
A CONGESTION AND MEMORY-AWARE FAILURE RECOVERY
IN SD-WAN

by

MEYSAM SHOJAEE

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2020

© Copyright by MEYSAM SHOJAEE, 2020

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

Acknowledgements . viii

Chapter 1 Introduction . 1

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Thesis Outline . 4

Chapter 2 Background and Related Work 6

2.1 Background . 6

2.1.1 Software-Defined Networking 6

2.1.1.1 OpenFlow Protocol 8

2.1.1.2 Ternary Content Addressable Memory 10

2.1.1.3 Data Plane Reliability In SDN 12

2.1.2 Traffic Engineering . 14

2.2 Related Work . 16

2.2.1 Reactive and Proactive Failure Recovery Approaches 16

2.2.2 Failure Recovery Using Traffic Engineering (TE) 20

Chapter 3 SafeGuard: Congestion and Memory-aware Failure Re-
covery in SD-WAN . 25

3.1 Problem formulation . 25

3.1.1 Network Design . 25

3.1.2 Variables and Parameters . 26

3.1.3 Constraints . 27

3.1.4 Objective Function . 28

3.1.5 Parameter Sensitivity . 28

3.2 Heuristic Design . 30

3.3 SafeGuard’s Architecture . 33

3.4 SafeGuard’s Workflow . 35

3.5 Evaluation . 36

Chapter 4 Extending SafeGuard to Multi-Priority Traffic with Non-
unitary Switch Memory Demand 42

4.1 Problem Formulation . 42
4.1.1 Network Design . 42
4.1.2 Variables and Parameters . 43
4.1.3 Constraints . 44
4.1.4 Objective Function . 45

4.2 Heuristic . 45
4.3 Evaluation . 48

4.3.1 Setup . 48
4.3.2 Disscussion on the result . 49

4.3.2.1 The impact of topology 50
4.3.2.2 The Impact of Load 53

Chapter 5 Conclusion and Future Works 56

5.1 Conclusions . 56
5.2 Future Works . 56

Appendix A . 58

A.1 How to run SafeGuard? . 58
A.1.1 Setting up the environment: 58

A.2 How to run our model implementation? 60

Bibliography . 61

List of Tables

2.1 Link failure frequency in Microsoft data center WAN 12

2.2 Failure recovery work comparison 24

3.1 Key notations used in the model. 26

3.2 Flow and group tables at S1 for the example in Fig. 4.1 35

3.3 Flow and group tables at S4 for the example in Fig. 4.1 35

4.1 Key notations used in the model. 44

4.2 Network topologies used in our evaluation. LD= link-disjoint. . 49

List of Figures

2.1 SDN architecture. 7

2.2 OpenFlow-switch . 9

2.3 Select-group table . 10

2.4 FF group table . 11

2.5 SDN switch processing pipeline 11

2.6 The trade-off between the backup path length and the link ca-
pacity usage. 14

2.7 R3’s operation: after the link failure the traffic rate on link e1 is
distributed between e2 and e3 proportional to their contribution
on the traffic rate before the failure happens. 20

2.8 FFC’s operation: before the link failure, FFC leaves off 10Mbps
capacity on each link, so that the traffic rate on link e1 can be
distributed between e2 and e3 after it fails. 21

2.9 A network with link failure probabilities. In such a scenario,
a potential traffic allocation of TEAVAR can support 45Mbps
traffic which is available 97% of the time. 21

2.10 Sentinel’s operation: a) two link-disjoint tunnels for the flow
from S1 to S6, b) while completing the failover at the ingress
switch, Sentinel uses backup tunnels that start from the failing
switch and end at the egress switches to re-direct the affected
traffic, c) new established link-disjoint tunnels 22

3.1 Parameter sensitivity (effect on route length) 29

3.2 Parameter sensitivity (effect on link utilization) 30

3.3 a) Traffic rates on the primary tunnels of two flows (blue and
black). The available capacity (after allocating two flows) of all
links is 20Mbps except link S3 − S5 whose capacity is 5Mbps;
b) the available tunnels for the impacted flow with the highest
demand and corresponding traffic rates assigned to them; c)
the available tunnels for the second impacted flow after the link
failure with the traffic rates assigned to them. 33

3.4 The architecture of SafeGUard 34

3.5 The workload of SafeGuard 36

3.6 CDF of link utilization in B4 38

3.7 CDF of link utilization in ATT 39

3.8 Average route stretch in B4 40

3.9 Average route stretch in ATT 40

3.10 Average number of forwarding rules in B4 41

3.11 Average number of forwarding rules in ATT 41

4.1 a) Traffic rates on the primary routes of two flows (blue and
black). The available capacity of all links is 20Mbps except
link S4 − S5 whose capacity is 5Mbps; b) the available tunnels
for the affected flow with the highest demand and corresponding
traffic rates assigned to them; c) the available tunnels for the
second affected flow after the link failure with the traffic rates
assigned to them. 48

4.2 CDF of link utilization for different topologies 50

4.3 Route stretch for different topologies. 51

4.4 CDF of round trip time (RTT) for different topologies. 52

4.5 Switch memory usage for different topologies. 52

4.6 CDF of link utilization for different loads. 53

4.7 The route stretch for different loads. 54

4.8 RTT for different traffic loads 54

4.9 The memory usage for different loads. 55

Abstract

In software-defined wide area networks (SD-WANs), link failure is a common occur-

rence creating heavy congestion and packet loss and degrading the application per-

formance. Proactive failure recovery, i.e., preinstalling backup tunnels beforehand, is

heavily used in SD-WAN to break the dependency on the controller and to enable

fast rerouting. However, existing systems either lead to wasting the valuable network

resources (such as bandwidth capacity and switch memory) because of vacant link

capacity or impose non-realistic assumptions on the network topologies, such as the

existence of link-disjoint routes or unlimited switch memory resources. We advocate

a balanced network resource utilization instead. We argue that a reliable system

must take into account multiple resources while planing a failure recovery and must

be adaptable to multi-QoS traffic classes. Thus, in this thesis, we propose a novel

multi-resource aware proactive recovery system in SD-WANs. Our system can be

used in any network topology and is adaptable to environments with multiple QoS

requirements. Moreover, it makes an optimized trade-off among the critical network

resources and minimizes route stretch while recovering from a failure. In particular,

we formulate the failure recovery problem as a multi-objective MILP optimization

problem and evaluate it using CPLEX. Then we develop a heuristic to efficiently

compute backup routes as the problem is NP-Hard. We implement a prototype of

our system using the Ryu SDN controller and extensively evaluate it in Mininet over

four real WAN topologies. The results show significant performance improvement of

our failure recovery system compare to the state-of-the-art.

Acknowledgements

First and foremost, I would like to express my deep and sincere gratitude to my

research supervisor, Dr. Israat Haque, for giving me the golden opportunity to do

research and providing invaluable guidance throughout this research. Her insightful

feedback pushed me to sharpen my thinking and brought my work to a higher level.

It was a great privilege and honor to work and study under her guidance.

I would also like to express my special thank to my colleague, Dr. Miguel Neves,

for his encouragement, insightful comments, and hard questions. He was always

willing and enthusiastic to assist in any way he could throughout this research.

I thank all my fellow labmates in the Programmable and Intelligent Network

(PINet) research lab for their constructive discussions. My special thanks go to one

of my labmates, Dipon, for his friendship, empathy, and for all the fun we have had

in the last two years.

I offer my deepest gratitude to my caring, loving, and supportive wife. Without

her patience and continuous support, I could not have completed this thesis. Last but

not the least, I would like to thank my parents for their love, prayers, and sacrifices

for educating and preparing me for my future.

Chapter 1

Introduction

Over the past decade networks have come under increased traffic demands to support

an ever-increasing array of applications ranging from financial services to electronic

data interchange and big-data analytics. Software-defined networking (SDN) is a cru-

cial technology needed to keep up with these new demands. SDN enables a centralized

view of the distributed network for more efficient orchestration and automation of net-

work services through software applications using open APIs. The core idea of SDN

is decoupling the control and packet forwarding planes in the network. This way op-

erators can use the software-based control plane to manage the entire network and its

devices consistently without being tied to the underlying network infrastructure [1–3].

Large service providers, such as Google, Microsoft, and Facebook [4–6], are turning

to SDN technology and deploy software-defined WAN (SD-WAN) to orchestrate data

transmission. They usually adopt a centralized traffic engineering (TE) system to

improve the performance of their SD-WANs. In these networks, a logically centralized

controller maintains a global view of the network, and installs forwarding rules to the

data plane, dictating the behavior of the forwarding devices. Usually the controller

spread traffic across a number of paths between ingress-egress switch pairs.

In a SDN, a failure may occur in one the three layers: application layer, control

layer, infrastructure layer (known as data plane). Application layer failures usually

happens because of software bugs, which could result in configuration and network

correctness violations. The control plane failure is when the controller fails to re-

configure a node in a timely manner because of control channel disruption or the

controller malfunctioning itself. The data plane failure includes link or node failures,

which happen when a link(s) is down or a node fails because of a software bugs or

hardware malfunction. In this work, we focus on all possible single link failures in

SD-WANs as this is the most common failure.

In SD-WANs, link failures are prevalent but undesirable because of the heavy

2

congestion and packet loss, and the resulting application performance degradation.

Typically, to deal with link failure, a TE system dynamically adjusts the traffic split-

ting across backup and alive paths to reroute the affected flows [7]. However, the

existing TE systems either lead to wasting the valuable network resources (such as

bandwidth capacity and switch memory) because of vacant link capacity or impose

non-realistic assumptions on the network topologies, such as the existence of link-

disjoint routes or unlimited switch memory resources [8].

In this thesis, we propose a proactive failure recovery system in SD-WANs, which

takes into account multiple resources limitations. Our system is not confined to any

network topology and can be used in any network topology. It is also adaptable

to environments with multiple QoS requirements. Moreover, our system makes an

optimized trade-off among the critical network resources and minimizes route stretch

while recovering from a failure. We formulate the failure recovery problem as a multi-

objective MILP optimization problem and develop a heuristic to efficiently compute

backup routes as the problem is NP-Hard. We implement a prototype of our system

using the Ryu SDN controller and extensively evaluate it in Mininet over four real

WAN topologies. The results show that it can reduce the number packet loss, route

stretch, and memory usage by up to 50%, 25%, and 20% than the state-of-the-art

failure recovery scheme [8,9].

1.1 Motivation

This thesis is motivated by the research gap in the existing failure recovery approaches

in SD-WANs. In the following we present the crucial points being missed in the prior

work.

Failure recovery approaches usually compute backup path for each ingress-egress

switch pair and proactively install them in the switches. There exist many route

selection algorithms such as k-shortest path, link-disjoint paths and oblivious-routing

[9]. However, state-of-the-art failure recovery approaches for SD-WANs usually adopt

link-disjoint paths as the primary tunnels [7,10,11]. This is because using link-disjoint

paths leads to less number of affected flows in the case of a failure. This approach

assumes the existence of multiple link-disjoint routes on a network topology, which

is not the case in many real-word applications. For example, B4, Google SD-WAN

3

topology, has two link-disjoint paths between almost all source-destination pairs [8].

Additionally, installing flow rules beforehand can lead to congestion as there is no

information about the network load at the time of flow installation. An immediate

solution to avoid congestion is to keep a certain portion of network capacity un-

utilized [10]. This keeps network utilization sufficiently low so that shifts in traffic can

be absorbed when failures occur. This approach can provide high availability levels.

However, as a down-side, it leads to wasting valuable resources of WAN providers as

many links become underutilized, especially when the network is under the normal

operation [9, 12].

SDN switches use expensive Ternary content accessible memory (TCAM) chips for

processing traffic at line rates [13], which are power-hungry and have limited capacity

[14–17]. In this sense, it is crucial to take switch memory constraints into account

when allocating backup routes for fast failure recovery in SD-WANs. However, prior

works fall short in this issue by commonly assuming switches have infinite memory

resources [8, 9].

WAN traffic usually includes flows from different applications with different QoS

requirements [18]. In order to meet these requirements, providers typically consider

priority classes while routing traffic. However, most of the existing failure recovery ap-

proaches in SD-WAN do not consider priorities while rerouting flows through backup

paths after a link failure. Consequently, high-priority flows may end up taking longer

paths compared to low priority ones after the failover process, which degrades their

performance [8, 9].

1.2 Contribution

In this thesis, we propose a failure recovery system for SD-WANs. Our system selects

backup routes and allocates traffic rates on them for any single link failure in the

network. Our system considers traffic flow with different QoS requirements and is

not specialized to any specific network topology. We formulate the failure recovery

problem as a multi-objective MILP optimization problem, which takes into account

the link capacity, route length and switch memory usage. As our model is NP-hard

and does not scale to large networks, we develop a heuristic that selects backup routes

and allocated traffic rates to them [8].

4

To evaluate the performance of our system, we implement a prototype using the

Ryu SDN controller and deploy the flow and group tables of OpenFlow protocol.

Our open source code is available at [19]. We conduct an extensive evaluation of

our system over several topologies with different characteristics. We compare the

performance of our system with the state-of-the-art SD-WAN failure recovery scheme.

Then, we illustrate that our system can quickly reroute the traffic with low delay,

while uniformly distribute the traffic over the network and efficiently use the network

resources. In summary, we make the following contributions:

• First, we formulate the failure recovery in SD-WAN as a MILP problem. We

consider link capacity, route length and switch memory usage in our model. We

evaluate our model in CPLEX and discuss its scalability.

• Next, We develop a heuristic to solve our model in a reasonable time and eval-

uate its efficiency in terms of the solution accuracy and runtime.

