data with 

size |𝒟′| < |𝒟| (typically can be any number of datapoints, from a single datapoint up to a million 

points depending on what is practical to compute on the provided hardware). The key point is that 

this subset of the data is chosen at random at each iteration of the gradient descent, essentially 

imitating gradient descent but with some noise added due to the choice of random subset21. 
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1.1.6 ADAM 

The famous ADAM (which stands for adaptive moment estimation) algorithm17,22,23 is a variation 

on gradient descent which estimates running averages of the gradient (vector of partial derivatives) 

and the averages of the squares of the gradient (vector of squares of partial derivatives), and takes 

a step proportional to the ratio of the averaged gradient and the square root of the squares of the 

gradient. In general, taking a step proportional to the averaged gradient provides a momentum to 

the gradient descent algorithm such that the steps will only slowly change when the gradient 

changes.  

By dividing each average partial derivative by the square root of the average squares of the same 

partial derivative, we will get a number close to +1 or -1 in cases where the gradient is constant 

for several steps (since |𝑥| = |
1

𝑛
∑ 𝑥𝑛

𝑖=1 | = √
1

𝑛
∑ 𝑥2𝑛

𝑖=1  for any number x), but in cases where x 

varies a lot over several steps, the denominator will become much larger relative to the numerator, 

and we will get a number close to 0. Hence, for each partial derivative, the steps will be either 

positive or negative (depending on the sign of the average partial derivative), and their magnitude 

will be controlled by the relative scale of the variance over the last several steps of gradient descent. 

1.2 Neural Networks 

1.2.1 Tensors 

To properly discuss neural networks, we must remind the reader about a few mathematical objects.  

First, elements of a space such as ℝ𝑁 are referred to as vectors, and elements of ℝ𝑁 × ℝ𝑀 are 

referred to as matrices. In general, such elements are collections of real numbers which can be 

indexed by one natural number (vectors) or two natural numbers (matrices). This notion can be 

generalized to collections of real numbers which can be indexed by n natural numbers (henceforth 
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called n-tensors), and denote the space to which they belong as ∏ ℝ𝑁𝑗𝑛
𝑗=1 , where the j-th index 

must take values between 1 and 𝑁𝑗 inclusively. If this view is unclear, an equivalent view is that 

n-tensors are real-valued functions from tuples of n natural numbers.  

In this view, if A is a 3-tensor, in ℝ𝑁 × ℝ𝑀 × ℝ𝑃, then for every natural 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤

𝑀, 1 ≤ 𝑘 ≤ 𝑃, 𝐴 outputs a real number, written 𝐴𝑖𝑗𝑘. As a shorthand, we denote the bounds on 

individual indices by saying that A is an N by M by P tensor. Here, (𝑁,𝑀, 𝑃) is called the 

dimensionality of A and 3 is called the arity of A. Note that some important neural network 

operations are defined for n-tensors of a fixed dimensionality, while others only require a fixed 

arity. 

A similar object would be a set 𝑆 of n-tensors S ⊂ ∏ ℝ𝑁𝑗𝑛
𝑗=1  where any given element of this set 

is a n-tensor. Here the number of tensors in 𝑆 is called the size of 𝑆. Such sets of tensors with every 

tensor having the same dimensionality are called uniform sets. In general sets of tensors need not 

be uniform. Note that some important neural networks are defined for uniform sets of tensors with 

arbitrary set size. 

Finally, note that a n-tensor can be viewed as a sequence of (𝑛 − 1)-tensors. For instance with a 

N by M by P tensor, we could say A is an N-sequence of M by P tensors and write (𝐴𝑖)𝑖=1
𝑁  where 

each 𝐴𝑖 is a M by P tensor with elements defined as (𝐴𝑖)𝑗𝑘 = 𝐴𝑖𝑗𝑘 (this view of a tensor as a 

sequence of tensors is sometimes called currying in reference to mathematician Haskell Curry24). 

In this case, A would be viewed as a sequence of matrices. Here, N is the sequence length. Such 

sequences where each tensor has the same dimensionality are called uniform sequences. In general, 

sequences of tensors need not be uniform. Note that some important neural networks are defined 

for uniform sequences of tensors with arbitrary sequence length. 
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When it will be desired to generically refer to a space potentially containing tensors, sets of tensors, 

or sequences of tensors, we shall use the letters 𝒯, 𝒰, or 𝒱 and call it a space of tensor-like objects. 

In the greatest generality, sequences of sequences (etc.) or sets of sets (etc.) of tensors are also 

possible. 

1.2.2 Basic Mathematical Definition of Neural Networks 

A neural network is simply a function of a tensor-like object 𝑥 ∈ 𝒯 (the input of the neural 

network), a tensor-like object 𝜃 ∈ 𝒰 (the neural network parameters), and returning a tensor-like 

object 𝑦 ∈ 𝒱 (the output of the neural network). Mathematically, we denote a given model as 

ymodel(x; θ) where “model” is replaced by a name to distinguish a given neural network from 

another. 

The reason for calling these objects networks is that they can be represented graphically as 

networks (also known as graphs) and composed together into bigger networks. A name more 

familiar to physicists might have been neural circuits, since the neural networks considered here 

can be represented graphically as circuits and composed into bigger circuits, but for historical 

reasons, the name is neural network. Indeed, if this section seems too abstract on first read, the 

reader is encouraged to skip to Section 2.1 (discussing equivalent circuits to model impedance 

spectra) and immediately come back to reread the current section. There is a strong parallel 

between equivalent circuits and neural networks, though the specific ways of building a bigger 

neural network out of smaller neural networks differs from the ways of building a bigger equivalent 

circuit out of smaller equivalent circuits. 
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Given two neural networks denoted as y1(x; θ1) , y2(x; θ2) such that the set of possible outputs of 

the first is contained in the set of inputs of the second, we can define a third neural network called 

“serial composition of network 1 with network 2” as 

y1→2(x; θ1, θ2) = y2(y1(x; θ1); θ2) 

Similarly, if the two networks always produce outputs which can be summed given the same input, 

we can define another neural network called “the parallel sum of models 1 and 2” as 

y1+2(x; θ1, θ2) =  y1(x; θ1) + y2(x; θ2) 

 

This can be generalized further to “the parallel application of models 1 and 2” 

y1||2(x; θ1, θ2) =  (y1(x; θ1), y2(x; θ2)) 

which is a neural network outputting a 2-sequence of tensor-like objects. 

If the neural network parameters θ are fixed, the neural network y(x; θ) can be viewed as a 

function from input x to output y. 

The main reasons for studying neural networks is that they can represent very complicated 

functional dependencies (Section 1.2.3), and they give rise to tractable optimization problems 

(Section 1.2.4). The optimization problem here is finding the parameters θ which minimize a loss 

function over a dataset. 
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1.2.3 Universal Function Approximation 

A reader skeptical that very complicated functional dependencies can be well approximated is 

invited to look at the literature on Universal Function Approximation8 (especially the referenced 

visual proofs). For many common instances of neural networks this literature proves the following:  

For any function f (satisfying some non-pathology criteria), any probability distribution over the 

inputs of f, and any given desired precision 𝜀, there always exists a setting of the parameters θ such 

that the given neural network, when viewed as a function from input to output, approximates f 

within precision 𝜀 on average over the given probability distribution on inputs.  

Note that this only holds in the limit of very big neural networks. 

The details are not of much relevance in the context of this thesis, since the primary question is to 

achieve some practical precision with a given function and a given dataset. 

However, it is worth noting that the results can often extend to not only approximate well the 

function f itself, but also that the neural network’s derivatives can approximate the derivatives of 

f while the outputs of the neural network approximates f itself25. 

1.2.4 Backpropagation 

Neural networks are usable in practice because the outputs are easily differentiable with respect to 

the parameters and with respect to the inputs as well.  

This property in turn has the advantage that if it holds for neural network 1 and for neural network 

2, then it also holds for the serial composition of network 1 with network 2 and similarly with the 

parallel sum. More generally, when making big networks out of smaller networks each having this 

property, the big network with also have this property, allowing gradients to be computed and 

optimization to be performed in a tractable manner. 
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Recall the rules of differentiation such that the derivative of the sum is the sum of the derivatives, 

the derivative of the products follows the Leibnitz rule, and the derivative of a composition follows 

the chain rule. These rules can be applied in a generic algorithm called backpropagation which in 

essence allows one to simply define the partial derivatives for individual simple neural networks, 

as well as the way in which the simple neural networks are composed together into the final 

complex neural network, and from these pieces of information, to mechanically express the partial 

derivatives of the outputs of the final complex neural network with respect to its parameters and 

inputs26. 

Backpropagation is the way gradients of the loss function are computed in practice for neural 

networks. And it is why there is a constant emphasis on the differentiability of the neural networks 

introduced in the literature. 

Typically, neural networks which are very simple in structure, and which are not implemented as 

compositions of other smaller neural networks are called layers, and practical neural networks are 

often defined as combinations of predefined layers. 

Once again we mention that many excellent references exist on the topic7, but we also recapitulate 

a few key layers for each type of tensor-like object described in Section 1.2.1.  

• For tensors of fixed dimensionality, Section 1.2.5 discusses fully connected layers. 

• For uniform sequences of tensor, Section 1.2.6 discusses convolutional layers. 

• For uniform sets of tensors, Section 1.2.7 discusses averaging and self-attention layers. 

1.2.5 Fully Connected Layers 

The most basic neural network worthy of the name is a linear function from vectors to vectors. For 

1-tensor inputs 𝑥 ∈ ℝ𝑁 with dimensionality N, and 1-tensor outputs 𝑦 ∈ ℝ𝑀 with dimensionality 
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M, the parameters of the linear layer are 𝜃 = 𝑊 ∈ ℝ𝑁 × ℝ𝑀 a 2-tensor (i.e. a matrix) often denoted 

by the letter W. 

Then, the layer is defined such that 𝑦 = 𝑦linear(𝑥,𝑊), with 𝑦𝑗 = ∑ 𝑊𝑖𝑗𝑥𝑖
𝑁
𝑖=1 . 

A close cousin of the linear function is the affine function27, with parameters 𝜃 = (𝑊, 𝑏) with 

𝑊 ∈ ℝ𝑁 × ℝ𝑀 and 𝑏 ∈ ℝ𝑀. Then the affine layer is defined such that 𝑦 = 𝑦affine(𝑥, (𝑊, 𝑏)), with 

𝑦𝑗 = 𝑏𝑗 + ∑𝑊𝑖𝑗𝑥𝑖

𝑁

𝑖=1

 

Note that it is possible to define affine or linear transformations between any space of n-tensors 

with fixed dimensionality. For instance, if the inputs are 3 by 4 by 5 tensors and the outputs are 7 

by 8 tensors, then the parameters will be 𝜃 = (𝑊, 𝑏) with W a 3 by 4 by 5 by 7 by 8 tensor and b 

a 7 by 8 tensor such that 𝑦𝑙𝑚 = 𝑏𝑙𝑚 + ∑ ∑ ∑ 𝑊𝑖𝑗𝑘𝑙𝑚𝑥𝑖𝑗𝑘
5
𝑘=1

4
𝑗=1

3
𝑖=1 . 

Note on the Input and Output Dimensionality for Linear Models 

The dimensionality of the input will determine how large a dataset this neural network will require 

to generalize well. 

This is because a linear function is entirely determined by its output on a basis of the input space.  

If P vectors 𝑥(1), . . . 𝑥(𝑃) are chosen at random in ℝ𝑁, then with probability 1,  

• If P is smaller than N, then these vectors will be linearly independent, and no matter the 

choice of corresponding vectors in the output space 𝑦(1), . . . 𝑦(𝑃), there will be an infinity 

of possible linear functions which sends these inputs to these outputs. Namely, for 

k=1,…,P, 𝑦(𝑘) = 𝑦linear(𝑥
(𝑘),𝑊). We say that any dataset thus chosen will 

underdetermine the parameters of the neural network. 
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• If P equals N, then these vectors will be linearly independent, and no matter the choice of 

corresponding vectors in the output space 𝑦(1), . . . 𝑦(𝑃), there will be a single possible 

linear function which sends these inputs to these outputs. We say that any dataset thus 

chosen will exactly determine the parameters of the neural network. 

• If P is greater than N, then these vectors will not be linearly independent, and there will 

therefore exist choices of corresponding vectors in the output space 𝑦(1), . . . 𝑦(𝑃), for 

which no linear function could send these inputs to these outputs. We say that any dataset 

thus chosen will overdetermine the parameters of the neural network (indeed either the 

constraints cannot be satisfied or there is a smaller subset of the dataset which would lead 

to the same linear functions being possible). 

This means that, for a fixed dimensionality of the input space, the same size of dataset is needed 

to exactly determine the linear function’s parameters no matter how large the output space is! For 

instance, with an input dimensionality of 3 and output dimensionality of 1010000, a dataset 

containing 3 linearly independent input values will exactly determine the parameters of the linear 

function. This neural network has 3 × 1010000 parameters! 

A first order approximation to this phenomenon would relate linearly the number of parameters to 

the smallest number of datapoints in a dataset that exactly determines (or at least overdetermines) 

a neural network. As a formula: 

𝐷𝑎𝑡𝑎 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑖𝑜𝑛 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ
  

Where the supervision strength is simply the ratio of number of parameters to data requirement, 

but very roughly speaking, it tells us “how many parameters does a single datapoint in the dataset 

allow to determine.”  
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Based on this simple view, what happens is that for a given input dimensionality, as the output 

dimensionality is increased, the number of parameters increases linearly, but so does the 

supervision strength.  

In order to reproduce exactly a dataset given by 𝑥(1), . . . 𝑥(𝑃) and 𝑦(1), . . . 𝑦(𝑃), one can define an 

optimization problem over a linear neural network by giving the following loss function: 

𝐿𝑜𝑠𝑠(𝑊) =
1

𝑃
∑|𝑦(𝑘) − 𝑦linear(𝑥

(𝑘),𝑊)|
2

𝑃

𝑘=1

 

which can be more explicitly given as: 

 

𝐿𝑜𝑠𝑠(𝑊) =
1

𝑃
∑ ∑(𝑦𝑗

(𝑘)
− ∑𝑊𝑖𝑗𝑥𝑖

(𝑘)

𝑁

𝑖=1

)

𝑀

𝑗=1

2𝑃

𝑘=1

 

This formula allows us to understand why the “supervision strength” is proportional to the output 

dimensionality in this case. Indeed, the loss function can be viewed as the sum over j of  

1

𝑃
∑ (𝑦𝑗

(𝑘)
− ∑𝑊𝑖𝑗𝑥𝑖

(𝑘)

𝑁

𝑖=1

)

2𝑃

𝑘=1

 

which constrains directly only the j-th component of the output, and without which all the 

parameters 𝑊𝑖𝑗 for that fixed j value (in total N parameters in our case) would be underdetermined. 

We could view the number of independent loss functions contained within the actual loss as a 

measure of the “supervision strength,” though many other factors can contribute when considering 

more complicated neural networks with more complicated loss functions. 
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Non-linearities 

Finally, it is common practice to serially compose linear and affine functions with a so-called 

elementwise non-linearity. Let 𝜌:ℝ → ℝ be any function from real numbers to real numbers, then 

we define a simple neural network called the elementwise application of 𝜌 such that for 1-tensor 

inputs 𝑥 ∈ ℝ𝑁 with dimensionality N, and 1-tensor outputs 𝑦 ∈ ℝ𝑁 with the same dimensionality, 

it is defined as 𝑦 = 𝑦𝜌(𝑥), with 𝑦𝑗 = 𝜌(𝑥𝑗). Note that there are no parameters for this operation, 

but the serial composition of an affine layer with the elementwise application of 𝜌 

is 𝑦 = 𝑦affine→𝜌(𝑥, (𝑊, 𝑏)), with 𝑦𝑗 = 𝜌(𝑏𝑗 + ∑ 𝑊𝑖𝑗𝑥𝑖
𝑁
𝑖=1 ). 

There are various common choices for the non-linearity28 such as: 

• 𝑟𝑒𝑙𝑢 (𝑥), such that 𝑟𝑒𝑙𝑢 (𝑥) = 𝑥 if 𝑥 ≥ 0, but 𝑟𝑒𝑙𝑢 (𝑥) = 0 if 𝑥 < 0. It stands for 

rectified linear unit. 

• 𝑡𝑎𝑛ℎ (𝑥) such that 𝑡𝑎𝑛ℎ (𝑥) =
𝑒𝑥𝑝(𝑥)−𝑒𝑥𝑝(−𝑥)

𝑒𝑥𝑝(𝑥)+𝑒𝑥𝑝(−𝑥)
, which tends to -1 when x goes to −∞, +1 

when x goes to ∞, and equals 0 when x equals 0. It stands for hyperbolic tangent. 

• 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) such that 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

2
+

1

2
𝑡𝑎𝑛ℎ (𝑥). It has limits between 0 and 1. 

As a shorthand, the serial composition of an affine layer with the elementwise application of a 

well-known non-linearity would be called for instance a fully-connected layer with relu 

activation29. 

Non-linearities are not always needed (for instance, at the very output of a complicated neural 

network which predicts values between −∞ and ∞, there would be no use for a non-linearity). 

However, in order to satisfy the conditions of the Universal Function Approximation discussed in 

Section 1.2.3, it is not possible to simply serially compose affine layers without non-linearities. 
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Indeed, it can be shown that serially composed affine layers are always equivalent to a single affine 

layer. Yet, through the magic of the Universal Function Approximation theorems, any of the three 

non-linearities discussed above, as well as many others, would allow a net gain in the kinds of 

functions which may be expressed through the serial composition of many fully-connected layers 

with such activations. Readers still confused about how this all works are invited to look at proofs 

of the Universal Function Approximation theorems, since these proofs construct an actual neural 

network (by explaining how to choose its parameters) to approximate the target function8.  

1.2.6 Convolutional Layers 

Given a fully connected layer with 𝜌 activations 𝑦 = 𝑦affine→𝜌(𝑥, (𝑊, 𝑏)) between 1-tensors of 

dimensionality N and 1-tensors of dimensionality M, there is a trivial way to produce a neural 

network which takes uniform sequences of 1-tensors to uniform sequences of 1-tensors. Namely, 

by applying 𝑦affine→𝜌 elementwise. In other words, if x is now a sequence of 1-tensors and y is a 

sequence of 1-tensors, define 𝑦 = 𝑦conv,1(𝑥, (𝑊, 𝑏)) by 𝑦𝑘 = 𝑦affine→𝜌(𝑥𝑘, (𝑊, 𝑏)) for all the 

values of the sequence index k. 

More generally, given a fully connected layer with 𝜌 activations 𝑦 = 𝑦affine→𝜌(𝑥, (𝑊, 𝑏)) between 

2-tensors of dimensionality K by N and 1-tensors of dimensionality M, it is possible to define a 

neural network which takes as input any sequence of 1-tensors (dimensionality N) and returns a 

sequence of 1-tensors (dimensionality M) by applying 𝑦affine→𝜌 repeatedly on all possible 

segments of K consecutive 1-tensors in the input. There are three obvious ways to do this.  

• First, by only applying 𝑦affine→𝜌 to places in the sequence where K consecutive 1-tensors 

exist. In other words, 𝑦𝑘 = 𝑦affine→𝜌((𝑥𝑘+𝑑)𝑑=0
𝐾 , (𝑊, 𝑏)) is only defined for elements k 



18 

 

in the sequence such that elements k to k+K exist in the sequence. In this way, the output 

sequence will be shorter than the input sequence. 

• Second, by applying 𝑦affine→𝜌 to all places in the sequence with the convention that 

anytime the equation requires a 𝑥𝑘+𝑑 outside the sequence, a tensor of appropriate size 

filled with 0 values will be used instead. In this way, the output sequence will have the 

same length as the input. 

If K is an odd number, then there is another set of possibilities which is intuitively nicer to keep 

track of, namely, at each element in the input sequence, the segments are centered around that 

element instead of starting at that element: 

• First, by only applying 𝑦affine→𝜌 to places in the sequence surrounded by 
𝐾−1

2
 1-tensors. 

In other words, 𝑦𝑘 = 𝑦affine→𝜌 ((𝑥𝑘+𝑑)
𝑑=−

𝐾−1

2

𝐾−1

2 , (𝑊, 𝑏)) is only defined for elements k in 

the sequence such that elements 𝑘 −
𝐾−1

2
 to 𝑘 +

𝐾−1

2
 exist in the sequence. In this way, the 

output sequence will be shorter than the input sequence. 

• Second, by applying 𝑦affine→𝜌 to all places in the sequence with the convention that 𝑥𝑘+𝑑 

outside the sequence are substituted by tensors filled with 0 values. 

Section 3.7.2 illustrates these general ideas with a concrete example and attempts to justify this 

type of layers on an actual problem of relevance to lithium-ion research. 

Due to strange historical reasons, such neural network is called a 1-D convolution30 with kernel W 

and bias b, even though the mathematical name for such operation should be autocorrelation. 

Compared to the convolutions seen in physics textbooks, the summation indices run backwards. 
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In precisely the same way that a single index may be extended to arbitrary values (going from 2-

tensors to sequences of 1-tensors), it is possible to extend two indices (going from 3-tensors to 

sequences of sequences of 1-tensors), and this is routinely done in images (2-D convolutions). 

Indeed, the same concepts can be generalized to n-D convolutions for any positive integer n. 

In the literature, the various numbers of dimensions have names. The output dimension is the 

number of filters, the last dimension of the input is the number of channels, and the other 

dimensions of the input are the kernel width (for 1-D convolutions), the kernel width and height 

(for 2-D convolutions), and generally the receptive field dimensions. 

Why is it called the receptive field dimensions? This is because the output at position k or position 

(w,h) in the output only depends on part of the input (a segment of positions corresponding to the 

receptive field dimensions). 

1.2.7 Averaging and Self-Attention Layers 

Fully-Connected layers go from tensors of fixed dimensionality to tensors of fixed dimensionality. 

Convolutions go from sequences to sequences. What about cases where the input or output is a 

uniform set? To address this, we first consider cases where the input is a uniform sequence and the 

output is a single tensor of fixed dimensionality. 

A simple solution is to average elementwise across the sequence. For instance given a sequence of 

vectors 𝑥(1), . . . 𝑥(𝑃) in ℝ𝑁, one can produce a single output vector  𝑥(average) in ℝ𝑁 with 

𝑥(average)
𝑖 =

1

𝑃
∑ 𝑥(𝑘)

𝑖
𝑃
𝑘=1 . 
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Notice that indeed, this works for uniform sets as well as uniform sequences. For instance, if 𝑆 ⊂

ℝ𝑁 is a finite set of vectors, then one can produce a single output vector 𝑥(average) in ℝ𝑁 with 

𝑥(average)
𝑖 = ∑

1

|𝑆|
𝑥𝑖𝑥∈𝑆 . 

In cases where a more complicated relationship between inputs and outputs must be approximated, 

simple averaging does not suffice. In simple averaging, the multiplier for all the elements is the 

same, (namely 
1

|𝑆|
). A generalization which unlocks much more powerful function approximation 

is to allow weighted averaging. Indeed, if the input is a set of pairs where the first element of the 

pair is a positive real number and the second element of the pair is a vector (i.e. 𝑆 ⊂ ℝ × ℝ𝑁), then 

one can produce a single output vector 𝑥(average) in ℝ𝑁 with 

𝑥(average)
𝑖 =

∑ 𝑤𝑥𝑖(𝑤,𝑥)∈𝑆

∑ 𝑤′(𝑤′,𝑥′)∈𝑆
 

Note that the denominator is simply a renormalization constant to ensure that the multipliers 

𝑤

∑ 𝑤′(𝑤′,𝑥′)∈𝑆
 sum to 1.  

The restriction that the weights should be positive is annoying when they come from the output of 

previous neural network layers, so it can be removed by taking as input the logarithms of weights 

ɰ instead of the weights 𝑤 themselves, then one can produce a single output vector 𝑥(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) in 

ℝ𝑁 with 

𝑥(average)
𝑖 =

∑ 𝑒𝑥𝑝 (ɰ)𝑥𝑖(ɰ,𝑥)∈𝑆

∑ 𝑒𝑥𝑝 (ɰ′)(ɰ′,𝑥′)∈𝑆
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In general, the logarithms of weights will be the outputs of some neural network, and the vectors 

to be averaged will themselves be the outputs of some neural network. This way of averaging is 

referred to as an attention mechanism. 

This arrangement is useful as a final conversion from a set (or sequence) to a single tensor, but it 

assumes that a neural network converted the initial inputs to a form suitable for averaging. In the 

case of sequences, this can be done with convolutions, but what about the case of sets? 

To answer this question, we shall proceed in three steps. First, we shall describe a scheme to 

capture interactions of a single tensor with a whole set of tensors. Second, we shall generalize to 

sets interacting with other sets. Third, we shall consider the special case of a set of tensors 

interacting with itself. 

First, imagine the task of learning the dynamics of a small comet as it travels through a solar system 

filled with large planets and stars. Though this example is motivating, the task is really to define a 

simple neural network layer which will be applicable to many problems. 

In particular, imagine that each large body in the solar system is represented as a tensor (a vector 

in ℝ𝑁 for simplicity), and the small comet is represented as a tensor (a vector in ℝ𝑀 for simplicity). 

These tensors are given as inputs, and the task is to predict the final position of the comet. 

Furthermore, assume that the large bodies in the solar system are held in a static configuration by 

some external force. 

Then, an intuitive way the problem may be approached is by composing layers which each take a 

small time step for the comet, where the dynamics are hopefully simpler, but there could be other 

less intuitive ways of decomposing the problem into a large sequence of neural network layers. 
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The attention mechanism which has seen the largest successes31 circa 2020 AD can be presented 

in this setting as follows: 

For a set of 1-tensor inputs 𝑆 ⊂ ℝ𝑁 with dimensionality N, a 1-tensor input 𝑧 ∈ ℝ𝑀  and 1-tensor 

output 𝑦 ∈ ℝ𝑂 , the parameters of the simple dot-product attention layer are 𝜃 = (𝑄,𝐾, 𝑉) with 

the query projection 𝑄 ∈ ℝ𝑀 × ℝ𝑃, the key projection 𝐾 ∈ ℝ𝑁 × ℝ𝑃 and the value projection 𝑉 ∈

ℝ𝑁 × ℝ𝑂. 

Then, the layer is defined such that 𝑦 = 𝑦dot−attention((𝑆, 𝑧), (𝑄, 𝐾, 𝑉)), with 

𝑦𝑗 =
∑ 𝑒𝑥𝑝 (ɰ)𝑣𝑗(ɰ,𝑣)∈𝑇

∑ 𝑒𝑥𝑝 (ɰ′)(ɰ′,𝑣′)∈𝑇
 

and 

𝑇 = {(ɰ, 𝑣)|ɰ = ∑ 𝑞𝑝𝑘𝑝
𝑃
𝑝=1 , 𝑣𝑗 = ∑ 𝑉𝑖𝑗𝑥𝑖

𝑁
𝑖=1 , 𝑞𝑝 = ∑ 𝑄𝑗𝑝𝑧𝑘

𝑀
𝑗=1 , 𝑘𝑝 = ∑ 𝐾𝑖𝑝𝑥𝑖

𝑁
𝑖=1 , 𝑥 ∈ 𝑆} 

Since this is a bit hard to read, we summarize it step by step: 

1. The query projection is applied to the input z (the comet) to obtain the query q given by 

𝑞𝑝 = ∑ 𝑄𝑗𝑝𝑧𝑘
𝑀
𝑗=1 . 

2. For every 𝑥 ∈ 𝑆 (large body in the solar system), 

a. The key projection is applied to produce a key k given by 𝑘𝑝 = ∑ 𝐾𝑖𝑝𝑥𝑖
𝑁
𝑖=1 . 

b. The value projection is applied to produce a value v given by 𝑣𝑗 = ∑ 𝑉𝑖𝑗𝑥𝑖
𝑁
𝑖=1 . 

c. The dot product of the unique query q and the key k (for that element of the set) is 

computed to produce the logarithm of the weight ɰ = ∑ 𝑞𝑝𝑘𝑝
𝑃
𝑝=1 . 

3. The values are averaged according to the logarithms of the weights to produce the output. 
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One can see how such a layer may produce the necessary information to compute the force exerted 

on the comet by the large bodies in the solar system, which could then be used to update the 

representation of the comet, and so on. 

In the same way, one could imagine having many comets in the same solar system, and the simple 

dot product layer between a set and a single tensor generalizes as follows: 

For a set of 1-tensor inputs 𝑆 ⊂ ℝ𝑁 with dimensionality N, a set of 1-tensor input 𝑍 ⊂ ℝ𝑀  and a 

set of 1-tensor outputs 𝛺 ⊂ ℝ𝑂  with |𝑍| = |𝛺| but allowing |𝑍| ≠ |𝑆|, the parameters of the 

simple dot-product cross-attention layer are 𝜃 = (𝑄, 𝐾, 𝑉) with the query projection 𝑄 ∈

ℝ𝑀 × ℝ𝑃, the key projection 𝐾 ∈ ℝ𝑁 × ℝ𝑃 and the value projection 𝑉 ∈ ℝ𝑁 × ℝ𝑂. 

Then, the layer is defined such that 𝛺 = 𝑦dot−cross−attention((𝑆, 𝑍), (𝑄, 𝐾, 𝑉)), where 

𝑦dot−cross−attention((𝑆, 𝑍), (𝑄, 𝐾, 𝑉)) = {𝑦dot−attention((𝑆, 𝑧), (𝑄, 𝐾, 𝑉)), |𝑧 ∈ 𝑍} is simply the 

elementwise application of the simple dot-product attention. 

Finally, imagine that it is desired to describe the dynamics of all the solar system objects (large 

bodies and comets) interacting together without artificial statis of the large bodies. By making the 

two input sets in cross-attention the same, one obtains a powerful layer which captures pairwise 

interactions within a set, and it is called self-attention. 

Formally, For a set of 1-tensor inputs 𝑆 ⊂ ℝ𝑁 with dimensionality N and a set of 1-tensor outputs 

𝛺 ⊂ ℝ𝑂  with |𝑆| = |𝛺|, the parameters of the simple dot-product self-attention layer are 𝜃 =

(𝑄,𝐾, 𝑉) with the query projection 𝑄 ∈ ℝ𝑁 × ℝ𝑃, the key projection 𝐾 ∈ ℝ𝑁 × ℝ𝑃 and the value 

projection 𝑉 ∈ ℝ𝑁 × ℝ𝑂. 
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Then, the layer is defined such that 𝛺 = 𝑦dot−self−attention(𝑆, (𝑄, 𝐾, 𝑉)), where 

𝑦dot−self−attention(𝑆, (𝑄, 𝐾, 𝑉)) = 𝑦dot−cross−attention((𝑆, 𝑆), (𝑄, 𝐾, 𝑉)). 

Note that in practice31–33 𝐷 of these layers with outputs in ℝ
𝑂

𝐷 can be applied in parallel to obtain 

a set of 2-tensor outputs 𝛺 ⊂ ℝ𝐷 × ℝ
𝑂

𝐷  and this is called multi-headed dot-product self-attention. 

1.3 Advice for Building Intuition 

The performance of machine learning system is difficult to predict, and in general no method is 

better than another on all problems34. However, in the opinion of the author, the greatest boost to 

success is to develop a strong intuition about the relationship between the model architecture, the 

mathematical properties of the application domain, and the performance of the system. 

Therefore, the text attempts to capture arguments and reasoning about machine learning system 

performances at the level of rigor the author used to guide his decisions. It would be quite 

challenging to formalize all these arguments into proofs (indeed, most of these arguments are not 

valid in general settings and depend strongly on various features of the given problem) and it would 

be counter productive since the value of such arguments is to reduce the number of trial and errors 

necessary to obtain an adequate solution to a given problem. As such, these arguments represent 

near-immediate intuitions to guide exploration, they cannot afford a lengthy validation and 

correction process, and their use can tolerate a degree of inaccuracy. Of course, seeing specific 

instances of the author’s far-from-perfect intuition in action is not enough to fully develop this 

skill in the reader. To this more ambitious end, the author offers the following advice:  

1. When modifying a machine learning design and running a numerical experiment, 

seek not to increase the performance metrics at all cost; instead, seek to be the least 

confused by the differences in performance between various alternative designs, and 
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when a change in performance is confusing, strive to understand it. In the author’s 

experience, not only does this lead to much simpler and bug-free code, but it also is 

the most powerful way to improve one’s intuition on the relevant problems one is 

tasked to solve. 

2. Once adequate performance has been demonstrated, attempt to reproduce a similar 

performance with the minimal possible complexity of design. Here, complexity refers to 

the length of the code. 

3. Once a simple implementation has adequate performance, attempt to reproduce a similar 

performance using components commonly used in the machine learning literature. 

