COUGAR: A SYSTEM FOR CLUSTERING UNKNOWN
MALWARE USING GENETIC ALGORITHM ROUTINES

Zachary Wilkins

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

November 2020

(©) Copyright by Zachary Wilkins, 2020

Table of Contents

List of Tables v
List of Figures vii
Abstract e viii
List of Abbreviations Used ix
Acknowledgements, xi
Chapter 1 Introduction 1
1.1 Cyber Security Fundamentals 2
1.2 Malware Analysis 4
1.21 Static Anmalysis 4

1.22 Dynamic Analysis. 4

1.3 Malware Identification 5
1.3.1 Malware File Hashes 6

1.3.2 Malware Family Labels 6

1.4 Evolutionary Computation 7
1.41 Genetic Operators]
Chapter 2 Literature Review 11
2.1 Malware Clustering 11
2.2 Evolutionary Cluster Optimization 14
2.3 Malware Signature Extraction 16
24 SBUmMMATY o . it e e e e e e e e e e e e e e e e e 19
Chapter 3 Methodology 20
3.1 Dataset e e 21
311 EMBER 22

3.2 Feature Processing, 23
3.2.1 Vectorization 23

3.2.2 Dimension Reduction 24

ii

3.3 Clustering Algorithms 25
3.31 DBSCAN 26

332 OPTICS e 26

333 k-means e e 27

3.4 Evolutionary Multi-Objective Optimization 28
341 Objectives e e 28

342 NSGA-IID 29

3.5 Distributed Computation 32
351 ApacheSpark, 32

352 COUGARomnSpark 33

3.6 Signature Generationm 33
3.6.1 Signature Considerations 34

3.6.2 Signature Generation Algorithms 34

3.7 Metrics & Examples 36
3.7.1 A Musical Example Problem 3T

3.7.2 Classification 37

3.73 Clustering e e 39

3.8 SUmMmATY e e e e e e e e e e e e e e e e 42
Chapter 4 Evaluations 44
4.1 Preliminary Experiments on 3,000 Samples 44
411 Training Results 46

4.1.2 Statistical Analysis of Training Results 50

413 Testing Results 52

4.2 Final Experiments on 10,000 Samples 53
4.21 Objective & Labelling Results 54

422 Signature Results 58

423 Computation Time 65

4.3 SUmMmATY o .t ot e e e e e e e e e e e e e e e e e 67
Chapter 5 Conclusion, 68
51 Future Work 69
Bibliography 71
Appendix A Supplementary Tables T8

iii

Appendix B Malware for Cluster Signature Discussion

iv

List of Tables

3.1
3.2

3.3
3.4
3.5

4.1
4.2

4.3
4.4

4.5

4.6

4.7
4.8

4.9

Al

A2

A3

A4

Sample of import terms from an EMBER file 23
Default values and bounds for clustering algorithm

PATAINELETS o . e e e e e e e e e e e e e e 26
Prediction and truth labels for the musical dataset 37
Vectorization of instrument use in the musical dataset 42
Summed instrument use by genre in the musical dataset 42
All experiments/analyses conducted 45
Top three unique clusterings per algorithm on 2,000

samples, ranked by ascending objectives 46
Tukey’s HSD test on each of the three objectives 50
Objective scores and metrics for the final DBSCAN
training/testingrun Lo L 52

Top three unique clusterings per algorithm on 10,000

samples, ranked by ascending objectives 54
Avg. homogeneous cluster count signature length

COMPATISOIL v v i e b et e e e e e e e e e e e 59
Avg. dropped cluster count signature length comparison 60
Selected elite clusterings per algorithm on 10,000 samples,

ranked by cluster representation 61
Elapsed time statistics, in minutes, on 10,000 samples 66

Final average objective score for each DBSCAN run on

3000 samples e T8
Final average objective score for each OPTICS run on

3000 samples e T8
Final average objective score for each k-means run on

3000 samples e 79
Execution times of COUGAR on Spark using DBSCAN on

10,000 sampleso 79

A5

AB

Execution times of COUGAR on Spark using OPTICS on
10,000 samples

Execution times of COUGAR on Spark using k-means on
10,000 samples

vi

List of Figures

1.1 Evolutionary process in the context of computing
1.2 One-point crossover example for the OneMax problem
3.1 High-level COUGAR architecture
3.2 Transformation from EMBER to embedding
3.3 Example of three non-dominated fronts in

two-objective space

4.1 Avg. objective performance over one run of each
clustering algorithm on 2,000 samples

4.2 Avg. count of highly homogeneous clusters (obj. 1)

over 10 runs on 2,000 samples
4.3 Avg. sum of SSE (obj. 2) over 10 runs on 2,000 samples
44 Avg. median cluster size (obj. 3) over 10 runs on

2000 samples L
4.5 Avg. count of highly homogeneous clusters (obj. 1)

over ten runs on 10,000 samples
4.6 Avg. sum of SSE (obj. 2) over ten runs on 10,000 samples
4.7 Avg. median cluster size (obj. 3) over ten runs on

10,000 samples

vii

Abstract

Malicious software is a persistent threat across our digital platforms. With unending
malware growth, and increasingly higher profile attacks, organizations across the
world are ramping up their eyber defence capabilities.

Cluster analysis is one such tool for understanding the threats faced. By organizing
seemingly disconnected samples according to their behaviours, attack patterns can
be discerned and defended against. But given the volume of malware, an automated
approach is necessary to scale.

In this thesis, I design and implement a system called COUGAR which uses a
multi-objective genetic algorithm to automatically optimize clustering algorithms.
The clustering algorithms are applied to low-dimensional embeddings derived from
high-dimensional malware behavioural data. The system employs function imports
extracted from malicious binaries, but is flexible enough to accommodate many other
features derived from static or dynamic malware analysis. After the optimization
process completes, the system generates signatures for each cluster which prioritize
usability and comprehensible signature components.

The experiments indicate that any of the chosen clustering algorithms can pro-
duce at least satisfactory results, with density-based approaches generating especially
suceessful clusters, achieving an F-Score of 0.79 and V-Measure of 0.88. The resulting
signatures are very representative of their respective clusters, with the vast majority

achieving representation scores of at least 90%.

List of Abbreviations Used

ANOVA ANalysis Of VAriance

API Application programming interface

AV Anti-virus

COUGAR Clustering Of Unknown malware using Genetic Algorithm Routines
DBSCAN Density-based spatial clustering of applications with noise
DEAP Distributed Evolutionary Algorithms in Python

DoS Denial-of-Service

EMBER Endgame Malware BEnchmark for Research

EMO Evolutionary multi-objective optimization

GA Genetic algorithm

IDS Intrusion detection system

MD5 Message Digest 5

MOGA Multi-objective genetic algorithm

NSGA Non-dominated sorting genetic algorithm

OPTICS Ordering points to identify the clustering structure

PCA Principle component analysis

PE Portable executable

SCOOP Secalable COncurrent Operations in Python

SHA Secure Hash Algorithm

SSE Sum squared error

555 Scaled summed similarity

t-SNE t-distributed stochastic neighbour embedding

TF-IDF Term frequency — Inverse document frequency
Tukey’s HSD test Tukey’s Honestly Significant Difference test

UMAP Uniform Manifold Approximation and Projection

Acknowledgements

Thanks to my supervisors, Dr. Nur Zincir-Heywood and Dr. Frédéric Massicotte, for
their contimued support and guidance, and to my readers, Dr. Malcolm Heywood and
Dr. Tami Meredith.

I would like to thank the employees and friends of the Canadian Centre for Cyber
Security, without whom this thesis would not be possible.

As well, my parents have always stressed the importance of education, and sup-
ported my academic ventures unreservedly. I cannot thank them enough. A special
shoutout to my mom for proofreading every draft of this thesis.

Last, but certainly not least, I would like to thank my family and friends for
listening to me yammer on about computers for over twenty years. It's not going to

stop any time soomn.

Chapter 1

Introduction

As the world has become more dependent on computers, so too has their value risen
in the eyes of cyber eriminals. Increasingly, malicious actors have sought to employ
widely available malware to inflict damage or extract financial rewards. This scales
from consumers and small businesses, which are especially vulnerable to ransomware
attacks [1], to large technology companies, such as DynDNS, which suffered a major
denial-of-service (DoS) attack in 2016 that crippled large parts of the global internet
[2].

Part of the problem is the large numbers of consumer devices coming online as
part of the Internet-of-Things, whereby household appliances (stove, kettle, doorbell,
etc.) are connected to the Internet. Manufacturers, aiming to be affordable, can
cut corners in regard to security, resulting in the Mirai malware employed in the
aforementioned DoS attack [3]. This will be further hastened by the launch of 5G

wireless [4], also enabling always-on device connectivity.

Furthermore, malware mutation engines have allowed for an unending torrent
of binaries that are difficult to detect with traditional, signature-based anti-virus
software [5]. Polymorphic malware, software that can change their abilities, are also
a growing problem [6]. It has been estimated that in 2014, over 1,000,000 new malware
samples were introduced every day, a 26% increase from the previous year [7]. This

growth makes scaling manual malware analysis impossible.

As a result, it is necessary to fight computers with computers. One approach
that has proven successful is clustering [5-7]. While there are innumerable ways to
disguise malicious files, their attack and data exfiltration techniques are finite [7].
By clustering based on malicious behaviours, patterns, and severity, many malware
may be reduced to a single grouping [8]. In doing so, newly observed malware can
be compared to their already classified peers, allowing for manual analysis to be

triaged to the most severe samples. Furthermore, by identifying malware clusters

1

2

with signatures, their behaviour can be concisely described and referred to [9]. These
signatures often consist of deseriptive information pertaining to the sample [10,11].

The research objective of this thesis is then to identify and describe commonal-
ities in malware samples through an automated clustering and signature generation
process. This is achieved through the design and development of a system called
COUGAR (Clustering Of Unknown malware using Genetic Algorithm Routines). The
novel contribution of COUGAR is a tunable process that reduces high-dimensional
behavioural data from malware to two-dimensions, and optimizes clustering behaviour
using a multi-objective genetic algorithm; this combination of techniques is unseen
in the literature. After initial experiments on a small 3,000 sample dataset, a larger
10,000 sample dataset is clustered, and signatures generated for each cluster.

The results indicate that each of the tested algorithms succeed to varying degrees
on the smaller dataset, while a clear advantage is attained by one algorithm on the
larger dataset. The generated signatures are highly representative of the discovered
clusters, but their comprehensibility can be an issue in certain clusters.

In the following sections, 1 will provide necessary background information for
contextualizing the remainder of the thesis. The fundamental motivations of cyber
security are discussed in Section 1.1. The types of analysis enabling the decomposition
of malware for clustering are given in Section 1.2. Identification of malware and their
families is covered in Section 1.3. Finally, evolutionary computation and its prominent

genetic operators are presented in Section 1.4.

1.1 Cyber Security Fundamentals

It should be of no surprise that when one has something of value, opponents may
seek to take or destroy it. In the digital world, cyber security is concerned with the
task of protecting digital resources and information.

Those that seek to undertake such malicious actions can come from a variety of
backgrounds [12]:

¢ Large nation-states desire disruption of their adversaries.

¢ Cyber criminals engapge in tasks for financial reward, contracting their abilities
to the highest bidder.

¢ Hacktivists have a political or otherwise ideological message to deliver.
¢ Terrorist groups aim to sow discontent or provoke violence.

¢ Disgruntled or compromised employees work against their own organization
from within.

¢ Others do it simply for amusement, or as a show of strength.

All of these people can be referred to as malicious or cyber-threat actors.

Malicious actors have a variety of pathways with which to sabotage their enemies
[13]. Some abuse bugs in code to access forbidden resources. Others employ social
engineering to trick their targets into giving up their passwords or other identifying
information. In this thesis, my focus is on those that write or otherwise engage
malicious software, called malware, that runs on the target’s computers to achieve
the desired effect.

Malware may be designed to destroy digital information, or hold it hostage. Sur-
reptitious malware may not even make its presence known to the user, instead si-
phoning valuable files or computing resources. The latter case is especially true for
embedded devices like home cameras. These ‘zombie’ devices sit dormant, function-
ing as normal [14], until they are activated to take part in some distributed attack,
where the victim is unable to effectively block traffic originating from a variety of
locations.

Furthermore, the nature of software is such that deploying a modified version
of neutralized malware can be only a few lines of code away. This cat-and-mouse
game between defenders and attackers naturally lends itself to further study on the
defensive side. Some cyber professionals specialize in malware analysis, which is
discussed further in Section 1.2.

While there may be many different variants of these malware, the individuals
behind them are often working to accomplish some specific goal, and collaborating
with their own colleagues. Malware variants can be broadly grouped under different
families, where a family of malware may originate from the same group of individuals,
or be forked from a common codebase. To enable defensive professionals to talk about
these groupings in a concise way, they may label notable malware families. Discussion

of this topic is elaborated on in Section 1.3.

1.2 Malware Analysis

To understand more about the malware deployed against friendly targets, one might
analyze the malicious binary and extract information from it. Malware authors know
that they may be under observation, and therefore seek to make this process more
difficult for the defenders. Generally speaking, analysis techniques can be classified
as either static or dynamic. The following subsections elaborate on each. Neither is

without flaws, and drawbacks are noted.

1.2.1 Static Analysis

Static analysis consists of analysis types that do not run the executable. As a result,
static analysis is typically safer, since the malware cannot inadvertently cause damage
to the machine upon which it is running.

Static methods derive information from data that is already contained within the
file. This might include the extraction of strings, possibly indicating IP addresses or
domains that the malware calls to. As the malware will be designed to run on some
target platform, the executable structure can be exploited to extract information.
For example, the import table in Windows Portable Executables (PEs) contains the
libraries and functions that the binary will require to execute properly. These pieces of
information can be taken together and analyzed to understand the possible behaviour
of the malware.

To evade static analysis, malware authors may encrypt portions of the binary
or employ packers, tools that modify binaries to avoid such observation [15]. These
practices can limit the effectiveness of static analysis.

This thesis engages features derived from static analysis to estimate malicious

behaviours.

1.2.2 Dynamic Analysis

In contrast, dynamic analysis detonates (runs) the executable in a controlled envi-
ronment to glean valuable information. Since the executable in question is known
to be malicious, care must be taken to ensure that the detonation machine does not

work against the defender. To that end, virtualization is an effective tool in dynamic

analysis.

Dynamic methods often include detonation in specific environments that are
known or suspected to be vulnerable to the binary under observation. For exam-
ple, older versions of Windows that have reached their end-of-life no longer receive
security updates, but may still be used by those unaware of the security implica-
tions. These machines are especially appealing targets, given their inability to be
patched. By employing different virtualized environments, defenders can discover
how the malware may behave differently or exploit different vulnerabilities depending

on the platform.

When the malware runs on the machine, various behaviours may be logged by the
observers, using tools like Cuckoo sandbox!. This could include the network requests
sent from the machine, the function calls made by the executable, and even new
files (drops) that are downloaded or created as part of the execution process. Since
malware must be allowed time to execute, and then the machine restored to a clean
state, dynamic analysis is often much slower than static analysis [16], which can work

as fast as the hardware allows.

Since threat actors are well aware of sandbox analysis techniques, they may include
mitigation tactics within the malware to avoid discovery [17]. Checks for known
sandbox characteristics or observational processes can enable the malware to avoid
exposing itself, which is especially an issue with virtualized sandboxes [16].

While dynamic analysis features are not emploved in this thesis, their potential

should not be overlooked, and is an exploration area for future work.

1.3 Malware Identification

Given the volume of malware produced and distributed, it is important to be able to
effectively identify and communicate the nature of these threats. Specific malware are
usually addressed by their hash sum, while groupings of malware may have a family

label assigned. These processes are detailed in the following subsections.

lhttps://cuckoosandbox. org/

https://cuckoosandbox.org/

1.3.1 Malware File Hashes

Malware are commonly identified by their hash sum, using such hashing algorithms as
Message Digest 5 (MD5) or the Secure Hash Algorithm (SHA) family. Hash functions
possess a number of properties that make them well suited for individual identifica-
tiomn.

Hash functions are, in mathematical terms, surjective one-way functions. Given
some input, the hash function will always produce a corresponding output. Comput-
ing the inverse, on the other hand, is prohibitively difficult. This allows hashes to
be freely shared without concern for sharing the underlying malware. They are also
highly efficient to compute, with some processors even having specific instructions to
accelerate hash computation. In addition, hash functions use a fixed output size that
iz not tied to the size of the input, which allows for compact representation of very
large files.

Hash sums are often represented using hexadecimal notation. This is the single
largest drawback to using hashes. Without additional information, the hash is only

useful for identification, and provides no context for the underlying file.

1.3.2 Malware Family Labels

Groupings of notable malware with a common authorship or codebase may be assigned
a family name. Employing a family name allows for many individual samples to be
broadly grouped, and discussed, as it is understood that malware within the same
family will exhibit similar properties and behaviours. These names can even be given
by their authors in some cases [3]. Unfortunately, the process by which family labels
are computed is not standardized.

Anti-virus companies will often have their own internal naming scheme which are
computed as part of their identification systems. For example, the malware with the
MD?5 hash of 1978c37af0e28d417198d55e8a970c8c¢ is identified by many vendors as

similar but varied names:

o Ad-Aware, ALYac, Arcabit et al.: Trojan.Ransom.Cerber. 1
e AhnLab-V3: Trojan/Win32.Cerber.R184564

o Fortinet: W32/Cerber.4C18!tr.ransom

o TrendMicro: Mal_Cerber-NS51

While a human can quickly ascertain the common token as Cerber, and refer to
the malware as such?, a machine approach may consider each as entirely separate
labels. To address that, some researchers have created solutions to consolidate AV
families to a common label. One such tool, AVClass is pre-computed as part of the
dataset employed in this thesis.

AVClass is freely available software® that allows labels to be decided in an auto-
matic process agnostic to the platform or antivirus vendor [18]. Notably, AVClass
can be computed without the malicious executable by hooking into online APIs, such
as VirusTotal’.

AVClass begins by taking as input the assigned AV labels, as well as manually
created lists of generic terms and label aliases. After removing duplicates and differing
suffixes to common prefixes, AV labels are tokenized and filtered. The filtering process
ensures tokens are lowercase, do not contain extraneous digits, and are of sufficient
length (> 4). Employing the alias and generic lists to replace and remove tokens,
respectively, a final list of minimal tokens is achieved. They are ranked according to
their frequency, with the top token assigned as the final label.

This concludes the presentation of background information pertaining to the field
of cyber security, the domain within which this research problem is framed. The

following section introduces evolutionary computation, which enables optimization in
the COUGAR system.

1.4 Evolutionary Computation

Evolutionary computation is a subset of computer science focused on emulating ob-
served natural processes to solve problems. This is often implemented as a stochastic
optimization process in the style of biological evolution.

The typical evolutionary process begins with the creation of an initial population
of genotypic individuals. These individual chromosomes usually consist of a sequence

of bits or numbers, called genes, where the genes are taken together as the input

*https://blog.malwarebytes.com/threat-analysis/2016/03/cerber-ransomware—new—bu
t-mature/

*https://github.com/malicialab/avclass

ihttps://www.virustotal .com

https://blog.malwarebytes.com/threat-analysis/2016/03/cerber-ransomware-new-but-mature/
https://blog.malwarebytes.com/threat-analysis/2016/03/cerber-ransomware-new-but-mature/
https://github.com/malicialab/avclass
https://www.virustotal.com

Initial Population

l

Fitness Evaluation

l

Selection

True

Cutput Population

Figure 1.1: Evolutionary process in the context of computing

(phenotypic expression of the chromosome) for some problem to be solved. The
algorithm runs until some halting criteria is satisifed, often a specified number of
generations, wherein each individual is scored according to some fitness function.
The fitness of an individual is how well each solves the given task, and may consist
of multiple objectives. Individuals that do not solve the task may be culled from
the population, while the most successful may be selected for reproduction. In the
reproductive process, offspring of the parent individuals are created through a variety
of genetic operators and incorporated into the population. When the evolutionary
process completes, the output population consists of elite individuals most capable of

solving the given task. This process is visualized in Figure 1.1.