• We design a software-defined failure recovery system, called SafeGuard, which

runs our heuristic in SD-WAN environment. Then, we implement a prototype of

SafeGuard using the Ryu SDN controller and make our code publicly available

at [19].

• We perform an extensive evaluation of SafeGuard over four real WAN topolo-

gies. We show that SafeGuard can quickly recover form single link failures and

efficiency use the network resource compared to the state-of-the-art.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In chapter 2, we present the neces-

sary background on SDN, and review the related works in the area. In chapter 3,

we present our failure recovery system in SD-WAN, called SafeGuard. We model the

failure recovery as a MILP problem. We evaluate the model and elaborate on its com-

plexity, which leads us to design a heuristic for solving the model in reasonable time.

Then we implement our system using an SDN emulator and show the performance of

SafeGuard. In chapter 4, we extend SafeGuard to environments with multiple QoS

requirements and non-unitary switch memory demand (i.e. requiring more than one

5

flow rule for a single flow between an ingress-egress switch pair). We also extensively

evaluate SafeGuard in different settings and compare it with the state-of-the-art fail-

ure recovery approach in SD-WAN. Lastly, we conclude the thesis in chapter 5 and

discus the future work directions.

Chapter 2

Background and Related Work

In this chapter, we present the necessary background to better understand this thesis

in the first subsection. We start with software-defined networking paradigm and its

most notable protocol, OpenFlow. Then we discuss about the data plane reliability in

software-defined networking and look at the traffic engineering as a tool for managing

network failures. In the second subsection, we review prior literature related to our

work.

2.1 Background

2.1.1 Software-Defined Networking

The evolving technology of software-defined networking (SDN) has become increas-

ingly popular since it emerged in the early 2010s. SDN aims to make networks flexible,

giving the hope to overcome the limitations faced by legacy networks [3].

Having no standard open interface in legacy networks, most network devices are

closed-boxes that run proprietary software. Therefore, to implement network-wide

policies, each individual network device need to be separately configured using low-

level commands that vary across vendors. This time-consuming configuration risks

service disruption, discourages network changes, and increases both the capital and

operational costs of running a network. Besides, in legacy networks, the lack of

centralization and heterogeneity of network devices imposes constraints to automatic

reconfiguration and dynamic response mechanisms to the ever-changing nature of the

network. The vertical integration of the legacy networks, on the other hand, hinders

innovation and evolution, making it hard to keep pace with modern technology [2].

SDN is revolutionizing the way in which we design and manage networks by de-

coupling control plane (that configures the network and engineers the traffic) from the

7

Figure 2.1: SDN architecture.

data plane (the underlying hardware infrastructure). The logically centralized con-

troller uses a standard protocol, such as de facto OpenFlow protocol [20], to configure

the devices. This enables network programmability that leads to flexible network con-

figuration and rapid innovation. As depicted in Fig. 2.1, SDN architecture comprises

three layers (planes) and two APIs:

1. Infrastructure layer: Also known as data plane, includes physical and virtual

switches, such as OpenFlow switches, that are responsible for data forwarding

and statistics storage. Network devices take actions on the incoming packets,

such as forwarding to specific ports, drop, forward to the controller, etc., using

well-defined instruction sets (e.g., flow rules).

2. Southbound API (SB API): Provides a communication protocol between

the SDN Controller and the forwarding devices in the data plane. It directly

pushes the instruction set in the forwarding devices.

3. Control layer: Consists of one or more SDN controllers that maintains a

logically centralized network view and acts as the brain of the network. The

controller provides core network functions using the global knowledge of the

underlying network. According to the network policy, it configures forwarding

devises through SB API.

8

4. Northbound API (NB API): Provides a communication interface, which

can be used to configure switches’ forwarding policies. It abstracts the low-level

instruction that enables a particular component of a network to communicate

with a higher-level component.

5. Application layer: Consists of set of applications and uses abstractions pro-

vided by the control layer to implement network applications.

2.1.1.1 OpenFlow Protocol

OpenFlow protocol enables secure communication between the control and data

planes. It also provides the necessary APIs to enable the controller to configure

data plane devices. An OpenFlow switch consists of one or more flow tables, a group

table and an OpenFlow channel to communicate with the controller [21]. The con-

troller uses OpenFlow channel to add, modify, or delete flow or group entries. Fig.

2.2 represents a sketch of an OpenFlow switch.

Each flow table comprises a set of elements, called flow entries, which is used

to match and process packets. Each flow entry comprises a set of match fields for

matching packets, a priority for matching precedence, a set of counters to track

packets, and a set of instructions to apply.

An instruction associated with a flow entry describes the OpenFlow processing

that happen when a packet matches the flow entry. It either modifies pipeline pro-

cessing, such as direct the packet to another flow table, or contains a set of actions

that describes packet forwarding, packet modification and group table processing.

Additionally, each flow table must include a table-miss flow entry to process table

misses. The table-miss flow processes packets unmatched by other flow entries in the

flow table. A table-miss flow may send packets to the controller, drop packets or

direct packets to a subsequent table.

The group table consists of group entries that facilitates more complex and spe-

cialized packet operations that cannot easily be performed using flow entries. Each

group entry (group for short) contains a list of action buckets and a mechanism that

enables choosing one or more of those buckets to apply to packets directed to the

group. An action bucket is a list of actions and associated parameters. The exact

9

Figure 2.2: OpenFlow-switch

behaviour of an action bucket and its associated parameters depends on the group

type.

Two important types of group we make use in this work are: select and fast

failover groups. select group is designed for load balancing. As depicted in

Fig. 2.3, in a select group each bucket has an weight as a special parameter that

facilitates the load balancing. Each packet that enters the group is sent to a single

bucket. The bucket selection algorithm is external to OpenFlow, and depends on the

switch’s implementation. Nonetheless, weighted round robin algorithm is the most

simplest option for packet distribution to buckets.

Fig. 2.4 depicts a fast failover group (FFG) that is designed to detect and

respond to port failures. It enables the switch to change forwarding without requiring

to contact to the controller. In a FFG, each bucket has a watch port and/or watch

group as a special parameter that monitors the liveness of a port or group being

watched. The first live bucket, i.e., the bucket whose specified port/group is live, will

10

Figure 2.3: Select-group table

be executed.

Figure 2.5 shows the OpenFlow processing pipeline in one snapshot. It starts with

the first flow table and may continue to additional flow tables. An incoming packet

will be matched against flow entries in the first flow table in the priority order (�). If

no match is found in a flow table, the packet will be forwarded to the controller over

the OpenFlow channel (�) (assuming this instruction is set to table-miss flow entry).

Then, controller handles the packet and installs a new flow rule at the switch (�). If

a matching entry is found (�), the actions associated with it will be executed (�).

2.1.1.2 Ternary Content Addressable Memory

While SDN allows fine-grained routing policies at the granularity of flows, it can place

a huge burden on switch memory. The forwarding rules, i.e., flow and group entries,

in an SDN switch are commonly stored in Ternary Content Addressable Memory

(TCAM), a specialized type of high-speed memory that searches its entire contents in

a single clock cycle [13]. While flexible and efficient in terms of matching capabilities,

TCAMs are well-known to be power-hungry and to have limited capacity [14–16]. The

11

Figure 2.4: FF group table

Figure 2.5: SDN switch processing pipeline

capacity of a TCAM chip memory is far less than that of Binary Content Addressable

Memory (BCAM). For example, the Broadcom Trident2 SDN switch supports 16K

OpenFlow rules, which is not enough in an inter-data center network [5]. In terms

of power consumption, TCAM consumes 30 times as much energy as SRAM with an

equal number of entries [17].

12

2.1.1.3 Data Plane Reliability In SDN

In SDN, a failure may occur in the application plane, control plane, or data plane [22].

In this thesis, our focus is on the data plane failures, specifically communication link

ones. These type of failures are rather prevalent in WANs, which is unacceptable to

meet the strict requirements of the latency-sensitive applications [23–25]. Moreover,

80% of failures are unplanned, while only 20% of failures happen because of scheduled

maintenance actions [26]. Also, according to an experiment on Google’s data centers

and WANs, 80% of the network component failures last from 10 to 100 minutes, which

leads to intensive packet loss [27].

Naturally, one may target providing a sufficient level of resiliency to any number of

concurrent link failures. However, this approach faces serious scalability and efficiency

issues. For example, providing resiliency to up to F link failures in a network with |E|
links requires considering

∑F
i

(|E|
|i|

)
scenarios. This results in prohibitive computation

and configuration costs even for a small number of failures.

Luckily, multiple link failures are less likely to happen than single ones. Driven

from a study on Microsoft’s data center WAN [7], Table 2.1 shows the probability of

having a different number of link failures at 2, 5, and 10 minutes time intervals. As

it can be seen, the probability of having more than one link failure within a 5 minute

cycle (we will discuss the importance of considering a 5 minute cycle) is around 1%.

Table 2.1: Link failure frequency in Microsoft data center WAN

Time interval
Number of link failures 2 min 5 min 10 min

1 10.6% 21.5% 31.2%
2 0.14% 1.1% 4.2%
3 0.14% 0.7% 1.4%

The probability of having one link failure within a 5 minute cycle, on the other

hand, is more than 20%, which is not negligible. Only a single link failure can severely

impact the performance as the link utilization can approach 100% in an SD-WANs.

Assume a 10 Gbps link fails, and its whole traffic load is re-directed to another 20

Gbps link. Even a switch with a 100 MB buffer can withstand for 80 ms, after which a

burst of packet drops is inevitable that severely degrades application performance [28].

13

In general, there are two major failure recovery schemes; namely, restoration or

reactive and protection or proactive in SDN. The controller reactively responds to

a link failure in the restoration scheme upon receiving a failure notification from

the data plane elements. The controller calculates an alternative route and installs

the corresponding flow in the switches along that new route. The communication

between the affected switches and the controller, the new route computation, and the

device configuration introduces overhead on the controller and delay to recover from

a failure [29].

The OpenFlow protocol introduces a local fast failover scheme, called Fast Failover

Group (FFG), to eliminate such overhead and delay in the restoration scheme [30].

It enables the quick and local reaction to failures without the need to resort on the

controller. In the FFG mechanism, multiple action buckets for the same flow are

installed and applied according to the status of links (active or failed). However,

FFG can only be used to define a local detour mechanism when alternative routes

are available from the node that detects the failure. If a switch does not have an

alternative route towards a destination, it can deploy Crankback approach [31]. In

Crankback, a switch maintains the packet states and forwards the packet towards the

source until the affected packet finds an alternative route.

The protection scheme brings further challenges despite reducing the recovery

time. The controller needs to install the available backup routes at the switches that

can exhaust switches’ TCAM (we already discussed TCAM limitations in section

2.1.1.2). Another crucial challenge faced by a protection scheme is striking a good

balance between link utilization and backup path length. These two objectives are

inherently at odds; providing short backup paths requires high link utilization over

the links along the shortest paths. However, this leads to an unbalanced bandwidth

utilization of overall existing links on the network. Fig. 2.6 shows the inherent trade-

off between link utilization and backup path length. In this example, S1, S2, ..., Sn

are sending traffic to S4. If the red-dashed link fails, it is not possible to optimize

the backup path length and link utilization simultaneously. Sending packets over the

shortest route can over-utilize the link capacity, whereas distributing packets over

longer routes can avoid link congestion.

14

Figure 2.6: The trade-off between the backup path length and the link capacity usage.

2.1.2 Traffic Engineering

To deliver high-quality service, communication networks must distribute traffic ef-

ficiently, even in the presence of unexpected traffic spikes and network failures. If

a traffic communication network cannot withstand unexpected traffic shifts, it may

cause wastage of network resources (e.g., link capacity). For example, a particular

link may be unnecessarily overloaded while having underutilized links in other parts

of the network. This can leads to a long delay, massive packet loss, and reduced net-

work throughput. These degrade network reliability and availability and may violate

increasingly stringent service level agreements (SLAs). Typically, a Traffic Engineer-

ing (TE) system improves the network’s performance by tuning the routing-protocol

parameters. TE decisions are made at fixed TE cycles, practically every 5 minutes [5].

There are two essential phases in the design of a TE system:

• Path selection: determines the forwarding routes for carrying traffic. This

phase computes a set of forwarding routes between each source-destination pair.

Commonly this phase is not executed at each TE cycle unless there is a topology

change. This is because updating end-to-end forwarding routes is computation-

ally expensive. In fact, in a network, specifically, a WAN, reconfiguring multiple

switches is time-consuming. There are several options for the path selection,

such as k-shortest paths and link-disjoint paths (i.e., routes with no common

links) [32].

k-shortest paths work well in simple settings, but one should be careful when

using it in topologies with shortcut links because they may become bottlenecks

leading to excessive congestion. Link-disjoint paths are also good from the

standpoint of throughput. The higher the number of available paths for a

15

flow after a traffic spike or a link failure, the greater the network throughput.

However, link-disjoint paths suffer from the same issue as the k-shortest ones:

paths between different source-destination pairs can still compete for bandwidth

on bottleneck links [33].

• Rate adaption: determines how to divide the traffic among selected routes. In

the second phase, which is executed at each TE cycle, the system captures the

traffic matrix and computes the splitting weights that describes how traffic flows

should be distributed among the routes. A traffic matrix is a two-dimensional

matrix whose ij-th element tij indicates the volume of traffic sourcing from node

i and exiting at node j [34]. As an example of rate adaption phase, the system

might adjust weights on some routes as a respond to demand’s changes, or set

the weight of some routes to zero when there is a network failure [35].

Open Shortest Path First (OSPF) [36] and Multi-Protocol Label Switching (MPLS)

[37] are two commonly used routing protocols. OSPF uses the shortest path first

(SPF) algorithm to determine routes added to the routing table. Each OSPF router

contains a link state database, which is the map of the network. This database is

synchronized by all OSPF routers, and the information contained in the link-state

database is used to compute routing table entries. Each OSPF router forms an adja-

cency with its neighboring routers. Any time a change occurs in the in the network,

information about the change is flooded to the entire network.