4. If the common components cannot reproduce the target performance, investigate, and find 

the smallest change to the common component which reproduces the target performance. 
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Chapter 2 Mathematical Properties of Electrochemical 

Impedance Spectroscopy Data and Equivalent Circuit 

Models of Lithium-ion Cells 

 

Despite the accuracy and non-intrusive nature of Electrochemical Impedance Spectroscopy (EIS), 

the impedance spectra of commercial lithium-ion cells are notoriously hard to interpret. Such 

measurements contain information about multiple distinct steps that the lithium ions must undergo 

to travel from one electrode to the other. To extract physical insights from EIS datasets, one must  

• Choose an Equivalent Circuit (EC) model which will represent the data. 

• Reliably find estimates for the parameters of the EC model which closely match a given 

impedance spectrum (henceforth called the inference problem). 

• Investigate trends across time, state of charge, and even different chemistries. 

High quality introductions to EIS, EC models, and their relationship to lithium-ion cells exist1,35–

37, and a passing familiarity with these concepts will be assumed of the reader. This Chapter will 

instead focus on illustrating a key component of a robust tool based on machine learning model: 

understanding the mathematical properties of the data. 

The Chapter is organised as follows: 

• Section 2.1 defines EIS data and EC models as mathematical objects 

• Section 2.2 discusses the difficultly of the choosing an EC model 

• Section 2.3 presents a reasonable choice of EC model 
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• Section 2.4 rewrites the model equations to simplify the parameter space, helping to 

simplify the inference problem 

• Section 2.5 defines symmetries of the model equations, also helping to simplify the 

inference problem. 

• Section 2.6 describes the multiplicity of EC parameters which may lead to approximately 

the same EIS observations 

• Section 2.7 defines a simple metric to help compare different solutions to the inference 

problem and thus reduce the multiplicity mentioned in Section 2.6 

As will be shown in this Chapter and Chapter 3, basic physical and mathematical insights about 

the data can be leveraged to guide design decisions of machine learning solutions, both enabling 

better outcomes, and building confidence into the solution. 

This chapter is substantially taken from a corresponding paper38 though the paper explores the 

conversions between various ECs more thoroughly and was published along with a simple 

implementation of the conversion formulas, accessible at https://github.com/Samuel-

Buteau/Explicit-Conversion-Equivalent-Circuits-EIS. Furthermore, to streamline the thesis as a 

whole, substantial components of the paper39 corresponding to Chapter 3 have been refactored into 

this Chapter. 

2.1 Basic Mathematical Definitions of EC models and EIS 

Data 

When modulating the voltage across the terminals of a lithium-ion cell with a small amplitude 

sinusoidal wave, there will be a time-dependent current response. In the linear regime, the response 

will also be sinusoidal. Furthermore, the ratio of amplitudes between the excitation and the 

https://github.com/Samuel-Buteau/Explicit-Conversion-Equivalent-Circuits-EIS
https://github.com/Samuel-Buteau/Explicit-Conversion-Equivalent-Circuits-EIS
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response, as well as the phase shift, will be independent of the excitation amplitude, only 

depending on frequency. This amplitude ratio and phase shift (an angle) can be represented 

together as a complex number, called impedance.  

Generally, using angular frequency (i.e. frequency multiplied by 2π) will make the formulas nicer. 

Therefore, unless otherwise mentioned, ω shall be used to denote angular frequency of the 

excitation, and the notation will be abused by calling ω the frequency. 

Equivalent Circuit Model Definition 

An Equivalent Circuit (EC) model is simply a function which takes as inputs the frequency ω and 

a vector of 𝑛 real numbers θ𝐸𝐶 ∈ ℝ𝑛 called the EC model parameters, and which returns a complex 

number, called the impedance of the model at the given frequency. Mathematically, we denote a 

given model as Zmodel(ω; θEC) where “model” is replaced by a name to distinguish a given EC 

model from another. 

The reason for calling these objects circuits is that they can be represented graphically as circuits 

(graphs) and can be composed together into bigger circuits.  

For instance, given two EC models denoted as Z1(ω; θEC,1) and Z2(ω; θEC,2), we can define a new 

EC model called “model 1 in series with model 2” as  

Z1−2(ω; θEC,1, θEC,2) = Z1(ω; θEC,1) + Z2(ω; θEC,2) 

Similarly, we can define yet another EC model called “model 1 in parallel with model 2” as 

Z1∥2(ω; θEC,1, θEC,2) =
1

1

Z1(ω; θEC,1)
+

1

Z2(ω; θEC,2)
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If the EC model parameters are fixed, an EC model can be viewed as a function from frequency to 

impedance. Compare these definitions to those of a neural network found in Section 1.2.2. 

Impedance Spectrum Definition and Relationship to Equivalent Circuit models 

An EIS, or an impedance spectrum is a set of pairs of frequencies and impedances 

{(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚}.  

Obviously, if an EC model Zmodel(ω; θEC) together with the corresponding EC parameters θEC, 

and a set of frequencies {ω𝑖|𝑖 = 1, … ,  𝑚} are all fixed, then they can be combined into an 

impedance spectrum, namely {(ω𝑖, Zmodel(ω𝑖; θEC))|𝑖 = 1, … ,  𝑚}. This procedure will be called 

sampling EC model  Zmodel(ω; θEC)  with parameters  θEC at the frequencies {ω𝑖|𝑖 = 1, … ,  𝑚}. 

In general, an impedance spectrum measured from an actual physical system 

{(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚}, could be arbitrary, and need not correspond to sampling a sampling EC 

model. 

However, the abstraction with which physical systems are typically modelled is that there exists 

an EC model Zideal(ω; θEC) together with fixed EC parameters θEC underlying the physical system 

during the measurement, and that under idealized conditions, the measured spectrum 

{(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} would be approximately equal to the sampling of the ideal model with 

appropriate parameters at the given frequencies. In other words, 𝑍𝑖 ≈ Zideal(ω𝑖; θEC) under ideal 

conditions. However, since things are not ideal, what is measured is instead the ideal impedance 

plus some noise term so that 𝑍𝑖 = Zideal(ω𝑖; θEC) + 𝜀𝑖 for some set {ε𝑖|𝑖 = 1, … ,  𝑚}. 

Actually, these noise terms again don’t have to obey any assumption, but for good quality data 

with small noise terms, these terms can usually be modelled adequately by a complex random 

variable where both the real and imaginary part are each the sum of a normally distributed real 
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random variable (the absolute error) and a normally distributed real random variable multiplied by 

the modulus of the ideal impedance Zideal(ω𝑖; θEC) (the relative error).  

To make things simple, consider the case where only the absolute error is significant. 

The main problem around experimental impedance spectra is the inference problem. Namely, 

given an EC model which is thought to adequately approximate the ideal EC model for a given 

physical system, and given an impedance spectrum from that physical system, the problem is to 

estimate the plausible values of the EC parameters θEC which produced the observation. 

To make things even simpler, the problem may be further broken into two subproblems: 1) finding 

the most plausible EC parameters θ𝐸𝐶
∗  given the observation {(ω𝑖, 𝑍𝑖)|𝑖 = 1, … ,  𝑚} and 2) 

estimating the uncertainties on the parameters such that any parameter within these uncertainties 

are still quite plausible. 

If all possible values of the parameters are equally likely before seeing the data, and the noise is 

assumed to be normally distributed, then finding the most plausible EC parameters is equivalent 

to minimizing the mean squared error of reconstruction 

MSE(θEC) =
1

𝑚
∑|𝑍𝑖 − Zideal(ω𝑖; θEC)|

2

𝑚

𝑖=1

 

This would imply that the noise terms are as small as possible which is the most likely outcome 

when observing independent normally distributed random variables centered around 0. 

Since one almost never has access to the exact ideal model underlying a physical system, the ideal 

model is replaced by some other model chosen to represent the physical system, so the mean 

squared error of reconstruction henceforth refers to  
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MSE(θEC) =
1

𝑚
∑|𝑍𝑖 − Zchosen(ω𝑖; θEC)|

2

𝑚

𝑖=1

 

where Zchosen(ω𝑖; θEC) is the choice for the EC model under consideration. 

Note however that minimizing an equation which is non-linear in the parameters θEC, such as the 

one above, can itself be a challenging task. This minimization problem is henceforth called the 

fitting problem.  

To clarify, to solve the inference problem, one must solve the fitting problem, but solving the 

fitting problem may not be sufficient by itself, since other considerations may make one solution 

to the fitting problem more plausible as a solution to the inference problem than another. 

2.2 The Difficulty of Choosing an EC Model 

Chapter 3 considers the problem of fitting tens of thousands of impedance spectra to a physical 

model to extract some trends. Perhaps the most basic part of this problem is to choose an EC model 

to fit the spectra. However, there are multiple models discussed in the literature with various 

interpretations. Choosing between these models based only on the spectra themselves is difficult.  

For instance, it is known36,40 that many of the circuits discussed in the literature, despite having 

different physical interpretations, are mathematically equivalent or approximately equivalent to 

each other in the sense that they can produce exactly the same spectra, although not with the same 

parameters. 

To better understand this phenomenon at a theoretical level, the simple case of circuits made up of 

resistors and capacitors is explored, though circuits used in practice contain more realistic 

components (constant phase elements) and correspondingly are plagued with a larger set of 

possible conversions between EC models. 
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Furthermore, the existence of relatively simple formulas to convert between various circuit 

topologies helps explain why, in the context of Chapter 3, a neural network model which estimates 

the parameters of one EC could easily be extended to estimate the parameters of various ECs for 

which conversion rules exist. 

Note, however, that the conversions alluded to below are only tools, and not meant to replace a 

physical analysis of the impedance. Most ECs that will fit a complex spectrum have nothing to do 

with the underlying physics, and yet these conversions will allow them to fit equally well the 

experimental data than the physically meaningful EC. Many unusual topologies are reachable with 

these conversions, but this is just a consequence of making the transformations as general and 

simple as possible. Judgement must be used when using these tools. 

It is worth illustrating what is meant by “converting between two ECs.” To accomplish this, the 

simplest non-trivial example will be investigated. 

Figure 2.1 shows two ECs and Figure 2.2 gives a reference for the two components used in this 

introductory discussion. The two ECs look different, but they can produce exactly the same 

impedance spectra, when their parameters are chosen appropriately. Below Figure 2.1, the formula 

for the impedance of each EC is shown. Each EC contains two resistors and one capacitor. The 

original EC on the left has three parameters (𝑅11, 𝑅12, 𝐶11). If these values are fixed (e.g. 𝑅11= 1 

Ω, 𝑅12 = 10 Ω, 𝐶11 = 1 F), then the impedance spectrum is fully determined. To say that the original 

EC can be converted to the converted EC is to say that one can determine the values of the 

converted parameters (𝑅21, 𝑅22, 𝐶21) so that the impedance of the converted EC will be exactly 

the same as the impedance of the original EC at all frequencies. This conversion is given in 

the third column of Figure 2.1 and has previously been published40.  
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The notation works as follows. The parameters have two indices. The first index determines 

whether the parameter belongs to the original EC (index 1) or the “converted” EC (index 2). The 

second index serves to differentiate the various resistors and the various capacitors within a single 

EC.  
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Figure 2.1 Example of one EC (left, original) that can mimic another's impedance spectrum 

(right, converted) by using different values for the parameters. The impedance 

formulas are shown under the ECs. 

 

Figure 2.2 A reference for the impedance formulas of a resistor and a capacitor, respectively. 

By tracking the impedance of a given electrochemical cell through time, charge-discharge cycle 

number, cell potential, etc., a dynamic characterization of the cell could be obtained. Yet, different 

models might produce very different trends. Figure 2.3 shows an example of this phenomenon 

based on the conversion in Figure 2.1. On the left side, the original EC of Figure 2.1 has three 
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parameters, and all parameters except one are kept constant. R12 is increased linearly in 1 Ω steps 

from 1 Ω to 10 Ω. All the parameters of the two ECs are plotted as a function of R12. On the right 

side of Figure 2.3, the “converted” EC parameters are plotted against the original value of R12.  

As Figure 2.3 shows, the trends in the converted parameters are more complicated. Indeed, all 

three parameters change, most trends are non-linear, and even though the capacitance does not 

vary in the first EC, it has a very dramatic variation in the second. 
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Figure 2.3 Example of how a simple trend in one EC (original EC of Figure 2.1) looks quite 

different and more complicated in another EC (converted EC of Figure 2.1), even if 

the underlying impedance spectra are exactly the same. 

 

Looking at Figure 2.1 and Figure 2.3, it is natural to wonder if there are some limits on the 

conversion formulas. In other words, are there any parameter choices in the original EC which, 

after applying the conversion formula, would not yield the same impedance spectrum?  
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As it turns out, the only case where this happens is if the formulas require a division by zero. In 

the case of Figure 2.1, this would correspond to cases where R11 is zero or R11 + R12 is zero. 

Assuming that resistances are positive, this corresponds to cases where R11 is zero. For more 

complicated formulas the story is the same. If the conversion formula requires division by zero, 

then the ECs most likely cannot give identical spectra. In the exceptional case that the ECs can 

give identical spectra with the problematic parameters, then a different formula would be required.  

Looking at Figure 2.1, one might get the impression that conversions, either implicit or explicit, 

only work for simple ECs. However, this is not the case. To illustrate this, Figure 2.4 shows two 

complicated ECs which look quite different, and whose topologies are quite different. Despite this, 

one can explicitly convert from the upper EC to the lower based on the formulas described in the 

paper38. 

To keep the focus of the thesis on developing robust machine learning models in the context of 

lithium-ion research, most of the details present in the paper are omitted here. But here follows a 

sketch of the construction of the formulas: 

• The various core components of all the circuits are represented in a unified form. 

• Formulas are given to convert to this unified form from various circuits of interest. 

• Formulas are given to convert to various circuits of interest from this unified form. 

• This creates a graph of conversions where each node is an EC and each arrow is an 

elementary conversion. Then, for various common cases, the conversions are composed 

(i.e. applied one after the other) to create a simple program to convert between ECs of 

interest, such as in Figure 2.4 
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Figure 2.4 uses the code to convert from a Voight configuration (with a series capacitor) to a ladder 

configuration (with a capacitor embedded in the inner part of the ladder). Figure 2.4c) shows the 

two circuits considered. Concretely, Figure 2.4 shows 3 examples of conversion. For each 

example, parameter values were chosen for the Voight configuration, and the impedance spectrum 

was computed and plotted. Next, the circuit was converted to the ladder configuration, and the 

impedance spectrum computed and plotted again for the new configuration. The impedance curves 

from the two configurations are on top of each other in the figure. For simplicity, the parameter 

values of the Voight configuration are all the same in the three examples except for the series 

capacitor, which took on the values, 10, 100, and 1000 F, respectively. 

Figure 2.4a) shows the impedance spectra. From left to right, Figure 2.4 shows a Nyquist plot, 

then the real Bode plot, then the imaginary Bode plot. The different grayscale colors correspond 

to different initial values for the series capacitor. 

Figure 2.4b) lists the parameter values before and after conversion. Each row corresponds to a set 

of parameter values for a given circuit. The first three rows are the original parameter values for 

the Voight configuration, and the last three rows are the corresponding parameter values for the 

ladder configuration. The differences before/after conversion are relatively small when the series 

capacitance is large, but these differences are very large when the series capacitance is small. This 

phenomenon is related to the overlap between different subcomponents in frequency space (little 

overlap when C is large; much overlap when C is small).  

Note that, despite having the same spectra, and therefore the same relaxation times, the two ECs 

show very different relationships between the capacitances and resistances. In a Voight-type 

circuit, it is easy to find the various time constants that determine the relaxation behavior by simply 

computing 𝑅𝑖𝐶𝑖. But the same approach would yield different results for the ladder-type circuit. 
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This highlights that the physical meaning cannot be the same for the corresponding components 

in the two circuits. More concretely, the same observation, if we assume that it comes from a series 

of successive electrochemical processes in the cell, will give a picture very different than if we 

assume that the chain of electrochemical processes is embedded in a ladder configuration.  
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Figure 2.4 An example of explicit conversion from a Voight-type circuit configuration to a 

Ladder-type circuit configuration.  

 

2.3 A Realistic EC for Lithium-ion Cells 

Though it would be possible to carry the full discussion without ever mentioning a specific choice 

of EC model, we give a reasonable one here before proceeding with the full discussion. However, 

see Section 3.6 to see how the results can be extended to encompass various other reasonable 

choices. 
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First, we describe the data itself. About 100000 individual impedance spectra were collected from 

various lithium-ion chemistries, using more than 4 distinct experimental setups1,41. Approximately 

90000 spectra were collected automatically for various cells at various cycle numbers and various 

voltages (a typical cell producing more than 100 spectra across its lifetime). These systems were 

run at 20 and 40 degrees Celsius. This dataset will be referred to as the FRA dataset.  

Also, approximately 10000 spectra were collected manually for various cells, including pouch 

cells, coin cells, cells with both a positive and a negative electrode (full cells), cells with two 

negative electrodes (symmetric negative cells), cells with two positive electrodes (symmetric 

positive cells), at various temperatures ranging from -10 to 40 degrees Celsius. A typical cell 

would have less than 10 spectra measured on this system. This dataset will be referred to as the 

EIS dataset. 
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Figure 2.5 The EC model used to fit the spectra. The various sub-ECs connected serially are 

framed with different colors. From left to right, we have: “Electrolyte”, a series 

resistor, to model the electrolyte resistance.  “Diffusion”, a Constant Phase Element 

(CPE) representing diffusion; “Inductive tail”, a CPE representing an imperfect 

inductance and a Resistor-CPE in parallel, also known as ZARC, representing an 

imperfect inductance with a finite time-constant. Finally, “Electrochemical 

processes”, three ZARCs each representing an electrochemical process giving rise 

to a relatively sharp distribution of time-constants. 

 

Given this large dataset, a single EC model was chosen to fit all the spectra. Figure 2.5 illustrates 

this EC and Figure 2.6 defines the various components mathematically, namely the resistor, the 

constant phase element (CPE), and the ZARC (literally stands for impedance which looks like an 

“arc”). Note that similar ECs to the one studied in this paper have been used in the litterature42. 

Note that a CPE can represent various more traditional components when the exponent φ is fixed 

to certain values. For instance, with an exponent of 1, we obtain an ideal capacitor; with an 

exponent of 0.5, we obtain a Warburg element; with an exponent of -1, we obtain an ideal 

inductance. Also note that a ZARC element can represent a resistor in parallel with a capacitor 
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(when the exponent is 1). For such an EC, there is a frequency (characteristic frequency) above 

which the current primarily flows through the capacitor, and below which it flows primarily 

through the resistor. In a lithium-ion cell, the same particle is repeated across an electrode, with 

fluctuations in the local shape, composition, and even currents. Therefore, it is more typical to see 

a distribution over a range of characteristic frequencies. This is what is modelled by a ZARC 

element with an exponent less than 1. The lower the exponent, the broader the distribution. 

As presented, only three different components intervene in this EC model. For instance, the 

inductance and the diffusion are both modelled by a CPE. This is possible since the exponent 

(denoted by φ in Figure 2.6) of the diffusion CPE must take values between 0 and 1, and typically 

will be around 0.5, whereas the exponent of the inductive CPE must take values between -1 and 0, 

and will be approximately -1. Similarly, the exponent of the electrochemical ZARCs must be 

between 0 and 1, with typical values between 0.6 and 0.9. These constraints will be generalized 

below to the notion of “prior knowledge” on the values of the parameters. This leads to the problem 

of enforcing these constraints. 
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Figure 2.6 The EC model components used in this section. The formulas for the impedance are 

given in terms of the angular frequency ω of oscillation of the voltage signal applied 

to the terminals of the sub-ECs.  

 

2.4 Enforcing Constraints on EC Parameters 

As a sub-problem of the inference problem, the fitting problem is to find the EC parameters θEC 

which minimize the mean squared error of reconstruction (see Section 2.1). However, only a 

restricted set of possible θEC may be considered. As discussed earlier, the exponents of the 

inductive CPE and ZARC must be between -1 and 0 (negative), while the exponents of the 

diffusion CPE and electrochemical ZARCs must be between 0 and 1 (positive). Furthermore, all 
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resistances must be positive or zero, while all characteristic frequencies, all frequencies, and the 

Q parameters must be greater than 0 (positive).  

It is possible to enforce these constraints without having to deal with constrained minimization7,43, 

namely by rewriting the formulas in a way that has no constraints but is equivalent to the original 

way. More precisely, the EC model is reparametrized such that 1) the same set of spectra can be 

modelled, 2) the original parameters can easily be recovered from the reparametrized version, and 

3) any value for the new parameters leads to a valid spectrum (i.e. respects the constraints on the 

original parameters).  

Figure 2.7 shows the reparameterizations used in this Chapter as well as Chapter 3.  

Note that the log scale version of R, Q, frequency, and characteristic frequency is used. 

Exponentiating ensures positive values. For the exponents φ, we use the logistic44 function 𝜎 for 

Diffusion and Electrochemical, which always is more than 0 and less than 1. This function also 

has nice derivatives around an output of 0.5 (where the derivative is 1), and the derivatives are still 

large enough until we reach an output of 0.9. However, this function’s derivative vanishes as the 

output approaches 0 or 1. In contrast, the function used for the exponent of the inductance CPE45 

and Inductance ZARC has good derivatives everywhere (including for outputs near -1), but it isn’t 

invertible (indeed, it is a symmetric function around its origin). 

Note that the choice made here might not be the optimal choice46. Yet, it satisfies the above goals 

and is easily implemented in code.  When applying this methodology to a different fitting problem, 

choosing a good reparameterization might require some trial and error. A special care should be 

taken with the derivative of the model with respect to the new parameters, as this might affect the 

ability of the neural network to converge to a good “inverse model” (to be defined later). In this 
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case, the first reparameterization considered was adequate, and generally ease of implementation 

and conceptual simplicity are also important factors in the choice. 

 

Figure 2.7 The reparameterizations used in this thesis. For each EC component (under 

“Component Name”), the new parameters are enumerated together with a visual 

representation of the EC component (under “Circuit Representation”), and the 

conversion formulas connecting these new parameters to the old are given under 

“Conversion Rules”, with the new impedance formula given under “New Formula”.   

2.5 Symmetries within a single EC Model 

In order to illustrate the process of creating a robust solution, it is useful to consider some further 

mathematical properties of the EC model and corresponding EIS, which will then be exploited as 
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part of the solution: transformations of the EC parameters which lead to simple transformations of 

the spectra and vice versa.  

The transformations work as follows: given a spectrum and its associated optimal EC parameters, 

apply special transformations to both the spectrum and the EC parameters to obtain a new spectrum 

and the optimal EC parameters for the new spectrum.  

Thus, we can scale and shift the spectra to ensure that the inverse model need only be applied to 

spectra with frequencies centered around a log frequency of 0 and with impedances within the 

complex unit circle. It may not seem like much, but this is a substantial factor in the robustness of 

the solution.  

Figure 2.8 gives the details. If the optimal parameters are transformed according to Figure 2.8, 

then they will remain the optimal parameters for the transformed spectrum. The point of these 

transformations is that it is easy to undo them, as long as the scale and shift parameters are 

recorded. (We can simply apply the transformations with the negative of the scale and shift 

parameters to undo the transformation). Note that in the case of CPE, the conversion rule is given 

in terms of the original exponent φ so that the formula would be the same for both the diffusive 

CPE and the impedance CPE. It should be understood that in both cases, the original exponent 

should be computed from the reparameterized exponent. 

As a future reference, a translation of 𝑤𝛼 of the spectra is denoted as 

Trans𝑤𝛼
({(w𝑖, 𝑍𝑖)|𝑖 = 1, … ,  𝑚}) = {(w𝑖 + 𝑤𝛼, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} and the corresponding action 

on the EC parameters is denoted as Trans𝑤𝛼
(θEC) (the specific transformation should be clear 

based on the context). 
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Similarly, a scaling of exp 𝑟𝛼 is denoted as 

Scale𝑟𝛼
({(w𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚}) = {(w𝑖, exp 𝑟𝛼 𝑍𝑖)|𝑖 = 1,… ,  𝑚} 

and the corresponding action on the EC parameters is denoted as Scale𝑟𝛼
(θEC). 
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Figure 2.8 A useful symmetry of the EC model. It is possible to shift the log-frequencies of the 

observed spectrum, and scale the observed impedances. For each component of the EC 

model, the parameters of Figure 2.7 are shown. Then, the log-frequency shift 

parameter 𝑤𝛼 and the log-resistance scale parameter 𝑟𝛼 are applied to transform the 

original spectrum according to the first row of the Figure. This transformation 

corresponds to transformations of the EC parameters given under “Conversion 

Rules”. For instance, as the impedance is scaled by exp (𝑟𝛼) , the log-resistance of the 

series resistor must be changed to 𝑟 + 𝑟𝛼.   
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2.6 The Difficulty of Choosing EC Model Parameters 

Uniquely 

Section 2.2 discussed how essentially the choice of EC models acts as the choice of “coordinate 

system”, with well-defined conversion rules when switching between “coordinate-systems”. No 

one would be tempted to look for trends in the position of a particle with each time step given in a 

randomly chosen coordinate system. Similarly, if trends in the EC parameters of the fitted EIS of 

a cell are to be investigated, then a single EC model must be chosen for the investigation. Things 

will look different for different choices, but there is still a chance of finding a reasonable 

interpretation, since the conversion rules between EC models are understood (see Section 2.2).  

Yet, this does not exhaust the scope of the problem. Indeed, for a given spectrum and a given EC 

model, there may still be multiple EC parameters which have approximately the same mean 

squared reconstruction error. 

When considering multiple EIS and the trends which may exist across them but individually 

choosing among the multiple EC parameters fitting equally well each spectrum, trends can be 

obscured. 

The simplest trend possible (i.e. EIS more or less constant across measurements) illustrates well 

the phenomenon. If several EIS are nearly identical, but each fitting problem makes a different 

choice among the multiple good EC parameters, then each individual number in θEC may appear 

to change, oscillate, fluctuate randomly, etc.. It is very difficult to notice even the constant trend 

if the individual fitting problems are not coordinated in some way. Some examples of these 

multiple choices follow shortly.  
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Note also, that what is really desired is a global coordination such that across hundreds of 

thousands of spectra measured and fitted at different times in different labs by different people, 

the choices of parameters have been coordinated to at least make visible the constant trends, and 

hopefully many other common trends as well. This global coordination cannot be added artificially 

in practice since it would be too computationally expensive to solve the fitting problem anew for 

all existing EIS every time a new EIS was measured. 

Formally speaking, global coordination relative to the constant trend can be stated as follows: the 

process which assigns a choice θ𝐸𝐶
∗  to a given EIS {(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} must be deterministic. 

In other words, there must exist a function from EIS to EC parameters which perfectly reproduces 

the solutions to the fitting problem. 

Intuitively, other trends should also be respected by the solution to the fitting problem. For 

instance, small changes to the EIS should lead to small changes to θ𝐸𝐶
∗  (sometimes known as 

continuity).  

Despite the fact that most physicists are not accustomed to taking “derivatives” of functions from 

indexed sets to vectors, for appropriately defined versions of notions like the Jacobian and the 

hessian of such functions, the intuitive picture of what a global coordination on simple trends 

would look like is faithfully captured by saying that the averaged norm of these measures of slope 

(Jacobian) and curvature (hessian of every individual parameter) should be minimized across 

almost every plausible EIS. (See Section 1.1.2 for definitions of Jacobians and Hessians.) 

In case this principle of encoding trends as penalties on slopes and curvatures is of interest, a sketch 

of them would be that for any EIS {(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚}, the EIS can be thought of as a vector in 

ℝ3𝑚 (for each 𝑖, one number for frequency, one for the real part of 𝑍𝑖 and one for the imaginary 
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part), and the output of the function θ𝐸𝐶
∗  is a vector in ℝ𝑛. On this EIS, the Jacobian is the matrix 

of partial derivatives of each EC parameter with respect to each input real value, and the norm 

squared for instance can be the squared sum of all entries in the matrix (a single number per EIS). 

One could also take all the second partial derivatives of every output component with respect to 

every input real number, for which the norm could be computed in a similar way (yielding a single 

number per EIS). Then, the average of these norms across a set of EIS can be minimized, thus also 

minimizing the underlying average norms. Reference 25 also mentions some tricks to reduce the 

computational requirements for the minimization. 

To conclude this section, some examples of multiple choices for θ𝐸𝐶
∗  will be discussed. 

First, under a limited range of observed frequencies, a ZARC element may either have no 

contribution to the circuit impedance, or it may be essentially equivalent to a resistor in series with 

the other components. Indeed, when all observed frequencies are far below the characteristic 

frequency of a given ZARC, its contribution to the overall impedance is well approximated by a 

resistor, while far above the characteristic frequency, it has no contribution. Therefore, for θ𝐸𝐶
∗  

with a ZARC having a very low characteristic frequency, there is a family of other possible θ𝐸𝐶
∗  

which would fit the data equally well, by increasing the value of the series resistor and decreasing 

the value of the low frequency ZARC’s resistor, or vice-versa. 

A second example which is a bit more worrisome in practice is that two ZARC sub circuits may 

be interchanged without changing the resulting impedance. Indeed, any permutation of EC 

parameters corresponding to permuting the order of the ZARCs in the circuit will constitute 

equivalent choices in terms of mean squared error of reconstruction. 
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Finally, the main concern is that ZARC elements are essentially a distribution over Voight 

elements47. In other words, the impedance of a single ZARC can be rewritten as an integral over 

characteristic frequencies of ZARCs with an exponents equal to 1 (equivalent to a resistor in 

parallel with a capacitor). The exact formula is not important, but for those interested, it has a 

hyperbolic sequent shape, namely 
1

𝑒𝑥+𝑒−𝑥, in the space of logarithmic frequencies, and is similar in 

appearance to a gaussian though it decays slower away from the peak48.  

The important part is that a ZARC is essentially a “peak” with the broadness of the peak 

determined by the exponent, and similarly to the case of gaussian peaks, a single broad peak can 

often be approximated by two or more narrower peaks. Since typical EIS data contain two or 

more overlapping such peaks, there are many cases where the noise in the data creates ambiguities 

in the number of peaks and their proportions.  

Yet with all the possible choices of parameters which are in some sense equally good, but which 

must be coordinated globally, there are also choices which solve the fitting problem equally well 

but which can in fact be shown to be inferior based on other considerations, which is the subject 

of the next section. 

2.7 A Simple Measure of EC Parameter Complexity 

Following the principle that the simplest explanation is the most likely, if a single electrochemical 

ZARC accurately reconstructs the observed spectrum, then a fit using a single ZARC is preferred 

to a fit using three ZARCs, even if the three ZARCs can fit the data slightly better. 

This can be understood as the principle that the simplest explanation has the highest likelihood to 

be physically relevant. Indeed, having several ZARCs in the idealized model of the physical 

system coincide in their characteristic frequencies to appear as a single ZARC is less likely 
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(requires more coincidences) than a single ZARC accounting for the observations. The difference 

in likelihood is not astronomical and so a significant improvement in the mean squared error of 

reconstruction can overcome the simplicity consideration.  

Having a numerical metric to track the “simplicity” or “complexity” of a given circuit is quite 

useful to incorporate this consideration into algorithms, but how to do it? 

 In our model, setting a ZARC resistor to 0 is equivalent to removing that component from the 

circuit. Let 𝐶(𝑅1, 𝑅2, 𝑅3) =
(√𝑅1+√𝑅2+√𝑅3)

2

𝑅1+𝑅2+𝑅3
 which we call the complexity metric. This function is 

related to counting the number of non-zero resistances. For instance, we can see that 𝐶(𝑅, 0,0) =

𝐶(0, 𝑅, 0) = 𝐶(0,0, 𝑅) = 1, 𝐶(𝑅, 𝑅, 0) = 𝐶(𝑅, 0, 𝑅) = 𝐶(0, 𝑅, 𝑅) = 2, and  𝐶(𝑅, 𝑅, 𝑅) = 3 for 

any positive value of 𝑅. More generally, the complexity metric measures the degree to which the 

sum of resistances is spread across all three resistances. As defined, the complexity metric is 

related to some well studied mathematical objects. Namely, it is also the quotient of the “𝑙1/2  

pseudo-norm” and the “𝑙1 norm.” Such norms are known to induce sparsity when used as penality49 

and usually, simply using the “𝑙1 norm” would work. However, in our application, the “𝑙1 norm” 

is the sum of resistances across the ZARCs which is conserved in the context of an infinite span 

of measured frequencies no matter how many ZARCs are used due to the fact that it represents the 

difference between the real part of impedance in the low frequency and the high frequency limit 

for the collection of ZARC components, so the “𝑙1/2 pseudo-norm” is used instead, and we divide 

by the “𝑙1 norm” in order to properly compare the complexity of spectra with different scales. Note 

that, in the case where a ZARC has a characteristic frequency far above or below the observed 

frequencies, the “𝑙1 norm” is not conserved, so we penalize the “𝑙1 norm” 𝑅1 + 𝑅2 + 𝑅3 directly 

as well as the “𝑙1/2 pseudo-norm” (√𝑅1 + √𝑅2 + √𝑅3)
2
. 
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In conclusion, the “𝒍𝟏 norm” and the “𝒍𝟏/𝟐 pseudo-norm” are tools to distinguish between solutions 

to the fitting problem with comparable mean squared error of reconstruction, and can readily be 

applied in practice. Furthermore, the complexity metric is a human friendly metric to assess the 

relative quality of a set of solutions to the fitting problem not explained by a difference in mean 

squared error of reconstruction. 

