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Abstract

Diet compositions of marine predators are often of interest for marine ecologists

in trophic structure studies where non-lethal sampling has created a need for non-

invasive diet estimation techniques. Methods using fatty acids have been developed

to obtain dietary estimates that have previously been di�cult to acquire. Building

on the existing method, quantitative fatty acid signature analysis (QFASA), we have

constructed a maximum likelihood approach to estimating dietary proportions.

This novel approach includes random e↵ects to account for the unobserved prey that

were consumed by the predator. Not only does it include variability of the prey and

predator FA signatures in the model, but with the use of parametric bootstrapping,

we can obtain confidence bounds on these diet estimates as well. These bounds will

prove to be accurate for proportions away from the edges of the simplex.

It is also able to include covariates in the model. With use of a link function, the

diet proportions are assumed to be a function of the covariates. The coe�cients of

this relationship are then optimized by using the same likelihood function as before,

only subbing the link function in place of the diet proportions. This method yields

a summary diet for all unique sets of covariates. It also allows for inference on diet

estimates between various groups, such as sex, age or environmental factors. Simula-

tions show that not only are the summary estimates accurate, but the inference leads

to making the correct decision in all cases run.

Finally, these techniques are used to analyze two real life data sets. The first is a

captive study of harbour seals, for which true diets are known. This shows us that our

method is estimating as accurately as QFASA. The second is a study of grey seals o↵

of Sable Island. For this set, sex and type of population growth on Sable are recorded

for each seal, so the covariate method is applied here. In comparison to QFASA, our

method appears to yield similar summary estimates, and the test yielded results in

x



agreement with the beliefs of biologists.
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Chapter 1

Introduction

Fisheries play an important role in the diets and livelihoods of people around the

globe. Approximately 1.5 billion people rely on fish for at least 20% of protein in-

take, and 520 million people are supported by this trade (Badjeck et al. (2010)).

Mismanaged fisheries have been estimated to cause a loss of economic benefits worth

$50 million US annually (Kelleher et al. (2009)). It is estimated that 70% of global

fisheries stocks are overexploited or have collapsed (Pauly et al. (2008)), which of-

ten leads to a decline in marine species abundance (Froese & Kesner-Reyes (2002)).

Therefore, sustainability of these fisheries is an important issue, not only for humans,

but also for marine ecosystems.

Attaining sustainable fisheries is becoming increasingly di�cult due to the looming

threat of climate change (MacNeil et al. (2010)). Climate change is causing loss of

habitat and moving species to areas newly within their thermal tolerance range (Che-

ung et al. (2010)). Further understanding of the e↵ects of climate change is required

so that fisheries management can adapt to changes in distribution, productivity and

resilience in fish stocks brought on by climate change (Brander (2010)). Marine

ecosystems at the equator and the poles are being disproportionally a↵ected by these

changes due to the truncation and expansion of thermal limits (MacNeil et al. (2010)).

Such major changes in ecosystem function and the consequent availability of prey will

disrupt food webs to an unknown degree, with potentially important consequences for

upper trophic level species responding to a changing prey base. Therefore, valuable

information on the e↵ects of ocean warming in marine food webs might be revealed

through the study of predators’ dietary habits.

Food webs provide a framework that links population dynamics, community struc-

ture and ecosystem processes together (Kaunzinger & Morin (1998)). Therefore, an
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understanding of the trophic system, that is, the flow of energy between organisms in

an ecosystem through consumption, can yield important information on the marine

ecosystem as a whole. Through the study of food webs, an understanding of species’

roles within an ecosystem can be obtained (Thapanand et al. (2009)). Food webs are

known to respond to species invasions (Vander Zanden et al. (1999)), environmen-

tal disturbances (Wootton et al. (1996)) and global warming (Petchey et al. (1999)).

Therefore, trophic dynamics and feeding relationships between species may provide

important insights into how species are adapting to large scale ecosystem changes.

While feeding habits and diets for many species can be estimated from direct obser-

vation, most marine predators feed below the surface and therefore cannot be easily

observed. In such cases, stomach contents have previously been used to identify diet

compositions of predators (Hyslop (1980)) but this approach is not favoured since an-

imals often need to be euthanized for analysis (Beckmann et al. (2013)). Euthanasia

is not ideal, especially for endangered or protected species. Also, stomach contents

do not identify a long term trend in diet, but are only suggestive of the most recent

meal. Lastly, because soft tissues easily degrade in the stomach, a bias exists towards

digestion-resistant hard parts. Therefore some soft-bodied prey species in the diet

may not be found in stomach contents (Iverson et al. (2004a)). These problems cre-

ate the desire for a method that is less intrusive, recovers longer term trends and is

capable of identifying both hard and soft bodied prey species.

Problems associated with stomach content analysis have been widely recognized and

as a result, there has been considerable interest in bulk stable carbon and nitrogen

isotopes for characterizing short and long term trophic relationships (Gannes et al.

(1997)). Stable carbon and nitrogen isotope analysis is a non-invasive procedure that

can provide useful information about a predator’s placement in the food web. Stable

nitrogen isotope abundances in liver, muscle tissue and bone collagen yield informa-

tion about the trophic level while stable carbon isotope abundances in muscle tissue

give information about the primary production source (Hobson (1993)). Although

bulk isotopes provide valuable trophic information, they are not typically useful for

estimating the composition of consumer diets (Hobson (1993)).
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1.1 Fatty Acid Signature Analysis

In order to estimate diet compositions of predators, a new method using fatty acids

(FAs) was developed. Fatty acids are fundamental components of lipids or fat that

are used to store energy and do not degrade during digestion (Iverson et al. (2004a)).

Some FAs are absorbed into fat stores, or adipose tissues with little modification from

their composition in consumed prey. Therefore FAs can be divided into dietary and

non-dietary components based on whether or not they are biosynthesized within a

predator. Those that are strictly obtained from diet are stored in the predator’s tissue

with hardly any metabolization and are therefore in very similar proportions to those

in the consumed prey. As such, they can be used to estimate the diet composition of

the predator using quantitative fatty acid signature analysis (QFASA; Iverson et al.

(2004a)) by comparing the FA signature of the predator to the FA signatures of var-

ious potential prey.

The original QFASA method implements a distance (between compositions) mini-

mization algorithm, the details of which will be discussed in Section 3.1. First, the

diet of the predator is writen as a linear combination of the mean FA signatures

of the prey. Then, in order to estimate diet proportions, the distance between the

observed FA signature of the predator and the linear combination is minimized. Be-

cause of the compositional nature of both FA signatures and the diet vector (the

elements represent proportions of a whole), standard multivariate statistical analysis,

including Euclidean distance, are unsuitable. Originally, transformations based on

log-ratios were proposed to bring the compositions into real space, however, FA data

often includes zeros, making both ratios and logarithms impractical. In addition,

FA data often has larger dimension than sample sizes, creating issues for estimation

of parameters, including but not limited to identifiability problems. The simple na-

ture of QFASA’s model allows for adaptations, including which distance measure to

use, which allows new measures to be included, which may better accommodate the

restrictive compositions. Aitchison’s distance is the recommended approach to mea-

sure distance between the compositional vectors in QFASA as it yields diet estimates
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with the least bias, and smallest root mean squared error (Bromaghin et al. (2015)),

however, in the presence of zeros, the chi-squared distance measure (Stewart & Field

(2011)) may be a better choice.

The “p.QFASA” function in the QFASA R package (Iverson et al. (2004b)) computes

the QFASA diet estimates for a given choice of distance. While QFASA is a useful

method for estimating diet proportions, some biological concerns have led to im-

provements on the methodology. First, it is known that certain FAs are metabolized

within the predator, and therefore the proportions will not exactly match those of the

consumed prey. This means proportions of certain FAs in the predator will always

be higher or lower than the proportions in the prey species (Kirsch et al. (2000)).

To account for this, feeding experiments can be performed to obtain calibration co-

e�cients which quantitatively account for this metabolization. Another biological

improvement on QFASA is found by incorporating fat content into the estimation.

Fattier prey species will contribute more to FA signatures of predators than less fatty

species, therefore taking fat content into account improves estimation of diet propor-

tions. The details of calibration coe�cients and fat content are outlined in Section

3.1.

In addition to calibration coe�cients and fat content, using specific FA subsets can

help improve diet estimation. Not all FAs are included in QFASA, but typically two

di↵erent subsets are considered, which vary from predator to predator. These are

referred to as the extended dietary subset and the dietary subset. The extended

dietary subset contains FAs that are influenced by both diet and biosynthesis, and

the dietary subset contain FAs that are influenced by diet only. Since the dietary

subset is not biosynthesized, the proportions of FAs will be absorted with little to

no modification into the predator, and therefore we will obtain more accurate diet

estimates. Originally, these subsets were extracted by selecting the FAs to be included

from the FA signature, and rescale the signature to sum to 1. However, Bromaghin

et al. (2016) argues rescaling the signatures distorts predator-prey relationships and

could lead to a bias in diet estimation. He proposes an augmented matrix method

of dealing with the subsets where the signatures are not rescaled, but an element
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containing the remaining proportion of 1 minus the partial sum of FAs is added

to the signature. This new method was found to be important if the partial sums

significantly di↵er between prey types.

Although QFASA is widely used and accepted, it has some drawbacks. Firstly, it

does not easily allow for inference, specifically confidence bounds or hypothesis test-

ing (Stewart & Field (2011), Stewart et al. (2014)). Although there have been several

di↵erent techniques proposed for testing for di↵erences among diets, these require ei-

ther obtaining diet estimates before the test (Stewart et al. (2014)) or are performed

on fatty acids, and di↵erences in diets are inferred (Steeves et al. (2016)). Until

now, there has not been a way to integrate inference into the estimation process of

QFASA, allowing for testing, standard errors, and confidence intervals from the esti-

mation model. In this thesis, we propose a novel way of adding covariates into the

estimation process, allowing for many improvements over the standard inference tech-

niques for QFASA. Our novel method not only provides simultaneous estimation of

diet proportions and modelling of covariates, but also uses parametric bootstrapping

to estimate the standard error of the diet estimates and covariate coe�cients. Using

the bootstrapped estimates, we are able to test for di↵erences in diets between groups,

such as age, location, time periods, and sex, in the estimation of diet composition.

This allows us to obtain more accurate summary diets among groups, such as pups,

adolescents and adults, or males and females, as it is theorized that these groups will

not be consuming the same diets. In addition, quantifying changes in predator diet

among these groups, specifically through space and time, can help biologists under-

stand changes to a prey base responding to warming oceans attributed to climate

change.

Another issue that QFASA does not address is that prey that are consumed by the

predator are not the same prey sampled in the preybase. Therefore, the sample of

prey may not be a good representation of the consumed prey. The maximum likeli-

hood (ML) procedure proposed here addresses the problem with the use of random

e↵ects. The true consumed prey FA signatures are modelled as unobserved random

e↵ects and the sampled prey help provide information about the distribution of these
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unknown FA signatures. Although this adds complexity to the model, it allows us to

more accurately depict what is happening in nature compared to QFASA.

With FA data, comes high dimensionality, but relatively small sample sizes. Often,

67 FAs are measured for 4-24 prey species, but less than 30 predator FA signatures

are sampled. This poses a concern for usual multivariate analyses and estimation as

standard multivariate models on small data sets with high dimensionality can lead

to unstable coe�cient estimates, inflated standard errors, reduced power and inaccu-

rate conclusions (Bühlmann & Van De Geer (2011), Finch & Finch (2017)). FA data

also include zeros, which make the usual logarithmic transformations (described in

Section 2.1) an issue. Our novel ML method uses an updated form of approximations

from Aitchison & Bacon-Shone (1999) for such complicated data sets incorporating

the most recent and recommended transformation, the isometric log-ratio (ilr) trans-

formation (see Definition 2.11). This is valuable not only to our methodology here,

but any other statistical methods for compositional data that require a convex linear

combination and the ilr transformation.

Within this thesis, the new ML methodology for diet estimation, both with and

without covariates, will be explored via simulations and real life data. For both

simulations and real life data, a prey base is required which includes FA signatures

from a sample of plausible prey species. This prey base must be applicable to the

predator species, location, and season that is being analysed. Therefore for this work,

we use 3 di↵erent preybases: the spring Scotia shelf preybase for simulations, as it

has the largest sample sizes, the Vancouver Aquarium preybase for the first real life

study, as it includes samples from the containers of fish that were fed to the captive

animals, and the winter Scotian shelf preybase for the grey seal set, as it is sampled

in the same area and season as the seals.

Prey Base

The first preybase was collected o↵ the Scotian shelf in spring, summer or fall of

1993-1996, and 1999 and is comprised of 1689 FA signatures using 67 FAs from 21

di↵erent prey species, as well as fat content measured as percent wet mass for each
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individual. The second preybase was collected at the Vancouver Aquarium in 2003 as

part of a captive study. This preybase has 307 FA signatures comprised of 67 FA, with

11 prey species, divided into 12 distinct prey groups, and a fat content measurement

for each prey individual, measured as percent wet mass. The third prey base was

collected o↵ the Scotian shelf in spring, summer, or fall between 1990 and 2001, or in

the Gulf of St. Lawrence from research cruises and commercial fisheries between 2002

and 2004. It is comprised of 1735 FA signatures using 67 FAs from 21 di↵erent prey

species, and fat content measured as percent wet mass for each individual. Some prey

species (American plaice, Atlantic butterfish, Atlantic herring, capelin and longhorn

scuplin) were subdivided into smaller clusters, some based on size, others on seasonal

variation. The collection details of these sets are described in Sections 4.1, 6.1 and

6.3.1, respectively.

Simulations

Simulations are necessary to ensure that the statistical methods are behaving prop-

erly. With simulations, all parameters are set, and data is generated based on those

parameters. Then, the methods are used to estimate the “unknown” parameters,

and estimates and true values can be compared. For our methods, we will call the

generated data “pseudo-predators”.

To simulate non-parametric pseudo-predators, a bootstrap sample of prey FA signa-

tures is first collected from each prey species. The mean (or median) FA signatures

of bootstrapped samples are calculated for each prey species. A linear combination of

the mean summary prey signatures is then taken with the true diet. Adding error to

the diets requires care and we carry it out by adding errors in the transformed scale.

The error is back transformed and perturbed with the linear combination and the

signature that results is our pseudo-predator FA signature. Alternatively, parametric

pseudo-predators can be created by randomly generating a transformed prey FA sig-

nature for each prey species sampled from the multivariate normal distribution and

then back transforming. This yields the summary FA signatures for the prey, and

then the remaining steps are the same as above. This process is explained in more
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detail in Sections 4.2 and 4.2.

True diets were selected using the function “make diet grid” in the package “qfasar”

(Bromaghin (2017)). This function creates a grid of compositions that are equally

spaced within the simplex. This allows us to explore the behaviours of methods over

the entire space. See Table 4.4 for the diets that we used.

Experimental Studies

In addition to simulations, our methods are run on experimental data to examine the

behaviour of the estimates on real life data. Two real life datasets are used for our

study: one without covariates, but with known “true” diets (Vancouver Aquarium

data set), and one with covariates but unknown diet (winter grey seal dataset).

The Vancouver Aquarium dataset used is from a captive feeding study on newly

weaned harbour seals, collected by Nordstrom et al. (2008). Seals were split into

three groups and fed either Pacific herring (Clupea pallasii) for 42 days, surf smelt

(Hypomesus pretiosus) for 42 days, or fed Pacific herring for 21 days followed by surf

smelt for 21 days. Blubber samples were collected at day 0, 21, and 42 in order to

obtain FA signatures for analysis.

The winter grey seal dataset contains FA signatures for 502 adult grey seal blubber

samples collected in winter between 1994 and 2015. These seals were sampled during

the annual breeding season (December-January) on Sable Island, NS, and contained

183 males and 319 females. Also included in the data set is age at the time of sam-

pling (if known), year group (3) referring to which period of population growth is

occuring on Sable Island, and cohort which is the year the seal was born.

1.2 Thesis Overview

Though QFASA has been widely used and accepted, the lack of inclusion of variabil-

ity of FAs in both predator and prey in the model has been a major limitation. The
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original QFASA model only relies on the mean FA signatures of observed prey species

so an important, yet non-trivial question exists: how do we incorporate the variability

of prey FAs into the model, as well as recognize that the observed prey FAs are not

the same prey FAs that are consumed by the predators? This thesis will introduce

several novel models for doing just that, which rely on maximum likelihood estima-

tion to obtain diet estimates for the predators. This methodology allows for other

important improvements over QFASA, such as parametric bootstrapping to obtain

standard errors of the estimates, robustness, and the option to include covariates,

such as sex, age, season, or year, into the model to improve diet estimation and to

test for the e↵ects of covariates on diet.

Chapter 2 presents an introduction to compositional data analysis. This chapter in-

cludes the usual ways of dealing with compositions for analysis, such as logarithm

based transformations and will discuss the pros and cons of such techniques. Methods

for handling zeros, and parametric modelling will also be discussed, and challenges

when working with compositional data will become apparent. One challenge that

is relevant to the models that will be proposed, is determining the distribution of a

convex linear transformation of compositions. Several approximations proposed in

Aitchison & Bacon-Shone (1999) are explained and further modifications to suit our

data are discussed. As we will be introducing novel ways to model and perform in-

ference on compositional data, several techniques for inference which have been used

previously are presented in this chapter as well.

Chapter 3 describes the existing method, QFASA, in detail, and it’s limitations are

made apparent. The solution in the form of a maximum likelihood approach is pro-

posed to improve upon the methodology of QFASA. This new model takes a linear

transformation of the unknown diet proportions for each prey species, with a random

e↵ect, representing the unobserved FA signatures of prey that are consumed by the

predator. The theory for this technique is introduced, and the implementation of the

model is detailed.
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Chapter 4 presents simulations to assess how well our MLE method preforms, partic-

ularly in comparison to QFASA, for the diet estimates. Simulation is done by creating

pseudo-predators, either parametrically using a multivariate normal approximation

to the transformed prey base or non-parametrically by sampling from the prey base,

and a “true” diet. Twenty diets spanning the simplex, along with three di↵erent

groups of 4 species were used for assessment. Results are given for the diet estimates

along with their standard errors.

Chapter 5 discussed the important contribution of the use of covariates in the model

for more accurate estimation of diet composition and the testing of the e↵ect of

covariates on diet. The theory and methodology is described here, as well as the

simulations performed. Two groups (male/female) of pseudo-predators are generated

parametrically based on two distinct diets, and one summary diet is estimated for

each group. This is run using the prey group with 4 species having highly di↵erent FA

signatures, for all combinations of 10 distinct diets. The settings for the simulations

are specified, and the results summarized.

Chapter 6 describes the data sets and feeding experiments used in the real life anal-

ysis. Analysing real life data on which the true information is known (such as diet

proportions) is necessary to ensure methods are behaving as expected on true bio-

logical data. The results from these experimental studies are summarized and used

to select the best model choices. In addition, a data set with unknown parameters

is used to determine diet estimates across male/female groups, a variety of ages and

3 di↵erent periods of population growth of grey seals. This set is used to emphasize

the relevance of the new ML methodology for inclusion of covariates and ability for

parametric inference.

Finally, Chapter 7 contains the conclusions of this thesis. A summary of results and

recommendations are presented, and future work in this area is also addressed.



Chapter 2

Compositional Data

Compositional data commonly arise in many disciplines, including geology, ecology,

and chemistry. A composition depicts relative information through quantitative de-

scriptions of parts of a whole. This imposes constraints on the data; specifically, that

the elements are non-negative and sum to 1. These constraints create several di�cul-

ties when statistical analysis is needed. Aitchison (1986) warns of applying standard

statistical techniques on compositional data without taking these constraints into ac-

count, stating it is improper and inadequate for the data, and leads to “dubious”

conclusions such as misinterpretation of spurious correlations (Pearson (1897)). As a

pioneer in the field of compositional data analysis, Aitchison presented several tech-

niques for analysing this type of data, and many breakthroughs have been achieved

since. In this section, I will present several definitions, notations, and methods per-

taining to compositional data.

2.1 Definitions

Definition 2.1. Aitchison (1986) defines a composition to be a vector uo = (uo1, uo2, ..., uoD)

that has non-negative elements and satisfies the unit-sum constraint. The unit-sum

constraint refers to the elements of the vector uo summing to one:

uo1 + uo2 + ...+ uoD = 1

Definition 2.2. The space on which a composition is defined is called the simplex,

Sd, where d = D � 1. It is defined by:

Sd = {(uo1, uo2, ..., uoD)|uo1 � 0, uo2 � 0, ..., uoD � 0, uo1 + uo2 + ...+ uoD = 1}

Any vector with positive (or non-negative) elements can be transformed to be a

composition defined on the simplex, Sd. This process can be explained through

11
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Definitions 2.3 to 2.4.

Definition 2.3. A basis x of D parts is a vector of length D with positive elements

recorded on the same scale.

Definition 2.4. The closure operator, C, transforms each vector x of positive ele-

ments onto the simplex, Sd.

C(x) = 1
PD

i=1
xi
x

Every basis x yields a unique composition uo = C(x), however the converse is not

true. This means that there are many bases that correspond to the composition uo.

Any positive scalar multiple of the composition uo, {auo, a > 0} is in fact a basis for

uo.

Definition 2.5. If S is any subset of the parts uo1, uo2, ..., uoD of a D-dimensional

composition uo, and uoS is the vector formed from the subset of parts S, then C(uoS)

is a subcomposition of uo.

An important operation that exists in the d-dimensional simplex is called perturba-

tion.

Definition 2.6. Aitchison (1986) defines the operation x� as a perturbation which is

a one-to-one transformation from Sd to Sd calculated by:

x � uo = C(x1uo1, ..., xDuoD)

Here, uo is a D-part composition being operated on by the perturbing vector x, which

is a vector of length D with positive elements to form the perturbed composition x�uo.

Also, C refers to the closure operator, defined in Definition 2.4 which is used to ensure

that the vector will sum to 1.

The inverse of a perturbation is x
�1�, where

x
�1 = (1/x1, 1/x2, ..., 1/xD)
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In Aitchison (1986), several transformations are presented which transform from the

interior of the d-dimensional simplex Sd to d-dimensional real space Rd or RD. The

first of which is the multiplicative logistic transformation.

Definition 2.7. The multiplicative logistic transformation (ml) is a one-to-one trans-

formation that moves compositional data from the d-dimensional simplex Sd to d-

dimensional real space Rd using the following:

umi = log

✓
uoi

1� uo1 � ...� uoi

◆
, i = 1, ..., d

The inverse of the ml transformation is given by:

u0i =
e
umi

(1 + eum1) · · · (1 + eumi)
, i = 1, ..., d

The multiplicative logistic transformation is not commonly used (except for paramet-

ric modelling in Definition 2.22) as it depends on the ordering of the parts. This

transformation is not the only option for transforming compositions; several other

transformations are available, including the additive log-ratio transformation (alr),

the centred log-ratio transformation (clr) and the isometric log-ratio transformation

(ilr).

Definition 2.8. The additive log-ratio transformation (alr) is a one-to-one trans-

formation that moves compositional data from the d-dimensional simplex Sd to d-

dimensional real space Rd using the following:

ua = alr(uo) =


log

uo1
uoD

, ..., log
uod
uoD

�

where d = D � 1. The inverse of this transformation is:

uo = alr�1(ua) = C[exp(ua1, ua2, ..., uad, 0)]

The alr transformation has several disadvantages including that it is asymmetric in

the parts of its composition, and that it is not isometric; Aitchison’s distance (common

distance measured used for compositional data, defined in Definition 2.15) and angles

in the simplex are not preserved into Euclidean space (Egozcue et al. (2003)). The
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clr transformation, defined below, has advantages over the alr transformation since it

is symmetric in its components, as well as isometric.

Definition 2.9. The clr transformation is a symmetric transformation from Sd, the

d-dimensional simplex, to UD, a D � 1-dimensional hyperplane of real space RD,

defined in Aitchison (1986) as:

uc = clr(uo) =


log

uo1
ĝ(uo)

, ..., log
uoD
ĝ(uo)

�

where ĝ(uo) = (uo1 · · · uoD)1/D represents the empirical geometric mean of the com-

position, and

UD = {[x1, ..., xD] : x1 + x2 + ...+ xD = 0}

The inverse of the clr transformation can be found by:

uo = clr�1(uc) = C[exp(uc)]

Although the clr transformation has symmetry and isometry, it has several issues,

including subcompositional incoherence (defined below), a singular variance matrix

(Filzmoser et al. (2009)), and being constrained to a subspace (Egozcue et al. (2003)).

If subcompositional coherence is not satisfied, then the subcompositions (Definition

2.5) are not behaving as orthogonal projections. That is, at least one of the properties

in Definition 2.10 is not satisfied.

Definition 2.10. Subcompositional coherence holds when both features below are met.

1. The distance between two full compositions must be greater than or equal to the

distance between any two subcompositions.

2. The distance between two compositions remains the same when the two compo-

sitions are scaled by a constant.

The singular variance matrix causes problems for analysis after transformation, as

it is not invertible. This particularly causes problems when assuming normal dis-

tributions on the transformations as the density involves the inverse of the variance
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matrix. The ilr transformation defined below is preferred when dealing with compo-

sitional data as not only is it symmetric and isometric like the clr transformation,

but also is subcompositionally coherent, has a non-singular variance matrix, and is

unconstrained.

Definition 2.11. From Egozcue et al. (2003), the ilr transformation maps from the

d-dimensional simplex, Sd, to d-dimensional real space, Rd. We can calculate the ilr

transformation, u from the clr transformation, uc, by:

u = ilr(uo) = clr(uo) ·V

where V is a D ⇥ d orthonormal basis of the clr-plane and V
T ·V = Id, V ·VT =

ID � 1

DJD, and j
T
D ·V = 0

T
d .

Here, ID represents the D ⇥D identity matrix, JD is a D ⇥D matrix of 1s and jD

is column vector of 1s of length D, and 0d is a column vector of 0s of length d.

The inverse of this transformation is given by:

uo = ilr�1(u) = C[exp(u ·VT )]

There are as many di↵erent ilr transformations as there are bases for the clr-plane,

but here we chose to use a version of V defined in Egozcue et al. (2003) which is based

on the Helmert matrix. This is also the version of V that the function ilrBase() uses

in the package “compositions” in R (van den Boogaart et al. (2014)). It is given by:

V =

0

BBBBBBBBBBBBBBBBB@

�1p
2

�1p
6

· · · �1p
(D�1)(D�2)

�1p
D(D�1)

1p
2

�1p
6

· · · �1p
(D�1)(D�2)

�1p
D(D�1)

0 2p
6

· · · �1p
(D�1)(D�2)

�1p
D(D�1)

...
...

. . .
...

...