OSPF selects the best routes by finding the lowest-cost paths to a destination. All

router interfaces (links) are given a cost. The cost of a route is equal to the sum of all

the costs configured on all the outbound links between the router and the destination

network, plus the cost configured on the interface that OSPF received the Link State

Advertisement on [38]. OSPF requires each router to independently determine a

packet’s next hop by inspecting the packet’s destination IP address before consulting

its own routing table. However, this approach generally makes the overhead in the

packet prohibitively expensive [39].

Instead of hop-by-hop routing, MPLS forwards packets to predetermined routes.

In an MPLS network, the first router to receive a packet determines the packet’s

entire route upfront, the identity of which is quickly conveyed to subsequent routers

16

using a label in the packet header. Thus, MPLS does not entail additional packet

header overhead [40].

There have been significant advancements in OSPF- and MPLS-based traffic en-

gineering systems in recent years. They have been optimized to make more efficient

use of network resources. However, because of their offline nature, they still have lim-

itations. Instead of balancing the real-time traffic load, they are designed to balance

the traffic load given the long term traffic demands averaged over multiple days. But

the actual traffic may differ from the long term demands due to external or inter-

nal failures, diurnal variations, and security attacks. Neglecting this real-time traffic

leads to inefficient load distribution [33].

SDN has facilitated designing centralized TE systems, particularly in wide area

networks (WAN), a crucial and expensive infrastructure for large service providers

such as Google, Microsoft, and Facebook [4–6]. To better use this invaluable resource,

those service providers are investing heavily in centralized TE systems by deploying

SDN in their WAN. B4, Google’s private software-defined WAN (SD-WAN), is an

example of such a deployment. It connects 33 Google’s data centers across the globe

as of January 2018 [41].

2.2 Related Work

In this work, we propose a software-defined failure recovery system for SD-WANs. Our

system takes into account both link and switch memory constraints for proactively

allocating backup routes. We formulate the failure recovery problem as a multi-

objective MILP optimization problem that selects routes (either primary or backup)

and assigns rates to them for all possible single link failures, which is the most common

failure scenario in WANs. In this section, we review the literature and present existing

works related to this work and point out the gaps in existing solutions.

2.2.1 Reactive and Proactive Failure Recovery Approaches

There has been a large body of work on developing failure reactive and proactive

failure recovery approaches in SDN. Not surprisingly, reactive failure recovery ap-

proaches are mainly focused on reducing recovery time. Astaneh et al. [42] argue

that the “operation cost” of adding/removing flow entries to/from the flow tables has

17

an impact on the recovery time, especially in catastrophic scenarios. They study the

trade-off between the operation cost and the route stretch and design algorithm to

minimize the required operations for end-to-end routes in order to mask a failure.

Ku´ zniar et al. [43] propose AFRO, a reactive failure recovery mechanism that

generates a new controller instance after a failure occurs. AFRO operation has two

phases: record and recovery. During the recording phase, AFRO records all PacketIn

messages sent to controllers and currently installed rules on switches. Once a failure

occurs, AFRO switches to a recovery mode. A copy of the network, excluding the

failed elements, is emulated, and the network events are replayed, achieving a valid

state that can be used by the actual network. Then, reconfiguration shifts the actual

network from the current state to the new one by making modifications to both the

controller’s internal state and forwarding rules in the switches [22].

To ensure fast failover, Liu et al. [44] introduce the notion of Data-Driven Connec-

tivity (DDC). DDC realizes the basic connectivity recovery as a data-plane service,

while leaving the optimal path computation task to be handled by the controller.

In their model, all possible paths to a destination are modeled as a directed acyclic

graph (DAG), where the destination is a node with no outgoing links (i.e., a sink

node). Upon failure communication, in parallel with optimal path computation by

the controller, the disconnected node implements link-reversal algorithms [45] to find

a path toward the destination [22]. Borokhovich et al. [46] use graph theory and model

the link failure as a graph search problem. They use Modulo algorithm, Depth-First

Search (DSF), and Breadth-First Search (BFS) algorithms to ensure connectivity

when a failure occurs.

Sharma et al. [47] propose a failure recovery framework in OpenFlow that sup-

ports different levels of quality of service. Traffic is categorized into the business

and best-effort traffic. The framework first checks the type of service field in packet

header. If it is enabled, it forwards that traffic using low-delay queues, otherwise,

queues with higher delay are chosen [48]. Phemius and Bouet [49] propose a resilient

traffic engineering service in WANs. In their method two level of traffic classes are

considered: critical and noncritical traffic. The bandwidth utilization is monitored

at each link and when a link failure occurs, the traffic engineering service calculates

a new path. The alternative paths for the critical flows can be redirected through

18

paths already used by lower priority flows [22].

Paris et al. [50] propose a fast failure recovery system that optimizes network usage

through network reconfiguration. Two modules are implemented in the controller: a

Fast Recovery Setup (FRS) module that is responsible to quickly accept new demands

and react to failures, and a Network Garbage Collector (GC) module that enhances

the sub-optimal network configurations obtained. They first formulate network re-

configuration as an extension of the NP-complete min-cost Multi-Commodity Flow

problem. The GC then applies an iterative algorithm to solve that problem [22].

Nagano and Shinomiya [51] apply the concept of fundamental tie-sets, i.e., minimal

cycles in a graph, to failure recovery. Initially, their method produces fundamental

tie-sets, and establishes backup paths from them. When the controller receives a

notification of a link failure it locates the link failure. Then it applies a tie-set

including the a link that will restore connectivity, and installs corresponding rules in

the switches [22].

Kim and Gil [52] propose a fault tolerant architecture for hybrid environment

consisting of an SDN controller and a Software Defined Network Operations Center

(SD-NOC). These two components are orchestrated to cooperate and complement

each other. The SDN controller provides an interface to configure network infrastruc-

ture and the SD-NOC synchronizes new status information with the SDN controller.

When SD-NOC detects a link failure, it relays on the SDN controller to reach SDN

devices to recover from the failure using an alternative path [22].

Araújo et al. [53] propose INFLEX, an SDN-based architecture for cross-layer

network resilience. In INFLEX architecture, an SDN-enabled routing layer manifests

multiple routing planes to the transport layer. This enables shifting from one routing

plane to another upon an end-to-end failure detection. The allocation of forwarding

planes to flows, is handled using an specialized controller, which resides locally. De-

spite all above efforts, deploying SDN capabilities could reduce recovery time to the

scale of 50ms [54], which can still be an issue in modern data centers [55].

The pioneer proactive works in SDN deploy FFG. Ghannami et al. [56] preinstall

a set of rooted trees as the primary and backup routes and quickly activate them

in case of failure. Cheng et al. [57] apply flow aggregation using VLANs to prevent

congestion while using FFG.

19

The FFG is efficient as long as there is an available alternative route from the node

that detects the failure. Otherwise the switch that does not have an alternative route

towards a destination should deploy Crankback approach [31]. In Crankback, a switch

maintains the packet states and forwards the packet towards the source until the

affected packet finds an alternative route [58]. Capone et al. [59] use Openstate [60]

and formulate a constrained optimization problem to compute the backup route,

where the formulation considers congestion, reverse route length from the failure

detection node to the detour node, and the number of links allocated to the backup

routes. Zhu et al. [61] propose a backup approach that aggregates non-conflicted

backup routes to reduce the number of backup rules.

PIQoS [62] realized a data-driven model for the failure detection and leveraged the

FFG for the failure recovery. SD-FAST [63] proposed a packet rerouting architecture

that maintains the packets states. SD-FAST invokes the failure recovery and enforces

the traffic to traverse through a series of OpenFlow tables only if the traffic has faced

a failure.

In [11], Foerster et al. propose an algorithm, called CASA, a proactive failure

recovery mechanism that aims to guarantee resilient networks under multiple link

failures, where they consider route stretch and load. CASA defines multiple link-

disjoint arborescences (a directed graph in which there is exactly one directed route

from any node to a specific node, called root) between each source-destination pair,

where packets change their arborescence after facing failure. CASA relies on the

network connectivity after multiple link failures, the assumption that we are not

considering in this work. Moreover, TCAM usage, an essential design criterion in the

backup route computation, is not considered in the above works when constructing

the backup routes.

Besides the reactive and proactive approaches, there exit some hybrid works as

well. For example, Haque et al. [64] propose Revive, a hybrid failure recovery method

that takes advantage of both the reactive and proactive capabilities by pre-installing

backup rules only on a subset of switches that carry traffic for the ongoing com-

munications. Revive constructs edge-disjoint routing topology using the spanning

structure-based topology construction algorithm proposed in [65]. Also, Tilmans et

al. [66] proposed a hybrid SDN architecture to reduce the control-plane overhead.

20

Once a failure occurs, the network controller configures routing policies and uses

Interior Gateway Protocol to recover the network connectivity.

2.2.2 Failure Recovery Using Traffic Engineering (TE)

One line of work has explored the space of failure recovery as a TE application for

SDN. This work falls within this category of studies. We start by the work of Wang

et al. [67] who propose R3, a proactive failure recovery approach that is resilient to

multiple link failures. To cover all link failure scenarios, R3 computes virtual demand

for every link in the network. The convex combination of all such virtual demands

covers the entire space of rerouted traffic under all possible multiple link failures.

We illustrate the operation of R3 after a link failure occurs in Fig. 2.7, where

node S1 sends traffic S2 at 3 Mbps, 2 Mbps and 5 Mbps on links e1, e2 and e3 (2.7a),

respectively. When link e1 fails, R3 splits the traffic rate on failed link e1 between e2

and e3 (2.7b). e3 that had a higher contribution in traffic before the failure, will also

carry more traffic of e1 after the failure.

(a) Before the link failure (b) After the link failure

Figure 2.7: R3’s operation: after the link failure the traffic rate on link e1 is distributed
between e2 and e3 proportional to their contribution on the traffic rate before the
failure happens.

Liu et al. [10] leave off spare capacity to support up to k arbitrary failures. For the

simple case of k = 1, the operation of FFC in an example is shown in Fig. 2.8. This

time, S1 wants to send 45Mbps traffic to S2 over links e1, e2 and e3 whose capacities

are 15Mbps. However, FFC does not send the whole traffic. Instead, it sends 10Mb

to each link (2.8a), leaving 5Mbps spare capacity on each link. Therefore, after the

21

failure, e2 and e3 can absorb the traffic that was being carried by failed link e1 (2.8b).

Obviously, FFC cannot satisfy the flow demand requirement of 45Mb from S1 to S2

in the first place and leads to 15Mb capacity loss.

(a) Before the link failure (b) Afte the link failure

Figure 2.8: FFC’s operation: before the link failure, FFC leaves off 10Mbps capacity
on each link, so that the traffic rate on link e1 can be distributed between e2 and e3
after it fails.

Bogle et al. [12] propose TEAVAR, a TE framework that optimizes bandwidth

assignment subject to meeting a desired availability threshold. Using empirical data,

TEAVAR generates a probabilistic model of network failures and then computes band-

width allocations that guarantees a desired availability threshold. One TE solution

of TEAVAR is shown in figure 2.9, which is the same network as in figure 2.8a with

added information about some sample link failure probabilities. In such a scenario, a

possible traffic allocation of TEAVAR can support 45Mbps traffic 97% of the time.

Figure 2.9: A network with link failure probabilities. In such a scenario, a potential
traffic allocation of TEAVAR can support 45Mbps traffic which is available 97% of
the time.

22

In [7], Zheng et al. propose Sentinel, a failure recovery approach that uses link-

disjoint backup tunnels. Sentinel computes backup tunnels and splitting weights, and

activates them when a failure occurs. As opposes to the previous TE-based failure

recovery solutions, Sentinel does not forwards traffic through the failed tunnels when

completing the failover at the ingress switch. Instead, it uses backup tunnels that

start from the failing switch and end at the egress switches to re-direct the affected

traffic. The operation of Sentinel is shown in figure 2.10. In this example, ingress

switch S1 forwards traffic through tunnels T1 and T2 toward egress switch S6 (figure

2.10a). When S4 detects the failure, it uses tunnel T3 to forward the upcoming packets

(figure 2.10b) until ingress switch S1 completes activating backup tunnel T2 and new

splitting weights (figure 2.10c).

(a) (b) (c)

Figure 2.10: Sentinel’s operation: a) two link-disjoint tunnels for the flow from S1

to S6, b) while completing the failover at the ingress switch, Sentinel uses backup
tunnels that start from the failing switch and end at the egress switches to re-direct
the affected traffic, c) new established link-disjoint tunnels

The set of paths selected to carry traffic in a TE system, is a key factor that

impacts the quality of that system. In this regard, Kumar et al. [68] propose Smore,

a TE system that leverages the concept of oblivious routing. An oblivious routing

algorithm computes a probability distribution on short paths and forwards traffic

based on that distribution. That means the paths in oblivious routing are computed

without knowledge of the demands (i.e., it is oblivious to the demands). Particularly,

an oblivious routing identifies routing trees that have a unique path between each-

source-destination pair. Then, it defines a randomized routing tree (RRT), which is a

probability distribution over routing trees. Then a path is computed by first sampling

23

a routing tree T for RRT, then selecting the unique path from the sampled routing

tree. In addition to oblivious routing, Smore leverages centralized traffic adaptation

to minimizing the maximum link utilization.