Armed with these conceptual tools, we next describe the actual solution to the inference problem. 
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Chapter 3 Robust Fitting of Lithium-ion Cell EIS to EC 

Models 

Easy collection of electrochemical impedance spectra (EIS) at various cycle numbers and various 

state of charges produce vast amounts of data. The fitting problem, i.e. fitting each spectrum to an 

equivalent circuit (EC) can lead to physical insights about the evolution of the lithium-ion cell, but 

it requires good human initial guesses for the EC parameters to reliably converge, making the 

fitting process labor intensive and difficult to scale. This chapter presents a paradigm to automate 

the fitting of measured data to physical models, replacing the good human first guesses with an 

inverse model parametrized with an artificial neural network. This method is simple to implement, 

uses principles applicable to a wide variety of fitting problems, and leads to reliable and accurate 

initial guesses of the EC parameters for a given spectrum. The performance of the system is 

evaluated on a dataset of about 100000 impedance spectra from lithium-ion cells, achieving a 

failure of fitting approximately 1% of the dataset, corresponding to the percentage of poor quality 

data in the dataset.  

This chapter is taken in whole from the corresponding paper39, except for some minor reformatting 

and refactoring into Chapter 2. However, more details are given about the neural network 

implementation, and the work is expanded to demonstrate how a single neural network can produce 

good initial guesses for various EC topologies of interest. 

3.1 Introduction 

As it turns out, for many EC models encountered in the literature, the problem of fitting is difficult. 

It is a difficult optimization problem for which the typical optimization algorithms are often 

sensitive to the starting point, and sometimes prone to divergence.  
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In practice, this means a human has to choose the initial values of the parameters of the EC model, 

and verify the output to make sure the fitting converged properly. Thus, this analysis method is 

expensive to use, hard to automate and repeat, and, therefore, less ubiquitous than it otherwise 

would be.  

The key contributions of Chapter 3 can be summarized as: 

1. Converting 100000 separate optimization problems into a single optimization problem to 

which human effort, tuning, and (potentially) ad-hoc solutions can be applied and 

validated. 

2. Applying various insights from the large-scale machine learning literature to solve the 

single optimization problem.  

3. A complete open-source solution (with and without a graphical user interface) to the fitting 

system which can be easily adapted to various impedance fitting workloads, and finally  

4. Formulating the problem such that the insights can be generalized to potentially any other 

problems of fitting the parameters of a physics model to measured data reliably. 

As an overview, 

• In Section 3.2, the fitting problem is formalized through various approaches. Among these 

are mentioned individual fitting, clustering of spectra combined with human interaction, a 

supervised learning approach, and finally the more successful and principled approach of 

unsupervised learning.  

• In Section 3.3, the various approaches are compared both at an abstract level and in terms 

of the challenges of implementation.  
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• In Section 3.4, the unsupervised approach is put to the test on a large dataset, conclusively 

demonstrating the robustness and power of this approach.  

• In Section 3.5, the various tricks and practical considerations which can be discussed at a 

theoretical level are explored.  

• In Section 3.6, the ideas are extended to allow a single program to simultaneously solve 

the fitting problem for a variety of relevant EC models.  

• In Section 3.7, the precise details of the neural network7 having a material impact on 

performance are discussed to hopefully help the reader make good choices on their own 

application domains. 

• In Section 3.8, we present future work by discussing ways of making the core model more 

powerful (using the Transformer architecture). 

3.1.1 Related Works 

Though the core ideas of this paper have not been applied to electrochemical impedance 

spectroscopy before, there are some related works. 

For some EC models, some reparameterizations (the same model written with a different 

mathematical formula) have been shown to reduce the impact of poor initial guesses50. Similarly, 

in an application, the actual physical model has been approximated with a simpler “empirical” 

model in order to make fitting feasible51.  

Also, in order to stabilize fitting and impose some a priori preferences for ‘sensible parameter 

values’, a so-called “prior distribution of the model parameters” has been added to the fitting 

problem, penalizing both the fit error and the deviation from the a priori sensible parameter 

values52. The optimization problem resulting from the combination of a priori preferences and 
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fitting of measured data is well studied and also called “Bayesian” or “maximum a posteriori” 

parameter estimation. 

Furthermore, the use of machine learning to predict the values of EC model parameters (shortened 

to “EC parameters” from now on) is not new. For instance, there has been an application where 

design parameters for a physical system were linked directly to values for an EC model53. In other 

words, the conversion from a detailed model of a physical system to a simpler EC model was 

accomplished using a neural network.  

Finally, perhaps the closest related work conceptually, is that of visual estimation of the EC 

parameters54,55 where a set of simple rules is developed to estimate a subset of the EC parameters 

by first visualizing the impedance spectrum, and for instance, measuring the high frequency limit 

of the real part of the impedance to estimate a series resistor. By formalizing these rules into a 

program, one gets automated initial guesses for a subset of the EC parameters, which can be used 

to initialize the fitting procedure (in our terminology, we would call such a program a “partial 

inverse model”). However, developing these rules can be tedious and error prone, and requires 

special knowledge of the EC model equations. For instance, if one adds a single component to an 

existing EC model, the whole set of rules might have to change, not to mention that special care 

has to be taken to make the rules robust to unforeseen special cases such as noisy spectra. In 

contrast, we develop a general method, which can be applied to a wide variety of fitting problems 

(i.e. not limited to EIS) and can produce a robust set of rules to estimate all the EC parameters 

based on the raw impedance spectrum. Indeed, the estimates thus produced, even for the 

complicated EC model used, are robust and accurate, even removing the need for a separate fitting 

procedure on a significant percentage of the spectra.  
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3.2 Formalizations of the Fitting Problem 

Given an observed impedance spectrum, an optimization algorithm can be applied to the 

constrained fitting problem, to produce a set of EC parameters  θEC
∗   minimizing the mean squared 

error of reconstruction. Therefore, any deterministic optimization algorithm defines a function 

from spectrum to EC parameters. We call such a function an “inverse model”, since the EC model 

goes from parameters to spectra, and this function goes in the “inverse” direction. Hopefully, the 

EC parameters thus produced will be close to optimal, leading to a good fit of the data. If this is 

reliably the case, across the set of interesting spectra, we say that the inverse model is a “good 

inverse model.” In practice, for the EC model shown in Figure 2.5, this requires a human in the 

loop, to find initial guesses for the EC parameters, and potentially restart the procedure. 

Figure 3.1 illustrates how the various elements of the fitting problem relate to each other. Given 

some EC parameters (and a set of frequencies), a synthetic impedance spectrum can be sampled 

(this spectrum is represented by 𝑍reconstructed(𝜔) in Figure 3.1). Given some measured impedance 

spectrum and a synthetic spectrum, the mean squared error of reconstruction may be computed. 

These are represented by solid arrows since they can be directly expressed as equations. 

Furthermore, given a measured spectrum, the previous two relations allow one to choose a set of 

parameters, and this choice (the output of the inverse model) is a dashed arrow since it cannot 

easily be given as an equation. The colors and shapes simply represent the fact that  𝑍measured(𝜔) 

is observed while 𝜃EC is not directly observed (unobserved variables are called latent variables). 
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Figure 3.1 A graphical illustration of the fitting problem’s structure.  

Based on Figure 3.1, there are still various distinct ways of formalizing the idea that “the mean 

squared error of reconstruction is the criterion for the inverse model.” 

• Individual Fitting (Human in the Loop). The usual way, often known as least squares 

fitting, is to say that the inverse model is implicit. Any given spectrum will constitute a 

separate optimization problem of minimizing the mean squared error of reconstruction 

using a given optimizer and initial parameter guesses provided by a human in the loop. 

Note that this formalization does not make the inverse model a deterministic function of 

the measured spectrum, and any properties related to trends are left for the human to 

enforce. Also note that poor typical initial guesses create the need to use a powerful 

optimizer. This typically comes at the cost of being prone to divergence. 

• Human-Augmented Individual Fitting (Clustering). As a historical point of interest, the 

first attempt by the author to improve trends and reduce the work of fitting 100000 EIS 

consisted of a distance metric over impedance spectra which was used to group 30 to 60 

spectra together for the purpose of choosing the same initial guesses for multiple fits. This 

was combined with one of the two transformations discussed in Section 2.6 in order to 

further reduce the differences between spectra in a group. The spectra were then plotted 

together and initial guesses were given according to visual heuristics54,55. Note that 
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estimating only a few key parameters (in this case, mostly the characteristic frequencies 

and resistances of the ZARC elements) is enough to make a reasonable optimizer behave 

more or less deterministically. 

• Supervised Learning of a Partial Inverse Model (No Humans). Based on the insight 

that a human could visually estimate a few key parameters which is a process called a 

partial inverse model (in this case, mostly the characteristic frequencies and resistances of 

the ZARC elements), it was decided to replace the human by a neural network. The most 

common approach to training such networks is to create a dataset of pairs (𝑥𝑖, 𝑦𝑖)𝑖=1
𝑁  of 

inputs and outputs and then train a function 𝑓(𝑥) = 𝑦 to produce the outputs when given 

the inputs. In this case, the dataset was generated by first selecting 𝜃EC at random, then 

sampling 𝑍reconstructed(𝜔) based on some randomly chosen frequencies. In the above 

notation, the input 𝑥 was a visual representation of 𝑍reconstructed(𝜔) and the output 𝑦 was 

a vector of the few key parameters mentioned earlier, all extracted from the randomly 

selected 𝜃EC. In other words, a dataset was created where the 𝜃EC were known (not latent), 

and a neural network was trained to reproduce these values from the dataset. Note that this 

is not the same as minimising the mean squared error of reconstruction. The error is 

computed directly on the EC parameters instead. Informally, we would say that the error 

“has units of EC parameters 𝜃EC rather than units of impedance 𝑍reconstructed(𝜔).” 

• Unsupervised Learning of an Inverse Model. All previous approaches have major 

setbacks which are explored in Section 3.3. This leads one to ask: What is the actual 

problem of interest and is there a way to pursue that more directly? The problem is to find 

an inverse model (i.e. a function from measured spectra to EC parameters) which is best 

according to some criterion. As such, it is itself a single optimization problem. The criterion 
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is as follows: For the distribution of impedance spectra encountered in practice (in this 

case, they will be from lithium-ion cells), the best inverse model is that which minimizes 

the average mean squared error of reconstruction over these spectra and which behaves 

best with respect to simple trends of interest. Note that this can be implemented on a dataset 

of actual measured impedance spectra, but spectra generated some other way (such as those 

used for the supervised approach) could also be used. Indeed, by connecting a neural 

network to an implementation of the sampling of EC parameters, as in Figure 3.1, one 

obtains a function which takes impedance spectra as input and returns impedance spectra 

as outputs. The “right” choices of EC parameters for the spectra in a dataset need not be 

known for the optimization over possible inverse models to be performed. 

3.3 A Comparison of Various Approaches to the Fitting 

Problem 

At a conceptual level, there is only one problem (finding a good inverse model according the 

various criteria) and pursuing this as directly as possible (using the unsupervised learning 

approach) has the advantage of elegance. However, understanding the actual trade-offs between 

the various approaches is instructive, useful, and sometimes the most elegant approach is not the 

most practical (though it definitely is practical in this case). 

3.3.1 Individual Fitting 

First, consider the Individual Fitting approach. In theory, it confers the following: 

• Flexibility. If the EC model is changed, an optimization algorithm can immediately be 

used to fit spectra to the new EC model. For both the supervised and unsupervised 
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approach, the whole multi-day process of finding a good neural network must be redone 

for each new EC model (though we note that Section 3.6 overcomes this to some extent).  

• Adaptability. A very unusual spectrum might benefit from the fact that the optimization 

algorithm treats each spectrum separately. By default, an inverse model trained on a fixed 

set of spectra has no defined behavior when applied to a spectrum very different from those 

in that fixed set used for training. This problem is mitigated by the fact that a very unusual 

spectrum occurs rarely and can be treated separately. Also, unless the optimization 

algorithm is of a special kind, there is no convergence guarantee for any spectrum, hence 

no guarantees for very unusual spectra. Similarly, if the kind of spectra in need of analysis 

changes significantly over time (for instance, if a laboratory changes their research focus), 

the criterion at the time the model is used will diverge from the criterion at the time the 

model is trained. However, this issue is solved by periodically reoptimizing the neural 

network using all the data available, including the newer spectra, or by somehow having a 

robust enough selection process such that the inverse model chosen is good over a much 

wider distribution of possible spectra than those available during training. 

• Component Simplicity. The general software complexity of setting up and maintaining 

an inverse model is significant compared with simply using an off-the-shelf fitting software 

for individual fitting. If such off-the-shelf software gave equal or better fit quality without 

other software components required, it would be a better practical solution. However, 

ensuring quality solutions when using individual fitting may require many more 

components and process complexity in practice (i.e. human-in-the-loop).  
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On the bad side, individual fitting as an optimization problem on the EC model of Section 2.3 is 

plagued with bad local minima and as a solution to the inference problem described in Section 2.1 

does not address the global coordination at all.  

Regarding the first issue, there are in fact many different optimization algorithms varying 

dramatically in their characteristics.  

On one extreme, random search56 is a very simple and robust algorithm which has no problem 

with local minima as it searches the set of possible EC parameters globally and is therefore not 

attracted to local minima but is incredibly slow to find a good solution.  

In contrast, gradient descent and its variations are moderately fast and stable, but they are attracted 

to local minima, especially in small parameter spaces such as the EC parameters. In other words, 

for a given impedance spectrum, the space of possible EC parameters is divided into many sub-

regions which are the basins of attraction of various local minima, and the optimizer will converge 

to the local minimum within the sub-region where the initial guesses are chosen. Note that 

depending on the precise details, the convergence may still be slow, but much faster than random 

search. Furthermore, with appropriately small steps, convergence is highly likely, if left to 

optimize long enough. 

On the other extreme, various second order methods can converge very fast, but will also diverge 

more readily, and still will have some trouble with local minima, though their interaction with the 

basins of attraction is less clear for the same reasons that these algorithms are more prone to 

divergence: they take larger steps, and the justification for the steps taken helping the optimization 

have stronger assumptions built-in. 
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There are ways of trading-off the strengths and weaknesses of the various approaches (for instance 

by doing a random search on initial guesses each followed by a short gradient descent), and there 

are many approaches not mentioned here, but the more time spent selecting the perfect algorithm 

here, the more this “individual fitting” approach becomes similar to the unsupervised approach, 

since the optimizer will be selected based on a global criterion over plausible impedance spectra. 

If the search for a good inverse model is performed over a big enough and diverse enough set of 

possible optimizers, then it is reasonable to expect similar or greater performance to that discussed 

in Section 3.4 could be achieved. In other words, the unsupervised approach is not in principle 

limited to considering only neural networks as possible inverse models; more general objects 

including optimizers could also be considered. Note however, that global coordination may still 

be a problem and it is beyond the scope of the thesis to optimize over optimizers.  

3.3.2 Hybrid Approach 

There is not much to say about the human-machine hybrid approach. 

3.3.3 Supervised Approach 

However, the supervised approach is quite interesting: 

• This is the approach that most people with a passing familiarity with machine learning 

would think of first. It indeed was the case for the author. 

• It works much less well than the unsupervised approach, not quite matching the human 

ability to visually estimate the key EC parameters. 

• It works sufficiently well to build a good solution to the fitting problem, when used to 

constrain the initial guesses. However, it required many human-written heuristics, a well-

chosen proprietary optimizer from Mathematica for the individual fitting portion, and many 
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weeks of tweaking and patching the code. However, the global coordination problem was 

not properly addressed by this code and the complexity of maintenance was much too high. 

3.3.4 Unsupervised Approach 

In retrospect, it is obvious that the unsupervised approach is superior. But the real question is what 

type of reasoning would have led one to conclude beforehand that the unsupervised approach 

would work much better? 

The elegance and simplicity argument for using a problem setting which directly corresponds to 

the desired outcome would have advocated for the unsupervised approach. However, this argument 

would not have predicted that the supervised approach would fail to meet the human level of 

performance, or that the unsupervised method would exceed it. 

Similarly, this argument would not have predicted that the unsupervised method would naturally 

(i.e. without special effort) display good global coordination, or that the supervised approach 

would not display it even with some significant special effort (i.e. the clustering approach57,58). To 

emphasize the point, it is unclear to the author whether the supervised approach can in practice 

display a high level of global coordination even with a lot more special effort. If such a thing is 

possible, the author would bet that the special effort contains something akin to the unsupervised 

approach and that the supervised part plays at best no role and at worse a detrimental role.  

While the elegance argument fails to make bold enough predictions, some intuitive arguments 

predict boldly in the wrong direction. For instance, focussing purely on the apparent difficultly 

of selecting a neural network would misguide greatly. Indeed, it seems that the supervised dataset 

simplifies the optimization problem over neural networks by providing the “correct” EC 

parameters for the given spectra. While both the supervised and unsupervised problem must learn 
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to correlate the spectrum shape to the correct EC parameters, the unsupervised problem must first 

determine what the correct EC parameters are. In other words, the unsupervised task must solve 

the individual fitting problem whereas the supervised task is handed a perfect solution to imitate. 

Since the task of solving the individual fitting problem is difficult (otherwise this Chapter would 

not exist), the argument goes that the unsupervised task would do poorly. This of course is a wrong 

prediction. 

Now that some insufficient arguments and wrong arguments have been presented, let us attempt 

to give good arguments/considerations. 

First, since the supervised approach was only tried on parameters which could successfully be 

estimated visually, the possible solutions for the supervised approach are strictly less powerful, 

but assuming the supervised approach is extended to predict all parameters, the possible candidate 

inverse models are the same in both approaches. Figure 3.1 illustrates that the two approaches 

place the neural network in the same place. 

Second, assume access to a perfect optimizer for neural networks which takes a loss function 

defined by the dataset and the selection criterion, and produces a neural network which has the 

lowest possible loss on the dataset while respecting some continuity condition. Furthermore, 

assume the largest possible dataset was collected according to the methodology of either the 

unsupervised or supervised approach. In such a scenario, it is still possible to predict some aspects 

of the inverse model produced using either the supervised or unsupervised approach:  

• In the case of the unsupervised method, the inverse model would perfectly solve the 

individual fitting problem on every single spectrum in the dataset (i.e. it would associate 
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to every spectra the choice of EC parameters which minimizes the mean squared 

reconstruction error).  

• However, in the case of the supervised method, assuming there are multiple choices of EC 

parameters which produce identical spectra (also nearly identical spectra in case the 

continuity condition would force the neural network to produce nearly identical EC 

parameters for such spectra), the best which can be achieved is an inverse model which 

predicts the average of all the multiple choices of EC parameters.  

When presented with identical spectra from the dataset, the neural network must produce a unique 

EC parameter vector. If these identical spectra are associated with distinct EC parameter vectors 

in the dataset, the loss function cannot be perfectly satisfied. The best that can be done is to produce 

the average of all the EC parameters associated with the same spectrum.  

In a slightly more realistic dataset creation effort, there would be imbalances in the multiple 

choices of EC parameters for a given spectrum. In general, the imbalances would be inconsistent 

from one spectrum type to the next, which would hurt the global coordination of the solution.  

In short, the unsupervised approach has no fundamental limits on its achievable performance, but 

the supervised approach is limited by the quality of its supervised EC parameters, even in the limit. 

Third, the unsupervised approach allows the use of datasets which are strictly larger than those 

available to the supervised approach. Indeed, any spectrum for which the EC parameters are known 

can be included in either dataset, but the unsupervised dataset can also include spectra from 

experiments, as well as spectra sampled from more complicated and diverse EC models than the 

one presented in Section 2.3.  
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Furthermore, any transformation of the impedance spectrum which has an unpredictable effect on 

the corresponding optimal EC parameters may still be included in the unsupervised dataset.  

In short, the unsupervised dataset can be much larger and diverse than the supervised dataset. 

Indeed, there are no limitations on the dataset size for the unsupervised approach and in practice a 

small amount of effort yielded significant improvements in the quality of the dataset in the 

unsupervised case. 

Based on these considerations, the main imagined hurdle for the unsupervised approach is the fact 

that it must solve the individual fitting problem which is difficult to do. However, this is not quite 

accurate. The optimizer applied to the parameters of the neural network will follow gradients in a 

space with a completely different geometry; one which is much less plagued by bad local 

minima59,60. Indeed, it is a general result for many domains of application of neural networks that 

optimization in these very large spaces of neural network parameters is feasible, and various tricks 

exist to successfully solve these seemingly challenging optimization problems for up to hundreds 

of billions of parameters31. In short, solving the complete fitting problem of finding a good inverse 

model is not harder than solving every individual fitting problems on a given dataset. Indeed, 

applying relatively straightforward tricks is expected to solve any issues encountered most of the 

time on these problems. 

Finally, could the good global coordination of the unsupervised approach have been predicted by 

a good argument? In other words, assuming that the unsupervised approach can reach a given 

inverse model as a good solution to the fitting problem, and comparing all such inverse models 

with each other, is it going to be easier to reach solutions with good global coordination or 

solutions with bad global coordination? This is in the end an empirical question, but some 

intuitions can be used to attempt to estimate these questions beforehand.  
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If nearby spectra A and B produce incompatible EC parameter choices 𝜃𝐸𝐶,𝐴 and 𝜃𝐸𝐶,𝐵, then 

essentially the neural network could easily be used to distinguish between A and B more or less 

reliably. Then, the ability to distinguish A from B must come about and persist in conjunction with 

the ability to send A to a good choice 𝜃𝐸𝐶,𝐴 and B to a significantly different good choice  𝜃𝐸𝐶,𝐵. 

It seems unlikely to come about compared to a system which doesn’t have the ability to distinguish 

A from B, and just predicts the same choice for both 𝜃𝐸𝐶,𝐶, and which then incrementally 

specialises the predictions to lower the mean squared error of reconstruction without a big change 

in the predictions themselves. Indeed, what would be the incentives for developing the ability to 

distinguish A from B before the ability to send A to 𝜃𝐸𝐶,𝐴 and B to 𝜃𝐸𝐶,𝐵? A similar analysis would 

predict that these two separate abilities are difficult to maintain through the training process. This 

style of though is still not completely formalized, but it seems useful to develop good expectations 

about outcomes of sophisticated neural network training processes61. 

3.4 Results 

If the only requirement was to produce adequate fits for a fixed set of impedance spectra, then the 

inverse model could always be optimized precisely on all the spectra of interest. Initial experiments 

showed that the basic setup can accomplish this relatively easily. However, optimizing the inverse 

model on a large set of spectra can take some time, and if new spectra are constantly measured, 

this approach would introduce latency and management complexity. It is also quite inefficient to 

constantly train on a growing set of spectra every time a new spectrum is measured.  

Therefore, the proper context to evaluate the performance of the proposed fitting system is as 

follows: Once the inverse model has been optimized on a set of spectra, it is applied to a set of 

new unseen spectra. Then the following are measured: 
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• The accuracy of the fits (in the sense of reconstruction error) on the new spectra, as 

produced by the inverse model. 

• The accuracy of the fits on the new spectra when the inverse model is used as initial guesses 

for a gradient descent optimizer. 

If the inverse model produces relatively good EC parameters for a given spectrum, then the simple 

optimization pass should converge, since only small adjustments of the EC parameters would be 

required. After doing this, the actual quality of the fits can be determined.  

The numerical experiment proceeds as follows.  

As detailed in Section 2.3, around 100000 experimental impedance spectra were collected over 

many years, and are organized into two datasets with different characteristics (the FRA dataset and 

the EIS dataset). Section 2.3 also details the main differences in those datasets (mostly the 

temperature of measurement, the types of cells measured, and the ratio of spectra to different cells 

within the dataset). Each dataset is split at random into two disjoint sets (called train set and test 

set respectively), with 1% of the spectra for the train set and 99% for the test set. Since the FRA 

dataset contains potentially many spectra from the same cell, we enforced the constraint that there 

be no cell for which spectra exist both in the train FRA dataset and the test FRA dataset.  

Then, the inverse model is optimized on a mixture of data from three separate sources: 1) generated 

data (20 percent of the spectra seen, including repetition), 2) data from the FRA train set (40 

percent of the spectra seen, including repetition), and 3) data from the EIS train set (40 percent of 

the spectra seen, including repetition). Finally, the inverse model is fixed, and is applied to both 

the FRA test set and the EIS test set to produce EC parameters for each spectrum in the test set.  
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These EC parameters are used to produce a reconstruction, and the difference between the original 

spectra and their reconstructions is calculated. Smaller differences mean a better inverse model. 

However, to visualize these results, we compute a metric (the mean error divided by the standard 

deviation of the data). Then, the test set is sorted by this metric, and some fits at various points on 

this sorted list are plotted. Note that, in order to save space, the fits are shown using Nyquist plots 

(negative imaginary part vs. real part), instead of showing Bode62 plots (real part vs. frequency, 

and imaginary part vs. frequency). From a Nyquist plot, there is no way of knowing whether the 

frequencies are aligned between fit and original data, as a uniform shift of log-frequency would 

not change a Nyquist plot. Yet, the optimization has no way of producing good looking Nyquist 

plots without proper frequency alignment. In all cases shown, the Bode plots would all look better 

than the corresponding Nyquist plots. 

It is not practical to show all the fits in the test set, but Figure 3.4 through Figure 3.7 show fits that 

have not been “cherry-picked” and illustrate qualitatively the results of Figure 3.2 and Figure 3.3.  

Similarly, the complexity measure introduced in Section 2.7 is computed once the EC parameters 

are known, and it is plotted across the dataset. Ideally, the fits should have both low error and low 

complexity, but experimental data can never have 0 error, and some spectra clearly exhibit more 

than one active electrochemical ZARC, hence the complexity measure must be superior to 1.  
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Figure 3.2 The error for both the FRA and EIS test datasets, for the EC parameters directly 

produced by the inverse model, and those produced by applying 1000 steps of ADAM 

finetuning to the output of the inverse model. The mean squared error, scaled by the 

standard deviation, was computed by comparing the reconstructed spectra and the 

original. These errors were sorted and plotted against the percentile. Therefore, a 

percentile of 1 represents a fit worse than 99% of all the fits. The horizontal axis 

represents the whole set of spectra. The inverse model trained for a day. One thousand 

steps of ADAM finetuning is roughly 0.05 seconds per spectrum. Note that the times 

were obtained on a 2016 laptop, with an NVIDIA Quadro M1000M graphical 

processing unit.   
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Figure 3.3 The complexity metric is shown for both the FRA and EIS test datasets, for the EC 

parameters directly produced by the inverse model, and those produced by applying 

1000 steps of ADAM finetuning to the output of the inverse model. Figure 3.2 gives 

details of how the fits were obtained. The complexity decreases slightly during ADAM 

finetuning.  

Figure 3.2 and Figure 3.3 show a quantitative evaluation of the performance of the system 

(respectively the error and the complexity metrics). The strength of the inverse model optimization 

is to be able to avoid bad local minima and explore the landscape of possible fits to find an overall 

good solution. The strength of the finetuning is its stability and precision (it will simply converge 

to the nearest local minimum).  
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Initially, the finetuning was a simple gradient descent algorithm (i.e. the derivative of the MSE 

error is taken with respect to the EC parameters, and the EC parameters are updated by shifting a 

small amount in the direction that most reduces the error, namely the negative of the gradient). 

However, the performance was not good. Hence, we implemented the ADAM optimization 

algorithm22, a variant of gradient descent which in our case performs much better (see Section 

1.1.6). Roughly speaking, by computing the gradient at each step, the average and the standard 

deviation can be estimated, and a step can be taken in the direction of negative average gradient 

but the size of the step will be smaller if the standard deviation is large.  

Figure 3.4 through Figure 3.7 evaluate the fits qualitatively.  

For instance, Figure 3.4 shows some fits of the FRA test dataset using the inverse model, at various 

percentiles of error. The actual data is shown as the dots whereas the spectra reconstructed from 

the fitted EC parameters are shown with a line of the same color. The big stars are the datapoints 

which have an angular frequency closest to the characteristic frequency of the corresponding 

ZARC. There are 3 ZARCs, so three stars should be visible, with the ZARC having the lowest 

characteristic frequency usually showing up to the right in a Nyquist plot. Furthermore, to help 

understand the complexity metric, the resistance corresponding to each ZARC was calculated, and 

is written in the legend. For instance, the blue spectrum in the percentile 50 plot had its first ZARC 

at a relatively low frequency, with a resistance of 20, its second ZARC at a medium frequency 

with a resistance of 21, and its third ZARC at a relatively high frequency with a resistance of 8. 

Note that the resistances computed would have units of ohm (since they are the bona fide 

resistances in the original circuit, before reparameterization), but the whole spectrum was scaled 

such that the maximal observed impedance had magnitude 100. This was done only to simplify 
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the visualization. Also note that the resistances shown were rounded to the nearest integer to save 

space. The same goes for Figure 3.4 through Figure 3.7.  
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Figure 3.4 Some fits of the FRA test dataset using the inverse model, at various percentile of 

error. The fits shown are of acceptable quality, but the data itself is of poor quality for 

the lowest 2 percentiles. The dots and lines represent actual data and reconstructed 

spectra respectively. The actual data was rescaled such that the largest impedance 

within each spectrum would equal 100. There are 3 ZARCs, so three stars (each 

positioned at the dot nearest to the corresponding characteristic frequency) should be 

visible, with the rightmost star typically representing the lowest characteristic 

frequency ZARC. The legend shows the resistance corresponding to each ZARC. For 

instance, the blue spectrum in the percentile 50 plot had resistances of 20, 21, and 8 

for the low, medium, and high frequency ZARCs respectively (when rounded to the 

nearest integer). 
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Figure 3.5 Some fits of the EIS test dataset using the inverse model, at various percentile of error. 

The fits shown are of acceptable quality, but the data itself is of poor quality for the 

lowest 4 percentiles. See Figure 3.4 for details about the legend. 
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Figure 3.6 Some fits of the FRA test dataset using the inverse model followed by 1000 steps of 

ADAM finetuning, at various percentile of error. The fits shown are of good quality, 

but the data itself is of poor quality for the lowest 2 percentiles. See Figure 3.4 for 

details about the legend. 
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Figure 3.7 Some fits of the EIS test dataset using the inverse model followed by 1000 steps of 

ADAM finetuning, at various percentile of error. The fits shown are of good quality, 

but the data itself is of poor quality for the lowest 4 percentiles. See Figure 3.4 for 

details about the legend. 

 

Looking at Figure 3.4 through Figure 3.7, and confirming by plotting more spectra, the following 

qualitative conclusions can be reached:  

• The inverse model properly fits 98% of the spectra, give or take 2%, but the precision is 

not optimal.  

-Im(Z)
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• The inverse model combined with the finetuning optimization properly fits 99% of the 

spectra, give or take 1%, and the precision is close to optimal.  

• These conclusions hold both on the FRA dataset and the EIS dataset. 

Though it is not possible to compare to every other fitting software, the author’s experience with 

freely available fitting software applied to similar data suggests that the inverse model combined 

with the finetuning optimization is much more reliable than alternatives, and that fitting such a 

large and diverse dataset with freely available fitting software would be very labor intensive. 

By looking at Figure 3.4 and Figure 3.5, anyone who has tried to guess the value of EC parameters 

visually from the spectra for a circuit such as displayed in Figure 2.5 will see that the inverse model 

is effective at estimating the optimal EC parameters. Furthermore, given better data and perhaps a 

larger neural network parametrizing the inverse model, there is no reason why the performance 

could not be even better. Also, by looking at the low-percentile spectra (i.e. those not well fitted 

by the inverse model), it is possible to augment the generated data and tweak things until the 

inverse model properly handles this type of spectrum. However, at any given point, the available 

data will be incomplete, and there will be corner cases not represented. Therefore, when assessing 

the performance of a system and quantifying the success rate, it is better to not tweak or generally 

not try to improve the inverse model on specific cases.  Since we have followed this principle, the 

98% number given above should be roughly accurate. 

These results are encouraging both for the application of EC model fitting, but also for the general 

approach of training an inverse model, represented as a neural network, and then using a finetuning 

optimization. We hope that this can be applied to many different difficult fitting problems.  
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Finally, Figure 3.8 shows a sample of fits in their original scale (before the scaling and shifting), 

using the combined method (inverse model + finetuning), together with the error metric and the 

complexity metric for each fit. Though the fitting itself happens in a space where the scales of 

different spectra are very similar (see Figure 3.4 through Figure 3.7), this method can effectively 

fit a variety of different spectra at different scales. 