0 0 · · · �1p
(D�1)(D�2)

�1p
D(D�1)

0 0 · · · D�2p
(D�1)(D�2)

�1p
D(D�1)

0 0 · · · 0 D�1p
D(D�1)

1

CCCCCCCCCCCCCCCCCA

(2.1)
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2.2 Issues with Compositional Data

2.2.1 Analysis for Compositional Data

Aitchison (1986) discusses at length the di�culties and concerns associated with

compositional data analysis. One of these di�culties lies in the frequent high dimen-

sionality of compositional data. This makes graphical interpretations di�cult, as the

human eye cannot easily see in more than 3 dimensions. Previously, projections onto

2 or 3 dimensional space have been analysed, however this has been subject to crit-

icism as a partial analysis which focuses only on some subcomposition formed from

the composition. The unit-sum constraint also poses problems when performing a

graphical analysis. The patterns perceived in the space of the simplex (for example,

on a ternary diagram) will not necessarily coincide with similar interpretations in real

space.

Another significant di�culty is what Aitchison (1986) calls an absence of an inter-

pretable covariance structure. Standard covariance and correlation matrices (in his

text, these are referred to as “crude” covariance and correlation structures) are a

cause for concern for interpretation. For example, consider the interdependence of

the components of the composition, uo, below.

cov(uo1, uo1 + uo2 + ...+ uoD) = cov(uo1, 1)

= 0

since by definition, uo1 + uo2 + ...+ uoD = 1. Therefore,

0 = cov(uo1, uo1 + uo2 + ...+ uoD)

= cov(uo1, uo1) + cov(uo1, uo2) + ...+ cov(uo1, uoD)

= var(uo1) + cov(uo1, uo2) + ...+ cov(uo1, uoD)
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From this, we get:

cov(uo1, uo2) + ...+ cov(uo1, uoD) = �var(uo1)

Therefore, at least one of cov(uo1, uoi), i = 1, ..., D has to be negative. This also ap-

plies to the covariance between any other uoi and the other components. This causes

problems with interpretations since the correlations are not free to take on any value

between (-1,1). This is referred to as the “negative bias di�culty”.

Another issue with the covariance of components lies with the lack of relationship

between the covariance matrix of a subcomposition and that of the full composition.

Similarly, there is often an absence of a relationship between the covariance or corre-

lation of a basis x and that of it’s composition uo = C(x).

Many of the techniques Aitchison (1986) proposes to solve the di�culties associated

with compositional data involve transforming the data from the restrictive simplex

onto unconstrained real space. This is done through transformations such as the alr,

clr or ilr transformations defined in Definitions 2.8, 2.9 and 2.11 respectively. These

transformations rely on ratios and logarithms, both of which cause problems for data

with zero elements. Even the distance measures and measures of centre recommended

for compositional data such as those defined in Definitions 2.15, 2.18 and 2.15 involve

ratios or logarithms, making analysis of compositional data involving zeros particu-

larly di�cult. Thus, there is an entire field of research devoted to determining how

best to handle zeros in compositional data sets.

2.2.2 Dealing with zeros

Many compositional data sets involve zero elements, or proportions of 0 in the vec-

tors. For example, with FA data, we often have proportions of FAs that are below the

detection limit of our instruments and are therefore recorded as zero, or with a diet

composition, a predator completely avoids eating a certain species, say squid, thus
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0% of its diet is squid. However, in order to calculate the alr, clr or ilr transformation,

logarithms and ratios of the elements in the composition are performed. Logarithms

and ratios are a common method for dealing with compositional data, whether it

be in distance measures or transformations, making zeros a problem when analysing

compositional data. There are three types of zeros as described in Pawlowsky-Glahn

& Buccianti (2011): count zeros, essential zeros and rounded zeros. Count zeros are

zeros present in discrete data, or count data, that represent a true absence of the

element in the data. Essential zeros are similar in that there is a true absence of the

element, however they occur in continuous data. Essential zeros are sometimes also

referred to as absolute zeros or structural zeros. Lastly, rounded zeros occur when

the value of the element fell below a threshold (often due to instrumentation) and

was then rounded to zero. These zeros could be considered as missing values, since

the true value of the element was not observed. Rounded zeros are very common in

many areas of compositional data as all instrumentation has a detection limit, and

are also the easiest to deal with. Therefore, rounded zeros have the most techniques

available for handling them (Pawlowsky-Glahn & Buccianti (2011), Aitchison (1986),

Mart́ın-Fernández & Thió-Henestrosa (2006)).

Mart́ın-Fernández & Thió-Henestrosa (2006) developed three di↵erent techniques for

replacing the rounded zeros in a composition. In these methods, they treat zeros as

missing values and perform an imputation technique for filling in the missing values.

The three techniques are referred to as additive replacement, simple replacement,

and multiplicative replacement and with the formulas shown below, they yield the

replaced composition r = (r1, ..., rD). �j below is the imputation value for the j
th

element in the composition, uo is a D-dimensional composition with Z zeros, and c is

the sum constraint of the composition, usually 1 or 100%.

Definition 2.12. The additive replacement method is an imputation technique for

rounded zeros that are considered missing values. The replaced composition r =

(r1, ..., rD) for uo is calculated by:
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rj =

8
><

>:

�j(Z+1)(D�Z)

D2 if uoj = 0

uoj � Z+1

D2

⇣P
k|uok=0

�k

⌘
if uoj > 0

Definition 2.13. Similar to the additive replacement method, the simple replace-

ment method is another imputation technique for rounded zeros, where the replaced

composition is calculated by:

rj =

8
><

>:

c
c+

P
k|uok=0 �k

�j if uoj = 0

c
c+

P
k|uok=0 �k

uoj if uoj > 0

Definition 2.14. The final imputation technique for rounded zeros is the multiplica-

tive replacement method. It’s replaced composition is calculated by:

rj =

8
><

>:

�j if uoj = 0
⇣
1�

P
k|uok=0 �k

c

⌘
uoj if uoj > 0

The user can decide upon an imputation value, however in Pawlowsky-Glahn & Buc-

cianti (2011), they suggest using 65% of the rounding threshold as the imputation

value. For example, if the jth part can be measured to 0.2 units, the rounding thresh-

old for xj would be 0.1, and the suggested imputation value �j would be equal to 0.065.

There have been some more recent developments on replacement methods such as

the parametric technique proposed in Palarea-Albaladejo & Mart́ın-Fernández (2008)

that utilizes the EM algorithm to replace the rounded zeros in the composition. An-

other recent technique using multiplicative modification and log-normal probabilities

is described in Palarea-Albaladejo & Martin-Fernandez (2013). Here, we have chosen

to use the non-parametric multiplicative replacement method in our analyses as it is

simple and fast to implement, and yields relatively good results (Martın-Fernandez

et al. (2011).

2.3 Measures of Distance

Measuring distance between compositions in a logical and accurate way is an impor-

tant part in many applications of compositional data. Techniques such as quantitative
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fatty acid signature analysis (Section 3.1), permutation tests, clustering methods, and

nonparametric multivariate analysis of variance (Steeves et al. (2016)), require a valid

way to measure distance between two compositions. Since compositions are defined

on the simplex, distance measures defined in Euclidean space should be used. Many

di↵erent distance measures are defined on the simplex, so Aitchison (1992) presented

7 criteria that a distance measure should follow in order to be satisfactory. These

criteria are as follows:

1. Positivity

f(uo1, uo2) > 0 if uo1 and uo2 are not equivalent.

2. Zero di↵erence between equivalent compositions.

f(uo1, uo2) = 0 if uo1 and uo2 are equivalent (uo1i = uo2i for all i = 1, ..., D).

3. Interchangeability of compositions.

f(uo1, uo2) = f(uo2, uo1).

4. Scale invariance.

f(auo1, Auo2) = f(uo1, uo2) for every a > 0, A > 0.

5. Perturbation invariance.

f(q � uo, q � uo2) = f(uo1, uo2) for every perturbation q.

6. Permutation invariance.

f(Puo1, Puo2) = f(uo1, uo2) for every permutation P.

7. Subcompositional dominance.

fD(uo1, uo2) � fD⇤(u⇤
o1,u

⇤
o2), where fD⇤(u⇤

o1, u
⇤
o1) represents the distance between

D⇤-dimensional subcompositions of uo1 and uo2, where D⇤  D.

The first three are necessary qualities for all distance measures and will hold for all

defined below. The last 4 do not hold for all distance measures defined on the simplex,

so we will consider only these when comparing the distance measures defined below.

The first measure we will consider is Aitchison’s distance measure.
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Definition 2.15. Aitchison’s distance between two compositions uo1 and uo2, of length

D, defined in Mart́ın-Fernández et al. (1998) is calculated as:

AIT (uo1,uo2) =

 
DX

j=1

{log [uo1j/ĝ(uo1)]� log [uo2j/ĝ(uo2)]}2
!1/2

where ĝ refers to the empirical geometric mean defined as ĝ = (
QD

k=1
uok)1/D. Aitchi-

son’s distance satisfies all the criteria described above, however it is not suitable for

compositions involving essential zeros. Angular and (crude) Mahalanobis distance

measures are also defined in Mart́ın-Fernández et al. (1998). Both of these measures

satisfy all of Aitchison’s criteria except for subcompositional dominance, however they

are capable of handling zeros. Subcompositional dominance logically means that the

addition of more information about the parts should never make the distance between

two compositions smaller. This sounds desirable, however Stewart (2017) argues that

for the application on compositional data with zeros, it is not a property that is of

practical importance. Therefore, many of the distance measures we look at will ignore

subcompositional dominance. The two measures are defined below.

Definition 2.16. The Angular distance measure is defined as:

ANG(uo1,uo2) = arccos

 
DX

j=1

s
u
2

o1jP
u
2

o1j

s
u
2

o2jP
u
2

o2j

!

Definition 2.17. The (crude) Mahalanobis distance measure is defined as:

MAH(uo1,uo2) =
⇥
(uo1 � uo2)

T
K

+(uo1 � uo2)
⇤1/2

where K+ denotes the Moore-Penrose pseudo-inverse of the covariance matrix K for

a compositional data set.

Another measure commonly used on compositional data, is the Kulback-Leibler dis-

tance. This distance measure is neither scale invariant, nor subcompositionally dom-

inant, however it has proved useful in specific applications such as QFASA.

Definition 2.18. The KL distance measure is defined as:
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KL(uo1,uo2) =
pX

j=1

(uo1j � uo2j) log

✓
uo1j

uo2j

◆

Motivated by the desire for a statistical distance that satisfies subcompositional co-

herence and allows for handling zeros without modification or replacement, Stewart

et al. (2014) proposed a chi-squared distance measure based on the work of Greenacre

(2011), which is further explored in Stewart (2017). Chi-squared distance (Definition

2.19) maintains scale and permutation invariance, and does not require zeros to be

changed, however it is not subcompositionally dominant. Once again, this is a prop-

erty that we are not concerned about in this context.

Definition 2.19. The chi-squared distance measure is defined as follows:

CS(uo1,uo2) =
p
2D

 
DX

j=1

rj

!1/2

(2.2)

where

rj =

8
>><

>>:

0 if uo1j = uo2j = 0
✓

uo1jPD
k=1

uo1k
�

uo2jPD
k=1

uo2k

◆2

uo1jPD
k=1

uo1k
+

uo2jPD
k=1

uo2k

otherwise

It should be noted that Stewart et al. (2014) proposes a more general definition of

the chi-squared distance measure that relies on a power transformation parameter �.

The parameter was selected by considering decreasing values of � until subcomposi-

tionally coherence was achieved, or nearly achieved. When Stewart (2017) explored

this further, they found that the CS distance becomes unstable when there are many

zeros present in the compositions, and that in this case, subcompositional incoherence

was at a minimum when � = 1. Thus, the more specific definition of the chi-squared

distance shown above is used, where the � parameter was dropped by setting � = 1.

2.4 Parametric Models

Parametric modelling is another concern for compositions. The Dirichlet distribution,

described below, is defined on Sd and is commonly used for compositional data.
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However, in Aitchison (1986), he argues that the Dirichlet distribution is inadequate

due to the strength of the independence structure of compositions modelled by this

distribution. Therefore, Aitchison (1986) presents several other parametric models,

such as the additive logistic Normal distribution and the multiplicative logistic Normal

distribution, both based on one-to-one transformations from Sd to Rd, defined below.

Definition 2.20. Suppose Uo = (Uo1, ...,UoD) is a D-part composition. Uo is said

to have a Dirichlet distribution with parameter ↵ 2 RD
+
, Dd(↵), defined on Sd, if it’s

density function is as follows:

�(↵1 + ...+ ↵D)

�(↵1) · · ·�(↵D)
u
↵1�1

o1 · · · u↵d�1

od (1� uo1 � · · ·� uod)
↵D�1

If uo follows a Dirchlet distribution with parameter ↵, then:

• E(Uoi) = ↵i/↵+

• var(Uoi) = ↵i(↵+ � ↵i)/[↵2

+
(↵+ + 1)]

• cov(Uoi,Uoj) = �↵i↵j/[↵2

+
(↵+ + 1)], (i 6= j)

• corr(Uoi,Uoj) = �(↵i↵j)1/2[(↵+ � ↵i)(↵+ � ↵j)]�1/2
, (i 6= j)

where ↵+ = ↵1 + ...+ ↵D.

Definition 2.21. Suppose Uo = (Uo1, ...,UoD) is a D-part composition. The com-

position Uo is said to have an additive logistic Normal distribution, Ld(µa,⌃a),

if the additive log-ratio transformation of Uo, Ua, follows a Normal distribution,

MVNd(µa,⌃a), with mean µa and covariance matrix ⌃a, where d = D � 1.

That is, if U0 follows an additive logistic Normal distribution, Ld(µa,⌃a), then its

density function is given by:

f(u0) =
1

(2⇡)d/2|⌃a|1/2(uo1 · · · uoD)
⇥

exp

"
�1

2

✓
log

✓
uo�D

uoD

◆
� µa

◆T

⌃�1

a

✓
log

✓
uo�D

uoD

◆
� µa

◆#
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where (uo1 · · · uoD)�1 is the Jacobian of the transformation and uo�D represents the

uo composition without the D
th entry, uo�D = (uo1, uo2, ..., uo(D�1)).

As described earlier, the alr transformation is not the only one-to-one transformation

from Sd to Rd. So, another normality class similar to the additive logistic normal

distribution arises.

Definition 2.22. Suppose Uo = (Uo1, ...,UoD) is a D-part composition. The compo-

sition Uo is said to have a multiplicative logistic normal distribution, Md(µm,⌃m),

if Um , the multiplicative logistic transformation of Uo, defined in Definition 2.7 has

a MVNd(µm,⌃m) distribution, with d = D � 1.

That is, if U0 follows a multiplicative logistic normal distribution, Md(µm,⌃m), if

its density is given by:

f(u0) =
1

(2⇡)d/2|⌃m|1/2(uo1 · · · uoD)
⇥

exp

2

4�1

2

( 
log

"
uo1

1�
P

1

i=1
u0i

#
, ..., log

"
uod

1�
Pd

i=1
u0i

#!
� µm

)T

⇥

⌃�1

m

( 
log

"
uo1

1�
P

1

i=1
u0i

#
, ..., log

"
uod

1�
Pd

i=1
u0i

#!
� µm

)#

where (uo1 · · · uoD)�1 is the Jacobian of the transformation.

Aitchison (1986) outlines many properties that result from the connection between Ld

and Md with MVNd. First, several properties hold for Ld, including the permutation

property, the perturbation property and the subcompositional property described be-

low.

Property 2.1. Suppose the D-part composition, U0, distributed as Ld(µa,⌃a), is

perturbed by a vector x of D positive components and is independent of U0. Then the

distribution of the perturbed vector X = x�U0 is given below:

Distribution of x Distribution of X

Ld(✓,⇥) Ld(µa + ✓,⌃a +⇥)

Constant vector Ld(µa + alr(x),⌃a)
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Property 2.2. Suppose the D-part composition, U0, is distributed as Ld(µa,⌃a) and

if Up = PU0 is the composition with the parts reordered by the permutation matrix

P, then UP is distributed as Ld(µP,⌃P) where

µP = QPµa

⌃P = QP⌃aQ
T
P

QP = FPF
T
H

�1

and where Fd,D = [Id : �jd], H = Id + Jd, Id is the d-dimensional identity matrix, jd

is a column vector of units, and Jd is a d-dimensional matrix of units.

Qp is so defined due to the relationships between the ilr and clr transformations.

Up = PUo is a simple reordering of the parts. Since the alr transformation depends on

which part is last, it is not so simple. However, the clr transformation does not depend

on ordering at all, therefore we can similarly state that Ucp = PUc. It can be shown

that in order to convert from the alr transformation to the clr transformation, we

can use Ua = FUc. To transform in the opposite direction, we get Uc = FTH�1Ua.

So, we can apply these relationships, along with the relationships described above, to

obtain:

Uap = FUcp

= FPUc

= FPFTH�1Ua

Thus, the definition of QP becomes QP = FPFTH�1.

Property 2.3. Suppose the D-part composition, U0, is distributed as Ld(µa,⌃a),

and Us = C(Sx) is the subcomposition with parts selected with the C ⇥ D selecting

matrix S, then Us is distributed as Lc(µs,⌃s), where

µ
s
= Q

s
µa

⌃s = Q
s
⌃aQ

T
s
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Q
s
= Fc,CSF

T
d,DH

�1

and where c = C � 1.

Two properties pertaining to the Md(µm,⌃m) distribution are described below. Be-

cause of these properties, and the fact that Md(µm,⌃m) is clearly dependent on the

ordering of parts, it has an advantage over the Ld(µ
a
,⌃a) distribution when it comes

to analysis with ordered parts, as Ld(µ
a
,⌃a) only depends on the order of which

element is the last element. Most notably the properties listed below:

Property 2.4. Suppose the D-part composition U0 follows a Md(µm,⌃m) distribu-

tion, and consider the (c, D-c) partition of µm and ⌃m:

"
µm1

µm2

#
,

"
⌃m11 ⌃m12

⌃m21 ⌃m22

#

Then the following properties hold:

1. The amalgamation of (U(c)
o , j

T
D�cUo(c)) is distributed as Mc(µm1

,⌃m11), where

j
T
D�c = [1,1,...,1] of length D�c, U(c)

o is the full first c parts of the composition,

and Uo(c) is the final D � c parts of the composition.

2. The subcomposition C(Uo(c)) is distributed as MD�c(µm2
,⌃m22).

Although Aitchison (1986) warned that the multiplicative logistic distributions shown

above do not have as many nice properties as the additive logistic distributions, Stew-

art & Field (2011) found the multiplicative logistic distributions useful for modelling

diet estimates obtained from QFASA (described in Section 1.1) due to the amalgama-

tion property described in Property 2.4. This property allows marginal distributions

to be obtained. This is useful for FA analysis since multivariate inference such as

confidence regions is often impossible due to the high dimensionality of the data, and

small sample sizes. Therefore, univariate inference based on these marginal distribu-

tions is much more practical.

A new class of distributions was extended onto the simplex by Mateu-Figueras et al.

(2005) which was based on the skew-normal distributions introduced by Azzalini
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& Valle (1996). This class of distributions is an extension of the additive logistic

distribution that allows for low to moderate levels of skewness in the transformed

data. The original skew-normal distribution was defined as follows:

Definition 2.23. A D-dimensional random vector Y follows a multivariate skew-

normal distribution SND(µ,⌃,↵), if it is continuous with density:

f(y;µ,⌃,↵) = 2MVN
D(y;µ,⌃)�(↵T⌦�1(y� µ))

=
2

(2⇡)D/2|⌃|1/2 exp

�1

2
(y� µ)T⌃�1(y� µ)

�
�(↵T⌦�1(y� µ))

where MVND(y;µ,⌃) is the density function of the D-dimensional normal distri-

bution evaluated at y, with mean µ and variance-covariance matrix ⌃, �(·) is the

N(0, 1) distribution function, ⌦ is the square root of the diagonal matrix with stan-

dard deviations of the ⌃ diagonal, and ↵ is a D-dimensional shape parameter.

Note: When ↵ = 0, Y is distributed as MVND(µ,⌃). ↵ determines the shape of the

distribution and the direction of maximum skewness.

Mateu-Figueras et al. (2005) extended this distribution onto the simplex with the

additive logistic transformation, and called it the additive logistic skew-normal dis-

tribution defined below.

Definition 2.24. A D-dimensional composition Uo is said to have an additive logistic

skew-normal distribution, LSd(µa,⌃a,↵), when Ua = alr(Uo) has a skew-normal

distribution, SN d(µa,⌃a). That is, if Uo has density:

f(uo;µa,⌃a,↵) =
2

(2⇡)d/2|⌃a|1/2(
QD

i=1
uoi)

exp


�1

2
(ua � µa)

T⌃�1

a (ua � µa)

�
⇥

�(↵T⌦�1(y� µa))

Note: 1

(
QD

i=1 uoi)
is the jacobian of the alr transformation and gets included in the

density after applying the change of variables method to the density in Definition

2.23.
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Similarly, Stewart (2005) defined the multiplicative logistic skew-normal distribution

below.

Definition 2.25. A D-dimensional composition Uo is said to have a multiplicative lo-

gistic skew-normal distribution, MSd(µm,⌃m,↵), when Um, the multiplicative logis-

tic transformation of Uo, defined in Definition 2.22, has a skew-normal distribution,

SN d(µm,⌃m).

The distributions presented above can be used to model the diet estimates obtained

from QFASA. However, as discussed in Section 2.2.2, sometimes essential zeros are

present in the diets; that is, there is a true absence of a prey species in the diet of

the predator. In this case, we cannot use the imputation techniques proposed earlier

to replace rounded zeros, so we must model the zeros as well. Several zero-inflated

distributions have been proposed to do just that.

The three zero-inflated distributions described below refer to marginal distributions.

The first mixture model relies on the multiplicative logistic normal distribution.

Definition 2.26. The simplified probability distribution for SMixM(✓k, µk, �
2

k) pro-

posed in Stewart & Field (2011), is given by:

fk(pk) =

8
>>>><

>>>>:

✓k if pk = 0

(1� ✓k)M(µk, �
2

k) if 0 < pk < 1

0 otherwise

where pk is the kth component of the composition, fk(·) refers to the probability distri-

bution of the kth component of the composition, and M(µk, �
2

k) is the multiplicative

logistic distribution with mean µk and variance �
2

k.

A natural extension of this distribution is to include a parameter allowing for skew-

ness.

Definition 2.27. Stewart & Field (2011) also proposed a mixture model that is based

on the multiplicative logistic skew-normal distribution. The probability distribution



29

for SMixSkM(✓k, µk, �
2

k,↵k) is given by:

fk(pk) =

8
>>>><

>>>>:

✓k if pk = 0

(1� ✓k)SkM(µk, �
2

k) if 0 < pk < 1

0 otherwise

where pk is the kth component of the composition, fk(·) refers to the probability dis-

tribution of the kth component of the composition, and SkM(µk, �
2

k,↵k) is the multi-

plicative logistic distribution with mean µk, variance �
2

k and skew parameter ↵k.

A similar model is discussed in Stewart (2013) using the beta distribution. The beta

distribution is a natural choice when dealing with proportions since a beta-distributed

random variable has a range from 0 to 1. In order to include zeros, a zero-inflated

model was proposed.

Definition 2.28. The zero-inflated beta distribution is defined as:

fk(pk) =

8
>>>><

>>>>:

✓k if pk = 0

(1� ✓k)�(µk,�k) if 0 < pk < 1

0 otherwise

where pk is the kth component of the composition, fk(·) refers to the probability distri-

bution of the kth component of the composition, and �(µk,�k) is the beta distribution

with rate µk and scale �k.

Recently, Tsagris & Stewart (2018b) proposed an ↵-folded multivariate normal dis-

tribution for compositional data which allows a multivariate distribution to be fit on

Sd through the parameter ↵. It uses the ↵-folded transformation from y 2 Rd to

uo 2 Sd described below:

uo =

8
<

:
g
↵
0
(y) if y 2 Ad

g
↵
1
(y) if y 2 Rd \ Ad

where g↵
0
(y) = k�1

↵ (HTy) ,H is the Helmert Matrix (a square orthogonal matrix; Lan-

caster (1965)), g↵
1
(y) = k�1

↵

⇣
H

T
y

q⇤2↵ (y)

⌘
, Ad

↵ =
n
Hk↵|� 1

↵  ki,↵  d
↵ ,
Pd+1

i=1
ki,↵ = 0

o
,
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and the functions involved are as follows:

k�1

↵ (m) =
(1 + ↵mi)1/↵PD
j=1

(1 + ↵mi)1/↵
, for i = 1, ..., D

q
⇤
↵(y) = ↵min{HTY}.

If Y shown above follows a multivariate normal distribution, Uo is said to have an

↵-folded multivariate normal distribution.

2.5 Measures of Location and Spread

Aitchison & Bacon-Shone (1999) constructed several approximations that are useful

for a maximum likelihood approach which are described in Section 3.2. These were

constructed to resolve the issue that the distribution of a convex linear combination of

d-dimensional additive logistic normal random compositions is not easily determined.

In these approximations, Aitchison uses the reparameterization where the centre (the

theoretical closed geometric mean) is defined on the untransformed scale and the

variation matrix defined in Aitchison (1986) is used in place of a covariance matrix.

These are the arguments used to describe the additive logistic normal distribution

L(⇠,T), which says that the alr transformation follows a normal distribution with the

untransformed composition having theoretical closed geometric mean ⇠ and variation

matrix T. Note, this is di↵erent notation than used in this thesis (see Definition

2.21). Therefore, let’s first define these measures of centre and variability, and then

relate them back to our notation for use throughout the rest of the thesis.

Definition 2.29. The theoretical closed geometric mean of a composition ⇠, also

called Aitchison’s mean, is defined in Aitchison (1986) as:

⇠ = C[g1, ..., gD]

where gj refers to the theoretical geometric mean of the j
th components, log gj =

R
log(uoj)f(uoj)duoj. Here f(uoj) represents the probability density function of uoj.

Definition 2.30. The empirical form of Definition 2.29 (Aitchison’s mean) can be

found by using the following formula:
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meanA(uo) = C[ĝ1, ..., ĝD]

where ĝj refers to the geometric mean of the j
th component, ĝj = (

Qn
i=1

uoji)1/n.

Definition 2.31. The variation matrix, T = [⌧ij], is defined in Aitchison (1986) as:

⌧ij = var

✓
log

uoi
uoj

◆
, i, j = 1, ..., D.

With these parameterizations, Aitchison & Bacon-Shone (1999) then say that Ld(⇠,T)

represents a logistic normal distribution with centre ⇠ and variation matrix T.

We can relate these new parameters to the mean and variance-covariance matrix of

the alr transformation, µ
a
and ⌃a, by:

µaj = log
⇠j

⇠D
= alr(⇠)j j = 1, ..., d (2.3)

�aij =
1

2
(⌧iD + ⌧jD � ⌧ij) i, j = 1, ..., D (2.4)

In order to keep notation clear, the transformations, their means, covariance matrices,

and space are organized in Table 2.1.

Transformation Notation Space Mean Covariance Matrix

No transformation uo SD ⇠ T = [⌧ij]

Alr transformation ua = alr(uo) Rd µ
a

⌃a = [�aij]

Clr transformation uc = clr(uo) RD µ
c

⌃c = [�cij]

Ilr transformation u = ilr(uo) Rd µ ⌃ = [�ij]

Table 2.1: Notation for transformations between the simplex and real space.