In 2013, Jain et al. [4] presented their years experience of designing and deploying

Google’s SD-WAN, B4. In B4, traffic flows are divided into flow groups, each of

which represented by a tuple (including source site, destination site, QoS). B4 applies

a hash-based ECMP algorithm for load-balanced routing, and remarkably shows 99%

availability and near to 100% link utilization. Five years later, Hong et al. [41]

presented their experience of evolving B4 into a hierarchical topology that improves

the availability by two orders of magnitude, from 99% to 99.99%, in the presence of

failures.

We summarize the related works reviewed above in table 2.2. We compare them

in terms of their optimization model and the metrics they have taken into account

in their solution. ”NA” in the ”model” column implies that the corresponding work

has not modeled the failure recovery as a optimization problem.

In the next chapter, we present our failure recovery system, which falls within

the TE-based approach category. We model the failure recovery problem as a MILP,

where we not only target simultaneously minimizing the backup route length and the

link utilization but also we consider the TCAM constraint. None of the prior works

considers all these objectives and constraints in their solution. We furthermore take

into account the traffic with different QoS requirements, an important point being

missed in most of the prior works.

24

Table 2.2: Failure recovery work comparison

Backup route Link
Authors method model Length utilization TCAM

Astaneh et al. [42] reactive NA X 5 5

Ku´ zniar et al. [43] reactive NA 5 5 5

DDC [44] reactive NA X 5 5

Borokhovich [46] reactive NA X 5 5

Sharma et al. [47] reactive NA 5 5 5

Phemius et al. [49] reactive NA 5 5 5

Paris et al. [50] reactive LP 5 5 5

Nagano et al. [51] reactive NA 5 5 5

Kim et al. [52] reactive NA 5 5 5

Araújo et al. [53] reactive NA 5 5 5

Ghannami et al. [56] proactive NA X X 5

Cheng et al. [57] proactive ILP 5 X X
Capone et al. [59] proactive MILP X X 5

Lekhala et al. [62] proactive NA 5 5 5

SD-fast [63] proactive NA 5 5 5

CASA [11] proactive NA X X 5

Revive [64] hybrid NA X 5 X
Tilmans et al. [66] hybrid NA 5 5 5

R3 [67] TE-based LP 5 X 5

FFC [10] TE-based LP 5 X 5

Teavar [12] TE-based LP 5 X 5

Sentinel [7] TE-based LP 5 X X
Smore [68] TE-based LP X X 5

B4 [4] TE-based LP 5 X 5

Hong et al. [41] TE-based LP 5 X X
SafeGuard [8, 9] TE-based MILP X X X

Chapter 3

SafeGuard: Congestion and Memory-aware Failure Recovery

in SD-WAN

This chapter is based on [8], where we present our software-defined failure recovery

system for SD-WANs called SafeGuard. We formulate the failure recovery problem

as a multi-objective MILP optimization problem. This model selects alive primary or

backup paths and assigns rates to them for all possible single link failures. We solve

this optimization problem and elaborate on its complexity. This leads us to design

a heuristic for solving our optimization problem. Then, we present SageGuard’s

architecture and workflow, and show how it is implemented in an SDN environment.

After that, we briefly introduce Mininet, the network emulator that we use throughout

this work. Lastly, we evaluate our proposed solution and state its performance.

3.1 Problem formulation

3.1.1 Network Design

Let G = (V,E) be a digraph, where V = {1, 2, .., n} is the set of network switches

(or nodes) and E is the set of links among the switches. A node can be a source

or a destination of flows that are routed through the network. Each link (i, j) ∈ E
has a capacity cij. Each flow f in this network has a required bandwidth, bf . The

demands represent the aggregate traffic from an ingress to an egress switch which are

divided among a set of primary routes Pf . We denote the traffic rate of flow f on

each route p ∈ Pf as tfp
1. When a link e fails, all flows traversing that link will be

affected. For each affected flow f , there exist a set Qf of backup paths available.

Each path p ∈ Qf consists of two parts: a portion of the impacted primary route

(i.e., from ingress switch to failing switch (i.e. the source switch of a failing link),

and an alternative path from the failing switch to the egress switch of the respective

1for the sake of simplicity, any route in our model, either primary or backup, is referred to as p.

26

flow. Note that a link failure could impact one or multiple primary routes of a flow,

as primary routes are not necessarily link-disjoint. We denote the set of non-affected

primary routes as P
′

f . In either case, we select both backup and non-affected primary

routes to compute a new routing for flow f after a failure. Table 3.1 summarizes

these notations.

Table 3.1: Key notations used in the model.

Notation Description

Input

G(V,E) Network graph with switches V and Links E;
Pf Set of primary routes for flow f ;
Qf Set of backup routes for flow f ;
tfp Traffic rate of flow f on route p;
bf Bandwidth required for flow f ;
cij Total capacity of link (i, j) ∈ E;
Tci TCAM space capacity of node i ∈ V ;

Auxiliary

e A failed link;
Fe Set of impacted flows by link failure e;
F Set of flows not impacted by link failure e;
P

′

f Set of primary routes for flow f ∈ Fe not impacted
variables by link failure e;

lp Length of route p ∈ P ′

f

⋃
Qf ;

rij,p 1 if link (i, j) ∈ p, 0 otherwise;
si,p 1 if node i ∈ p, 0 otherwise;

Output
xfp Allocation of affected flow f on route p ∈ P ′

f

⋃
Qf ;

yfp Traffic rate of affected flow f assigned to route p;

3.1.2 Variables and Parameters

After the link failure e, we need to assign traffic rates on backup and unaffected

primary routes for each affected flow. As such, we define two sets of decision variables:

xfp, which is a binary decision variable denoting the routes used for impacted flow f

after recovery, as follows:

27

xfp =


1 if route p ∈ P ′

f

⋃
Qf is used to forward

traffic from flow f,

0 otherwise.

(3.1)

We also define the decision variable yfp ≥ 0 to denote the traffic rate of impacted

flow f assigned to path p after the failure. Lastly, we define binary parameters, rij,p

and si,p, to identify the links and nodes belonging to path p, respectively:

rij,p =

{
1 if (i, j) ∈ p,
0 otherwise.

(3.2)

si,p =

{
1 if i ∈ p,
0 otherwise.

(3.3)

3.1.3 Constraints

Link and node capacity: constraints in (3.4) prevent the link utilization on a link

from exceeding the bandwidth capacity of that link. The total utilization in the left

hand side of the inequality includes the traffic rates assigned to both affected (f ∈ Fe)
and unaffected (f ∈ F) flows, either for primary or backup routes. Constraints in

(3.5), on the other hand, prevent switch memory usage from exceeding its capac-

ity. Similar to link capacity constraints, the total switch memory usage includes the

demands from primary and backup routes of both affected and unaffected flows.

∑
f∈Fe

∑
p∈P ′

f

⋃
Qf

yfprij,p +
∑
f∈F

∑
p∈Pf

rij,ptfp ≤ cij ∀(i, j) ∈ E (3.4)

∑
f∈Fe

∑
p∈P ′

f

⋃
Qf

xfpsi,p +
∑
f∈F

∑
p∈Pf

si,p ≤ Tci ∀i ∈ V (3.5)

Traffic rate: constraints in (3.6) correlate variables xfp and yfp. They ensure

that traffic rate of flow f on path p is zero when p is not allocated to flow f (i.e.,

xfp = 0). Otherwise, it must be a positive number.

xfp ≤ yfp ≤ xfpbf , ∀f ∈ Fe, p ∈ P
′

f

⋃
Qf (3.6)

28

Flow satisfaction To ensure flow demands are satisfied, constraints in (3.7)

enforces the total traffic rate of flow on its primary and backup routes to be equal

to its demand. We only need to take care of the affected flows (i.e., f ∈ Fe) as

non-affected ones are satisfied by default.

∑
p∈P ′

f

⋃
Qf

yfp = bf ∀f ∈ Fe (3.7)

3.1.4 Objective Function

The objective function (3.8) includes two terms: the first term takes care of the

backup route length, and the second one accounts for the overall link utilization in

the network. α and β parameters are to favor a specific objective depending on the

operator needs. For example, favoring the shorter routes due to application latency

constraints or lower link utilization due to network congestion.

min
∑
f∈Fe

∑
p∈P ′

f

⋃
Qf

(αxfplp + β
∑

(i,j)∈E

rijpyfp
cij

) (3.8)

3.1.5 Parameter Sensitivity

We incorporated α and β parameters in the objective function. By varying these

parameters we can reflect the importance of each term in the objective function. As

such, a larger α value implies a higher importance for the backup path length (first

term of the objective function), whereas a larger β value implies a higher importance

for the link utilization (second term of the objective function). To gain further insight,

we perform a parameter sensitivity analysis using CPLEX to empirically determine

how α and β impact the objective function and what values of α and β implies the

same importance for both objectives.

We use IBM ILOG CPLEX Optimization Studio (commonly refereed to as CPLEX

for short), which is a commercial optimization software package developed by IBM

[69]. CPLEX Optimizer is the best known and most widely used large-scale solver

capable of solving wide range of optimization problems incluing:

• Linear Programming (LP),

29

• Mixed Integer Linear Programming (MILP),

• Quadratic programming, and

• Quadratically constrained programming.

We consider ATT network topology [70] (with 25 nodes and 112 links), and

100Mbps traffic size. We set the α
β

ratio to 0.01, 0.1, 1, 10, and 100 and calculate the

the optimal value of objective function using CPLEX.

Fig. 3.1 shows how the average optimal backup route length varies with vary in α
β

ratio. Note that we use the log scale of α
β

ratio to make the figure more informative.

As it can be seen, when we give the higher importance to the backup route length by

setting the α
β

to a larger value, the average backup route length decreases. Intuitively,

our objective function is optimal with a small value of the backup route length when

it has a large coefficient compare to the second term in the objective function (link

utilization).

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

R
o

u
te

 l
e

n
g

th
 (

#
h

o
p

s)

a/b ratio

Figure 3.1: Parameter sensitivity (effect on route length)

As expected, we observe an opposite trend in figure 3.2, where the average optimal

link utilization increases with the increase in the α
β

ratio. When the link utilization

is given a low importance (large α
β
), its value does not have a significant impact on

the optimal objective function.

Although, solving the model gives us the optimal solution of the problem, it does

not in large networks:

30

 50

 60

 70

 80

 90

 100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

L
in

k
 u

ti
li

za
ti

o
n

 (
%

)

a/b ratio

Figure 3.2: Parameter sensitivity (effect on link utilization)

Definition 1. A mixed integer linear program (MILP) is of the form:

min cTx

Ax = b

x ≥ 0, xi ∈ Z i ∈ I

where c and b are vectors and A is a matrix, where all entries are integers. Also, only

some of the variables, are constrained to be integers, while other variables are allowed

to be non-integers [71].

Our model is known to be NP-hard [72], thus it takes a long time to be solved in

practice. For example, it took us more than an hour to solve our model for Cogent2

topology on CPLEX. As traffic engineering intervals are usually below 5 minutes, we

develop a heuristic to solve the SD-WAN failure recovery problem in a reasonable

amount of time. We describe our heuristic in the next section.

3.2 Heuristic Design

Now, we present our proposed heuristic, and use a toy example to show how it works in

action. Algorithm 2 illustrates the algorithm’s operation. The inputs of the algorithm

are: a) the network topology after the link failure e, b) the set of impacted flows

Fe, and c) a set of candidate paths P , which includes both backup paths and non-

impacted primary ones for all impacted flows. We want to reallocate impacted flows

2https:/cogentco.com/en/network/network-map

31

through the candidate paths to satisfy their demands df while taking into account

the link and switch memory budget.

Algorithm 1: Heuristic for rerouting traffic

Input : Network topology G′ = (V,E\e); impacted flows Fe; set of available

paths P = P
′

f

⋃
Qf , ∀f ∈ Fe

Output: Traffic rates assigned to ypf

1 Sort Fe in descending order according to flow demands

2 Sort P in ascending order according to path length

3 for f ∈ Fe do

4 for p ∈ P ′

f

⋃
Qf do

5 if ∀s ∈ p, us < Tcs − 1 then

6 ypf = min

(
min
(i,j)∈p

aij, df

)
7 else

8 if df ≤ min
(i,j)∈p

aij then

9 ypf = df

10 end

11 end

12 if ypf > 0 then

13 Update us, aij ∀s, (i, j) ∈ p
14 df ← df − ypf
15 end

16 end

17 end

First, we sort the impacted flows in descending ascending order in terms of their

demands (line 3). We also sort the available paths in terms of their path length (line2).

This way, we allocate the flow demands, from biggest to smallest, to the shortest paths

as an attempt to optimize the link utilization. For a given flow, We iterate over its

candidate paths, and inspect to see whether all switches along that path have enough

memory capacity (us) to accommodate new forwarding rules (lines 4-7). If enough

memory is available, the traffic rate allocation is equal to the minimum between the

32

flow demand and the remaining bandwidth capacity (aij) of the bottleneck link (line

8).

We give the higher priority to the the bigger demands until we hit a given threshold

in terms of switch memory utilization on a path (Tcs− 1 for the bottleneck switch in

our case). After that, we apply a “best-fit” strategy, i.e., we allocate the demands that

can be fully satisfied. This way we guarantee that smaller flows have access to shorter

paths too (lines 10-12). Finally, we update the remaining capacities and demand to

be allocated whenever we select a path for a flow (lines 14-17). This approach can

be adverse for some shorter flows; however, it is consistent with our multi-objective

optimization model, where we try to make a good balance between path length and

link utilization. Particularly, exclusive allocation of smaller demands first would lead

to bigger demands being assigned to longer paths which in turn leads to higher link

utilization.

The time complexity of Algorithm 2 is correlated with the number of flows im-

pacted by a link failure and the corresponding set of available paths. The time com-

plexity of the algorithm is O(MN(|V | + |V |log|V |)), where |Fe| = M and |P | = N .