1.4.1 Genetic Operators

As mentioned, genetic operators are used to create or modify offspring from a parent
population. The primary operator classes are selection, crossover, and mutation.

To illustrate the usage of these operators, consider a trivial example task called
the OneMax problem [19]: given a string of bits, achieve the maximum possible sum
of bits. For a bitstring of length n, the maximum score will be n, and the minimum

score will be 0.

Selection

Selection operators decide which individuals are to be employed. Not all individuals
will successfully solve the task, and those that do solve the task may have varying
levels of achievement. Selection operators allow the algorithm to be guided toward the
optimal solution(s) by selecting high performing or otherwise desirable individuals.
In the OneMax example, the selection process may simply be to choose some m

individuals that achieve the highest sum of the bits in their string.

Crossover

Crossover is the process by which two parent individuals produce two children. The
crossover operator takes genes from each of the parents and recombines them to
produce new individuals. This allows for individuals to be produced which share
desirable properties of both parents. These crossover actions can be messy, where the
resulting individuals may have more or less genes than their parents.

There are many ways with which to crossover individuals. The simplest example
is one-point crossover. For the OneMax problem, given two binary strings of length
n, a random integer p is chosen such that 0 < p < n. This index p is the location
where the genes of the parents will be joined. Genes 0 to p from the first parent, and
genes p to i from the second parent, are joined to create the child individuals. This

process is visually depicted in Figure 1.2, with p = 2.

Mutation

Mutation is the process by which one parent individual may produce a child. The
mutation operator may select a gene of an individual and change the value of that gene
spontaneously. This stochastic process encourages diversity within the population
and can help solutions converge to the global optimum by avoiding local optima.
Oftentimes, there are two parameters by which this process will be decided: the
probability of any mutation happening, and the probability of any individual gene
mutating. As a result, it is possible for the mutation operator to select an individual
for mutation, without actually mutating any of its genes. Conversely, it is also possible

for every gene of an individual to be changed by the mutation operator in one mutation

10

0
1 0 1 1

3 4] 6

1 _ N B N NN N NN NN NN N 5N

¢ 1

Figure 1.2: One-point crossover example for the OneMax problem

action.

In the OneMax example, a mutation will simply result in a bit being swapped
from 0 to 1, or vice versa.

This concludes the presentation of background information for the thesis.

In this chapter, I introduced the COUGAR system and associated background.
This system enables the research objective of automatically clustering malware be-
haviours extracted through static analysis processes. COUGAR does so by creating
a high dimensional vectorization, reducing it to a low dimensional embedding, and
optimizing parameters of clustering algorithms applied to that embedding via a multi-
objective genetic algorithm.

The rest of this thesis is organized as follows. Related works in the literature
are summarized in Chapter 2. The methodology followed in this research is explored
in Chapter 3, including evaluation metrics, the datasets, feature processing tech-
niques, clustering algorithms, evolutionary multi-objective optimization procedures,
distributed computation, and signature generation. Evaluations and results are pre-
sented in Chapter 4. Finally, in Chapter 5, conclusions are drawn and directions for

future work are suggested.

Chapter 2

Literature Review

In pursuit of an automated malware clustering system, it was necessary to consult
contemporary works in the literature relevant to research areas in this thesis. Aligning
fruitful approaches from these differing areas enables the methodology underlying the
COUGAR system. This chapter summarizes related works and introduces motivation
for design decisions in Chapter 3.

Since the primary goal of this thesis work was malware clustering, it is presented
first in Section 2.1, which covers successful approaches to this task. In addition,
the intention was for the clustering process to be optimized by a genetic algorithm.
Hence, Section 2.2 discusses works that have engaged such techniques. Finally, the
extraction of malware signatures was a secondary goal of this work, and so this area
of research is presented in Section 2.3. A brief summary closes this chapter in Section
2.4

2.1 Malware Clustering

Malware clustering is not an unknown topic, and a number of approaches have been
explored to address this issue.

Beginning with a survey of the field, Faridi et al. [20] conduct an extensive study
to determine optimal clustering algorithms, parameters, and features for malware
clustering. They run 5,673 malware from an industry partner in a Cuckoo sandbox!,
and collect network communications and system calls. They construct ground truth
reference clusters using triggered alerts from Suricata®, a network threat detection
engine. Alerts that belong to one family uniquely are taken as the label for that
sample. This process yields 94 clusters. After extracting a variety of features from the

collected Cuckoo information, they group the features into distinct categories. They

lhttps://cuckoosandbox. org/
*https://suricata—ids.org/

11

https://cuckoosandbox.org/
https://suricata-ids.org/

12

reduce these features to the most important strings, and vectorize the corpus using the
Term Frequency — Inverse Document Frequency (TF-IDF) technique. They employ
a number of distance metrics as well as constructing dissimilarity matrices directly
from the vectorization. The authors then engage a variety of clustering algorithms,
and present an assortment of clustering metrics. They indicate that network features
were the most successful, while including all features lead to the worst performance.
As far as clustering algorithms were concerned, DBSCAN with NCD, spectral with
cosine similarity, and hierarchical with Bray-Curtis and average linkage provided the

best overall performance.

Employing Cuckoo sandboxes for extracting behavioural information is a popular
technique, also used by Duarte-Garcia et al. [6], Lee et al. [7], and Pirscoveanu et
al. [21]. Each of these works use the extracted API call information as input for
feature generation, but their output differs given the different approaches they use.
In the first work, Duarte-Garcia et al. [6] construct a system to characterize malware
behaviour, with the intent of assigning labels to unseen samples. To filter out noise,
API calls common to at least 90% of malware are removed. They employ TF-IDF,
akin to Faridi et al. [20], conceptualizing each malware as a document, and each call
as a term in that document. k-means is employed, varying the number of clusters and
evaluating cluster quality using silhouette coefficient. They then engage a number of
classifiers. Their results show that 60 clusters was the most successful configuration,

and gradient-boosting decision trees were the most successful classifier.

Lee et al. [7] instead concoct an “intelligent analysis” system to guide malware
analysts in their triage efforts against malware mutants. API calls from Cuckoo are
used to create bigrams representing call sequences. These bigrams are then compared
using cosine similarity to facilitate grouping. Mutants that are above a given threshold
t are joined together in a graph. This process results in 210 groups of malware. The
top ten groups, however, contain 43% of the samples, which can be automatically
categorized as mutants. These results depend on the sensitivity of the threshold. A
larger t leads to more specificity in clusters, whereas a lowered threshold leads to a

more general picture, with more samples being included.

Self-organizing maps (SOMs) are the tool of choice by Pirscoveanu et al. [21] to

cluster malware behaviours. From the aforementioned API calls, they extract features

13

representing successful /unsucecessful calls, and the return codes from failed calls. They
then apply principal component analysis (PCA), a form of dimension reduction, to
reduce the feature set. After using gap statistics to choose the number of clusters,
they employ SOMs to project each sample onto a two-dimensional map, where the
number of clusters is equal to the number of nodes in the map. As ground truth, they
label each malware by collecting their anti-virus labels from VirusTotal, and remove
noise by faceting to the top five Microsoft AV labels. Their SOMs achieve accuracies

of approximately 80% when using a 2x2 map, and 70% with a 4x4 map.

Alternative clustering approaches include the use of distributed computation and
fuzzy clustering [5,22]. Jang et al. [5] create an automated, large scale malware
triage system called BitShred to target malware mutants. Employing feature hash-
ing, they create a fingerprint for each malicious sample and calculate approximate
Jaceard similarities. Clusters are created hierarchically based on a variable thresh-
old. Co-clustering can then occur to discover correlated features in sub-groups of
malware. Their results indicate that their approach is much faster than contempo-
rary techniques, with similar accuracy. The second work focuses on mobile threats
instead of the Windows platform, with Acampora et al. [22] creating a system to
discover Android malware phylogeny. Using established Android malware datasets,
they run 3,000 samples on a smartphone and collect system call traces, which are
representative of the malicious behaviours. They transform these calls using a pro-
cess modelling language called Declare, and create system call execution fingerprints
(SEFs). From these SEFs, a dissimilarity matrix is calculated and passed to a fuzzy
clustering algorithm, FANNY. This allows the researchers to determine the member-
ship degrees of each malware family with respect to the determined clusters. They
validate their results by establishing a reference clustering from previous literature,

achieving precision and recall scores of 0.8 and 0.73, respectively.

Given the success of natural language approaches, I focus on similar techniques,
especially taking inspiration from the intelligent triage intentions of Lee et al. [7] and

the dimensionality reduction of Pirscoveanu et al. [21].

An issue all of these works have in common is their approach to feature extrac-
tion. Namely, each require the original malicious binaries to extract features that

are appropriate for other systems. This makes comparisons on the same dataset very

14

difficult. As well, distributing malicious files is fraught with peril, as their danger-
ous nature can cause discomfort to system administrators, and the responsible use of
these dangerous files is difficult to verify when distributed openly. A solution to this
issue is the use of an open and reputable, third-party feature dataset.

2.2 Evolutionary Cluster Optimization

Optimization of parameters is a common use case for genetic algorithms (GAs), and
50 too have they been applied to clustering.

Three recent works try to ascertain the optimal choice of &k when applying k-
means clustering to datasets [23-25]. Kurinjivendhan and Thangadurai [23], as well
as Anusha and Sathiaseelan [24], modify k-means to incorporate the evolutionary
process, with the latter showing improved silhouette scores relative to the compared
Grouping Genetic Algorithm. Irfan et al. [25] instead demonstrate improved per-
formance with respect to the number of iterations of the algorithm. Unfortunately,
the triviality of the employed datasets (< 3 classes, < 200 data samples) limits the
applicability of the results.

Employing a more complex dataset, Al-Malak and Hosny [26] explore a combi-
nation of clustering and the evolutionary process to group the multimodal CoPhIR
dataset, containing photography metadata from Flickr. Specifically, they incorpo-
rate an adaptive weighting system, that changes the relevance of the dataset features
as part of the mutation process. They evaluate using the Davies-Bouldin index, a
metric based on Euclidean distance to the cluster centres. Solutions developed us-
ing the adaptive weighting score are, on average, 10% better than the non-adaptive
algorithm.

From a real-world application perspective, multi-objective genetic clustering is
applied to MRI brain scans by Mukhopadhyay et al. [27]. They engage NSGA-II to
determine optimal cluster centres and the partitioning of the space. The objectives
to be optimized are three clustering metrics, namely, the Xie-Beni index, the PBEM
index, and the fuzzy C-means measure. Generally speaking, the GA is optimizing
the separation between clusters, as well as the compactness of those clusters. As
NSGA-II outputs a front of non-dominated solutions, rather than a single ‘best’ solu-

tion, the researchers use three distinet clustering ensembles to determine final cluster

15

membership. Ranking the solutions against other algorithms such as k-means and
expectation maximization, the best GA-backed techniques show a 5 percentage point
increase in classification accuracy and, at minimum, 20% increase in the Adjusted
Rand Index. The hypergraph partitioning algorithm clustering ensemble is the most

suceessful across their experiments.

Another area of application, this time in the realm of computer security, is the
identification of encrypted traffic, as explored by Bacquet et al. [28]. The researchers
seek to classify encrypted flows as SSH or not without looking at such common fea-
tures as port mumbers. They use a variant of the Pareto Converging Genetic Algo-
rithm, a so-called steady state GA. This is because only two population members
are replaced at each generation, resulting in a gradual change over epochs. Both
feature selection and cluster count are evolved as part of the individual representa-
tion. The objectives to be optimized include maximizing distance between clusters,
as well as minimizing all of: the distance within clusters, the number of clusters, and
the mumber of features selected. After evolution has completed, k-means is run for
each individual in the Pareto front and a label is assigned for each cluster based on
the majority vote. The best individual is then selected based on the detection rate
and false-positive rate. The researchers modify their previous work to incorporate a
divisive hierarchical approach to clustering, where clusters are partitioned if they do
not attain a specified “purity threshold”, corresponding to the cluster label. In the
experiments, the system is trained and tested on web traffic collected from a large
university, and benchmarked against k-means, DBSCAN, expectation maximization,
as well as their previous non-hierarchical GA. The non-hierarchical GA demonstrates
performance within 5 percentage points of the otherwise best technique (k-means)
while also achieving much lower false positives (decrease of 10 percentage points).
The hierarchical variant further increases the performance to be within 3 percentage

points of k-means, while also maintaining low false-positive rates around 1%.

Clustering optimization via genetic algorithm has also been applied to documents.
Jian-Xiang et al. [29] begin by creating a document similarity matrix, based on the
Euclidean distance between keyword similarity vectors. In this work, keyword simi-
larity is based on the length of the common substring between terms. The objective

for the GA is then to minimize distance between the points assigned to each class and

16

the class centre, thereby finding optimal cluster centres. They apply their technique
to 600 documents from various disciplines in the Chinese Social Sciences Citation
Index, and compare the results to those achieved by k-means. The results indicate
a modest increase in classification performance (26 percentage points), and overall
objective performance, at the cost of increased convergence time for the GA. Another
important drawback is the high-dimensional dense keyword matrix, which does not
scale well with an increase in document terms.

In these works, k-means is often the favoured tool, and augmented by or in-
corporated into the genetic algorithm. While the results do not show a dramatic
performance increase, they do consistently demonstrate the well-rounded nature of
solutions produced using evolutionary optimization. This is probably due in part
to the Pareto-optimal sets of solutions produced by multi-objective GAs. Accord-
ingly, further investigation of clustering algorithms tuned by multi-objective genetic
algorithms is warranted.

2.3 Malware Signature Extraction

Creating signatures for malware is another popular topic in the literature. As dis-
cussed in Section 1.2, static and dynamic procedures can be applied to extract features
for signature generation. These signatures are used for identification and analysis pur-
pOSes.

Newsome et al. [9] create a system called Polygraph to improve the effectiveness
of intrusion detection systems (IDSs) against polymorphic worms, capable of altering
their malicious payload. While the payload is inconsistent, in order for the exploits
to remain effective, there are “invariant bytes” that must exist for any given exploit.
The authors use this to their advantage, extracting byte groups from malicious and
benign network flows as tokens, and using these tokens to construct three kinds of

signatures:

1. Conjunction signatures simply contain every token extracted from the sample.

Another sample matches if its tokens are exactly the same as the signature.

2. Token-subsequence signatures are created by finding an ordered sequence of

tokens present in every sample. Another sample matches if it contains the

17

chosen tokens.

3. Bayesian signatures are probabilistic models based on a naive Bayes classifier,
rather than exact sets of tokens to match. The probability of a term indicating
maliciousness is calculated independently based on its presence in malicious or
benign traffic flows. Another sample matches if its summed token probabilities
exceed a threshold.

They evaluate each signature type against three scenarios: one worm, benign traffic
and one worm, and benign traffic and multiple worms. No clear winner emerges, with
each having advantages and disadvantages depending on the worm and the problem
scenario. A specific issue is the rigidity of the signatures created. The authors
recommend a combination of the three for maximum effect.

Three other surveyed works also employ network traffic for signature genera-
tion [30-32]. The former two employ Snort IDS*rules and hierarchical clustering to
generate signatures, while the latter operates on the raw network packets. Zurutuza
et al. [30] capture internet traffic to be passed through Snort by mocking a number
of popular web services. Traffic that triggers alerts are clustered using a hierarchi-
cal agglomerative clustering method to model known attacks, while unknown traffic
is separately clustered to model new attacks. These clusters are then transformed
into Snort rules, and fed back into the capturing system, where the cycle continues.
They are eventually able to classify 99% of traffic, with the small number remaining
attributed to misconfigurations.

Choi et al. [31] also aim to rapidly generate malicious signatures by constructing
a hierarchical cluster tree of network signatures. Snort IDS rules are clustered by
computing similarity via their longest common substrings (LCSs). A binary tree is
produced, where the leaves of the tree are signatures, while the nodes are similarity
scores. When a new malware is seen, a Snort signature is produced and compared
through the tree, where it is placed near its most similar signatures, rebalancing as
appropriate. Using the LCS allows for generalization of the signatures, and can be
compited in linear time using a suffix tree. This work only describes the technique,

and would need to be assessed separately to ascertain its effectiveness.

*https://www.snort.org/

https://www.snort.org/

18

In the final network-based work, Wang et al. [32] employ feature hashing on net-
work flow bytes to scale their system. After manually assembling clusters of similar
malware, they hash n-grams extracted from the flows to generate a binary matrix.
The most significant features from each cluster are extracted based on their “cluster
coverage” , indicating a significant presence within the cluster. They union the fea-
tures, and engage a greedy Bayesian selection function to maximize the probability
of malicious features. By increasing the number of selected features to 5, they reduce
false positives to less than 1%, even when noise in the flow pool is increased to 10%.
The downside is that the signatures are black-box models due to the feature hashing,

offering no indication as to the malware they identify.

Facing an entirely different threat, Zhang et al. [10] use metadata from Android
applications to identify malware families and generate signatures. The information
extracted includes the app name, permissions emploved, as well as activity name.
After removing common terms to reduce noise, the terms are grouped by their simi-
larity score, as calculated using TF-IDF and k-means for clustering. They extract the
similarities into patterns consisting of a particular field, an operator (exact, prefix,
or suffix match), and a value. These signatures are very interpretable for humans,
while also being simple to implement in a classifier. They validate the effectiveness
of the signatures using 1.75 million malware, and extract over 12,500 unique family

signatures, which are said to achieve “no false positives in production”.

Han and Olivier [11] also emphasize interpretability in their malware signature
generation work. They run malware in a sandbox to capture system calls which are
generalized into categories, and converted to events consisting of type, operation,
and arguments. This sequence of events is taken as a malicious behaviour. For each
malicious behaviour, n-grams are extracted to form signatures. The researchers find
that setting n = 5 provides the best balance of generic versus specific. To automate
this process, the events are vectorized, allowing for clustering with k-means. In their

evaluation process, they achieve F-Scores as high as 0.95.

Many of these signatures have to make a trade-off between interpretability and
usability. Feature hashing enables high comparison performance, for example, but
preempts the possibility of inspecting the resulting model. A key concern for any

future work is to ensure that the resulting signatures maintain some balance between

19

these conflicting objectives. Selecting features for the signature is also an area of
interest, as a probabilistic approach based on labels could be faulty due to behavioural
overlap between malware families. An alternative approach is to take inspiration from

anomaly detection by selecting less seen features to create the final signature.

2.4 Summary

In this chapter, I discussed the three research areas of key importance to the chosen
thesis topic. This includes malware clustering, evolutionary cluster optimization, and
malware signature extraction.

The surveyed works suggest areas for exploration as part of this thesis. My novel
contribution is enabled by the extension and conjunction of disparate techniques dis-
cussed. These approaches taken together will allow for a fully automated malware
clustering system unseen in the literature. Namely, I will employ natural langnage
processing techniques to cluster malware as one might cluster documents, and opti-
mize the clustering parameters through the use of a multi-objective genetic algorithm.
Following this, signatures for each cluster will be generated in a process that targets
both usability and interpretability, and selects features for inclusion according to their
global usage.

Chapter 3

Methodology

In this chapter, I will detail the techniques with which the COUGAR system was
implemented and thesis results achieved. It should be noted that in the penultimate
section (3.7), an analogous scenario is introduced to demonstrate the metrics and

methodology.