If the mean is known for a certain transformation of a composition, we can relate that

back to Aitchison’s mean of the original composition uo using the following formula

from Aitchison (2005):
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⇠ = meanA(uo) = alr�1(µ
a
) = alr�1(mean[alr(uo)]) (2.5)

where mean here represents the arithmetic mean. The relationships between trans-

formations are given in Egozcue et al. (2003) and are shown to simply be matrix

multiplications between the transformations. This, combined with properties of ex-

pected values, leads us to extend Equation 2.5 to obtain:

meanA(uo) = ⇤lr�1(mean[⇤lr(uo)]) (2.6)

where ⇤lr represents any of the transformations alr, clr or ilr.

Similarly, we can convert the covariance matrix of one transformed composition to an-

other using the set of equations shown below from Aitchison (1986). In the equations,

the following shorthands are used:

⌧i· =
1

D

DX

j=1

⌧ij, ⌧·· =
1

D2

DX

i=1

DX

j=1

⌧ij

�ai· =
1

D

DX

j=1

�aij, �a·· =
1

D2

DX

i=1

DX

j=1

�aij

The equations below show the conversions of the elements of the covariance matrices

from one transformation to another.

T ! ⌃a : �ij =
1

2
(⌧iD + ⌧jD � ⌧ij)

T ! ⌃c : �cij =
1

2
(⌧i· + ⌧j· � ⌧ij � ⌧··)

⌃a ! T : ⌧ij = �aii + �ajj � 2�aij

⌃a ! ⌃c : �cij = �aij � �ai· � �aj· + �a··

⌃c ! T : ⌧ij = �cii + �cjj � 2�cij

⌃c ! ⌃a : �aij = �cij � �ciD � �cjD + �cDD

(2.7)

The relationships above can also be depicted using matrix algebra, in lieu of element

by element calculations. These are shown below.
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T ! ⌃a : ⌃a = �1

2
FTFT

T ! ⌃c : ⌃c = �1

2
GTG

⌃a ! T : T = First convert to ⌃c then convert to T

⌃a ! ⌃c : ⌃c = FTH�1⌃aH
�1F

⌃c ! T : T = Jdiag(⌃c) + diag(⌃c)J� 2⌃c

⌃c ! ⌃a : ⌃a = F⌃cF
T

(2.8)

where Jd is a matrix of units, Fd,D = [Id, jd], Id is the d-dimensional identity matrix,

jd is a column vector of units, GD = ID �D
�1JD, Hd = Id + Jd, and diag(⌃c) is a

diagonal matrix with the diagonal entries equal to the diagonal entries of ⌃c.

To include the covariance matrix after an ilr transformation into these equations,

which we have denoted ⌃, we first need to establish several relationships. Let Uo be

a random composition of length D, then from Egozcue et al. (2003), we know that:

ilr(Uo) = U = clr(Uo)V = UcV

clr(Uo) = Uc = ilr(Uo)V
T = UVT

VTV = ID�1

(2.9)

From above, we can find the relationships between the variance-covariance matrices

of the ilr transformation and clr transformation as follows:

Uc = UVT

UT
c = [UVT ]T

UT
c = VUT

Var(UT
c ) = Var(VUT )

⌃c = V⌃VT

(2.10)

Using this last equality, and using the relationship between V and the identity matrix

shown above, we get:



34

⌃c = V⌃VT

VT⌃cV = VTV⌃VTV

VT⌃cV = ID�1⌃ID�1

VT⌃cV = ⌃

(2.11)

Thus, the two relationships between ⌃ and ⌃c can be added to the list above:

⌃! ⌃c : VT⌃cV

⌃c ! ⌃ : V⌃VT
(2.12)

2.6 Convex Linear Combinations of Compositions

In Aitchison & Bacon-Shone (1999), three approximations are used to obtain the

mean and variation matrix of a convex linear combination of compositions on the

untransformed scale. In the approximations below, if uo is said to follow Ld(⇠,T),

it means that Ua = alr(Uo) follows MVND�1(µa,⌃a), where µa = alr(⇠) as seen in

Equation 2.6 and ⌃a = �1

2
FTFT as seen in Equation 2.7. These approximations are

described below.

Approximation 2.1. Let Y be a convex linear combination of compositions, Y =

⇡1Uo1 + ⇡2Uo2 + ... + ⇡CUoC, where Uo1, ..., Uoc are independently distributed as

Ld(⇠
1
,T1), Ld(⇠

2
,T2), ..., Ld(⇠C ,TC). Then Y is approximately distributed as

Ld(⌘o,⇥), ⇥ = [✓ij], and

⌘o =
CX

b=1

⇡b⇠b

✓ij = �1

2

CX

b=1

DX

k=1

DX

l=1

GbijkGbijl⌧bkl

where,

Gbijk = ⇢bi(�ik � ⇠bk)� ⇢bj(�jk � ⇠bk), ⇢bi = ⇡b⇠bi/⌘oi,
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and �ik is the Kronecker delta, equal to 1 when k = i, and equal to 0 when k 6= i.

This approximation is derived from the first-order Taylor expansion of the log ratio

of Yi and Yj. Also note that if the mixture places full weight onto one composition,

that composition’s original mean and variation matrix are obtained for ⌘o and ⇥,

respectively.

The second approximation considers the case where the mixing vector ⇡ is not fixed,

but varies compositionally according to a LC�1(↵,⌦) distribution.

Approximation 2.2. Let Y be a convex linear combination of compositions, Y =

⇡1Uo1 + ⇡2Uo2 + ... + ⇡CUoC, where Uo1, ..., UoC are independently distributed as

Ld(⇠
1
,T1), Ld(⇠

2
,T2), ..., Ld(⇠C ,TC), and ⇡ is distributed as LC�1(↵,⌦). Then Y

is approximately distributed as Ld(,⇤), ⇤ = [�ij], where

 =
CX

b=1

↵b⇠b

�ij = �1

2

CX

b=1

DX

k=1

DX

l=1

HbijkHbijl⌧bkl �
1

2

CX

a=1

CX

b=1

BaijBbij!ab

where

Hbijk = �bi(�ik � ⇠bk)� �bj(�jk � ⇠bk), �bi = ↵b⇠bi/i, Bbij = �bi � �bj

Note that Approximation 1 is the special case of ⌦ = 0 and ↵ = ⇡. A third approx-

imation is introduced where, instead of including a varying mixture, the mixture is

considered fixed, and a perturbation e↵ect is included.

Approximation 2.3. Let’s refer to the convex linear combination ⇡1Uo1 + ⇡2Uo2 +

... + ⇡cUoc as cvx(Uo,⇡). Then let Y = cvx(Uo,⇡) � X, where X is a compo-

sitional perturbation described in Aitchison (1986), distributed as Ld(e, ), where

e = 1

D (1, 1, ..., 1) is the identity of the perturbation group. Then Y is approximately

distributed as Ld(⌘o,⇥+ ), where ⌘o and ⇥ are given in Approximation 1.
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These three models are referred to as the fixed-mixture model, the convolution model,

and the perturbation model, respectively. For our methods, we will work with the per-

turbation model. Aitchison & Bacon-Shone (1999) performed simulations to ensure

that the approximations yield accurate results, and they found that the parameter

estimates are within appropriate practical values and the normality appears satisfied

for most practical situations.

2.7 Inference for Compositions

2.7.1 Testing for Di↵erence in Diet

Stewart et al. (2014) proposed that testing for a di↵erence in location of FA signatures

is a good indicator for a di↵erence in diet, as changes in diet are reflected in the

FA signatures. While it could be argued that a di↵erence in FAs could be due to

di↵erences in metabolism between individuals, all existing methods for quantitative

diet estimation treat metabolic rates for one species as a constant. Therefore, the

premise that di↵erences in FA signatures is a good indicator for di↵erences in diet is

used in the next three tests for comparing diet.

Two Independent Samples

Suppose two independent samples of predators are collected of size n1 and n2 respec-

tively, each of dimension m. Stewart et al. (2014) introduced a test based on the

nonparametric permutation test for comparing two means, in order to compare the

mean FA signatures of the two groups. Let y
1i be the i

th predator’s FA signature in

the first group, and y
2j be the j

th predator’s FA signature in the second group, then

the test statistic is as follows:

T =
n1X

i1

n2X

i2

dist(y
1i1 ,y2i2) (2.13)

where “dist” denotes either Aitchison’s distance defined in Definition 2.15, or chi-

square distance defined in Definition 2.19.

This test statistic is the used to perform the multivariate permutation test described
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below. The steps to this test are as follows:

1. Compute the test statistic T, defined in Equation 2.13, between y
1
and y

2
.

2. for r = 1,...,R

(a) Pool the two samples.

(b) Permute the n1 + n2 observations to obtain y⇤r
i , i = 1, ..., n1 + n2.

(c) Let y⇤r
1i = y⇤r

i , i = 1, ..., n1, and y⇤r
2i = y⇤r

i , i = n1 + 1, ..., n1 + n2.

(d) Compute the test statistic, T⇤r, defined in Equation 2.13, between y⇤r
1

and

y⇤r
2
.

3. Compute the p-value.

p
MPT =

#{T ⇤r � T}
R

2.7.2 Paired Samples

Stewart et al. (2014) also introduced a test for comparing FA signatures in paired

samples, based on the univariate matched pair randomization p-value in Davison &

Hinkley (1997). Similar to the independent case, the test statistic is based on a dis-

tance measure, which could be one of the two measures described below.

The first distance measure treats the zeros as rounded zeros. The zeros are modified,

the data is log-ratio transformed, and then the distance is calculated between the

before and after signatures for each individual. Specifically, it is calculated as:

dlog
i = uAai � uBai

where uAa = alr(yB) and uBa = alr(yA), and yB and yA are the “Before” and “Af-

ter” FA signatures, respectively.
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Alternatively, a measure based on the chi-square distance described in definition 2.19

can be computed as:

dCS
i =

1

�

p
2mC�1/2

�
zCS
Ai � zCS

Bi

�

where zCS
A and zCS

Bi are the re-closed power transformed data and C is a m x m diago-

nal matrix with diagonal elements cij = uAai�uBai when one of uAai and uBai are non

zero, and cij = 1 when both are zero. The choice of � is described in detail in Stewart

et al. (2014). The distances of the before and after FA signatures are compared to

the distances between the two-part corresponding subcompositions when the data are

power-transformed.

One of the two distance measures described above is selected, and used for the com-

putation of the test statistic, which is calculated as follows:

T =

 
mX

j=1

d̄
2

j

!1/2

(2.14)

where d̄j =
1

n

Pn
i=1

dij, j = 1, ...,m, and dij is the di↵erence, computed using one of

the two methods described above, between the j
th FA for the i

th individual.

The test is referred to as the multivariate randomization test and can be performed

using the following steps:

1. Compute the di↵erences di, i = 1, ..., n.

2. Compute the test statistic shown in Equation 2.14 using the di↵erences in 1.

3. for r = 1,...,R

(a) For the i
th observation, randomly select either +1 or -1. and call this sr⇤i ,

i = 1, ..., n.

(b) Compute d⇤r
i = s

r⇤
i di, i = 1, ..., n.
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(c) Compute T⇤r using Equation 2.14 and d⇤r
i .

4. Compute the p-value.

p
MRT =

#{T ⇤r � T}
R

2.7.3 More than 2 Independent Groups

Suppose we have more than 2 independent groups, and we want to compare diet pro-

portions using FA signatures. A multivariate ANOVA technique would be required.

Although Aitchison (1986) proposes the possibility of completing a MANOVA on

compositions by transforming the compositions using log-ratios, this method is only

applicable if all of the assumptions of a MANOVA are valid. However the traditional

MANOVA has strong assumptions that frequently do not agree with compositional

data. These restrictions include the assumption that the transformed data is approx-

imately multivariate normal, the appropriate use of Euclidean distances, and that the

sample size be larger than the number of variables. With compositional data however,

sometimes due to zeros, a transformation is not possible or the transformed data may

not follow a multivariate normal distribution. More importantly, often the number of

variables is larger than the sample size, as is the case with most FA signatures. Also,

as discussed, Euclidean distances are not subcompositionally coherent, making them

inappropriate measures for compositions.

In Steeves et al. (2016), a non-parametric MANOVA based on McArdle & Ander-

son (2001) was used to detect di↵erences in diet proportions based on testing FA

signatures. This test is appropriate for compositional data since not only are the

assumptions of log-normality, Euclidean distances, and sample size unnecessary, but

it also allows use of the distance between compositions to carry out a MANOVA-type

test. Similar to a parametric MANOVA, it requires Y, a sample of n units in p vari-

ables, as well as a n ⇥ k model matrix or design matrix X. The goal is to test the

hypothesis that the model parameters have no e↵ect. That is, Ho : � = 0 in the

equation Y = X� + ✏. Instead of the traditional parametric approach, we base our

test statistic on a distance matrix, or semi-metric distance matrix, � = [dij] of the

sample of FA signatures, Y. Using this, we can obtain the test statistic given by:
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F =
tr(HGH)/(p� 1)

tr[(I�H)G(I�H)]/(n� p)
(2.15)

where H is the hat matrix defined by H = X(XTX)�1XT and G is Gower’s centred

matrix defined by G = (I� 1

n11
T )A(I� 1

n11
T ). Here, � = [dij] is described above,

and A = [aij] = [�1

2
d
2

ij].

Because this test statistic does not follow the F distribution like in a parametric

MANOVA, a permutation method is required to calculate the p-value. If we randomly

permute all the observations and calculate the F statistic for all possible permuta-

tions, then the p-value is the proportion of these F-statistics that are equal to or larger

than the original F from the data. Often it is impossible or ine�cient to calculate all

possible permutations, so a su�cient sample of permutations can be used. If the de-

sired level of significance is 0.05, then at least 1000 permutations must be computed,

and if the desired level of significance is 0.01, then at least 5000 permutations must

be computed (McArdle & Anderson (2001)).

The two way design is a natural extension of this, where a partial F test is used. That

is, the F statistic is computed as:

F =
(SSRr � SSRf )/(dfr � dff )

SSRf/dff
(2.16)

where SSRf and SSRr are the residual sum of squares for the full and reduced models

respectively, and dff and dfr are the residual sum of squares degrees of freedom for

the full and reduced models. This works out to be N � p+ 1, where p is the number

of parameters in the model. The same method for computing the p-value described

earlier can be used here.
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2.7.4 Regression for Compositions

Dirichlet Component Regression

In Gueorguieva et al. (2008), a regression method was proposed for compositional

data that relies on the Dirichlet distribution, the density of which is described in

Definition 2.20. The model for each component of the composition Yi, describes each

log(↵j), (↵ is the vector of parameters described in Definition 2.20) as separate linear

functions of covariates. In other words, each component, i = 1, ..., k, uses a log-link

function as follows:

log(↵ij) = �T
i zj

where zj are the covariates recorded on the jth individual (j = 1,...,n) and the coe�-

cients �i are estimated using maximum likelihood.

Alternatively, as proposed in Tsagris & Stewart (2018a), the following link function

could be used:

uo1 =
1

1 +
PD

k=2
eX

T�k

, uoi =
e
X

T�i

1 +
PD

k=2
eX

T�k

, for i = 2, ..., D (2.17)

Tsagris & Stewart (2018a) also proposed a Dirichlet regression model capable of han-

dling zeros, based on methods discussed in Stewart & Field (2011). Their method

assumes there are B populations corresponding to all subsets of non-zero components

in composition Y. Let ✓b = P (G = gb) be the marginal probability that an obser-

vation comes from population b, where gb is a vector of 1s and 0s corresponding to

population b, and
PB

b=1
✓b = 1. Then ifG denotes the vector indexing the non-zero

components of Y , the density of Y with non-zero components corresponding to

population b⇤ is given by:

fY(y) =
BX

b=1

fY,G(y,gb) = fY,G(y,gb⇤) (2.18)
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where gb⇤ is the vector of indices corresponding to the non-zero components of y. So,

if yb⇤ is of length Db⇤ and denotes the vector containing the non-zero components of

y, and fb⇤(yb⇤) is the density of Yb⇤ , then:

fY(y) = fY,G(y,gb⇤) = fY|G(y|gb⇤)✓b⇤ = fb⇤(yb⇤)✓b⇤ (2.19)

For this model, Tsagris & Stewart (2018a) chose to use the Dirichlet density. That

is, Yb⇤ ⇠ Dir(�b⇤ ,x⇤
b⇤), where the xis are defined in Equation 2.17.



Chapter 3

Implementation of Compositional Models for FA Data

QFASA was developed to estimate diet proportions of marine predators using FA

signatures of predators and their assumed prey. Since the initial creation, there

have been many improvements including the addition of calibration coe�cients into

the model to correct for metabolization that occurs within the predator for certain

FAs. Fat content has also been included to account for fattier prey species having

larger a↵ects on the diet proportions of the predator. However, several drawbacks

exist for QFASA that we hope to improve upon. Firstly, we wanted a method that

allows for inference so that we could build confidence bounds or hypothesis tests from

the diet estimates of the predators. By assuming parametric distributions for the

FA signatures (which QFASA does not do), we are able to use “Template Model

Builder” or “TMB” to develop methods that will eventually automatically calculate

the standard errors. These standard errors are for the asymptotic case, and allow

inference to be performed without any extra work, but currently there is some debate

as to the accuracy of these standard errors. For these reasons, we will perform

inference based on parametric bootstraps in this thesis. Secondly, the individual

prey that are consumed by the predator are not themselves included in the sampled

preybase. In order to correct for this, we consider the specific prey that the predator

consumed as a random e↵ect, and base the distribution of these random e↵ects on

that obtained by the sample prey database.

Similar to QFASA, our model takes a linear transformation of the prey FA signatures

(or in our case, random e↵ects), and the diet proportions. Since the data is com-

positional in nature, we had the choice between taking the linear transformation on

the untransformed scale (like in QFASA), or on the ilr transformed scale. Although

statistically, the model becomes simpler when the linear transformation is performed

on the ilr transformed scale, biologically it does not make as much sense. The FA

43
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signatures would be contributing to the diet of the predators as they are consumed,

that is, on the untransformed scale, not in a di↵erent scale based on logarithms and

ratios. Therefore, biologically, it would make more sense to create our model this way.

In order to explain the enhancements to the original QFASA model, we begin this

chapter with a detailed explanation of the QFASA methodology, as well as improve-

ments that have been made since it’s original proposal. We will then introduce our

new maximum likelihood based model for diet estimation, including all required as-

sumptions. Finally, we will end the chapter with a detailed algorithm to utilise the

ML methodology.

3.1 QFASA

Recall from Chapter 1 that QFASA utilises a distance minimization algorithm to es-

timate diet proportions for marine predators from the FA signatures of prey species.

To explain this in detail, suppose we have FA signatures of sampled predators, and

a prey database, where samples of prey from species believed to be in the diet of the

predators are collected, and their FA signatures are recorded. Let ↵ be a composi-

tion where the i
th element represents the proportion of prey type i in the predator’s

diet, x̄oi be the compositional representative FA signature of prey type i (usually

the empirical sample mean) on the original, untransformed scale, and y
o
be the FA

signature of the predator on the original, untransformed scale. Then we assume that

y
o
⇡

IX

i=1

↵ix̄oi. (3.1)

In order to estimate the diet proportions ↵, the distance between the observed FA

signature y
o
and the linear combination of ↵x̄o is minimized. This is done using a

numerical optimiser in R, currently “solnp”, and can be implemented on a variety

of distance measures, including those described in Section 2.3. Aitchison’s distance,

shown in Definition 2.15, is the most popular approach to measure distance between

two compositional vectors and has been used in QFASA (Bromaghin et al. (2015)).

Aitchison’s distance satisfies all the distance criteria presented in Aitchison (1992)
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(discussed in Section 2.3), including scale invariance, perturbation invariance and

subcompositional coherence, however this measure is not feasible when zeros, essen-

tial or rounded, are present. The Kullback-Leibler distance was the original distance

measure used in QFASA analysis (Iverson et al. (2004a)) and is defined in Definition

2.18. This measure is neither scale invariant, nor subcompositionally dominant, but

Iverson et al. (2004a) found it to be a useful and natural measure of distance between

two distributions. However in Bromaghin et al. (2015), Aitchison’s and KL distance

measures were found to yield similar results, although Aitchison’s distance yielded es-

timates with slightly less bias and similar or better root mean squared error (RMSE).

In order to improve the diet estimates obtained from QFASA, several biological cor-

rections have been introduced. The first corrections are referred to as calibration

coe�cients. These are used to account for metabolization that occurs within the

predator, meaning that certain proportions of FAs in the predator will not exactly

match those of the consumed prey. Originally, in order to estimate these coe�cients,

a feeding experiment would need to be conducted where a predator (a seal in Iverson

et al. (2004a)) is fed a specific diet for a set amount of time (Iverson et al. (2004a)).

The FA signature of the predator (pred) and consumed prey(s) (diet) are recorded

in this instance and used to estimate the kth calibration coe�cient, ck, by taking the

10% trimmed mean of

r
k
li = predik/dietlk

where k indexes the FA, i indexes the sampled predator, and l indexes the sampled

prey. These calibration coe�cients get added into the model in Equation 3.1 by

replacing the k
th FA in the predator’s signature (y

ok) with y⇤
ok as:

y⇤
ok =

y
ok/ckP
s yos/cs

(3.2)

Recently, Bromaghin et al. (2017b) proposed a method to simultaneously estimate

the calibration coe�cients along with the diet compositions. They considered the
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calibration coe�cients as a transformation onto the predator space, and applied this

transformation to the mean prey FA signatures as:

x̄tik =
ckx̄ikP
m cmx̄im

(3.3)

where ck is the calibration factor of the k
th FA, and x̄ik is the mean of the k

th FA

for prey species i. Now, x̄tik is in predator space, so we can model the j
th predator

signature with the diet proportions ↵ji as:

yj =
IX

i=1

↵jix̄
t
i (3.4)

To optimize the calibration factors and diet estimates simultaneously, Aitchison’s dis-

tance between the observed and modelled FA signatures are summed over all predators

and then minimized.

The second correction takes fat content into account as fattier prey species will con-

tribute more to the FA signature of the predator than less fatty species. If we have

a measure of fat content for each prey species, it is easily incorporated into QFASA.

We say that y =
PI

i=1
pix̄i where p is the composition and where the i

th element

represents the estimated proportion of species i in the FA signature of the predator,

and

↵i =
pi/fiP
s ps/fs

(3.5)

where ↵i is the proportion of species i in the diet of the predator and fi is the fat

content of species i. Adding both calibration coe�cients and fat content into the

QFASA model has been found to significantly improve the diet estimates of real life

data as shown in Iverson et al. (2004a) where estimates were much closer to known

true diets with these corrections in place than without.

In addition to calibration coe�cients and fat content, using specific FA subsets can
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help improve diet estimation. Not all FAs are included in QFASA, but typically two

di↵erent subsets are considered, which vary from one predator species to another.

These are referred to as the extended dietary subset and the dietary subset. The ex-

tended dietary subset contains FAs that are influenced by both diet, and biosynthesis,

and the dietary subset contain FAs that are influenced by diet only. Originally, when

using either subset, the FAs to be included would be extracted from the FA signature,

and the signature would be rescaled by the partial sum of the FA signature so that it

sums to 1 (Iverson et al. (2004a)). However, Bromaghin et al. (2016) believes rescal-

ing the signatures distorts predator-prey relationships and could lead to a bias in diet

estimation. They found that when the partial sums (the sum of the proportions after

extracting the subset of FAs) di↵er significantly between prey types, the FA signature

structure distorts, causing an increase in bias. He proposes an “augmented” approach

for dealing with the subsets where the signatures are not rescaled, but are augmented

with an additional proportion equal to 1 minus the partial sum of the FA signature. If

the partial sums are similar among prey types, either approach yields similar results.

3.2 Likelihood Model for Diet Estimation

Building on the work of QFASA, described in Section 3.1, our model involves a

linear combination of diet proportions and prey FA signatures performed on the

untransformed scale, with several modifications described below. The notation for

the components of this model are as follows:

• yoj represents the observed untransformed D-dimensional fatty acid signature

of predator j. yj is the ilr transformation of yoj.

• zoji is the unobserved untransformed D-dimensional fatty acid signature of the

i
th prey species consumed by the jth predator where i = 1, ..., I and j = 1, ..., n.

This is considered to be an unobserved random e↵ect. zji is the ilr transforma-

tion of zoji.

• xoik is the observed D-dimensional fatty acid signature of the kth sampled prey

of species i in the prey database. xik is the ilr transformation of xoik. Note,

each prey species has varying sample sizes.
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• ↵j represents the unobserved I-dimensional composition of diet proportions for

predator j, where ↵ji, the i
th element of ↵j is the proportion of prey species i

in the predator j’s diet.

• ✏oj represents the random error associated with predator j. ✏j is the ilr trans-

formation of ✏oj.

First, for simplicity, we are considering the likelihood of the jth predator with diet ↵j,

and we will ignore calibration and fat content for now. While the fatty acid signature

of the predator is directly related to the fatty acid signatures of the specific fish that

it ate, these exact fish are unobserved. These prey fish are therefore considered as

random e↵ects, which will have to be integrated out to get the appropriate marginal

likelihood.

Here, we can think of the predator’s FA signature as being a linear combination of the

prey random e↵ects, perturbed by some error term ✏oj. Perturbation was used here

since we are dealing with compositional data, and Aitchison & Bacon-Shone (1999)

has approximations for the distribution, mean and variance-covariance matrix of this

equation. So, if I is the number of species of prey considered, then:

yoj =

 
IX

i=1

↵jizoji

!
� ✏oj (3.6)

Note, we are only including one FA signature of each prey type in the summation. We

could similarly carry out the analysis replacing this one FA signature with a mean (or

measure of centre of your choosing) FA signature of nprey prey FA signatures. The dis-

tribution ofYoj cannot be determined explicitly, but we can use Approximation 3 from

Aitchison & Bacon-Shone (1999), described in Section 2.6. Note, the notation used

here is not the same as the notation in Aitchison & Bacon-Shone (1999) where the dis-

tribution ofUo was said to be LD(⇠,T) ifUa = alr(Uo) ⇠ MVND�1(alr(⇠),�1

2
FTFT )

(see Section 2.5). Here, we will describe the distributions of ilr transformed compo-

sitions, and specify the means on the ilr scale, similar to the MVN notation shown

above, but using the ilr transformation. Since we are using the ilr transformation in

lieu of the alr transformation, we have extended these approximations to the ilr scale

using the Equations 2.6 and 2.7. The approximation then tells us that Yj will be
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approximately multivariate normal, with mean ilr(⌘oj), where ⌘oj is given by:

⌘oj =
IX

i=1

↵ji⇠i (3.7)

and with variance-covariance matrix

� 1

2
VTG(⇥+T✏)GV (3.8)

where ⇠i is Aitchison’s mean, described in Section 2.5, of the untransformed FA

signatures for prey species i, T✏ is the variation matrix of ✏o (Definition 2.31) and ⇥

is the variation matrix of the yjs given by

✓ab = �1

2

IX

l=1

DX

m=1

DX

n=1

MlabmMlabn⌧mn.