Note the we consider the worst case complexity which is given by the operations at

lines 4-8.

We illustrate the operation of Algorithm 2 in Fig. 3.3 [8]. There are two flows

{f1, f2}: f1 from switch S1 to S5 has a demand of 25Mbps and flow f2 from switch

S2 to S5 has a demand of 20Mbps. Their primary routing tunnels and corresponding

rates are shown in Fig. 3.3a. For simplicity, we assume that all switches have enough

memory to accommodate these two flow rules. We also assume that the available

capacity (after traffic rate allocation of f1 and f2) of all links is 15Mbps except link

S3 − S5 whose capacity is 5Mbps. The failure of link S4 − S5 impacts both {f1, f2}.
In the following, we illustrate the operation of the heuristic.

Algorithm 2 allocates flow f1 (black flow) first as it has the higher demand.

This flow has access to two tunnels to send the traffic through after the failure:

S1 − S3 − S5 and S1 − S4 − S6 − S5. It sends 20Mbps over the former tunnel. The

remaining 5Mbps is allocated over the second tunnel. On the other hand, the available

tunnels for the second flow f2 are: S2−S1−S3−S5 and S2−S4−S6−S5. The traffic

allocation on the former one (10Mbps) does not change as it has no more capacity.

33

The remaining 10Mbps can be forwarded over the second tunnel. Note that for both

flows, one of the original tunnels remains unchanged except the corresponding rate

that depends on traffic allocation.

(a) (b) (c)

Figure 3.3: a) Traffic rates on the primary tunnels of two flows (blue and black).
The available capacity (after allocating two flows) of all links is 20Mbps except link
S3 − S5 whose capacity is 5Mbps; b) the available tunnels for the impacted flow
with the highest demand and corresponding traffic rates assigned to them; c) the
available tunnels for the second impacted flow after the link failure with the traffic
rates assigned to them.

3.3 SafeGuard’s Architecture

From a high level perspective, SafeGuard is an SDN failure recovery system that

enables fast recovery while taking the network traffic load and scarce switch memory

resources into account. SafeGuard runs as a SDN controller application that applies

our proposed heuristic to derive resilient routing configurations to network switches

at every TE interval. In the following we describe SafeGuard’s component:

1) Control plane: Fig. 3.4 depicts SafeGuard’s architecture [8]. A traffic matrix,

the network topology and a set of forwarding routes (primary routes) are given to it

as the input. It then produces a primary allocation that will be used for forwarding

traffic under normal conditions (i.e., when there is no failure in the network). After

that, SafeGuard deploys our proposed heuristic to produce a new allocation using

backup routes for all flows for each possible single link failure. Ultimately, it outputs

a resilient routing allocation as a set of forwarding rules to be configured by the SDN

switches.

34

Figure 3.4: The architecture of SafeGUard

2) Data plane: SafeGuard uses the OpenFlow protocol (version 1.3 [21]) to

communicate with the network switches. Each switch contains at least one Flow Table

and a Group Table. The flow table includes a set of flow rules, each comprising of

match fields and corresponding action (or instruction). The group table, on the other

hand, consists of group entries (group for short) consisting one or more action buckets.

An example is shown in table 3.2. SafeGuard make use of two types of groups: select

and fast failover groups. The former groups performs the traffic rates allocation

and the load balancing among multiple paths. This group type executes any one

action bucket in the group according to a weight set as a special parameter. The

fast failover groups overcomes the failure by rerouting traffic upon detecting a

link failure (a down port) and executing the first live bucket.

Now, we revisit the example in Fig. 4.1. We consider the first flow (f1: from S1 to

S5) to show how SafeGuard configures the flow and group tables at switches S1 and

S3 to recover from the failure. Table 3.2 illustrates the flow and group tables at the

ingress switch S1. There exists one flow entry that points to one of the groups. Before

the link failure, the flow entry points to group 1 (G1.1) of type select in the group

table, which assigns traffic rates to the two primary routes (see Fig. 3.3a). Group

entry 1 then points to groups 2 and 3, which are of type fast failover. Because

both ports of S1 are up in this example, G 1.2 and G 1.3 forward packets over ports

1 and 2, respectively.

Table 3.3 depicts the flow and group tables at switch S4, which detects the failure.

Before the link failure, it sends packets from S1 to S5 through port 1 over path

S1 − S4 − S5). After the failure detection, S4 starts sending packets from S1 to S5

35

using port 2 applying the fast failover group (path S1− S4− S6− S5) and at the

same time it informs the controller about the failure. When SafeGuard receives the

failure notification from S4, it modifies the instruction in the flow table of ingress

switch S1 to point to group 4 (G1.4) to update the allocated rates for each route used

by the affected flow.

Table 3.2: Flow and group tables at S1 for the example in Fig. 4.1

.

(a) Flow table at S1

Match Field
SrcAdrr DstAdrr Instruction

S1 S5 G1.1

(b) Group table at S1

Group ID Group Type Action Buckets

G 1.1 select
weight:3

5
, action: G 1.2

weight:2
5
, action: G 1.3

G 1.2 fast failover
outport: 1
outport: 2

G 1.3 fast failover
outport: 2
outport: 1

G 1.4 select
weight:4

5
, outport: 1

weight:1
5
, outport: 2

Table 3.3: Flow and group tables at S4 for the example in Fig. 4.1

.

(a) Flow table at S3

Match Field
SrcAdrr DstAdrr Instruction

S1 S5 G 3.1

(b) Group table at S3

Group ID Group Type Action Buckets

G 3.1 fast failover
outport: 1
outport: 2

3.4 SafeGuard’s Workflow

Fig. 3.5 shows the SafeGuard’s workflow [8]. The same process repeats every traffic

engineering interval. At first, SafeGuard computes all primary paths and splitting

36

weights and installs the corresponding forwarding rules for every flow (step A). Then,

it proactively installs backup routes and computes the splitting weights for allocated

flows which is resilient to any single link failure (step B). When a failure occurs, the

failing switch activates the corresponding backup paths, which connect the failing

switch to the egress switches of the corresponding affected flows, and simultaneously

sends a message to inform the network about the failure (step C). Lastly, the network

controller, which runs the SafeGuard heuristic, adjusts splitting weights for all affected

flows at their respective ingress switches (step D).

Figure 3.5: The workload of SafeGuard

3.5 Evaluation

In this section, we describe SafeGuard’s implementation and discuss the results. We

implement SafeGuard as a Python application on top of the Ryu SDN controller

(version 4.30). The source code of our implementation is available at [19]. Before

37

jumping to the evaluation discussion, we introduce Mininet [73], the network emulator

that we used for the evaluating SafeGuard.

Mininet. It is a network emulator that runs a network of virtual hosts, switches,

controllers, and links on a single Linux kernel. Mininet enables SDN development

using lightweight virtualization, in which a single system acts like a complete network,

running the same kernel, system, and user code. Mininet enables:

• Quick SDN prototyping

• Custom SDN design

• Share and replicate results

Setup. We run our experiments on a machine with 2.66GHz 12 core CPU and

44GB RAM equipped with Mininet (version 2.2.2). We consider two network topolo-

gies: Google B4 [4] (12 nodes and 38 links) and ATT [70] (25 nodes and 112 links).

We implement each node as a CPqD3 switch instance [74]. Link capacities are set to

1 Gbps with 1ms delay. We benchmark SafeGuard against Sentinel [7], the state-of-

the-art failure recovery approach in SD-WAN. When a failure occurs, Sentinel uses

the link-disjoint tunnels to distribute the traffic rate of affected flows. Sentinel tries

to minimize the maximum link utilization. However, it considers neither the length

of the backup tunnels nor the switch memory usage. We use Iperf4 tool to generate

UDP traffic. We fix the flow rate to 50 Mbps and vary the number of flows in each

experiment.

We consider the following criteria in our evaluation:

• Link utilization: it measures the the impact of failures on the overall network

utilization. Our interest here is to assess how SafeGuard and Sentinel distribute

the traffic load in the network after a failure. We use byte counters in the

switches to compute link utilization.

• Route stretch: it measures the backup route length (number of hops) in terms

of route stretch, which is defined as the ratio of the length of the longest path

3CPqD is a software switch that runs OPenFlow 1.3 and is intended for fast experimentation
purposes.

4Iperf is a commonly used network testing tool that can create TCP and UDP data streams and
measure the throughput of a network that is carrying them.

38

used for traversing a flow to the length of the shortest possible route for that

flow [75]. Route stretch can affect end-to-end delay and link utilization.

• Memory usage: it measures how much switch memory a failure recovery

approach uses to make the network resilient to any possible single link failure.

We count the total number of OpenFlow rules being install at the flow table

and group table of the switches.

Link utilization. To measure the utilization of the remaining links, we fix the

number of flows at 60 for B4 and 200 for ATT, and randomly fail a link. Fig 3.6

shows the CDF of link utilization over all active links in B4 after a failure. We see

a more balanced load distribution in SafeGuard than Sentinel. Moreover, neither

approach led to congested congestion, i.e., link utilization equal to one. However,

with Sentinel 28% of the links are close to congestion with utilization higher than

80%. In SafeGuard only for 20% of links the link utilization is higher than 80%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Link utilization

SafeGuard
Sentinel

Figure 3.6: CDF of link utilization in B4

Fig 3.7 shows the CDF of link utilization over all active links in B4 after a failure.

We see a more balanced load distribution in SafeGuard than Sentinel. Moreover,

neither approach led to congested congestion, i.e., link utilization equal to one. How-

ever, with Sentinel 28% of the links are close to congestion with utilization higher

than 80%. In SafeGuard only for 20% of links the link utilization is higher than 80%.

In ATT, we see have an overall higher link utilization compared to B4 because

of the higher number of flows. Nevertheless, SafeGuard outperforms Sentinel with a

bigger margin. particularly, the load imposed by SafeGuard is above 80% for around

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Link utilization

SafeGuard
Sentinel

Figure 3.7: CDF of link utilization in ATT

40% of the links while in Sentinel this number increases to 57%. That is because

Sentinel is confined to link-disjoint paths and, thus has less options to balance traffic,

while SafeGuard can use any link to reroute traffic, even along the affected primary

route. Interestingly, both approaches yield at some level of congestion after the failure.

However, the number of congested links is 50% smaller in SafeGuard compared to

Sentinel.

Memory usage. Here we generate traffic between 20-60 and 40-200 randomly

selected source-destination pairs in B4 and ATT networks, respectively. Then we

count the total number of forwarding rules (primary and backup) installed at all

switches to forward packets. As oppose to Sentinel, SafeGuard takes into account the

memory usage and allows non-disjoint routes. Accordingly, we expect that SafeGuard

requires less memory as it enjoys the resource sharing. That means in SafeGuard a

backup path can include some links of the primary ones, and use the same rules for

forwarding traffic on common links.

Fig. 3.8 depicts the total number of rules required to forward traffic for different

number of flows in the B4 topology. Error bars indicate the 95% confidence interval.

SafeGuard occupies less memory space than Sentinel in all cases, offering up to 17%

lower memory usage for 60 flows. Fig. 3.9 shows the number of rules required for

ATT topology. Not surprisingly, we see a higher number of rules than the B4 scenario

as there are more flows. In this case, SafeGuard entails around 10% fewer rules than

Sentinel.

Route stretch. Here again, we consider 20-60 and 40-200 randomly selected

40

 0

 100

 200

 300

 400

 500

20 30 40 50 60

N
u

m
b

er
 o

f
ru

le
s

Number of flows

SafeGuard
Sentinel

Figure 3.8: Average route stretch in B4

 0

 200

 400

 600

 800

 1000

 1200

 1400

40 80 120 160 200

N
u

m
b

er
 o

f
ru

le
s

Number of flows

SafeGuard
Sentinel

Figure 3.9: Average route stretch in ATT

flows in B4 and ATT networks, respectively. Then we randomly fail links and calcu-

late the average route stretch for all flows. Fig. 3.10 shows the average route stretch

of SafeGUard and Sentinel in B4, which represent the superiority of SafeGuard over

Sentinel in for B4 topology. With 60 flows, on average, the longest route in SafeGuard

and Sentinel after failures is 1.38x and 1.64x of the primary (shortest) route, respec-

tively. That implies SafeGuard deploys shorter backup routes compared to Sentinel,

which are 15% shorter on average. We also see a similar performance trend is similar

for ATT topology 3.11. Computed route stretch in SafeGUard reflects our design’s

objectives for reducing the backup route length. Sentinel, on the other hand, does

not take into account the route length and requires link disjoint paths. This results

in following longer routes compared to SafeGuard.

41

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

20 30 40 50 60

R
u

o
te

 s
tr

es
tc

h

Number of flows

SafeGuard
Sentinel

Figure 3.10: Average number of forwarding rules in B4

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

40 80 120 160 200

R
u

o
te

 s
tr

es
tc

h

Number of flows

SafeGuard
Sentinel

Figure 3.11: Average number of forwarding rules in ATT

Chapter 4

Extending SafeGuard to Multi-Priority Traffic with

Non-unitary Switch Memory Demand

In this chapter we extend our failure recovery framework in SD-WAN, SafeGuard

(chapter 3), in two important directions:

• Traffic with different priorities: in SafeGuad, we assumed all traffic flows

have the same priority. However, WAN traffic usually includes flows from dif-

ferent applications with different QoS requirements. In order to meet these

requirements, providers typically consider priority classes while routing traffic.

• Non-unitary switch memory demand: in SafeGuad, we adopted unitary

switch memory demand, where we required one forwarding rule for each flow,

which is actually the aggregate flows, between a ingress-egress switch pair.

However, there are usually hundreds of active connections between a source-

destination pair every TE interval.