The overall architecture of COUGAR is presented in Figure 3.1. This figure
indicates the transitions between components in the system, and direction in which
data is read or written. To begin, the Parquetizer converts the appropriate data
from the EMBER dataset to Parquet tables, before notifying the vectorizer. The
vectorizer processes the Parquet tables, saving the vectorization to a datalake, and
notifies the reducer. The reducer uses a dimension reduction algorithm to transform
the vectorization to a low-dimensional embedding. The Spark leader is notified that
the new embedding is ready, and it creates Spark workers, which compute clusterings
in parallel and return results to the leader. When the job completes, the data is saved
for an analyst to inspect. On their instruction, the job parameters can be tweaked,
and the Spark leader notified to recompute the clusters. This process can be iterated
upon until the desired results are achieved.

The following sections further describe this processing methodology. Specifically,
I discuss the chosen dataset in Section 3.1, and feature processing in Section 3.2,
including feature vectorization and dimension reduction. Section 3.3 discusses the
utilized clustering algorithms. Section 3.4 details the evolutionary multi-objective
methodology and associated algorithms, while Section 3.5 describes the distributed
computational approach. Section 3.6 features descriptions of the signature generation
process, as well as pseudocode for the algorithms. Section 3.7 enumerates the metrics
emploved for evaluation, along with examples of each. This chapter concludes with a

short summary in Section 3.8.

21

Figure 3.1: High-level COUGAR architecture

3.1 Dataset

A project involving malicious files presents challenges that typically do not exist when
handling other datasets. Malware is, by its very nature, untrusted, and so must be
sequestered to prevent accidental execution. Furthermore, it is usually undesirable
to acquire or retain malware on a computer system, so the availability of malware
is generally limited. While there are some websites [33-35] that allow users to share
malicious files, community-driven aggregation does not lend itself to stable and es-
tablished datasets.

As this thesis does not offer contributions in the areas of malware storage or
feature derivation, a known dataset with pre-extracted features was desirable. This
allowed for the work to focus on the exploitation of those features, rather than their
acquisition. In addition, using a publicly available dataset facilitates reproducible
research and makes for more meaningful comparisons of performance against existing

and future works. Thankfully, one such dataset was exactly suited to this task.

22

3.1.1 EMBER

For this work, I chose to use the relatively novel Endgame Malware BEnchmark for
Research (EMBER) dataset [36] from Endgame (now a part of Elastic). EMBER
was designed as a “benchmark dataset for researchers” [37], and includes features

extracted using LIEF [38] from over 2,000,000 Windows PEs in 2017 and 2018.

The features in EMBER are numerous. For samples from 2018 alone, the uncom-
pressed JSON files are in excess of 9GB. These features include general file character-
istics, as well as file header information, imported and exported functions, byte and
byte-entropy histograms, and string statistics. I utilize the AVClass feature, described
in Section 1.3, as the ground truth malware family label.

With such a variety of features, it was necessary to concentrate on a distinct subset
for this work. It has been shown [39-41] that import statements are an effective tool
to extract malicious behaviours, as it is difficult to obfuscate third-party imports
without breaking compatibility with the library. To that end, import terms and their
corresponding library were extracted from EMBER for each malicious sample. A
shortened example of the extracted information is shown in Table 3.1 for the malware
sample with MD5 hash 0a7a72a5853f3740ea76£9934764bd44.

In the interest of speed, the container format was also modified during extraction.
Representing imports as a table allows for compression advantages in the form of
repeated values. For this task, Apache Parquet' was chosen. Parquet is a column-
oriented data format optimized for the Hadoop ecosystem, where in-memory data
access is paramount, an attribute shared with COUGAR. The MD5, SHA256, as-
signed AVClass, and total number of imports were also included in a separate table
for reference.

It should be noted that while this thesis focuses on function imports, the COUGAR
framework was designed to be feature agnostic, and employ any data that can feasi-
bly be vectorized. There are known issues to using imported functions [42], such as
packers and obfuscators, which seek to hide the malware from such static analysis. In
the future work, I describe features that may be more successful when dealing with

malware that act in such ways.

lhttps://parquet.apache.org

https://parquet.apache.org

23

Library Imported Function
kernel32.dl1 LoadLibraryW
kernel32.dl11 DeleteFileA
crypt32.dll CertDuplicateStore
crypt32.dll CertSaveStore

wtsapid2.dll WTSFreeMemory
wtsapid2.dll WTSEnumerateServersA

Table 3.1: Sample of import terms from an EMBER file

_
(wa) % Parquet LA A
s PGS UMAP
g | s |
i EMEBER in JSON Parguet Tables Sparse Mafrix Vectorization UMAP Embedding

Figure 3.2: Transformation from EMBER to embedding

3.2 Feature Processing

The transformation from EMBER to embedding is described in this section. A high-
level visual representation can be observed in Figure 3.2. In this fizure, EMBER
data is transformed from the JSON source files, to Parquet tables, to a sparse matrix
vectorization of the function imports, and finally to the UMAP embedding in two-

dimensional space.

3.2.1 Vectorization

Imports from each sample are converted to lowercase, joined with a comma to their
parent library, and added to the corpus. A Bag-of-Words model is employed to
vectorize the dataset, using the CountVectorizer from Scikit-Learn [43]. In the
resulting matrix, each row represents a single malicious sample, and each column

records the number of occurrences for each library/function in the corpus. Since

24

EMBER only contains a list of function imports, rather than frequency of function
calls, the resulting sample representation is a bit vector, where the presence of a
term is indicated by a set bit. An example vectorization is given in Table 3.4. This

vectorization is then held for further computation in the form of dimension reduction.

3.2.2 Dimension Reduction

While clustering on higher dimensions is possible, the nature of a production malware
triage system is continuous data ingestion. To this end, updated cluster models can
be produced significantly faster on low-dimensional data.

The algorithm I employ for this task is the Uniform Manifold Approximation and
Projection (UMAP) technique [44]. This technique works by modelling the data with
a fuzzy topological structure, and is notable for attempting to preserve both local
and global distances between data points.

UMAP was chosen for a number of reasons. UMAP demonstrates certain qualities
that make it better suited as a cluster pre-processing step than other dimension
reduction techniques like t-SNE [45]. Namely, it more effectively maintains the “global
structure” of the data which leads to more “meaningful separation between connected
components of the manifold on which the data lies” [46]. In turn, the resulting clusters
in the embedding are more relevant. As well, it has been demonstrated to be much
faster than similar techniques such as PCA and t-SNE in benchmarks [47], which is
an important future consideration to scale the system to handle the large influx of
malware every day. Finally, UMAP supports the transformation of new data into
existing models [48]. While this feature is not unique to UMAP, it is essential for
my use case in predicting the malware family of unseen samples based upon some
training dataset.

While UMAP can be parameterized to reduce to any number of dimensions, I
elected to reduce to a two-dimensional embedding for the sake of simplicity, and ease
of visualization. While I had originally intended to include the UMAP parameters
as part of the optimization search process, rebuilding many UMAP embeddings in
each generation dramatically slowed the system. To that end, UMAP is employed
with out-of-the-box defaults for almost every parameter. The notable exception is

the number of neighbours, which is set to 1% of the input dataset. Neighbourhood

25

size is an important consideration, as it determines the degree to which the algorithm
will focus on local or global structure. This is an important balancing point, as the
resulting embedding should ideally illustrate the distance between both similar and
different samples, which will be close or far away, respectively, in the embedding
space. Having such separation is also desirable for the next step of the system: the

clustering process.

3.3 Clustering Algorithms

I employ three clustering algorithms in this thesis: DBSCAN [49], OPTICS [50], and
k-means [51]. The former two techniques are closely related, both working to cluster
based on the density of data. In addition, neither DBSCAN nor OPTICS requires
parameterization with the number of clusters in the dataset. This mitigates a ‘chicken
and egg’ scenario, where the number of clusters is required to cluster the data, but
a reasonable estimate of cluster count is difficult without first clustering the data.
k-means, on the other hand, is not density based and requires the number of clusters
to be chosen in advance. It does, however, possess such desirable qualities as being
scalable, simple to implement, and guaranteed to converge. Accordingly, it stands as
a comparative baseline to DBSCAN and OPTICS.

For each algorithm, two or three parameters were selected for optimization. DBSCAN
uses eps and min samples, while OPTICS uses max_eps and min_samples. k-means
uses n_clusters, n_init, and max_iter. Each parameter will be discussed in the
following subsections, and the default values along with parameter bounds (for the
evolutionary process) are shown in Table 3.2. These were chosen in concert with the

documentation for Scikit-Learn, as they identify the most consequential parameters?.

Each algorithm is initialized using reasonable parameters in the vicinity of their de-

faults in the Scikit-Learn implementation. The notable exception to thisismin_samples
in DBSCAN and OPTICS, which is set higher (40), to avoid forming needlessly small

clusters.

? https://scikit-learn.org/stable/modules/generated/sklearn. cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn. cluster .0PTICS.html
https://scikit-learn.org/stable/modules/generated/sklearn. cluster .KMeans.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

26

Algcrrithm| Parameter |Defa,u_lt Lower Bound Upper Bound

DBSCAN eps 0.5 0.0 100.0
min samples 40 5 250

OPTICS max_eps 50.0 0.0 100.0
min samples 40 5 250
k-means | n_clusters 8 2 100
ninit 10 1 100

max_liter 300 10 1000

Table 3.2: Default values and bounds for clustering algorithm parameters

3.3.1 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) [49] is a cluster-
ing algorithm that operates on the premise that clusters are groups of densely packed
points separated by less dense space. It considers a specified number of nearby points
(MinPts, or min samples in Scikit-Learn) as a cluster core if they fall within a spec-
ified distance (=, or eps in Scikit-Learn). Clusters are expanded to border points
accessible from at least one of the core points. Points that are at least £ away from
a core point are not added to the cluster, and instead marked as noise. These values
must be carefully chosen so as not to broadly create one large cluster, or be so specific
as to create few or no clusters.

DBSCAN was selected as it supports non-convex cluster shapes, as well as not
clustering data that it perceives to be noise. The former consideration is especially
important when working with UMAP, as it is not guaranteed to produce “clean,
spherical clusters” [46]. The latter is also a major benefit in this research problem, as
unrelated samples with close proximity to legitimate clusters can be discarded, rather

than forcing their inclusion.

3.3.2 OPTICS

Ordering points to identify the clustering structure (OPTICS) [50] is also engaged
for comparison, as it is considered to be better suited*for large datasets than Scikit-
Learn’s DBSCAN implementation. OPTICS is a technique that can be extended to
a clustering algorithm in the same density-based vein as DBSCAN. It too employs

27

MinPts and £ parameters, but the key difference is that ¢ is given as the maximum
value to a range, instead of a definite value. In this way, OPTICS is capable of
finding clusters even when the density of the data is not consistent, by varying ¢
up to the maximum value. Being a variant of DBSCAN, OPTICS also achieves the
aforementioned desirable properties of DBSCAN.

OPTICS constructs an ordering of the points by expanding the s-neighbourhoods
of core points (as in DBSCAN) according to the reachability distance of the points
in that neighbourhood. In this context, the reachability distance of a point p is the
distance from p to the core point under evaluation, such that p is within the core
point’s c-neighbourhood. Accordingly, denser neighbourhoods are evaluated first,
which allows for dense clusters within less dense clusters to be identified. Combining
the point ordering with the reachability distances enables clusters to be extracted

according to some density-differentiating heuristic.

3.3.3 k-means

k-means [51] is also considered as one of the most popular iterative clustering algo-
rithms. This technique is computationally efficient and easy to implement, hence its
wide applications.

The algorithm begins by randomly initializing k& cluster centroids. Data points
are then assigned to the cluster with the smallest Euclidean distance between the
point and the cluster centroid. Centroids are then recomputed according to the mean
position of all points in that cluster. The algorithm converges when the centroids
stop changing, or at least fall below a given movement threshold.

The most important parameter to choose is k, or n_clusters, the number of
clusters. This is difficult to choose without at least observing the data. The other
parameters to be chosen for the Scikit-Learn implementation control the number of
initializations of the algorithm (n_init) and the maximum iterations of the algorithm
(max_iter) which affects the stopping criteria for the runs.

While k-means is known to demonstrate weakness on data exhibiting character-
istics similar to UMAP output [52], the popularity [53] of the technique still gives it

comparative value as a baseline clustering algorithm.

*https://scikit-learn.org/stable/modules/generated/sklearn. cluster. 0PTICS. html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html

28

3.4 Evolutionary Multi-Objective Optimization

In this thesis, evolutionary multi-objective optimization (EMO) is employed for the
dual problems of parameter selection and cluster count optimization. This unsuper-
vised machine learning process results in a sequence of parameters for the chosen
clustering algorithms: DBSCAN, OPTICS, and k-means.

3.4.1 Objectives

There are three objectives guiding parameter tuning:

1. Maximize the count of highly homogeneous clusters. The similarity of a clus-
ter is determined by computing the cosine similarities over all elements in the

cluster, using the vectorization described in Subsection 3.2.1.

Given a cluster of m data samples, and a matrix (A) of binary vector imports
for that cluster of shape m x n with rows Ay, As, Aa, ..., A, we can calculate

cosine similarity for some z** and y*" rows as in Eq. 3.4.1.

Equation 3.4.1 (Cosine Similarity).

{] A, - A!f E?:l} AI1'iA!.f,i

gy = =
1A:MlAsl /5y a2, /3, 42,

These calculations are summed and scaled to the range [0.0,1.0], as shown in
Eq. 3.4.2, which I call the scaled summed similarity (5SS).

Equation 3.4.2 (Scaled Summed Similarity).

m—1 m

§55 = %Z Z cos(A., A,)

r=1 y=r+l
A highly homogeneous cluster is achieved if the S5S is at least 0.8.

2. Minimize the sum of the sum squared error (SSE) for each cluster. The SSE is
calculated as in Eq. 3.4.3.

Equation 3.4.3 (Sum Squared Error).

SSE = (1— 555)?

29

T T T T I I

0.5 - . . s Pareto |
"g]? e . . o 2™ Bront
g 0.4k . L * . 3Id Froot ||
= ™ » L]
-.'_Etn.a— . . " .
Z 02} . * o
2 01} . © e
o . .

o *e e
|

| | | | |
0 01 02 03 04 05
Objective 1 (minimize)

Figure 3.3: Example of three non-dominated fronts in two-objective space

3. Maximize the median cluster size. Median was chosen over mean to mitigate
clustering parameters that would create a small number of unreasonably large
clusters, thereby skewing the metric and incorrectly indicating success. This

situation is less likely to occur when considering the median cluster size.

3.4.2 NSGA-III

I employ the Non-dominated Sorting Genetic Algorithm III (NSGA-III) [54] to op-
timize the aforementioned objectives. NSGA-III is an extension of NSGA-II [55] to
many-objective problems. NSGA-III was chosen as it maintains diversity within the

population of candidate solutions, while simultaneously preserving elitist solutions.

Evolutionary algorithms preserving elitism are proven [56] to converge to the
global optimum solution for some function. Since the parameters to be optimized
are primarily real-valued numbers, effectively an infinite search space, random search
is infeasible. This is because it is less efficient than genetic algorithms [57], while also

offering no guarantees of optimality.

I will describe NSGA-II before explaining the changes made to it to achieve NSGA-
I11.

30

Algorithm Descriptions

NSGA-II works by sorting individuals into fronts within the objective space, where
each front dominates all lesser fronts. In this context, an individual dominates another
if:

1. the dominating individual achieves a better fitness score in at least one objective,

and
2. no fitness score for any objective is less than the dominated individual.

As such, each individual in a front is considered as good as any other individual in
that front, with respect to at least one objective. The leading front is called the
Pareto-optimal front, and it dominates all other fronts. The 2* front dominates all
individuals except those in the Pareto front, the 3™ front dominates all individuals
except those in the Pareto or 2" front, and so on. A visualization of example fronts
in two-objective space is shown in Figure 3.3.

In NSGA-II, ascending fronts are selected as long as space remains in the popu-
lation. In the event that an entire front cannot be selected for inclusion, a crowded-
comparison operator is applied to that front, which selects individuals such that the
final front is evenly distributed, ensuring genetic diversity. At this point, crossover/
mutation can proceed to breed the next generation.

NSGA-III modifies its predecessor by employing a set of reference points to achieve
a uniform diversity across the population. A normalized hyper-plane is computed
over the objective axes, and points are evenly distributed across the plane. In each
generation, the final selected front has its population members normalized in the
objective space, and associated with a point on the reference plane. A niching operator
is applied to choose points that align, as closely as possible, with the reference points.

As before, usual genetic operators can be applied to breed the next generation.

Implementation Details

The implementation of NSGA-III was handled by the Distributed Evolutionary Al-

gorithms in Python (DEAP) library [58], which notably supports out-of-the-box par-
allelization through Scalable COncurrent Operations in Python (SCOOP) [59]. It

31

can also be expanded to other distributed computation frameworks, such as Apache
Spark (see Subsection 3.5.1 for more details).

Parameterization

To parameterize the algorithm, one must consider the partitions (p) of the reference
plane, and the number of objectives (M = 3). Jain and Deb [54] give the total number

of reference points as Eq. 3.4.4.

Equation 3.4.4 (Number of NSGA-III Reference Points).

0 (M—i—p—l)
P

The same work also suggests p = 12 for the number of partitions in the reference
plane, but this leads to a reference points size of H = 91. The resulting population
size, which is calculated to be the smallest multiple of four greater than H, per Jain
and Deb [54], is 92. This dramatically slows the evolutionary process due to the large
size and slow fitness evaluation, courtesy of cosine similarity’s O(n?) time complexity.
This is a side effect of any pairwise distance comparison, and using an approximation
for this calculation is left to future work. Choosing p = 4 is much more reasonable,
leading to H = 15 and a final population size of 16.

The algorithm is run for 100 generations, with a crossover probability of 1.0, an
individual mutation probability of 1.0, and a gene mutation probability of 0.25. These
values are taken from the NSGA-III example in the DEAP documentation?, though
the generation count and gene mutation were modified. The generation count is
lowered to 100 from 400, as the algorithm converges sufficiently within that time, as
shown in Figure 4.1. The gene mutation probability is suggested as being l—rf', where n
is the number of genes. Given the small size of the chromosome (two or three genes),
the resulting probabilities are too high and result in significant population fluctuation
when the values are changing with such high probability.

Individual Representation

Individuals are represented with two or three floating points numbers, according to the

parameters of the given clustering algorithm. To account for the variable scales upon

ihttps://deap.readthedocs. io/en/master/examples/nsga3.html

https://deap.readthedocs.io/en/master/examples/nsga3.html

32

which the parameters can be specified, I scale the floating point gene, and optionally
convert it to an integer, before passing it to the clustering algorithm. For example,
to evaluate the default DBSCAN individual (0.005,0.04), the first gene would be
multiplied by 100, and the second would be multiplied by 1000 and converted to an
integer. This would then be interpreted as eps= 0.5 and min_samples= 40.

3.5 Distributed Computation

As previously mentioned, the intended use-case for the COUGAR system is one of
ingesting and clustering many new malware every day. To that end, scalability is an
important consideration. One approach for scaling is to distribute the work across
many computers, and aggregate their results. While DEAP supports SCOOP by
defanlt (as mentioned in Subsection 3.4.2), running on a well established and popular
distributed computing platform is advantageous for the sake of compatibility with

existing infrastructure in an organization. Enter: Apache Spark®.

3.5.1 Apache Spark

Spark is a popular solution for distributed computing tasks. It works by splitting
data processing pipelines into basic tasks that can be computed across many nodes
in a cluster of computers, physical or virtual. After tasks are completed on worker
nodes, the results are returned to the driver program, typically running on a node
within the cluster, which can delegate further tasks as necessary.

A spiritual sequel to the Apache Hadoop and MapReduce approach, Spark miti-
gates a serious handicap present in the MapReduce framework. Namely, after every
transformation, data is written to disk, and must be read again to continue [60]. In a
pipeline with many transformations, these glacial I/O tasks can significantly slow the
computation process. Spark mullifies these problems by employing lazy evaluation,
delaying computation until strictly necessary, and performing the transformations
entirely in-memory.