In the above equations, T = [⌧ab] is the variation matrix of zojis, V is a D ⇥ d

orthonormal basis of the clr-plane based on the Helmert matrix defined in Equation

2.1, G = ID�D
�1JD, ID is the D-dimensional identity matrix, JD is a D-dimensional

matrix of 1s, and M is defined as

Mlabn = ⇢la(�an � ⇠ln)� ⇢lb(�bn � ⇠ln), ⇢la = ↵̄·lzola/⌘oa,

Here, �an is the Kronecker delta, equal to 1 when n = a, and equal to 0 when n 6= a.

For simplicity, we will start by assuming that all of the xois have common variation

matrix T. If the assumptions of multivariate normality are valid for xi, zji and ✏j,

then based on Approximation 3 in Section 2.6, we can estimate the mean and variance

of Yj and assume it’s normality, which gives us the following information about the

components of our model:
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✏j ⇠ MVND�1(0,�1

2
VTGT✏GV) (3.9)

Zji ⇠ MVND�1(µi,�
1

2
VTGTGV), i = 1, ..., I

Yj ⇠ MVND�1(⌘j,�
1

2
VTGT✏GV)

Yj|Zj1, ...,ZjI ⇠ MVND�1(⌘⇤
j ,�

1

2
VTG(⇥+T✏)GV)

Xi ⇠ MVND�1(µi,�
1

2
VTGTGV), , i = 1, ..., I (3.10)

where µi is the population mean of all ilr transformed FA signatures of prey species

i, ⌘⇤
oj depends on the unobserved random e↵ects as ⌘⇤

oj =
PI

i=1
↵izoji, ⌘⇤

j is the ilr

transformation of ⌘⇤
oj, and ⌘j is the marginal mean of Yj. Note, although it is not

pursued here, skew-normal distributions, described in Section 2.4, could be used in

place of multivariate normal distributions. The ↵-transformation, defined in Tsagris

et al. (2011), could also be used, which is more general than the ilr transformation.

Recall that, �1

2
G⇥G is the variance-covariance matrix of the clr transformed com-

position with variation matrix ⇥, and so �1

2
VTG⇥GV is the variance-covariance

matrix of the ilr transformed composition with variation matrix ⇥ (these relation-

ships are described in Equation 2.7).

Because multivariate normal distributions are assumed for transformed prey FA signa-

tures, we need to make sure that this is a valid assumption. First, normal probability

plots were examined for each prey species, for all FAs. While some FAs appeared to

be following a normal distribution, many were not. In order to correct for this, the

Winsorize function in the package DescTools in R (Signorell (2019)) can be used for

each individual FA for each species. This function replaces values above and below

an upper and lower bound respectively, with those bound values. That is:
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w(x) =

8
>>>><

>>>>:

l if x < l

x if l < x < u

u if x > u

(3.11)

After those values are replaced, the compositions are then divided by the sum of the

vector, to ensure they still sum to 1. For our data, we chose to use the upper and

lower bounds as the fences of a boxplot. That is, the lower bound is Q1�1.5IQR and

the upper bound is Q3 + 1.5IQR, where Q1 and Q3 are the first and third quartiles

respectively, and IQR = Q3 �Q1 is the interquartile range.

The normal probability plots before and after winsorizing for all species were com-

pared. Two of such comparisons are shown in Figures 3.1 and 3.2. Pollock shows

that many FAs are roughly following the normal distribution without winsorizing, but

once the FAs are winsorized, there is an improvement, particularly seen with 20:3n-6

and 22:4n-6.For these cases where extreme outliers were present, winsorizing brought

these outliers closer into the bulk of the data which increased the normality of the

FAs. For Squid, without winsorizing, not many FAs are following the diagonal in

the normal probability plots, as many appear to be quite curved and have extreme

outliers. However, after winsorizing, some of these curves appear to be straighter and

the outliers less severe, as seen with 20:4n-3, 21:5n-3 and 22:4n-3.

The function shapiro.test in the package stats in R performs the Shapiro-Wilk test of

normality, described in Royston (1995), to test for normality. This function was used

to obtain p-values for every FA, for every prey species, where p-values larger than the

significance levels are indicative of near normality. The proportions of such p-values

over several common significance levels were explored both before winsorizing and

after. These are shown in Table 3.1.



52

Significance
Winsorized 0.01 0.05 0.1

No 0.7946 0.5982 0.5417
Yes 0.8661 0.7143 0.6161

Table 3.1: Proportions of Shapiro-Wilk test p-values that are above the significance
levels listed, for both the winsorized and non-winsorized preybases.
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Figure 3.1: Normal probability plots of each FA for Pollock both with (blue) and
without (red) winsorizing.
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Figure 3.2: Normal probability plots of each FA for Squid both with (blue) and
without (red) winsorizing.
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We can see from Table 3.1 that winsorizing improves the normality of the FAs for the

prey species. Therefore, for non-parametric simulations, and real life data, we will

be explore winsorizing the preybase, and by comparing to non-winsorized preybase

estimates, see if this a↵ects the accuracy of diet estimation.

We can make the assumption that the predators are conditionally independent, given

the random e↵ects, since they will be sampling their own prey species. Similarly we

can assume both the observed and unobserved prey are independent of each other.

Since the predator is consuming the random e↵ects, and has not consumed the ob-

served prey species, we can assume independence between the predator and observed

prey. Finally, we can assume that the random perturbations are independent of each

other. Therefore we have:

• zji, i = 1, ..., I are independent

• zji, i = 1, ..., I and ↵j are independent

• yj|↵j, zji, j = 1, ..., n.pred, i = 1, ..., I, are independent

• x1, ...,xI are independent

• yj and xi are independent

• zji and xi are independent

• ✏j, j = 1, .., n.pred are independent.

We can find the joint likelihood of Yj and Zj by considering the density of Yj|Zj

and multiplying by the density of Zj. So, we need to determine the distribution of

Yj|Zj. Yj depends on Zj = (Zj1,Zj2, ...,ZjI), ↵j = (↵j1,↵j2, ...,↵jI) and ✏j. Since

we are conditioning on Zj, these are fixed, as are ↵j. Therefore, the only randomness

involved in Yj|Zj comes from ✏j. So, we have,

Yoj|Zoj = ⌘⇤
oj � ✏oj

ilr(Yoj|Zoji) = ilr(⌘⇤
oj � ✏oj)

Yj|Zj = ilr(⌘⇤
oj) + ilr(✏oj)

= ⌘⇤
j + ✏j

(3.12)



56

where ⌘⇤
oj =

PI
i=1

↵jizoji. Since ilr(⌘⇤
oj) = ⌘⇤

j depends only on fixed ↵ and fixed zoji, it

is a constant, and ✏j is multivariate Normal, as described in Equation 3.9. Therefore,

Yj|Zj is multivariate Normal, with mean ⌘⇤
j + E(✏j) = ⌘⇤

j + 0 = ⌘⇤
j . Since Zj

are given, the variance-covariance matrix only depends on the variation matrix of the

random error, T✏, so the variance-covariance matrix of Yj|Zj is ⌃✏ = �1

2
VTGT✏GV.

Thus,

Yj|Zj ⇠ MVND�1(⌘⇤
j ,⌃✏) (3.13)

We now need to find the marginal log likelihood (Equation 5.2). If we let X =

(X1,X2, ...,XI), then from the assumptions above, we can write out the density

function for the predator FA signatures, conditioning on the random e↵ects, diet

proportions, variation matrix of the prey, variation matrix of the random error, and

observed prey FA signatures, f(Yj|Zj,↵j,T,T✏,X).

L = f(Yj|Zj,↵j,T,T✏,X)f(Zj)f(X)

=
1

(2⇡)
D�1
2 |� 1

2
VTGT✏GV|1/2

exp

(
�1

2
(Yj � ⌘⇤

j)
T


�1

2
VTGT✏GV

��1

(Yj � ⌘⇤
j)

)
⇥

IY

i=1

1

(2⇡)
D�1
2 |� 1

2
V TGTGV|1/2

exp

(
�1

2
(Zji � µi)

T


�1

2
V

TGTGV

��1

(Zji � µi)

)
⇥

IY

i=1

1

(2⇡)
D�1
2 |� 1

2
VTGTGV|1/2

exp

(
�1

2
(Xi � µi)

T


�1

2
VTGTGV

��1

(Xi � µi)

)

For the optimization, many parameters are being estimated simultaneously, particu-

larly when many prey species are being included in the model. Therefore, to minimize

the number of parameters in the optimization, µi is estimated using the empirical

mean of the observed FA signatures of prey species i, say x̄i, and ⌃ = �1

2
VTGTGV

is estimated using the pooled empirical variance-covariance matrices of the ilr trans-

formed prey FA signatures from the prey base, ⌃̂. This is found by estimating the

variation matrices for each prey species, T̂i, converting each to the variance-covariance
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matrix of the ilr transformed prey FAs using Equation 2.7 and pooling these esti-

mates. T✏ is one of the parameters to be estimated during the optimization. Since

we have a direct transformation between T✏ and the variance-covariance matrix of the

ilr transformed errors, ⌃✏ from Equation 2.7 ( ⌃✏ = �1

2
VTGT✏GV), estimating ⌃✏

instead will yield the same results. We will assume that ⌃✏ is a diagonal matrix, with

D�1 values on the diagonal, however estimating all D�1 values has proven di�cult.

Therefore, for the time being, we are splitting the diagonal values into 4 quartiles,

and estimating the average of each quartile. This is explained in more detail below.

So, the joint likelihood is

L = f(Yj|Zj,↵j,T,T✏,X)f(Zj)f(X)

=
1

(2⇡)
D�1
2 |⌃✏|1/2

exp

⇢
�1

2
(Yj � ⌘⇤

j)
T [⌃✏]

�1 (Yj � ⌘⇤
j)

�
⇥

IY

i=1

1

(2⇡)
D�1
2 |⌃̂|1/2

exp

⇢
�1

2
(Zji � x̄i)

T ⌃̂
�1

(Zji � x̄i)

�
⇥

IY

i=1

1

(2⇡)
D�1
2 |⌃̂|1/2

exp

⇢
�1

2
(Xi � x̄i)

T ⌃̂
�1

(Xi � x̄i)

�

The last row of the likelihood above is the density of the prey FA signatures, f(X).

This density does not depend on any of the parameters ↵i or ⌃✏, nor does it depend

on the random e↵ects Zj. Therefore, it is constant relative to our parameters, and is

not needed in the likelihood. So, the likelihood to be optimized is:

L = f(Yj|Zj,↵j,T,T✏,X)f(Zj)

=
1

(2⇡)
D�1
2 |⌃✏|1/2

exp

⇢
�1

2
(Yj � ⌘⇤

j)
T⌃�1

✏ (Yj � ⌘⇤
j)

�
⇥

IY

i=1

1

(2⇡)
D�1
2 |⌃̂|1/2

exp

⇢
�1

2
(Zji � x̄i)

T ⌃̂
�1

(Zji � x̄i)

�

Note, the likelihood above is for the j
th individual predator. Since the predator FAs
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are assumed to be independent, we can get the joint likelihood of multiple predators

simply by multiplying the likelihoods, as seen below.

L =
n.predY

j=1

f(Yj|Zj,↵j,T,T✏,X)f(Zj)

=
n.predY

j=1

 
1

(2⇡)
D�1
2 |⌃✏|1/2

exp

⇢
�1

2
(Yj � ⌘⇤

j)
T⌃�1

✏ (Yj � ⌘⇤
j)

�
⇥

IY

i=1

1

(2⇡)
D�1
2 |⌃̂|1/2

exp

⇢
�1

2
(Zji � x̄i)

T ⌃̂
�1

(Zji � x̄i)

�!

(3.14)

We now need to integrate out the random e↵ects to obtain the marginal log likelihood

which is given in Equation 3.15.

L =

Z
· · ·
Z n.predY

j=1

f(Yj|Zj,↵j,T,T✏,X)f(Zj)dZj1 · · · dZjI

=

Z
· · ·
Z n.predY

j=1

 
1

(2⇡)
D�1
2 |⌃✏|1/2

exp

⇢
�1

2
(Yj � ⌘⇤

j)
T⌃�1

✏ (Yj � ⌘⇤
j)

�
⇥

IY

i=1

1

(2⇡)
D�1
2 |⌃̂|1/2

exp

⇢
�1

2
(Zji � X̄i)

T ⌃̂
�1

(Zji � X̄i)

�!
dZj1 · · · dZjI

(3.15)

The R package “TMB” (Kristensen et al. (2016)) uses the Laplace approximation to

approximate the marginal log likelihood (Equation 3.15) which we can then optimize

to obtain the diet proportions, ↵.

3.2.1 Computations

Algorithm for Analysing Predator FA Signatures

As we are dealing with compositional data in the prey FA signatures, the diets, and

the predator FA signatures, there are many steps and transformations that need to

be performed before analysis. In order to clarify the steps taken in this process, a

break down of the algorithm for estimating diet is described below. This explains the

steps in R, as well as the steps in C++ (required for TMB), as well as the form of

the parameters and data required.
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In R

• Set and load inputs for the algorithm.

• (Optional) If using non-parametric simulations, or real life data, winsorize the

preybase.

• Modify any zeros using the multiplicative replacement method (Definition 2.14)

and transform the prey database using the ilr transformation described in Def-

inition 2.11.

• Calculate the empirical mean for each species’ transformed FA signatures.

• Calculate the estimated variance-covariance matrix of the ilr transformed FA

signatures for each prey species, and pool.

• Using the predator data and the original QFASA method discussed in Section

1.1, obtain diet estimates.

• Modify any zeros in the prey and predator datasets using the multiplicative

replacement method (Definition 2.14 and transform the predator data using

the ilr transformation in Definition 2.11.

• Set start values for the parameters:

– alpha (↵) - Matrix of dimension n.pred ⇥ (I � 1). Starting values for this

parameter are QFASA diet estimates, where each row represents the diet

of an individual predator, with the last proportion dropped.

– Z (z) - Array of dimension n.pred ⇥ I ⇥ (D � 1). Starting values for the

random e↵ects are the mean transformed FA signatures of the prey species.

Each element is a matrix, where the row represents the mean random e↵ect

for the i
th prey species, and the columns represent the FAs.

– sepsilon (quartered diagonal of ⌃) - Vector of length 4. Represents the

diagonal of the variance-covariance matrix of ✏. This is split into 4 quar-

tiles, and the mean of each quarter is estimated. The first value represents

the mean of the lower 25% of the diagonal entries, the second value is the
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mean of the 25%-50% entries, and so on. Starting values for the shortened

diagonal are obtained from the following steps:

1. Consider the observed FA signatures of the predators as yoj. Obtain

diet estimates ↵̂j for each predator j using QFASA.

2. Using the diet estimates obtained in the first step, generate a pseudo-

predator without error by generating a generating a FA signature xoij

for each prey species i, using the multivariate normal distribution (see

Section 2.4), taking a linear combination of these FA signatures, simi-

lar to parametric pseudo-predators, but stopping before the error per-

turbation, ⌘̂�✏
oj =

PI
i=1

↵̂ijxoij.

3. Using the inverse perturbation function described in Definition 2.6,

obtain estimates for each ✏oj. (✏̂oj = ⌘̂�✏�1

oj � yoj).

4. Repeat steps 2 and 3 above 50 times for each predator.

5. Transform the estimated error vectors, ✏̂ojs, using the ilr transforma-

tion, and estimate the variance-covariance matrix.

6. Take the diagonal of the variance-covariance matrix, and obtain the

quartiles. Obtain the mean of the entries in the lower quarter, second

quarter, third quarter and upper quarter. An index vector is cre-

ated that says which quarter each diagonal element belongs to. The

variance-covariance matrix using the starting values could be then ob-

tained by plugging in the mean of the first quantile for all diagonal

entries that are in the first quarter, etc.

• Set data list to pass into TMB.

– Y - Matrix of dimension n.pred ⇥ (D � 1). This is the ilr transformed

predator FA signatures.

– n - Vector of size I. The i
th element represents the sample size of the i

th

prey species in the prey base.

– varz - Matrix of dimension (D � 1) ⇥ (D � 1). It is the pooled variance-

covariance matrix of the ilr transformed prey.
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– mu - Matrix of dimension I ⇥ (D � 1). The i
th row is the mean ilr

transformed FA signature of the i
th prey species.

– V - Matrix of dimension D ⇥ (D � 1). It is the clr basis matrix which is

output from “ilrBase”.

– sind - Vector of length D � 1. This is the index vector created in step 6

above, that indicates which quarter each diagonal element in the error

variance-covariance matrix belongs to.

• Compile the TMB function, discussed in the next section.

• Obtain the TMB objective function to be optimized (remember that this repre-

sents the approximate marginal negative log likelihood of Y , found in Equation

3.15) using “MakeADFun”, passing in both the parameter starting values and

the data.

• Make a function that obtains the sum of each row of alpha. This will be the

inequality function passed to “solnp”.

• Optimize the function spit out by TMB by using “solnp”, passing in the function

from TMB, the starting values from TMB, the inequality function that you set

the lower bound to a vector of 0s and the upper bound to a vector of 1s. Since

the alpha matrix optimizes all the diet proportions except for the last prey

species, the sum will be between 0 and 1, and we can find the last proportion

by subtracting the sum of all the proportions from 1. Lower bounds for alphas

and sepsilon are set to 0, and upper bounds for alphas and sepsilon are set to

1s and INF respectively. Note, “solnp” is used here for the simple use of a

linear equality constraint, without having to code a Lagrange Multiplier in the

likelihood.

TMB function in C++

• Initialize all parameters and data sets.

• Initialize negative log likelihood (nll) to zero
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• Declare a multivariate normal distribution with covariance matrix varz for X

and Z (nll dist).

• Create a matrix with sepsilon on the diagonal to represent covariance matrix of

the errors (and thus Y|Z, see Section 3.2).

• Declare multivariate normal distribution with covariance matrix equal to the

diagonal matrix found above, for Y|Z (nll y, Equation 3.13).

• In a for loop from 0 to n.pred� 1, index is w:

– Extract wth Z matrix from array Z.

– Back transform the Z matrix so that it is on the untransformed scale, Zo.

– Multiply the wth row of alpha by the Zo matrix to obtain eta, the untrans-

formed mean of Y.

– Modify any zeros in eta, and ilr transform to get ymean.

– Calculate the w
th row of Y minus the transformed ymean ((yw � ⌘⇤

w) in

Equation 3.15), and get the negative log likelihood at this value using nll y

(f(Yw|Z,↵,T,T✏,X) from Equation 3.15). Add this to nll.

– Inside a second for loop, from 0 to I � 1, index i

⇤ Calculate the ith row of Z minus the ith row of mu ((Zi�x̄i) in Equation

3.15), and get the negative log likelihood of this value using nll dist

(f(Zi) from Equation 3.15). Add this to nll.

– End for loop

• End for loop

• Return nll.

From this algorithm, the code in R and C++ can be written. Replacing zeros and

proper transformation must be done in order for the analysis to run and obtain

accurate estimates. See Appendix A.1 for full code.



Chapter 4

Simulations

In this chapter, simulation studies are carried out and discussed in order to assess the

methods proposed in Chapter 3. The goal of a simulation study is to generate pseudo

data based on known parameters that resemble real life data. In this way, estimates

can be compared to the true known parameters of the pseudo data to evaluate how

well methods perform in a variety of cases. For our methods, we needed to create

pseudo-predators that simulate predator FA signatures with known diet proportions.

We achieved this in two ways: parametrically, and non-parametrically (see Section

4.2). Then, using a real-life preybase containing sampled FA signatures of potential

prey species, ML and QFASA diet estimates were obtained which were then compared

to the true diet of that pseudo-predator. The preybase used for the simulations

performed in this thesis is described below, followed by detailed descriptions of the

simulations performed.

4.1 Preybase

The preybase used for the simulations is the spring Scotian Shelf preybase discussed

in Budge et al. (2002), which has been frequently used for FA analysis. Most species

were sampled during random bottom-trawl surveys stratified by zones on the Scotian

Shelf (Northwest Atlantic Fisheries Organization subareas 4V, 4W, and 4X) and on

George’s bank (subarea 5Z) in the spring, summer or fall of 1993, 1994, 1995, 1996, or

in the southern Gulf of St. Lawrence (subarea 4T) in 1999. Some of the invertebrate

species were collected from research trips or commercial fisheries as well. Species were

then frozen and stored at -20�C in sealed plastic bags until analysis was performed.

The specimens were thawed and the length and weight were measured. Then, each

individual was homogenized in a blender or food processor. The modified version of

the method in Folch et al. (1957) was used to extract the lipids from the samples.

63
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Species Scientific Name n avg. FC
American plaice Hippoglossoides platessoides 134 2.33
Atlantic butterfish Peprilus triacanthus 75 10.83
Atlantic cod Gadus morhua 109 2.46
Atlantic herring Clupea harengus 229 6.44
Atlantic mackerel Scomber scombrus 32 5.14
Capelin Mallotus villosus 162 5.21
Longhorn sculpin Clupea harengus 45 2.06
Northern sandlance Ammodytes dubius 148 5.26
*Northern shortfin squid Illex illecebrosus 35 3.01
Pollock Pollachius virens 53 2.44
Redfish Sebastes sp. 54 7.10
Sea raven Hemitripterus americanus 71 1.97
Silver hake Merluccius bilinearis 58 1.60
Smooth skate Malacoraja senta 33 2.53
Snake blenny Lumpenus lumpretaeformis 18 2.43
Thorny skate Amblyraja radiata 83 2.59
White hake Urophycis tenuis 80 1.29
Winter flounder Pseudopleuronectes americanus 50 1.95
Winter skate Leucoraja ocellata 40 1.47
Witch flounder Glyptocephalus cynoglossus 24 1.91
Yellowtail flounder Limanda ferruginea 156 2.21

Table 4.1: Species, sample sizes, and average fat content (%) included in the prey
database used in simulations. Asterisk (*) identifies the invertebrate species.

Tissue samples weighing 1.5g were extracted using 30mL of 2:1 chloroform-methanol

and then was washed, filtered through anhydrous sodium sulphate, evaporated under

nitrogen, and vacuum sonicated to obtain total lipid weight. Following the methods

described in Iverson et al. (1997), fatty acid methyl esters (FAME) were prepared

and analyzed in duplicate.

This preybase includes 21 di↵erent prey species, all of which are listed in Table 4.1

along with the sample size and average lipid, or fat content, measured as percent wet

weight. For each prey, 67 FA proportions were measured. The dietary subset of FAs

was used (29 FAs), which includes only those which are from consumed prey (those

which are not biosynthesized). The list of all FAs, as well as which FAs are included

in the dietary subset, are shown in Table 4.2.
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FA Dietary FA Dietary FA Dietary
12:0 13:0 Iso14
14:0 14:1n-9 14:1n-7

14:1n-5 Iso15 Anti15
15:0 15:1n-8 15:1n-6
Iso16 16:0 16:1n-11
16:1n-9 16:1n-7 7Me16:0
16:1n-5 16:2n-6 X Iso17
16:2n-4 X 16:3n-6 X 17:0
16:3n-4 X 17:1 16:3n-1
16:4n-3 X 16:4n-1 X 18:0
18:1n-13 18:1n-11 18:1n-9
18:1n-7 18:1n-5 18:2d511
18:2n-7 18:2n-6 X 18:2n-4 X
18:3n-6 X 18:3n-4 X 18:3n-3 X
18:3n-1 X 18:4n-3 X 18:4n-1 X
20:0 20:1n-11 X 20:1n-9 X

20:1n-7 X 20:2n-9 20:2n-6 X
20:3n-6 X 20:4n-6 X 20:3n-3 X
20:4n-3 X 20:5n-3 X 22:1n-11
22:1n-9 22:1n-7 22:2n-6
21:5n-3 X 22:4n-6 X 22:5n-6 X
22:4n-3 X 22:5n-3 X 22:6n-3 X
24:1n-9

Table 4.2: List of FAs measured in the preybase (67), and those included in the
dietary subset (29) that is used for analysis.
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4.2 Pseudo-Predators

Pseudo-predators are generated FA signatures used in place of real-life predator FA

signatures in simulation studies. We generate them based on a known diet that we

choose, hereafter called the true diet, so we can see how accurate and precise the

diet estimates are from each model. We have two ways of generating these pseudo-

predators: parametrically and non-parametrically.

Parametrically

In order to generate pseudo-predators parametrically, we use the multivariate normal

distribution, which we have assumed for our real-life prey species after transforma-

tion in our model (Equation 3.9). First, using the preybase, we estimate a mean ilr

transformed FA signature for each species (could alternatively use median, or another

measure of centre), as well as a pooled variance-covariance matrix. Using these em-

pirical estimates, we generate one ilr transformed FA signature from the multivariate

normal distribution for each prey species. These transformed FA signatures are back

transformed, and a linear combination of these signatures with the “true” diet is per-

formed to obtain the untransformed FA signature of our predator, without error, ⌘�✏
o .

The error terms, ✏, are also generated from a multivariate normal distribution (Equa-

tion 3.9) with mean 0 and variance-covariance a diagonal matrix of 0.001. Since no

predator FA signatures were available for this preybase, we could not base this on

real life values. Therefore, this value was selected to limit the amount of variability

so the FA signatures of the prey do not overlap, making it easier to distinguish be-

tween the prey. The errors ✏ are back transformed, and a perturbation (equivalent

to addition on the ilr scale, see Definition 2.6) is taken between them and the FA

signature, ⌘�✏
o , on the original scale. This perturbation yields the FA signature of the

pseudo-predator on the untransformed scale.

Non-Parametrically

Non-parametric pseudo-predators create FA signatures generated in such a way that

no assumptions are being made on the distribution of the data, so results based on
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this method will indicate how the MLE method is performing even if model assump-

tions are not met. To generate the non-parametric pseudo-predators, a bootstrap

sample of prey FA signatures is first collected from each prey species. The number

of prey to resample was investigated in Bromaghin (2015), where it was found that

using arbitrary sample sizes yields accurate mean FA signatures. Moreover his pro-

posed method achieves this as well as an accurate variation compared to real life

data. Because we do not have real life predator FA data for this preybase, we were

unable to use his method for our simulations. Therefore, for our simulations, the total

sample size of each prey is resampled with replacement and the mean (or median)

FA signatures of the bootstrapped samples are calculated for each prey species. A

linear combination of these mean prey signatures is then taken with the “true” diet

and the signature that results is the FA signature without error, ⌘�✏
o .

The error term is generated the same way as it was in the parametric simulations,

and is then back transformed so that it can be perturbed with the FA signature

⌘�✏
o . The resulting composition is the FA signature of the pseudo-predator on the

untransformed scale.