Accordingly, we extend SafeGuard to incorporate the above specifications. We

also perform significant new evaluation over several metrics and real topologies [9].

4.1 Problem Formulation

We present SafeGuard’s new model in this subsection. Although this new model

shares some common characteristics with the previous one, we restate those charac-

teristics in this chapter to be more consistent.

4.1.1 Network Design

Similar to the previous chapter, we present a network as a digraph G = (V,E), where

V = {1, 2, .., n} is the set of network switches (or nodes) and E is the set of links

among the switches. Each link (i, j) ∈ E has a bandwidth capacity cij, and each

43

node i ∈ V has memory capacity Tci. We consider traffic with different priorities in

our model. To this end, each flow demand f in this network represents the aggregate

traffic from an ingress to an egress switch at a certain priority class. Therefore, we

presume three attributes for each flow demand: i) a priority class hf ; ii) a switch

memory demand mf ; and iii) a bandwidth demand bf . Also, each flow demand is

divided among a set of primary routes Pf . We use tfp to denote the traffic rate of

flow f on each route p ∈ Pf .

With the above settings, a link failure impacts all flows traversing that link. Qf

denotes the the set of backup routes for impacted flow f . Each route p ∈ Qf con-

catenates two routes: a portion of the impacted primary route from ingress switch to

failing switch, and an alternative route from the failing switch to the egress switch of

the respective flow. Since the primary routes are not necessarily link-disjoint, a link

failure could impact one or multiple primary routes of a flow. P
′

f denotes the set of

non-affected primary routes. We use both backup and non-affected primary routes

to forward flow f after a failure. Table 4.1 summarizes this notation.

4.1.2 Variables and Parameters

Each traffic flow impacted by link failure e needs to forwarded on its backup and

unaffected primary routes. Accordingly, we define binary decision variables xfp, which

denotes the routes used for impacted flow f after recovery, such that

xfp =


1 if route p ∈ P ′

f

⋃
Qf is used to forward

traffic from flow f,

0 otherwise.

(4.1)

Also, we define decision variable yfp ≥ 0 to denote the traffic rate of impacted

flow f on route p after the failure.

Lastly, we define binary parameters, rij,p and si,p, to identify the links and nodes

belonging to route p, respectively:

rij,p =

{
1 if (i, j) ∈ p,
0 otherwise.

(4.2)

44

Table 4.1: Key notations used in the model.

Notation Description

Input

G(V,E) Network graph with switches V and Links E;
Pf Set of primary routes for flow f ;
Qf Set of backup routes for flow f ;
tfp Traffic rate of flow f on route p;
hf Priority class of flow f ;
mf Switch memory demand of flow f ;
bf Bandwidth required for flow f ;
cij Total capacity of link (i, j) ∈ E;
Tci TCAM space capacity of node i ∈ V ;

Auxiliary
variables

e a failed link;
Fe set of impacted flows by link failure e;
F set of flows not impacted by link failure e;
P

′

f set of primary routes for flow f ∈ Fe not impacted
by link failure e;

lp length of route p ∈ P ′

f

⋃
Qf ;

rij,p 1 if link (i, j) ∈ p, 0 otherwise;
si,p 1 if node i ∈ p, 0 otherwise;

Output
xfp Allocation of affected flow f on route p ∈ P ′

f

⋃
Qf ;

yfp Traffic rate of affected flow f assigned to route p;

si,p =

{
1 if i ∈ p,
0 otherwise.

(4.3)

4.1.3 Constraints

Link and node capacity. constraints in (4.4) ensures that link utilization from

does not exceed the maximum capacity of that link. The overall utilization of a link

is total traffic rates assigned to both affected (f ∈ Fe) and unaffected (f ∈ F) flows,

either for primary or backup routes. Constraints in (4.5), on the other hand, ensures

that switch memory usage does not exceed the witch capacity. As in link capacity

constraints, the total switch memory usage is the summation demands from primary

and backup routes of both affected and unaffected flows.

45

∑
f∈Fe

∑
p∈P ′

f

⋃
Qf

yfprij,p +
∑
f∈F

∑
p∈Pf

rij,ptfp ≤ cij ∀(i, j) ∈ E (4.4)

∑
f∈Fe

∑
p∈P ′

f

⋃
Qf

mfxfpsi,p +
∑
f∈F

∑
p∈Pf

mfsi,p ≤ Tci ∀i ∈ V (4.5)

Traffic rate. Variables xfp and yfp are correlated using constraints (4.6). If p is

not used by f then traffic rate of flow f on route p is zero (i.e., xfp = 0). Otherwise,

it must be a positive number.

xfp ≤ yfp ≤ xfpbf , ∀f ∈ Fe, p ∈ P
′

f

⋃
Qf (4.6)

Flow satisfaction. constraints in (4.7) are flow demand satisfaction, i.e., they

ensure that the total traffic rate a flow on its primary and backup routes is equal to

its demand.

∑
p∈P ′

f

⋃
Qf

yfp = bf ∀f ∈ Fe (4.7)

4.1.4 Objective Function

The objective function (4.8) targets optimizing two criterion: the first term takes

care of the backup route length, while the second term accounts for the link capacity

usage. We represent link capacity usage as the ratio of the traffic load on a route to

the capacity of the link included in the route. Here again we useα and β parameters

to bring to parts of the objective function to the same scale.

min
∑
f∈Fe

∑
p∈P ′

f

⋃
Qf

(αhf lpxfp + β
∑

(i,j)∈E

rijpyfp
cij

) (4.8)

4.2 Heuristic

In this section, we present our proposed heuristic. Algorithm 2 shows the procedure.

The inputs to the algorithm are: the network topology after removing the failed link

e, the set of affected flows Fe, and a set of candidate routes P containing both backup

46

routes and non-affected primary ones for all affected flows. Here we adjust the traffic

rates of those affected flows over the their candidate routes. The traffic rate assigned

to a route is related to the length and the bottleneck capacity of that route.

We iterate over the flows with the highest to the lowest priority (line 1, where H

denotes the set of traffic classes sorted in descending order). Then we sort the flows

in the same priority class in the descending order (lines 3-2). For a given flow, at first,

we sort its available routes in ascending order in an attempt to forward that with as

shortest routes as possible (line 5). Then we iterate over all the candidate routes and

check whether the memory usage of all switches along that route are within a capacity

threshold (lines 6-7). If the memory usage is within the threshold, we allocate the

minimum between the flow demand and the remaining bandwidth capacity (aij) of

the bottleneck link (line 8). Otherwise we apply best-fit strategy, i.e. we allocate

the flow only if it can be fully satisfied (line 9-12). This way we ensure that smaller

flows can also have access to the shorter routes. If the traffic rate allocation is not

zero, we update the remaining capacity (aij) and remaining memory of the links and

switches, respectively, along that route (lines 14-17). We also update the remaining

flow demand to be allocated (line 14-17).

The time complexity of Algorithm 2 is proportional to the number of affected flows

from a link failure and corresponding set of routes, and also the number of traffic

classes we considered. The complexity of the algorithm is O(KMN(n + r log r)),

where |H| = K, |Fe| = M , |N | = P , |V | = n, and |E| = r.

We illustrate the operation of Algorithm 2 in Fig. 4.1 [9]. There are three flows

{f1, f2, f3}: f1 with traffic class 3 from switch S1 to S6 has a demand of 15Mbps, f2

with traffic class 3 from switch S2 to S6 has a demand of 10Mbps, and f3 with traffic

class 2 from switch S3 to S6 has a demand of 5Mbps. Their routing tunnels and

corresponding rates are shown in Fig. 4.1(a). For operational simplicity, we assume

that all switches have enough memory to accommodate these these flow rules. We

also assume that the bandwidth capacity of all links is 30Mbps except link S1 − S5

and S5−S6. whose bandwidth capacity is 10Mbps. The failure of link S4−S6 impacts

all flows {f1, f2,f3}. In the following, we illustrate the operation of the heuristic.

Algorithm 2 starts with flow f1 (green flow) and f2 (blue flow) as they have the

higher priority. Because f1 has the higher demand than f2, algorithm 2 forwards f1

47

Algorithm 2: Heuristic for rerouting traffic

Input : Network topology G′ = (V,E\e); affected flows Fe; priority classes

H; available routes P = P
′

f

⋃
Qf , ∀f ∈ Fe

Output: Traffic rates assigned to Fe

1 for h ∈ H do

2 Fh = {f ∈ Fe|hf == h}
3 Sort Fh in descending order according to flow demands

4 for f ∈ Fh do

5 Sort P = P
′

f

⋃
Qf in ascending order in terms of route length

6 for p ∈ P do

7 if ∀s ∈ p, us +mf < bTcs × µc then

8 ypf = min

(
min
(i,j)∈p

aij, df

)
9 else if ∀s ∈ p, us +mf < Tcs then

10 if df ≤ min
(i,j)∈p

aij then

11 ypf = df

12 end

13 end

14 if ypf > 0 then

15 Update us, aij ∀s, (i, j) ∈ p
16 df ← df − ypf
17 end

18 end

19 end

20 end

over its shortest backup tunnel first: S1 − S5 − S6. Then, flow f2 will be forwarded

over tunnel S2−S3−S5−S7−S6 (note that the shorter tunnel S2−S1−S5−S6 has

not more capacity to accommodate flow f2). Lastly, flow f3 with the lowest priority,

will be forwarded over its shortest tunnel with available capacity: S3 − S5 − S7 − S6.

48

(a)
(b)

Figure 4.1: a) Traffic rates on the primary routes of two flows (blue and black).
The available capacity of all links is 20Mbps except link S4 − S5 whose capacity is
5Mbps; b) the available tunnels for the affected flow with the highest demand and
corresponding traffic rates assigned to them; c) the available tunnels for the second
affected flow after the link failure with the traffic rates assigned to them.

4.3 Evaluation

4.3.1 Setup

Our experiments run on a machine with 2.66GHz 12 core CPU and 44GB RAM

equipped with Mininet (version 2.2.2). We consider four real network topologies:

Google B4 [4], ATT [70], Dial Telecom [76] and Cogent [77]. Their main characteristics

is summarized in table 4.2. In particular, we selected networks with distinct number

of nodes, diameters (i.e., length of the longest shortest paths), and amount of link-

disjoint routes among source-destination pairs. Each node is deployed as a CPqD

switch instance [74]. Link capacities are set to 1 Gbps. We benchmark SafeGuard

against Sentinel, the state-of-the-art SD-WAN failure recovery approach in SD-WAN.

Sentinel relies on the link-disjoint tunnels to distribute the traffic rate of affected flows.

Sentinel targets minimizing the maximum link utilization while not considering the

length of the backup tunnels or switch memory usage.

We assume the switch memory demand of for a flow is a random number selected

from interval [20, 200]. This is because, each flow consists of 100s TCP flows [5]

which are made of 20% elephant flows and 80% mice flows. Elephant flows usually

49

Table 4.2: Network topologies used in our evaluation. LD= link-disjoint.

Topology #Nodes #Links Diameter
#LD paths

Min Average Max

B4 12 38 5 2 2.35 4
ATT 25 112 5 2 3.2 9
Dial Telecom 192 302 30 2 2.6 4
Cogent 197 478 28 2 2.7 6

are treated with exact matching and mice flow are usually treated with wildcard

rules [78]. Accordingly, for each flow, we require one flow rule for each elephant TCP

flow and one flow rule for the remaining mice TCP flows.

Traffic matrix generation: We use TMgen [79] for the traffic matrix generation

based of the gravity model. In Newton’s law of gravitation, the force is proportional

to the product of the masses of the two objects divided by the distance squared.

Inspired by the this concept, gravity model assigns a weight wi to each node i, and

assumes that the traffic demand from i to j is proportional to wiwj [80]. We generate

three TMs using gravity model: the first, second and third TMs will contribute 50%,

30% and 20% to the traffic load. Lastly, we use iperf tool to generate UDP traffic

representing TMs.

4.3.2 Disscussion on the result

To learn how SafeGuard performs in different settings, we run two sets of experiments:

considering different topologies while fixing the traffic load, and taking one network

topologies and vary the traffic load. These will reveal where SafeGuard can perform

well. We compare SafeGuard against Sentinel in terms of different performance met-

rics: link utilization, route stretch, memory usage, packet loss and round-trip time.

In all experiments, we randomly fail a link and calculate the desired metric.

50

4.3.2.1 The impact of topology

in this subsection, we fix the traffic load to 100Mbps and measure the link utilization

and route stretch for four topologies (presented in table 4.2).

Link utilization. Fig. 4.2 shows the CDF of link utilization across all active

links for four topologies after a failure. As it can be seen in the figure, after the

link failure: SafeGuard creates no congestion in all topologies, while Sentinel can

tolerate the failure in none of the topologies. In all topologies SafeGuard is far from

congestion with link peak utilization below 90%. At the same time, Sentinel creates

severe congestion to more than 20% of the links. As oppose to Sentinel that requires

link-disjoint paths, SafeGuard enjoys using any active link to reroute traffic providing

them with more option to balance the load than. Moreover, SafeGuard distributes the

affected flows at the granularity of flow priorities. This enables SafeGuard to handle

affected flows with higher demands before consuming the available links’ capacity by

the lower demand flows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Link utilization

SafeGuard
Sentinel

(a) B4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Link utilization

SafeGuard
Sentinel

(b) ATT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Link utilization

SafeGuard
Sentinel

(c) Dial Telecom

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Link utilization

SafeGuard
Sentinel

(d) Cogent

Figure 4.2: CDF of link utilization for different topologies

51

Route stretch. Fig. 4.3 shows the route stretch in four topologies. In all topolo-

gies SafeGuard takes shorter backup paths compare to Sentinel. Sentinel needs to

take link-disjoint backup paths which are commonly much longer than the primary

ones (twice longer in some cases). SafeGuard, on the other hand, can circumvent the

failing link with two extra links to reach the destination in many cases. Also, the

uniform load distributing by SafeGuard leaves free capacity on the short paths to be

used by the flows whose demands fit those short paths. Additionally, the nodes in

ATT and B4 are closer than nodes in Cogent and Dial Telecom. this means a slightly

longer backup route in ATT and B4 induces a large route stretch value. For exam-

ple, in the case of SafeGuard: in Cogent, the longest path is 1.09x of the primary

(shortest) path while this value increases to 1.32x in B4.