Furthermore, while driven by the Java Virtual Machine, a Spark job can be imple-
mented in Java, Scala, or Python, unlike the Python ecosystem lock-in with SCOOP.

Shttps://spark.apache.org/

https://spark.apache.org/

33

With the introduction of lambda expressions in Java 8, any of these languages can
articulate complicated MapReduce operations in much less code than previously re-

quired.

3.5.2 COUGAR on Spark

To assist in scaling COUGAR to handle 10,000 samples and beyond in the second
round of evaluations, COUGAR was re-implemented with Spark to parallelize certain
calculations. This includes the evaluation of COUGAR individuals in each generation,
as well as signature generation and merging for the final, surviving population. Since
DEAP does not support Spark by default, it was necessary to fork my own copy®
of the project to incorporate the Spark-supporting changes” that are inexplicably
unmerged to the upstream repository. In this way, COUGAR on Spark can produce
results much faster than sequential execution.

To further the effectiveness and expediency of the system, some other optimiza-
tions were introduced during this reimplementation. A cache was added to track the
parameter settings that have already been evaluated, and thereby avoid the costly
recalculation process. In addition, at the conclusion of the evolutionary process, a
pruning function is applied to remove individuals of identical fitness, or individuals
that cannot form at least one highly homogeneous cluster. This serves to discard

trivial clusterings, such as all samples grouped together, or no clusters formed at all.

3.6 Signature Generation

When we consider clustering malware by behaviour, we can blur the lines between
various malicious families, to the detriment of conventional malware family labels.
For example, consider two families of ransomware which depend on the same un-
derlying cryptographic library for file encryption. Malware samples from both of these
families could very well be clustered together because of their shared methodology.
Describing the cluster as a mixture of malware families is problematic, however, as it
does not scale with many families, nor does it convey the reason why these samples

are considered similar to each other.

Shttps://github.com/znwilkins/deap
Thttps://github.com/DEAP/deap/pull/76

https://github.com/znwilkins/deap
https://github.com/DEAP/deap/pull/76

34

For that reason, signatures are a popular technique for identifying malware group-
ings [11,61,62]. COUGAR generates a signature for each cluster to summarize the
cluster elements. In doing so, the system provides an ‘at a glance’ indication of the

prominent behaviours that are shared by malware within the cluster.

3.6.1 Signature Considerations

There are many different ways to construct a cluster signature, depending on the
desired properties.

A signature used only for identification purposes may well employ a hash of certain
properties, and compare hashes at rapid speed [61]. Unfortunately, the one-way
nature of hashing functions does not allow for signature inspection, nor for human
modification. To address that limitation, a signature could consist of those important
properties serialized, but without some bounds, the signatures may become hyper-
specific, and difficult to generalize [62]. In addition, choosing which properties are
most informative is a task unto itself.

Thus, COUGAR on Spark takes a simple approach to signature generation that

places emphasis on ease of computation and interpretability.

3.6.2 Signature Generation Algorithms

Signature generation is divided into two separate steps: generation and merging of
maximal signatures, followed by minimalization to fixed-length signatures.

The first step of this process is depicted in an algorithmic fashion in Algorithm 1.
Consider a matrix of binary vectors for some cluster i, where a set bit indicates that
the function in some column j has been imported. This is the clusterVectorization
in line 2 of the algorithm. If we sum the column vectors (line 3), and then select the
indices with the maximum values (line 5), we have a list of indices to columns most
frequently imported by samples in cluster i. After translating the indices to the
actual imports (line 6), we have calculated the maximal signature for the cluster (line
9). This is similar to the token-subsequence signatures from Newsome et al. [9] and
significant feature extraction process from Wang et al. [32], but removes ordering
from the former and the selection threshold from the latter. By hashing the imports,

we can quickly merge clusters with identical maximal signatures (line 11).

35

Algorithm 1: Generation of maximal signatures
Input : allClusterVectorizations: list of Tuples with sparse matrix and

cluster info

Output: maximalSignatures: list of Tuples with hash, imports, cluster info

-

maximalSignatures < List ()

for clusterVectorization € allClusterVectorizations do

b

3 vecSummed + SumColumnVectors (clusterVectorization)

4 maxTermCount +— Max (vecSummed)
5 maxIndices + SelectIndicesByValue(maxTermCount, vecSummed)
6 imports +— ConvertIndicesToImports(maxindices)

7 | hash « ComputeHash (imports)
B clusterlinfo + clusterVectorization.info

9 maximalSignatures. Append (Tuple (hash, imports, clusterinfo))

10 end
/* Signatures are generated in parallel: need to merge */

11 return MergeByHash (maximalSignatures)

These maximal signatures are highly specific, but too lengthy to be useful. Min-
imizing the maximal signatures to fixed-length signatures remedies this issue. As
with the maximal signatures, the generation of fixed-length signatures is given in
Algorithm 2.

My solution is to obtain the global count of function imports from the complete
vectorization, which is passed as importToCount in the algorithm input. By selecting
the n least frequently imported functions over the entire dataset from the maximal
signature (lines 4-7), a fixed-length representation of the cluster can be achieved.
The rationale is that if every single function in the maximal signature is equally
representative of a given cluster, then the least frequently imported functions overall

will be most representative of a specific behaviour in that cluster.

This approach generates predictable and interpretable signatures in an efficient
manner. Of course, it is possible that two maximal signatures could be minimized
to the same fixed-length signature. In the event that a unique fixed-length signature

cannot be computed from the maximal signature, the smaller cluster is discarded (line

36

12). This happens rarely in practice, and the choice of n was made to minimize such

collisions (detailed in Subsection 4.2.2).

Algorithm 2: Generation of fixed-length signatures
Input : maximalSignatures: list of Tuples with hash, imports, cluster info

importToCount: dictionary mapping imports to usage count
n: the desired length of the signature
Output: fixedLengthSignatures: list of Tuples with hash, imports, and
cluster info
1 fixedLengthSignatures « List ()

2 for maximalSignature € maximalSignatures do

3 imports + List()

4 for term € maximalSignature.imports do

5 imports.Append (Tuple (importToCount.Get (term), term))
6 end

7 imports +— SubList (Sort (imports), n)
8 | hash «+ ComputeHash (imports)

9 signature +— Tuple(hash, imports, maximalSignature.info)

10 fixedLengthSignatures. Append (signature)
11 end
/* Signatures are generated in parallel: need to reduce */

12 return ReduceByHash (fixedLengthSignatures)

3.7 Metrics & Examples

In this section, [explain the metrics with which the final results will be evaluated, as
well as demonstrate their usage on a sample problem analogous to the thesis research
area.

The metrics employed are frequently seen in the context of classification and
clustering, and engage the predicted and actual labels. For classification/prediction
purposes, I employ F-Score [63], weighted by support. For clustering purposes, ho-

mogeneity, completeness, and V-Measure [64] are calculated. In addition, I introduce

37

Song No. | Pred. Genre True Genre | Cluster No. Cluster Genre

0 Rock Rock 0 Rock
1 Rock Rock 1 Rock
2 Alt. Alt. 2 Alt.

3 Rock Alt. 0 Rock
4 Rap Rap 3 Rap
5 Pop Rap 3 Rap
6 Jazz Jazz 0 Rock
7 Jazz Jazz 4 Jazz
] Pop Pop 4 Jazz
9 Rap Pop 3 Rap

Table 3.3: Prediction and truth labels for the musical dataset

a simple metric, signature representation, which is derived from the generated signa-
tures for each cluster.
For the sake of clarity, I now define a trivial example problem to assist with the

explanations.

3.7.1 A Musical Example Problem

Consider a number of songs labelled by one®of five genres: rock, alternative, rap,
jazz, or pop. Each song also includes the types of instruments employed. One might
seek to build a classifier and train a clustering algorithm using this data. This is
conceptually similar to the malware clustering problem: the songs can be likened to
malware samples, while the instruments are the imported functions.

After a theoretical training process, predicted and actual genres, as well as gen-

erated clusters, are given in Table 3.3.

3.7.2 Classification

To understand F-Score, one must first understand precision and recall. Precision is
a measure of the relevancy of the results, while recall is a measure of the quantity
of relevant results returned. Given counts of true positives (1}), false positives (),
true negatives (1),), and false negatives (F},), precision and recall are defined in Eqs.
3.7.1 and 3.7.2.

#While multi-genre compositions are a celebrated (and sometimes contentious) occurrence, their
consideration is well beyond the scope of this example.

38

Equation 3.7.1 (Precision).

T,
P= £
T, + F,
Equation 3.7.2 (Recall).
R= Ty
T, +Fn

For example, calculating the precision and recall of rock songs:
2 2

P = —— = 0.67 =-——=10
ek T o oot = 5775

F-Score is then the harmonic mean of precision and recall, as defined in Eq.
3.7.3 [63].

Equation 3.7.3 (F-Score).
P-R

P+ R
Following that, the F-Score for rock songs is:

F=2.

Fop—2. 0.67-1.0 — 08
0.67+ 1.0
Since there are multiple classes, reported F-Scores are the averaged F-Scores for
each class, weighted by support (S, number of occurrences for each class in true
labels).
Given a set of F-Scores for all n classes (Fz), from N data samples, and a set of

support values (S5) for each class, the formula is given in Eq. 3.7.4.

Equation 3.7.4 (Weighted F-Score).

1 TL
Fw=ﬁ§%i-5ﬁ

Weighting the F-Score by support for each label is necessary, as not every potential
AVClass label is represented in the training sample subsets. Otherwise, this serves to
falsely distort the F-Score, as achieving many F-Scores of 0.0 on labels without any
samples is not helpful when assessing performance.

For example, consider a binary classification scenario where there are nine true
instances of class A and one true instance of class B. If the classifier predicts all ten
as class A, F-Scores of 0.95 and 0.0 are achieved for classes A and B, respectively.

39

Their macro average, where each F-Score is not weighted for label imbalance, is 0.47,
despite 90% of the data being correctly classified. Using a weighted F-Score instead
returns 0.85, which is more in line with the actual performance of the classifier.

Finally, the weighted F-Score for the predicted labels is:

F, =]:]-_[I . [(Frock . Srack] + {Fait . -Sult] — {Frap . Sfup] + {E‘iaza . Sjazz) + (FM] Spap}]
=]:l-_[l . [(G.S . 2} + {D.ﬁ? . 2] + {'D.E . 2) + (l.ﬂ . 2} + {D.E] 2)]

= 0.69

As can be seen from the F-Scores for each class in the previous equation, this
weighted F-Score of 0.69 shows that the classifier is very successful on some classes
(rock and jazz), but is held back by poor performance on the remaining genres (alt.,
rap, pop). In this example, each genre had equal support. Had their labels been
biased toward rock and jazz, and the classifier predicted with equivalent precision
and recall, then the weighted F-Score would have been higher.

3.7.3 Clustering

A clustering is considered perfectly homogeneous if each of its clusters only contain
data points from a single class. It is considered perfectly complete if all data points
from a given class are contained in the same cluster. Given a set of classes (C'), and
a set of clusters (K') from N data samples, as well as a matrix mapping true classes
to cluster classes (a), we can define entropy (H, a mutual dependency), homogeneity

(h), and completeness (¢), in Eqgs. 3.7.5, 3.7.6, and 3.7.7 [64, 65].

Equation 3.7.5 (Entropy).

Il K|
HC,K)=-)_ Z

e=1 k=1

K| |C]
H(CIK)=—-)_ Z

k=1 =1

IC) |K|

e=1

40
Equation 3.7.6 (Homogeneity).

1 if HC,K) =0

H{C|K)
1-—) else

h =

Equation 3.7.7 (Completeness).

1 if HK,C) =0

H(K|C
1-— H) else

V-Measure is then the harmonic mean of homogeneity and completeness, defined

in Eq. 3.7.8 [64].

Equation 3.7.8 (V-Measure).
“h-c
h+ec
For the musical problem in Subsection 3.7.1, we can calculate H(C, K), H(C|K),
H(K|C), H(C), and H(K):

v=2

2 1 1
H@Uﬂ=-ﬁ J+(—"F— }+{ J+
1 1 1
—Ih—+ —In— —In— —lu— = 2.025
{ +1D }H m 10 }]
H(C|K) = [{ h11)+|[lu +1 1}+{ 111+21112}+
1n 3 10 3
1 1
ﬁanJr]11 +ﬁ1 —)]_0?45
H(K|C) = — [(f5Ing + oI g) + (olng + ol 2) + (ol g+ Ing) +
o 10 2 2 M0 2 10 2
2

2
oy + {E In E)] = 0.416

H(C)= — [5-{31113)] = 1.61

01 a3
H{K):—(—lnﬁ+ﬁmﬁ+ﬁlnﬁ+10111—}—128

which gives us:
h=1 0.745 _ 0.537
o 1.61
=1— 0416 0.675

41

with which we can calculate V-Measure:

v—2. 0.537 - 0.675 _ 0598
0.537 + 0.675

While these metrics are well suited for tasks with cleanly labelled data, the reality
of a clustering system based on behaviour is that malware with different labels may
very well exhibit similar behaviours. Since these metrics are not capable of compen-
sating for this situation, it is necessary to engage another metric to ascertain the
suceess of the system.

In Section 3.6, I discussed the signature generation algorithm employed to label
each cluster with a signature for the behaviours represented. The final metric, sig-
nature representation, is a natural measurement of the accuracy of those signatures
with respect to the underlying cluster.

Given a cluster of m data samples, and a matrix (A) of binary vector imports for
that cluster of shape m x n with columns A, A,, As, ..., A, we can calculate the
representation of the cluster, as a percentage, by first computing a row vector of the

summed column vectors, as in Eqs. 3.7.9 and 3.7.10, respectively.

Equation 3.7.9 (Signature Representation).

max; v
m

r=() - 100

Equation 3.7.10 (Row Vector of Summed Column Vector).

'U=ZH:A1'

i=1
Returning to the musical example for the final time, we might compute a vec-
torization of the ‘imported’ instruments as in Table 3.4. After summing the column
vectors for each cluster genre, Table 3.5 is created, with which we can compute the

signature representation for each cluster:

e Alt. signature representation: % - 100 = 100%
e Jazz signature representation: % - 100 = 100%
¢ Rap signature representation: % - 100 = 100%

42

Song No. Cluster Genre Bass Drums Guitar Piano Saxophone Synthesizer Voice

Rock
Rock
Alt.
Rock
Rap
Rap
Rock
Jazz
Jazz
Rap

(=

D00 =] Th U7 = LD bD = O
(=N =R == =
e B I B = T == T T e B R)
=N = =N =N =N = TR

o I o I S R o O o Y Y o R o |
ocDoo=R oo oo oo
== O O=~=O0000
==l el]

Table 3.4: Vectorization of instrument use in the musical dataset

Cluster Genre Bass Drums Guitar Piano Saxophone Synthesizer Voice

Alt. 0 0 1 0 0 0 1
Jazz 1 2 0 1 0 1 1
Rap 0 0 0 0 0 3 3
Rock 3 4 3 1 1 0 3

Table 3.5: Summed instrument use by genre in the musical dataset

¢ Rock signature representation: % - 100 = 100%

In this toy example, every cluster had at least one instrument used in every song
in that cluster genre. Hence, each cluster has a signature representation of 100%.

That is, the signature for each cluster represents 100% of the samples in that cluster.

3.8 Summary

In this chapter, I discussed the methodology of the COUGAR system.

Using features from the open-source EMBER dataset, a high-dimensional vector-
ization was calculated using a Bag-of-Words model. This vectorization is representa-
tive of all imported functions by samples in the dataset, where a set bit indicates that
the function was imported. These imported functions are indicative of the behaviour
of the malware, in that the functions describe potential actions taken by the malware.

After being reduced to two dimensions using the UMAP technique, three clustering
algorithms were presented for optimization. Two of the algorithms, DBSCAN and
OPTICS, are closely related, and work to cluster data based on density. The third,

k-means, i3 a more naive but well known approach that does not consider density.

43

Values for the most important parameters in each of these clustering algorithms
were chosen by an evolutionary multi-objective algorithm called NSGA-III. This al-
gorithm creates a diverse population of individuals according to a set of reference
points.

After implementing the system on Apache Spark, a distributed computation plat-
form, algorithms to compute fixed-length signatures for each of the clusters of malware
were presented.

Finally, I defined and demonstrated all of the classification and clustering metrics
by which the final results would be evaluated.

Chapter 4

Evaluations

This chapter discusses the results and observations of experiments conducted for this
thesis. In each evolutionary process, the optimal clustering parameters are deter-
mined for the underlying dataset. In this way, a malware analyst does not need to
directly apply the clustering algorithms, but can instead tune the COUGAR system
parameters based upon their desired search criteria.

An overview of the evaluations is given in Table 4.1, which delineates the high-
level details of all experiments run and analyses conducted for this chapter, and the
subsection in which they are discussed.

For the sake of clarity, in this chapter, I refer to the three objectives defined in
Subsection 3.4.1 as ‘the objectives’, and refer them numerically for brevity. Objec-
tive 1 is then the maximized count of highly homogeneous clusters, Objective 2 is
the minimized sum of sum squared error across all clusters, and Objective 3 is the
maximized median cluster size.

In Section 4.1, I detail the preliminary experiments on a small dataset of 3,000
samples. Section 4.2 scales the experiments to a larger dataset of 10,000 samples,
and incorporates distributed computation and signature generation. The chapter

concludes with a short summary in Section 4.3.

4.1 Preliminary Experiments on 3,000 Samples

To obtain optimal parameters for the clustering algorithms, they were each trained
on 2,000 samples randomly selected from EMBER. Accounting for the stochasticity
of genetic algorithms, this process was repeated ten times. I refer to each of these
training processes as a ‘run’.

After completing these runs, statistical analysis was performed via analysis of
variance (ANOVA) tests [66], to determine significant differences from the mean for
each objective. For those that reject the null hypothesis, additional post hoc testing

44

45

Samples Runs per Algo. Clus. Algo. Eval. Type Subsec.
2.000 10 D, O,k Metrics on train data 4.1.1
- - - ANOVA /Tukey 4.1.2
3,000 10 D Metrics on train/test data 4.1.3
2,000 1 D, 0, k Sign. length 422
10,000 10 D, O,k Metrics on data 421
- - - Sign. rep. analysis 422
- - - Sign. discussion 422

- - - Wall-clock runtime analysis 4.2.3

Table 4.1: All experiments/analyses conducted

was conducted. This yielded a leading algorithm, which was then subject to additional
training, before introduction of a testing dataset of 1,000 samples for labelling. From
this labelled data, final metrics were calculated.

Each individual produced over all training runs was ranked according to their
ascending objective scores. The ordering was determined by the count of highly
homogeneous clusters, deferring to summed SSE, and then median size, in case of
ties. In addition, a number of metrics were calculated to determine how well labelled
these clusters are.

The labelling process proceeded as follows. For each output cluster, all sample
record information was gathered, including the original AVClass. Then, each sample
in the cluster had a predicted label assigned according to the majority vote of original
AVClass labels in the cluster.

With these predicted and actual AVClass labels, weighted F-Score, homogeneity,
completeness, and V-Measure were calculated. The top three clusterings for each
algorithm, with these statistics, can be seen in Table 4.2, This table is discussed in
the following subsection.

In addition, for a more general view of the population, Figures 4.2, 4.3, and 4.4
depict the average score for each objective across the final population in each of the
ten runs. Linear regressions are calculated across these values. A shallower slope
for a trendline indicates more consistency for the achieved results across runs. These
figures are also discussed in the following subsection.

One characteristic associated with all three algorithms is a quick convergence to a

local optimum, followed by regular serubbing until the evolutionary process completes.