Simulation Settings

For the simulation study, we wanted to reduce the number of prey species included

in the diets in order to speed up computations. Therefore, we looked at the FA sig-

natures of each prey species to select three groups of 4 species with varying levels of

similarity. The goal was to have a group of prey species whose FA signatures are very

di↵erent, a group that is slightly di↵erent, and a group that is similar. In order to

make this decision, dendrograms were plotted based on Aitchison’s (Definition 2.15),

chi-squared (Definition 2.19), and KL (Definition 2.18) distances of the mean FA sig-

natures for each prey species. Species that had FA signatures that are similar will be

close together on branches, and those having di↵erent FA signatures, will be further

away. These plots are shown in Figure 4.1. Notice, KL and chi-squared distances

yield nearly identical results. Biologists prefer using the KL distance over Aitchison’s

distance when using QFASA, and chi-squared is a more recently proposed technique

that does not require modification of 0s, therefore, those two plots were relied on



68

more heavily. However, the relationships are similar when using Aitchison’s distance

as well. Based on these dendrograms, the sets of species selected are shown in Table

4.3.
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Figure 4.1: Dendrogram using Aitchison’s, KL and chi-squared distances of the mean FA

signatures for 21 prey species included in the prey data set.
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Group Species 1 Species 2 Species 3 Species 4

Very Di↵erent Capelin Sea Raven White Hake Winter Flounder

Di↵erent Capelin Pollock White Hake Redfish

Similar Atl. Butterfish Atl. Herring Nor. Sandlance Redfish

Table 4.3: Prey species selected to be included in simulations based on distances
between FA signatures.

Groups of 4 species were chosen for each set. Depending on the species of predator

for which we are estimating diets, this may or may not be realistic. For grey and

harbour seals that we will look at in our real life study, this would be quite a small

set, however with the complexity of this model, we wanted to start small and build.

Ensuring that this works for smaller sets first, and then adding to our model will save

time and potential identifiability issues in the simulations.

For each group of species, regularly-spaced diets across the simplex were used to see

how the estimates are performing throughout the whole space. These diets are gen-

erated using “make diet grid” in the package “qfasar”. Using an increment of 1

3
, 20

diets are generated that are equally spaced by 1

3
throughout the simplex, which are

shown in Table 4.4. These diets ensure that the method is working not only through-

out the interior of the simplex, but also on the edges. Between this simulation study

and the real life study discussed in Section 6.2, if the ML method is behaving as

expected, we could argue that it should function properly in all cases.
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Diet Species 1 Species 2 Species 3 Species 4
1 1 0 0 0
2 0.6667 0.3333 0 0
3 0.6667 0 0.3333 0
4 0.6667 0 0 0.3333
5 0.3333 0.6667 0 0
6 0.3333 0.3333 0.3333 0
7 0.3333 0.3333 0 0.3333
8 0.3333 0 0.6667 0
9 0.3333 0 0.3333 0.3333
10 0.3333 0 0 0.6667
11 0 1 0 0
12 0 0.6667 0.3333 0
13 0 0.6667 0 0.3333
14 0 0.3333 0.6667 0
15 0 0.3333 0.3333 0.3333
16 0 0.3333 0 0.6667
17 0 0 1 0
18 0 0 0.6667 0.3333
19 0 0 0.3333 0.6667
20 0 0 0 1

Table 4.4: Diets spaced equally over the simplex that are included in the simulations.

Each of these diet and species combinations is run with sample size n = 100 where

pseudo-predators are generated randomly via both methods described, using the di-

etary subset of FA. QFASA estimates are used as starting values for the diet parame-

ters, which were obtained using calibration coe�cients of 1, Aitchison’s distance, and

the dietary FA subset. For Z, the random e↵ects in Equation 3.6, a matrix of the

mean ilr transformed FA signatures for each prey species is used for the starting value.

Simulation Results

Parametric Simulations

With compositional data, Aitchison’s distance (Definition 2.15) is often used to mea-

sure how far two compositional vectors are from each other. This measure is used

as a quantitative way to assess how well the MLE method is performing relative to
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Figure 4.2: Boxplot of Aitchison’s and chi-squared distances for 20 diet simulations,
with 100 parametric pseudo-predators each, on species groups 1, 2 and 3.

QFASA. In order to use Aitchison’s distance, the QFASA and MLE estimates, and

the diet vector, were modified using the multiplicative replacement method described

in Definition 2.14, as Aitchison’s distance cannot be used with 0 elements in the com-

positions. Then, for each of the 100 predators in all 20 diets, Aitchison’s distance

was calculated between the estimates (both QFASA and MLE) and the “true” diet.

These distances for species group 1 are summarized in Figure 4.2. In this figure, we

can see that for all diets, the distances between QFASA estimates and the “true” diet

are similar, and in some cases (for example diets 10, 11, 13, 16 and 20) QFASA is

much larger than that for the MLE estimates.

The same thing was then done using chi-squared distance (Definition 2.19), proposed
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in Stewart (2017). This distance measure is beneficial as it does not require modifica-

tion of the estimates or true diet. That is, essential zeros, and rounded zeros can be

used when calculating the distance between the two compositions. The chi-squared

distances for species group 1 are also summarized in Figure 4.2. Using chi-squared

distance in Figure 4.2, we can see that nearly all of the QFASA estimates appear to

be much further from the true diet than the MLE method.

To explore the reliability of these distances measures, let’s look at a simple example.

Consider species group 1, diet 6, and the first estimate using both QFASA and MLE.

The true diet is (0.333, 0.333, 0.333, 0), and the estimated values are (0.279, 0.292,

0.428, 0.000) and (0.327, 0.306, 0.367, 0.000) using QFASA and MLE, respectively,

rounded to 3 decimal places. For QFASA, Aitchison’s and chi-squared distances be-

tween true and estimated diets are 8.19 and 0.393 respectively and for MLE, they are

8.20 and 0.151. These values are without modification of the zeros in the estimate,

as neither method can estimate an essential zero, but always give slightly positive

values. However, if we round the estimate to 3 decimal places as displayed above,

and replace the zeros using the multiplicative replacement method with � = 0.00005,

Aitchison’s distance for QFASA becomes 0.333 and for MLE, 0.130. Thus, Aitchison’s

distance relies heavily on the number of decimal points you keep in the composition,

and your choice of imputation value, �. Therefore, chi-squared distances should be

considered more reliable when comparing the estimates to the true values, as it does

not require any modification of the estimates that could impact the distance measures.

Looking at Table 4.5, we can see that in every combination of species group, and

distance measure, QFASA estimates are further away from the true diet on average

than those obtained from the MLE method.

We also looked at similar plots for species groups 2 and 3, (all shown within Figure

4.2) and saw similar results; the distances between the true diet and QFASA esti-

mates are generally higher than that with our MLE estimates. What is interesting

is that with species group 1, which has FA signatures that are very di↵erent from

each other, the chi-squared distances between true diet and estimated diet are higher
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Species Group 1 2 3
Distance Method d̄ sd d̄ sd d̄ sd

Ait
QFASA 10.4 2.9 10.1 2.6 10.2 2.8
MLE 9.6 2.4 9.8 2.4 9.9 2.5

Chi
QFASA 0.77 0.53 0.36 0.29 0.49 0.40
MLE 0.19 0.18 0.15 0.16 0.19 0.20

Table 4.5: Mean (d̄) and standard deviation (sd) of distances (Aitchison’s and chi-
squared) between the true diet and the estimates from both QFASA and MLE meth-
ods, for 3 species groups, with 20 equally spaces diets, and 100 parametric pseudo-
predators each.

(ranging between 0 and 2) than with species groups 2 or 3. This is the reverse of

what we expected, as di↵erent FA signatures should be easier to di↵erentiate between

species. This may be a result of the method of selection for the prey species. The

dendrogram used only the distance between mean FA signatures. Therefore individ-

ual FA signatures could be closer than what was suggested by this plot. Either way,

the results are quite favourable, as the MLE method is still performing well relative

to QFASA.

When comparing only species groups 2 and 3 in Figure 4.2, we see the expected

results, as species group 2, with slightly di↵erent FA signatures, have smaller chi-

squared distances (ranging between 0 and 1.2) than with species group 3, with sim-

ilar FA signatures (ranging between 0 and 1.5). When using Aitchison’s distance

to measure the di↵erence between true and estimated diets, there is not an obvious

di↵erence in magnitude from species group to species group. However, we can see

that the variability of the estimates seems to decrease as we move from species group

1, to species group 2, and again as we move to species group 3.

To explore the diet estimates one by one, for each true diet, and each species group,

boxplots of the 4 prey species’ estimates using both MLE and QFASA techniques

were plotted with a purple line representing the true diet. This yielded many plots

so we will discuss a select few. First, let’s consider species group 1. Referring back to

Figure 4.2, we can see that using both distance measures, diet 16 had very large dis-

tances between true and QFASA estimated diets, but also relatively large distances



75

between true and MLE estimated diets, whereas diet 17 had very small distances

between true and estimated diets using both methods. Boxplots for diet 16 and diet

17 estimates are displayed in Figures 4.3 and 4.4 respectively.
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Figure 4.4: Boxplots of estimated diet proportions of 100 parametric pseudo-predators
using species group 1 and diet 17 for both QFASA and MLE methods, where true
diet is shown in purple.

For diet 16, shown in Figure 4.3, the true diet (0, 0.333, 0, 0.667) is located inward of

the edges of the simplex. QFASA had a di�cult time estimating all of the proportions

other than capelin. It tended to over estimate white hake, and underestimate winter

flounder and sea raven. Using the additional measures that “p.QFASA” calculates,

the FAs 16:3n-4, 16:2n-6, and 16:3n-6 are contributing the most on average to the

Aitchison’s distance used to estimate the diets. Together, they account for over 40%

of the Aitchison’s distance between the predator FA signature, and the linear combi-

nation. These FAs have relatively small proportions in the predator signatures, being

just slightly larger than the first quartile. Our MLE method does not appear to have

this di�culty, as it is not only estimating significantly more accurately than QFASA,

but also more precisely, as the variability is also smaller. Those same FAs do not

seem to a↵ect our method as much as with QFASA, as the ilr transformation does

not inflate their contribution to the FA as the Aitchison’s distance does. This shows

great promise for our method, especially where this was a case flagged as one of the

more poorly estimated diets from the earlier figures.
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For diet 17, shown in Figure 4.4, the true diet (0, 0, 1, 0) is on the edge of the simplex.

Both MLE methods and QFASA seem to be estimating nearly perfectly for this diet.

This is surprising as we expected the di�culty to lie along the edges of the simplex,

and not in the centre. Once again, our MLE method is proving to estimate quite

successfully when the FA signatures of the prey species are largely di↵erent (species

group 1).

To compare all the diets for species group 1, a bias table is shown in Table 4.6. Bias

of the 100 pseudo-predators is taken by subtracting the estimated diet from the true

diet. The bias and standard deviation of the estimates (in parentheses) are shown in

the table for each diet in species group 1. Similar to the boxplots, you can see that

nearly every diet has smaller mean bias for MLE than for QFASA, sometimes signif-

icantly so, and also has a smaller standard deviation in most cases. This reiterates

that the MLE is estimating the diets both more accurately and more precisely than

QFASA.
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Diet Method Capelin Pollock Redfish White Hake
1 MLE 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

QFASA 0.000(0.00000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
2 MLE -0.002(0.012) 0.001(0.012) 0.001(0.002) 0.000(0.000)

QFASA 0.027(0.013) -0.028(0.014) 0.001(0.002) 0.000(0.000)
3 MLE -0.006(0.014) 0.009(0.012) -0.003(0.015) 0.000(0.000)

QFASA -0.043(0.0156) 0.012(0.016) 0.0309(018) 0.000(0.000)
4 MLE -0.009(0.011) 0.006(0.008) 0.011(0.007) -0.007(0.011)

QFASA -0.075(0.019) 0.014(0.019) 0.147(0.032) -0.086(0.018)
5 MLE 0.000(0.013) -0.011(0.017) 0.011(0.009) 0.000(0.000)

QFASA -0.006(0.016) -0.021(0.029) 0.027(.022) 0.000 (0.000)
6 MLE -0.004(0.013) 0.003(0.026) 0.001(0.021) 0.000(0.000)

QFASA -0.050(0.015) -0.004(0.030) 0.054(0.025) 0.000(0.000)
7 MLE -0.003(0.014) -0.010(0.026) 0.017(0.012) -0.005(0.014)

QFASA -0.071(0.018) -0.031(0.035) 0.208(0.033) -0.106(0.017)
8 MLE -0.007(0.011) 0.009(0.014) -0.002(0.014) 0.000(0.000)

QFASA -0.074(0.013) 0.009(0.015) 0.065(0.014) 0.000(0.000)
9 MLE -0.010(0.011) 0.020(0.017) -0.009(0.019) -0.001(0.013)

QFASA -0.101(0.015) 0.029(0.026) 0.214(0.024) -0.142(0.016)
10 MLE -0.009(0.011) 0.008(0.011) 0.014(0.008) -0.013 (0.0134)

QFASA -0.080(0.017) 0.018(0.024) 0.221(0.037) -0.160(0.027)
11 MLE 0.001(0.004) -0.011(0.014) 0.010(0.012) 0.000(0.000)

QFASA 0.001(0.002) -0.087(0.029) 0.086(0.028) 0.000(0.000)
12 MLE 0.000(0.000) -0.000(0.023) 0.000(0.023) 0.000(0.000)

QFASA 0.000(0.000) -0.100(0.027) 0.100(0.027) 0.000(0.000)
13 MLE 0.000(0.000) -0.014(0.018) 0.020(0.010) -0.006(0.014)

QFASA 0.000(0.000) -0.173(0.031) 0.244(0.035) -0.071(0.021)
14 MLE 0.000(0.000) -0.000(0.018) 0.000(0.018) 0.000(0.000)

QFASA 0.000(0.000) -0.135(0.021) 0.135(0.021) 0.000(0.000)
15 MLE 0.000(0.000) -0.001(0.021) 0.001(0.022) 0.001(0.013)

QFASA 0.000(0.000) -0.185(0.023) 0.274(0.026) -0.089(0.017)
16 MLE 0.000(0.000) -0.009(0.019) 0.016(0.012) -0.007(0.017)

QFASA 0.000(0.000) -0.205(0.029) 0.295(0.036) -0.090(0.025)
17 MLE 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

QFASA 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
18 MLE 0.000(0.000) 0.000(0.000) -0.000(0.012) 0.000(0.012)

QFASA 0.000(0.000) 0.000(0.000) 0.153(0.017) -0.153(0.017)
19 MLE 0.000(0.000) 0.000(0.000) -0.001(0.017) 0.001(0.017)

QFASA 0.000(0.000) 0.000(0.000) 0.147(0.023) -0.147(0.023)
20 MLE 0.000(0.000) 0.000(0.000) 0.007(0.008) -0.007(0.008)

QFASA 0.000(0.000) 0.000(0.000) 0.137(0.029) -0.137(0.030)

Table 4.6: Bias and standard deviations (in parentheses) of the estimates for species
group 1.
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We can do a similar exploration for species groups 2 and 3. First, looking at species

group 2 in Figure 4.2, we can see that diet 10 has some of the largest chi-squared and

Aitchison’s distances between the true and estimated diets, and diet 20 has some of

the smallest. The boxplots for diet 10 and diet 20 estimates are shown in Figures 4.5

and 4.6 respectively.
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Figure 4.6: Boxplots of estimated diet proportions of 100 parametric pseudo-predators
using species group 2 and diet 20 for both QFASA and MLE methods, where true
diet is shown in purple.

Similar to species group 1, one of the more poorly estimated diets (depicted in Figure

4.5) has two 0 proportions and a 0.333 and 0.667 proportion, only this time those

masses are on di↵erent prey species, with a true diet of (0.333, 0, 0, 0.667). QFASA is

underestimating capelin by between 5 and 10%, overestimating pollock by between 4

and 12%, and isn’t far o↵, but slightly overestimating on average, for white hake. On

average, over 44% of the FA contribution to Aitchison’s distance between predator

FA signature and the linear combination is due to FA 16:2n-6. The next highest

contributing FA explains only 10%. Thus, 16:2n-6 is very influential to the estimates,

yet is has the second smallest proportions, on average, in the predator FA signatures

and it does not show much variability among the mean FA signature for the four

species (SD = 0.0002). Also, out of the top 4 FA contributors to Aitchison’s distance,

3 of them have significantly di↵erent values for Redfish, which makes Redfish easier

to distinguish from the other Prey. These other 3 FAs (16:4n-1, 22:4n-3, 16:3n-4)

have standard deviation among the 4 species of 0.0107, 0.0003 and 0.0051 respec-

tively.Therefore, two of the FAs that most contribute to Aitchison’s distance have

very little variability among the mean proportions. This would make it very di�cult
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to di↵erentiate between species, thus QFASA could place weight on the wrong species.

Since MLE relies on the ilr transformation, which did not put such an extremely large

weight on 16:2n-6, once again, our MLE method estimates tend to be within 2% of

the true diet, and have a relatively low variability compared with that of QFASA

estimates.

One of the better estimates for species group 2, like that of species group 1, is a diet

on the edge of the simplex. Shown in Figure 4.6, the true diet of (0, 0, 0, 1) is nearly

perfectly estimated with both MLE and QFASA, with little to no variation. Here, the

four highest contributing FAs, in decreasing order, are 16:2n-6, 16:3n-6, 16:4n-1, and

16:3n-4. These FAs have standard deviation between the mean FA proportions for

the four species, of 0.0002, 0.0065, 0.0107, 0.0051 respectively. These last three have

relatively large variability between the species, making it easier for QFASA to dis-

tinguish between the 4 species. As well, both methods appear to have an easier time

estimating values on the edges of the simplex than those within the simplex, as nearly

100% of the proportion of FAs in the predator is due only to one species FA signature.
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Figure 4.7: Boxplots of estimated diet proportions of 100 parametric pseudo-predators
using species group 3 and diet 3 for both QFASA and MLE methods, where true diet
is shown in purple.

Looking at species group 3, from the plots in Figure 4.2, diet 3 has some of the largest

di↵erences between true and estimated diets, using both chi-squared and Aitchison

distances, and diet 7 has some of the smallest. A boxplot of diet 3 is displayed in

Figure 4.7, and once again, the true diet here, (0.667, 0, 0.333, 0), is o↵ the edge of

one side of the simplex. QFASA is overestimating Atlantic butterfish by 10 to 15%,

as well as Atlantic herring by 2 to 18%, the latter being quite a large range. QFASA

is underestimating Northern sandlance by between 15-25%. For these estimates, the

top 4 FAs contributing the most to Aitchison’s distance between predator and linear

combination are 16:3n-4, 20:5n-3, 16:4n-1 and 18:2n-6 in decreasing order. With the

exception of 20:5n-3, these all have relatively small standard deviations between the

mean FA signatures for the four species (0.0039, 0.0366, 0.0076 and 0.0038 respec-

tively) compared to the largest standard deviation (20:1n-9, 0.0925). Therefore, it

would be rather di�cult to di↵erentiate between the species. However, after removing

the mean FA signature for redfish, the standard deviations between the mean FA sig-

natures of the main contributing FAs dramatically decreases (0.0013, 0.0446, 0.0039
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and 0.0031 respectively). Therefore, the mean FA signature for redfish is quite distin-

guishable from that of Atlantic butterfish, Atlantic herring and Northern sandlance,

however the other 3 are quite similar. This explains why QFASA is having a di�cult

time distinguishing the proportions between those three species, but has no di�culty

with redfish. The MLE method has a maximum median di↵erence between true and

estimated diets of 2%, and relatively small variabilities, with the largest total spread

less than 10%. Once again, the ilr transformation used for the ML method, does not

place such high weights on the smaller proportions in FA signatures, and thus MLE

is estimating, even for species quite similar in FA signatures, more accurately and

more precisely than QFASA.
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Figure 4.8: Boxplots of estimated diet proportions of 100 parametric pseudo-predators
using species group 3 and diet 9 for both QFASA and MLE methods, where true diet
is shown in purple.

In Figure 4.8, we can once again see that the MLE method is estimating well in

comparison to QFASA. The true diet here is more central in the simplex (0.333, 0,

0.333, 0.333). The median proportion estimate is within 3% of the true diet for all prey

species using the MLE method, with relatively small variabilities, the largest having a

range of 10%. QFASA is not performing as well here, as it is overestimating Atlantic
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herring, as well as Atlantic butterfish on average, and underestimating Northern

sandlance and redfish. When looking at the contributions to Aitchison’s distance,

the four top FAs in decreasing order are 16:4n-1, 16:2n-6, 20:5n-3, nd 16:3n-4. Once

again, with the exception of 20:5n-3, they all have relatively small standard deviations,

especially the new addition compared to diet 3, 16:2n-6. The standard deviations of

the mean FA signatures of the 4 species for those 4 FAs are 0.0076, 0.0004, 0.036 and

0.0039. However, this time, redfish isn’t as di↵erent for these four FAs, since 16:2n-6

actually has a higher standard deviation (0.0005) after redfish is removed. This

explains why QFASA has a di�cult time, even with redfish for this diet. All of the

estimates also have large variabilities compared to the ML estimates. In summary, for

all true diets, and all species groups looked at in this simulation, MLE performed more

accurately and precisely than QFASA estimates, when generating parametrically.

Non-Parametric Simulations

For the non-parametric pseudo-predators, the same settings and analyses are per-

formed as with the parametric predators. Since very similar results were seen for all

sets, it appears that distance between mean FA signatures of prey has little to no

e↵ect on the estimation process. Therefore, only species group 1 is used here.

First, we look at boxplots of the Aitchison’s and chi-squared distances between the

diet estimates and the true diet. These plots are shown in Figures 4.9 and 4.10 respec-

tively. Note that using Aitchison’s distance, both methods have comparable distances

to each other, and those using parametric pseudo-predators. However, while using

chi-squared distances, the MLE method yields estimates often much further from the

true diet than QFASA. To look at this more closely, we once again looked at boxplots

of individual diets.

Looking at both figures of distances, we can see that diet 11 appears to have large

di↵erences between true diet and estimated diet for both QFASA and MLE methods

using both distance measures. Similarly, we can see that diet 7 has relatively small

di↵erences. The boxplot depicting diet 11 estimates is displayed in Figure 4.11. For

capelin, QFASA is over estimating between 0 and 10%, and MLE is overestimating
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Figure 4.11: Boxplots of estimated diet proportions of 100 non-parametric pseudo-
predators using species group 1 and diet 11 for both QFASA and MLE methods,
where true diet is shown in purple.

between 0 and 15%. For sea raven, QFASA is underestimating between 0 and 15% and

MLE is underestimating between 0 and 20%. For the white hake and winter flounder,

both methods have accurate median proportions, but QFASA has larger variability

for white hake, and MLE has larger variability for winter flounder. When compar-

ing the FA contributions towards Aitchison’s distance to the parametric simulations,

these contributions are more equally distributed. The highest contributors (20:4n-6,

16:4n-1, 22:4n-3, and 18:4n-1) account for less than 25%. Therefore, we would expect

to see similar results as with our MLE method, as the ilr transformation does not

over-weight smaller proportions as Aitchison’s distance often does. Despite this being

one of the worst estimated diets among the non-parametric simulations, our method

is performing very similar to QFASA , and in the case of white hake, even better than

QFASA.

One diet that appears to have ML estimates much further from the true diet than

QFASA from Figure 4.10 is Diet 19. To see what is happening up close, the boxplot

of the diet estimates in this case is displayed in Figure 4.12. In this plot, we can



88

Computer/Thesis/ErrorSimulations/Nonparametric/niceboxplotD19.pdf

● ●●●●

M
ax

 L
ike

lih
oo

d
Q

FA
SA

−0.05 0.00 0.05 0.10 0.15

Capelin

●●● ●●●●●● ● ●●● ●●

0.0 0.1 0.2 0.3

Sea Raven

0.0 0.1 0.2 0.3 0.4

White hake

0.6 0.7 0.8 0.9

Winter Flounder

Species Group 1 & Diet 19

Proportion in Diet

Figure 4.12: Boxplots of estimated diet proportions of 100 non-parametric pseudo-
predators using species group 1 and diet 19 for both QFASA and MLE methods,
where true diet is shown in purple.

see that for all species, QFASA yields a median estimate nearly exactly on the true

proportions, with very little variability. MLE seems to struggle in this case, as the

estimates for white hake are between 10-33% underestimated, while those for winter

flounder are between 2-25% over estimated. For capelin and sea raven, the median

estimate is very close to the true diet, however there is a much larger variability to

the estimates than with QFASA. While the pseudo-predators are meant to simulate

real life, we can’t say which type will be more accurately representative of the FA sig-

nature of a predator. For that reason, the most important comparison of this model

will be using real life data in Section 6.

In Figure 4.13, we see similar errors as with diet 11, however with much less variability.

ML estimates are slightly overestimating capelin by approximately 5%, underestimat-

ing sea raven by less than 5%, and has estimated white hake and winter flounder to

within 1%. QFASA is performing similarly, with slightly more accurate estimates for

capelin and sea raven. Once again, the 4 largest contributing FAs only account for

23%, and thus the weights of the FAs are much more equally distributed than with
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the parametric simulations. QFASA seems to give better estimates when it is not

only several FAs are contributing large percentages to Aitchison’s distance. In these

instances, QFASA and MLE yield similar estimates. Thus, it appears that our MLE

is performing well, even when the assumptions about normality are not taken into

account.

4.3 Bootstrap Intervals

4.3.1 Bootstrap settings

One of the main goals with this method was to be able to make inference on the

true diets. While TMB has the capability to return standard errors of the estimates,

there is a gap in the literature about how this is done. As well, there is some debate

among fellow statisticians about the accuracy of these standard errors, as well as the

optimization of the likelihood when requesting these standard errors. Therefore, until

some of these issues are resolved, we will perform parametric bootstraps in order to
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obtain marginal confidence bounds around the diet estimates.

To apply this to the simulations, for each diet of species group 1 mentioned in Section

4.2, n = 10 pseudo-predators were generated parametrically, and the diet estimated

using the same technique used in previous simulations described in Section 3.2. Then,

these estimates became the “true” diet, and n = 10 pseudo-predators were generated

parametrically, and diets were estimated. This last step was repeated 100 times, so

that we have 100 estimates of pseudo-predator 1, 100 estimates of pseudo-predator 2,

and so on. From this, for all 10 of the pseudo-predators, we obtained 95% marginal

confidence bounds, using the 2.5% and 97.5% percentiles.

In general, given initial diet estimates ↵̂ from n predators, you can obtain bootstrap

marginal confidence intervals for the diets following these steps:

1. Generate n pseudo-predators using the ML estimates, ↵̂, for the true diet pro-

portions, and the quartered diagonal matrix entries, �̂ for the true variance-

covariance matrix of the error.

2. Estimate the diet proportions, ↵̂r, for the n pseudo-predators from step 1.

3. Repeat steps 1 and 2 r times.

4. For each of the n predators, you now have r parametric bootstrap replicates.

Obtain the 2.5% and 97.5% quantiles of these replicates for each diet proportion

to obtain the marginal CI bounds.