 1

 1.2

 1.4

 1.6

 1.8

 2

B4 ATT Dial Cogent

R
u

o
te

 s
tr

es
tc

h

Topology

SafeGuard
Sentinel

Figure 4.3: Route stretch for different topologies.

Latency. Now we look at the latency as the immediate consequence of either

congestion or longer backup routes. Figure 4.4 depicts the CDF of the round-trip

times (RTT) for every source-destination pair in the evaluated topologies. The RTT

is higher in bigger topologies, i.e. Dial Telecom and Cogent, as there are more hops

between each source-destination pair in those topologies. Nonetheless, SafeGuard

outperforms Sentinel in all scenarios. In particular, it reduces tail latencies by 12, 13,

15 and 18% for B4, ATT, Dial Telecom and Cogent topologies, respectively. This is

because SafeGuard offers lower congestion and shorter routes.

Switch memory usage. Both TE schemes install backup forwarding rules proac-

tively at the switches memory. Fig. 4.5 represents the switch memory usage for each

TE scheme. With larger networks typologies, the switch memory usage is larger for

52

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 70 80 90 100 110 120 130

C
D

F

RTT (ms)

SafeGuard
Sentinel

(a) B4

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 90 100 110 120 130 140 150 160

C
D

F

RTT (ms)

SafeGuard
Sentinel

(b) ATT

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 120 140 160 180 200 220

C
D

F

RTT (ms)

SafeGuard
Sentinel

(c) Dial Telecom

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 120 140 160 180 200

C
D

F

RTT (ms)

SafeGuard
Sentinel

(d) Cogent

Figure 4.4: CDF of round trip time (RTT) for different topologies.

both TE schemes.

 0

 500

 1000

 1500

 2000

 2500

B4 ATT Dial Cogent

N
u

m
b

er
 o

f
ru

le
s

Topology

SafeGuard
Sentinel

Figure 4.5: Switch memory usage for different topologies.

Also, in Cogent the switch memory usage is slightly lower than than in Dial

Telecom, as it is denser than Dial Telecom. This allows using the TE approaches

to use the non-affected part of a failed path leading to lower stitch memory usage.

Nonetheless, Sentinel occupies the switch memory around 15% more than SafeGuard.

53

This is because SafeGuard allows using non-disjoint path, which is not the case in

Sentinel. Thus, they offer sharing resources, i.e., two paths can take advantage of the

same rules for forwarding traffic on overlapping links.

4.3.2.2 The Impact of Load

To examine the effects of traffic load, we consider Cogent topology with different

traffic loads: 50, 100, 150, 200, and 250 Mbps.

Link utilization Fig. 4.6 illustrates the box plots of of the link utilization. In all

cases Sentinel creates an unbalanced link utilization (long boxes) while creating some

congestion in the network (upper whiskers). In SafeGuard 75th percentile is always

lower than 90%, although the maximum link utilization is 1 under 250Mbps.

 0.2

 0.4

 0.6

 0.8

 1

50 100 150 200 250

L
in

k
u

ti
liz

a
ti

o
n

Traffic load (Mbps)

SafeGuard
Sentinel

Figure 4.6: CDF of link utilization for different loads.

Route stretch. Fig 4.7 illustrates the route stretch of and Sentinel for different

traffic loads. The route stretch increases with the increase in traffic load. This is

because the higher load on the links leaves a smaller scope for three approaches when

selecting the backup paths for the flows. Here SafeGuard outperforms Sentinel by up

to 18% better performance, specially under high loads.

Latency. Figure 4.8 shows the RTT of packets after a link failure as we vary the

traffic load. The median RTT is 7 − 26% lower in SafeGuard compared to Sentinel.

The superiority of SafeGuard decreases slightly with the increase in the traffic load.

This is because SafeGuard has a higher scope for selecting backup routes under the

lower traffic loads.

Switch memory usage. Fig. 4.9 plots the switch memory usage for each TE

54

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 50 100 150 200 250

R
o

u
te

 s
tr

et
ch

Load (Mbps)

SafeGuard
Sentinel

Figure 4.7: The route stretch for different loads.

 90

 120

 150

 180

 210

 240

50 100 150 200 250

R
T

T
 (

m
s)

Traffic load (Mbps)

SafeGuard
Sentinel

Figure 4.8: RTT for different traffic loads

scheme for different loads. As the loads increases, the memory usage increases as

well. This is because both TE schemes have access to less number of paths after the

failure enforcing them to allocate flows to longer paths. However, Sentinel occupies

more switch memory than SafeGuard, as it requires the link-disjoint tunnels needing

to install forwarding rules on new switches along the backup tunnels.

55

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 100 150 200 250

N
u

m
b

er
 o

f
ru

le
s

Load (Mbps)

SafeGuard
Sentinel

Figure 4.9: The memory usage for different loads.

Chapter 5

Conclusion and Future Works

5.1 Conclusions

In this thesis, we proposed a novel failure recovery system, called SafeGuard, for

SD-WANs. We modeled the failure recovery problem as a multi-objective MILP

optimization problem, which incorporates link bandwidth capacity, route length, and

switch memory constraints for proactively allocating backup routes. We discussed

the NP-hardness of our model and evaluated it using CPLEX showing that it does

not scale to the large networks. Then, we designed a heuristic to solve the model. We

demonstrated the efficiency of our heuristic by analyzing its solution accuracy and

runtime.

To evaluate the performance of SafeGuard, we implemented a prototype of it using

the Ryu SDN controller. We used Mininet, an SDN emulator, and deployed the flow

and group tables of OpenFlow protocol to implement SafeGuard. We made our code

publicly available to allow the community to reproduce our results and extend the

proposed system. We performed an extensive evaluation of SafeGuard over several

topologies with different sizes and densities. We compared the performance of our

system with the state-of-the-art SD-WAN failure recovery scheme. We showed that

SafeGuard can quickly reroute the traffic with low delay, while uniformly distribute

the traffic over the network and efficiently use the network resources.

5.2 Future Works

In future work, we plan to bring this work one step further by extending our SD-WAN

failure recovery system in the following aspects:

• In this work we considered single link failure according to the recent studies on

the probability of link failures [81]. We plan to extend our model and heuristic

to include multiple failures.

57

• We also plan to consider SDN controller failure in future work. In a recent

controller performance evaluation study, the authors compared two distributed

controllers ONOS and OpenDaylight, where the former outperforms the latter

[82]. Thus, we plan to deploy ONOS instances in our design and extend our

model and heuristic to incorporate controller failures.

• Although we considered the switch TCAM limitation on our system, another

idea that can further improve our solution to optimize network resource utiliza-

tion is to further minimize the TCAM usage using wild-card rules. We plan to

enhance our system by this complementary idea.

• Our work is an offline failure recovery system, i.e., it needs to select paths

between each ingress-egress switch pair and assign corresponding traffic rates

for a given set of demands at each TE cycle. However, this may not be efficient

if some flows last for multiple TE cycles. As our future work, we plan to

adopt an online approach, where at every TE cycle, we monitor the demands

from previous TE cycles and allocate rate over the chosen paths for the newly

arrived flows within the resource budget.

• In this work, the link bandwidth capacity is the only cost occurred when a

traffic flow traverses a link. However, other metrics cloud also be considered

for the link cost. In the future, we want to extend this work to IPv6 routing,

where we consider the default OSPF cost, delay and L2 factor [83].

• We also plan to deploy randomized or weighted randomized route selection

schemes [84–86] and extend our model and heuristic.

Appendix A

A.1 How to run SafeGuard?

In this section we explain how one can run our failure recovery system in SD-WAN

and how it works. Our open source code is publicly available in [19].

A.1.1 Setting up the environment:

We need the following software packages and tools to run SafeGuard:

• Download and install Mininet from [73].

• Install Ryu controller in Mininet using pip install Ryu command or from the

source code in [87].

• Install CPqD software switch from [74].

• install TMgen tool from [88].

We also need three Python scripts from our open sourcce code: topology.py,

initialization.py and SafeGuard.py. The first two scripts are for setting up a

virtual SDN. The SafeGuard.py script is a Ryu controller application that runs the

SafeGuard’s failure recovery system. To run SafeGuard, we need to have two Mininet

terminals open. In the first terminal we lunch the network, and in the other one

we run our controller application. In the following we present the most important

modules we used at each part.

A. Lunching the SDN topology: We launch the network by topology.py

script in one Mininet terminal using sudo python topology.py command.

How it works? topology.py script calls the initialization.py script, which

defines the network typologies and creates the TMs. At first, topology.py has a

network class, which sets up the network switches and the links among them.

After setting up the network, multiple threading is used for concurrent traffic

generation. myTraffic method that calls the helper method doIperf to generate the

59

traffic between each source destination pair. myTraffic also injects a random link

failure in the network.

Lastly, to lunch the network topology, the runner method instantiates a network

object and creates a remote controller at port number 6653. Switches are set to wait

to be connected to the controller.

B. Running the controller application:

Now, that the network is set up, we run the controller application in the sec-

ond Mininet terminal by ryu-manager --observe-links SafeGuard.py command.

After lunching the controller, the port statistics will be printed at each 30 second

interval on the controller window.

Now, we use Mininet CLI to interact with the network for the traffic generation.

We run pingall command at the topology window. This leads to installing all

primary and backup forwarding rules at the switches. Also, for the traffic generation,

we run myTraffic() command at the topology window. This will automatically fail

a random link in the network and generate UDP traffic using iperf between the list

of pairs.

How it works? At first, the controller runs a topology discovery module by

listening to events fired by Ryu, which handles the actual communication. It will

triggers the a ’switch handler’ module any time a switch is added to the controller.

It also installs a table-miss flow entry at the switch allowing them to send packets to

the controller.

When all switches are registered, the a module computes the primary and backup

routes between each source-destination pair for any single link failure in the net-

work. For each source-destination pair, it removes a given link from the network, and

computes the corresponding backup routes.

Now, the heuristic’ module deploys the computed primary and backup routes,

and runs the SafeGuard’s heuristic to configure the traffic rate allocation, given any

single link failure in the network. After configuring the primary and backup routes

and installing the flow and group entries, a ’link failure handler’ module handles the

link failures. Whenever a failure happens, the switch that detects the failure will send

a message to the controller, which triggers the ’link failure handler’ module. It will

then updates the flow table at the ingress switch of the affected flows to adjusts the

60

tariff rate.

A.2 How to run our model implementation?

We implemented our model using Python API of CLPEX. To run it, we need to

download the MILP mode script from our open source code at [19]. The fallowing

software steps should be taken to run the model implementation:

• Install Python

• Install CPLEX from [69]

• Set up the Python API of CPLEX using the instruction presented in [89]

Now, one can run the model by running the MILP mode in any Pythom editor.

We ran our model in Python version 3.6.0. We recommend using the same Python

version.

Bibliography

[1] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” IEEE, 2015.

[2] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,” vol. 103,
no. 1, 2014, pp. 14–76.

[3] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intellectual history
of programmable networks,” vol. 44, no. 2, 2014, pp. 87–98.

[4] S. Jain and et al., “B4: Experience with a globally-deployed software defined
wan,” vol. 43, no. 4, 2013, pp. 3–14.

[5] C. Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven wan,” 2013,
pp. 15–26.

[6] “George leopold. 2017. building express backbone: Facebook’s new long-
haul network.” 2017. [Online]. Available: http://code.facebook.com/posts/
1782709872057497/

[7] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “Sentinel: failure recovery in
centralized traffic engineering,” vol. 27, no. 5, 2019, pp. 1859–1872.

[8] M. Shojaee, M. Neves, and I. Haque, “Safeguard: Congestion and memory-aware
failure recovery in sd-wan,” 2020, pp. 1–7.

[9] M. Neves, M. Shojaee, and I. Haque, “Multi-resource aware failure recovery in
sd-wan,” 2020.

[10] H. H. Liu, S. Kandula, R. Mahajan, and D. Zhang, M.and Gelernter, “Traffic
engineering with forward fault correction,” 2014, pp. 527–538.

[11] K. T. Foerster, Y. A. Pignolet, S. Schmid, and G. Tredan, “Casa: congestion
and stretch aware static fast rerouting,” 2019, pp. 469–477.

[12] J. Bogle, N. Bhatia, M. Ghobadi, I. Menache, N. Bjørner, A. Valadarsky, and
M. Schapira, “Teavar: striking the right utilization-availability balance in wan
traffic engineering,” 2019, pp. 29–43.

[13] S. Q. Zhang, Q. Zhang, A. Tizghadam, B. Park, H. Bannazadeh, R. Boutaba, and
A. Leon-Garcia, “Tcam space-efficient routing in a software defined network,”
no. 125, 2017, pp. 26–40.

http://code.facebook.com/posts/1782709872057497/
http://code.facebook.com/posts/1782709872057497/

62

[14] T.-H. T. . G. M. Mohan, P. M., “Tcam-aware local rerouting for fast and efficient
failure recovery in software defined networks,” 2015, pp. 1–6.

[15] J. Li, J. Hyun, J. H. Yoo, S. Baik, and J. W. K. Hong, “Scalable failover method
for data center networks using openflow,” 2014, pp. 1–6.