46

Algo. Obj. 1 Obj. 2 Obj. 3 F-Score Homo. Comp. V-Meas.
DBSCAN 1 65 3.88 5 0.668 0.725 0.862 0.788
DBSCAN 2 62 3.87 9 0.678 0.748 0.872 0.805

DBSCAN 3 62 4.42 8.5 0.673 0.733 0.864 0.793

OPTICS 1 84 10.83 8 0.549 0.675 0.792 0.729
OPTICS 2 83 10.36 8 0.554 0677 0.795 0.731
OPTICS 3 83 13.35 7 0.539 0.671 0.780 0.722

k-means 1 52 13.62 15 0.520 0.593 0.774 0.671
k-means 2 50 13.52 15 0.528 0.588 0.773 0.668
k-means 3 49 12.78 16 0.526 0.588 0.767 0.666

Table 4.2: Top three unique clusterings per algorithm on 2,000 samples, ranked by
ascending objectives

This can be observed in Figure 4.1, where the yellow markers represent the start and
end scores of each clustering algorithm. The marker shape is related to the algorithm
through the plot legend.

4.1.1 Training Results

In this subsection, I will describe the results achieved by evolving parameters for each

clustering algorithm.

DBSCAN

Looking first at trendlines for each objective in Figures 4.2, 4.3, and 4.4, we can
see that DBSCAN is relatively flat and averaging 30 homogeneous clusters by the
conclusion of each evolutionary process. Its summed error is much the same, sitting
just above 2.0. Median cluster size is the more variable objective, with lows of 200
and highs near 400, the trend somewhere in the middle around 325.

As far as its top performers are concerned, DBSCAN achieves over 60 highly
homogeneous clusters with each. More notably, it still attains low errors averaging
around 4.06. The average median cluster size is 8.5 across the best performers, signif-
icantly lower than the average. These scores suggest that those homogeneous clusters

are achieved by grouping smaller clusters of data points.

47

A TIBSCAN
—-0- OPTICS
—0— k-means

Avg. Median Cluster Size

Figure 4.1: Avg. objective performance over one run of each clustering algorithm on
2,000 samples

Looking at the metrics for the labelled data in Table 4.2, we see consistent weighted
F-Scores around 0.673. Homogeneity is higher, averaging at 0.735, but completeness
is higher still, at 0.866. This seems to indicate that, while having some mislabeled
data, the predicted groupings contain most of the instances for their given label. This
naturally leads to a V-Measure in the middle, averaging 0.795.

OPTICS

In the trendlines of Figures 4.2, 4.3, and 4.4, OPTICS achieves a marginally higher
homogeneous cluster count than DBSCAN, sitting at approximately 34. The vari-
ability of this objective is noticeable, however, with lows of 25 and highs approaching
40. In fact, this variability extends to the other objectives. The summed error ranges
from below 3.0 to nearly 5.0, with the trend at just under 4.0. The spread on median
cluster size is not as dramatic as DBSCAN. It ranges from below 100 to above 200,
with the trend around 140.

Top performing clusterings are a mixed bag. The homogeneous cluster counts are

48

e wol | : : T T _

g m

o : ;

2 351 = |

e .

§ —— &

& ‘ :

h.cl Fy

g 25 = |

(=]

e

Z 20 ¢ T T e

'-_.__..—'

= e -4- DBSCAN

m‘ -=— OPTICS

3’3‘ 5L -#- k-means ||
5 4 6 8 10

Bun Number

Figure 4.2: Avg. count of highly homogeneous clusters (obj. 1) over 10 runs on 2,000
samples

T T T T T
6L . e * Lo .
L . .
m 5l a .
& . .
= |]
= al i
. = - - [| .
g
< 3[- " |
&
A s [-+- DBSCAN
21 s 4 777 -=— OPTICS |1
= -#-- k-means
| | | | |
2 4 6 3 10

Bun Number

Figure 4.3: Avg. sum of SSE (obj. 2) over 10 runs on 2,000 samples

49

600 F T T T T T
. -+- DBSCA
= OPTICS
@ 500 -#- k-means | |
=
.
£ 400 & A i - a |
g : ry i
o o Lm0 -7 o
gzm— e T S S
3
“ 200} . : . - .
2 . e
= ™
| |
100 .
=]]
I I I I I
2 4 6 o] 10

Bun Number

Figure 4.4: Avg. median cluster size (obj. 3) over 10 runs on 2,000 samples

excellent, at 83 and 84, 20 clusters more than DBSCAN. Unfortunately, the summed
SSE for those clusterings are nearly triple their DBSCAN peers, averaging 11.68.
Median size is much the same as DBSCAN, if slightly lower, with an average of
7.6. All-in-all, these clusterings manage to find more highly homogeneous clusters of
similar size, with the consequence of higher noise.

The metrics in Table 4.2 are lower, across the board, relative to DBSCAN. The
previously mentioned noise drags the average weighted F-Score down to 0.547. Ho-
mogeneity and completeness are more successful, though, averaging 0.674 and 0.789,

respectively. Their average V-Measure comes out to 0.727.

k-means

A final look at the trendlines in Figures 4.2, 4.3, and 4.4 show that k-means actually
has the most consistent homogeneous cluster count, where nine of the ten runs are
very close to the trend, at or around 20. This stability is lacklustre, however, as it
iz also the lowest average cluster count of the three algorithms. This is also true
of the summed SSE, the highest of the three algorithms with the average at 5.7.

The average median cluster size, on the other hand, is actually competitive with

50

Obj. Algo. 1 Algo. 2 Ap P-Adj. Reject?

1. Homo. DBSCAN k-means -9.7812 0.001 Yes
1. Homo. DBSCAN OPTICS 37125 0.030 Yes
1. Homo. k-means OPTICS 13.4938 0.001 Yes

2. Sum of SSE DBSCAN k-means 3.6401 0.001 Yes
2. Sum of SSE DBSCAN OPTICS 1.5532 0.001 Yes
2. Sum of SSE k-means OPTICS -2.0869 0.001 Yes

3. Med. Size DBSCAN k-means 6.0812 0.9 No
3. Med. Size DBSCAN OPTICS -190.4063 0.001 Yes
3. Med. Size k-means OPTICS -196.4875 0.001 Yes

Table 4.3: Tukey’s HSD test on each of the three objectives

DBSCAN, at an average of 331, and fairly stable across eight of the ten runs. This
could be an effect of every k-means parameter needing to be truncated to an integer,
s0 minor mutations of the floating point genes do not result in dramatic changes to
the clustering performance.

Given that k-means cannot label data as noise, and must include every point in
some cluster, its best clusterings are impressively close to DBSCAN on the homoge-
neous cluster front, with an average of 50. In fact, the gap between DBSCAN and
k-means is smaller than the gap between DBSCAN and OPTICS, at approximately 13
clusters difference. Naturally, from the necessarily clustered data, the median cluster
size is also the largest of the three algorithms, at 15.3. Unfortunately, the summed
SSE is again the highest of all three algorithms, at 13.31 on average.

With such error, it comes as no surprise that the metrics on predicted labels
are the worst of all three algorithms. The weighted F-Score is just under OPTICS,
averaging at 0.525. Homogeneity is not much better, at 0.560. Completeness is more
suceessful, though, just under OPTICS at 0.771. Their harmonic mean then averages
to 0.668.

4.1.2 Statistical Analysis of Training Results

To determine which algorithm would be subject to further testing, it was necessary
to apply statistical analysis tests to the final average of each objective over all ten

runs of each clustering algorithm. These averages are given in Tables A.1, A.2, and

51

A 3. The test of choice was a one-way analysis of variance (ANOVA), which tests the
null hypothesis that the averages for each clustering algorithm share a mean. That
is, it is assumed that the objective averages for each clustering algorithm are similar.
ANOVA then calculates P-Values that indicate whether or not this hypothesis is
likely. P-Values less than o, where o = 0.05, indicate that the null hypothesis should
be rejected, and that the population means differ.

The following P-Values were calculated:

e Obj. 1 — Homogeneous cluster count: 5.83 - 10—1°
e Obj. 2 — Sum of SSE: 5.52-10~1%
e Obj. 3 — Median cluster size: 3.61 - 10~®

With such small P-Values (P < 0.05), the null hypothesis is rejected for each objec-
tive, indicating statistically significant differences from the mean.

ANOVA does not tell us which algorithms are different from each other, however.
To determine the difference between means for each algorithm in each objective, I
ran Tukey’s honestly significant difference (HSD) test [67] on each objective. The
results are shown in Table 4.3. For each objective, each pair of clustering alporithms
is compared, and the difference between their means and Tukey-adjusted P-Values
given. If that P-Value is less than o, we reject the null hypothesis that their means
are similar.

These tests support much of what I have discussed in Subsection 4.1.1. Namely,
for the number of homogeneous clusters, OPTICS narrowly edges out DBSCAN. For
error, the reverse is true. For median cluster size, DBSCAN comes out on top, with
a significantly larger median cluster size. In fact, the only comparison that does not
show a statistically significant difference is the average median cluster size difference
in Table 4.3 between DBSCAN and k-means which, as previously mentioned, is very
similar.

Considering these realities, as well as the weighted F-Score, homogeneity, com-
pleteness, and V-Measure for each of the algorithms, it becomes clear that DBSCAN
is the top performer on this data subset. As a result, it was the natural choice for
further evaluations.

52

Data Obj. 1 Obj. 2 Obj. 3 F-Score Homo. Comp. V-Meas.

Train Only 60 3.21 9.5 0.680 0.734 0.870 0.796
Test Only - - - 0.671 0.821 0.922 0.868
Combined T4 5.42 9.0 0.673 0.727 0.870 0.792

Table 4.4: Objective scores and metrics for the final DBSCAN training/testing run

4.1.3 Testing Results

I ran another ten runs of COUGAR using DBSCAN on the 2,000 EMBER. samples,
but this time preserving an additional 1,000 samples in the vectorization as testing
data. All 160 individuals were scored, and one of the top 16 individuals was chosen,
with similar objective scores to the DBSCAN clusterings in Table 4.2. This individ-
ual achieved scores of 60, 3.212, and 9.50 over the three objectives, with clustering
parameters of eps= 0.034971304580205594 and min_samples= 5.

At this point, I reloaded the embedding, and fit the new data into it. After re-
clustering using the same settings as the chosen individual, I labelled the data as in
Section 4.1, and calculated metrics on those predictions.

It is important to note that only approximately 30% of testing data gets clustered,
as DBSCAN labels much of it as noise. As well, since clusters which only contain test-
ing data do not get a label assigned, they must be discarded. Accordingly, only about
20% of the testing data is assigned a label. It is for this reason that labels are given
decreased prominence in subsequent experiments, and used more for informational
purposes than evaluation.

With that said, the results can be observed in Table 4.4. We can see that the
testing and training F-Scores are very similar, around 0.67, and this aligns with
what we saw for DBSCAN in Table 4.2, Homogeneity and completeness are also
nearly identical, with this training data ever so slightly higher than before, with an
accompanying V-Measure.

When looking only at the testing data, we can see a slight drop in weighted
F-Score, but the highest homogeneity, completeness, and V-Measure across any of
our reported values, at 0.821, 0.922, and 0.868, respectively. The implication is
that, looking only at unseen data, the resulting groupings are fairly homogeneous,

and highly complete, with the unseen data for their respective labels being grouped

53

together.

Putting it all together, we see that the final count of homogeneous clusters has
improved, with median cluster size nearly unchanged, and summed SSE marginally
increasing. There is a negligible decrease (< 1%) across the label metrics, relative to

training data only.

The takeaway here is that, while leaving room for improvement, the testing data

predictions are as good on seen as on unseen data.

That said, there were instances of clusters that highlighted the weakness of cate-
gorical labels in this research problem. For instance, some cluster labels were decided
with a slim majority (e.g.: ten samples of AVClass A versus nine samples of B), while
others were decided with a plurality (e.g.: four samples of AVClass A, three samples
of B, three of (). In these examples, the precision with respect to AVClass A would

be 0.53 and 0.4, respectively, despite the underlying cluster similarity in imports.

For this reason, in subsequent experiments, I decided to include a metric based
on the generated signatures, and how well that signature represents the cluster, as
described in Subsection 3.7.3. In addition, this decreased emphasis on label perfor-
mance obviates the need for a split train/test dataset, as the new metric directly

evaluates the composition of the clusters, rather than the assigned labels.

4.2 Final Experiments on 10,000 Samples

This second round of experiments was conducted after the COUGAR system was
reimplemented in a distributed fashion to operate on an Apache Spark cluster, along

with signature generation capabilities, as discussed in Subsections 3.5 and 3.6.

As before, 10,000 samples were randomly selected, and the evolutionary process
was conducted ten times per clustering algorithm. Individual ranking and the la-

belling process was also as discussed in Section 4.1.

In the following subsections, I will discuss the results as calculated from the ob-
jectives, label metrics, and the generated signatures, as well as the computation times

that result from scaling to a larger dataset.

54

Algo. Obj. 1 Obj. 2 0Obj. 3 F-Score Homo. Comp. V-Meas.

DBSCAN1 225 17.253 11 0.660 0.706 0.821 0.759
DBSCAN 2 223 19.095 11 0.649 0.692 0.817 0.749
DBSCAN 3 222 19.088 12 0.651 0.695 0.818 0.751

OPTICS 1 406 34.950 8 0.644 0.690 0.806 0.743
OPTICS 2 405 34.341 3 0.646 0.695 0.806 0.746
OPTICS 3 405 34.369 3 0.646 0.694 0.806 0.746

k-means 1 56 13.759 59 0.427 0.484 0.712 0.577
k-means 2 56 14.109 53 0.434 0.496 0.702 0.581
k-means 3 55 14.246 59 0.430 0.487 0.713 0.579

Table 4.5: Top three unique clusterings per algorithm on 10,000 samples, ranked by
ascending objectives

4.2.1 Objective & Labelling Results

This subsection details the objective and labelling results on the clusterings produced
from the 10,000 sample dataset with respect to each clustering algorithm.

Table 4.5 shows the top unique clusterings per algorithm, as determined by the
objective scores. What is especially striking about these objectives, across all of the
algorithms, is the uniformity of the results achieved. To obtain the top three unique
clusterings, a number of individuals from each algorithm needed to be disregarded,
as they were scoring identical to others. This speaks to the consistency of solutions

produced in the evolutionary process.

DBSCAN

I begin by looking at the trendlines in Figures 4.5, 4.6, and 4.7. We can see that
the ordering of the results for the highly homogeneous count is identical to that
shown in Figure 4.2. That is, DBSCAN is the middle performer, averaging just under
100 clusters across all runs. The slope of this line is smaller than previously seen,
suggesting that the clustering process is much more stable when provided with the
additional data. The summed error trendline is also similar, if higher than before
around 6.5. Median cluster size is, in contrast to the previous experiments, the most

stable objective, with only a single run failing to achieve a value in close proximity

55

43 T J T I I

g -+- DBSCA

o 2001 —=— OPTICS |

E? --#-- k-means

igf 50 ——— il

%ﬂ- IU'D_ -l-'"—-----——-‘——--—.__m__ A e g A a N

{:‘. 'y

o

5

e

= a0f |

eb

5

Eb L - - ._._.-_ P » - *_ s -

"I'. D_ | | | | | i
9 4 6 8 10

Figure 4.5: Avg. count of highly homogeneous clusters (obj. 1) over ten runs on
10,000 samples

14 . ' ' ' |
) -+- DBSCA
-=— OPTICS
ol -#- k-means |
=
7 .
= 10 |
E . | " | ™
é | |
s 8| |
Z <0
LR BT o
i . g e I S m e o "] e =
6 . s ’
L]
1 L : : I
5 4 6] 10

Figure 4.6: Avg. sum of SSE (obj. 2) over ten runs on 10,000 samples

56

T T T ' I
3,000 - . . -«- DBSCAN |
-=— OPTICS
o 2,500 | --#- k-means |
g 2,000 .
@« Ao--h__4__ 4 4 4 Te-..a 4 4
= * [] L] ~'a
< 1,500 s ¢ -
% &
= 1,000 | i
B
< 500} |
u L N
D i .—._._ = [] L_|] h
5 1 6 8 10

Bun Number

Figure 4.7: Avg. median cluster size (obj. 3) over ten runs on 10,000 samples

to 1,900. This is likely a result of some individuals favouring this objective in the
Pareto front, and generating a small number of large clusters at the expense of other

objectives.

Pivoting to the top performers in Table 4.5, DBSCAN nearly quadruples the
number of highly homogeneous clusters to an average of 223, which is not far from
the quintupling volume of the underlying data to be clustered. The error follows this,
more than quadrupling to 18. This objective score sounds worse than it actually is
though, as it is not scaled by the number of clusters, so is expected to increase as the
number of clusters does. A 33% increase in the median cluster size to 11 shows that

these clusters are still relatively small groupings.

Compared to the metrics in Table 4.2 for DBSCAN, these top performers are a
touch lower across the board. F-Score averages around 0.653, a drop of 0.02, while
homogeneity is more affected, dropping by 0.04 to an average of 0.698. Completeness
continues the downward trend to end up around 0.819, a decrease of 0.05, and V-
Measure is accordingly 0.753, down 0.04. It is encouraging to see that, while the
amount of data has increased dramatically, the actual scores are almost identical to

the results achieved by DBSCAN on the smaller dataset. Suffice it to say, scaling

57

the system was highly successful when using DBSCAN, at least according to these

metrics.

OPTICS

Starting again with Figures 4.5, 4.6, and 4.7, OPTICS is once again the top performing
algorithm when looking at counts of highly homogeneous clusters, at an average of
153. This is more than a 50% increase relative to DBSCAN, in stark contrast to
the five cluster difference between these algorithms on the smaller dataset. As well,
this average is quintuple that of the average for 2,000 samples, exactly in line with
the increase in dataset size. The only caveat is that these results are more variable
than for DBSCAN, with the extreme low and high at 113 and 210, respectively. This
variability also extends to the summed error, which has tripled to 10.6, the highest
of the three algorithms. The upside here is that the error is growing at a rate much
lower than the cluster count. Finally, the average median cluster size has grown at
a moderate pace, from 135 to 146. This is much more reasonable than the 1,900
average seen from DBSCAN and k-means, emphasizing the applicability of OPTICS

to larger datasets.

The objective scores for OPTICS in Table 4.5 continue to deliver good news.
The count of highly homogeneous clusters has nearly quintupled to an average of
405, demolishing the competition with a score almost double that of DBSCAN and
octuple that of k-means. The error has also increased in kind, to an average of 34.5.
Interestingly, the median cluster size for top performers was identical to that of the

previous dataset.

The narrative for the labelling metrics is opposite that of DBSCAN: scores have
actually increased, relative to Table 4.2. F-Score makes a moderate jump of 0.1 to
an average of 0.645, while homogeneity, completeness, and therefore V-Measure, are
much more tempered with an increase of approximately 0.02 each. These metrics
for OPTICS are then within striking distance of DBSCAN, making it much more

competitive than on the smaller dataset.

58

k-means

The trendlines do not paint a fHattering picture of k-means on this dataset. For the
count of highly homogeneous clusters, the average across all runs has dropped from
20 in Figure 4.2 to 15 in Figure 4.5. There is respite in Figure 4.6, as the summed
error has increased by only 0.6, and is in line, quite literally, with the results achieved
by DBSCAN. As in Figure 4.4, the results in Figure 4.7 show k-means tangling with
DBSCAN at an average median cluster size of 2,000. Unfortunately, this objective is
much less meaningful for k-means, as all of the data is clustered anyway. In addition,
the stability shown on the smaller dataset is no longer present, with values ranging
from 1,524 all the way up to nearly 3,000.

The picture is not any rosier when one considers the objective scores for the top
three individuals in Table 4.5. The averaged count of highly homogeneous clusters
increased by a measly 10%, to 55, despite a 500% increase in data to be clustered.
The error was nearly unchanged, at 14, while the median cluster size quadrupled to
57. Once again, this performance jump is undercut by the inclusive nature of the
algorithm.