4.3.2 Bootstrap Results

For the simulation results, we have n = 10 predators each with r = 100 bootstrap

replicates. Below, in Table 4.7, the true diet, the ML diet estimate, and the para-

metric bootstrap confidence intervals are displayed below for pseudo-predator 1 (the

first of the n = 10; generated parametrically), using the diets displayed in Table 4.4

with species group 1 described in Table 4.3.
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It is important to note that all diet proportions are restricted between 0 and 1. There-

fore, when the true diet proportion is on these bounds, it is impossible to obtain a

confidence bound below 0, or above 1, using the percentile method. To explain this,

consider when the true diet proportion is 0.5. We would expect to get some estimates

that are less than 0.5, and some estimates that are greater than 0.5, but likely few,

if any at all, that are exactly equal to 0.5. So using the percentile method, the lower

bound would most likely be less than 0.5, and the upper bound would be greater than

0.5. However, when the true diet is 0, we will have no estimates that are below the

true value, and very few, if any, that are exactly equal to the value. Therefore, we

will most likely obtain a lower bound for 0 that is greater than 0. Similarly, for 1, we

will most likely obtain a upper bound that is less than 1. Rounding the lower and

upper bounds can help with this issue, as when rounded to 3 decimal places, most of

these confidence bounds on the extremes tend to be exactly the true values.

From Table 4.7, we can see that the ML estimates are fairly accurate and are even

exact with a few diets. This aligns with the results seen in Section 4.2. It can be seen

that nearly all marginal intervals, rounded to 3 decimals, include the true diet values,

with the exceptions being proportions on the boundaries. This is due to the inability

to obtain estimates below the lower boundary, or above the upper boundary, thereby

restricting the true proportion to be either slightly outside the confidence bounds, or

exactly on one of the confidence bounds.

To explore this further, coverage probabilities were obtained using the n = 10 pseudo-

predators and their replicates. While this is a small sample size, and larger samples

could be explored for coverage probability, these were quite lengthy to perform, so

this can give us a sense of how these intervals are performing. These coverage prob-

abilities are shown in Table 4.8. Since they are marginal intervals, individual species

may have di↵erent coverage probabilities. Therefore, we first explored the coverage

individually for the species, but also included coverage probability for the entire vec-

tor. That is, how many of the n = 10 confidence bounds include the entire diet vector.
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Capelin Sea Raven White Hake Winter Flounder

Diet 1

↵ 1 0 0 0

↵̂ 1.000 0.000 0.000 0.000

CI 1.000-1.000 0.000-0.000 0.000-0.000 0.000-0.000

Diet 2

↵ 0.667 0.333 0 0

↵̂ 0.661 0.335 0.003 0.000

CI 0.644-0.688 0.310-0.355 0.000-0.016 0.000-0.000

Diet 3

↵ 0.667 0 0.333 0

↵̂ 0.645 0.000 0.355 0.000

CI 0.617-0.670 0.000-0.041 0.314-0.375 0.000-0.000

Diet 4

↵ 0.667 0 0 0.333

↵̂ 0.661 0.000 0.015 0.324

CI 0.632-0.681 0.000-0.042 0.000-0.048 0.292-0.341

Diet 5

↵ 0.333 0.667 0 0

↵̂ 0.325 0.667 0.009 0.000

CI 0.301-0.349 0.619-0.691 0.000-0.041 0.000-0.000

Diet 6

↵ 0.333 0.333 0.333 0

↵̂ 0.325 0.319 0.356 0.000

CI 0.295-0.351 0.275-0.363 0.324-0.396 0.000-0.000

Diet 7

↵ 0.333 0.333 0 0.333

↵̂ 0.332 0.320 0.018 0.330

CI 0.302-0.360 0.258-0.365 0.001-0.074 0.283-0.354

Diet 8

↵ 0.333 0 0.667 0

↵̂ 0.317 0.000 0.683 0.000

CI 0.297-0.339 0.000-0.035 0.654-0.700 0.000-0.000

Diet 9

↵ 0.333 0 0.333 0.333

↵̂ 0.322 0.000 0.354 0.323

CI 0.290-0.340 0.000-0.054 0.314-0.391 0.293-0.347

Diet 10

↵ 0.333 0 0 0.667

↵̂ 0.325 0.000 0.009 0.667

CI 0.289-0.343 0.000-0.047 0.001-0.049 0.623-0.688

Diet 11

↵ 0 1 0 0

↵̂ 0.000 0.989 0.011 0.000

CI 0.000-0.014 0.956-0.999 0.001-0.040 0.000-0.000

Diet 12

↵ 0 0.667 0.333 0

↵̂ 0.000 0.651 0.349 0.000

CI 0.000-0.000 0.611-0.681 0.319-0.389 0.000-0.000

Diet 13

↵ 0 0.667 0 0.333

↵̂ 0.000 0.659 0.011 0.330

CI 0.000-0.000 0.620-0.685 0.002-0.057 0.297-0.358

Diet 14

↵ 0 0.333 0.667 0

↵̂ 0.00 0.321 0.679 0.000

CI 0.000-0.000 0.287-0.350 0.650-0.713 0.000-0.000

Diet 15

↵ 0 0.333 0.333 0.333

↵̂ 0.000 0.320 0.355 0.324

CI 0.000-0.000 0.282-0.351 0.319-0.403 0.290-0.358

Diet 16

↵ 0 0.333 0 0.667

↵̂ 0.000 0.321 0.014 0.665

CI 0.000-0.000 0.282-0.363 0.000-0.066 0.620-705

Diet 17

↵ 0 0 1 0

↵̂ 0.000 0.000 1.000 0.000

CI 0.000-0.000 0.000-0.000 1.000-1.000 0.000-0.000

Diet 18

↵ 0 0 0.667 0.333

↵̂ 0.000 0.000 0.681 0.319

CI 0.000-0.000 0.000-0.000 0.648-0.710 0.290-0.352

Diet 19

↵ 0 0 0.333 0.667

↵̂ 0.000 0.000 0.354 0.646

CI 0.000-0.000 0.000-0.000 0.317-0.390 0.610-0.683

Diet 20

↵ 0 0 0 1

↵̂ 0.000 0.000 0.011 0.989

CI 0.000-0.000 0.000-0.000 0.001-0.046 0.954-0.999

Table 4.7: True diet, ML estimate, and parametric bootstrap confidence intervals for
predator 1, in a sample of n = 10 pseudo-predators, for all 20 diets in species group
1.
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Diet Capelin Sea Raven White Hake Winter Flounder Total
1 1 1 1 1 1
2 0.9 0.9 1 1 0.9
3 0.9 0.9 1 1 0.8
4 0.8 1 0.5 0.8 0.4
5 1 1 0.8 1 0.8
6 1 0.9 0.9 1 0.8
7 1 1 0.3 0.9 0.3
8 0.9 0.9 0.9 1 0.8
9 0.9 0.9 1 0.8 0.6
10 0.9 1 0.5 0.8 0.4
11 1 0.4 0.4 1 0.4
12 1 1 1 1 1
13 1 0.9 0.5 0.8 0.5
14 1 1 1 1 1
15 1 0.9 0.9 0.8 0.7
16 1 0.9 0.4 0.8 0.4
17 1 1 1 1 1
18 1 1 0.8 0.8 0.8
19 1 1 0.9 0.9 0.9
20 1 1 0.3 0.3 0.3

Mean 0.965 0.930 0.755 0.885 0.69

Table 4.8: Coverage probabilities based on n = 10 pseudo-predators and marginal
95% percentile bounds based on 100 bootstrap replicates, first for individual prey
species, then for the total diet composition. Bold values indicate where true propor-
tions were on the edge of the simplex (0 or 1).
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As these are marginal confidence bounds, we could obtain di↵ering coverage probabil-

ities for di↵erent species. In particular, we expect to see lower coverage probabilities

when the true diet is on, or close to the boundaries. The coverage probability for

capelin and sea raven seem to be quite high, averaging 0.965 and 0.930 respectively,

close to our confidence level of 95%. When comparing the mean absolute di↵erence

in mean ilr transformed FA signatures between the species, Capelin is the most dif-

ferent, making this species more easily distinguishable than the rest, and thus yielded

better results. Capelin also had the largest sample size by almost double. White

hake and winter flounder seem to exclude the true diet more often, with coverage

probabilities averaging 0.755 and 0.855 respectively. While these are 20 and 10%

lower than our confidence level, the sample sizes were quite small, and we expect to

see larger coverage with larger samples. The average total coverage probability was

0.69. Note that this value requires the bounds for every prey species to capture the

true diet proportions simultaneously. This will be lower than individual values as

it is a stricter requirement and all of our diets included at least one boundary value

(specifically 0). If we had diets completely inside the bounds of the simplex, we would

expect these to be higher, and closer to the confidence level.

Taking a closer look at two diets, specifically one with low coverage probability (diet

20) and one with high coverage probability (diet 12), we obtain Figures 4.14 and 4.15

respectively. Once again, we have rounded the values to 3 decimal places. We can see

with diet 20, for capelin and sea raven, the true proportions are 0 which are boundary

values, and once rounded, they have MLEs right on 0, and no width to the intervals.

White hake also has a true proportion of 0, however, the MLEs in this case are slightly

positive. Therefore, we get interval values that are always non negative, and are more

di�cult to capture the true proportion 0. Similarly, with winter flounder, we have

another true proportion on the boundary, as 1. As discussed before, our MLEs are

restricted to be less than or equal to 1, so it is di�cult to capture the true proportion

in the interval. As expected, the worst coverage probability in our simulation was for

a case with all boundary values in the true diet.

For diet 12, there are two true proportions of 0 for capelin and winter flounder. Both
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Figure 4.14: Marginal confidence bounds for 10 pseudo-predators with true diet (diet
20) shown in purple, rounded to 3 decimal places. The circle represents the MLE of
the diet proportion.

have MLEs which when rounded, are right on 0 with no variability. For sea raven and

white hake, which have true proportions of 0.33 and 0.67 respectively, MLE’s are no

more than 5% away from the true values, with relatively narrow intervals. Despite

the narrow intervals, all 10 of the marginal CIs for both white hake and sea raven

capture the true proportions. This shows that while there is di�culty on boundary

values, the marginal CIs appear to perform well when we have proportions not on the

boundaries.
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Figure 4.15: Marginal confidence bounds for 10 pseudo-predators with true diet (diet
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Chapter 5

Covariates

One of the goals of a maximum likelihood approach to QFASA is to include covariates

in the estimation of diet. Previously, predator diets were estimated using QFASA,

and then modelled using Dirichlet regression or a similar approach (see Section 2.7.4).

For our approach, these two steps are performed simultaneously, allowing the uncer-

tainty in diet estimates to be included in the inference on the covariates. Therefore,

information is not being lost from estimation to inference. This is a valuable tool

for ecologists, as we can estimate diets across di↵erent groups, such as those created

by sex (male/female), age (pup/adolescent/adult, or a continuous variable), location

(specific areas, or a continuous variable such as longitude and latitude), and in the

same step, test for a di↵erence among the groups. How this can be performed is

described in the next section.

5.1 Methodology

Using a link function, we can estimate the diet composition while including coe�cients

for any covariates we may be interested in. This link function is the same as that

used in Dirichlet regression (Equation 2.17), which is:

↵j1 =
1

1 +
PI

s=2
eWj�s

, ↵ji =
e
Wj�i

1 +
PI

s=2
eWj�s

i = 2, ..., I, j = 1..., n

(5.1)

where ↵ji represents the proportion of prey species i in the j
th predator’s diet, and

W represents the n⇥ (p + 1) covariate matrix in which the first column is all 1s for

the intercepts, and the rest of the matrix is filled with the covariate values, as follows:
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W =

2

666664

1 W1,2 W1,3 · · · W1,p

1 W2,2 W2,3 · · · W2,p

...
...

...
. . .

...

1 Wn,2 Wn,3 · · · Wn,p

3

777775

where p is the number of covariates and n is the number of predators. The �i in

Equation 5.1 represents the vector of coe�cients to be optimized over, and i indi-

cates the prey species for which these coe�cients represent, and Wj represents the

j
th row vector from the matrix above. Therefore, �i = (�i,0, �i,1, ..., �i,p)T , where �i,0

is the intercept coe�cient for prey species i, and �i,p is the coe�cient for covariate p

and prey species i.

Using this link function, we have a direct relationship from � to ↵. Therefore, we

keep the likelihood function from Equation 3.15 in terms of ↵, but the unknown

parameters are now �, so a function is added at the beginning to obtain ↵ from �.

The likelihood is then optimized as before, but now over �. That is:

L =

Z
· · ·
Z n.predY

j=1

f(Yj|Zj,�,T,T✏,X,W)f(Zj)dZj1 · · · dZjI

=

Z
· · ·
Z n.predY

j=1

 
1

(2⇡)
D�1
2 |⌃✏|1/2

exp

⇢
�1

2
(Yj � ⌘⇤

j)
T⌃�1

✏ (Yj � ⌘⇤
j)

�
⇥

IY

i=1

1

(2⇡)
D�1
2 |⌃̂|1/2

exp

⇢
�1

2
(Zji � X̄i)

T ⌃̂
�1

(Zji � X̄i)

�!
dZj1 · · · dZjI

(5.2)

where ⌘⇤
oj =

PI
i=1

↵jizji as before, ⌘⇤
j = ilr(⌘⇤

oj), and ↵j is described by Equation

5.1. Note, on the surface this appears to be the same likelihood as in Equation

3.15, however here, we are optimizing over � and we are conditioning on the covari-

ate matrix W. Also note, this assumes that the ilr transformation of the observed

(X) and unobserved (Z) prey FA signatures are normally distributed as before. There

are several other alternative distributions that could be used instead (see Section 3.2).
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This method will yield a summary diet estimate for each unique set of covariates.

Therefore, if we consider the simple case with just one covariate (represented by an

indicator variable), sex, one diet will be estimated for all the females, and one diet will

be estimated for all the males. If we have a continuous covariate, such as sea-surface

temperature, the method will yield a diet for each unique sea-surface temperature.

5.2 Simulations

Our goal with the simulations was to determine how well the method performed at

estimating a summary diet from two di↵erent groups (ie: male/female) in a variety of

situations, such as when the diet proportions are similar for all prey species, di↵erent,

or somewhere in between. Since the simulations from the first method showed that

the MLE method is performing well for diets throughout the simplex, the number of

diets to choose from was reduced by selecting an increment of 1

2
in “make diet grid”,

which gives 10 di↵erent diets, shown in Table 5.2. All unique combinations of these

two diets are then used as the “true diets” for the male and female groups. Note that

it does not matter which group we label male or female for this simulation, therefore,

we do not need to run, for example, diet 1 for male, diet 2 for female, and diet 2 for

male and diet 1 for female, as it will yield the same results. This yields 45 di↵erent

combinations of diets.

In order to obtain � from ↵, the inverse link function is required. While this may

not yield a unique � from ↵ (this function is not one-to-one if there are continuous

covariates), it can be seen that zero proportions in ↵ are impossible regardless due

to the log ratio in the inverse link function. Therefore, we first use the multiplicative

replacement method using � = 0.00005, which will set all 0 proportions to 0.00005,

and adjust the remaining proportions so that the elements sum to 1. Once the zeros

are replaced, we can use the inverse of the link function, shown in Equation 5.3, to

find the “true” � values.
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Diet Capelin Sea Raven White Hake Winter Flounder
1 1 0 0 0
2 0.5 0.5 0 0
3 0.5 0 0.5 0
4 0.5 0 0 0.5
5 0 1 0 0
6 0 0.5 0.5 0
7 0 0.5 0 0.5
8 0 0 1 0
9 0 0 0.5 0.5
10 0 0 0 1

Table 5.1: Equally spaced diets over the simplex included in the covariate simulations.

�i = W�1 log

✓
↵i

↵1

◆
, i = 2, ..., I (5.3)

↵i represents the n ⇥ 1 vector of diet proportions in all n predators of the i
th prey

species, W�1 represents the inverse of the covariate matrix W. Since W is not neces-

sarily a square matrix, the Moore-Penrose generalized inverse, found using “ginv” in

R, is used. If all covariates are categorical in nature, and are represented by indica-

tor variables, there is a one-to-one function between ↵ and � and we could solve for

these equations by hand. We have done just that for the one indicator variable case in

Section 5.4. However, for more complex situations with more prey species and more

covariates, there is not a one-to-one function between ↵ and � as there will be many

more diet proportions than coe�cients. Since the use of the generalized inverse has

yielded exactly the same results in all attempted examples when using one covariate,

we are justified in assuming it will yield valid results for cases with more covariates,

and will use this function to obtain starting coe�cient values.

To obtain the “true” diets, ↵, for n = 10 males and n = 10 females, we first create

a covariate matrix W of dimension 20 ⇥ 2 with first column 1 and second column

values equal to 1 for the first 10 rows, representing the males, and values of 0 for the

last 10 rows, representing the females. This covariate matrix is then substituted into

the link functions in Equation 5.1, then multiplied by the “true” � values to obtain

the true diet for the male group, and the true diet for the female group. 10 male
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pseudo-predators are then generated using the parametric technique described in 4.2

and the first “true” diet, and 10 female pseudo-predators are generated using the

same technique and the second “true” diet. Then, using the procedure outlined in

Section 5.1, the MLE method with covariates is run to obtain estimates of �, which

in turn give the diet estimates, ↵̂. This procedure is then repeated 50 times, so that

we have 50 summary diets for all females and all males, for sample sizes of n = 10 in

each group.

5.3 Results

Similar to the analysis of simulation results in Section 4.2, chi-squared distances (Def-

inition 2.19) were calculated between the ML diet estimates and the true diet, and

similarly for QFASA estimates. For all 45 combinations of unique diets simulated,

50 estimates were obtained from 10 male and 10 female pseudo-predators. The mean

chi-squared distance of all 50 estimates for each combination is recorded in Table 5.2.

In most cases, the mean (Euclidean mean over each prey species) QFASA estimates

are further from the true diets than the MLEs, however, in some cases, they are

comparable (diet 1 estimates). It can be seen that no matter what the diet is for

the other group, the estimates appear to be similar distances away from the true diet

when the same diet is used. For example, for all groups that have diet 1, the ML

estimates are between 0.04 and 0.05 away from true values, on average, for all diets

in the other group. Thus, the accuracy of group 1’s estimation does not depend on

group 2’s diet.

In order to visualize this, these mean values are plotted in Figure 5.1. From this plot,

we can clearly see that QFASA estimates tend to be further away from the true diet

for both groups. For the few instances where this isn’t true, the ML estimates are

only slightly higher, by only 0.01 or 0.02. This only occurs when estimating diet 1

(1, 0, 0, 0) and diet 8 (0, 0, 1, 0). Because these diet estimates are on the boundaries

of the simplex and estimates are restricted by these bounds, we will only ever get

estimates on the inside of the bounds, making it less likely that the estimated mean

diet proportions are close to the truth. The MLE diet estimates for both groups are
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Males Females

Combo Diet MLE QFASA Diet MLE QFASA

1 1 0.05 0.03 2 0.10 0.24
2 1 0.04 0.03 3 0.12 0.36

3 1 0.05 0.03 4 0.15 1.31

4 1 0.05 0.03 5 0.17 0.85

5 1 0.05 0.03 6 0.11 0.45

6 1 0.05 0.03 7 0.15 1.60

7 1 0.04 0.03 8 0.04 0.03

8 1 0.04 0.03 9 0.07 0.62

9 1 0.04 0.03 10 0.10 1.09

10 2 0.13 0.25 3 0.13 0.37

11 2 0.08 0.24 4 0.15 1.31

12 2 0.09 0.25 5 0.18 0.86

13 2 0.09 0.23 6 0.11 0.46

14 2 0.09 0.24 7 0.17 1.60

15 2 0.11 0.24 8 0.10 0.03

16 2 0.09 0.23 9 0.09 0.61

17 2 0.09 0.25 10 0.12 1.09

18 3 0.14 0.38 4 0.18 1.33

19 3 0.17 0.39 5 0.16 0.84

20 3 0.13 0.38 6 0.13 0.46

21 3 0.15 0.37 7 0.17 1.60

22 3 0.12 0.37 8 0.09 0.03

23 3 0.12 0.37 9 0.09 0.61

24 3 0.12 0.38 10 0.11 1.09

25 4 0.13 1.30 5 0.15 0.85

26 4 0.16 1.31 6 0.11 0.47

27 4 0.18 1.31 7 0.18 1.60
28 4 0.15 1.32 8 0.07 0.03

29 4 0.14 1.31 9 0.07 0.61

30 4 0.14 1.31 10 0.10 1.09

31 5 0.15 0.85 6 0.09 0.46

32 5 0.16 0.85 7 0.16 1.60

33 5 0.17 0.86 8 0.09 0.03

34 5 0.14 0.85 9 0.08 0.62

35 5 0.16 0.86 10 0.13 1.09

36 6 0.12 0.46 7 0.16 1.60

37 6 0.11 0.47 8 0.09 0.03

38 6 0.12 0.46 9 0.10 0.62

39 6 0.11 0.46 10 0.11 1.09

40 7 0.14 1.60 8 0.10 0.03

41 7 0.14 1.60 9 0.10 0.62

42 7 0.14 1.60 10 0.12 1.09

43 8 0.09 0.03 9 0.07 0.62

44 8 0.09 0.03 10 0.14 1.09

45 9 0.04 0.62 10 0.11 1.09

Table 5.2: Mean chi-squared distances between true diet and summary diet estimates
for two groups (males and females) with two unique diets, for sample size n = 10 and
replicates r = 50.
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Figure 5.1: Mean chi-squared distances between the estimated and true diets of males
and females, using QFASA and MLE, for the diets displayed in Table 5.2.

less than a chi-squared distance of 0.2 away from the true diet on average, whereas

QFASA estimates reach above 1.5. As mentioned earlier, the estimates for one group

are not significantly a↵ected by the other group, if at all, and thus we see patterns in

the plot corresponding to the pattern of true diets. For example, all female estimates

from QFASA with true diet 7 are an average of approximately 1.60 away from the

true diet. These are all the highest peaks for QFASA female estimates on the plot,

and due to the order of the diets, there is a cyclic pattern. Similarly, for males, the

order has all diet 1s estimated together, then all diet 2s, and so on, so it appears there

is a stepping pattern. All in all, there seems to be a significant improvement when

estimating a summary diet for groups when using the MLE method with covariates,

compared to individually estimating diets using QFASA, and averaging.

Selecting a good case (combination 1; Figure 5.2) where the distances for males and

females using QFASA and ML method are low, and a less accurate case (combination
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Figure 5.2: Boxplot of summary diets for males (diet 1) and females (diet 2) using
n = 10 males and n = 10 females, and r = 50 replicates.

27; Figure 5.3) where the distances are relatively large, we can take a closer look at

what is happening with the estimates. Looking at Figure 5.2, we can see that for both

males and females, for all 4 species, the median summary estimates using ML method

are much closer to the true values than the median QFASA estimate. For males and

females and all species, the worst summary estimate that the ML method provides is

only 0.015 (1.5%) away from the true proportion. The median estimate for QFASA

is often further away from the true proportion than the worst ML estimate (capelin -

females, sea raven - females). Even as one of the better estimates for both techniques,

it is still clear that the ML covariate method is performing much better than QFASA.

Looking at Figure 5.3, for both sexes and nearly every prey species (with the excep-

tion of capelin for females) the ML covariate method is significantly closer to the true

proportion than QFASA. While this is one of the worst estimates for both techniques,

the MLEs are still nearly exactly on the true proportions, with very little variability.

In comparison, QFASA is much further away, and with generally higher variability,
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being as far as 0.3 (30%) away from the true proportion (white hake, females). The

addition of covariates into the model seems to greatly improve the ability to estimate

a summary diet for a group of predators, and also allow us to test for significance,

which we will see in the next section.

5.4 Inference

We have now successfully added covariates into our maximum likelihood diet model.

An added purpose of this model is to test for di↵erences in diets among di↵erent

groups, for example, males and females. Using the technique used in Section 5.1, a

summary diet can be estimated for the groups. Now, we will discuss how to determine

if these summary diets are significantly di↵erent from each other.

Let’s first consider the simple case of two groups, for example, males and females, and

4 prey species. We would only have one covariate W which takes on 0 if the predator

is male, 1 if the predator is female. Thus, the covariate vector corresponding to each

male would be Wm = (1, 0), and the covariate vector corresponding to each female

would be Wf = (1, 1), where the first entry will always be 1 to correspond with the

intercept. � would then be a 2⇥ 3 matrix as follows:

� =
h
�

2
�

3
�

4

i
=

"
�2,0 �3,0 �4,0

�2,1 �3,1 �4,1

#

The link functions would simplify to:

Male:

↵m1 =
1

1 +
PI

s=2
eWm�s

=
1

1 +
PI

s=2
e�s,0
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↵mi =
e
Wm�i

1 +
PI

s=2
eW�s

=
e
�i,0

1 +
PI

s=2
e�s,0

Female:

↵f1 =
1

1 +
PI

s=2
eWf�s

=
1

1 +
PI

s=2
e�s,0+�s,1

↵fi =
e
Wf�i

1 +
PI

s=2
eW�s

=
e
�i,0+�i,1

1 +
PI

s=2
e�s,0+�s,1

where i = 2, ..., I, and I = 4 is the number of prey species.

We can then solve this system of equations to solve for � in terms of ↵. Since our

one covariate is an indicator variable, there are the same number of unknowns in

both parameters which directly and uniquely determine each other, thus there is a

one-to-one function between � and ↵. The equations for � are shown below:

�i,0 = log

✓
↵mi

↵m1

◆

= log

✓
↵mi

1� ↵m2 � ↵m3 � ↵m4

◆
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�i,1 = log

✓
↵fi

↵f1

◆
� log

✓
↵mi

↵m1

◆

= log

✓
↵fi

1� ↵f2 � ↵f3 � ↵f4

◆
� log

✓
↵mi

1� ↵m2 � ↵m3 � ↵m4

◆

So, if we wish to test for a di↵erence between the diets of males and females, we want

to test:

Ho : ↵m = ↵f

Ha : ↵m 6= ↵f

or

Ho : ↵m2 = ↵f2 and ↵m3 = ↵f3 and ↵m4 = ↵f4

Ho : At least one ↵mi 6= ↵fi for i 2 {2, 3, 4}

Thus, we need only one ↵mi to di↵er from ↵fi in order for us to reject our null

hypothesis. With our inverse link function from ↵ to �, we could alternatively write

these hypothesis in terms of �. So we need to determine these equivalent hypothesis.