  



84 

 

 

 

Figure 3.8 Some fits in the FRA dataset shown in original scale. The fits shown were chosen to 

demonstrate the variety of spectra which can be handled by the system. From 

thousands of ohms, down to hundreds of milliohms in scale, some fits of various 

shapes, together with their error metric and complexity metric, are shown. These fits 

are from the combined method, using the inverse model as well as the fine tuning with 

ADAM. 
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3.4.1 Reproducibility and Access to Code  

A barebones version of the code is available at https://github.com/Samuel-Buteau/EISFitting with 

all the documentation contained in the README.md file. This codebase contains a pretrained 

model and the ability to run the model on a directory containing EIS measurements to receive the 

results. The inverse model is also able to produce results for tens of different EC models. This can 

be done through a very simple command line interface We leave the integration of the core 

software with a truly outstanding user interface as future work. 

Many labs interested in applying this technique might be worried that they do not have 100000 

spectra available to make this work. However, similar techniques can be applied on a smaller scale 

to yield good results.  

First, note that the two datasets (FRA and EIS) are quite different and producing an inverse model 

which works well across both tasks is harder than solving each task individually. For the case of 

the EIS dataset, it contains around 10000 spectra, and we have shown that 1% of the dataset (100 

spectra) was sufficient to reach quite good performance.  

We note that with more data, the inverse model becomes more precise (for instance, Figure 3.9 

shows the performance of a model trained with 10 percent of the data instead of 1 percent, 

compared with Figure 3.2), but in order to get reasonable starting points for the finetuning, 

precision is not required for the vast majority of spectra.  

https://github.com/Samuel-Buteau/EISFitting
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Figure 3.9 The error of a model trained with 10 percent of the data is shown for both the FRA and 

EIS test datasets, for the EC parameters directly produced by the inverse model, and 

those produced by applying 1000 steps of ADAM finetuning to the output of the 

inverse model. The mean squared error, scaled by the standard deviation, was 

computed by comparing the reconstructed spectra and the original. These errors were 

sorted and plotted against the percentile. Therefore, a percentile of 1 represents a fit 

worse than 99% of all the fits. The horizontal axis represents the whole set of spectra. 

The inverse model trained for a week, but the performance remained stable from day 

3 onward. 
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3.5 Conceptual Discussion of Tricks 

Now that the general considerations are spelled out, we detail the various tricks and specific 

solutions which improve the performance of the system on this particular problem setting of fitting 

EIS spectra. 

The optimization of the inverse model is still a considerable problem, and some tricks go a long 

way to making it converge quicker, more stably, and favor some desired properties of the solution. 

These tricks are discussed below. Note that this and the following sections of this chapter are heavy 

in details, and readers primarily interested in the use of a fitting software need not read them.  

3.5.1 Defining a Prior Distribution on the EC Parameters 

Even before seeing the spectrum, some values of the EC parameters are less likely than others. 

Formally, we can represent this knowledge as a probability distribution over θEC henceforth called 

the prior. Formally speaking, a prior is entirely subjective, and it can be interpreted as a guess of 

the likelihood of any given θEC being appropriate for a randomly chosen impedance spectrum. For 

simplicity, an average value 𝜃EC,𝜇 and a standard deviation θEC,σ is chosen for all the EC 

parameters (more formally, each parameter follows an independent gaussian distribution), and 

these values do not depend on individual impedance spectra. Note that the prior only represents 

one’s best guess in a simple form and so it may not have much to do with the actual distribution 

of θEC over plausible impedance spectra. When a prior precisely corresponds to the actual 

distribution of θEC over plausible impedance spectra, it is called the optimal prior. When it is 

necessary to distinguish an actual choice of prior from the optimal prior, the actual choice is called 

a subjective prior. For the form of prior chosen, increasing the standard deviations is said to 

broaden the prior and decreasing the standard deviations is said to compress the prior. 
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In some sense, choosing a subjective prior63 is related to the supervised approach, but these are 

different concepts. The supervised approach defines implicitly a prior if one simply ignores the 

correspondence between specific spectra and specific EC parameters and only looks at the set of 

EC parameters (to get a gaussian prior out of this, simply compute the average and standard 

deviation of each parameter). In the case of the unsupervised approach, this correlation between 

specific spectra and specific EC parameters is not explicitly given, and instead is chosen to serve 

the overall criterion of producing good reconstructions. On the other hand, the prior can be used 

as a form of weak supervision such that EC parameters unlikely according to the prior may be 

slightly penalized as shall be discussed later. 

In general, there is nothing preventing one from using criteria more like the supervised approach 

(i.e. directly defined on EC parameters) in conjunction with criteria more like the unsupervised 

approach (i.e. directly defined on the reconstructed spectra). Supervised and unsupervised were 

convenient words for separating the two approaches, but the generalizable insight from Chapter 3 

should not be that “unsupervised is better than supervised” (which is false for many problems). 

Instead, the insight is that considering many different mechanisms to produce a model may yield 

better results than simply using the most obvious one. 

3.5.2 Leveraging Symmetries to Compress the Prior 

Impedance spectra gotten from experiments are extremely diverse in their scale (coin cells 

typically have much smaller surface area, and thus correspondingly higher impedance than pouch 

cells), and the frequency ranges over which the characteristic frequencies reside. Therefore, 

coming up with fixed reasonable values for θEC to suit all these spectra would be challenging, 

forcing relatively poor match between the prior and any given spectrum’s actual parameters (i.e. 

the optimal prior would be very broad).  
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However, the symmetries discussed in Section 2.5 can be leveraged to scale each impedance 

spectrum such that the average absolute value of the impedance with respect to frequency equals 

1 and such that the logarithm of the frequency averaged by the absolute value of the impedance 

equals 0. This would compress the optimal prior greatly, since impedance spectra with 

disproportionately large resistances would have their resistances diminished, and vice-versa.  

Correspondingly, it is relatively simple to choose reasonable ranges for each EC parameters 

knowing that the spectra have been manipulated as above. Indeed, the code has been run with two 

versions of the prior: once simply by guessing reasonable values (a subjective prior), and once by 

looking at the final parameters of all the fits, and choosing the average value and standard deviation 

for each (an approximation to the optimal prior). We note that none of the results change, despite 

the huge gap between the subjective prior and the (approximated) optimal prior.  

Indeed, these symmetries compressed the optimal prior enough to make it easy to choose a 

relatively good prior. Starting with a good prior when searching for an inverse model is akin to 

starting with a good initial guess when solving the fitting problem for an individual spectrum, but 

the process of searching for an inverse model is a lot more resilient, so the only difference between 

a good and a bad prior in practice is the time it takes the neural network to converge to a good 

inverse model.  

3.5.3 Modelling Deviations from the Averaged Prior 

Let θEC,μ be the average values chosen for the EC parameters as defined in the prior distribution 

above. Then, instead of representing the inverse model by a neural network directly, we represent 

the difference between outputs of the inverse model and the average values 𝛉EC,𝛍 by a neural 

network, and it is initialized such that the output is 0. This has the effect of beginning with an 
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inverse model which is constant and which always produces θEC,μ  at the beginning, which are 

chosen to be reasonable. Then, as the neural network is trained, its outputs will deviate from  θEC,μ 

more and more until it reaches different EC parameter values appropriate for individual spectra. 

This trick is similar to residual networks64 (i.e. make the default prediction better). 

3.5.4 Penalizing Deviations from the Prior 

As we minimize the mean squared error of reconstruction across the set of spectra with respect to 

the neural network parameters θInv, a penalty which shall be denoted by ℒ(θInv; S) (see List of 

Symbols), some EC parameters might fall into a range of values where they have very little impact 

on the reconstructed spectrum (see Section 2.6).  

Furthermore, following the gradient of  ℒ(𝜃Inv; 𝑆)  can lead to exploring inverse models that 

produce EC parameters where, for instance, the error becomes so large that the numerical precision 

is insufficient to represent it. By adding a small term in the minimization that pushes the 

predictions towards typical values, the optimization is more stable. In general, given a probability 

distribution 𝑃 and a prediction 𝜃EC, we can compute the likelihood of the prediction according to 

that probability distribution (in our case it is the probability density of sampling the prediction 𝜃EC 

from the probability distribution 𝑃). In practice, we minimize the negative logarithm of the 

likelihood. For our choice of prior, this is easily computed and essentially is the squared error 

between θEC,μ  and the predictions, weighted by the inverse of the standard deviation θEC,σ such 

that parameters which are very broad in the prior will suffer a smaller penalty for predictions which 

are far from θEC,μ, but parameters which are compressed in the prior65 will suffer a larger penalty. 
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3.5.5 Breaking the Symmetry in the EC Model 

Since there are 3 ZARC elements all modelling similar processes, the reconstructed spectrum does 

not change when we interchange the parameters of two ZARCs (see Section 2.6).  Therefore, there 

is nothing in the mean squared error of reconstruction across the set of spectra ℒ(𝜃Inv; 𝑆)  to break 

this symmetry66. Indeed, there exists multiple distinct inverse models which minimize equally well 

ℒ(𝜃Inv; 𝑆)  and in fact display the exact same degree of global coordination. Namely, all prediction 

of a given inverse model can be permuted as above to obtain an equally valid inverse model.  

To simplify the interpretation of the solution, and to simplify the prediction task, we penalize 

predictions of 𝜃EC  where the electrochemical ZARCs are not ordered by characteristic frequencies 

(from lower to higher). Letting 𝑤𝑐1, 𝑤𝑐2, 𝑤𝑐3 be the characteristic log-frequencies of the 3 

electrochemical ZARCs, this is done by minimizing a penalty which is positive when 𝑤𝑐1 > 𝑤𝑐2 

or when 𝑤𝑐2 > 𝑤𝑐3, and 0 otherwise. To make this differentiable with useful gradients, we 

compute relu(𝑤𝑐1 − 𝑤𝑐2) = max(0,  𝑤𝑐1 − 𝑤𝑐2). When 𝑤𝑐1 > 𝑤𝑐2, this function gives a penalty 

equal to the difference 𝑤𝑐1 − 𝑤𝑐2, but when 𝑤𝑐1 ≤ 𝑤𝑐2, this function is 0. By taking the gradient, 

we see that this penalty “pushes” 𝑤𝑐1 toward 𝑤𝑐2 with a constant “force” when 𝑤𝑐1 > 𝑤𝑐2,  but 

has no impact when 𝑤𝑐1 ≤ 𝑤𝑐2. Similarly, we compute relu( 𝑤𝑐2 − 𝑤𝑐3) for the same reason.  

Note that despite not having a term to ensure that 𝑤𝑐1 < 𝑤𝑐3, this will be optimized for because if 

𝑤𝑐1 < 𝑤𝑐2 and  𝑤𝑐2 < 𝑤𝑐3, then it follows that 𝑤𝑐1 < 𝑤𝑐3.  

Finally, previous numerical experiments have revealed that it is possible to set 𝑤𝑐3 to a very large 

value, in which case the third ZARC will simply behave as a resistor. Similarly, it is possible to 

set 𝑤𝑐1 to a very large negative value, in which case the first ZARC has no impact on the 

impedance spectrum. Both of these are undesirable for two reasons. First, this is against the prior 

and therefore quite unlikely to represent some real process in the lithium-ion cell. Second, there is 
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nothing in the measured spectrum which can indicate the presence of ZARC elements with 

characteristic frequencies far outside the range of measured frequencies. As a safety precaution, 

we also add the penalties relu( 𝑤𝑚𝑖𝑛 − 𝑤𝑐1) and relu( 𝑤𝑐3 − 𝑤𝑚𝑎𝑥), where 𝑤𝑚𝑖𝑛 is the logarithm 

of the smallest observed frequency for a given spectrum, and  𝑤𝑚𝑎𝑥 is similarly the logarithm of 

the largest observed frequency. 

3.5.6 Penalizing Complexity 

Section 2.7 defined a quantitative measure to track complexity of a given solution. To select an 

inverse model which produces better solutions, we also penalize the “𝑙1 norm” 𝑅1 + 𝑅2 + 𝑅3 

directly as well as the “𝑙1/2 pseudo-norm” (√𝑅1 + √𝑅2 + √𝑅3)
2
. In the literature, many ways of 

penalizing complexity exist67, though the penalties often are applied directly to the neural network 

parameters instead of its output. 

3.5.7 Automatically Setting the Relative Importance of the Penalties 

Since the most important thing to optimize is the mean squared error of reconstruction across the 

set of spectra ℒ(𝜃Inv; 𝑆) and we don’t really know the target values of all the penalties, instead of 

minimizing the sum of the penalties, we minimize   ℒ(𝜃Inv; 𝑆) + ℒ(𝜃Inv; 𝑆) ∑ 𝑃𝑖(𝜃Inv; 𝑆)𝑖  where 𝑃𝑖 

are the penalties. Yet, when taking the gradient of this number with respect to 𝜃Inv, there are some 

terms without use. Empirically, we observe that the most stable objective to minimize is 

implemented as ℒ(θInv; 𝑆) + stopgrad(ℒ(θInv; 𝑆))∑ 𝑃𝑖(θInv; 𝑆)𝑖 , where stopgrad(ℒ(θInv; 𝑆)) is 

treated as a constant with respect to differentiation68, but the value of the constant is ℒ(θInv; 𝑆). It 

is also possible to use statistical properties of the individual terms to set their relative weights, 

though this was not done here69. 
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3.5.8 Generating Fake Data to Improve Robustness of the Inverse Model 

We can use the prior distribution over EC parameters to generate fake spectra, simply by choosing 

a range of frequency, sampling from the prior distribution of EC parameters and evaluating the EC 

model on the chosen frequencies and parameters to produce a spectrum. However, to increase 

robustness, we allow for between 0 and 9 electrochemical ZARCs to be present (the number is 

chosen at random, with expected number around 3). In practice, spectra generated this way look 

varied and realistic. However, we have found that by replacing gaussian priors with uniform-over-

a-range priors (with the range of possible values centered on the mean of gaussian prior, and the 

length of the range being proportional to the standard deviation), and playing around with the 

values, we could increase perceived variation and realism of the fake data70. As future work, it 

would be useful to automatically determine the adjustable parameters of the generating process 

such that the fake data has a good similarity with the real data, but also has a more 

broad/comprehensive distribution. 

The most straightforward way of doing this is to maintain a table of the N most recent predictions 

associated with each actual spectra in the dataset. Then, instead of using the prior as a basis for 

generating fake data, a subset of these previous predictions may be sampled, and some priors (one 

prior per prediction) with the same standard deviations as the subjective prior for the dataset but 

the average values taken from the predictions themselves may be created and used in the fake data 

generation procedure. At the beginning of training, this process would produce the same fake data 

distribution as the process based on the subjective prior for the whole dataset, but as the inverse 

model began specializing its predictions to the actual spectra in the dataset, the variation in the 

generated data would grow. 
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This future work may allow the system to work even with an experimental dataset with smaller 

variety, quality or quantity. 

3.5.9 Augmenting Real Data to Improve Robustness of the Inverse Model 

Instead of simply optimizing the inverse model on a fixed number of experimental impedance 

spectra, we can apply some transformations to these precious experimental spectra to produce a 

larger set of spectra to optimize on. First, we remove a random number of the higher frequencies 

from the spectrum (technically, we never remove frequencies lower than the first high frequency 

where the imaginary impedance becomes non-positive). Then, after the rescaling and frequency 

shifting, we scale and shift by a small random amount. These transformations71,72 extend the set of 

actual spectra to a continuous manifold of spectra and imposes better robustness constraints on the 

inverse model. As future work, it may be useful to extend the data manipulations (e.g. superposing 

real spectra with generated spectra, resampling the frequencies and linearly interpolating). 

3.5.10 Error Rescaling 

The rescaling of the impedance spectra makes the spectra unitless. Some spectra have a huge 

spread in their values, while others have a small spread in their values. Without rescaling the error 

to be comparable, the training signals will be dominated by the samples with large spread in their 

values. In our case, this is not desirable since most often, this means a fair bit of noise in the 

spectrum, or a large tail either coming from diffusion or inductance. The rescaling is done by 

dividing the difference between the reconstructed spectrum and the original by the “empirical 

standard deviation” of the real part and the imaginary part (respectively). Explicitly, taking all the 

real parts of impedance for a given spectrum, computing the mean, and then taking the average 

squared deviation from the mean, we get the empirical variance. The square root of the empirical 

variance gives the empirical standard deviation. 
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3.6 Extension to Multiple EC Models 

In terms of general usability, an EIS fitting software should allow the user to choose which EC 

model to use in the fit. The most straightforward way to do this is to train a separate inverse model 

for each EC model of interest and invoke it on request. However, in practice there are many 

potential EC models of interest, and the repetition does become prohibitive once more than 10 

inverse models must be maintained. In reality, this “problem” is a minor concern for this specific 

application, but solving it illustrates how the machine learning toolkit may be wielded in creative 

ways once the basic setup works properly. 

The goal is to use a single neural network to act as the inverse model for multiple EC models. 

More formally, instead of finding a function from measured spectra 𝑍measured(𝜔) to EC 

parameters 𝜃EC, we must now construct a function from measured spectra 𝑍measured(𝜔) and EC 

model identifier IDEC to EC parameters 𝜃EC for that EC model. Since some EC models may have 

a different number of parameters, we will require a space large enough to contain any EC model’s 

parameters, and from that space, we will define a projection operation to convert from the larger 

space to a given EC model’s parameter space. 
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Figure 3.10  A graphical illustration of the multi EC model variant of the fitting problem. The 

inverse model must now take as inputs 𝑍measured(𝜔) and IDEC (i.e. the representation 

of the equivalent circuit used) to produce EC parameters in a common space to all the 

EC models 𝜃EC,Universal. Given IDEC and 𝜃EC,Universal, as well as some frequencies, the 

reconstructed spectrum may be sampled. Finally, given IDEC and 𝜃EC,Universal, the 

parameters of the EC model 𝜃EC can be obtained in the space suitable for that given 

EC model. 

A complete list of the various supported circuits can be found in the user manual at 

https://github.com/Samuel-Buteau/EISFitting/blob/master/UserManual/manual.pdf. Figure 3.11 

and Figure 3.12 give six examples of circuits which may be of interest. 

First, we describe how given IDEC and 𝜃EC,Universal, as well as some frequencies, the reconstructed 

spectrum may be sampled. This is in fact straightforward to do with the notion of an EC model 

https://github.com/Samuel-Buteau/EISFitting/blob/master/UserManual/manual.pdf
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being optionally present within a larger EC model. Recalling Section 2.1 and the concept of two 

circuits being connected in series, now we introduce a similar definition for two EC models being 

serial options: 

Given two EC models denoted as Z1(ω; θEC,1) and Z2(ω; θEC,2), as well as a switch variable 𝑠 

(either 0 or 1), we can define a third EC model called “serial option of model 1 and model 2” as  

Z1⊕2(ω; s, θEC,1, θEC,2) = 𝑠Z1(ω; θEC,1) + (1 − 𝑠)Z2(ω; θEC,2) 

In the case where 𝑠 = 1, we say that model 1 is active and model 2 is inactive (and vice versa). 

Note that the impedance of a serial option is constant with respect to the parameters of the 

inactive model. This means that, in practical terms, they can be set to e.g. 0. When both models 

can be expressed with the same number 𝑁𝑝 of parameters and the parameters for the inactive 

model are always set to 0, it is possible to view the serial option model as only having 𝑁𝑝  

parameters instead of 2𝑁𝑝 parameters: 

 Z1⊕2(ω; s, θEC,1, θEC,2) = Z1⊕2(ω; s, θEC) = 𝑠Z1(ω; θEC) + (1 − 𝑠)Z2(ω; θEC) 

where θEC = 𝑠θEC,1 + (1 − 𝑠)θEC,2. In other words, by adding the parameters of the active model 

to zeroed out parameters for the inactive model, the combined model always has access to the 

appropriate parameters. Similarly, if model 1 has a smaller number of parameters 𝑁𝑝1,  as model 

2’s number of parameters 𝑁𝑝2 (or vice-versa), then the parameters of model 1 can be “padded” 

with an appropriate number of zeros in order to obtain the same number of parameters as model 2. 

Therefore, the serial option of model 1 and model 2 can be viewed as having max(𝑁𝑝1, 𝑁𝑝2) 

parameters (excluding the switch variable). Note that this would not be feasible if the switch 

variable were allowed to take intermediate values between 0 and 1. 

Finally, a useful special case is when model 2 is trivial, in which case we have: 
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Z1⊕(ω; s, θEC) = 𝑠Z1(ω; θEC) 

As a shorthand, such models would be called “optional model 1”.  

Before moving on, let us address similar concepts which might have occurred to the keen reader.  

First, the equation for the serial option of model 1 and model 2 may remind one of the 

correspondence between the impedance of the negative electrode, the positive electrode, and the 

complete cell. More specifically, 

Zfull(ω; s, θEC,pos−pos, θEC,neg−neg)

=
1

2
Zpos−pos(ω; θEC,pos−pos) + (1 −

1

2
) Zneg−neg(ω; θEC,neg−neg) 

where the impedance of a cell Zfull(ω; s, θEC,pos−pos, θEC,neg−neg) containing both a positive 

electrode and a negative electrode can be expressed in terms of the impedance of two different 

cells each containing two electrodes of the same type. 

However, this is a different concept since the values of s in a serial option must be either 0 or 1. 

Second, if Z1⊕2(ω; s, θEC,1, θEC,2), Z1(ω; θEC,1), and Z2(ω; θEC,2) are known, then as long as 

Z1(ω; θEC,1) ≠ Z2(ω; θEC,2), the value of the switching variable s can be determined through 

fitting. However, if only Z1⊕2(ω; s, θEC,1, θEC,2) is known, and the equations for Z1(ω; θEC,1) and 

Z2(ω; θEC,2) have a scaling symmetry, then it follows that the switching variable s cannot be 

determined through fitting alone. More concretely, we say that e.g. Z1(ω; θEC,1) has a scaling 

symmetry if for every parameter setting θEC,1 and every scaling factor x, then there exists another 

parameter setting θEC,1’ such that Z1(ω; θEC,1′) = 𝑥Z1(ω; θEC,1). With that said, let us come back 

to the discussion of serial options. 
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Serial options form a building block and can be applied as many times as required. The EC models 

thus obtained have two types of parameters. Namely, they have a set of switch variables which can 

only take values 0 or 1 and they have a set of usual parameters θEC, which can vary continuously. 

Given a bigger EC model with switch variables and an smaller EC model without switch variables, 

if there exists a set of choices for the switch variables that makes the bigger EC model equivalent 

to the smaller EC model, then we say that the bigger EC model encompasses the smaller EC model 

(with the given choices for the switch variables). In this way, an EC model with switch variables 

can be viewed as the set of all the smaller EC models which it can encompass with appropriate 

choices for the switch variables. 

Also note that, for any finite set of small EC models, it is always possible to construct a single big 

EC model which can encompass all the given set. For instance, Figure 3.11 shows three different 

EC models, which can all be encompassed by a model which has a ZARC in series with two 

optional ZARCs. Similarly, to encompass all the models within Figure 3.11 and Figure 3.12 

simultaneously, it would suffice to have a serial option of a “CPE in series with a ZARC” and a 

“ZARC with a nested CPE” instead of “ZARC 1” and “Warburg” in the Figures. 

Then, the actual values of the switch variables is the representation of IDEC since it determines 

which small EC model is encompassed by the big EC model. Furthermore, 𝜃EC,Universal is simply 

the usual parameters of the big EC model, and the projection to θEC for any given value of IDEC 

(i.e. for any choice of a small EC model) is straightforward, amounting to removing the positions 

in the vector 𝜃EC,Universal  which are not used by the given choice of EC model. 

Then, as it turns out, the training procedure is precisely the same as the unsupervised approach 

from Section 3.5, except that every time a spectrum is presented to the model, a random choice of 
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IDEC is made, and fed to the inverse model, with the same choice used to produce 𝑍reconstructed(𝜔) 

(see Figure 3.10). For the neural networks described in Section 3.7, the way to include IDEC as an 

input to the neural network is to replicate it and append it to every observed frequency, so that the 

neural network will receive {(IDEC , ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} as input. This is because the neural 

network is comprised of local processes, each of which may need to adapt depending on the choice 

of IDEC. 

This approach is essentially representing the wanted circuit as a vector, and teaching the network 

to interpret this representation properly73. 

 

Figure 3.11  Various EC models supported by the software (part 1). Note the decreasing 

complexity of the EC models from top to bottom which is the inspiration behind the 

notion of complexity presented in Section 2.7. More spectra can be represented by the 

EC model on the top row than on the bottom row, but every spectrum that can be 
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represented on a given row can still be represented on the rows above. This can easily 

be achieved by setting the resistance of one or more ZARC element to 0. This would 

in turn be reflected in the complexity metric of Section 2.7. For instance, on the first 

row, setting a single ZARC’s resistance to 0 would force the complexity metric to be 

less than or equal to 2, and setting two ZARC’s resistances to 0 would force the 

complexity metric to be equal to 1. In fact, enforcing a complexity metric of 1 

guarantees that two ZARC's resistances must be set to 0. Note however that a 

complexity metric less than 2 may also be achieved with 3 non-zero ZARC resistances 

(i.e. 98, 1, and 1). 

 

Figure 3.12  Various EC models supported by the software (part 2). 
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3.6.1 Multi-Task Learning, Positive Transfer, and Negative Transfer 

Using a single neural network to solve the fitting problem for multiple EC models is an 

architectural choice which may well have an impact on the performance of the system. 

This choice is akin to the choice of solving the global fitting problem with a single model instead 

of solving each individual fitting problem separately. 

In general, there are multiple tasks to be solved and there is a choice between solving them with 

independent neural networks or combining them into a single more challenging task and solving 

it all with a single model. There are also hybrid possibilities where parts of the neural network are 

independent for each task and parts are shared but we focus on the two extremes for now. 

The question of whether a choice is favorable to another with respect to performance, robustness, 

data requirements, etc. is referred to as the valence of transfer74,75 between the individual tasks. 

The two main possibilities are positive transfer76, in which case each task benefits from being 

solved together with all other tasks in a single model (i.e. the best choice is a single model), and 

negative transfer77, in which case each task suffers from being solved together with all other tasks 

(i.e. the best choice is independent models for each task).  

This question is ultimately empirical, but how to develop an intuition for whether a multi-task 

setting would lead to positive or negative transfer? We sketch a mental model to understand the 

problem: 

• For each specific task, there may be various viable solutions on the limited dataset 

available. Multiple tasks may share general solutions, but there may also be specialized 

solutions for given tasks. Each learning process has some probability of producing a given 

solution. 
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• When going from individual models for each task to a single multi-task model, the 

probability associated with general solutions will increase and the probability associated 

with specialized solutions will decrease. 

The extent to which general solutions can compete with specialized solutions on performance, 

robustness, etc. will determine if positive transfer or negative transfer will be observed. 

• In the best of cases, the general solution displays better performance than specialized 

solutions and has a reasonable probability of being produced by the training process. This 

would entail significant positive transfer. 

• In the worst of cases, there is no competitive general solution and the multi-task model 

simply struggles more to produce specialized solutions for each task. This would entail 

significant negative transfer. 

In the case of supporting multiple EC models, there are two convincing arguments to expect 

significant positive transfer. 

• First, a general purpose optimizer is a decent solution to the individual fitting problem for 

a very large set of possible EC models, and the global coordination problem could be 

reasonably solved through a penalty term for lack of smoothness of the inverse model, 

which can be expressed similarly for a very large set of possible EC models. 

• Second, Section 2.2 presented various conversion formulas, allowing the solution to the 

fitting problem for a given EC model to be leveraged to solve the fitting problem for a 

different EC model. The existence of simple formulas in the simple cases leads one to 

expect that generalizations thereof would be straightforward to learn in the context of a 

multi-task model. In other words, the easiest fitting problem among various equivalent such 
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problems for various EC models could be solved, and then the solution could be converted 

to solve the fitting problem for the other EC models.  

Though these arguments likely do not truly capture the actual solution learned in practice by the 

multi-task model, they nevertheless should increase our confidence in the positive transfer 

hypothesis. Empirically, this hypothesis was confirmed. 

3.7 Key Implementation Details and Intuitive Guide to 

their Impact on Performance 

Of course, after reading Section 1.2, the reader7 will know that “neural network” is a generic term 

and more details are needed to distinguish between a good versus a poor implementation.  

3.7.1 What Separates Good from Bad Choices of Neural Networks 

For a given problem, different choices of neural networks will principally vary by: 

• Their ability to represent arbitrary relations between their inputs and outputs (called the 

network capacity). 

• The difficultly of the optimization problem their training process defines (called the 

optimizability). 

• Their computational requirements (memory, time, etc.). 

• Their data requirements or data efficiency (i.e. the amount and quality of data needed to 

achieve a given accuracy). 

3.7.2 Symmetry and Convolutional Layers 

Since the spectra sampled from an EC model together with the EC model parameters admit of a 

symmetry under translation in log frequency space (see Section 2.5), and based on the way humans 
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visually estimate the parameters of an EC model, it is reasonable to expect that a convolutional 

architecture would increase the data efficiency without compromising too much the network 

capacity when compared with a fully-connected architecture. Indeed, for a fixed computational 

budget, a convolutional architecture (i.e. using convolutional layers) may improve the network 

capacity.  

Convolutions have two important features: 

1. They have a local receptive field78 (i.e. their operation is applied to parts of the input at a 

time, see Section 1.2.6). 

2. The operation applied at every point is the same. 

Namely, instead of representing an arbitrary function from a sequence of input features 

{(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} to a sequence of output features {F𝑖|𝑖 = 1,… ,  𝑚}, they represent a smaller 

function 𝑓 (say from 3 neighboring vectors of input features to 1 vector of output features), and 

the output features are each computed according to 𝐹𝑖 = 𝑓((ω𝑖−1, 𝑍𝑖−1), (ω𝑖, 𝑍𝑖), (ω𝑖+1, 𝑍𝑖+1)). 

The boundary conditions must be dealt with somehow, since for 𝐹1, we do not have (ω1−1, 𝑍1−1) =

(ω0, 𝑍0) available, but this is not an interesting choice as it does not affect performance much. 

Essentially, any request of input features that do not exist are replaced by zeros. 

In general, determining the choice of neural network architecture is an empirical problem. But 

when a lot is known about the underlying setting, it is possible to construct strong arguments to 

determine which architecture is most suitable, and this type of thinking is useful in the context of 

lithium-ion research.  

Therefore, let us imagine a solution to the fitting problem (i.e. an inverse model) using a 

convolutional architecture. 



106 

 

First, imagine there exists a non-convolutional approximation to the optimal inverse model which 

takes as inputs fixed sequences of log-frequencies, and impedances and returns EC parameters in 

the reparameterized space discussed in Section 2.4. Without loss of generality, consider odd 

sequences of length 2𝑚fix + 1, and express this inverse model as 

𝑓fix ((w𝑖−𝑚fix
, 𝑍𝑖−𝑚fix

), . . . , (w𝑖 , 𝑍𝑖), . . . , (w𝑖+𝑚fix
, 𝑍𝑖+𝑚fix

)) 

It seems reasonable to assume that such inverse models can be selected for any 𝑚fix. Furthermore, 

though they may not be as accurate, inverse models with smaller 𝑚fix belong to much smaller 

function spaces, and hence are more data efficient than their counterparts with larger 𝑚fix. As shall 

be seen, a reasonable approximation to larger models could be obtained by combining smaller 

models in a way easily expressed with a convolutional architecture. 

First, the symmetries discussed in Section 2.5 (e.g. Trans𝛼) can be applied to the input and the 

output of 𝑓fix such that, if 𝑓fix ((w𝑖−𝑚fix
, 𝑍𝑖−𝑚fix

), . . . , (w𝑖 , 𝑍𝑖), . . . , (w𝑖+𝑚fix
, 𝑍𝑖+𝑚fix

)) is a good 

inverse model, then so too should 

Trans𝑤𝑖
𝑓fix ((w𝑖−𝑚fix

− w𝑖 , 𝑍𝑖−𝑚fix
), . . . , (w𝑖 − w𝑖 , 𝑍𝑖), . . . , (w𝑖+𝑚fix

− w𝑖, 𝑍𝑖+𝑚fix
)) 

In the reasonable case where the log frequencies are equally spaced with spacing ∆𝑤, this would 

correspond to 

 Trans𝑤𝑖
𝑓fix ((−𝑚fix∆𝑤, 𝑍𝑖−𝑚fix

), . . . , (0, 𝑍𝑖), . . . , (𝑚fix∆𝑤, 𝑍𝑖+𝑚fix
)) 

In other words, a good inverse model fundamentally only depends on the spacing between the 

frequencies, and not on the absolute values of the frequencies. 