A final look at the labelling scores for the best individuals shows that every metric
except for completeness drops by approximately 0.1 compared to the results shown in
Table 4.2. Completeness is still lower by 0.06. All-in-all, the performance difference
between DBSCAN, the algorithm with the best scores on these metrics, and k-means
is substantial. The gap between average F-Scores is 0.223, and the corresponding
V-Measure gap is 0.174. These results seal k-means fate as the lowest performing

clustering algorithm on this problem.

4.2.2 Signature Results

In the previous subsections, I judged the success of the clustering algorithm based
on the assigned labels, using weighted F-scores, homogeneity, completeness, and V-
Measures. This worked well enough from a classification perspective, but this task is
not truly one of classification, but clustering. We want to know what is similar about
each sample. In classification, mixed labels are unwelcome. Here, they are potentially
desired. As a result, the dominating metric in these evaluations is the representation

for each cluster. That is, the percentage of samples in each cluster that have the same

59

Length | DBSCAN OPTICS k-means | Average

3 42.93 35.64 45.375 42.93
5 40.11 a7 39.11 38.74
T 40.44 40.86 43.91 41.74

Table 4.6: Avg. homogeneous cluster count signature length comparison

imports.

In this subsection, I will detail the process by which the signature length was
determined, before discussing the results of the signature generation process. This
includes the signature representation metric, as well as a survey of the produced

signatures, highlighting strengths and weaknesses of the approach.

Fixed-Length Parameter Selection

As previously discussed, it was important to choose a reasonable length for the signa-
ture to balance interpretability and specificity. Since the signature generation process
will drop clusters that cannot produce a unique signature, this parameter is essential
to preserving as much data as possible. Han and Olivier [11] suggest n = 5 as pro-
viding the best balance between generic and specific. Accordingly, it was a natural
place to start.

Using 2,000 randomly selected malware from the EMBER dataset, the COUGAR
system is run three times for each clustering algorithm, with the signature length set
to 3, 5, and 7. The resulting counts of highly homogeneous clusters were collected,
along with the number of dropped clusters, and divided by the number of individ-
uals contained in the final population of each run. This yields comparable values
of average cluster counts and average dropped clusters. The length should then be
chosen such that the former objective is maximized, while the latter is minimized.
This emperical process is not guaranteed to give consistent results, as it is dependant
on the underlying malware, but should suffice as a reasonable estimate. Logically, a
longer signature is less likely to be duplicated, so this process was more about finding

an acceptable threshold than an absolute best possible value.

The averaged counts for each clustering algorithm, as well as their overall average,

Length | DBSCAN OPTICS k-means | Average

3 0.44 0.81 0.38 0.55
5 0.22 0.33 0.22 0.26
T 0.0 0.14 0.0 0.05

Table 4.7: Avg. dropped cluster count signature length comparison

is given in Tables 4.6 and 4.7. Surprisingly, a length of 5 leads to the worst perfor-
mance with respect to the count of highly homogeneous clusters, while 3 marginally
beats 7, achieving a single cluster more on average.

On the dropped cluster front, however, it is as one would expect: a longer signature
iz more likely to be unique. The count of dropped clusters is at least cut in half by
increasing the signature size from 3 to 5, and again from 5 to 7. In fact, when the
signature size is set to 7, DBSCAN and k-means do not drop any clusters at all, and
OPTICS only drops a single cluster across all individuals. As a result, the signature

size was set to 7 for this second round of experiments.

Signature Metrics

To begin, the surviving individuals of the evolutionary processes produce clusterings
that routinely exhibit excellent results. When one considers the number of individuals
that score at least 90% across their averaged signature representation, the numbers

speak for themselves:
e 59/5) DBSCAN individuals > 90%
o 115/115 OPTICS individuals > 90%
¢ 3931 k-means individuals > 90%

DBSCAN has only two individuals below 90% (80% and 72%), while OPTICS has
none. Even k-means, which has been demonstrated to break down on this larger
dataset, manages a median representation of 88.8%.

Since so many solutions are highly ranked by this metric, [have chosen three
differing individuals that each score > 95% to illustrate the diversity of solutions
obtained through the fronts, and therefore the tunability of the system. These can
be seen in Table 4.8.

61

Algo. Rep. Obj. 1 0Obj. 2 Obj. 3 F-Score Homo. Comp. V-Meas.

DBSCAN1 100 187 8.487 9 0.735 0.787 0.879 0.830
DBSCAN 2 100 118 0.825 9 0793 0.845 0924 0.882
DBSCAN 3 98.84 41 6.172 65 0515 0555 0.789 0.651

OPTICS 1 100 223 3.672 T 0.760 0.815 0.905 0.858
OPTICS 2 100 156 1.654 8 0.794 0.836 0918 0.875
OPTICS 3 98.15 90 16.732 33 0556 0.619 0.768 0.686

k-means 1 97.32 56 13.759 59 0427 0434 0.712 0.577
k-means 2 96.19 33 9.957 69 0402 0458 0.701 0.554
k-means 3 95.73 a1 11.157 87.5 0406 0460 0.704 0.556

Table 4.8: Selected elite clusterings per algorithm on 10,000 samples, ranked by
cluster representation

The first DBSCAN individual achieves a cluster representation of 100%, with ob-
jective scores better or nearly as good as the best given in Table 4.5. This individual
falls within the part of the non-dominated front that prioritizes counts of highly ho-
mogeneous clusters, finding 187. The second individual also manages a representation
of 100%, but instead promotes error minimalization, with a minuscule 0.825. While
they do not compete for the top raw objective scores, their *jack-of-all-trades’ versatil-
ity results in heretofore unseen F-Scores and V-Measures, with the second individual
achieving 0.793 and 0.882, respectively. The last individual, on the other hand, has
a slightly lower representation, but maximizes the median cluster size to 65, signifi-
cantly higher than seen from other DBSCAN individuals. An individual like this can
be seen as ‘casting a wider net’ on the data, by sacrificing top performance to cluster
more data. This represents a key strength of the COUGAR system, in that its output

can be filtered to the desires of the searcher.

The narrative for chosen OPTICS individuals follows the same trends, with slight
differences in objective scores and metrics. Counts of highly homogeneous individuals
and error are up, while median cluster sizes are down, relative to DBSCAN. Labelling
metrics are almost universally higher, with the exception of the second individual,
which is slightly lower than its DBSCAN equivalent on V-Measure. The upside is
that it narrowly edges out that same DBSCAN individual for the highest reported
F-Score across all highlighted individuals, at 0.794. With all of this said, OPTICS

62

demonstrates that it can produce highly representative clusters and outpace DBSCAN
cluster counts, while also keeping the error at acceptable levels.

These trends apply less so to the selected k-means individuals. The first indi-
vidual is the same highest ranked solution as in Table 4.5, with a representation of
97.3%. The second and third individuals reduce their homogeneous cluster count in
the interest of lowered error and higher median cluster size, respectively. They also
achieve respectable representations of 96.2% and 95.7% across their clusters. That
said, the errors are higher than most of the selected DBSCAN/OPTICS individu-
als with much lower counts of homogeneous clusters. As a result of the algorithm’s
propensity for large clusters, the median cluster size is always relatively high, an up-
side that is undercut by labelling metric scores as low as half that of DBSCAN or
OPTICS.

Discussion of Produced Signatures

Since an explicit goal of the signatures generation methodology was interpretability,
one has to ask the question: can we understand them? The answer depends on the
cluster. Some clusters have indeed been assigned signatures suggestive of the under-
lying behaviour, while others are more cryptic. For example, in one run of DBSCAN,
out of 175 clusters, 150 of them are considered ‘legible’. That is, their cluster signa-
ture consists of at least four functions, and not more than three of those functions are
ordinal functions (discussed below). This heuristic is sufficient to determine whether
the functions are suggestive or cryptic, for the purposes of exploration. 1 will explore
three of the former, and two of the latter. It should be noted, however, that every
one of the 175 cluster signatures in this example run is 100% representative of its
respective cluster, regardless of legibility. The MD5s and AVClass labels for each
sample in these clusters can be found in Appendix B.

The first cluster under observation consists of 93 samples, with the majority (89)
having the AVClass label f1ystudio. The chosen signature consists of the following

seven functions imported from corresponding libraries:
e comctl32.d1ll,imagelist duplicate

o oleaut32.dll,ordinali6tb

63

e winmm.dl]l,midioutunprepareheader
o winmm.dll,midistreamclose

e winmm.dll,midistreamopen

e winmm.dl],midistreamproperty

e winmm.dl]l,midistreamstop

The first two functions are unrelated to the rest, but the final five are all from the
same library, enabling access to multimedia functionality in Windows. As can be seen
from the function names, these functions allow for MIDI (Musical Instrument Digital
Interface) streams to be controlled which implies that these malware may play some
sort of music or sound. While this behaviour is not particularly malicious, it is still
a distinct behaviour by which these malware have been grouped.

Moving to a behaviour that is decidedly more nefarious, the second cluster is
composed of ten samples labelled as emotet. This is a well-known persistent threat

that is especially destructive [68]. The signature for this cluster is as follows:
e crypt32.dll,certcreatectlcontext
e crypt32.dll,certduplicatestore
e crypt32.dll,certfindctlinstore
e crypt32.dll,cryptmemrealloc
e crypt32.dll,cryptmsgduplicate
e crypt32.dll,cryptmsgupdate
e crypt32.dll,cryptsignmessage

These functions are all from the Windows library enabling access to the CryptoAPL
This could be suggestive of ransomware behaviour, and these functions could be used
as part of the user file encryption process. Another possibility could be that these
malware encrypt some of their own binaries, and use these functions to deobfuscate

themselves. Regardless, the behaviour here is still coherent.

64

In the final interpretable cluster, all but one of the 25 have been assigned the
label ramnit. This family is known to hook into the Windows service host process,
according to Microsoft [69]. With that in mind, the following signature functions

seem appropriate:
e advapi32.dll,changeserviceconfiga
e advapi32.dll,createservicea
e advapi32.dll,queryserviceconfiga
e advapi32.dll,registerservicectrlhandlera
e advapi32.dll,startservicea
e advapi32.dll,startservicectrldispatchera
o kernel32.dll,flushviewoffile

The first six are all imported from the same library, and related to the creation or
management of Windows services, just as previously mentioned. Once again, this
signature provides an ‘at a glance’ snippet of the underlying malware similarity.
Looking instead at clusters which do not have a discernible behaviour, we have
a cluster of 95 samples, 94 of which are labelled as zbot. While all of the signature

functions are from the same library, their function ‘names’ leave much to be desired:
o mfc4?.dl]l,ordinali849
o mfc4?.dl]l,ordinali942
o mfc4?.dll,ordinal2583
o mfcd?.dl]l,ordinal303
o mfc4?.dl]l,ordinal3371
e mfc4?.dll,ordinal3399

o mfc4?.dl]l,ordinal 3641

65

These functions are not imported by name, but instead their ordinal number, iden-
tifying their position within the library’s export table [70]. These are impossible to
decipher without expert knowledge or disassembly software which is capable of trans-
lating the ordinal numbers back to the appropriate symbol, such as IDA Pro'. This
is not a failing of the clustering methodology so much as the underlying features.
For these malware, additional static or dynamic analysis feature might produce more
interpretable results.

In the final cluster, we have an example of the least informative signature pattern:
a small number of generic imports. In this case, it is only a single function. Of the
63 samples in this cluster, 61 of them are labelled as wannacry, a ransomware family.

The function is:
o kernel32.dll,closehandle

This function simply closes an open handle to an object, a trivial similarity between
samples. Unfortunately, this is a weakness of the signature generation methodology.
Functions that are present in, for example, 99% of samples might have been more
informative than this single function that is present in 100%.

Even in these two examples with less informative signatures, the clusters them-
selves are composed of many malware that share the same label. Accordingly, a
refinement in signature generation that can identify and recalculate trivial signatures

might mitigate this sort of issue in future work.

4.2.3 Computation Time

In this second round of experiments, parallel and distributed computation was stated
as an important part of scaling the system. Parallel computing can allow for tasks to
complete in the fraction of the time they would take if computed in sequence. With
that said, distributed resiliency is a major benefit of Spark, but not strictly necessary.

Yrunning Spark

To that end, these experiments were conducted on a powerful server
in a pseudo-distributed configuration. Given the population size of 16, up to 16

executors would be deployed during periods of parallel computation.

 https://www.hex-rays.com/products/ida/
2Four 6-core dual-threaded Intel Xeon E7350 CPUs @ 1.87GHz, for a total of 48 logical processors,
and 1TB of RAM.

https://www.hex-rays.com/products/ida/

Clustering Algorithm Mean Median Standard Deviation

DBSCAN 435.61 437.78 42.49
OPTICS 42.02 41.38 2.66
k-means 393.73 355.58 73.52

Table 4.9: Elapsed time statistics, in minutes, on 10,000 samples

For each of DBSCAN, OPTICS, and k-means, all execution times are listed in
Tables A.4, A5, and A.6, respectively. An overview of the results is found in Table

4.9.

DBSCAN takes the longest on average, at 435 minutes (7.25 hours), with only a
two minute difference between mean and median run times. The standard deviation
is 43 minutes, equivalent to 9.75% of the mean time. k-means is similar, but slightly
faster at 393 minutes (6.6 hours), with a significantly wider gap between the mean
and median times, at 38 minutes. This corresponds to a standard deviation of 73
minutes, nearly double that of DBSCAN, and 18.67% of the mean time. This is
almost certainly due to the changing number of initializations and iterations specified

as part of the k-means evolutionary process.

OPTICS truly shines in this evaluation, however, as it completes its runs in 42
minutes on average, a speed tenfold faster than the other algorithms. The difference
between the mean and median speed is less than a minute, and the standard deviation
iz only 2.7 minutes. The latter measurement is a small fraction of the others, and
a much lower percentage of the mean (6.3%). As a result, OPTICS is far and away
the fastest clustering algorithm on the larger dataset, and most stable with respect
to runtimes. This supports the assertion of the Scikit-Learn developers that their

OPTICS implementation is more suitable to large datasets.

It is also important to consider the objective performance of the algorithms in the
context of their differing runtimes. As shown in Tables 4.5 and 4.8, OPTICS competes
with or exceeds DBSCAN across every metric, while k-means is not competitive. In
conclusion, OPTICS allows for very good results to be computed in one-tenth the
time of the other compared algorithms.

67

4.3 Summary

In this chapter, I discussed the experiments performed and the results of those ex-
periments.

In a round of preliminary experiments, the COUGAR system was trained on
2,000 samples, with 1,000 held back for testing. Three clustering algorithms were
compared across the objective scores for the multi-objective genetic algorithm, as
well as the aforementioned labelling metrics. After evaluating the training results
with statistical analysis tests, DBSCAN was selected for further testing, and showed
stable performance on the testing dataset.

After reimplementing the system using Apache Spark, the second and final round
of experiments replicated the first but on a larger dataset of 10,000 samples. To
account for labelling issues in the first round, a new metric was introduced based on
the signatures being generated. The evaluations showed that the system scales to the
larger dataset. DBSCAN and k-means operate at similar speeds, but the former is
significantly more successful than the latter across the objectives and metrics. The
performance of OPTICS exceeds that of DBSCAN in many cases, while it runs in
much less time. The most successful clusterings achieve F-Scores of 0.79 and V-
Measures of 0.88.

The signatures generated are tuned to the ideal length by repeating the first round
experiments with an eye for the number of cluster signatures that collide. With the
length chosen, COUGAR generates cluster signatures that represent the vast majority
of samples contained within. This applies across all three algorithms, with 243 of the
287 (85%) output individuals capable of creating clusterings with averaged signature

representations of at least 90%.

Chapter 5

Conclusion

In this thesis, I studied the problem of clustering malicious software and generating
signatures to describe those clusters. This contribution was enabled by the imple-
mentation of a system called COUGAR, which marries natural language processing

methodology and genetic optimization.

COUGAR reduces high-dimensional behavioural data from malware to two-dimensions,
and optimizes the clustering process for those embeddings using a multi-objective ge-
netic algorithm. This behavioural data is provided by imported functions extracted
from the malicious binaries, a form of static analysis. The imports imply potential
behaviours by considering the use of third-party libraries that are difficult to obfus-
cate without breaking compatibility with the library. The objectives to be optimized
include such desirable cluster properties as homogeneity, low error, and cluster size.
Signatures are then assigned based on the commonalities in the underlying cluster
features, emphasizing computational speed and intelligibility.

The data for these experiments was provided by EMBER, an open-source dataset
containing pre-extracted malicious features, such as byte histograms, function im-
ports, exports, AV labels, and other identifying metadata. While this information
was pre-extracted, and the system tested on only one type of feature, the methodol-
ogy is flexible enough to accommodate other features with little adaptation.

Two rounds of experiments were performed, on small and large datasets, where
the system was reimplemented for the second set of experiments to support parallel,
distributed computation on scalable compute clusters. In these experiments, three
clustering algorithms, DBSCAN, OPTICS, and k-means, were directly compared to
ascertain the performance differences across objective scores, labelling metrics, cluster
signature representation, and computation time.

The results indicate that DBSCAN and OPTICS both produce respectable clus-

terings that are supported by the detailed metrics. k-means manages some stuccess on

68

69

the smaller dataset, but has more difficulty finding acceptable clusters on the larger
dataset. The most successful clusterings achieve F-Scores of 0.79 and V-Measures of
0.88. The signatures produced during these experiments are highly representative of
the underlying clusters, and can be interpreted to discover shared behaviours of the
malware. 85% of the individuals in the final populations were capable of creating
clusterings with averaged signature representations of at least 90%. If k-means is

discarded, 99% of individuals achieve that distinetion.

5.1 Future Work

The scope of this thesis was to survey and join successful technigques observed in
the literature for the purposes of building and demonstrating a proof-of-concept au-
tomated malware clustering and signature generation system. As such, there are a
number of areas for growth present in the system that encourage further research. I
will enumerate ideas that would contribute from an operational standpoint, as well
as areas for exploration.

There are weaknesses to the signature generation approach. As mentioned, not
all signatures are of the desired length (7), owing to the term selection process. This
could be alleviated by considering the size of the maximal signature in the genera-
tion process, and ensuring that the length of the maximal signature is equal to or
greater than the desired length. This could be enabled by selecting functions with
a range of term frequencies, rather than the single most occurring frequency in the
cluster. As well, the underlying functions can be difficult to understand. This could
be addressed by employing a variety of malware behaviour features, rather than just
function imports, and using those most informative.

The similarity comparison process itself has scaling issues, owing to the quadratic
time complexity of cosine similarity, and the vectorization process. The former is still
a bottleneck of the current implementation of the system, as these comparisons are
made only on a single core. The latter is not presently a concern, but the growing
dictionary will almost certainly prove problematic when sample counts reach higher
orders of magnitude.

To address the scaling problem of dictionary sizes when vectorizing samples, the

hashing trick could be employed. By hashing the features into a matrix of finite size,

70

a dictionary would no longer be required. Unfortunately, this would undercut the
signature generation capabilities of the system, so is not an end-all solution.

As far as cosine similarity is concerned, a more powerful processing core would
suffice for some time, but would eventually need to give way to an alternative method-
ology or implementation. The latter could be done using some sort of hardware ac-
celeration, such as computing on a graphics processing unit (GPU), or could itself be
distributed across a compute cluster.

In contrast, rather than speeding up the comparison process, the number of com-
parisons could be reduced by defining a representative sample for each cluster, as
suggested by Lee et al. [7]. In doing so, clusters that are obviously different and
do not merit further comparison could be disregarded during the evaluation process
by first comparing to the representative sample, and returning if below a particular
threshold.

Finally, the clustering algorithm itself could be reconsidered. HDBSCAN, a hi-
erarchical variant of DBSCAN, was not explored in this work, and could give per-
formance benefits by negating the £ determination process, similar to OPTICS. In
addition, HDBSCAN supports soft clustering, where degrees of membership for each
sample are assigned. This may provide another analysis angle in the structure of the
cluster.