We know that ↵m = ↵f if and only if �2,i = �3,i = �4,i = 0. So, our null and alternate

hypotheses become:

H0 : �2,1 = �3,1 = �4,1 = 0, Ha : At least one �i,1 6= 0, i 2 {2, 3, 4} (5.4)

or equivalently:

H0 : [�2,1, �3,1, �4,1] = [0, 0, 0], Ha : [�2,1, �3,1, �4,1] 6= [0, 0, 0] (5.5)
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Olive (2016) proposes a method to test such a hypothesis based on bootstraps and

the Mahalanobis distance (Definition 2.17). Their method to test the more general

hypotheses Ho : µ = c versus Ha : µ 6= c uses the test statistic:

T = µ̂� c

Then, r bootstrap replicates of µ̂ are created and this test statistic is calculated for

each bootstrap, T ⇤
r . The squared Mahalanobis distance (the square of Definition 2.17)

between the bootstrap test statistic, and the mean test statistic of the replicates (T̄ ⇤)

is then calculated for all of the bootstrap replicates µ̂r, using the sample variance-

covariance matrix of the bootstrap test statistics. That is:

D
2

r = D
2

r(T̄
⇤
, S

⇤
T ) = (T ⇤

r � T̄
⇤)T [S⇤

T ]
�1(T ⇤

r � T̄
⇤)

where T̄
⇤ = 1

r

Pr
i=1

T
⇤
r and S

⇤
T = 1

r�1

Pr
i=1

(T ⇤
r � T̄

⇤)T (T ⇤
r � T̄

⇤). Then, using per-

centiles of the distances, and a significance level ↵, we get the closed interval [0, D1�↵],

where D1�↵ represents the (1�↵)th percentile of the squared Mahalanobis distances,

D
2

r . Let D
2

0
= T̄ ⇤T [S⇤

T ]
�1
T̄ ⇤. We will reject Ho for Ha if D0 > D1�↵, and fail to reject

Ho for Ha otherwise.

To apply this to our application, first, we need r bootstrap replicates of �̂. So, similar

to Section 4.3, we obtain the initial estimate of �, �̂, using the methodology in Section

5.1, then using the one-to-one link function from � to ↵, we obtain diet estimates,

↵̂ from which to parametrically generate r samples of size n. For each sample, the

methodology in Section 5.1 is performed to obtain r bootstrap estimates, �̂
r
.

Since we are testing against the zero vector, our test statistic will simply be:

T = �̂

We can then obtain T
⇤
r from the r bootstrap replicates �̂

r
, and then get the mean

T̄ ⇤ and the variance-covariance matrix S
⇤
T . Using these, we can get the squared

Mahalanobis distances D2

r as well as D2

0
. After choosing our significance level ↵, we

find the (1� ↵)th percentile of our bootstrap distances, D1�↵ and reject H0 for Ha if
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Diet 1 Diet 2 Chi-squared Distance
No E↵ect 2 2 0

Small E↵ect 2 5 2.31
Large E↵ect 2 8 4.00

Table 5.3: E↵ect size, diet combination, and chi-squared distance between the true
diets used to assess the bootstrap inference method.

D0 > D1�↵.

Simulation

In order to determine how the percentile method proposed by Olive (2016) was be-

having with our ML methodology, a simulation study was designed. First, we wanted

to see how this method performs in a simple case with just one indicator covariate,

for example sex (male/female). Since there is a relationship between ↵, the diet es-

timates, and �, the model coe�cients, we based our e↵ect size on the true diets, ↵.

The chi-squared distance (described in Definition 2.19) between the true diet for males

and that for females, was used as the e↵ect size. Using the same 10 diets in Table 5.2

with the 0 proportions replaced with the multiplicative replacement method (Defi-

nition 2.14) and � = 0.00005 (since the covariate method does not allow for 0 diet

proportions), we found three diet combinations: one with no e↵ect, one with a small

e↵ect, and one with a large e↵ect. These are displayed in Table 5.3.

To ensure more complex scenarios will yield accurate results as well, a simulation was

designed with one covariate, 3 levels (for example, pup, adolescent, adult). Similar

to the two group case, chi-squared distance was used to determine e↵ect size, only

now we average the distance between each pair. Since there are more groups, there

are more options for e↵ect sizes. These are described in Table 5.4.

For this model with one covariate, three groups, we will need two indicator variables.

The first, w1 will be 1 if group 2 (adolescent), 0 otherwise, and the second, w2 will

be 1 if group 3 (adolescent), 0 otherwise. Thus, we will have link functions as follows

for ↵1, the summary diet for group 1 (pups), ↵2, the summary diet for group 2
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Diet 1 Diet 2 Diet 3 Avg Chi-sq
No E↵ect 2 2 2 0

One Small E↵ect 2 2 5 1.54
One Large E↵ect 2 2 8 2.67
All Small E↵ect 2 6 8 3.05
All Large E↵ect 2 8 10 4.00

Table 5.4: E↵ect size, diet combination, and chi-squared distance between true diets
used to assess the bootstrap inference method with 3 groups.

(adolescents), and ↵3, the summary diet for group 3 (adults):

↵11 =
1

1 +
P

4

s=1
eW1�s

=
1

1 +
P

4

s=1
e�s,0

↵1i =
e
W1�i

1 +
P

4

s=1
eW1�s

=
e
�i,0

1 +
P

4

s=1
e�s,0

↵21 =
1

1 +
P

4

s=1
eW2�s

=
1

1 +
P

4

s=1
e�s,0+�s,1

↵2i =
e
W2�i

1 +
P

4

s=1
eW2�s

=
e
�i,0+�i,1

1 +
P

4

s=1
e�s,0+�s,1
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↵31 =
1

1 +
P

4

s=1
eW3�s

=
1

1 +
P

4

s=1
e�s,0+�s,2

↵3i =
e
W3�i

1 +
P

4

s=1
eW3�s

=
e
�i,0+�i,2

1 +
P

4

s=1
e�s,0+�s,2

Therefore, to test if all the diets are the same, we want to test that:

H0 : [�2,1, �3,1, �4,1, �2,2, �3,2, �4,2] = [0, 0, 0, 0, 0, 0]

Ha : [�2,1, �3,1, �4,1, �2,2, �3,2, �4,2] 6= [0, 0, 0, 0, 0, 0]

So, we can use the same technique described in Section 5.4, only extend the � vector

to include the three additional coe�cients. Bootstrapping would be performed in the

same way, as would the test statistic, and decision rule.

Results

First, we consider the simple case where we have two groups, say males and females,

with 4 prey species (we used species group 1 from Table 4.3). Using the cases de-

scribed in Table 5.3, the observed and critical distances, D0 and D1�↵, are displayed.

We can see that for all of the listed significance levels, ↵, when there is no e↵ect, we

fail to reject H0 for Ha, correctly concluding that there is no significant di↵erence

in summary diets for the male and female groups. For all significance levels in the

presence of a small or a large e↵ect, we rejected H0 for Ha, correctly concluding that

there is a significant di↵erence in the summary diets for males and females. Ideally,

we would like to repeat this to determine the relationship between e↵ect size and

power, however due to limited time, this will be a future endeavour.
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D0 ↵ D1�↵ Reject H0?

No E↵ect 0.904
0.01 3.410 No
0.05 2.649 No
0.10 2.327 No

Small E↵ect 11.837
0.01 4.696 Yes
0.05 3.755 Yes
0.10 2.843 Yes

Large E↵ect 30.952
0.01 6.032 Yes
0.05 3.326 Yes
0.10 2.269 Yes

Table 5.5: Observed Mahalanobis distances under the null hypothesis with varying
e↵ect sizes,the percentile distances with varying significance levels, and decisions for
the tests.

Similarly, in Table 5.6, we can see the percentile distances and the distance under the

null hypothesis for all the cases described in Table 5.4. Once again, this methodology

makes the correct decision in all of the cases we explored; failing to reject H0 when

there is no e↵ect, and rejecting H0 for Ha, when there is. Even when there is only

one of the diets that di↵ers from the other two, this methodology picks up on the ef-

fect. This simulation depicts the usefulness and accuracy of this method in detecting

di↵erences in diets among di↵ering groups.

This chapter showed how covariates could be included into our novel maximum like-

lihood approach to diet estimation. Through the use of simulations, it was shown

that the covariates allowed accurate and precise estimation of summary diets for each

unique combination of covariate values. We also described a method for perform-

ing inference on the coe�cients of these covariates, thus determining if there is a

significant di↵erence among diets of several groups. This is a very important im-

provement upon the original QFASA method and is an excellent base to build upon

such techniques for analysis.
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D0 ↵ D1�↵ Reject H0?

No E↵ect 0.823
0.01 5.648 No
0.05 3.357 No
0.10 2.327 No

One Small E↵ect 13.807
0.01 6.335 Yes
0.05 3.716 Yes
0.10 3.482 Yes

One Large E↵ect 29.876
0.01 5.942 Yes
0.05 3.757 Yes
0.10 3.200 Yes

All Small E↵ect 32.053
0.01 7.094 Yes
0.05 4.638 Yes
0.10 3.318 Yes

All Large E↵ect 35.425
0.01 7.094 Yes
0.05 4.638 Yes
0.10 3.318 Yes

Table 5.6: Observed Mahalanobis distances under the null hypothesis with varying
e↵ect sizes,the percentile distances with varying significance levels, and decisions for
the tests.



Chapter 6

Real Life Data

6.1 Data Collection

The empirical dataset used is from a captive feeding study conducted at the Van-

couver Aquarium by Chad Nordstrom et al. as described in Nordstrom et al. (2008).

The study, conducted between August 28 and October 9, 2003, used 21 harbour seals

(Phoca vitulina richardsi) that were recovered from the coastline of British Columbia,

Canada by the Vancouver Aquarium’s Marine Mammal Rescue Centre sta↵, or were

brought to the rescue facility by members of the public. All seals brought to the

facility were unweaned, and estimated to be less than 15 days of age; there was no

data on their feeding history. Following arrival at the facility, seals were housed in

individual tubs and were tube-fed a homogenous mixture of pure salmon oil (commer-

cial blend), ground Pacific herring (Clupea pallasii) and water at a ratio of 3:6:8 by

weight for 5-21 days. Seals were then transitioned from the homogenate onto whole

herring over a period of 5-6 days after which they received solely herring until the

start of the experimental period (4-30 days). Seals were transferred to larger shared

pools as they increased in size, during which time every e↵ort was made to feed seals

individually.

At the start of the experimental period (Day 0), the seals were placed in one of

three diet treatments; only Pacific herring for 42 days, only surf smelt (Hypomesus

pretiosus) for 42 days, or surf smelt for 21 days followed by herring for 21 days.

Because this last diet with both smelt and herring being consumed is fairly compli-

cated, we have excluded this set from our study. Daily food intake (to the nearest

0.01 kg) was recorded for all individuals throughout the study. Individual whole prey

were randomly subsampled throughout the study period and stored in airtight plastic

bags frozen at -20�C until analysis. In addition to the 3 prey items fed to the seals

(salmon oil, herring and smelt), whole individuals were obtained for 8 other species of

115
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fish and invertebrates and stored in airtight plastic bags frozen at -20�C until analysis.

The seals were weighted to the nearest 0.1 kg and a full depth blubber biopsy was

obtained at Day 0, Day 21 and Day 42 as described in Nordstrom et al. (2008). Not

all seals were available for biopsy at Day 42. Four seals in the herring diet group

were released without bipsy 34 days after the start of the experimental diets (after

completing the rescue program) resulting in a reduced sample size for this group. The

samples were then weighed and placed in a chlorogorm solution with 0.01% butylated

hydroxytoluene (BHT) and stored at -30�C.

To obtain species-specific calibration coe�cients, full depth blubber biopsies were

taken as described in Nordstrom et al. (2008) from 4 captive subadult harbour seals

(3 males, 1 female) housed at the Vancouver Aquarium. These individuals had ex-

clusively eaten herring from a single lot (the same lot used in the experimental diet

treatments above) for >1 year period prior to the biopsies.

The individual fish and invertebrates were thawed, and fork length was measured to

the nearest 0.1 cm; body mass was measured to the nearest 0.1 g. Each individual

was then homogenized in a food processor. To determine fat content, lipids were

quantitatively recovered in duplicate from samples of the homogenised prey using

a modified Folche method (Folch et al. (1957), Iverson et al. (2001)). Lipids were

extracted from all blubber samples using a modified Folch method (see Budge et al.

(2006)). FA methyl esters (FAME) were prepared from the extracted lipids using an

acidic catalyst (the Hilditch method, see Budge et al. (2006)). FAME were analysed

in duplicate using temperature-programmed gas liquid chromatography according to

Iverson et al. (1997). Individual FAs were reported as mass percent of total FAs. FAs

are described by the shorthand nomenclature of A:Bn-X where A represents the car-

bon chain length, B, the number of double bonds, and X, the location of the double

bond nearest the terminal methyl group.

In order to assess model performance, diet estimates computed from the MLE method
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will be compared to the true known diets. In Nordstrom et al. (2008), these calcula-

tions used a cumulative recorded diet intake for each individual over the assessment

period between 35 and 75 days prior to each of the biopsy periods. This method

ignores the presence of existing fat stores that the animals may have had when they

arrived at the facility and assumes that there is complete or almost complete turnover

of FAs in the selected period used for calculation. Shelley Lang has modified the cal-

culations to attempt to account for the contribution of the blubber present at the time

of admission to the overall blubber FA signature at each experimental time point. For

each study animal, the cumulative mass intake of the prey fed was used to estimate

the expected contribution of each prey species to the blubber fatty acid signature (as

a proportion of diet) at Days 0, 21, and 42 of the experimental period. The body fat

content of the study animals at the time of admission to the rescue facility was not

known. Therefore, to account for the contribution of the blubber present at the time

of admission to the overall blubber FA signature at each experimental time point, a

baseline body fat content at admission was estimated, and then it was assumed that

the FAs subsequently consumed were deposited with existing fat, and used as a single

pool (see Iverson et al. (2004a)). Because the study animals were growing pups, it was

also assumed that a fraction of the fatty acids consumed were immediately oxidized

and not deposited. For all individuals, the amount of blubber present at the time of

admission was estimated using the value for newborn harbour seal pups from Bowen

et al. (1992) of 11.3% body fat. This value may be an overestimate for pups which

may have lost significant body condition following the separation from their mother

but it provided a reasonably conservative estimate in the absense of information on

prior feeding history (i.e. duration of suckling before separation), the subsequent du-

ration of separation, or body condition at the time of arrival to the facility (condition

score or condition index; Lander et al. (2003)). Storage e�ciency (the proportion of

energy intake subsequently deposited) has not been examined for harbour seal pups,

therefore, the value of 70% obtained for nursing pups in the closely related grey seal

(Halichoerus grypus ;, Mellish et al. (1999), Lang et al. (2011)) was used.

Before analysis, the FA signature of each seal was visualized using the bar plot shown

in Figure 6.1. From this, we can see that 22:6n-3 and 20:5n-3 appear to be the most
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Figure 6.1: Proportion of FAs in each harbour seal sample, from all time points, with
some replicates.

dominant FAs in the signatures, followed by 20:1n-9, 20:1n-11 and 22:5n-3. However,

20:5n-3 appears to be fairly consistent across individuals whereas 20:1n-9 and 20:1n-

11 are varying larger amounts, relative to their proportion sizes. The less dominant

FAs are di�cult to assess in this plot, but may also contribute to di↵erences among

the diets.

6.2 Diet Estimates

The preybase used includes 11 species, one of which (surfsmelt) is broken into large

and small subgroups. The species, their sample sizes and average lipid or fat content

(%) is shown in Table 6.1. Fat content can be used to adjust the diet proportions
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Species n Average Lipid (%)
Capelin 54 3.28
Coho 38 3.79

Eulachon 30 8.80
Herring 23 11.23
Mackerel 24 5.87
Pilchard 18 20.33
Pollock 17 6.88

Salmonoil 5 100.00
Sandlance 15 5.73
Squid 43 2.21

Sursfmelt lg 30 2.85
Surfsmelt sm 10 2.24

Table 6.1: Sample sizes and average lipid (%) of the 11 species (12 prey groups)
included in the prey base for harbour seals.

so that they are not relative to the amount in the FA signature, but to the amount

consumed. This allows us to take into account that species with higher fat content

will contribute more to the FA signatures than those that are low in fat content. The

true diets for the 38 harbour seal biopsies were obtained as described in Section 6.1,

are shown in Table 6.2. As a visual description of Table 6.2, a ternary diagram is

shown in Figure 6.2 that includes only the 3 species that are non-zero in the diets

of every individual, namely herring, salmonoil and surfsmelt. We can see from the

ternary diagram that the diets generally include only 2 of the 3 species in one indi-

vidual, as most of the dots are very close to, if not on the edges. In the past, diets

along the borders of the simplex have been trickier to deal with, particularly because

of the presence of zeros.

Because analysis with all 11 species is computationally intensive, this analysis was

only run once, without winsorizing. Winsorizing does not add to the computation

time, however, as seen in Section 4.2, winsorizing does not appear to make a signifi-

cant di↵erence in the estimates. Since the diet of each individual seal was di↵erent,

instead of plotting the diet estimates, the bias of each individual, that is, true diet

- diet estimate, is plotted in a box plot shown in Figure 6.4. Note that the scale

is not the same for all species in this figure. From this, we can see that for most
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1 0 0 0 0.88 0 0 0 0.07 0 0 0

2 0 0 0 0.94 0 0 0 0.04 0 0 0

3 0 0 0 0.95 0 0 0 0.03 0 0 0

4 0 0 0 0.89 0 0 0 0.05 0 0 0

5 0 0 0 0.95 0 0 0 0.02 0 0 0

6 0 0 0 0.96 0 0 0 0.02 0 0 0

7 0 0 0 0.84 0 0 0 0.09 0 0 0

8 0 0 0 0.31 0 0 0 0.03 0 0 0.63

9 0 0 0 0.18 0 0 0 0.02 0 0 0.79

10 0 0 0 0.81 0 0 0 0.08 0 0 0

11 0 0 0 0.29 0 0 0 0.03 0 0 0.64

12 0 0 0 0.16 0 0 0 0.02 0 0 0.80

13 0 0 0 0.92 0 0 0 0.04 0 0 0

14 0 0 0 0.94 0 0 0 0.03 0 0 0

15 0 0 0 0.95 0 0 0 0.02 0 0 0

16 0 0 0 0.90 0 0 0 0.05 0 0 0

17 0 0 0 0.94 0 0 0 0.03 0 0 0

18 0 0 0 0.87 0 0 0 0.06 0 0 0

19 0 0 0 0.94 0 0 0 0.03 0 0 0

20 0 0 0 0.92 0 0 0 0.04 0 0 0

21 0 0 0 0.95 0 0 0 0.02 0 0 0

22 0 0 0 0.88 0 0 0 0.05 0 0 0

23 0 0 0 0.95 0 0 0 0.02 0 0 0

24 0 0 0 0.77 0 0 0 0.11 0 0 0

25 0 0 0 0.27 0 0 0 0.04 0 0 0.65

26 0 0 0 0.15 0 0 0 0.02 0 0 0.81

27 0 0 0 0.84 0 0 0 0.08 0 0 0

28 0 0 0 0.32 0 0 0 0.03 0 0 0.62

29 0 0 0 0.19 0 0 0 0.02 0 0 0.78

30 0 0 0 0.81 0 0 0 0.06 0 0 0

31 0 0 0 0.24 0 0 0 0.02 0 0 0.71

32 0 0 0 0.13 0 0 0 0.01 0 0 0.84

33 0 0 0 0.62 0 0 0 0.25 0 0 0

34 0 0 0 0.16 0 0 0 0.04 0 0 0.74

35 0 0 0 0.09 0 0 0 0.02 0 0 0.86

36 0 0 0 0.65 0 0 0 0.15 0 0 0

37 0 0 0 0.15 0 0 0 0.04 0 0 0.76

38 0 0 0 0.08 0 0 0 0.02 0 0 87

Table 6.2: True diets of 38 captive grey seals at the Vancouver Aquarium.
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Figure 6.2: Ternary diagram of the true diets of 38 biopsies of harbour seals during
a captive study at Vancouver Aquarium.
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species that have true diet proportion 0, namely, capelin, coho, eulachon, mackerel

and pollock, our estimate appears to be performing quite well, as the median bias

is 0, with little to no variation. For other species with true proportion zero, namely

pilchard, sandlance, and squid, both QFASA and MLE seem to have a more di�cult

time estimating the zero. Both QFASA and MLE seem to overestimate all three of

these, pilchard by about 10%, sandlance by about 5% for MLE, 10% for QFASA and

squid by around 5% for QFASA and 1% for MLE. All in all, even with zeros, our MLE

method is performing as well, or better than QFASA. With the three species that are

being consumed by the seals, herring is being slightly overestimated by both methods,

with a large amount of variability in the estimates, salmonoil is being slightly overes-

timated, with small variability but with several large outliers for the MLE method,

and survfsmelt has a median right on the 0 bias. However, there is an extremely large

amount of variability in the estimates, with a tendency to overestimate the propor-

tion. Again, our goal was to be comparable to QFASA in the estimation, which from

this real life data set, seems to be the case, and in most situations, the MLE method

estimated even better than QFASA.

The biases are relatively small, and thus the method appears to be estimating ac-

curately. However, an explanation of the bias is still desired. To determine what

causes the bias, FA signatures of the species are compared, first using a dendrogram

shown in Figure 6.3. Prey species with similar FA signatures are di�cult to di↵eren-

tiate from each other, and thus could explain over/under estimating. For example,

pilchard and herring have very similar FA signatures, and we can see in Figure 6.4

that herring is underestimated by approximately 10% and pilchard is overestimated

by approximately 10%. Therefore, the similarities in FA signatures may be creating

a slight bias in estimation for these two species.

Next, we wanted to compare estimates using winsorized and non-winsorized prey-

bases, but due to the length of computations with all 11 species, this was done using

only the 3 species that have non-zero values in the true diets: herring, salmonoil and
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Figure 6.5: Bias of diet estimates for 38 real life seals, using only the species that
were consumed, using the non-winsorized preybase.

surfsmelt. Similar to above, boxplots of bias of the estimates are shown in Figure 6.5

for the estimates with the non-winsorized preybase, and Figure 6.6 for the estimates

with the winsorized preybase. Excluding the species with 0 diet proportions, we see

similar results in the estimation of these diets: herring is being slightly overestimated

with a wide variability, salmonoil is being slightly underestimated with a small vari-

ability, and surfsmelt is highly variable, tending towards underestimation. However,

when we compare the winsorized and non-winsorized methods, there does not appear

to be much di↵erence, other than a slight decrease in the variability of the surfsmelt

estimates. All in all, it does not appear that winsorizing has a significant e↵ect on

the diet estimates, nor does a lack of normality of the FA signatures, as despite the

fact that most FAs tended to be non-normal, the MLE method is still performing

well with the real life data.
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Figure 6.6: Bias of diet estimates for 38 real life seals, using only the species that
were consumed, using the winsorized preybase.

6.3 Real Life Data with Covariates

6.3.1 Data Collection

Seal Samples

Full-depth blubber biopsies were collected between 1994 and 2015 from adult grey

seals during the annual breeding season (December-January) on Sable Island, NS

(43�550 N, 60�000 W) following the methods described in Beck et al. (2007). Blubber

samples were collected from a total of 502 individuals (183 males, 319 females; Table

6.3) used in studies examining diet, energetics, foraging distribution and behaviour

(Mellish et al. (1999), Lidgard et al. (2003), Noren et al. (2005), Austin et al. (2006),

Breed et al. (2006), Beck et al. (2007), Lang et al. (2009), Lang et al. (2011), Lidgard

et al. (2020)). Over the course of lactation, female grey seals do not mobilize blubber

fatty acids in a uniform manner (Arriola et al. (2013)), therefore, all blubber samples

used in this study were collected from lactating females prior to day 6 post post-

partum. Biopsies were wrapped in aluminium foil and kept chilled for several hours

until placed in a solution of chloroform containing 0.01% 2,6-di-tert-butyl-4-methyl-

phenol (BHT) by weight and stored frozen until analysis. Lipids were extracted from
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all blubber samples using a modified Folch method (see Budge et al. (2006)). FA

methyl esters (FAME) were prepared from the extracted lipids using an acidic cata-

lyst (the Hilditch method, see Budge et al. (2006)). FAME were analysed in duplicate

using temperature-programmed gas liquid chromatography according to Iverson et al.

(1997). Individual FA are reported as mass percent of total FA.

Prey Library

Fish and invertebrate samples were collected during stratified random bottom-trawl

surveys conducted by the Canadian Department of Fisheries and Oceans (DFO) in

the spring, summer, or fall on the Scotian Shelf (Northwest Atlantic Fisheries Orga-

nization (NAFO) Divisions 4V, 4W, and 4X), Georges Bank (5Z) and the Gulf of St

Lawrence (4S and 4T) between 1990 and 2001 (see Budge et al. (2002)). Additional

fish and invertebrate samples were obtained from research cruises and commercial

fisheries in the Gulf of St Lawrence (4S and 4T) between 2002 and 2004. At collec-

tion, individuals or groups of individuals of each species were stored frozen at 20�C

in airtight plastic bags until analysis.

Individual prey samples were thawed and fork length was measured to nearest 0.1 cm;

body mass was measured to the nearest 0.1 g. Each individual was then homogenised

in a food processor. To determine fat content, lipids were quantitatively recovered

in duplicate from samples of the homogenised prey using a modified Folch method

(Folch et al. (1957), Iverson et al. (2001)). FA methyl esters (FAME) were prepared

and analysed using temperature-programmed gas liquid chromatography as described

above. Individual FA are reported as mass percent of total FA.

From a total prey library of more than 3700 individual prey FA signatures (82

species), 1735 individual FA signatures were selected from 21 species of fish and

invertebrates that were collected within the NAFO 4 Subarea only (excluding the

Gulf of St Lawrence estuary). This selection area covers the main foraging range of

the Sable Island grey seals. The 21 prey included in the selected library (Table 2)

were those known to be eaten by grey seals based on previous stomach content and
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faecal analyses (e.g. Bowen et al. (1993), Bowen & Harrison (1994)) or prey that were

reasonably abundant and found at depths at which grey seals are known to forage

(Beck et al. (2003b), Beck et al. (2003a)).

Following an exploratory analyses to determine if the FA signatures of the selected

prey contained any hidden structure (see Bromaghin et al. (2017a)), some prey species

within the set were subdivided into smaller clusters (Table 6.4). American plaice were

separated into 2 clusters based on size (small, 25cm and large, >25cm). Substruc-

ture based on seasonal variation (collection month) was found in Atlantic butterfish,

Atlantic herring, capelin and longhorn sculpin. These species were separated into

clusters and only the clusters representing collection months in summer and fall were

retained for the estimation of the diets. Pollock were separated into 2 clusters based

on observed substructure, although the proximate cause for the substructure was

unclear (there was no relationship to di↵erences in size, season or collection location).

6.3.2 Results

First, we considered the simple case of one covariate: sex. Using the methodology

from Section 5.1, � coe�cients were estimated, yielding a summary diet for males

and for females. These diet estimates, along with the mean (arithmetic) QFASA

diet estimate is displayed in Figure 6.7. With such a large group, we are getting a

summary diet of the 183 males and a summary diet of the 319 females for both MLE

and QFASA methods. We can see that there seems to be more similarities within the

estimates than there is within the sexes. MLE seems to yield near 0 estimates for all

prey species except for redfish, of which it yields an estimate of nearly 1, for both

males and females, whereas QFASA yields estimates of around 0.6 for both males

and females for redfish, with several smaller estimates for pollock, capelin, cod and

sandlance. It seems unlikely that these seals would be eating nearly all redfish, as

this would be a restrictive diet to hunt for in the wild. Since this grouping yielded

one summary diet for very large groups of predators, we explored what the summary

diets would be by breaking the predators into smaller groupings.