Furthermore, more or less all of the serial components of the EC model of Figure 2.5 have a 

relatively small frequency range over which their impedance is not almost constant. Since the 
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information necessary to estimate a given EC parameter only exists on a smaller range of 

frequencies, it would likely be feasible to produce a good inverse model in two stages:  

1. Produce {(w𝑖 , 𝜃EC,𝑖)|𝑖 = 1,… ,  𝑚} where 𝜃EC,𝑖 is the output of smaller 𝑓fix (with 𝑚fix <

𝑚) applied to each localized subsets of the input 

(w𝑖−𝑚fix
, 𝑍𝑖−𝑚fix

), . . . , (w𝑖 , 𝑍𝑖), . . . , (w𝑖+𝑚fix
, 𝑍𝑖+𝑚fix

). 

2. Produce  𝜃EC by using {(w𝑖 , 𝜃EC,𝑖)|𝑖 = 1,… ,  𝑚} as inputs. 

When combining the previous two considerations, the decomposition could be: 

1. Produce {(w𝑖 , 𝜃′EC,𝑖)|𝑖 = 1, … ,  𝑚} where   

𝜃′EC,𝑖 = 𝑓fix ((−𝑚fix∆𝑤, 𝑍𝑖−𝑚fix
), . . . , (0, 𝑍𝑖), . . . , (𝑚fix∆𝑤, 𝑍𝑖+𝑚fix

)) 

is only determined by the “shape of the localized impedances”. 

2. Produce  𝜃EC by using {(w𝑖 , 𝜃′EC,𝑖)|𝑖 = 1,… ,  𝑚} as inputs. 

Let us consider how the global estimate of the EC parameters may be simply constructed from 

local estimates {(w𝑖 , 𝜃EC,𝑖)|𝑖 = 1,… ,  𝑚}.  

For instance, it could be done by averaging each parameter across frequency, or by averaging 

across frequency according to an estimate of the relevance of each localized subsets of the input 

(w𝑖−𝑚fix
, 𝑍𝑖−𝑚fix

), . . . , (w𝑖 , 𝑍𝑖), . . . , (w𝑖+𝑚fix
, 𝑍𝑖+𝑚fix

) for the prediction of a given EC parameter. 

There may be a need to correlate the predictions across various frequencies in order to reliably 

solve ambiguity problems, but it may still be a simpler task to learn this correlation than to learn 

𝑓fix for 𝑚 inputs. 

In general, by allowing each localized model to output a general vector of features, the model gains 

in flexibility without sacrificing significant data efficiency. 
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But this decomposition of an inverse model with many inputs into the application of many smaller 

inverse models can be repeated for the individual smaller inverse models (using the same 

arguments).  

In the end, this solution to the problem is quite natural to represent as a convolutional architecture. 

3.7.3 Variable Numbers of Frequencies and Fully-Convolutional Architecture 

Since the number of frequencies measured per spectrum varies across the dataset, we have chosen 

a fully convolutional79,80 neural network architecture, which means that at no point in the sequence 

of operations does a layer of computation require a fixed input length (though such layers may 

apply an operation with fixed input lengths repeatedly to a sequence). In practice, this means the 

layers are either averages over frequencies, or convolutions over frequencies, or generalized 

averages over frequencies known as attention mechanisms. 

As is standard practice with most architectures, various details have been chosen to improve 

optimizability such as residual blocks64, batch renormalization81, and dropout82. 

3.7.4 Coordination of Local Processes 

Until this point, the neural network can be though of as a local process which estimates all the EC 

parameters on subsets of the observed spectra centered around each frequencies, and finally 

obtains a coherent guess by averaging all the local guesses with equal weight. This does work 

relatively well for this problem, but in general, it intuitively seems like local processes would have 

a difficult time coordinating their outputs for parameters which require a global view of the 

measured spectrum. As a step to allow a bit more coordination between local processes, instead of 

averaging with uniform weights, the weights are themselves produced by the local processes, and 

then normalized globally (this is known as attention, or attentive33 pooling). 
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3.7.5 Batch Diversity and Masks 

Just like it is important to have a diverse dataset to train a neural network robustly, it is also 

important to produce diverse batches of datapoints in order to compute gradients in a stable way 

and improve the optimizability of the neural network. Usually, each datapoint has the same 

dimensionality, and therefore it is quite simple to create such batches: if a datapoint is a tensor 

with 𝑁1 elements by 𝑁2 elements, …, by 𝑁𝑚 elements, then 𝐵 such datapoints can be assembled 

into a tensor with 𝐵 elements by 𝑁1 elements by 𝑁2 elements, …, by 𝑁𝑚 elements.  

However, in the case of impedance spectra, each spectrum may have a different number of 

frequencies. One solution would be to separate the dataset into subdatasets each only containing 

spectra with a fixed number of frequencies, allowing the formation of batches of datapoints 

belonging to a single subdataset.  

As it turns out, this greatly reduces the diversity of the possible batches, thus introducing noise 

into the computed gradients, and reducing the optimizability. 

Instead, notice that it is possible to insert a smaller tensor into a bigger tensor by simply adding 

zeroes into the remaining positions. For instance, it is possible to represent a spectrum 

{(ω𝑖, 𝑍𝑖)|𝑖 = 1,… ,  𝑚} of 𝑚 frequencies as an “𝑚 by 3” tensor, but it is also possible to represent 

it as an e.g. “𝑚 + 10 by 3” tensor (simply by adding zeroes at the end). 

In order to keep track of which frequencies are actual and which were just added to make a 

spectrum fit into a larger tensor space, we add a mask variable mask𝑖 which will equal 1 if the 

frequency is actual and will equal 0 if the frequency was added artificially. As a concrete example, 
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imagine the spectrum {(−1,−2 + −3𝑗), (1,2 + 3𝑗), (4,5 + 6𝑗)}. When representing it as a tensor 

with 5 frequency positions, it would end up being a “5 by 4” tensor  given as 

[
 
 
 
 
−1 −2 −3 1
1 2 3 1
4 5 6 1
0 0 0 0
0 0 0 0]

 
 
 
 

. 

This flexibility allows to combine any set of 𝐵 spectra, compute the maximum number of 

frequencies 𝑁𝑓 for that set of spectra, and construct a batch as a “𝐵 by 𝑁𝑓 by 4” tensor. As 

mentioned in Section 3.6, for the case where multiple EC models are supported, each frequency 

would also receive the set of switch variables, and so the last dimension of the tensor would be 

larger than 4.  

Then, this mask83 must integrate with the various components of the neural network. Most 

obviously, when computing the mean squared error of reconstruction, each frequency term must 

be multiplied by the corresponding mask to ensure that the added frequencies do not contribute.  

Furthermore, when taking averages across frequencies, the weights are multiplied by the masks to 

ensure that the local processes centered around an artificial frequency do not influence the 

averages.  

Finally, for the fully convolutional part of the neural network, it turns out to be sufficient to simply 

feed the mask variables as an input to the neural network. During training a given spectrum will 

be encountered within different batches of different sizes, and so with a sufficiently wide and deep 

model, the neural network can learn the irrelevance of the artificial frequencies. The alternative is 

to carefully craft each layer of convolution to ensure their output are unchanged by the addition of 

artificial frequencies. 
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As a matter of computational efficiency, it is faster to sample from a single dataset, so in practice 

all spectra are represented as large tensors with potentially many artificial frequencies and the 

whole dataset is kept as a single tensor. Furthermore, the number of actual frequencies for each 

spectrum is stored into another tensor. Then when a batch is selected, the maximum number of 

frequencies across the batch is computed, and the batch tensor is sliced (i.e. some artificial 

frequencies are removed from all the spectra) to the smallest such tensor which still contains all 

the actual frequencies.  

3.7.6 Rebalancing the Dataset 

In the case of the impedance spectra dataset (see Section 2.3), there were two distinct sources of 

data with quite different properties (referred to as the EIS dataset and the FRA dataset), but at 

bottom, the goal is to find an inverse model which works robustly across many different spectra 

and these datasets are the only tools we had to accomplish this goal. 

As it turns out, there were approximately 10 times more spectra in the FRA dataset. This means 

that if gradients were computed by sampling spectra at random, the model would have a clear 

incentive to focus almost exclusively on spectra found in the FRA dataset. A similar trade-off 

could apply when considering the artificially generated spectra as a separate, essentially infinite 

dataset. 

Often, the prevalence of a type of data is imperfectly correlated with the importance it should 

have in shaping the neural network (mathematically, the coefficient multiplying the term in the 

loss function corresponding to a type of data represents its importance). In our case, the goal is to 

have an inverse model which performs just as well on data similar to FRA dataset or to EIS dataset. 

To better control the importance of each type of data, one must be able to sample a datapoint at 

random from each type of data. At the most basic level, the EIS dataset and the FRA dataset 
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should be kept separate, and then when the stochastic gradient algorithm used to select the neural 

network requires a batch of N spectra, a separate batch of 
𝑁

2
 spectra should be created from each 

dataset, and then these batches should be combined. 

For the model in this Chapter, all sources of data were sampled more or less equally (see Section 

3.4 for the actual rebalancing), but for different applications, it might be better to rebalance 

differently84–86. 

An important consideration when the number of datapoints in a given group is small is that by 

rebalancing the dataset in this way, not only do you control the relative weight in the loss function 

for every group of data, but also you affect the quality and diversity of the dataset. An extreme 

example would be the case where one group has only one datapoint, and the second group has one 

million datapoints. Then, by rebalancing the dataset equally between these groups, the quality and 

diversity of the dataset is dramatically reduced (the neural network will encounter a single 

datapoint over and over). 

3.7.7 Finetuning with ADAM 

Once sufficiently accurate estimates for the EC parameters of given spectra have been produced 

by an inverse model, it is possible for a simple optimizer to increase the accuracy of those estimates 

with respect to the mean squared error of reconstruction without the usual drawbacks of the 

individual fitting problem. Indeed, by combining good initial guesses (i.e. close to a local 

minimum) with a restricted optimizer (i.e. only small adjustments), we can improve the reliability 

of the system. For a sufficiently powerful inverse model, this finetuning step is unnecessary, but 

robustness is about reducing the requirements on the challenging parts of the system.  
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Having decided to implement a solution to the individual fitting problem on top of the global fitting 

problem, the question is how to do so without unnecessary complication. 

To this end, we present a way of viewing the individual fitting problem as a special case of the 

global fitting problem, such that the implementation of both systems may share many redundant 

components. 

Imagine a matrix with as many rows as there are spectra in a given dataset and where each row 

contains a vector of numbers which could be interpreted as EC parameters. Each spectrum has a 

unique index (the row number).  

How can such a matrix be interpreted as an inverse model? When presented with a given spectrum, 

instead of using the spectrum itself as an input, it is given the index of the spectrum, and simply 

outputs the row of numbers corresponding to that index. This “inverse model” can only be applied 

to the specific spectra in the training dataset. 

Note that the training process for such an inverse model corresponds precisely to solving individual 

fitting problems for each spectrum independently, using the optimizer of the training process. 

Furthermore, the initial values in a given row of the matrix correspond to the initial guesses for the 

EC parameters of the corresponding spectrum. 

Typically, neural networks are optimized with ADAM, which means that the same training 

procedure can be applied to this matrix of parameters in order to achieve finetuning on individual 

fitting problems. 

Models which grow with the dataset and do not represent the relationship between input and output 

using a parameterized function directly are sometimes called nonparametric models. 
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The main advantages of implementing the finetuning in this way are the simplification of the code 

and the ability to use the fast parallel computations of neural network libraries without additional 

work. 

Note that it would also be possible to include a gradient descent procedure within our neural 

network and train this procedure using ADAM; this type of learned optimization87 is interesting 

but in the overkill category for this work. 

3.8 Future Work: The Transformer Architecture 

3.8.1 The Transformer Architecture as a Coordination Mechanism 

In retrospect, given the recent successes of architectures fully based on attention (i.e. the 

Transformer31,33,88), it seems reasonable that coordination between local processes would be easily 

achieved by adding a few Transformer31 layers after the fully convolutional layers, followed by 

attentive pooling. Such layers also admit inputs with varying sizes (a basic form of these layers 

has been introduced in Section 1.2.7) and the fact that every element of the sequence can “interact” 

with every element of the sequence in every layer is a robust way to allow the neural network to 

capture arbitrary interactions and coordination across the sequence. 

As a future work, the Transformer31–33 architecture could be included in the inverse model. In such 

case, it would be necessary to consider positional encodings as well. This is because situating two 

samples in a spectrum by their characteristic frequencies is not data efficient for a dot-product 

attention mechanism (i.e. the attention mechanism of the Transformer, see Section 1.2.7). What 

matters is the difference between frequencies, but the attention mechanism of Transformers 

computes similarity between vectors, and therefore the frequencies by themselves are awkward to 

work with.  



115 

 

3.8.2 The Dual Role of Log-Frequencies as Inputs of Sequence Layers 

In the inverse model, the log frequencies within each element of the spectrum are useful for two 

reasons: 

1. Each local process of estimation of the parameters which transform during a log-frequency 

shift can use the input log-frequency of the center sample to adjust its prediction. For 

instance, the same shape in the real and imaginary part of impedance seen by a local 

process must lead to shifted predictions for the characteristic log-frequencies if all the log-

frequencies are shifted. See Section 2.5.  

2. The “shape” of the impedance spectrum is a feature of the relationship between 

impedances measured at different log-frequencies. Therefore, there must be a way to 

compute distances between the log-frequencies at which various impedances were 

measured.  

For the fully-convolutional architecture, the first role of log-frequency is well accomplished by the 

log-frequency itself (see Section 3.7.2). However, the second use of these log-frequencies is not 

needed, because convolutional architectures have fixed expectations for the spatial relationship of 

their inputs (see Section 3.7.2). All that is needed is the spacing between the log-frequencies. Since 

the convolution is a linear function of its inputs, it can internally compute differences of log-

frequencies and therefore has access to all the necessary information in a convenient form. 

Contrast this with the self-attention dot-product architecture (i.e. Transformer). Shifting the 

predictions based on the log frequency at the “center” sample (i.e. the first task) would still easily 

be accomplished directly on the log frequency as an input. However, determining the distance 

between the “center” and a given sample (i.e. the second task) could not be done in a data efficient 

manner by the Transformer’s attention process, which only computes dot-products between 
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vectors. For instance, there would be no exact way to compute the difference in log-frequencies 

such that it would be invariant to a uniform shift of all the log-frequencies. Therefore, in order to 

allow distances between samples to be computed within the self-attention mechanism, some 

additional values would have to be appended to each sample. These values, referred to as a 

positional encoding88–90 of in this case the log-frequency, are vectors. 

3.8.3 Positional Encodings of Log-Frequencies 

Each log-frequency is mapped to a vector of values. Each element 𝑖 of the vector is a periodic 

function of the log-frequency, such as the complex number exp (𝑗
2𝜋𝑤

𝑝𝑖
), but each element has a 

unique period 𝑝𝑖. Alternatively (like in the original paper and most commonly in the machine 

learning literature89), each period 𝑝𝑖 can be shared by two real numbers in the output vector, namely 

sin (
2𝜋𝑤

𝑝𝑖
) and cos (

2𝜋𝑤

𝑝𝑖
). Typically, the periods form a geometric progression such that 𝑝𝑖+1 =

𝑝𝑖

2
. 

This representation has empirically been shown to allow learning of dependence on distance 

between positions in a data efficient way. 

In case the reader is puzzled by how the information of the distance between the two positions is 

accessed by the attention mechanism, consider the following illustrative example.  

When multiplying elementwise two of these positional encodings (one for a log-frequency 𝑤 and 

the other for a log-frequency 𝑤′ ) in the natural way for complex numbers (the first number times 

the conjugate of the second), one gets exp (𝑗
2𝜋𝑤

𝑝𝑖
) exp (−𝑗

2𝜋𝑤′

𝑝𝑖
) = exp (𝑗

2𝜋(𝑤−𝑤′)

𝑝𝑖
), a quantity 

which only depends on the difference between the two positions (in this case, the log-frequencies). 

Both the real and imaginary parts will vary between 1 and -1 periodically on a scale given by 𝑝𝑖. 

By choosing 𝑝0 = 1, we get a continuous and complex analog to the binary representation of 
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𝑤 − 𝑤′ 

where each position in the binary expansion becomes either 0 or 1 with a smaller and smaller 

period. Explicitly, each element of the positional encoding would give rise to a positive number in 

the case that the binary coefficient would be 0 and a negative number when the corresponding 

coefficient would be 1.  

By applying a projection of the positional encodings onto one of their components (a linear 

operation), the dot product will yield a continuous “detector” of the distance between positions 

𝑤 − 𝑤′ with periodicity 𝑝𝑖.  

Therefore, with a relatively simple example of a query projection, the attention mechanism could 

depend on the distance between the log-frequencies at many scales. Similarly to a Fourier series, 

various complicated dependencies on 𝑤 − 𝑤′ could be obtained by a linear combination of simple 

dependencies on this decomposition into features of various periodicities. In the literature, the 

positional encodings do not use complex numbers since the same effects may be obtained in a less 

direct way with different linear operations but only using real numbers. 

3.8.4 A Concrete Proposal for Implementing the Transformer Architecture for 

Future Researchers 

Now that the various pieces of the transformer puzzle have been discussed, future researchers 

might be interested in trying it. Below, we describe a concrete proposal for future researchers to 

hopefully get started. 

The architecture will represent a spectrum as a matrix with one dimension varying with 

frequency and one dimension containing the various pieces of information such as the real and 

imaginary parts of the impedance, the log-frequency itself etc.. Then, this matrix will be passed 
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through a standard Transformer sequence-to-sequence model, ending with again a matrix where 

one dimension varies with frequency and the other varies with the “channels” of information. 

Then, there will be some sequence-to-vector operation for instance the Transformer used with an 

output sequence of only one element or alternatively some simple averaging. Finally, there will 

be a projection into EC parameter space. 

This directly corresponds to the convolution-based implementation available at the moment, so 

the code can be a good starting point here. 

Since the transformer architecture to be used is in fact the standard one, we point to the 

pedagogically excellent implementation https://github.com/karpathy/minGPT. 

To turn this into a concrete proposal, what remains is to 1) describe the non-standard use of 

masking within the transformer, 2) describe the precise way in which the initial sequence must 

be given to the transformer, and 3) give some practical advice about the code. 

First the masking. As discussed in Section 1.2.7, any given output of the self-attention 

mechanism will be a weighted average of the values across the sequence. In the sequence-to-

sequence context, these weights will be a tensor with one index for potentially multiple spectra in 

a batch, one index for the multiple heads of attention, one index for the output position in the 

sequence, and one index for the input position in the sequence. This tensor is usually referred to 

as the attention mask and in the context of transformer, we start with so called attention logits 

(produced by dot-product attention) and apply a softmax along the dimension of input position in 

the sequence to obtain the attention weights. 

This attention mask allows some information to travel from an input position to an output 

position. If the corresponding weight is 0, then no information travels. For numerical stability 

https://github.com/karpathy/minGPT
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reasons, we typically make the attention logit equal to negative infinity before taking the softmax 

in order to ensure that no information flows from an input position to an output position. This is 

called masking. Confusingly enough, we would say that we can mask the attention mask in order 

to artificially ensure that no information may travel from a given input position to a given output 

position. In the language modelling implementation https://github.com/karpathy/minGPT, it 

makes sense to mask any of the attention logits linking a given input position to some earlier 

output position since the model is supposed to forecast the next word based on all previous 

words. In our case, this would be detrimental. Therefore, we do not use this type of masking. 

However, when gathering multiple impedance spectra into a “minibatch” during training, some 

will have different lengths, and therefore we already have the concept of a mask specifying 

which position in the sequence corresponds to a measured frequency and which position is just 

padding. 

In the case of a convolutional architecture, it made sense to pass such mask as an input channel, 

but for the transformer, it does not make sense. Instead, this mask should be used to always mask 

the attention mask within the transformer so that only positions corresponding to valid measured 

frequencies could send information to any position. 

Similarly, for the last transformation from sequence to vector, a transformer architecture could 

be used in the setting of sequence-to-vector, and positions in the sequence not corresponding to 

actual measurements should be masked in the attention mask. 

This is how the transformer could be used where the convolutional network was used before. 

However, now that the concept of masking the attention mask has been introduced, we can do 

something even better. Namely, during training, when trying to minimize the distance between 

measured and reconstructed spectrum, we could generate a random mask and use it to further 

https://github.com/karpathy/minGPT
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mask the attention mask of the transformer. This would correspond to trying to estimate the EC 

parameters from partial observations of the impedance spectra. By turning off the low 

frequencies systematically, one could force the model to develop some extrapolation capability 

to infer diffusion parameters based on correlations with other parts of the circuit visible at high 

frequencies (and vice-versa). By turning off every other frequency, this would force the model to 

develop some interpolation capability to infer EC parameters which would not act erratically in 

between observed frequencies. These are simply some illustrative special cases. Generally 

speaking, one could obtain all these effects by just sampling a random mask every time a 

spectrum is presented to the network during training. Note that this effect cannot be easily 

achieved with a convolutional architecture which relies on the spacing between sequence 

elements. 

Second, the presentation of the initial sequence. Concretely, for each frequency, there will be a 

fixed set of “channels” and this will create a sequence of vectors or matrix to be passed to the 

transformer. It is crucial to provide the real part of impedance, the imaginary part of impedance, 

as well as the logarithm of the frequency. This is because some of the EC parameters are not 

invariant to a translation in log-frequency (for instance the characteristic frequencies of the 

ZARC elements would change). Beyond this, it is crucial to provide, at each frequency, a copy of 

the Equivalent Circuit identity in the form of the switch variables discussed in Section 3.6. As 

stated earlier, it does not make sense to provide the masks indicating measured frequency versus 

padding since only the measured frequencies will have impact on the answer (and therefore this 

input channel would effectively be constant across all inputs).  

There needs to be some mechanism to do frequency distance comparisons in a translation-

invariant way. As discussed in Section 3.8.3, positional encodings should be used here. The 
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simplest way to implement this is to compute a vector of scaled log-frequencies (i.e. first element 

is the log frequency, second element is 2 time the log frequency, third element is 4 times,…) and 

then compute the sine (call it vector A) as well as the cosine (call it vector B). Then the vector A 

and B would be concatenated onto the channels for each position in the sequence. It is not 

necessary to introduce these positional encodings at every layer of the transformer; it should only 

be placed in the very first input.  

Once this sequence of vectors has been assembled for each spectrum in the “minibatch”, a linear 

projection should be applied to every element of the sequence to make the number of channels 

(i.e. the dimension of the vectors in the sequence of vectors) match what the transformer will 

operate on. This can be accomplished with a convolution with kernel size of 1 (i.e. a convolution 

that only depends on a single element of the sequence at a time). This would be the first layer of 

the neural network, and then the data is ready to be fed into a standard transformer 

implementation. 

Third, the advice about the code. The original paper39 was first implemented using Tensorflow 

version 1 and then rewritten to work with version 2. However, now that the author has tried 

using Pytorch10 instead, he can attest that redoing all of this in Pytorch would be a good thing. 

Furthermore, the author highly recommends the combination of Pytorch with Einops91 to allow 

one to write the various tensor operations much closer to the mathematics, to get much easier to 

understand error messages when something goes wrong, and to trivially insert sanity checks 

about the dimensions of various tensors at crucial points in the code. To the extent that it is easier 

to start with a working model, using the available implementation of this Chapter’s model might 

be good, but if a future researcher is interested in moving forward and tackling their own 

projects, one should consider at least trying Pytorch in combination with Einops. 
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3.9 Conclusions 

This chapter presented a general paradigm to automate the fitting of empirical data to physical 

models, namely to determine an inverse model parametrized with a deep neural network by directly 

minimizing the mean squared error of the reconstructed empirical data, with a successful 

application to EC model fitting of impedance spectra of lithium-ion cells (a failure rate of less than 

1% and good fit quality on two large and diverse datasets with a single inverse model and using 

ADAM to finetune the EC parameters). Crucially, this method does not require knowledge of the 

true EC parameters corresponding to the empirical data, allowing the use of generated data, as well 

as any available impedance spectra to train the inverse model. This makes the method easy to 

implement, as well as being flexible.  

This application allowed us to illustrate the process by which deeper understanding of the 

underlying application domain may be leveraged to produce robust machine learning solutions. 
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Chapter 4 Interpretability in the Determination of the 

Electrolyte Concentration in Lithium-Ion Cells Using 

Fourier Transform Infrared Spectroscopy 

Understanding the changes in the electrolyte during lithium-ion cell aging is valuable to improve 

longevity.  Studying this in hundreds or thousands of cells requires a fast and widely available 

measurement such as Fourier Transform Infrared Spectroscopy (FTIR) of electrolyte samples.  

This Chapter presents a machine learning model to determine electrolyte composition from FTIR 

measurements.  A carefully prepared dataset of mixtures of 5 electrolyte components (i.e. LiPF6, 

EC, EMC, DMC, and DEC), and the code to replicate and extend the model to different electrolyte 

mixtures are made available.  With this model, the mass ratio of salt to total is predicted within an 

error of 0.4%, and each solvent’s mass ratio to total is predicted within an error of 2%. 

Furthermore, a spectrum calculated based on the predicted component ratios can be compared to 

the measured spectrum which allows one to detect if unexpected species are present in the 

electrolyte in significant quantity.  A model for mixtures of 5 components can be calibrated well 

with between 25 and 50 carefully prepared samples so this work can be extended to other systems 

by simply adding more data and retraining. 

This Chapter provides another example of applying machine learning to lithium-ion research, 

which contrasts with the example contained in Chapters 2 and 3 by only having access to a small 

dataset (20 to 50 carefully measured samples). As such, it illustrates how to improve the reliability 

of the model under duress or when some degree of inaccuracy is inevitable. This is done using 

simple physical models and various additional penalties (other than minimizing prediction errors) 

along with some other design tricks. 
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For some inputs, the “axioms” of the system are respected and so the system can be trusted to have 

a reasonable accuracy, while for others, the “axioms” of the system are not respected and the 

system may have poor accuracy. Contrary to many machine learning prediction systems, our 

system knows on which inputs its “axioms” are respected and on which they are not. More 

specifically 

• Instead of always giving confident predictions, the model accompanies its predictions 

with a measure of its confidence. 

• The predictions are accompanied by an explanation to make them interpretable.  

o When the model has high confidence, the explanation can be read as: “I believe 

that the concentration of each components is this; at these concentrations, I 

believe that each component’s contribution should be this, which appropriately 

reconstructs the measurement. i.e. my reconstruction for this sample falls within 

the typical reconstruction error throughout the spectrum.”  

o When the model has low confidence, the explanation can be read as: “My best 

estimate for the concentration of each components is this; at these concentrations, 

I believe that each component’s contribution should be this, but it does not 

appropriately reconstruct the measurement. i.e. my reconstruction for this sample 

falls outside the typical reconstruction error in these regions of the spectrum.” 

o In cases where the model’s confidence is low, it is possible, through finetuning, to 

determine to what extent the error is due to a wrong prediction or to a wrong 

reconstruction, though this is left as future work.  
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• The system’s “axioms” can be characterized and understood to a much larger extent than 

those of a typical neural network, which allows greater trust even when the dataset only 

allows weak testing. 

This chapter is entirely taken from a corresponding paper92 (henceforth called the corresponding 

article to Chapter 4) with the only exception of Section 4.2.6 discussing the use of the model on 

data taken with different experimental settings and Section 4.2.7 which offers a straightforward 

adaptation of the fine-tuning technique described in Chapter 3 as future work. The other 

modifications are only to make the thesis more uniform in style. Unfortunately, “EC” stood for 

“Equivalent Circuit” in Chapters 2 and 3, and it stands for “ethylene carbonate” in the 

corresponding article to Chapter 4. To remove possible confusion, the acronym has been replaced 

by Equivalent Circuit in section 4.2.7 or “ethylene carbonate” in the rest of Chapter 4 whenever 

confusion might occur. EC never stands for “Equivalent Circuit” within the bounds of 

Chapter 4. 

4.1 Introduction 

Understanding the evolution of the electrolyte during charge-discharge cycling or storage of 

lithium-ion cells would be valuable to design improved cell chemistries.   However, as discussed 

in a previous paper93, quantitative analysis of electrolyte solutions to determine composition 

typically employ nuclear magnetic resonance94, gas chromatography95 and other methods, which 

have several drawbacks for routine analysis at scales of hundreds to thousands of cells per month.  

Therefore, a method based on a fast, simple, and inexpensive measurement is useful to develop, 

with Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR 

spectroscopy, or simply FTIR) being a prime candidate. The previous paper mentioned earlier93 

focussed on a prototype system, only looking at electrolytes consisting of the salt lithium 
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hexafluorophosphate (LiPF6), the single linear carbonate dimethyl-carbonate (DMC), and ethylene 

carbonate (EC). The previous study provided a proof of concept despite being flawed in a few 

respects: 

1. The units of molarity and solvent volume ratios used in that study are dependent on 

temperature and are not used in industry. Instead, the mass ratios of each component to 

the total mass is a more robust unit. 

2. The samples were prepared by serial dilution, either by hand or with a robot, which 

allowed the rapid production of a large dataset of samples. However, it was later realized 

and confirmed experimentally that the rate of evaporation of DMC is substantial and 

therefore the concentrations produced were not precise. In summary: 

a. Serial dilutions done by volume (mixing known volumes of solutions obtained 

themselves by having mixed known volumes of primary solutions) did not produce 

mass ratios which can be computed without knowing all the intermediate densities. 

b. Our robot prepared samples with vials opened on the order of tens of minutes even 

after optimization of the robot's procedure. It was therefore not able to produce 

samples of known mass ratios, given the evaporation of DMC. 

3. Because of these first two points and because of the choice of normalizing absorbance 

spectra in the analysis by the total absorbance, the article suggested non-linearities, yet 

after more careful sample preparations (i.e. using known mass and minimizing 

evaporation) and thinking, a linear prediction model was deemed appropriate. 

4. It is desired to analyse electrolytes containing ethyl-methyl carbonate (EMC), which can 

undergo a transesterification process, requiring full mixtures of LiPF6, EC, DMC, EMC, 

and diethyl-carbonate (DEC) to be analysable. 
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5. The code and data required to reproduce that work and extend it were not made available. 

The key contributions of the corresponding article to Chapter 4 can be summarized as: 

1. More than 40 samples carefully prepared by hand and covering the whole space of LiPF6, 

EC, EMC, DMC, DEC, minimizing evaporation, were prepared (see Table 1 through Table 

4 for a listing of all the samples’ mass ratios). The precise mass ratios for these samples 

are known.  This dataset is included in the code (as an SQL96 database). 

2. A large dataset of more than 300 samples which were prepared by a robot. They span the 

whole space of LiPF6, EC, EMC, DMC, DEC, but because of the preparation procedure, 

the mass ratios for these samples are not exactly known.  

3. A new model which combines an understanding of the underlying physics and practical 

machine learning to yield a partly linear model that can be calibrated effectively given a 

small set of samples with known mass ratios together with (optionally) a large set of 

samples with unknown mass ratios within the same space of potential components.  

4. Code to replicate the study and to extend the model on different devices as well as to a 

potentially larger spaces of electrolytes by retraining the model on more data. 

5. An assessment of the model's performance and physical underpinnings. On samples not 

used for calibration, the model predicts the mass ratios of linear carbonates (EMC, DMC, 

and DEC) to within 2% error over the full range going from 0% to 100%, the mass ratio of 

ethylene carbonate (EC) to within 2% error over a range from 0 to 50% (the available 

dataset’s upper bound on ethylene carbonate), and the mass ratio of LiPF6 within 0.4% 

over a range from 0 to 20%, which corresponds to a relative error within 2% of upper 

bound. 
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The closest related work is a previous paper from the same lab as the author93 which applies FTIR 

to analysing the electrolyte of aged lithium-ion cells in proof of concept form, but quantitative 

analysis using FTIR has been done mostly in the context of a straightforward application of Beer's 

law97. Note that in the electrolyte system under study, Beer’s law (which roughly states that 

absorbance is a linear function of concentration) is not directly applicable (see Section 4.2.2), yet 

it provides a decent baseline upon which we build. This Chapter combines the two approaches to 

yield a more practical, production-ready solution to analysing the electrolyte of aged lithium-ion 

cells.  

4.2 Methods 

4.2.1 Data acquisition 

See the previous paper from the same lab as the author93 for the details of equipment and electrolyte 

solution preparation. To apply the code directly, one ought to use similar settings for the FTIR 

apparatus, but see Section 4.2.6 for an addendum which removes this limitation.  FTIR spectra 

were collected using a Cary 630 FTIR (Agilent Technologies) equipped with a germanium crystal 

attenuated total reflectance (ATR) accessory. Sixteen scans were collected for each background 

and sample measurement, at a resolution of 4 cm-1, using MicroLab PC software. Fourier 

transforms were performed using HappGenzel apodization, Mertz phase correction, and a zero-fill 

factor of 2.  