Notwithstanding these areas for improvement, the experiments in this thesis demon-
strate the potential that exists in employing multi-objective genetic algorithms for
tuning clustering algorithms in the domain of malware identification. The COUGAR
system stands as proof of this concept.

Bibliography

[1] T. Daigle, “Definite uptick’: Global wave of ransomware attacks hitting
canadian organizations,” CBC News, Oct 2019. [Online]. Available: https:
/ [www.cbe.ca/news/technology /more-ransomware-canada-1.5317871

[2] S. Gallagher, “DoS attack on major DNS provider brings Inter-
net to morning crawl” Ars Technica, Oct. 2016. [Online]. Avail-
able: https://arstechnica.com/information-technology/2016/10/dos-attack-on
-major-dns-provider-brings-internet-to-morning-crawl /

(3] B. Krebs, “Who is anna-senpai, the mirai worm author?” Krebs on Security,
Jan. 2018. [Online]. Available: https://krebsonsecurity.com/2017/01/who-is-a
nna-senpai-the-mirai-worm-author/

[4] J. O’Malley. (2018, Jul.) The Internet of Things will thrive on 5G technology.
[Online]. Available: https://www.verizon.com/about /our-company /5g/interne
t-things-will-thrive-5g-technology

[5] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: Feature hashing
malware for scalable triage and semantic analysis,” in Proceedings of the
18th ACM Conference on Computer and Communications Security, ser. CCS
"11. New York, NY, USA: ACM, 2011, pp. 309-320. [Online]. Available:
http://doi.acm.org/10.1145,/2046707.2046742

[6] H. L. Duarte-Garcia, A. Cortez-Marquez, G. Sanchez-Perez, H. Perez-Meana,
K. Toscano-Medina, and A. Hernandez-Suarez, “Automatic malware clustering
using word embeddings and unsupervised learning,” in 2019 7th International
Workshop on Biometrics and Forensics (IWBF), May 2019, pp. 1-6.

[7] T. Lee, B. Choi, Y. Shin, and J. Kwak, “Automatic malware mutant detection
and group classification based on the n-gram and clustering coefficient,” The
Journal of Supercomputing, vol. T4, no. 8, pp. 3489-3503, Aug. 2018. [Online].
Available: https://doi.org/10.1007/s11227-015-1594-6

(8] Z. Wilkins and N. Zincir-Heywood, “COUGAR: Clustering Of Unknown
malware using Genetic Algorithm Routines,” in Proceedings of the 2020 Genetic
and Evolutionary Computation Conference, ser. GECCO "20. New York, NY,
USA: Association for Computing Machinery, 2020, pp. 1195-1203. [Online].
Available: https://doi.org/10.1145/3377930.3390151

[9] J. Newsome, B. Karp, and D. Song, “Polygraph: automatically generating signa-
tures for polymorphic worms,” in 2005 IEEE Symposium on Security and Privacy
(S P’05), 2005, pp. 226-241.

71

https://www.cbc.ca/news/technology/more-ransomware-canada-1.5317871
https://www.cbc.ca/news/technology/more-ransomware-canada-1.5317871
https://arstechnica.com/information-technology/2016/10/dos-attack-on-major-dns-provider-brings-internet-to-morning-crawl/
https://arstechnica.com/information-technology/2016/10/dos-attack-on-major-dns-provider-brings-internet-to-morning-crawl/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://www.verizon.com/about/our-company/5g/internet-things-will-thrive-5g-technology
https://www.verizon.com/about/our-company/5g/internet-things-will-thrive-5g-technology
http://doi.acm.org/10.1145/2046707.2046742
https://doi.org/10.1007/s11227-015-1594-6
https://doi.org/10.1145/3377930.3390151

T2

[10] X. Zhang and Z. Xu, “On the feasibility of automatic malware family
signature generation,” in Proceedings of the First Workshop on Radical
and FEzperiential Security, ser. RESEC ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 6972. [Online|. Available:
https://doi.org/10.1145/3203422.3203430

[11] X. Han and B. Olivier, “Interpretable and adversarially-resistant behavioral
malware signatures,” in Proceedings of the 35th Annual ACM Symposium
on Applied Computing, ser. SAC '20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 16681677. [Online|. Avwailable: https:
//doi.org/10.1145/3341105.3373854

[12] Canadian Centre for Cyber Security. (2018, Dec.) Cyber Threat and Cyber
Threat Actors. [Online]. Available: https://cyber.ge.ca/en/guidance/cyber-thre
at-and-cyber-threat-actors

[13] ——. (2018, Dec.) Cyber Threat Activities. [Online]. Awvailable: https:
/ [eyber.ge.ca/en/guidance /cyber-threat-activities

[14] T. Moffitt. (2016, Oct.) Source Code for Mirai IoT Malware Released. [Online].
Available: https://www.webroot.com/blog,/2016,/10/10/source-code-mirai-iot-
malware-released/

[15] P. Arntz. (2017, Mar.) Explained: Packer, Crypter, and Protector. [Online].
Available: https://blog.malwarebytes.com/cybercrime/malware/2017/03/expla
ined-packer-crypter-and-protector

[16] D. Kirat, G. Vigna, and C. Kruegel, “Barebox: Efficient malware analysis on
bare-metal,” 12 2011, pp. 403-412.

[17] VIPRE Labs. (2020) Analysis of Ursnif. [Online]. Available: https:
/ /labs.vipre.com/analysis-of-ursnif/

[18] M. Sebastidn, R. Rivera, P. Kotzias, and J. Caballero, “AVClass: A Tool for
Massive Malware Labeling,” in Hesearch in Attacks, Intrusions, and Defenses,
F. Monrose, M. Dacier, G. Blane, and J. Garcia-Alfaro, Eds. Cham: Springer
International Publishing, 2016, pp. 230-253.

[19] J. Schaffer and L. Eshelman, “On crossover as an evolutionary viable strategy,”
01 1991.

[20] H. Faridi, S. Srinivasagopalan, and R. Verma, “Performance evaluation of fea-
tures and clustering algorithms for malware,” 11 2018, pp. 13-22.

[21] R. Pirscoveanu, M. Stevanovie, and J. M. Pedersen, “Clustering analysis of mal-
ware behavior using self organizing map,” in 2016 International Conference On
Cyber Situational Awareness, Data Analytics And Assessment (CyberSA), June
2016, pp. 1-6.

https://doi.org/10.1145/3203422.3203430
https://doi.org/10.1145/3341105.3373854
https://doi.org/10.1145/3341105.3373854
https://cyber.gc.ca/en/guidance/cyber-threat-and-cyber-threat-actors
https://cyber.gc.ca/en/guidance/cyber-threat-and-cyber-threat-actors
https://cyber.gc.ca/en/guidance/cyber-threat-activities
https://cyber.gc.ca/en/guidance/cyber-threat-activities
https://www.webroot.com/blog/2016/10/10/source-code-mirai-iot-malware-released/
https://www.webroot.com/blog/2016/10/10/source-code-mirai-iot-malware-released/
https://blog.malwarebytes.com/cybercrime/malware/2017/03/explained-packer-crypter-and-protector
https://blog.malwarebytes.com/cybercrime/malware/2017/03/explained-packer-crypter-and-protector
https://labs.vipre.com/analysis-of-ursnif/
https://labs.vipre.com/analysis-of-ursnif/

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

73

G. Acampora, M. L. Bernardi, M. Cimitile, G. Tortora, and A. Vitiello, “A
fuzzy clustering-based approach to study malware phylogeny,” in 2018 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), July 2018, pp. 1-8.

N. Kurinjivendhan and K. Thangadurai, “Modified k-means algorithm and ge-
netic approach for cluster optimization,” in 2016 International Conference on
Data Mining and Advanced Computing (SAPIENCE), 2016, pp. 53-56.

M. Anusha and J. G. R. Sathiaseelan, “An enhanced k-means genetic algorithms
for optimal clustering,” in 2014 IEEFE International Conference on Computa-
tional Intelligence and Computing Research, 2014, pp. 1-5.

5. Irfan, G. Dwivedi, and S. Ghosh, “Optimization of k-means clustering using
genetic algorithm,” in 2017 International Conference on Computing and Com-
munication Technologies for Smart Nation (IC3TSN), 2017, pp. 156-161.

5. Al-Malak and M. Hosny, “A multimodal adaptive genetic clustering
algorithm,” in Proceedings of the 2016 on Genetic and FEvolutionary
Computation Conference Companion, ser. GECCO 16 Companion. New York,
NY, USA: Association for Computing Machinery, 2016, p. 14531454, [Online].
Available: https://doi.org/10.1145/2908961.2931633

A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay, “Multiobjective genetic
clustering with ensemble among pareto front solutions: Application to mri brain
image segmentation,” in 2009 Seventh International Conference on Advances in
Pattern Recognition, 2009, pp. 236-239.

C. Bacquet, A. N. Zincir-Heywood, and M. I. Heywood, “Genetic optimization
and hierarchical clustering applied to encrypted traffic identification,” in 2011
IEEE Symposium on Computational Intelligence in Cyber Security (CICS), 2011,
pp. 194-201.

W. Jian-Xiang, L. Huai, S. Yue-hong, and S. Xin-Ning, “Application of genetic
algorithm in document clustering,” in 2009 International Conference on Infor-
mation Technology and Computer Science, vol. 1, 2009, pp. 145-148.

U. Zurutuza, R. Uribeetxeberria, and D. Zamboni, “A data mining approach
for analysis of worm activity through automatic signature generation,” in
Proceedings of the 1st ACM Workshop on Workshop on AlSec, ser. AlSec '08.
New York, NY, USA: Association for Computing Machinery, 2008, p. 6170.
[Online]. Available: https://doi.org/10.1145/1456377.1456394

5. Choi, J. Lee, Y. Choi, J. Kim, and I. Kim, “Hierarchical network signature
clustering and generation,” in 2016 International Conference on Information and
Commaunication Technology Convergence (ICTC), 2016, pp. 1191-1193.

https://doi.org/10.1145/2908961.2931633
https://doi.org/10.1145/1456377.1456394

T4

[32] W. Wang, X. Wang, H. Lu, and J. Su, “Automatic signature analysis and gen-
eration for large-scale network malware,” in IET International Conference on
Information Science and Control Engineering 2012 (ICISCE 2012), 2012, pp.
1-5.

[33] J.-M. Roberts. VirusShare. [Online|. Available: https://virusshare.com

[34] Y. Nativ, L. Ludar, and 5fingers. theZoo. [Online]. Available: https:
/ /thezoo.morirt.com/

[35] IdoNaorl and D. Goland. VirusBay. [Online]. Available: https://beta.virusbay.
io/

[36] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training Static
PE Malware Machine Learning Models,” ArXiv e-prints, Apr. 2018.

[37] P. Roth. (2019, Sep.) Endgame Malware BEnchmark for Research Readme.
[Online]. Awvailable: https://github.com/endgameine/ember/blob/master/RE
ADME.md

[38] R. Thomas. (2019, Nov.) LIEF - Library to Instrument Executable Formats.
[Online]. Available: https://github.com/lief-project /LIEF

[39] A. Martin, H. Menéndez, and D. Camacho, “MOCDroid: Multi-objective evo-
lutionary classifier for Android malware detection,” Soft Computing, vol. 21,
no. 24, pp. 7405-7415, 2017.

[40] Z. Wilkins and N. Zincir-Heywood, “Darwinian Malware Detectors: A
Comparison of Evolutionary Solutions to Android Malware,” in Proceedings of
the 2019 Genetic and FEvolutionary Computation Conference Companion, ser.
GECCO "19. New York, NY, USA: Association for Computing Machinery,
2019, pp. 1651-1658. [Online]. Available: http://doi.acm.org/10.1145/3319619.
3326818

[41] Z. Wilkins, 1. Zincir, and N. Zincir-Heywood, “Exploring an artificial arms race
for malware detection,” in Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion, ser. GECCO '20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 15371545. [Online]. Available:
https:/ /doi.org/10.1145/3377929.3398090

[42] B. Abrath, B. Coppens, S. Volckaert, and B. De Sutter, “Obfuscating
Windows DLLs,” in 2015 IEEE/ACM 1st International Workshop on
Software Protection (SPRO). IEEE, 2015, pp. 24-30. [Online]. Available:
http://dx.doi.org/10.1109/SPRO.2015.13

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

https://virusshare.com
https://thezoo.morirt.com/
https://thezoo.morirt.com/
https://beta.virusbay.io/
https://beta.virusbay.io/
https://github.com/endgameinc/ember/blob/master/README.md
https://github.com/endgameinc/ember/blob/master/README.md
https://github.com/lief-project/LIEF
http://doi.acm.org/10.1145/3319619.3326818
http://doi.acm.org/10.1145/3319619.3326818
https://doi.org/10.1145/3377929.3398090
http://dx.doi.org/10.1109/SPRO.2015.13

75

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Jowrnal of Machine Learning Research, vol. 12, pp.
28252830, 2011.

[44] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction,” ArXiv e-prints, Feb. 2018.

[45] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 86, pp. 2579-2605, 2008. [Online].
Available: http://jmlr.org/papers/v9/vandermaaten08a.html

[46] L. McInnes. (2018, Jul) Frequently asked questions. [Online]. Available:
https://umap-learn.readthedocs.io/en/latest /faq.html

[47] ——. (2018, Jun.) Performance comparison of dimension reduction implemen-
tations. [Online]. Available: https://umap-learn.readthedocs.io/en /latest /benc
hmarking.html

[48] ——. (2018, Jul) Transforming new data with umap. [Online]. Available:
https://umap-learn. readthedocs.io/en/latest /transform.html

[49] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise.” AAAI Press, 1996,
pp. 226-231.

50 . rst, M. M. Breunig, H. peter Kriegel, and J. Sander, “Optics: Ordering
M. Ankerst, M. M. B H Kriegel, and J. Sander, “O Ord
points to identify the clustering structure.” ACM Press, 1999, pp. 49-60.

[51] J. MacQueen, “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics. Berkeley, Calif.: University
of California Press, 1967, pp. 281-297. [Online]. Available: https:
/ /projecteuclid.org/euclid. bsmsp/1200512992

[52] J. Sukup. (2018, Feb.) When K-Means Clustering Fails: Alternatives for
Segmenting Noisy Data. [Online]. Available: https://blogs.oracle.com/datascien
ce/when-k-means-clustering-fails%3a-alternatives-for-segmenting-noisy-data

(53] I. Dabbura. (2018) K-means Clustering: Algorithm, Appli-
cations, Evaluation Methods, and Drawbacks. [Online]. Avail-
able: https://towardsdatascience.com/k-means-clustering-algorithm-applicat
ions-evaluation-methods-and-drawbacks-aa03e644b48a

[54] H. Jain and K. Deb, “An Evolutionary Many-Objective Optimization Algorithm
Using Reference-Point Based Nondominated Sorting A pproach, Part II: Handling
Constraints and Extending to an Adaptive Approach,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 602-622, Aug. 2014.

http://jmlr.org/papers/v9/vandermaaten08a.html
https://umap-learn.readthedocs.io/en/latest/faq.html
https://umap-learn.readthedocs.io/en/latest/benchmarking.html
https://umap-learn.readthedocs.io/en/latest/benchmarking.html
https://umap-learn.readthedocs.io/en/latest/transform.html
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
https://blogs.oracle.com/datascience/when-k-means-clustering-fails%3a-alternatives-for-segmenting-noisy-data
https://blogs.oracle.com/datascience/when-k-means-clustering-fails%3a-alternatives-for-segmenting-noisy-data
https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a

76

[55] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiob-
jective genetic algorithm: Nsga-ii,” IEEFE Transactions on Evolutionary Compu-
tation, vol. 6, no. 2, pp. 182-197, 2002.

[56] G. Rudolph, “Convergence of evolutionary algorithms in general search spaces,”
in Proceedings of IEEE International Conference on Evolutionary Computation,
1996, pp. 50-54.

[57] B. Doerr, E. Happ, and C. Klein, “Crossover can provably be useful in
evolutionary computation,” Theor. Comput. Seci., vol. 425, pp. 17-33, Mar.
2012. [Online]. Available: https://doi.org/10.1016/j.tcs.2010.10.035

[58] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,
“DEAP: Evolutionary algorithms made easy,” Journal of Machine Learning Re-
search, vol. 13, pp. 2171-2175, Jul. 2012.

[59] Y. Hold-Geoffroy, O. Gagnon, and M. Parizeau, “Once you scoop, no need to
fork,” in Proceedings of the 2014 Annual Conference on Extreme Science and
Engineering Discovery Environment. ACM, 2014, p. 60.

[60] S. Neumann, “Spark vs. hadoop mapreduce,” November 2014. [Online].
Available: https://www.xplenty.com/blog/2014/11/apache-spark-vs-hadoop-
mapreduce/

[61] G. Wicherski, “peHash: a novel approach to fast malware clustering,” in Pro-
ceedings of the 2nd USENIX conference on Large-scale exploits and emergent
threats: botnets, spyware, worms, and more, 2009, pp. 1-1.

[62] X. Han and B. Olivier, “Interpretable and adversarially-resistant behavioral
malware signatures,” in Proceedings of the 35th Annual ACM Symposium
on Applied Computing, ser. SAC '20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 16681677. [Online|. Avwailable: https:
//doi.org/10.1145/3341105.3373854

[63] C. Van Rijsbergen, Information Retrieval Butterworths, 1979. [Online].
Available: http://www.dcs.gla.ac.uk/Keith/Preface.html

[64] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based ex-
ternal cluster evaluation measure,” in Proceedings of the 2007 joint conference
on empirical methods in natural language processing and computational natural
language learning (EMNLP-CoNLL), 2007, pp. 410-420.