[16] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite cacheflow in
software-defined networks. in proceedings of the third workshop on hot topics in
software defined networking,” 2014, pp. 175–180.

[17] P. C. Lekkas, “Network processors: Architectures,” 2013.

[18] Y. Chen, S. Jain, Z. L. Adhikari, V. K.vand Zhang, and K. Xu, “A first look
at inter-data center traffic characteristics via yahoo! datasets,” 2011, pp. 1620–
1628.

[19] “Safeguard,” https://github.com/Meysam-Sh/SafeGuard.git, (accessed Dec. 16,
2020).

[20] e. a. McKeown, N., “Openflow: enabling innovation in campus networks,” in
ACM queue, vol. 38, no. 2, 2008, pp. 69–74.

[21] “Openflow switch specification version 1.3.0,” https://www.cs.princeton.edu/
courses/archive/fall13/cos597E/papers/openflow-spec-v1.3.2.pdf, (accessed
Sep. 8, 2020).

[22] P. C. da Rocha Fonseca and E. S. Mota, “A survey on fault management in
software-defined networks,” vol. 19, no. 4, 2017, pp. 2284–2321.

[23] C. Doerr and F. Kuipers, “All quiet on the internet front?” vol. 52, no. 10, 2014,
pp. 46–51.

[24] M. a. Chiesa, “The quest for resilient (static) forwarding table,” 2016, pp. 1–91.

[25] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Gottlieb, “A case study
of ospf behavior in a large enterprise network,” 2002, pp. 217–230.

[26] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. N. Chuah, and C. Diot,
“Characterization of failures in an ip backbone,” vol. 4, 2004, pp. 2307–2317.

[27] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve or die:
High-availability design principles drawn from googles network infrastructure,”
2016, pp. 58–72.

[28] G. Liang and K. Kökten, “On diagnosis of forwarding plane via static forwarding
rules in software defined networks,” 2014, pp. 1716–1724.

[29] V. Adrichem, B. J. N. L., Van Asten, and F. A. Kuipers, “Fast recovery in
software-defined networks,” 2014, pp. 61–66.

https://github.com/Meysam-Sh/SafeGuard.git
https://www.cs.princeton.edu/courses/archive/fall13/cos597E/papers/openflow-spec-v1.3.2.pdf
https://www.cs.princeton.edu/courses/archive/fall13/cos597E/papers/openflow-spec-v1.3.2.pdf

63

[30] O. N. Foundation, “Openflow switch specification ver 1.4,” 2013.

[31] A. Farrel, A. Satyanarayana, A. Iwata, and . A. G. Fujita, N., “Crankback
signaling extensions for mpls and gmpls rsvp-te,” 2007.

[32] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope: Re-
sponsive yet stable traffic engineering,” vol. 35, no. 4, 2005, pp. 253–264.

[33] X. D. D. R. J. D. Suchara, M. and J. Rexford, “Network architecture for joint
failure recovery and traffic engineering,” vol. 39, no. 1, 2011, pp. 97–108.

[34] G. M. . G. Y. Tootoonchian, A., “Opentm: traffic matrix estimator for openflow
networks,” 2010, pp. 201–210.

[35] X. H. Q. L. Y. Y. R. Z. Y. Wang, H. and A. Greenberg, “Cope: traffic engineering
in dynamic networks,” 2006, pp. 99–110.

[36] R. J. Fortz, B. and M. Thorup, “Traffic engineering with traditional ip routing
protocols,” vol. 40, no. 10, 2002, pp. 118–124.

[37] J. C. L. S. Elwalid, A. and I. Widjaja, “Mate: Mpls adaptive traffic engineering,”
vol. 3, 2001, pp. 1300–1309.

[38] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing ospf
weights,” vol. 2, 2000, pp. 519–528.

[39] . T. M. Fortz, B., “Optimizing ospf/is-is weights in a changing world,” vol. 20,
no. 4, 2002, pp. 756–767.

[40] M. J. A. J. O. M. Awduche, D. and J. McManus, “Requirements for traffic
engineering over mpls.”

[41] C. Y. Hong and et al., “B4 and after: managing hierarchy, partitioning, and
asymmetry for availability and scale in google’s software-defined wan,” 2018, pp.
74–87.

[42] S. A. Astaneh and S. S. Heydari, “Optimization of sdn flow operations in multi-
failure restoration scenarios,” vol. 13, no. 3, 2016, pp. 421–432.

[43] M. Kuźniar, P. Pereš́ıni, N. Vasić, and D. Canini, M.and Kostić, “Automatic
failure recovery for software-defined networks,” 2013, pp. 159–160.

[44] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker, “Ensuring
connectivity via data plane mechanisms,” vol. 13, 2013, pp. 113–126.

[45] B. Charron-Bost and J. Welch, J. L. ad Widder, “Link reversal: How to play
better to work less,” 2009, pp. 88–101.

[46] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connectivity with
local fast failover: Introducing openflow graph algorithms,” 2014, pp. 121–126.

64

[47] S. Sharma and et. al, “Demonstrating resilient quality of service in software
defined networking,” 2014, pp. 133–134.

[48] E. Lakiotakis, C. Liaskos, and X. Dimitropoulos, “Improving networked music
performance systems using application-network collaboration,” vol. 31, no. 24,
2019, p. e4730.

[49] K. Phemius and M. Bouet, “Implementing openflow-based resilient network ser-
vices,” 2012, pp. 212–214.

[50] S. Paris, G. S. Paschos, and J. Leguay, “Dynamic control for failure recovery and
flow reconfiguration in sdn,” 2016, pp. 152–159.

[51] J. Nagano and N. Shinomiya, “A failure recovery method based on cycle structure
and its verification by openflow,” 2013, pp. 298–303.

[52] D. Kim and J. M. Gil, “Reliable and fault-tolerant software-defined network
operations scheme for remote 3d printing,” vol. 44, no. 3, 2015, pp. 804–814.

[53] J. T. Araújo, R. Landa, R. G. Clegg, and G. Pavlou, “Software-defined network
support for transport resilience,” 2014, pp. 1–8.

[54] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester, “Software
defined networking: Meeting carrier grade requirements,” 2011, pp. 1–6.

[55] M. e. a. Alizadeh, “Software defined networking: Meeting carrier grade require-
ments,” 2010.

[56] A. Ghannami and C. Shao, “Efficient fast recovery mechanism in software-defined
networks: multipath routing approach,” 2016, pp. 432–435.

[57] Z. Cheng, X. Zhang, Y. Li, S. Yu, R. Lin, and L. He, “Congestion-aware local
reroute for fast failure recovery in software-defined networks,” vol. 9, no. 11,
2017, pp. 943–944.

[58] F. Tang and I. Haque, “Remon: A resilient flow monitoring framework,” in In
2019 Network Traffic Measurement and Analysis Conference (TMA), 2019, pp.
137–144.

[59] A. Capone, C. Cascone, A. Q. Nguyen, and B. Sanso, “Detour planning for fast
and reliable failure recovery in sdn with openstate,” 2015, pp. 25–32.

[60] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate: programming
platform-independent stateful openflow applications inside the switch,” vol. 44,
no. 2, 2014, pp. 44–51.

[61] Z. Zhu, Q. Li, M. Xu, Z. Song, and S. Xia, “A customized and cost-efficient
backup scheme in software-defined networks,” 2017, pp. 1–6.

65

[62] U. Lekhala and I. Haque, “Piqos: A programmable and intelligent qos frame-
work,” in Proceedings of the 2019 IEEE INFOCOM workshop on Network Intel-
ligence, 2019.

[63] M. Moyeen, , F. Tang, D. Saha, and I. Haque, “Sd-fast: A packet rerouting
architecture in sdn,” in 15th International Conference on Network and Service
Management (CNSM). IEEE, 2019.

[64] I. Haque and M. Moyeen, “Revive: A reliable software defined data plane failure
recovery scheme,” in 2018 14th International Conference on Network and Service
Management (CNSM). IEEE, 2018, pp. 268–274.

[65] I. Haque, S. Islam, and J. Harms, “On selecting a reliable topology in wireless
sensor networks,” in Proceedings of the 2015 IEEE International Conference on
Communications, ser. ICC ’15, 2015.

[66] O. Tilmans and S. Vissicchio, “Igp-as-a-backup for robust sdn networks,” in
10th International Conference on Network and Service Management (CNSM)
and Workshop. IEEE, 2014, pp. 127–135.

[67] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and Y. R. Yang,
“R3: resilient routing reconfiguration,” 2010, pp. 291–302.

[68] P. Kumar and et al., “Semi-oblivious traffic engineering: The road not taken,”
2018, pp. 157–170.

[69] “Ibm cplex optimizer,” https://www.ibm.com/ca-en/products/
ilog-cplex-optimization-studio, (accessed Sep. 11, 2020).

[70] “Att network topology,” http://www.topology-zoo.org/maps/AttMpls.jpg, (ac-
cessed Agu. 16, 2020).

[71] G. L. Wolsey, L. A. abd Nemhauser, “Integer and combinatorial optimization,”
vol. 55, 1999.

[72] M. R. Garey and D. S. johnson, “Computers and intractability: a guide to the
theory of np-completeness,” vol. 24, no. 1, 1982.

[73] “Mininet,” http://mininet.org/, (accessed Nov. 7, 2020).

[74] “Cpqd software switch,” https://github.com/CPqD/ofsoftswitch13, (accessed
Oct. 7, 2020).

[75] L. J. Cowen, “Compact routing with minimum stretch,” vol. 38, no. 1, 2001, pp.
170–183.

[76] “Dial telecom topology,” http://www.topology-zoo.org/maps/DialtelecomCz.
jpg, (accessed Aug. 18, 2020).

https://www.ibm.com/ca-en/products/ilog-cplex-optimization-studio
https://www.ibm.com/ca-en/products/ilog-cplex-optimization-studio
http://www.topology-zoo.org/maps/AttMpls.jpg
http://mininet.org/
https://github.com/CPqD/ofsoftswitch13
http://www.topology-zoo.org/maps/DialtelecomCz.jpg
http://www.topology-zoo.org/maps/DialtelecomCz.jpg

66

[77] “Cogent topology,” http://www.topology-zoo.org/maps/Cogentco.jpg, (ac-
cessed Agu. 16, 2020).

[78] G. Zhao, H. Xu, S. Chen, L. Huang, and P. Wang, “Joint optimization of flow
table and group table for default paths in sdns,” vol. 26, no. 4, 2018, pp. 1837–
1850.

[79] P. Tune and M. Roughan, “Spatiotemporal traffic matrix synthesis,” in In Pro-
ceedings of the 2015 ACM Conference on Special Interest Group on Data Com-
munication, 2015, pp. 579–592.

[80] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate compu-
tation of large-scale ip traffic matrices from link loads,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 31, no. 1, 2003, pp. 206–217.

[81] “Private conversation with researchers,” 2015.

[82] M. Darianian, C. Williamson, and I. Haque, “Experimental evaluation of two
openflow controllers,” in in the proceeding of IEEE ICNP workshop on PVE-
SDN, Oct 2017.

[83] “Ospfv3,” https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute ospf/
configuration/15-1sg/ip6-route-ospfv3.html, (accessed Dec. 14, 2020).

[84] I. Haque, I. Nikolaidis, and P. Gburzynski, “On the benefits of nondeterminism
in location-based forwarding,” in International Conference on Communications
(ICC), 2009.

[85] T. Fevens, I. Haque, and L. Narayanan, “A class of randomized routing al-
gorithms in mobile ad hoc networks,” in AlgorithmS for Wireless and mobile
Networks (A SWAN 2004), Boston, 2004.

[86] T. Fevens, I. T. Haque, and L. Narayanan, “Randomized routing algorithms
in mobile ad hoc networks,” in IFIP International Conference on Mobile and
Wireless Communication Networks, 2004.

[87] “Ryu sdn controller,” https://github.com/faucetsdn/ryu, (accessed Sep. 21,
2020).

[88] “Tmgen tool,” https://github.com/progwriter/TMgen, (accessed Nov. 5, 2020).

[89] “set up python api of cplex,” https://www.ibm.com/support/knowledgecenter/
SSSA5P 12.8.0/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/set up/
Python setup.html, (accessed Nov. 27, 2020).

http://www.topology-zoo.org/maps/Cogentco.jpg
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_ospf/configuration/15-1sg/ip6-route-ospfv3.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_ospf/configuration/15-1sg/ip6-route-ospfv3.html
https://github.com/faucetsdn/ryu
https://github.com/progwriter/TMgen
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/set_up/Python_setup.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/set_up/Python_setup.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/set_up/Python_setup.html

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contribution
	Thesis Outline

	Background and Related Work
	Background
	Software-Defined Networking
	OpenFlow Protocol
	Ternary Content Addressable Memory
	Data Plane Reliability In SDN

	Traffic Engineering

	Related Work
	Reactive and Proactive Failure Recovery Approaches
	Failure Recovery Using Traffic Engineering (TE)

	SafeGuard: Congestion and Memory-aware Failure Recovery in SD-WAN
	Problem formulation
	Network Design
	Variables and Parameters
	Constraints
	Objective Function
	Parameter Sensitivity

	Heuristic Design
	SafeGuard's Architecture
	SafeGuard's Workflow
	Evaluation

	Extending SafeGuard to Multi-Priority Traffic with Non-unitary Switch Memory Demand
	Problem Formulation
	Network Design
	Variables and Parameters
	Constraints
	Objective Function

	Heuristic
	Evaluation
	Setup
	Disscussion on the result
	The impact of topology
	The Impact of Load

	Conclusion and Future Works
	Conclusions
	Future Works

	
	How to run SafeGuard?
	Setting up the environment:

	How to run our model implementation?

	Bibliography