With this approach, a dataset of measured spectra has been collected with known mass ratios. 

Table 1 through Table 4 list all the samples’ mass ratios. 
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LiPF6 

mass ratio 

EC       

mass ratio 

EMC     

mass ratio 

DMC        

mass ratio 

DEC      

mass ratio 

0 0 0 0 1 

0.076 0 0 0 0.924 

0.1519 0 0 0 0.8481 

0.2279 0 0 0 0.7721 

0 0.3333 0 0 0.6667 

0.076 0.308 0 0 0.616 

0.1519 0.2827 0 0 0.5654 

0.2279 0.2574 0 0 0.5148 

0 0.1 0.1 0.8 0 

0.076 0.0924 0.0924 0.7392 0 

0.1519 0.0848 0.0848 0.6785 0 

0.2279 0.0772 0.0772 0.6177 0 

Table 1  The weight ratios of the dataset samples with known weight ratios. (part 1) 
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LiPF6 

mass ratio 

EC       

mass ratio 

EMC     

mass ratio 

DMC        

mass ratio 

DEC      

mass ratio 

0 0 1 0 0 

0.076 0 0.924 0 0 

0.1519 0 0.8481 0 0 

0.2279 0 0.7721 0 0 

0 0.5 0 0 0.5 

0.076 0.462 0 0 0.462 

0.1519 0.424 0 0 0.424 

0.2279 0.3861 0 0 0.3861 

0 0.5 0 0.5 0 

0.076 0.462 0 0.462 0 

0.1519 0.424 0 0.424 0 

0.2279 0.3861 0 0.3861 0 

0 0.3 0.7 0 0 

0.076 0.2772 0.6468 0 0 

Table 2  The weight ratios of the dataset samples with known weight ratios. (part 2) 
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LiPF6 

mass ratio 

EC       

mass ratio 

EMC     

mass ratio 

DMC        

mass ratio 

DEC      

mass ratio 

0.1519 0.2544 0.5937 0 0 

0.2279 0.2316 0.5405 0 0 

0 0.25 0.05 0.7 0 

0.076 0.231 0.0462 0.6468 0 

0.1519 0.212 0.0424 0.5937 0 

0.2279 0.193 0.0386 0.5405 0 

0 0 0 1 0 

0 0.25 0.05 0.7 0 

0.0727 0.2318 0.0464 0.6491 0 

0.1364 0.2159 0.0432 0.6045 0 

0.2091 0.1977 0.0395 0.5536 0 

0.0748 0 0 0.9252 0 

0.1402 0 0 0.8598 0 

0.215 0 0 0.785 0 

Table 3  The weight ratios of the dataset samples with known weight ratios. (part 3) 
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LiPF6 

mass ratio 

EC       

mass ratio 

EMC     

mass ratio 

DMC        

mass ratio 

DEC      

mass ratio 

0 0.3 0 0.7 0 

0.0699 0.279 0 0.6511 0 

0.131 0.2607 0 0.6083 0 

0.2009 0.2397 0 0.5594 0 

0 0.3 0.7 0 0 

0.0734 0.278 0.6486 0 0 

0.1376 0.2587 0.6037 0 0 

0.211 0.2367 0.5523 0 0 

Table 4  The weight ratios of the dataset samples with known weight ratios. (part 4) 

 

4.2.2 Physical underpinnings, Beer's law, and the Proposed Models 

ATR-FTIR measurements produce spectra of absorbance as a function of wavenumber. The peaks 

in this spectrum correspond to vibration modes in the molecules of the sample under analysis. 

Indeed, infrared light interacts with a certain volume of sample, occupied by a given number of 

molecules, each contributing additively to the spectrum by their vibration modes. 

When varying the concentration of various molecules, in a textbook case (which is not our case) 

the following hold: 
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1. The volume of interaction with the infrared light is constant with respect to concentration. 

2. The vibration modes of a given molecule type is the same across the volume of interaction. 

3. The vibration modes of a given molecule type are constant with respect to 

concentration. 

Together, these give rise to Beer’s law. In our case, the third point is problematic since peaks in 

the absorbance spectrum shift in wavenumber as a function of concentration, and this cannot be 

explained by constant vibration modes. However, for some wavenumber regions, the vibration 

modes are more or less constant with respect to concentration. 

The corresponding article to Chapter 4 mostly proposed and described two models, since no 

improvement was observed with more complex variations. 

The first model assumes constant vibration modes for each component, and will be referred to as 

the Constant-Vibration-Mode model (Constant-VM) and is closely related to Beer’s law97. 

The second model assumes vibration modes which depend linearly on the mass ratios of all the 

electrolyte components, while at the same time assumes there are enough wavenumbers for which 

vibration modes are constant to just use these regions during prediction. This model will be referred 

to as the Linear-Vibration-Modes model (Linear-VM). 

This section is quite detailed, trying to precisely describe the models implemented in the code. 

Most readers mainly interested in using the software or even adapting it to different electrolyte 

components should skip to Section 4.3 for an evaluation of the performance of the models, and use 

the current and next subsections as a reference if code modifications are needed, or if they want to 

propose an alternative model.  
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To directly apply Beer’s law, one must introduce units of mass per total volume, but if the mass-

over-volume values for all components are known, then we can compute the mass ratios. If the 

mass of each component over the total volume of the sample are gathered into a vector of 

concentrations 𝑐, and every absorbance for all measured wavenumbers are gathered into a vector 

𝑠, then, Beer’s law implies that absorbance spectrum 𝑠 is a linear function of concentration vector 

𝑐 and this relationship can be represented by a matrix multiplication 𝑠 = 𝐴 ∙ 𝑐. In this case, 𝐴 is a 

matrix and it is constant over the dataset, corresponding to an absorbance spectrum for each 

component. These absorbance spectra are called the fundamental spectra here. This linear 

relationship is sometimes referred to as Beer's Law97. 

However, we wish to go in the opposite direction. Starting with absorbance spectra, we want to 

predict the mass ratios. Therefore, we define the Constant-VM model as: 

𝑐 = 𝑋 ∙ 𝑠 

𝑚′ =
1

∑ 𝑐𝑖
𝑁
𝑖=1

𝑐 

𝑠′ = 𝐴 ∙ 𝑐 

Where 𝑋  and 𝐴 are the tunable parameters of the model and are constant matrices. 𝑚′ is the 

predicted vector of mass ratios, and 𝑠′ represents a calculated spectrum based on the predicted 

mass ratios that can be compared to experiment. 𝑠′ is called the reconstructed spectrum here.  In 

the cases where Beer’s law perfectly holds, then the whole dataset can always be perfectly 

described by a suitable choice of 𝑋 and 𝐴. Note that the code introduces slight tweaks, but they 

would distract from the point of the article. See the code https://github.com/Samuel-

Buteau/Electrolyte_Analysis_FTIR for details.   

https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR
https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR
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The Constant-VM model works well and is simplest to implement and understand. However, the 

dataset is such that it simply cannot be described with constant 𝑋, 𝐴. Therefore, we consider a 

simple generalization where 𝐴 depends on the computed mass ratios 𝑚′ linearly. This is called the 

Linear-VM model.  Whereas 𝐴 used to be a constant matrix, indexed by electrolyte component 

and wavenumber such that 𝐴𝑖𝑗 would correspond to wavenumber 𝑖 and electrolyte component 𝑗, 

we replace it by the product of the mass ratios with a 3-dimensional tensor 𝑨𝑖𝑗𝑘. More concretely, 

we replace the constant 𝐴𝑖𝑗  by  

𝐴𝑖𝑗 = ∑ 𝑚′𝑘

𝑁

𝑘=1

𝑨𝑖𝑗𝑘 

Or in other words, the matrix to convert concentrations into reconstructed spectra is now a linear 

combination of matrices with the coefficients being the predicted mass ratios. 

Now, based on this model, it is not immediately obvious that a constant matrix 𝑋 can convert from 

spectra to concentrations. In general, the prediction would need to use non-linearities. However, if 

we assume that a sufficiently large wavenumber region has constant vibration modes (i.e. would 

be well fitted with the Constant-VM model), then a constant 𝑋 could simply use these regions. To 

see that this is possible, consider that the number of electrolyte components (i.e. 5) is much smaller 

than the number of measured wavenumbers (above 1000). In our numerical experiments, we 

considered more complicated functions to go from 𝑠 to 𝑐, but there was no benefit, so we focus on 

the Linear-VM model and the Constant-VM model, recommending the Linear-VM model. The 

fact that there was no benefit to adding non-linearities to the prediction is evidence in favor of the 

existence of enough linear regions to get good predictions. 
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4.2.3 Measuring performance and penalizing bad model properties. 

For the Constant-VM model, given a dataset containing some samples with known mass ratios and 

some without known mass ratios, the parameters 𝐴, 𝑋 are optimized to minimize various penalties 

using the ADAM optimizer22.  

The penalties to minimize are: 

1. The mean squared error between actual mass ratios and predicted mass ratios. (If the 

samples have known mass ratios). 

2. The mean squared error between the original spectra and the reconstructed spectra.  

3. Any negative values for the predicted mass ratios are penalized. (In reality, the model 

would always clamp any negative mass ratio to 0, but this clamping leads to the 

optimization getting stuck without the penalty on negative values.) 

4. We maximize the sum of squares of elements of 𝑐 while minimizing the sum of squares of 

elements of 𝑋, because this encourages 𝑋 to ignore the noise in the calibration dataset’s 

absorbance spectra. The details follow. As described in Section 1.2.5, 𝑋 sends a basis of 

the space of spectra to the space of concentrations. Assuming no noise in the dataset, and 

considering the case where Beer’s law is valid, we can see that the dataset itself will be 

contained within a subspace of very small dimension (e.g. 5 out of thousands). As such, 

this dataset can only constrain the action of 𝑋 on a basis of that subspace (e.g. 5 independent 

vectors). For simplicity, consider an orthonormal basis of the smaller subspace which is 

extended into an orthonormal basis of the full input space. Then, for all these additional 

basis vectors, the output of 𝑋 is not determined by the dataset. Ideally, we would like all 

these basis vectors to be sent to the null vector in the concentration space since this would 

make X robust to noise (which can always be decomposed into the additional basis vectors). 
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But this need not happen. In fact, it would be possible for the inverse situation to occur 

where all the basis vectors corresponding to the dataset without noise would be sent to 0 

by 𝑋, and only the noise on each element of the dataset would have a non-zero contribution 

in the multiplication by 𝑋. (this can be accomplished since noise on different elements of 

the dataset is likely to span a large enough subspace such that the whole noise dataset 

underdetermines 𝑋). However, since for a given spectrum, the noise has a much smaller 

norm than the actual signal, in order to produce the right mass ratios (with comparable 

norm in the concentration), 𝑋 would need to itself have a large norm. All things being 

equal, minimizing the norm of 𝑋 should force it to use the signal rather than the noise. 

For the Linear-VM model, we additionally penalize: 

1. Any superfluous dependence of 𝐴 on the predicted mass ratios. Concretely, if the 3-

dimensional tensor 𝑨𝑖𝑗𝑘 is as discussed previously, then we want 𝑨𝑖𝑗𝑘 to not depend 

strongly on the index 𝑘. 

2. The second derivatives of 𝑨  and 𝑋 with respect to wavenumbers should be small, since 

all the FTIR spectra considered are smooth with respect to wavenumbers. Concretely, if 

the 3-dimensional tensor 𝑨𝑖𝑗𝑘 is as discussed previously, we want the absolute value of  

𝑨𝑖𝑗𝑘 − 𝟐𝑨𝑖−1,𝑗𝑘 + 𝑨𝑖−2,𝑗𝑘  to be small, where 𝑖 is the wavenumber index. Similarly, if 𝑋𝑗𝑖 

is as discussed previously, then we want the absolute value of 𝑋𝑗𝑖 − 2𝑋𝑗,𝑖−1 + 𝑋𝑗,𝑖−2 to be 

small. 

The complete penalty is simply a linear combination of all these penalties, and the precise code 

defining this is reproduced in the next section. 

In both of these cases, two types of data can be used for training the model. 
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1. Supervised data, where the precise mass ratios are known, will be used to tune both the 

mass ratio predictions and the spectrum reconstruction. 

2. Unsupervised data, where the precise mass ratios are not known (in our case this is a 

much greater dataset), will be used to tune only the spectrum reconstruction. However, 

since the reconstruction is done by first predicting mass ratios, it will still be useful for 

improving the quality of the mass ratio predictions. 

Finally, since the equation for the reconstructed spectrum does not change as long as 𝑨𝑖𝑗𝑘 + 𝑨𝑖𝑘𝑗 

doesn’t change. This equation can be rewritten as follows. 

𝑠′𝑖 =
1

∑ 𝑐𝑘
𝑁
𝑘=1

∑ 𝑐𝑘𝑨𝑖𝑗𝑘

𝑁

𝑘=1,𝑗=1

𝑐𝑗 

Without loss of generality, we set all 𝑨𝑖𝑗𝑘 = 0 for 𝑘 > 𝑗. 

4.2.4 All equations for the Linear-VM model 

In case more details about the penalties are useful, the equations used are given below. However, 

it is strongly advised to skip this section if such details are not wanted. First, the function relu is 

defined in Section 1.2.5 as relu(𝑥) = 𝑥 if 𝑥 > 0 and relu(𝑥) = 0 if 𝑥 ≤ 0. 

The equations relating spectra to mass ratios are: 

𝑐 = 𝑋 ∙ 𝑠 

𝑐̅ = relu(𝑐) 

𝑚′ =
1

𝜀 + ∑ 𝑐𝑖̅
𝑁
𝑖=1

𝑐̅ 

Here, 𝜀 is a very small number added to prevent dividing by 0. 
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Then the equations for the reconstruction of the spectrum is: 

𝑠′𝑖 =
1

𝜀 + ∑ 𝑐𝑘̅
𝑁
𝑘=1

∑ 𝑐𝑘̅𝑨𝑖𝑗𝑘

𝑁

𝑘=1,𝑗=1

𝑐𝑗̅ 

Then, the various penalties are: 

Lreconstruction = ∑(si − s′
i)

2

M

i=1

 

Lprediction = 𝑧 ∑(mj − m′
j)

2
N

j=1

 

Here, 𝑧 is 0 if the data is unsupervised and 1 if supervised. 

Lpositivity = ∑relu(−𝑐𝑗)

N

j=1

 

Lnormalization = (1 −
1

𝑁2𝑀
∑ 𝑨𝑖𝑗𝑘

𝟐

𝑖,𝑗,𝑘

)

2

 

 

Lsmallx =
√ 1

𝑁𝑀
∑ 𝐗𝑗𝑖

𝟐
𝑖,𝑗,𝑘

𝜀 + ∑ 𝑐𝑖̅
𝑁
𝑖=1

 

Let 𝑨̃𝑖𝑗𝑘 = 𝑨𝑖𝑗𝑘 + 𝑨𝑖𝑘𝑗, then  

Llinear = ∑ (𝑨̃𝑖𝑗𝑘 −
1

𝑁
∑ 𝑨̃𝑖𝑗𝑘

𝑘

)

𝟐

𝑖,𝑗,𝑘
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Lsmooth = ∑(𝑨𝑖𝑗𝑘 − 𝟐𝑨𝑖−1,𝑗𝑘 + 𝑨𝑖−2,𝑗𝑘)
𝟐

𝑖,𝑗,𝑘

+ ∑(𝑋𝑗𝑖 − 2𝑋𝑗,𝑖−1 + 𝑋𝑗,𝑖−2)
𝟐

𝑖,𝑗

 

The total penalty is simply the weighted sum 

𝐿 = Lreconstruction + 𝛼1Lprediction + 𝛼2Lpositivity + 𝛼3Lnormalization + 𝛼4Lsmallx + 𝛼5Llinear

+ 𝛼5Lsmooth 

With this, most of the details of the code have been formulated precisely. Now, we discuss the 

structure of the code. 

 

4.2.5 Code Structure and Content 

The code was written to have a simple way to run the model on some measurements and may be 

accessed at https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR. 

There are many possible ways to call the code: 

1. After having put some measurement files in a directory, the model can be called by 

specifying this directory. It will return an excel file with the predicted mass ratios, as well 

as a directory with a graph of the reconstructed spectra together with the original data for 

each input file (the extension of the files will be changed from .asp to .png). This is the 

run_on_directory option. For convenience, an excel sheet with the numerical data for 

measured and reconstructed spectra is outputted as well so the user can make their own 

graphs (e.g. for publication). 

2. The training can be run on the calibration dataset, and thus the model can be updated. This 

is the train_on_all_data option. 

https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR
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3. Cross-validation studies of the model can be run to evaluate it on the calibration dataset. 

This is the cross_validation option.  

4. The figures in this paper can be reproduced. This is the paper_figures option. 

5. There is a functionality to create a dataset, allowing the extension of the dataset, but it 

might require some modification to adapt to a different lab's workflow. This is the 

create_dataset option. 

4.2.6 Addendum: Spectra Measured on Other Apparatus 

Note that it is possible to take a spectrum measured at different wavenumbers than those used in 

the dataset, and through interpolation, estimate what would have been measured at the 

wavenumbers required by the system.  

This was not done in the corresponding article to Chapter 4, but the predictions do not depend on 

the scale of the FTIR spectrum, and the reconstruction of samples measured on different systems 

were anecdotally adequate. Since the FTIR spectra live in a very large vector space (dimension 

greater than 1000), the fact that reconstruction was adequate is strong evidence that the predictions 

can be transferred adequately from one system to another simply by first interpolating the 

measurements to the wavenumbers used in the calibration dataset.  

Indeed, one can be confident that the system can still determine when its “axioms” are respected 

or not. Accurate reconstructions should be a strong evidence of accurate predictions. Yet, without 

a careful empirical study, there is no way to know the degradation in the typical reconstruction 

accuracy that this transfer (i.e. using interpolation to transfer spectra to the wavenumbers used 

during calibration) may cause. In other words, if reconstruction works, prediction works, but 

reconstruction might work less often when using some different measurement settings. This latter 
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limitation could be overcome with more data, but Chapter 4 focusses on the cases where data is 

not plentiful. 

4.2.7 Future Work: Fine-tuning 

After reading Chapter 3, the perceptive reader may have gotten the idea that the linear prediction 

of the electrolyte concentrations is merely an inverse model, and its output may be used as initial 

guesses for an optimizer such as ADAM to minimize the reconstruction error. This indeed could 

be done with much of the same code, except that the reconstruction model’s parameters (namely 

𝐀𝑖𝑗𝑘) must be kept fixed during this fine-tuning. Indeed, the equations for the impedance of a given 

Equivalent Circuit model are fixed, and only the Equivalent Circuit parameters change. 

On the supervised training set, the reconstruction model has already been optimized together with 

the linear inverse model, so it should be expected that the “initial guesses” would be nearly optimal. 

However, for new samples which are unlike those in the training set, it is possible that the linear 

inverse model produces an initial guess which is significantly suboptimal. Indeed, there is a whole 

subfield of machine learning exploring the deliberate construction of so called adversarial 

examples98 which make a given neural network produce a spurious prediction by carefully altering 

a sample in the dataset. In general, it is hard to characterize how a given component of a neural 

network might fail, but it is possible that the linear inverse model fails to produce a good initial 

guess on some atypical samples. For those samples, the question remains of whether a different 

choice of concentrations would produce a significantly better reconstruction or not for the fixed 

reconstruction model used. This could be answered directly by the fine-tuning approach. 
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4.3 Results and Discussion 

In order to assess the performance of the model, a percentage of the dataset is held out so that the 

model does not see this data during training.  Then, the trained model is fixed, and applied to the 

held-out part of the dataset.  Thus, we can obtain an approximation of how the model performs on 

data which was not used during calibration.  This can be repeated many times such that all the data 

is held out at least once, and then the results can be plotted and compiled.  This is called Cross-

Validation. To simplify the computational demands, we consider held out datasets of 10%, 20%, 

... up to 90% successively, and repeat the procedure 8 times or more for each setting, only showing 

the results on the held-out sets and compiling the various held-out sets to cover the whole dataset. 

To be clear, there is no selection of the best outcome of this procedure, and during each isolated 

experiment, the held-out set is only used for testing. Furthermore, when the predictions are shown 

visually, all the errors for all the held-out sets are shown, thus showing a worst case scatter, and 

when the prediction errors are averaged, then the average is over all such experiments. 

Figure 4.1 shows a quantitative overview comparison of the cross-validation performance of the 

two models. The performance is shown as a function of the percentage of data which was held-out 

of the calibration and only used for testing.  

On the left we have the absolute value of the difference between measured spectra and the 

reconstruction of the model. This error is averaged over all wavenumbers and divided by the 

average absorbance of the measured spectrum. An error of 100% corresponds to as much error as 

signal. The two models are shown with the same axes, which shows that b) Linear-VM 

significantly improves over a) Constant-VM.  
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On the right, we have the absolute difference between actual mass ratio and the prediction of the 

model, given as a percent of the largest mass ratio for that component within the calibration set 

(i.e. 0.22 for LiPF6, 0.5 for EC, and 1 for the linear carbonates EMC, DMC, and DEC). Within 

the randomness of cross-validation, there is no significant difference between the two models here. 

We can also see the error bars, which represent the standard deviation of the average error over 

the various trials in the cross validation (for instance, if 8 times the dataset has been split into 

training and testing subsets and the training algorithm has converged to a solution, then the 

standard deviation of the total error across these 8 trials is given). 
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Figure 4.1 Comparison of the cross-validation performance of the two models (overview). Each 

row corresponds to a different model a) Constant-VM and b) Linear-VM. The 

performance is shown as a function of the percentage of data which was held-out of 

the calibration and only used for testing. On the left is shown the reconstruction error 

between the measured spectrum and the predicted spectrum from the model. Linear-

VM is clearly better. On the right is shown the prediction error between the prepared 

mass ratios and the predicted mass ratios. 

a)

b)
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Figure 4.2 Comparison of the cross-validation predictions of the two models for the mass ratios 

with 30% of the data which was held-out of the calibration and only used for testing. 

Each row corresponds to a different model a) Constant-VM and b) Linear-VM. For 

each FTIR spectrum in the test set, the predicted mass ratios are plotted vs the actual 

known mass ratios, as discrete points, whereas the theoretical "perfect prediction line" 

which simply shows where perfect predictions would be on the graphs is shown as a 

full line. 

Figure 4.2 shows a visual overview comparison of the prediction performance of the two models. 

Every single error in prediction over 10 cross-validation experiments is shown, and therefore, the 

visual scatter of the predictions represents a worst case estimate for this type of data when using 

70% of the data was used for training and 30% of the data was used for testing.  
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Figure 4.3 shows an evaluation of the Linear-VM model's cross-validation reconstruction 

performance with 30% of the data which was held-out of the calibration and only used for testing. 

Figure 4.3 should be studied in conjunction with Figure 4.1 as Figure 4.3 gives a qualitative 

reference to the quantitative study presented in Figure 4.1. In order to compare between the Linear-

VM and the Constant-VM model, we look at averages over the held-out data to get a single average 

absorbance spectrum and a single average absolute error spectrum (the average of absolute error 

for each wavenumber across all held-out data is plotted versus wavenumber). In order to show that 

different wavenumber regions have different quality of reconstruction, the wavenumber range has 

been split into 3 regions (low, medium, high), and plotted on separate rows. As can be seen, most 

of the reconstruction error occurs in the 800-900 𝑐𝑚−1 range, while the middle range (second row) 

has a decent reconstruction, and the high wavenumber range is quite good. It is instructive to 

correlate the regions of high error with known vibrational modes. For instance, around 780, the 

cause is CO3 non-planar rock on the ethylene carbonate (EC) molecule, around 840, the cause is 

the LiPF6 t1u mode. Also, around 1150, the cause is CO2 symmetric stretch on EC, while around 

1250, the cause is CO2 symmetric stretch on linear carbonates. For more details on the causes, see 

our previous work93. 
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Figure 4.3 Evaluation of the Linear-VM model's cross-validation reconstruction performance 

with 30% of the data which was held-out of the calibration and only used for testing. 

In black, the mean absorbance spectrum over the whole dataset is shown, while in red, 

the mean absolute error of reconstruction (measured in the same units) across the held-

out data is shown. 

Figure 4.4 shows an evaluation of the Constant-VM model's cross-validation reconstruction 

performance with 30% of the data which was held-out of the calibration and only used for testing. 

Figure 4.4 should be studied in conjunction with Figure 4.1 as Figure 4.4 gives a qualitative 

reference to the quantitative study presented in Figure 4.1. See Figure 4.3 for the details of how 

this plot was obtained. The error regions from Figure 4.3 are amplified here, but in addition the 
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high wavenumber region has substantial error. The cause for the high region is mostly the C=O 

stretch.  For more details on the causes, see our previous work. 

 

Figure 4.4 Evaluation of the Constant-VM model's cross-validation reconstruction performance 

with 30% of the data which was held-out of the calibration and only used for testing. 

In black, the mean absorbance spectrum over the whole dataset is shown, while in red, 

the mean absolute error of reconstruction (measured in the same units) across the held-

out data is shown. 
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Figure 4.5 shows an evaluation of the physical plausibility of the vibration modes of the Linear-

VM model. Each component of the electrolyte produces a partial spectrum, revealing the 

vibrational modes and these partial spectra produced by the model are shown in dashed colored 

lines. After calibration over the full dataset (i.e. 0% held-out), the model is used to reconstruct the 

spectra of the calibration set. By looking at the contribution from each electrolyte component, we 

can see if the vibration modes make sense. The total reconstruction tracks the measured spectrum 

as expected. Yet, the individual contributions for each component are smooth and the DEC 

vibration modes appear more or less constant over most of the spectrum. The components behavior 

here is representative across the calibration set. Note that despite providing plausible components, 

there is no guarantee that these exactly reflect the individual vibrational modes, but rather they are 

a sign of the model's health. 
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Figure 4.5 Evaluation of the physical plausibility of the vibration modes of the Linear-VM model. 

Each component of the electrolyte produces a partial spectrum, revealing the 

“vibrational modes” and these partial spectra produced by the model are shown in 

dashed colored lines. The four panels show mixtures of DEC and LiPF6, and the 

predicted amounts are accurate up to 0.01kg/kg. The measured data has been down-

sampled for visibility. 

A
b

so
rb

an
ce

 (
ab

u
)

Wavenumber (𝑐𝑚−1)



152 

 

In order to assess how the trained model varies across various runs of the cross validation, Figure 

4.6 and Figure 4.7 show the learned parameters of 𝑋 and 𝑨. Indeed, both figures show the mean 

value of each parameters as well as the standard deviation as error bars. Figure 4.6 shows that the 

parameters of X do not strongly vary from trial to trial when 30% of the data is held-out, and that 

X does indeed vary smoothly with respect to wavenumber. 

 

Figure 4.6 Parameters of X during the cross-validation with 30% of the data which was held-out 

of the calibration and only used for testing. Each color corresponds to the slice through 

X where the concentration index is set to a given component. The solid line 

corresponds to the average across different trials while the error bars correspond to the 

standard deviation. 
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Figure 4.7 Parameters of 𝑨 during the cross-validation with 30% of the data which was held-out 

of the calibration and only used for testing. Each color corresponds to the slice through 

𝑨 where the concentration indices are set to the given components. The solid line 

corresponds to the average across different trials while the error bars correspond to the 

standard deviation. 

Figure 4.7 shows that the parameters of 𝑨 do vary more from run to run. More specifically, the 

variation is mostly localized in ranges of wavenumbers where the reconstruction error is larger. 
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Since 𝑨 has been chosen with many elements 0, we can visualize each distinct pair of indices 𝑗, 𝑘 

as a function of wavenumber. 

 

In summary:  

• In terms of predicting the mass ratios the two proposed models are virtually identical in 

their performance.  (As a percentage of the maximum value within the dataset, the mass 

ratio prediction errors for LiPF6 and the linear carbonates is around 1 percent, while the 

ethylene carbonate error is between 2 and 3 percent.) Figure 4.1 shows how the prediction 

performance depends on held-out percentage, while Figure 4.2 shows the exact predictions 

for 30% held-out sets.  

• However, in terms of the reconstruction of the absorbance spectra, Linear-VM is clearly 

superior, with total absolute error around 10 percent of the total measured absorbance, 

which can be compared to Constant-VM with total absolute error around 20 percent of the 

total measured absorbance (Figure 4.3 and Figure 4.4 suggest that the main difference 

occurs in the high wavenumber region, but the error is worse across all wavenumbers for 

Constant-VM).  Note that even the predicted spectra from the Linear-VM do not agree 

perfectly with the measurement, but they still correspond to a useful reconstruction 

allowing the user to identify samples far outside of the LiPF6, EC, EMC, DMC, DEC 

system.  It seems plausible that a more sophisticated model could improve the 

reconstruction further, but in cases of complicated models, false positives become a worry 

(i.e. samples outside the space of the components in the training set which can nevertheless 

be well reconstructed by using extreme values of the concentrations). Figure 4.1 shows the 

quantitative picture, as a function of held-out percentage, while Figure 4.3 and Figure 4.4 
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show a qualitative analysis of typical reconstructions from the Linear-VM and Constant-

VM models for the 30% held-out sets. 

• The reconstruction can even be decomposed by electrolyte components to give some idea 

of the underlying features of the spectra (i.e. the vibrational modes), with plausible shapes.  

This might be worth future work in cases where the vibrational modes themselves are of 

interest.  As the model is, it is hard to guarantee that the vibrational modes extractable from 

calibration on a limited dataset are unique.  Figure 4.5 shows a sequence of samples starting 

from pure DEC, with increasing amounts of LiPF6, where the partial spectra due to each 

component are shown together with the reconstruction.  As can be seen, the vibration 

modes of DEC and LiPF6 are recognizable throughout, while changing slightly in shape in 

addition to being scaled by the predicted concentrations. Furthermore, the individual 

contributions to the absorbance spectrum from each molecule type are smooth with respect 

to wavenumber (note that without the derivative penalty discussed in Methods section, we 

can instead get noisy contributions from each components that perfectly cancel out to give 

a smooth reconstruction). 

 

4.4 Conclusions 

In this Chapter we showed how the concentration of electrolyte components in lithium-ion cells 

can be determined using Fourier transform infrared spectroscopy, Beer's law, and machine 

learning.  A physically grounded model was used.  We have also open-sourced a carefully prepared 

dataset and the code to replicate and extend to different electrolyte mixtures.  With this new model, 

a prediction error of around 1-2% for the LiPF6-to-total mass ratio, as well as all the linear 

carbonates, and around 2-3% for ethylene carbonate is achieved.  Furthermore, this model allows 



156 

 

for a useful reconstruction of the FTIR spectrum of an unknown sample.  This allows the user to 

detect samples significantly different from those in the dataset (e.g. due to a bad measurement, to 

a significant amount of a different molecule, or to a significant change in apparatus).  Furthermore, 

the model is data efficient such that a model for mixtures of 5 components can be calibrated well 

with less than 50 carefully prepared samples. Therefore, it should be possible to easily extend this 

work to other systems.  

This work refines and generalizes our previous work93 and improves the physical underpinnings 

of the model. The composition of unknown electrolyte samples, with a specified set of 

components, can be well determined using inexpensive and rapid measurements with attenuated 

total reflectance fourier transform infrared spectroscopy. 

The code is available at https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR, with all 

the documentation in the README.md file. 
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Chapter 5 A Database for Lithium-ion Data 

Previous chapters have discussed big ideas and theoretical insights to ensure the robustness of 

machine learning models in the context of lithium-ion cell research, yet the underlying data 

processing system may well determine the success or failure of projects based on such models.  

Obviously, models developed based on data are not a closed system since their performance is 

directly influenced by the data they are fed, and how they are used. Similarly, these models may 

influence research decisions down the line, leading to different data being collected and the models 

being used differently. 

To plan for success, it is helpful to look at the whole system (the lab) filled with researchers, 

equipment, computer programs, etc.. The lab produces various data, develops tools to analyse this 

data, and the whole process is very hard to characterize since research direction is influenced by 

an evolving understanding which in turn depends on the previous research as well as the inputs 

from other labs or industrial partners. Yet some features are simple to understand. 

Just like a big machine, there can be friction, effort, and frustration associated with processing 

data, storing it, retrieving it, understanding it, developing tools for it, etc.. The ease with which 

these operations are performed, henceforth called data processing efficiency, is the subject of this 

chapter. Unless explicitly noted, this Chapter is a documentation of the features already 

implemented and already in active use. 

5.1 Motivation for a Data Processing System 

Now that the importance of data processing efficiency has been described generally, let us dive 

into the specifics of the lithium-ion research. 
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Figure 5.1 Schematic of the various modalities of battery data. The rounded bubbles contain some 

important metadata which have their own structure. The black arrow indicates the 

temporal relationship between various experimental observations. The cycling data is 

spread across three files in this case. There are some other types of observations, such 

as the formation data and the electrochemical impedance spectra taken at the beginning 

and end of cycling, respectively. 