[65] T. Cover and J. Thomas, Elements of Information Theory. Wiley, 2012.
[Online]. Available: https://books.google.ca/books?id=VWq5GG6ycxMC

[66] R. Bedre. (2018, Oct.) ANOVA using Python. [Online]. Awvailable: https:
/ [reneshbedre.github.io/blog/anova.html

https://doi.org/10.1016/j.tcs.2010.10.035
https://www.xplenty.com/blog/2014/11/apache-spark-vs-hadoop-mapreduce/
https://www.xplenty.com/blog/2014/11/apache-spark-vs-hadoop-mapreduce/
https://doi.org/10.1145/3341105.3373854
https://doi.org/10.1145/3341105.3373854
http://www.dcs.gla.ac.uk/Keith/Preface.html
https://books.google.ca/books?id=VWq5GG6ycxMC
https://reneshbedre.github.io/blog/anova.html
https://reneshbedre.github.io/blog/anova.html

77

[67] K. Beck. (2018, Nov.) What Is the Tukey HSD Test? [Online]. Available:
https://sciencing.com /r2-linear-regression-8712606.html

[68] Cybersecurity & Infrastructure Security Agency. (2020, Jan.) Emotet Malware.
[Online]. Available: https://us-cert.cisa.gov/ncas/alerts/TA18-201A

[69] Microsoft Security Intelligence. (2017, Mar.) Win32/Ramnit. [Online].
Available: https://www.microsoft.com/en-us/wdsi/threats/malware-encyclope
dia-description?Name=Win32%2fRamnit

[70] Microsoft. (2020, Aug.) PE Format. [Online]. Available: https://docs.microsoft
.com/en-us/windows/win32/debug /pe-format

https://sciencing.com/r2-linear-regression-8712606.html
https://us-cert.cisa.gov/ncas/alerts/TA18-201A
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2fRamnit
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2fRamnit
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

Appendix A

Supplementary Tables

Homogeneous Cluster Count Sum of SSE Median Cluster Size

34.00 2.32 377.22
27.25 1.96 193.75
31.38 2.51 378.16
27.81 1.98 388.94
29.38 2.11 195.38
25.88 1.59 382.69
31.50 2.26 190.00
30.81 2.05 381.34
27.25 1.81 388.78
30.31 2.02 380.38

Table A.1: Final average objective score for each DBSCAN run on 3,000 samples

Homogeneous Cluster Count Sum of SSE Median Cluster Size

3444 3.43 151.69
34.88 3.05 69.31
38.50 4.33 129.56
33.88 3.27 170.88
24.25 4.70 211.75
30.69 4.33 178.75
36.94 3.20 63.28
33.19 2.86 62.75
29.38 3.29 196.88
36.56 3.70 117.72

Table A.2: Final average objective score for each OPTICS run on 3,000 samples

8

Homogeneous Cluster Count Sum of SSE Median Cluster Size
14.63 4.54 361.94
18.44 5.17 306.22
19.13 5.62 555.09
19.94 5.88 297.97
21.38 5.92 285.34
21.19 5.69 297.84
21.56 6.18 292.25
20.63 6.18 298.75
20.75 5.95 307.06
20.13 5.90 314.97

Table A.3: Final average objective score for each k-means run on 3,000 samples

Clustering Algorithm Elapsed Seconds

DBSCAN
DBSCAN
DBSCAN
DBSCAN
DBSCAN
DBSCAN
DBSCAN
DBSCAN
DBSCAN
DBSCAN

24398
24650
23175
21783
26714
28467
27019
29202
30136
25819

79

Table A.4: Execution times of COUGAR on Spark using DBSCAN on 10,000 samples

Clustering Algorithm Elapsed Seconds

OPTICS
OPTICS
OPTICS
OPTICS
OPTICS
OPTICS
OPTICS
OPTICS
OPTICS
OPTICS

2363
2731
2464
2352
2365
2502
2621
2635
2369
2810

Table A.5: Execution times of COUGAR on Spark using OPTICS on 10,000 samples

Clustering Algorithm Elapsed Seconds

k-means
k-means
k-means
k-means
k-means
k-means
k-means
k-means
k-means
k-means

31071
20572
28948
21398
19986
19536
20812
30714
21926
21272

80

Table A.6: Execution times of COUGAR on Spark using k-means on 10,000 samples

Appendix B

Malware for Cluster Signature Discussion

Flystudio Cluster

d6fe74d3ded8f7139e5acd611228f4be
e6643dc44c046a01a7fe19c2d5d8dd43
f6b291abdf8d15d2581d1eadf3d23df9
feb47513ea207955106545¢cc9£72d8c0
6bf1c31c8d280c65c6ed47153c2575d7
e2ac60f8d3087e83da38f878ee4fdbef
a4c64bbbe474ea4d95f49543d67dbebb
ab3afbd1419383492abddcald4ailabe
d308edad6b8aeTafTeb93bdbdc632e8e
fe7f40bd757acab£5609a29bcd2efbde
ala2ce1a96d76047c6499£d303175bal
af03e2250ff35aa0504fc753b06ci1af8
dd52£33cd9d5296a7d10d7535ebb728f
d750316d7a8cb8eb5bal15585f7afiae
c5£62b7183311b600aec2bb43be3£6£0
c006ce36fc4255c2f28b38eda47838al
b37aZb%aad4abB8c4ad24863aeceficdeea
ec2535df30d20fca3c86725244351130
fe462ecd84b555d3b3cb4755f5df18a6
3e1b20eeda470be3e01508cd4e862050
e13b26933adadai18a375bd8b4454c8be
db26608c1381a270c52473f2b%e30bd3
a25fe4029d5ef3058f4acddd90744e92
b06cb582cf2e7d453a93b15ecb8e64cT
3e259ebc5cf14b9c4b2fb037359ace33

flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio

81

b20df23e0ebedafB8e(d4385fc0adbcab

b86ce6c836£56bd7E55731192b622416
d814faff9bc05674f86a767aeb6a71b24
£212e8bc202balad708eace794aalfc2
d64cbf1d7c836eaba9e7bbbd4332644d8
d938b823b71b9d9¢c32a418¢ccab383126
cf545d68d39dfdae00c0b15d923714b3
ebd066edecbb41ba2bic2iclad9alef2
d832daa7406£d951bfb05075860b7ald
a104ae32e£3824323078d45ee09288b7
c3£fc9493b9bbdb5c44ea7c487190795
d9d1a0f9c091d6277db4088bde655d42
ccfe8868571e2a29528b87b762532850
e3ed556d781e1£822ab808423c1d675a
b5c457f4ad8516bbc7fbdebe34777dct
a2e502d82e3ae6fbf7885b2d8fb5cd24
b9e360dbbfd109334934288e66879159
b3e896da3e4cf8792fd0df7c35bbebel
dfef(020e3edeBabe405bf 7Tbde2e9aiibc
df9813202bd1165£243b8fbb38£fd8chd
b53e56d20366d814ec093e5b8e2490bc
albecbf701fa82c3467c897a8£349050
febd3879547418ed6367b3d079d3389¢c
clcei1d857ab0f13b3b66bd6236683944
caab31bf1d23cd0d913700b087b94£60
b07cbf8a2f04e9612fcd3564f7bfE4£7
bb3dcd9f1271d7348b0a42dc39778b38
38cc8e32054bb05d7b261d0e13b7b22d
eb68497891bb9bbd4e4879cbf636£6b0

flystudio

flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio

82

b0957f£3bdc1b5f9¢ced5401784282290
c3439%aa61fae8blebleBcffcbbedchbed
e700e79849327ed624add2b7£6848bcd
db78718147545b5b1774209692b479d5
16195521d7£568df6db43b9b00£8d350
cdc08134bdcc825a35b298729f75d364
aeb9f77£3bf40562e366259df93903f4
c8acc23060bbbb56f0b5£9762e10bchb0
deB8480ee1dbbeb93d57757a3ee5118b5
cf78b85a00c761a6751a26e04d0b2668
c25253847b88d7da33c90c3518a19¢f3
cebd9de242385072b85468d5e719900d
f54521166£5£281438b376b9c6122a39
ad358de505039a623755832465b65ede
c63b1a%af254e6fb4be903b13de8a650
a642ac62490cc19e37e996cd85959842
e624bd8675afcffa69f9431c3bad94af
ac634a6241ff486b717bc5803b117459
aa463ad61d7bcd872004de2405998637
b4538e8f2a8f6943b17d5513f6f1bada
c1e159087e5b2049727394c2d56£0d5¢c
befca464fa4al0bb4125272166276e6¢
clca6cf846b7cb831b4c8cbed1bde26t
a7546ef3a6cd44e08239e631c00b3daf
baB8facbd6ae721de010e9679d719006£
b2f5111a43d9d8a18c6e23d3a1e9c266
e21db1af523a4a40db7289b4e4c42043
1c79f3c9c35fbf3f4e1db4a3c82778240
c222fabec91b74dfe476cd27eel3d61d
e3fa207271f124672f6a933df934ae4c
d6daa98b836e1fbadffci2aebcb38adl
1f0£7900cfba911682a58d792c9¢c2e83

flystudio
flystudio
flystudio
tescrypt
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
skeeyah
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
flystudio
tescrypt

flystudio

83

bb4bf49e1d8abb21c56e09¢c47a621567
47ea70b8ee98a23dba2f3e2dddce%ab0
a4c0f5d59bf739060ab64343aaa0b837
d86a96b4afcfal44fb2cefbe415653al
a220704358e0f8d23e98844f1fb37180
dc4elbc89baldebe’dBTed4af8c38519
b9aaa38f7e29e4433c5e386360c1e722

Emotet Cluster

0a7a72a5853f3740ea76f9934764bd44
bifa33%ai97acac27eef6520bfebb84e
23f8eec4c3b31bad4dddf80784365b7d
1708d489301£dcc0427382d0a738442b
2266fdee5307b9e7a5e61ed39ed05ch9
1d13b92e9fa263416759£8577c73a73a
e547dfc077329146bbcadd3be7c3badd
f55c58b1d8ade1bf02646daf45efa7b8
2aB844becealaaab2d1e4cO0fb7bff9bb8
c60287a31f0c02a49229a01480520e9f

Rammnit Cluster

77df831182dabd1870e8856d6e0c3e77
fab3de356be8a08c209a6ec2d6544666
03b4a13300c6546a5df492331a159845
0dd1d6bc6c0d1205104eeb46b792baf4
2373fcbe0fd0135£4d90fb6efc06594b
b4eaf0fac033c6cOcHchbbfadaliclecc
2e761806cba7fe0£f051743b444dd191£8
6c728118aae5d502bc397e706ac5d0b0
d095cb0f2d9ec64da8243c795cadbf8f

flystudio
flystudio
tescrypt

flystudio
flystudio
flystudio
flystudio

emotet
emotet
emotet
emotet
emotet
emotet
emotet
emotet
emotet

emotet

ramnit
ramnit
zbot

ramnit
ramnit
ramnit
ramnit
ramnit

ramnit

84

417829796fc6d4d347eefa7288258ea2
b416724c7£39349c53ca91b838caalal
ef4777d55cfe87302de001d0cda72e64
dd8852137f6£f82e30fcb2e3a8ed2497
599e9f38051ae95d7f56fb13b5941f7e
401060b5991f47afed4e24e60f646215
c2d250b86£774971cf0b1ac2835bbdal
69effie3da3ba3c37ab9f42aldeebcdd
413af0e78cb8812c578a00a86fde8e9f
e06191c650b9bca9cdd4835a99428432
162£053d845244ec77d60efed413c378
2dc709bbb11af6a768d6e8f17594fc64
41052d3bb50fc313267£804136e61d19
40b705020ab8486496221a89dd90ad90
79ef60598aa752f fheadffb8eb28faal

Zbot Cluster

11a9e236a596da2741587663e3fb1849
c31cb2c4abd19ab6fb413276ebd2bi41
d1a2a9ff3667f2ea799db44cafebebbd
ff35b4cb9ee15524299ae97bbd92cdaa
62e1a96c1317e92628eb765bb5631752
d2d64e27903c3ab2d79779b520cdbacd
01a540e09c495d456530d1d1fcB07897e
16d2641393ecdc008a05311c328b600c
eec992d6c259af40459d4ad68b3be0d4
£82e35ef978df782613a077610548268
cbf4076f5e028b3d6cT1ee1256466915
a2edbf237d55306£8c203330e51bc71d
1734c9459631969754fdc4b807c584d3
16£0519aaa846e62411be6b2dd8239¢ct

ramnit
ramnit
ramnit
ramnit
ramnit
ramnit
ramnit
ramnit
ramnit
ramnit
ramnit
ramnit
ramnit
ramnit

ramnit

zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot

Zzbot

85

£54cb83d9107739df c60c08376ad624b
£9db29266a2e23each2f66472aa765eb
afcb514b3971£d8f99bb55c251c1b2cH
bff02293887627c319f1d21dfc18d2856
b75f3d6b4b75b064152c30b430416324
4691 1dfd7f0637f4614eb68690888058
c8f9d7d31bbf9a60db49c95878971575
a4267859082fa2eecbeTb648f2a8bB8003
0f605a347527142b59766ectal639316
e71165594e8ab331£801bb01a7303191
b24aa28d357284cc4eb09dd03db482ed
eb7b16051956cdd9cb48bd9ec21e28d6
b494e47a6e418a2d9101dc5d0b52791b
52c9fedadaacBebdd92b87732deabitb
99fd1eba65a6db79a94727db5b359d36
fc072d09dd607e1f88e6fe6556114Tb7
cd24cbec992667170ddbcb1ed23£5334
d6cc45100928550e70e5276d54e1ef67
e81e6267070649610bc09b591457c3b0
2041cf7072418d1daf08381aeb9cff3e
25630ad24bb27837ee045c3a96bdB061
eb3536d10a4e839abf01cf465afba219
9fdeb383dbb583d6c335c3d2ad444828
fa2db8a2a8834e4288c8d439b88deel4
c836372d6b1f686bbc8fe7862226950d
eb217bcd2fa6baf9f30891106263ccTd
fe60ch9f7250f76a0a78ade8123a7017
f3ca2dfal8f79693cb9113103b879%e18
fad4c863cfed20a7e6fd044d50515481
aB0575f9e584e5c1d5542d00321 9edd6b
e933e8aa413calb48f286274335b88E8
a15a02544355ac8c424b9778337b2cel

zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot

Zzbot

36

1a0488da205a0e435065abaalbdedde’
cafb9b8deda87a248586038712112454d
d9929b7279e0ec80ael4fBeTeb37dabe
3eeeecd10cSbaab133191b040d7bled2
bf971cf841c3f50cee2d9634c0923b98
8e0a6aba7f77c53ebebd7e0370606d44
eleabB82cf301elael95el174efa3ifdid
b73363c0d26bab37059516b55e21ef3a
a7975a8461eb38f12a6f01c0b4621a10
ab65c4e39b427baf389d498c03a80278
0£4014b932b9f11e2851a79¢c966e3560
dalca2770f4163c3c08d76b41b8d9%dch
600d638eebd2510f2ed3fdc163032cfe
aB8eb72365b2062005324¢ca4ba3857e62
db4deal7baef2aaallacf0fd0010fcte
b1d8480522422084bca7fab865d6eafd
cb10b731a338652155f7a32e8329¢c611
03998066aec71a8d5b075a479b1b70ef
5b3ad6090bcb5b24bcc6b5508421d763
65df040268bac4fab32e21ab031d5751
adeadal072c6493f4e6blaZeaB2bc2ch
916bffd24180bc1446896bd444792516
¢96dc320910b0607eedbcc3bac693ba7
e74b137fbb65fb7705ae6e47ecd8285b
66f1e8aee900acc6d3360443£54102c3
683be24a8ff8ed1598abb8db0c45a437
e9c1e13b0b8825d00£69a895c8543e5f
2925ae9210e1ef92bb595377fb7bed31
8b171ad0a8372b96219082c652¢c4733b
6fcc9583f21d2a4caad6410c365£55¢ch
e38228b9c00e5397327d66845835ebd3
faB8f03b5073£205d7dc6c435a8ad6chhb

zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot

Zzbot

87

53cbc64a8e4a6504370cd58919a0d4b8
bf992b3a77£471294a09860bae9f4b4e
fe9263c2787588d26e101ced2d26787f
cdaffcbe638£9987a455ea201068009a
a0e114f172dc69b8895382a346¢cff572
7b0b852c0197eb075£8059¢c1b2d9186f
1ea8bB44c8fc9bd729b43ceichbabec3b8
c27eb0eb3ectfal08b942dc750eb03c2
ab4e08d7eZ2eb1f9ad034abbbdd96fcee
75287df03dfb57242e45450876b8457b
a78f893c9eb1d0d23cf1£7d6363eaaa’
75£8f22b01f64ec83f7cf699d3£30df3
alct6ecbTabacca86a7’9aB6cBa3d484228
5bb01fa794f3016a0124725e34d1b772
e0714cb8cfd37b7dcfb203d68911d144
a9baf67a13b37b2d5773af49%e13ebd7a
80a0624c8428e2c8c892954609a45128

WannaCry Cluster

20193d9b262e6a21296073ealB855fed4
Td51fadaffBef41229353c4613b4c20c
e6bfac31c1536ae1a49b5cb67d606805
8b31308f2bf97e940dab49334d2d2011
d30aa7aad0bebl177a00f6af0946239b6
0068a311f704348396fa213561734210b
d2df22eef4af4dbe75e6000e4d149c21
3e8eldcedcfbB86a6318019660908e142
ab06e75f40fbe63b000790dadc1729¢c4
d42d50380526d334be6f2bd7124be8ab
dbad19af05312fa96508cde8dct87acE7
53bf1b10050deecbbd45b2b7b3fb5015

zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
zbot
Zusy
zbot
zbot
zbot
zbot
zbot
zbot

Zzbot

wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
blackmoon

88

3d2e12ddbd216£49904148bd24ac800e
bcd30b55110588d474e8826fa5290c4c
4b38eb3132feB8a0d1ed57bbbd48£2264
Te3ffa2ealf01fad04f9645840d445959
6ecc0dbf8e043d359df6a510b4961e43
67db7cealcd227285e8bb72b71cee3de
5111cf0£281£11152075025958e828a5
230cef(7feabbbaebccelfa22068647c
a34d8bd7493c5f8c2bf381a0267de463
70£47070e87bfaa3fcd66b98f2d1fe71
082153¢c1540b51dd2b899dd5dceeaTbt
fe086079c8724b7c3bba62d4991£4b57
63d99eb9dbb58306cbb3a9b7e2ecfb27
2£80c6592fdbc97515790cb36b5ffa39
de4abbic9b4c2d69dab73c3dfbfc6E6E
9054bcff637£9b30dda45ack0b5bc444e
53df35ec321c54b0a0fE8ef7c66d5236
edb425707fcced793626cdaB84f14310a
64d545341c725af087f5ad65c2f5211a
212b7b8Ba02e6657c11668f1b58a171ba
1543169fd15084ba7a5a9388fce77dea
ffafe05991d988d69£994b0b863b32b9
3ab0f312bfe14f92aei1db6clc2c2cbdc
3da3494d7c4205034648150d3ccchB8a8
£470d27£84d065da769fdae3b34£39e5
93£38909d92c11ac7a710b9397de6d86
ee64d96b3078ble12e75d2ba32f93b7c
47765£90c0£b0320afb71996d787206e
bcca7ff04667645d98e20ab6458f69bt
eefbb217£9fb344b506279d6caf1e0dd
2c49423b8e81de5400078544ebc7ca3f
e6a999cd5df18b0962b89%e1a9¢ciebfaf

wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
kelihos

wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry
wannacry

wannacry

89

d57959¢ccb426b310dc80552£97932£43
f4f96192abbcfab6507a73a12e946cfc
f6740d11f8d6aa4c836fb9d7efa34fd8
5d805e2873275¢cdd033813f1alel1fd77
9e2d65061£92e339845748fa81f09fak3
3a79fd05da85431c82669c3ba2¢c9c799
e86fefb6e79f9b0def210299££731424d
568c0dba89d5fd2f5169¢235d7b93873
a63840fe82d9f879e792b9ba36906cdd
b1£531440cb8b9f0de48a60cff4e5317
8292d3b39f6b4de384d1b95c36a16311
87eecOficbech7fca%af922ac0086b98
d04c1b80557a7793b38a7bf876ef61c7
3e99a142993cal9c97e08ea23d06bTfe
eebe3c33fch45f85db7424cel15677994
47b4d4a68f2f151d79¢c3e43c963ecf6
834b4e12bBeaf4c7258f0d4fc8b6b37cC
c688aaf68c68b2570d10258d7e435de4d
de9bfd4f33a95213423b723aa07e755fb

Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry
Wannacry

wannacry

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Cyber Security Fundamentals
	Malware Analysis
	Static Analysis
	Dynamic Analysis

	Malware Identification
	Malware File Hashes
	Malware Family Labels

	Evolutionary Computation
	Genetic Operators

	Literature Review
	Malware Clustering
	Evolutionary Cluster Optimization
	Malware Signature Extraction
	Summary

	Methodology
	Dataset
	EMBER

	Feature Processing
	Vectorization
	Dimension Reduction

	Clustering Algorithms
	DBSCAN
	OPTICS
	k-means

	Evolutionary Multi-Objective Optimization
	Objectives
	NSGA-III

	Distributed Computation
	Apache Spark
	COUGAR on Spark

	Signature Generation
	Signature Considerations
	Signature Generation Algorithms

	Metrics & Examples
	A Musical Example Problem
	Classification
	Clustering

	Summary

	Evaluations
	Preliminary Experiments on 3,000 Samples
	Training Results
	Statistical Analysis of Training Results
	Testing Results

	Final Experiments on 10,000 Samples
	Objective & Labelling Results
	Signature Results
	Computation Time

	Summary

	Conclusion
	Future Work

	Bibliography
	Supplementary Tables
	Malware for Cluster Signature Discussion