Figure 5.1 shows a schematic of some typical experimental observations for a single cell. First, 

there is the metadata associated with the cell itself (Chemistry/Blueprint, henceforth called Cell 

Metadata), including the geometry of the cell, the composition of the electrolyte, the electrodes, 

etc.. Second, there is the metadata of how the cell was cycled, typically allowing for each cycle to 

select a charge current, discharge current, limit upper and lower voltages, etc.. Third, the cycling 

data itself, which contains the precious information about the capacity of the cell, the impedance 
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of the cell in the form of polarization in the voltage curve between charge and discharge, and how 

these characteristics evolve through time (see Section 5.3.5 for a more in-depth discussion of the 

structure of cycling data). The cycling data may be split across multiple files and each file may 

encode the information in a different format. Indeed, even a single manufacturer (e.g. Neware) can 

produce the data in many different formats and variants, totalling more than 20 different commonly 

used variations. This in itself is a significant friction factor for the analysis of the data and in 

practice required substantial effort and iteration to manage. 

There are typically also many different types of observations such as formation, impedance 

spectroscopy (see Chapter 2), but also some chemical composition measurements (see Chapter 4), 

some pressure measurements, and so on. Though the data processing system already can 

recognize files of these various modalities and was designed to be easily extendable, it only 

fully supports cycling data as of the writing of this thesis. 

Unless explicitly noted, this Chapter is a documentation of the features already implemented 

and already in active use. 

Other difficulties exist: 

• Cycling experiments are ongoing for weeks, months, or years, with the experimental 

equipment updating the files once per day. Furthermore, the output of these experiments 

must be studied in real time in order to prioritize limited resources and guide future 

experiments. 

• Given all the files produced by the various experiments, maintaining knowledge of what 

each file contains (i.e. which cell it measures, under what condition, at what point in the 

lifecycle of the cell, henceforth called Valid File Metadata) is quite challenging. This is a 



160 

 

major issue when the work of many students must be combined, especially once students 

have left the lab. At one level, this problem comes down to each student creating their 

own ad-hoc system to keep track of their experiments, but on a deeper level, it takes more 

information to situate an experiment in the complete context of tens of students across 

many years than it takes to situate an experiment in the limited context of a small study. 

Without special care, the incentives of individual students are pushing them to only keep 

track of the limited information relevant to their current project in their own format 

specific to that project. There is also a perverse correlation, which is obvious in the data 

the author studied, that the most prolific producers of experiments are typically the least 

compliant to any systematic way of entering the metadata. (It makes sense that larger 

projects benefit most from developing their own special-purpose formats). Without 

considering the human factor of using a given system, the “best” of designs will fail. 

• When coming up with a common format which needs to encapsulate all the various 

activities in a lab studying lithium-ion batteries, it becomes clear that lithium-ion cells are 

complicated. 

• For any software solution to the various issues of data processing, no matter how elegant 

the solution is, in order to be used, it must interface with the large unstructured legacy 

systems (i.e. handwritten notes or similar). 

• Entering all the information manually would be prohibitively tedious and time-

consuming, yet any automation scheme will run into the human factor: at any point, in 

any stage of the data processing, incorrect data exists and will continue to exist and be 

generated.  
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• The absence of a good solution to these problems not only plagues individual students in 

a given lab, but also forces different labs and companies to spend years “inventing the 

same wheel”. 

Given these issues, creating large reliable datasets (on the scale of 10 000 to 100 000 cells) for the 

development of various models and analysis tools is not feasible without a suitable data processing 

system. 

However, the emphasis in this chapter will be on how such a system can enhance the operation of 

a lab even without considering the downstream effects on model creation. In order to be useful at 

all, such a system must become an integral part of the lab’s operation. The curation and 

maintenance of very large-scale diverse datasets is a by-product here. 

5.2 Requirements and Desired Properties of a Data 

Processing System 

Before diving into the implementation of the data processing system (henceforth called the 

Universal Battery Database), the various requirements must be discussed. 

In overview, 

• Information must be accessible by any lab member, even years after the experiment was 

completed, and hopefully also from other labs. 

• Finding a given experiment among hundreds of thousands of experiments must be easy, 

without prior knowledge of what experiments do or do not exist. 

• Tracking given experiments across years and comparing them should be easy. 

• Visualizing the data should be automatic. 
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• Extracting different types of cycles (slow or fast discharge, different depths of discharge, 

etc.) should be integral and automatic. 

• Producing and maintaining simple CSV files for further analysis should be automatic. 

• Producing and maintaining datasets friendly for machine learning models should be 

automatic. 

• Cells should be described systematically. 

• Information should be curated automatically. 

• Easy corrigibility at every stage through user interface. 

• Flexibility to grow and maintainability. 

Unless explicitly noted, this Chapter is a documentation of the features already implemented 

and already in active use. 

 

  



163 

 

5.3 Design of the System and Fundamentals of its 

Workings 

5.3.1 Lithium-ion Cell Ontology (Structure of the Cell Metadata) 

 

Figure 5.2 A hierarchical breakdown of a cell into components, which are themselves made of 

components. At the top level, a cell “has” a dry cell as well as an electrolyte. The 

electrolyte is itself a weighted combination of molecules, and the dry cell has a 

cathode, an anode, a separator, and some geometric information. Similarly, the anode 

and cathode are each a weighted combination of various active materials and inactive 

materials. 
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Figure 5.3 A more detailed breakdown of the components of the cell into subcomponents. As in 

Figure 5.2, the anode, cathode, and separator are each a weighted combination of 

various active materials and inactive materials. Each active material has various 

attributes such as material type, particle size, crystal type, etc.. Additionally, they can 

have stoichiometry information represented as a weighted combination of atoms, and 

an optional coating. 

Figure 5.2 and Figure 5.3 illustrate the structured description of lithium-ion cells. Most important 

for searchability, the electrolyte is a weighted combination of molecules. Ideally, a simple weight 

ratio would be enough to describe all electrolytes in a standard way. Unfortunately, various 

conventions and ways of making electrolytes were used in the past. Typically, molecules are used 

either as salts, solvents, or additives. Furthermore,  
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• salt ratios should be given in molal units (mols of salt per kilogram of solvents), but are 

sometimes given in molar units (moles of salt per liter of solution) 

• solvent ratios are given as weight ratios such that the sum of all solvents is 100 percent 

• additive ratios are normally given as weight percent of the complete electrolyte.  

Anodes, cathodes, and separators are always given as weight combinations such that the weight 

ratios of active materials sum to 100 percent and the inactive materials are given as weight percent 

of total material. Also, each molecule is unique, but the same molecule could be used as a salt in 

one context and an additive in another context (similarly with a solvent). Therefore, each molecule 

has a default type, but each electrolyte can override the type of its molecules. 

Another important feature of this hierarchy is that each node has an “unstructured” field where 

information can be written as text. This is important since for every part of the hierarchy, there 

could be cells which do not “fit the mold”. For instance, “anode-free” cells do not really have 

active and inactive materials in their anode. Their anode is entered in the system as an anode with 

“anode-free” in the unstructured field, and an empty set for the combination of materials. Similarly, 

some cells are proprietary and so the details are not known. It is possible to distinguish different 

proprietary dry cells and electrolytes by simply filling the unstructured field with an appropriately 

unique name. 

Finally, for each node in the hierarchy, we can have a “blueprint” or a specific “lot”. Concretely, 

imagine the recipe for an electrolyte (the blueprint), and different people may produce an actual 

electrolyte following the same recipe at different times and get different results (each would be 

different electrolyte lots of the same electrolyte). In order to accommodate the fact that often the 

specific lot is known but sometimes it isn’t, and different labs might not keep track of the lots at 

all whereas other labs might assign lots to everything, the system allows lots and blueprints to be 
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used more or less interchangeably. Concretely, the hierarchies are made of lots, but for each 

blueprint, there is a “default” lot which only has the blueprint information. 

5.3.2 Obtaining Unique Names at Scale 

In order to stay sane, name uniqueness properties must be both automatically enforced and well-

defined. 

Entities exist at every level of the hierarchy, and every entity has a name (e.g. an anode is an entity, 

a molecule is an entity, a dry cell lot is an entity). The desired properties are as follows:  

1. The name of an entity is a subset of the information contained within the entity. 

2. If two entities have different names, the entities must be truly different. 

3. No two distinct entities have the same name. 

4. To call two names different, they must be semantically different (must never have e.g. 

merely a different spelling for something, or a different ordering of elements). 

The solution to this problem is simple: instead of maintaining names for each entity, we maintain 

a list of Boolean variables for each entity. The name of an entity is defined recursively on the 

hierarchy (i.e. molecules have names, then electrolyte names are defined by assembling the names 

of the molecules and the amounts, etc..). 

The Boolean variables simply state whether a given piece of information should be part of the 

name or not (e.g. a dry cell has a Boolean for the cathode, a Boolean for the anode, and a Boolean 

for the separator, etc.). 

Then, whenever we modify the set of entities, we ensure that  

1. The entities without their Boolean variables are unique. 
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2. The masked entities without their Boolean variables are unique. 

Masked entities are obtained by replacing each sub-component associated with a Boolean variable 

by a special value when the Boolean is False. For instance, if the anode Boolean is true, the anode 

is just the entity ID, but if the anode Boolean is False, the anode is replaced by a special ID. 

In case that was confusing, here is a more mathematical treatment: 

Entities contain many fields, and each field could either be a basic type: a string, a number, an 

entity ID which is itself only a positive integer, a set of entity IDs, or they could be a flagged type, 

which is a Boolean and a basic type. 

On entities, we first define two projection operators: 

1. Object Projection. The object projection maps tuples (i.e. finite sequences) of either basic 

types or flagged types to tuples of basic types in the natural way. Namely, for each 

component of the tuple, a basic type maps to itself, but a flagged type maps to the 

contained basic type. 

2. Name Projection. The name projection maps tuples of either basic types or flagged types 

to tuples of either basic types or a special value denoted with the symbol ┴ (an upside-

down “T”). Namely, for each component of the tuple, a basic type maps to itself, but a 

flagged type maps to the contained basic type if the contained Boolean type is True but 

otherwise it maps to a special value denoted by the symbol ┴. 

For each projection, we can define a notion of equivalence by saying that two entities are 

equivalent according to the projection if the two outputs of the projection are equal. 
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Then, when adding or modifying an entity, we simply check that no other entity is equivalent to it 

either according to the object projection or the name projection. 

Intuitively speaking, the task of maintaining good unique names then boils down to selecting which 

aspects of an entity should be included in the name in order to distinguish it from other entities at 

a glance. It is always safe to set all the Booleans to True (meaning that the name will contain all 

the details), but this has the disadvantage of making very long names which are hard to read. 

Ideally, there are a few key properties that make an entity stand out, and those can be made visible. 

Finally, when converting entities and their Booleans to a string, it must be ensured that, no matter 

the contents of the entities: 

1. If two entities are not equivalent according to the name projection, then their strings will 

be distinct. 

2. Strings are a function of masked entities. 

5.3.3 Linking Experimental Files to the Appropriate Cells 

There are at least three almost independent subsystems to the Universal Battery Database; the first 

dealing with what cells are (i.e. what electrolyte is in them, the cell metadata),  the second dealing 

with what files are (i.e. what experiment is contained in a given file, the file metadata), and the 

third dealing with the data content of the files (i.e. what are the results inside of a given file, the 

cycling data). It is important to understand that the only safe assumption about files is that each 

filename is an address on the file system at which experimental equipment will write periodically.  

Figure 5.4 shows the relationship between filenames, cycling data, valid file metadata, and cell 

IDs. Cell IDs exist in cell metadata (results of searches, see Section 5.3.1) and in valid file 

metadata. The link between a Cell ID and the cycling data has to go through the valid file 
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metadata. Furthermore, many files can have the same Cell ID contained within their valid file 

metadata. The cycling data of a single file contains information for each cycle and this information 

is indexed by the relative cycle number (each file begins at cycle 0) and the absolute time. Yet, the 

cycling data of a Cell ID (the cycling data from each file gathered together), is indexed by the 

absolute cycle number and time differences between a given cycle and the first cycle. As can be 

seen, valid file metadata for cycling files contains the Cell ID, the start cycle, which is used to 

offset the relative cycles contained within the file, the start date, as well as an ID for the creator of 

the experiment (Char ID), and finally some data about the experimental conditions such as the 

temperature the cell was operated at and the maximum voltage the cell was submitted to (Upper 

Cut-off Voltage). 

The fundamental unit which always exists is the filename (viewed as an address on a file system). 

No matter what, if a file exists on the file system, the filename will enter the database.  

Then, depending on whether the filename has encoded the valid file metadata information in an 

understandable format, this information will be decoded and stored automatically as a Valid File 

Metadata object. The file metadata subsystem is written to treat many different kinds of data, 

coming from many different equipment, and therefore, this Valid File Metadata object also 

contains information about the type of experiment (in the case of interest, “Cycling”) and the 

equipment used (in the case of interest, Neware99). 

If the valid file metadata information is not understood from the filename, no Valid File Metadata 

object is created for that filename. However, it is simple and quick to manually enter this 

information in the Universal Battery Database (see Section 5.4.4), as well as correct this 

information if it was somehow incorrect (for instance if a typo led the filename to mention the 

wrong Cell ID). 
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Therefore, the system only loads the actual cycling data (reads the content of the file) if the 

filename has a Valid File Metadata object associated to it. This automatic loading occurs at a fixed 

time every night, but it is possible to request a reading of the contents of a file through the Universal 

Battery Database (see Section 5.4.2). 

The connection between filename and the Cell ID metadata (see Section 5.3.1) need not be 

maintained separately. Every time the search system looks for the data associated with a given Cell 

ID, it simply gets all the Valid File Metadata object containing the right Cell ID. If we are 

visualizing the data for a given cell, the system will find all the appropriate filenames as before, 

and the filenames for which some file content has been imported into the system will show up 

together in a unified view of the cycling data (called Valid Cycling Data for that cell, see Section 

5.4.2). 
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Figure 5.4 Illustration of the connection between filenames, cycling data, valid file metadata, and 

cell IDs. The first two filenames have valid file metadata associated with them as well 

as cycling data. The third file has valid file metadata associated to it, but no cycling 

data. It is impossible to have cycling data associated to a filename without valid file 

metadata. The fourth file does not have valid file metadata.  

5.3.4 Searches Based on the Ontology of Lithium-ion Cells 

When an entity is made of a combination of many entities at a lower level of the hierarchy, there 

can be many fewer sub-entities than the top level entity (i.e. if there are five possible widths, four 

possible heights, and three possible lengths, then there are sixty possible rectangular prisms). A 

prime example are the electrolyte entities (a few thousand unique electrolytes) which are a 
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combination of potentially many molecules (less than a hundred unique molecules, with only ten 

or so being commonly used). If the search mechanism cannot understand this hierarchy, searching 

for electrolytes is inconvenient. On the other hand, if the search mechanism allows to search 

electrolytes in terms of their molecules (and the amounts of each molecules), this suddenly 

becomes a very convenient tool to navigate thousands of electrolytes, and by the same logic, 

hundreds of thousands of cells. 

On the other hand, very sparsely populated hierarchies can have the opposite effect where there 

are approximately the same number of top-level entities as their constituents. For instance, anodes 

are combinations of active and inactive materials, so we would expect that the number of distinct 

anodes is much greater than the number of distinct materials. However, almost every distinct anode 

uses a distinct active material. In such cases, forcing the structure of the ontology into the search 

mechanism has less clear benefits. There are no search mechanisms which will be optimal for all 

use cases and all data distributions. However, for the Universal Battery Database project, the 

search mechanism tries to strike a balance by allowing various searches for: 

• electrolyte based on molecules 

• dry cell based on anode, cathode, separators, and dry cell lots 

• dry cell lots, which in the lab’s case are physical boxes of dry cells which are supposedly 

identically manufactured, based on same inputs as for dry cell search 

• wet cells based on electrolyte search, dry cell search, experimental conditions, filenames, 

and a higher level of organization called datasets. (the search can take into account the 

wet cells defined in the system, or the wet cells which appear in valid experimental files) 

• distinct electrolytes based on wet cell search (i.e. which electrolytes have been tried with 

this cathode?) 
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• distinct dry cells based on wet cell search (i.e. which dry cells have been tried with X 

solvent combination under Y experimental condition) 

The search mechanism can: 

• simply list the names of the entities (see Section 5.4.2) 

• allow the creation of groups of wet cells called datasets (see Sections 5.3.6 and 5.4.3) 

• visualize the valid cycling data associated with the cell IDs (see Section 5.4.2) 

• allow reimporting of missing data and various mechanisms to “fix” problems with the 

data (see Section 5.4.5) 

It should be clear that the real measure of success of a search mechanism is whether the users can 

find what they are looking for and how easy it is to perform their searches. Therefore, a different 

search mechanism would have to be implemented for a laboratory dealing with several thousand 

cathodes and only a few electrolytes. Hopefully, many of the challenging types of search required 

for different labs already have analogue components within the current system. 

Without discussing in detail the implementation of searches (also known as Queries) in the 

Structured Query Language (SQL) based database96, it is insightful to discuss electrolyte searches 

in particular at the mathematical level. 

For simplicity, assume that each molecule can be represented by a unique molecule ID. Then, 

electrolytes can be thought of as: 

1. An unstructured field called notes. 

2. A Boolean field called proprietary. 

3. A list of triplets, where each triplet is made of: 

a. An integer representing a molecule ID 
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b. Either a number representing the weight of the given molecule or a special token 

representing an unknown weight. 

c. Either an overridden type (solvent, salt, or additive) or a special token 

representing the default type for the molecule 

Then, each search has to produce a list of such electrolytes. A list of some common searches 

follows as a motivation. In order to remove unnecessary intellectual property from the discussion, 

assume that A, B, C, D, E, F, G, H, … stand for actual molecules in the system. 

• Electrolytes with 2 percent additive A, 1 percent additive B 

• Electrolytes with C 

• Electrolytes with only D as an additive 

• Electrolytes with D as an additive, potentially A, but no other additives 

• Electrolytes without any C 

• Electrolytes with 30 percent solvent F, and salt G 

• Electrolytes with around 2.3 (+/- 0.2) molal of salt H and only E and F as solvents 

• Proprietary electrolytes 

• Electrolytes with “company 5” in the notes 

• Electrolytes with “1% H + 10%E” in the notes 

Based on such examples, what are searches? Coming up with a restrictive definition of what a 

search is allows design of a robust search mechanism. Coming up with a definition which includes 

all the searches one might like to do ensures the search mechanism is useful. 

Therefore, we define an electrolyte search as follows: 



175 

 

1. A triplet of Boolean fields called “complete salt”, “complete solvent”, “complete 

additive” or collectively “completes” 

2. A real-valued positive number called “relative tolerance” 

3. A Boolean field called “proprietary” 

4. A triplet of unstructured fields called “notes 1”, “notes 2”, and “notes 3” or collectively 

“notes” 

5. A list of quadruplets, with each quadruplet containing: 

a. A molecule ID 

b. A requirement type, either mandatory, allowed, or prohibited 

c. A real-valued positive number called amount which could alternatively be set to 

an optional value denoted by the symbol ┴ 

d. A real-valued positive number called tolerance, could alternatively be set to a 

special value denoted by the symbol ┴ 

As an example, Table 5 illustrates the purpose of the various components of a search by giving 

examples of how to represent various informal searches into the restricted domain. 

Now the question is how to map these searches to a set of electrolytes. Beside suggesting interested 

parties to explore the code itself for the fully general search case, a few more details follow. In 

addition, see Section 5.4.2 for various examples in the user interface. 

1. For each electrolyte, we can go through the list of tuples, and filter out those electrolytes 

which contain a prohibited molecule.  

2. If one of the “completes” is set to True (without loss of generality, consider “complete 

additive” set to True), we can go through the list of tuples in each electrolytes, and for 

every molecule either marked as additive or marked as default with the default type of the 
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molecule being additive, we can check if the molecule is contained within the set of 

molecules in the search marked either as mandatory or as allowed. 

3. We can go through the list of quadruplets in the search marked as “mandatory” and then 

for every electrolyte, verify the presence of the molecule (if no amount was specified) or 

verify that the molecule is present and the amount falls within the range proscribed in the 

search (if an amount was specified). 
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Search in words Completes 

(default is  

all false) 

relative 

tolerance 

(default is 

5 percent) 

Proprietary 

(default is 

false) 

notes quadruplets 

2 percent additive A 

1 percent additive B 

    (A, mandatory, 2, ┴) 

(B, mandatory, 1, ┴) 

with C     (C, mandatory, ┴ , ┴) 

with only D as an additive complete 

additive: True 

   (D, mandatory, ┴ , ┴) 

with D as an additive, 

potentially A, but no 

other additives 

complete 

additive: True 

   (D, mandatory, ┴ , ┴) 

(A, allowed, ┴ , ┴) 

without any C 

 

    (C, prohibited, ┴ , ┴) 

with 30 percent solvent F, 

and salt G 

 

    (F, mandatory, 30 , ┴) 

(G, mandatory, ┴, ┴) 

with 2.3 (+/- 0.2) molal of 

salt H only E and F as 

solvents 

complete 

solvent: True 

   (H, mandatory, 2.3, 0.2) 

(F, allowed, ┴ , ┴) 

(E, allowed, ┴ , ┴) 

Proprietary   Proprietary: 

True 

  

with “company 5” in the 

notes 

   Notes 1: 

“company 5” 

 

Table 5: A few examples of how various informal searches can be represented as restricted 

formal searches. 

5.3.5 Data Processing and Grouping the Cycles Automatically 

 

Lithium-ion cycling data has a repeating structure where every cycle the cell must undergo charge 

and discharge. More generally, a cycle will contain a sequence simple steps, where each step is 

typically controlled via a drive profile. For instance, 
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1. Charge the cell with a constant current of X milliamperes until the voltage across the 

terminal reaches Y volts. 

2. Discharge the cell with a constant current of X until the voltage reaches Y. 

3. Charge at a constant current of X until voltage reaches Y, but then hold a constant 

voltage of Y until the current drops below Z. 

4. Rest for W minutes (open circuit). 

5. Hold a constant voltage for W minutes. 

Each step is made of a sequence of observations, typically of the voltage, the current, and the time. 

By integrating the current multiplied by differences in time, we get the capacity, and by integrating 

the current multiplied by the voltage multiplied by the differences in time, we get the energy. 

The choice of drive profile has two main impacts: 

1. The observed results for that step strongly depend on the drive profile for that step. For 

instance, at higher currents, there is typically less capacity, and more polarization in the 

voltage between charge and discharge (i.e. drive profile determines what information is 

extracted). 

2. The state of the cell, both in terms of reversible short-term changes to the expected results 

for the next few steps and in terms of the irreversible long-term degradation of the cell, is 

affected a little bit every step, based on the precise drive profile (i.e. drive profile 

determines degradation). 

The first point is important since one can get useful information by periodically adding a few 

“check-up” cycles which by either using a low or high current, or by setting different bounds on 

the voltages, will reveal different information about the cell. 
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The second point is mostly important in aggregate. For instance, there will be differences in aging 

if every cycle uses a very high current, in comparison to a different experiment where every cycle 

uses a very low current. 

Due to the presence of rare “check-up” cycles, there is a very large imbalance between 

observations for different drive profiles within a single experiment. This both makes it tricky to 

separate these cycles by hand (for humans), but also necessary to separate these cycles properly 

for various algorithms (otherwise, models will have trouble with the information in the rare cycles 

since they are overwhelmed with the more common cycles). 

If every cycle had a precise, exact, intended drive profile, which only had a few possible values 

for each cell, then it would be trivial to group cycles (i.e. they would effectively be already grouped 

in the raw data).  

However, for many data formats and many chargers, the intended drive profile is not included, the 

currents are approximate and rarely exactly constant, and generally things are messy.  

We therefore identify five attributes that every charge or discharge possesses and apply an 

approximate clustering algorithm to generate a small number of meaningful “groups” across these 

attributes. 

The details of the clustering methods are not critical, but the goals are that: 

1. Every cycle’s charge/discharge must belong to at least one group. 

2. The number of groups should be as small as possible. 

3. The five attributes should be as uniform within a given group as possible. Namely, the 

standard deviation of each attribute should be as small as possible when taken within a 

group. 
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Now, given a clustering method which optimizes these three objectives, the attributes themselves 

must be chosen such that the groups thus obtained would explain as much of the variance in 

observations between groups as possible. 

Intuitively, we want attributes which capture the most glaring variations between observations 

from cycle to cycle. 

In case the mathematical details are of interest, a step typically contains a set of tuples containing 

voltage, capacity, current, and time which can be abstracted to a function of voltage, capacity and 

current versus time through some form of interpolation. Then, for nearby cycles, such functions 

may be compared to each other by the integral of the squared sum of their differences. 

To summarize, the attributes must be chosen in order to minimize those distances for cycles in a 

given group. 

Technically, more is needed to really describe what we want (for instance, the attributes which 

must explain the variance are the average attributes of a given group; they can’t change as a 

function of cycle number; and we are interested in all possible drive profiles). However, the 

intuition given can hopefully explain the choice of attributes used, even though there may be better 

attributes yet to be discovered. 

 The attributes chosen are: 

1. Constant Rate. The current during the “constant current” portion of the given step. (For 

ease of comparison, the current is normalized by the theoretical capacity of a cell.) 

2. End Rate. The current at the end of a given step. (Again, normalized to the theoretical 

capacity of the cell). This will differ from the Constant Rate in cases where e.g. the 
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charge has a constant current portion followed by a voltage hold until the current falls 

below a certain threshold. 

3. Previous End Rate. The End Rate of the previous step. (For instance, the previous step 

of a discharge is a charge and vice-versa.) 

4. End Voltage. The voltage at which the given step terminated. 

5. Previous End Voltage. The End Voltage of the previous step. 

These attributes can distinguish between slow charge and fast charge, similarly with discharge. 

They can also distinguish between different cycles which may cycle across a restricted voltage 

range. However, they do not capture short-term effects where having a slow cycle at a given point 

will affect a handful of subsequent cycles100,101.  

Yet, this ability to isolate various types of cycles designed to study different aspects of the cell is 

quite useful for visualization purposes, as well as for balancing the data prevalence in the context 

of developing a model.  

See Table 6 through Table 8 for some examples of filters applied to the five attributes. 

5.3.6 Creating and Annotating Datasets 

 

The search mechanisms allows one to find individual cells. Yet, for the purpose of a given project, 

one is usually interested in a fixed subset of cells.  

Furthermore, when the set of cells is small (for instance, ~10 cells), then finding meaningful names 

for each cells is much easier and the names can be much shorter. For instance, if there are five 

cells which are identical but for the fact that they respectively incorporate 1%, 2%, 3%, 4%, and 

5% of a given additive in their electrolytes, then it may be much easier to simply name them “1%”, 
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“2%”, “3%”, “4%”, and “5%” in the context of this dataset, even if such a name would be 

completely inadequate in a complete database of tens of thousands of cells. Indeed, it might still 

be useful to give them such names, even if they were not completely identical in other respects, as 

long as they were the best controlled cells which could be assembled to compare the given 

additive’s impact.  

Finally, in the context of a given project, the kinds of cycles which are of interest for a given cell 

will usually be restricted. Indeed, it would be rare to require the five attributes mentioned in Section 

5.3.5 to describe a group of cycles in this context. As an example, if the End Voltage and Previous 

End Voltage attributes are always the same for every discharge, but the Constant Rate is different, 

then it could be easier to give a special name to a subset of cycles, such as “1C” to denote a 

discharge at a constant current equal to the theoretical capacity of a given cell divided by one hour. 

Furthermore, the name could be kept consistent across different cells of the dataset, even if some 

cells were in fact cycled at “0.87C” while others were cycled at “1.12C”, for the purpose of visual 

clarity. 

With those ideas in mind, the design of the “dataset” system is as follows: 

1. Creating a dataset is as easy as finding a name for the dataset that has not already been 

used. 

2. The output of a cell search can be added to any dataset (it is not possible to add a cell to a 

dataset multiple times). 

3. Any cell may be renamed in the context of any dataset. This name does not affect 

anything outside of the given dataset. The “dataset specific name” of a cell must be 

unique within the dataset. 
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4. For a given cell, we can define a number of “filters”, each of which requires a different 

name. These filters can put range constraints on any of the five attributes for the charge 

or the discharge of a cycle. Namely, either any value is accepted for a given attribute, or 

an upper and lower limit is provided. These filters each represent the subset of all the 

cycles for the given cell which satisfy all the constraints on their attributes. 

5. When defining filters, one can define the same filter for any subset of cells in the dataset. 

Consider a couple of examples. 

First, imagine a dataset of various cells where most cycles are charging and discharging over a 

restricted voltage range (could vary cell to cell) at a given rate (could vary cell to cell). Then, 

approximately every 500 hours, a “check-up” cycle is inserted: the cells are cycled over a larger 

range of voltages (from 3.2 to 4.2 volts for some cells; from 2.8 to 3.9 volts for others) at a rate of 

charge and discharge of 1/20 hours-1 (often referred as C/20, said “Sea over twenty”). Then, the 

goal is to design a filter which only captures the “check-up” cycle, and a filter which excludes the 

“check-up” cycle.  

In words, the check-up filter would be “C/20 constant rate for charge and discharge; charge starting 

at 3.2 and ending at 4.2 volts; discharge starting at 4.2 and ending at 3.2 volts”. Depending on the 

data in the set, the tolerance on these quantities should be set appropriately, but to a first 

approximation, “C/20” would be 0.05, so we could accept a range of 0.03 to 0.07. For the voltage, 

we could tolerate up to 0.02 volts. In this scenario, Table 6 shows two plausible filters which could 

be applied to the whole dataset, though only one of them would be active for any given cell. 

Furthermore, consider the cases where the cells with “check-up” cycle between 3.2 and 4.2 volts 

have their restricted ranges between 3.2 and some voltage lower than 4 volts (could vary cell to 
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cell), while the cells with check-up cycle between 2.8 and 3.9 have their restricted ranges between 

some voltage higher than 2.9 volts and 3.9 volts. In this scenario, Table 7 shows two plausible 

filters which could be applied to the whole dataset, though only one of them would be active for 

any given cell, and would essentially exclude the check-up cycles, which may be useful for some 

analysis. 

Second, imagine a different dataset of various cells where most cycles are charging and 

discharging at a given rate (could vary cell to cell, either 1C or C/3 charge and discharge, but 

consistent for a given cell). Then, approximately every 100 cycles, a “Rate map” set of cycles is 

inserted: the cells are charged at 1C, discharged at C/20, then charged and discharged at C/20, then 

charged at 1C and discharged progressively faster (C/2, 1C, 2C, 3C). The goal is to design filters 

for each of the Rate map cycles and which does not include the regular cycles. In this scenario, 

Table 8 shows an example of such filters.  
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Name: Attribute Polarity Minimum Maximum 

Check-up High V Constant Rate Charge 0.03 0.07 

Constant Rate Discharge 0.03 0.07 

End Voltage Charge 4.18 4.22 

Previous End 

Voltage 

Charge 3.18 3.22 

Previous End 

Voltage 

Discharge 4.18 4.22 

End Voltage Discharge 3.18 3.22 

Check-up Low V Constant Rate Charge 0.03 0.07 

Constant Rate Discharge 0.03 0.07 

End Voltage Charge 3.88 3.92 

Previous End 

Voltage 

Charge 2.78 2.82 

Previous End 

Voltage 

Discharge 3.88 3.92 

End Voltage Discharge 2.78 2.82 

Table 6 Examples of dataset filters to isolate “Check-up” cycles. 
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Name: Attribute Polarity Minimum Maximum 

No Check-up 

High V 

End Voltage Charge  4.0 

Previous End 

Voltage 

Charge 3.18 3.22 

No Check-up 

Low V 

End Voltage Charge 3.88 3.92 

Previous End 

Voltage 

Charge 2.9  

Table 7 Examples of dataset filters to get the various cycles except the “Check-up” cycles. 

 

Name: Attribute Polarity Minimum Maximum 

1C C/20 Constant Rate Charge 0.85 1.5 

Constant Rate Discharge 0.03 0.1 

C/20 C/20 Constant Rate Charge 0.03 0.1 

Constant Rate Discharge 0.03 0.1 

C/2 Constant Rate Discharge 0.3 0.7 

1C (Check-up) Constant Rate Discharge 0.85 1.5 

 Previous Constant 

Rate 

Charge 0.3 0.7 

2C Constant Rate Discharge 1.5 2.4 

3C Constant Rate Discharge 2.4 4 

Table 8 Examples of dataset filters to get the various cycles in a “Rate Map”. 
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5.3.7 Outputting Experimental Data in a Simple Format (for Humans) 

 

The observations contained in cycling data in their raw form are pretty complex in structure and 

this acts as a constant source of friction for analysis and visualization tasks. Among the 

complications, the data for a given cell may exist across multiple files, it is updated regularly, 

and there are many types of cycles useful for studying different aspects of the performance of 

lithium-ion cells. The observations for a single cycle are also quite complex in structure and 

difficult to easily compare from cycle to cycle. Cycles are split across various steps, each 

containing some set of observations (voltage, current, capacity, time), but the voltages are not 

typically “aligned” from cycle to cycle, with the number of observations per cycle rarely constant 

from cycle to cycle, and the time given is sometimes unreliable. This data structure is difficult to 

work with. Therefore, summary quantities are typically used, such as the total discharge capacity, 

the average voltages of charge, the average voltage of discharge, their differences called delta V, 

etc.. 

To the summary quantities can be added “index quantities” such as the cycle number and the time 

difference between the first cycle and a given cycle (called the cumulative time). Then, successive 

cycles will produce the rows of a matrix, with the columns corresponding each to a specific 

summary quantity, or a specific index quantity. 

This format can be produced for any cell and any filter, and it can easily be formatted as a Comma-

Separated Values (CSV) file, which can be manipulated with various programs such as Microsoft 

Excel, and can be read in by almost all graphing programs worth the name102. 
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In practice, when outputting the data,  

1. every dataset becomes a folder,  

2. every cell becomes a subfolder, and  

3. every filter becomes a CSV file.  

Every CSV file has the same columns in the same order, corresponding to the various summary 

quantities and index quantities. 

The same general idea may be applied for more special-purpose uses. For instance, the differential 

capacity as a function of voltage (also known as dQ/dV versus V) can be useful to look at for cycles 

with a relatively low current (such as C/20).  

Then, by having a filter which selects only the appropriate cycles, the data could either be presented 

in a single CSV file with columns Cycle Number, dQ/dV, V, or it could be presented as a multitude 

of files in a sub subfolder with only dQ/dV and V as columns but with the Cycle Number as the 

filename. For instance, a file named 105.csv would exist in a sub subfolder named 

DifferentialCapacityVersusVoltage. 

The general idea is to unroll nested data structures as matrices (CSV files) within a hierarchy (the 

filesystem). 

 

5.3.8 Outputting Data in a Complete Format (for Machine Learning 

Algorithms) 

 

In order for a machine learning algorithm to be easily applied to a dataset, the format should: 
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1. provide as much information as possible since different models may require different 

levels of details 

2. Store things compactly but in a way which can quickly be loaded 

3. Be easily translatable into uniform tensors as much as possible 

4. No customization, good automation 

In the context of producing an output suitable for machine learning algorithms, a process which 

we call “compiling a dataset”, there are two difficulties: 

1. Describing the cell metadata 

2. Describing the cycling data (including the relevant valid file metadata) 

The cell metadata is represented by assigning a unique integer to every unique entity. 

The cycling data is represented as groups containing sequences of cycles. Each cycle contains 

some metadata, including temperature, as well as some conditions like the Constant Current. 

Furthermore, each cycle contains a sequence of voltage and capacity pairs. As future work, it 

may be worth representing time along with voltage and capacity. 

For most users of the database, this feature will not be useful, so we do not go into all the details, 

but we refer interested readers to the code for all the details. 

5.4 User Manual and Frequently Asked Questions 

 

Here are listed the most common usages, organized by subsections corresponding to tasks one 

might use the Universal Battery Database for. In each case, the most frequently encountered 

confusions are discussed in more details. 
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Since the database contains sensitive content, some of the specific values have been obscured by 

a grey “sensitive content” sign. In cases where the general structure of the content is important, a 

grey box containing a fake content with the appropriate structure was superimposed on the image. 

5.4.1 Access to the Universal Battery Database 

 

The code is freely and openly available at https://www.github.com/Samuel-Buteau/universal-

battery-database and the system can be deployed in various ways. 

Figure 5.5 shows the way to interact with the software within a lab network. From any computer 

within the lab “intranet”, visiting a given URL from a browser will connect the user to the software. 

By following the hyperlinks at the top, the user can visit the various subsystems, again from the 

browser of a computer on the local network of the lab (in this configuration, the IP address of the 

server must be visible to the other computers on the lab network). 

  

https://www.github.com/Samuel-Buteau/universal-battery-database
https://www.github.com/Samuel-Buteau/universal-battery-database
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Figure 5.5 The front page of the software accessed from a computer within the lab’s network. The 

front page shows only the various hyperlinks to leading to the various subsystems of 

the software. These hyperlinks are present at the top of every page within the software. 

In the absence of any internet connection, the software may still be set up and used from a browser 

on the computer hosting the software (also known as the “server”). 

Finally, it would be possible to allow connections from all across the internet, but in such a 

scenario, an authentication mechanism should be deployed and maintained, in order to minimize 

theft of intellectual property. However, setting up a secure system which can hold valuable 

intellectual property with a perpetually available surface of attack from across the world is beyond 

the scope of this work. Security is easy to do poorly, and all the details potentially matter a great 

deal. While it would be beneficial to have a robust security-oriented design for the Universal 

Battery Database project, it is left as future work. Also worth noting that a good security design 

for the Universal Battery Database could still be insecure when deployed side-by-side with the 

various legacy systems keeping the lab running. 



192 

 

5.4.2 Searching the Database 

 

There are various levels at which searches may be performed, corresponding to various levels in 

the ontology of lithium-ion cells. 

Figure 5.6 shows an overview of the search page, as it would show up when clicking on the 

hyperlink Search Stuff. There are four main sections to the search page. At the top, the results for 

the wet cell searches and for the valid cycling data searches will show up, then there is a table 

subdivided into the three remaining sections: the valid cycling data section, the electrolyte section, 

and the dry cell section. Each section will be explored further below.  

Figure 5.7 shows the structure of the possible searches in the form of a search tree. The rounded 

nodes on this diagram can be searched for (for instance, we can search for some electrolytes), 

whereas the square nodes are what the searches are based on (for instance, we can search for some 

electrolytes based on their substructure). Generally, Figure 5.7 depicts a tree. An arrow connecting 

node A to node B indicates that node A is a child of node B. There are two types of searches: 

simple and powerful. Simple searches are performed based on the square descendants of the node. 

Powerful searches, on the other hand, can follow arrows in both directions, essentially projecting 

a search (simple or powerful) for the direct parent of a node (e.g. wet cell) onto the node itself (e.g. 

electrolyte). 

The projection of a search for a parent onto a child node is defined as follows: given the set of 

results for the parent node (e.g. wet cell), extract the values for the child node (e.g. electrolyte) of 

each element of the set of results (e.g. the electrolyte of each wet cell), and list the set of distinct 

values for the child node (e.g. the distinct set of electrolytes). Note that this projection can be based 
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on a simple search (e.g. a wet cell search based on electrolyte substructure and dry cell 

substructure) or on a powerful search (e.g. a valid cycling data search projected onto the wet cell 

node). 

The following subsections explore various possibilities, but to clarify the general principle, here 

follows a list of three different searches for electrolytes: 

1. A simple search for electrolytes based on some additive molecules being present at 

certain percentages (electrolyte substructure). 

2. A powerful search for electrolytes based on the same additive molecules, as well as the 

dry cell box ID. This is interpreted as a simple search on wet cells projected onto 

electrolytes. 

3. A powerful search for electrolytes based on the same additive molecules, the same dry 

cell box ID, and the temperature of cycling (experimental conditions). This is 

interpreted as a simple search on valid cycling data projected onto wet cells (a powerful 

search on wet cells) which is itself projected onto electrolytes. 

Note that the first search is completely independent of which dry cells might exist or which wet 

cells might be registered, or which valid file metadata may be defined. However, the second search 

does depend on which wet cells are registered, and the third search depends on which wet cells 

and which valid cycling data exist within the system. 

Furthermore, for every square node in Figure 5.7, we can define a trivial input as the input which 

will allow every possible variations of the node to match in the search (e.g. if everything is left 

blank in the electrolyte substructure node, then a search on electrolytes will return all existing 

electrolytes). These trivial inputs are a useful tool to find and fix problems in the database. 
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For any given simple search, we can define one or more corresponding powerful searches, as 

powerful searches which have exactly the same nontrivial inputs as the simple search. For 

instance, the following three searches are corresponding searches: 

1. A simple search for electrolytes based on some additive molecules being present at 

certain percentages (electrolyte substructure). 

2. A powerful search for electrolytes based on the same additive molecules, as well as a 

trivial input for the dry cell box ID, dry cell substructure, dataset, and cell ID. 

3. A powerful search for electrolytes based on the same additive molecules, the same 

trivial inputs as before, and trivial inputs for the dataset, cell ID, experimental 

conditions, and file substructure. 

If all data were present and properly entered in the database, then corresponding searches most 

likely should all return the same results. In other words, there should not be unused electrolytes 

which never appear in a wet cell. Similarly, if a wet cell is registered into the system and this cell 

is or has been cycled, it would be expected that it should appear in a valid cycling data. 

Therefore, if these searches do not produce the same results, the most likely explanation is that a 

wet cell has been registered improperly, or not at all, or that the experimental data for a given cell 

is named incorrectly or the format of the file is corrupted. 

In a perfect world, every contributor to the database would ensure correct data entry, but in 

practice, it is necessary from time to time to fix inconsistencies. Yet, because of the persistent 

nature of the database, incorrect data need only be corrected once, and so the quality and reliability 

of the powerful searches should only increase with usage.  
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Figure 5.6 Overview of the search page, as it would show up when clicking on the hyperlink 

Search Stuff. The searches are arranged hierarchically according to the search tree of 

Figure 5.7. At the top, the results for the Wet Cell searches and for the Valid Cycling 

Data searches will show up, then there is a table subdivided into the three remaining 

sections. From left to right, the valid cycling data section, the electrolyte section, and 

the dry cell section. The results of electrolyte searches and dry cell searches will show 

up in their respective sections. 
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Figure 5.7 Illustration of the structure of the possible searches, called the “search tree”. The 

rounded nodes on this diagram can be searched for (for instance, we can search for 

some electrolytes), whereas the square nodes are what the searches are based on (for 

instance, we can search for some electrolytes based on their substructure). Generally, 

this figure depicts a tree and an arrow connecting node A to node B indicates that node 

A is a child of node B. There are two types of searches: simple and powerful. Simple 

searches are performed based on the square descendants of a node. Powerful searches, 

on the other hand, can follow arrows in both directions, essentially projecting a search 

(simple or powerful) for the direct parent of a node (e.g. wet cell) onto the node itself 

(e.g. electrolyte). 

The following sub sections explore various examples of searches in more detail. 
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Simple Electrolyte Search 

Figure 5.8 shows a zoomed-in view of the electrolyte section of the search page, with an example 

input for the electrolyte substructure node corresponding to the first entry in Table 5, as it would 

appear just before the search. Note that dark grey boxes are masking actual molecules and instead 

use abstract letters. This input corresponds to an electrolyte with 2 of A and 1 of B. For instance, 

if A and B were used as additives, it would mean 2 percent of total weight of electrolyte is made 

of molecule A and one percent made from B (the default tolerance is 5 percent, so the actual ranges 

of acceptable total weight ratios are 1.90 to 2.10 and 0.95 to 1.05 respectively). To perform a 

search for electrolytes, simply click on the Preview Electrolyte button. To perform a simple search, 

make sure that Only wet cell electrolytes is unchecked. To perform a powerful search, check the 

Only wet cell electrolytes box. To use a simple search for wet cells in the powerful search for 

electrolytes, Limit other searches should be left unchecked. To use a simple search for valid 

cycling data in the powerful search for electrolytes, Limit other searches should be checked 

together with Only wet cell electrolytes. Table 9 illustrates these options. 

Figure 5.9 shows the results of the simple electrolyte search. The electrolytes shown are fictitious 

but the format is actual.  

1. Solvents are listed in decreasing order of weight percent (normalized to 100% for the 

total solvents).  

2. Salts are listed in decreasing order of molality. 

3. Additives are listed in decreasing order of weight percent of total electrolyte. In this 

particular search, there are many results.  

In order to keep response times short and to display effectively the list, a page number must be 

provided with the search, and only a certain number of electrolytes will be displayed on each page. 
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This page mechanism is only active at the node searched for. In other words, when searching for 

a wet cell, the page number of the electrolyte search does not matter; all electrolytes in all pages 

will be used in the wet cell search. 

 

Figure 5.8 Zoomed-in view of the electrolyte section of the search page, with an example input 

for the electrolyte substructure node corresponding to the first entry in Table 5, as it 

would appear just before the search. This input corresponds to an electrolyte with 2 of 

A and 1 of B. 
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Figure 5.9 Results of a simple search for electrolytes based on the input of Figure 5.8. 

Simple Dry Cell Search 

Figure 5.10 shows a zoomed-in view of the dry cell section of the search page, with an example 

input for the dry cell substructure, as it would appear just before the search. This input corresponds 
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to a dry cell with either a pouch, coin, or missing geometry category, as well as the cathode D5 E4 

F[LMO] and anode [Stone, ART]. These names mean that the active material for the cathode is a 

Lithium Metal Oxide (LMO) with stoichiometry ratios for atoms D, E, F of 5, 4, 1 without any 

specified inactive materials, and the anode’s active material is of type Stone and has attribute 

artificial. The searches are performed on subsets of all possible cathodes, anodes, and separators. 

By holding down the Ctrl key and clicking on the various choices, it is possible to select exactly 

the subset of cathodes which would match the search. Selected entries appear blue and 

unselected entries appear with a white background. To perform a search for dry cells, simply click 

on the Preview Dry Cell button, similarly with a search for dry cell lots (also known as dry cell 

boxes), simply click on the Preview Box IDs button. Table 9 gives the options to control the type 

of search. To perform a simple search, make sure that Only wet cell dry cells is unchecked. To 

perform a powerful search, check the Only wet cell dry cells box. To use a simple search for wet 

cells in the powerful search for dry cells, Limit other searches should be left unchecked. To use a 

simple search for valid cycling data in the powerful search for dry cells, Limit other searches 

should be checked together with Only wet cell dry cells. 

Figure 5.11 and Figure 5.12 show the results of simple searches for dry cells and dry cell boxes 

respectively. Figure 5.13 reproduces the same result as Figure 5.11 by using the dry cell box ID 

input node. 

 

 

 

 



201 

 

X= Electrolyte 

Y=Dry Cell/Dry Cell Box 

X=Only wet cell electrolytes 

Y=Only wet cell dry cell 

Limit other searches 

Simple Search   

Powerful Search (projected 

from Wet Cell search) 

✓ 

 

Powerful Search (projected 

from Valid Cycling Data 

✓ ✓ 

Table 9 The option combinations to trigger a simple search or a powerful search on electrolytes 

or dry cells. 
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Figure 5.10  Zoomed-in view of the dry cell section of the search page, with an example input 

for the dry cell substructure, as it would appear just before the search. This input 

corresponds to a dry cell either in with a pouch, coin, or missing geometry category, 

as well as the cathode D5 E4 F[LMO] and anode [Stone, ART]. Any separator as well 

as a missing separator would also be acceptable. 
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Figure 5.11  Results of a simple search for dry cells based on the input of Figure 5.10. 
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Simple Dry Cell Box Search 

 

Figure 5.12  Results of a simple search for dry cell boxes based on the input of Figure 5.10. 
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Powerful Dry Cell Search using a Simple Dry Cell Box Search 

 

Figure 5.13  Results of a powerful search for dry cells based on the dry cell box ID input node. 

The results are equivalent to Figure 5.11 despite having a trivial dry cell substructure 

input. 
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Simple Wet Cell Search 

Figure 5.14 shows how simple searches for wet cells can combine elements of electrolyte searches 

and dry cell boxes searches, with Figure 5.15 showing the results. 
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Figure 5.14  View of the search page, with an example input for the dry cell box ID and the 

electrolyte substructure similar to Figure 5.13 and Figure 5.8 respectively. 
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Figure 5.15  Results of a simple search for wet cells based on the inputs of Figure 5.14. 

 

 

Dataset Creation from Wet Cell Search 

Figure 5.16 shows how to add cells to a dataset once results of a search for wet cells have been 

produced. 



209 

 

 

Figure 5.16  Zoomed-in view of adding some cells to a dataset, from the outputs of the search 

in Figure 5.15. In this case, clicking on “Register to Dataset” would ensure that cells 

10001 and 10101 would be part of dataset “Testing”. 

 

Simple Valid Cycling Data Search 

Generally, a simple search for a given node performed based on an input node not directly 

connected to the searched for node will rely on the existence of all the nodes on the path connecting 

the input node to the searched for node. However, there are two exceptions to this rule. First, even 

if a dry cell box ID does not exist for a given dry cell, the system could still find a wet cell based 
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on the dry cell substructure if a wet cell exists with the “default” dry cell box ID (see Section 

5.3.1). 

The other exception is the case where a valid cycling data exists, with the corresponding valid file 

metadata mentioning a cell ID, but no wet cell registered with that cell ID. In the case of a simple 

search for the valid cycling data based only on the given cell ID, the system would still return the 

valid cycling data. In this way, a search for wet cells based on cell ID will return existing registered 

wet cells even if valid cycling data is missing and vice versa.  

Figure 17 shows a search for valid cycling data based on experimental conditions and filename 

substructure. Figure 18 shows the result. 

 

Figure 5.17  A search for valid cycling data based on experimental conditions and filename 

substructure. 
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Figure 5.18  The results of the search from Figure 5.17. 
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Valid Cycling Data Visualization 

 

Figure 5.19  The results of the search from Figure 5.17 with the “Show Visuals” option 

checked. 
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Figure 5.19 shows the visualization of the results of the search from Figure 17. This visualization 

is obtained by checking the “Show visuals” box. In this case, the cell experienced two groups of 

discharge. In grey are the cycles with slow discharge and in yellow are the cycles with faster 

discharge. The legend has been masked. This cell only has a single file active, and the visualization 

shows a colored bar coextensive with the cycles within that file (also masked).  

Valid Cycling Data Re-importing 

Figure 5.20 shows how to force the system to reimport the data contained in the files with valid 

file metadata associated with the given cell IDs. This data is automatically updated every day for 

all files with valid file metadata. 
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Figure 5.20  The steps required to force the system to reimport the files associated with given 

cells. Starting with Figure 5.19 (or Figure 5.18), first uncheck all the exclude boxes 

for the cells to be reimported, then click on the “Trigger Re-Importing” button.  
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5.4.3 Datasets 

By following the “Datasets” hyperlink at the top of any page, one is taken to the overview of all 

datasets. Figure 5.21 shows the overview of all datasets. This is where one can create a new 

dataset or click on an existing dataset to view it. 

 

Figure 5.21  The overview of all datasets. 
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Create 

 

Figure 5.22  Creating a new dataset step by step. a) start at the overview. b) enter a new name 

a click on “Create a new Dataset”, c) the new dataset shows up in the overview and a 

message of success appears. 
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Figure 5.22 shows the creation of a new dataset, simply by entering a new name. After the 

dataset is created it will be empty. To add Wet Cells to the dataset, see Section 5.4.2 (Dataset 

Creation from Wet Cell Search). 

View 

 

Figure 5.23  The listing of an example dataset. 

To view a dataset, click on it on the overview of all datasets. Then the wet cells along with their 

description is visible. Figure 5.23 shows the listing of an example dataset.  

Annotate 

By clicking on “View”, one is taken to the edit page for that dataset. Figure 5.24 shows the 

default view of the edit page. Figure 5.25 shows how to change the name of a cell in the context 

of the dataset. Figure 5.26 shows how the edit page changes with the new name. 
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Figure 5.24  The default edit page for an example dataset. 

 

Figure 5.25  How to give a specific name to a cell in the context of a dataset. First, type the 

name in the box circled in red. Finally, click “Change Specific Name”. 
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Figure 5.26  The edit page after having set a specific name for cell “10001”. Now the specific 

name is visible in the dropdown menus. 

Analyse 

By setting filters, it is possible to separate different cycles into different data tables to be 

outputted. Figure 5.27 shows how to set the most basic filter which encompasses all cycles for all 

cells. 
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Figure 5.27  How to set the most inclusive of all filters. When no cell is selected, a filter is 

created for every cell in the dataset. When no rules are given, the filter will match 

every valid cycle for a given cell. First, enter a name for the filter in the box circled 

in red, then click on “Change Filter”. 

Output 

The filters are used to produce CSV files every night, but in case the data is needed more 

urgently, it is possible to request an immediate output. Figure 5.28 shows how to request an 

immediate output of the CSV files based on the filters defined for a given dataset. 
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Figure 5.28  How to output the dataset immediately to CSV format. Simply click the “Export 

Dataset” button. 

5.4.4 Registering Cells 

To register cells, first one must follow the “Register Cells in Bulk (Electrolyte Definition)” 

hyperlink. Figure 5.29 and Figure 5.30 show the two parts of the process. First, one selects either 

a range of Cell IDs or a number of Cell IDs, then one selects the appropriate box whence the 

cells came (each box must be registered separately), then one selects a set of molecules, and 

chooses both the default amount and whether to use the molecules in an unconventional way. 

When clicking on “Change Defaults”, an array of values is generated with the defaults prefilled. 

All these values can be changed, and finally, when clicking on “Register These Cells,” the 

corresponding Wet Cells will be created. Note however that unless the “Override Existing 

Registration” option is selected, only Cell IDs which did not already have a Wet Cell will be 
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created. When the option is selected, the previous Wet Cells are also replaced by newly created 

ones.  

 

Figure 5.29  Registering Cells (part 1). a) specify a range of Cell IDs, b) select a box, c) choose 

a set of molecules and default amounts, d) override how a molecule should be used, e) 

click on “Change Defaults.” 

 

Figure 5.30  Registering Cells (part 2). A table similar to an Excel document is prefilled with 

the defaults. 
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5.4.5 Fixing Bad File Metadata and Bad Cycling Data 

To access the existing files, whether they have valid file metadata or not, one must follow the “All 

Files” hyperlink at the top. One is then taken to the page shown in Figure 5.31, which shows how 

to fix bad file metadata. After checking the “only invalid files” option and clicking on “Search 

database and fix errors”, one will see a set of rows, each corresponding to a filename (on the left) 

and the information deduced automatically (on the right). This information can be overridden if 

inaccurate or entered if missing. To impact the desired files, remove the “Exclude” option for all 

the desired files, make sure that the metadata has either been corrected, entered properly, or that 

the file was marked as “Deprecated” which ignores that file henceforth and does not require valid 

metadata. As a final step, press the “Make Changes” button all the way at the bottom of the screen. 
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Figure 5.31  Fixing File Metadata. The “Exclude” box must be unchecked for the system to 

process a given row. Here the “Deprecate” box has been checked for the first file, 

which will remove that file from the rest of the database. Both files show up after a 

search for “only invalid files” because they have some missing data, including 

“Temperature”.  

In order to remove bad cycles, first find a small visual of the desired cell, such as in Figure 5.19, 

and click on the small image. The image is a hyperlink to the page shown in  
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Figure 5.32  The “Fix Bad Cycles” page. 
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Figure 5.33  Zooming into a given cycle number region. The top panel represents all the cycles. 

Then, the middle panel only shows the cycles contained within region K in the top 

panel. Similarly, the bottom panel only shows the cycles within region I in the middle 

panel. Zoomed-in legends have been added for readability. 
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Figure 5.34  View of a cycle after “cursing” region C in Figure 5.33. Inactive cycles are 

represented visually by smaller dots. The first datapoint is obscured by the top left 

legend but is visible under the “2” in “2018” on the website itself. 

5.5 Future Work 

In order for the Universal Battery Database to remain useful, it must be maintained, adapted, and 

improved as the needs and desired uses change. To perform these operations in the code requires 

a basic level of proficiency with the tools (Python, Django, HTML, SQL) and it can be hard to 

find good starting points which are relatively simple but which can improve one’s skills. Therefore, 

the author has assembled a basic set of improvements which should be accessible to a beginner.  

5.5.1 Forms to Formsets 

In Django and HTML, the interaction with the software is quite basic and essentially consists of 

the server sending partially filled forms (i.e. the software equivalent of a bureaucratic paper forms, 
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but this is a technical term found in Django’s documentation103), and the user completing them, 

sending them back to the server, and the server reacting to the input.  

In cases where information must be specified for a set of entities (i.e. a set of cells in a dataset), it 

is quite inconvenient for the user to fill a form for each separate entities, but it is a bit simpler to 

write the software to support the simple case. To help with easier user interaction, there is a concept 

called formsets which simply handles the transition from a single form to a set of identical forms 

of variable length. With these the idea is to partially fill an array of forms with information, send 

the array to the user and let the user interact with the formset essentially as they would in a program 

like Excel. 

The future work is as follows: look through the website and identify tasks that are currently done 

with forms but would be faster and nicer to user as formsets, then rewrite the code to implement 

the change.  

This is a nice first future work since there are many examples of both forms and formsets in the 

website and by studying a few examples, the implementation becomes clear. Furthermore, these 

two ways of providing interactivity are some of the most documented, often appearing in the first 

steps of any Django tutorial. 

A good first case could be the form to give a specific name to a cell in the context of a specific 

dataset.  

5.5.2 Static Database Information 

Most of the work on the Universal Battery Database has been focussed on users actively interacting 

with the database, since this was the trickiest aspect to implement. However, now that the 

interaction aspect is in a tolerable state, a lot of value can be added with a lot less work, simply by 
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displaying data from the database in key places. This is the simplest form of interaction since the 

server need only perform a query and format the output as HTML instead of worrying about 

interaction, and is among the first features discussed in the official Django tutorial. 

Here are a few examples: 

• The database contains a set of molecules which are displayed by an acronym. The 

database has a description field (and a SMILES104 code) which can be optionally 

provided, and it keeps track of which molecule is by default a solvent, a salt, or an 

additive. It is trivial to create a static page which tabulates all the molecules with their 

important attributes, and it could provide value when a user is unsure if their “new” 

molecule has been defined before with a different name. The same goes for electrodes, 

and other entities, but the set of molecules is always going to be of manageable size and 

fast to query, so it is the natural place to start. 

• The database contains a set of acceptable experiments, equipment, and file formats, 

which could be displayed as a table, though this would require some care. This would add 

value by removing the need to maintain a separate rule sheet outside the database. If the 

rules displayed by the database look right, the database would enforce them. If the 

separate rule sheet looks right, it has no impact on the database. 

• Each valid cycling data has different groups of cycles. When looking at a cell, it would be 

simple and fast to get that information and display it. Furthermore, in the case of a 

dataset, it is often useful to know which groups of cycles exist when defining filters.  

5.5.3 Anomaly Warnings and Troubleshooting Help 

The majority of issues users encounter are quite similar. For instance,  
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• Visualizing a dataset with cells that do not have valid cycling data. 

• Filenames that do not specify the start cycle when it is 0. 

• Valid cycling data for a Cell ID exists, but there is no Wet Cell defined for that cell (the 

cell was not registered). 

• An electrolyte does not show up in a search because the correct values of salt, solvent, 

and additives have not been extracted and are all written as text in the “notes”. 

Many of these issues can be proactively detected, while some require the knowledge that there is 

an issue.  

For the proactively identifiable issues, the idea would be to write simple programs which 

periodically search the database for patterns which resemble typical problems, and lists them so 

that they can be displayed statically on a “potential problems” page. 

For the issues which require knowledge of a problem, a “troubleshoot” page could be created, with 

different options such as looking for different types of issues on a given Cell ID, Wet Cell, dataset, 

etc.. 

5.5.4 Outputting Data in a Complete Format through the User Interface 

There is a command line program which takes as input a list of Cell IDs and constructs compiled 

data in a format suitable for modelling and machine learning (see Section 5.3.8). Yet, there is 

already a system for organizing Cell IDs, namely the dataset system. A quite simple 

improvement over the current system is to allow one to select a subset of all datasets in the 

overview of all datasets page, and click a button called “Export for Modelling”. Behind the 

scenes, all that would be required would be to query to database for all the wet cells belonging to 

at least one of the selected datasets, and call the function used in the command line export 
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program with that list of wet cells (their Cell IDs). This would add value by making it convenient 

to carefully curate specific datasets to test specific aspects of a model, as well as easily amass a 

large amount of data meeting quality and diversity requirements. 
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Chapter 6 Conclusion and Outlook 

This thesis aimed at presenting insights into the data-driven development of models and tools (i.e. 

machine learning) in the context of lithium-ion cell research.  

Chapter 1 recapitulated concepts in machine learning. Chapter 2 illustrated how a deep 

mathematical understanding of an applied problem could be sought. Chapter 3 then illustrated how 

such understanding could be leveraged to create a robust solution with machine learning 

techniques. Chapter 4 illustrated how the failures of a machine learning system can be made benign 

and its workings interpretable when the problem setting does not admit of a perfect solution. 

Finally, Chapter 5 illustrated how data processing systems could be built to benefit the daily 

operation of a laboratory and increase the scale of feasible machine learning projects.  

Whenever possible, the author sought to transmit the intuition acquired during his exploration of 

the topic. This was done in the text by to capturing arguments and reasoning about machine 

learning system performances at the level of rigor the author used to guide design decisions. Such 

arguments represent near-immediate intuitions to guide exploration and therefore are not validated 

and corrected as thoroughly as proofs would be since their use can tolerate a degree of inaccuracy.  

As a reminder of the principle used to develop such intuition: when modifying a machine 

learning design and running a numerical experiment, seek not to increase the performance 

metrics at all cost; instead, seek to be the least confused by the differences in performance 

between various alternative designs, and when a change in performance is confusing, strive 

to understand it. In the author’s experience, not only does this lead to much simpler and bug-
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free code, but it also is the most powerful way to improve one’s intuition on the relevant 

problems one is tasked to solve. 

The set of insights for the application of machine learning techniques to relevant problems in 

lithium-ion research and science more broadly is much larger than a single thesis and it evolves as 

people gain more experience and reflect more on the topic. Therefore, this whole thesis was only 

a preliminary introduction to this set of insights. Hopefully, the future work sections will be useful 

to the next travellers on this path. 

Furthermore, the applications discussed were those that seemed most relevant and achievable at 

the time the author studied in the lab. Namely, Chapter 2 and Chapter 3 focus on electrochemical 

impedance spectrometry, Chapter 4 focusses on fourier transform infrared spectrometry, and 

Chapter 5 focussed on a database for long-term cycling data and structural description of lithium-

ion cells. As time changes, the most promising applications of machine learning will change. 

Indeed, it is the hope of the author that the systems discussed in Chapter 5 will enable ambitious 

studies of the forecast of lithium-ion cell degradation to be completed.  

Chapter 3 presented a general paradigm to automate the fitting of empirical data to physical 

models, namely to determine an inverse model parametrized with a deep neural network by directly 

minimizing the mean squared error of the reconstructed empirical data, with a successful 

application to EC model fitting of impedance spectra of lithium-ion cells (a failure rate of less than 

1% and good fit quality on two large and diverse datasets with a single inverse model and using 

ADAM to finetune the EC parameters). Crucially, this method does not require knowledge of the 

true EC parameters corresponding to the empirical data, allowing the use of generated data, as well 

as any available impedance spectra to train the inverse model. This makes the method easy to 

implement, as well as being flexible.  
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This application allowed us to illustrate the process by which deeper understanding of the 

underlying application domain may be leveraged to produce robust machine learning solutions. 

In Chapter 4 we showed how the concentration of electrolyte components in lithium-ion cells can 

be determined using Fourier transform infrared spectroscopy, Beer's law, and machine learning.  

A physically grounded model was used.  We have also open-sourced a carefully prepared dataset 

and the code to replicate and extend to different electrolyte mixtures.  With this new model, a 

prediction error of around 1-2% for the LiPF6-to-total mass ratio, as well as all the linear 

carbonates, and around 2-3% for ethylene carbonate is achieved.  Furthermore, this model allows 

for a useful reconstruction of the FTIR spectrum of an unknown sample.  This allows the user to 

detect samples significantly different from those in the dataset (e.g. due to a bad measurement, to 

a significant amount of a different molecule, or to a significant change in apparatus).  Furthermore, 

the model is data efficient such that a model for mixtures of 5 components can be calibrated well 

with less than 50 carefully prepared samples. Therefore, it should be possible to easily extend this 

work to other systems.  

This work refines and generalizes our previous work93 and improves the physical underpinnings 

of the model. The composition of unknown electrolyte samples, with a specified set of 

components, can be well determined using inexpensive and rapid measurements with attenuated 

total reflectance fourier transform infrared spectroscopy. 

The code is available at https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR, with all 

the documentation in the README.md file. 

In Chapter 5 we documented a working battery database deployed on more than 20000 long-term 

cycling experiments. We described a structure of cell metadata allowing intricate searches and 

https://github.com/Samuel-Buteau/Electrolyte_Analysis_FTIR
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unique naming at scale. We described how experiments spread across multiple files could be 

reliably gathered, searched, visualized, organized in datasets, etc.. We also explained how the 

search was implemented, how it could be used, how new cells could be added to the system, and 

how inaccurate data could be fixed within the system. 
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