Next, we added another covariate into our model. Year group was added into the
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Year Male Female Total
1994 20 26 46
1995 21 19 40
1996 4 32 36
1997 21 39 60
1998 7 8 15
1999 26 11 37
2000 16 26 42
2001 5 7 12
2002 4 12 16
2003 7 13 20
2004 11 22 33
2005 13 28 41
2006 0 10 10
2009 4 6 10
2010 6 8 14
2011 5 24 29
2012 0 14 14
2013 5 4 9
2014 4 6 10
2015 4 4 8
Total 183 319 502

Table 6.3: Sample sizes of male and female adult grey seals organized by collection
year.
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CommonName ScientificName Subgroup n

American plaice Hippoglossoides platessoides
small <25 cm 67

large >25 cm 67

Atlantic butterfish Peprilus triacanthus 26

Atlantic cod Gadus morhua 109

Atlantic herring Clupea harengus July-September 121

Atlantic mackerel Scomber scombrus 32

Capelin Mallotus villosus
July 27

September 21

Longhorn sculpin Myoxocephalus octodecemspinosus September 25

Northern sandlance Ammodytes dubius 148

Northern shortfin squid Illex illecebrosus 35

Pollock Pollachius virens
Group 1 35

Group 2 18

Redfish Sebastes sp. 54

Sea raven Hemitripterus americanus 71

Silver hake Merluccius bilinearis 58

Smooth skate Malacoraja senta 33

Snake blenny Lumpenus lumpretaeformis 18

Thorny skate Amblyraja radiata 83

White hake Urophycis tenuis 80

Winter flounder Pseudopleuronectes americanus 50

Winter skate Leucoraja ocellata 40

Witch flounder Glyptocephalus cynoglossus 24

Yellowtail flounder Limanda ferruginea 156

1398

Table 6.4: Sample sizes of prey species and their subgroups used in the FA analysis.
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model, which takes on three possible values, 1994-1997, 1998-2004, and 2004-2015.

They refer to di↵erent periods with di↵erent population growth rates for the Sable

herd: exponential growth, a period during which population growth slowed (from

exponential to a new rate), and then a period of stable population growth rate at

the new level. Conveniently they divide into roughly equal group sizes in terms of

numbers of samples in each. This covariate is added into the model using two indi-

cator variables. Once again, we get a summary diet estimate for each unique set of

covariates. Despite now having 6 unique groups (Male with the 3 growth periods,

and female with the 3 growth periods), we obtained similar results for the diet esti-

mates, as shown in Figure 6.8. Once again, redfish seems to dominate the diets for

both males and females, using either ML or QFASA methods. However, once again,

QFASA depicts a slightly more diverse diet, having only 30-50% on redfish, 10-20%

on sandlance, and small percentages on pollock, capelin, Atlantic cod and yellow-

tail flounder, for both males and females. For females, ML estimates nearly 100%

on redfish for all time periods, whereas for males, we see approximately 60% redfish

with the remainder on pollock for the period of exponential growth, 80% redfish and

20% pollock for the period of decreasing rate, and nearly 100% redfish and a small

percentage of capelin during stable growth rate.

6.3.3 Inference on Real Life

Similar to the simulation study, after adding covariates into the model, the next step

is to determine if there is a statistically significant di↵erence among the groups cre-

ated by the covariate. Thus, we want to first see if there is a di↵erence in diet between

male and female grey seals, and also if there is a di↵erence among the year groups.

However, with 502 grey seals and 24 species groups, the bootstraps required for in-

ference are computationally intensive, taking lots of time and memory. Therefore, to

reduce computation, only the 5 prey species groups that had non zero diet estimates

from Section 6.3.2 were included: capelin (July and September), redfish, Northern

sandlance, and Atlantic cod. Then, as in Section 5.4, bootstraps were performed by

generating pseudo-predators with true diets obtained from the ML � estimates. Then

the ML method is used to get bootstrap estimate, �r. This is then repeated r = 50
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Figure 6.8: Summary diet estimates obtained using MLE method and the average
QFASA diet estimates grouped by sex and year group of grey seals.
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times.

To explore the di↵erence in diet estimates between the full and reduced prey sets,

summary diet estimates for males and females, from both MLE and QFASA are dis-

played in Figure 6.9 using the full prey set (with the 4 prey extracted and closed) and

the reduced set. Although the proportions on certain species (for example, Atlantic

cod) are di↵erent when using the reduced set compared to the full set of prey, the

estimates are closer to those of QFASA when using the reduced set. As QFASA has

been a widely used, tested and approved method in the past, it tells us that our

reduced prey set estimates may be more reliable than with the full set. Also, it is

generally known among biologists that there is a di↵erence in diet between male and

female grey seals, but with the full prey set, they are nearly identical. This could be

indicating an identifiability problem with the full 24 prey species. For these reasons,

and because of the computational complexity of the model with large prey sets, we

will trust and use the estimates from the reduced prey set for the bootstrapping.

Based on 36 bootstraps (50 bootstraps, but those that did not converge were re-

moved), using sex as a covariate, we obtained observed and critical distances of 19.92

and 3.08 respectively. As the observed distance is larger than the critical distance,

we reject H0 for Ha and conclude that at 5% significance, there is a di↵erence in true

diet between male and female grey seals. This validates our methods, as it is known

among biologists that these diets di↵er. Therefore, as a preliminary study, this shows

great promise that this inference technique is a valid way to test for di↵erences in

diet among groups.
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sets.



Chapter 7

Conclusions

In this final chapter, the results, and recommendations discussed throughout the

preceding chapters are summarized, as well as future research. It has been divided

into ML diet estimation, inference with covariates, and real life analysis.

7.1 Summary

Our research was motivated by the need for an improvement in the statistical mod-

els used in quantitative fatty acid signature analysis (QFASA) proposed in Iverson

et al. (2004a). The original method used given samples of predator and prey FA

signatures from assumed prey species in the diet, and the estimated diet proportions

were the weights that minimized the distance between the predator FA signatures

and a weighted mixture of mean prey FA signatures for each prey species. This

model did not include any variability in the predator or prey FA signatures, nor did

it allow a way to include covariates such as age, sex, and location into the estima-

tion process. Thus, we explored several improvements on this methodology, including

random e↵ects for unobserved prey FA signatures, a maximum likelihood approach

to the model, and covariates in the likelihood function, allowing for inference in the

same step as estimation.

In this thesis, we explored this maximum likelihood methodology using both sim-

ulations and two real life data sets. The methods and corresponding results are

summarized below.

7.1.1 Maximum Likelihood Diet Estimation

Developing a maximum likelihood estimation method for diet proportions of predators

based on QFASA required careful consideration of what is happening both biologi-

cally, and statistically. Since both the FA data and the diet estimates themselves are
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compositional in nature, we began in Chapter 2 by reviewing and summarizing the

existing techniques for analysing compositional data. In Chapter 3, we explored a

maximum likelihood approach to QFASA. The first improvement we considered was

based on the fact that the prey FA signatures collected in the samples are not from

the exact individual prey consumed by the predators. Therefore, we included the

prey FA signatures in our model as unobserved random e↵ects. The sampled prey

allowed us to use empirical summary statistics as estimates for parameters of the

random e↵ects’ distributions.

Because our data is compositional in nature, transformations are required in order

to perform multivariate analyses. Therefore, the weighted mixture of diet propor-

tions and prey FA signatures could be considered in two spaces: the simplex, where

we would take a mixture of untransformed FA signatures, or real Euclidean space,

where we would take a mixture of transformed FA signatures. After considering the

biological implications of both techniques, we decided that taking the mixture on the

untransformed scale made the most sense, as the FAs would be absorbed into the

predator tissues without scaling. This created a major challenge as the distribution

of a mixture of compositions is not trivial. Thus, approximations based on Aitchison

& Bacon-Shone (1999) were required to approximate the distribution of the convex

linear combination of diet proportions and prey FA signatures. These approxima-

tions also had to be adjusted to incorporate a more recent and recently accepted and

popular transformation, the isometric log-ratio transformation.

With the random e↵ects and the unknown mean and variance-covariance matrices of

the prey FA signatures, the number of parameters was much higher than the sam-

ple sizes. This created an identifiability problem. In order to lower the number of

parameters being optimized, empirical means and variance-covariance matrices were

computed for the prey species, and a diagonal matrix was assumed for the variance-

covariance matrix for the error perturbations. This significantly decreased the compu-

tational di�culties and allowed the model to be run with relatively small sample sizes.

In Chapter 4, simulation studies were developed and run to determine how the ML
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method behaved in practice. First, prey FA signatures were generated both parametri-

cally, by randomly sampling from the multivariate normal distribution with mean and

variance-covariance matrices estimated using sampled prey, and non-parametrically,

by randomly sampling a prey FA signature from each species in the sampled prey base.

Then, using 20 true diets, equally spaced throughout the simplex, pseudo-predators

were generated by taking a convex linear combination of the true diets with the prey

FA signature from each prey species. For both techniques, an error perturbation is

randomly sampled from the multivariate normal distribution with mean vector 0,

and variance-covariance matrix a diagonal matrix with 0.001 on the diagonal. This

is then back transformed onto the simplex using the inverse ilr transformation, and

perturbed with the generated FA signature. The resulting composition is the pseudo-

predator FA signature.

Using these true diets, and three groups of 4 prey species, the behaviour of the

maximum likelihood method was explored across a variety of situations. In most

cases (other than a few non-parametric simulations), our ML method yielded esti-

mates comparable, if not more precise and accurate, to traditional QFASA estimates.

While the ML method is slower to run, it allows for important improvements over the

original QFASA method, including but not limited to, inference and the inclusion of

covariates.

Bootstrapped confidence intervals of the diet estimates were obtained by using marginal

percentiles of diet proportion replicates. These bootstrap replicates were obtained by

using the ML estimates as the true diet, and generating r pseudo-predators. The

resulting diet estimates from optimizing the likelihood with the pseudo-predators are

the bootstrap replicates.

The simulation results for the bootstrap CIs show that while our method obtains

accurate and precise diet proportions, true diets on the edges of the simplex are less

likely to be contained in the marginal CIs. This is due to the fact that the diet pro-

portions are restricted to be between 0 and 1, and thus we will never obtain estimates

below 0 or above 1. Therefore, in the best case, we will obtain a percentile on the
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true value, but generally will be slightly above (for 0) or slightly below (for 1) the

true values. A larger study of the coverage probabilities is an area for future work,

to better explore the behaviour of these CIs.

Covariates

Covariates were included into the ML method described above by way of a link

function. This link function is the same as that used in Dirichlet regression, and uses

unknown, unbounded regression coe�cients to obtain compositional diet proportions,

that are constrained to being positive, between 0 and 1, and summing to 1. This link

function is plugged into the likelihood in place of the diet proportions, and the likeli-

hood is then optimized over the regression coe�cients. When covariates are included

in the model, a summary diet estimate is obtained for each unique set of covariates.

For the simulations, we first started with one simple indicator variable covariate, and

then to one covariate represented by two indicator variables.

For our simulations, the simple case began with assuming two groups, such as male

and female. This is represented by one indicator variable. Thus, the results will yield

a summary diet for the males, and a summary diet for the females. To see the perfor-

mance of our new method with covariates, we compared the summary diet estimates

to the empirical mean diet estimates obtained from QFASA. Similar to the simula-

tions without covariates, equally spaced diets were used to ensure that the method is

working throughout the simplex. All possible combinations of 2 of 10 such diets were

used, and in all instances, the summary diet estimates were comparable, if not better

than the mean QFASA estimates, displaying once again the accuracy and utility of

our model.

Inference

One of the goals of this ML model was to test for di↵erences among groups. Previ-

ously, this was done by getting diet estimates and then modelling the estimates with
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covariates. This two step process loses information about the precision of the esti-

mates when modelling with the covariates. So, we devised a way to perform inference

in the same stage as estimation. After estimating the ML regression coe�cients, �,

bootstrap replicates are obtained in a similar fashion as with the confidence intervals.

Taking the ML estimates of �, the corresponding diet estimates are obtained from

the link function. These diet estimates are then used as the true diets to generate

n pseudo-predators. These pseudo-predators are then run through the ML model to

obtain bootstrapped regression coe�cient replicates, �r. This is repeated r times.

Using these bootstrap replicates, we can test if the true diets from all unique groups

are di↵erent by testing if all the regression coe�cients (apart from the intercepts) are

di↵erent from 0. We do this using a method proposed in Olive (2016) which uses

the mean and variance-covariance matrix of the bootstrap replicated coe�cients to

obtain a Mahalanobis distance between the replicate and the mean coe�cients for

every replicate. Then, the (1� ↵)th percentile of these distances is compared to the

the Malahanobis distance between the mean replicate coe�cient and 0. If this last

distance is larger than the percentile distance, we will reject H0 for Ha and conclude

that there is a di↵erence among the diets. Otherwise, we will fail to reject H0.

To determine if the inference method is behaving as expected, first, all possible combi-

nations of 2 of the 10 diets used in the covariate simulations were compared, and three

were chosen to represent no e↵ect, a small e↵ect size, and a larger e↵ect size based

on the chi-squared distance between diets. For each e↵ect size, 10 pseudo-predators

for each group (20 in total) were generated, and ML estimates of the regression co-

e�cients are obtained. Then, using the method described above, the hypothesis test

is performed to determine if the groups have significantly di↵erent diet proportions.

For all groups, using ↵ = 0.01, ↵ = 0.05, and ↵ = 0.10 as significance levels, the

correct decision was made. That is, when there was no e↵ect, the null hypothesis was

not rejected, and for both small and large e↵ects, the null hypothesis was rejected.

While there was not enough time here to obtain power simulations, this shows great

promise for this technique for detecting di↵erences in diets among di↵erent groups.
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Next, to add a level of complexity, three groups were assumed, such as pup, adoles-

cent and adult, represented by 2 indicator variables. Diets for the three groups were

chosen based on the mean pairwise chi-squared distances between the three diets, to

represent no e↵ect size (all three diets are equal), small single e↵ect size (two diets

equal, one slightly di↵erent), large single e↵ect size (two diets equal, one largely di↵er-

ent), small e↵ect size (all three diets slightly di↵erent), and large e↵ect size (all three

diets largely di↵erent). For each e↵ect size, 10 pseudo-predators from each group (30

total) were generated using the true diets, and the ML estimates of regression coe�-

cients were obtained. Using these as the true coe�cients, 50 bootstrap replicates were

obtained, and the hypothesis testing method described above is used to determine if

there is a di↵erence in diets between the groups. Once again, for all groups, using

significance levels ↵ = 0.01, ↵ = 0.05, and ↵ = 0.10, the correct decision was made

every time. That is, when there was no e↵ect, we failed to reject H0 for Ha, and in

all other cases, we rejected H0 for Ha, concluding that there is a significant di↵erence

between the groups.

Real Life Data

For analyses on real life data sets, two di↵erent sets were used. The first is a captive

feeding study on harbour seals conducted at the Vancouver Aquarium by Nordstrom

et al. (2008). This study has approximate known diets, therefore we were able to

compare our estimated diets from both QFASA and our ML method to the known

parameters. First, we used all prey species, and estimated the diet proportions using

the two methods. In every case, ML estimates were comparable to QFASA estimates.

Since our method has statistical benefits over QFASA (inclusion of variability as well

as inference), comparable estimates to QFASA is all we were hoping for. To make

estimation a bit easier, we also reduced the number of prey species included to only

the 3 species which had non zero true diet proportions. Once again, the estimates are

comparable, both in median value, and in spread, to that of QFASA. This was done

using raw FA signatures as well as winsorized FA signatures to improve the normality

of the data. There was no significant improvement with winsorizing, but it was used

throughout the rest of the real life analyses, as it does not require extra time, yet
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improves the validity of the normality assumption.

The second real life data set contains FA signatures from adult grey seals on Sable

Island, NS. For the 502 individuals, the sex, the age, as well as the year group (which

describes the level of population growth on Sable island at the time; exponential

growth, slowed exponential growth, and or stable growth rate). Sex and year group

are both categorical variables and thus are represented by indicator variables in our

model. First, we just looked at sex, obtaining a summary diet for males, and a sum-

mary diet for females. We compared this with the mean QFASA diet estimates for

all males and that for females. While most of the 0 proportions were estimated iden-

tically for both methods, the MLEs for both males and females show nearly 100% on

redfish. The QFASA estimates show between 50 and 60% redfish, with small propor-

tions also on sandlance, Atlantic cod, capelin and pollock.

Lastly, inference was done on the real life set, using sex as a covariate. The observed

and critical distances obtained were 19.92 and 3.08 respectively, allowing us to reject

H0 forHa and conclude that there is a di↵erence in diets between male and female grey

seals. This has been widely assumed among biologists for some time, and therefore

we can say our method made the correct decision. This demonstrates once again the

validity of using this inference technique to test for di↵erences in diet.

7.1.2 Future Research

This thesis provides a base for the ML methodology and demonstrates the validity

and usefulness of such a model. However, there are still many areas that can be

improved or added to. The first of which is the e�ciency of the code. While we

have established that the code I have created behaves properly, it is quite slow and

laborious to run. Making this code more e�cient would make computations faster,

which in turn would make larger simulation and real life studies more realistic.

Secondly, several new techniques for QFASA were mentioned throughout this thesis,

namely the augmented matrix approach proposed in Bromaghin et al. (2016) and

the simultaneous estimation of calibration coe�cients proposed in Bromaghin et al.
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(2017b). Implementing these into this novel ML method and performing further

testing would be beneficial to see if these techniques improve our methods further.

Currently, a graduate student under Connie Stewart is working on the calibration

coe�cient problem which should prove useful to future work in this area.



Appendix A

Code

A.1 MLE Method

A.1.1 R Code

## Using full FAset

FAset <- read.csv("/misc/home/steevesh/Comparison.Study

/FAset.csv",header=T,sep=",")

FAset <- as.vector(unlist(FAset))

## Remove this FA for Grey Seals

FAset <- FAset[!(FAset=="c16.4w3")]

# Calibration coefficients to use

cal.mat.orig <- read.csv("Cal.Mat.csv", header=T, sep=",")

cal.mat <- cal.mat.orig$CC

names(cal.mat) <- cal.mat.orig$FA

# Extracting FAset

cal.mat <- cal.mat[FAset]

# Prey database

preybase <- read.csv("/misc/home/steevesh/Comparison.Study

/Prey.csv",header=T,sep=",")

# prey species

spec <- unique(preybase$Species)

# Order the species so nothing gets mixed up in the estimation process

spec <- spec[order(spec)]
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I <- length(spec)

# Extracting only the prey species to be including,

# and making sure its ordered correctly

for(j in 1:length(spec)){

if(j==1) {preybase.spec <- preybase[preybase[,2]==spec[j],] }

else{

preybase.spec <- rbind(preybase.spec,

preybase[preybase[,2]==spec[j],])

}

}

preybase <- preybase.spec

preybase[,2] <- droplevels(preybase[,2])

# Making sure it sums to 1

preybase[,-(1:3)] <- preybase[,-(1:3)]/apply(preybase[,-(1:3)],1,sum)

# Winsorize the data set

preybase.w <- matrix(NA,nrow=nrow(preybase), ncol=(ncol(preybase)-3))

rownames(preybase.w) <- preybase[,c("Species")]

for(i in 1:I){

preyi <- preybase[preybase[,c("Species")]==spec[i],][,-(1:3)]

for(j in 1:(ncol(preybase)-3)){

iqr <- IQR(preyi[,j])

vals <- quantile(preyi[,j], c(0.25, 0.5, 0.75))

low <- vals[1] - 1.5*iqr

high <- vals[3] + 1.5*iqr

preybase.w[rownames(preybase.w)==spec[i],j] <-

Winsorize(preyi[,j], minval = low, maxval=high)
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}

}

preybase.w <- preybase.w/apply(preybase.w,1,sum)

colnames(preybase.w) <- colnames(preybase[,-(1:3)])

preybase.q <- preybase.w

# Extract FAs from prey data base

preybase.q <- preybase.q[,FAset]

preybase.q <- preybase.q/apply(preybase.q,1,sum)

sort.preytype <- order(rownames(preybase.q))

preybase.q <- preybase.q[sort.preytype,]

# Transforming full prey base

preybase.t <- mod.zeros.FA.sig.mat(preybase.q,0.00005)

#analytic precision is two decimals after the percentage.

rownames(preybase.t) <- rownames(preybase.q)

preybase.t <-ilr(preybase.t)

preybase.w <- matrix(NA, nrow=nrow(preybase.t), ncol=ncol(preybase.t))

rownames(preybase.w) <- preybase.q[,"Species"]

# getting the number sampled from each species

n <- tapply(preybase$Species, preybase$Species,

length)[unique(preybase$Species)]

## Estimating the means and variance covariance matrices of

#our prey data

prey.var <- vector("list", I)

prey.mt <- matrix(0, nrow=I, ncol=length(FAset)-1)
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prey.m <- matrix(0, nrow=I, ncol=length(FAset))

for(i in 1:I){

preyi <- preybase.q[rownames(preybase.t)==spec[i],]

preyit <- preybase.t[rownames(preybase.t)==spec[i],]

prey.var[[i]] <- variation.acomp(preyi)

prey.mt[i,] <- apply(preyit,2,mean)

prey.m[i,] <- apply(preyi,2,mean)

}

D <- length(FAset)

V <- ilrBase(D=length(FAset))

G <- V%*%t(V)

## Calculating the pooled variance estimate

Spool <- matrix(0, D-1,D-1)

for(j in 1:I){

Sigma <- -0.5*t(V)%*%G%*%prey.var[[j]]%*%G%*%V

Spool <- Spool + (n[[j]]-1)*Sigma

}

Spool <- Spool/(sum(n) - length(n))

# Load in predator Data

Seals <- read.csv("CNordstrom_seals.csv")

# remove the columns not corresponding to FAs

Sealsj <- Seals[,-(1:4)]

Sealsj <- Sealsj[,FAset]

### Getting Start Values

n.pred <- nrow(Sealsj)
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# Start diet estimates from QFASA

test <- p.QFASA(predator.mat=Sealsj,prey.mat=prey.m,

cal.mat=cal.mat, dist.meas=2, start.val=rep(1/I,I),

ext.fa=FAset )

# Remove the last column of diet estimates, as for our

#method we do not use it

start.val <- test$‘Diet Estimates‘[,-I]

# Seals after calibration coefficients

Sealsc <- matrix(NA,nrow=nrow(Sealsj), ncol=ncol(Sealsj))

for(i in 1:length(test$‘Additional Measures‘)){

Sealsc[i,] <- test$‘Additional Measures‘[[i]]$ModFAS

}

# Modify seal data after calibration coefficients in case there are 0s

pred <- mod.zeros.FA.sig.mat(Sealsc,0.00005)

# transform predator data

ilr.seals <- ilr(pred)

#estimating errors

ers <- matrix(NA, nrow = 50*n.pred, ncol = ncol(Sealsj))

for(j in 1:50){

# generate seals from diet estimates without error included

yest <- matrix(NA, nrow = n.pred, ncol = ncol(Sealsj))

for(i in 1:nrow(yest)){

yest[i,] <- pseudo.seal.norm(prey.mt, Spool,

test$‘Diet Estimates‘[i,])

}

Sealsj <- acomp(Sealsj)
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yest <- acomp(yest) #without error, untransformed

lb <- (j-1)*n.pred + 1

ub <- j*n.pred

# error is the real life FA signatures with error minus the

# generated signatures without error

ers[lb:ub,] = -yest + Sealsj

}

print(ers)

ers <- acomp(ers)

# estimated diagonal of variance covariance matrix of the predator

sep.start <- diag(-1/2*t(V)%*%G%*%variation(ers)%*%G%*%V)

# splitting the diagonal into quantiles to estimate to minimize

number of unknown parameters

quan <- quantile(sep.start)

quan.start <- numeric(4)

groupind <- numeric(length(sep.start))

for(j in 1:4){

quan.start[j] <- mean(sep.start[sep.start>=quan[j] &

sep.start<=quan[j+1]])

groupind[sep.start>=quan[j] & sep.start<=quan[j+1]] <- j

}

#### Running the program on the Real Life Seals

### create and load function from .cpp template

compile("ErrorModelSimpleEquant.cpp", flags="-Wno-unused-variable")

# create .o and .so

#dyn.unload(dynlib("ErrorModelSimpleEquant"))

dyn.load(dynlib("ErrorModelSimpleEquant")) # load .so

# Parameter start values
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parameters <- list(alpha = start.val,

z = array(rep(prey.mt), c(nrow(prey.mt),

ncol(prey.mt), n.pred)),

sepsilon = quan.start

)

#Data to send to tmb

data <- list(y = ilr.seals,

# x = preybase.t,

n=n,

varz=Spool,

mu = prey.mt,

V=ilrBase(D=(ncol(ilr.seals)+1)),

sind=groupind

)

objnt <- MakeADFun(data,parameters,random="z")

npars <- length(objnt$par)

reports <- objnt$report()

reports <- objnt$report()

reports

# constraining alphas to be between 0 and 1

# Full parameter list

lb <- rep(0,npars)

ub <- c(rep(1,(npars-length(quan.start))), rep(Inf,length(quan.start)))

# alphas are fixed

#lb <- rep(0,npars)

#ub <- rep(Inf,npars)



151

# sepsilon is fixed

# lb <- rep(0,npars)

# ub <- rep(1,npars)

# sepsilon is fixed

#al.sum <- function(pars){

# alpha <- matrix(pars,ncol=4)

# return(apply(alpha,1,sum))

#}

#

# Full parameter set

al.sum <- function(pars){

npars <- length(pars)

alpha <- matrix(pars[1:(npars-length(quan.start))], ncol=I-1)

return(apply(alpha,1,sum))

}

# Full parameter set

optnt <- solnp(pars=objnt$par, fun=objnt$fn, ineqfun=al.sum,

ineqLB = rep(0,n.pred), ineqUB = rep(1,n.pred), LB=lb,

UB=ub, control=list(delta=0.0001, tol=0.00001))

L <- optnt$values

alpha <- matrix(optnt$pars[1:((I-1)*(n.pred))],nrow=n.pred)

seps <- optnt$pars[((I-1)*(n.pred)+1):length(optnt$pars)]

alpha <- cbind(alpha,1-apply(alpha,1,sum))

A.1.2 C++ Code

#include <math.h>
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#include<iostream>

#include <TMB.hpp>

// library needed for the multvariate normal distribution

using namespace density;

template<class Type>

vector<Type> Multiply(vector<Type> mat1, matrix<Type> mat2) {

int i = mat1.size();

int j = mat2.cols();

vector<Type> mat3(j);

for (int c = 0; c < j; c++) {

mat3(c) = 0.0;

for (int b = 0; b < i; b++) {

mat3(c) += mat1(b)*mat2(b,c);

}

}

return(mat3);

}

template<class Type>

matrix<Type> invilrc(matrix<Type> data, matrix<Type> V)

{

matrix<Type> mult(data.rows(), data.cols()+1);

matrix<Type> trans(data.rows(),data.cols()+1);

Type rowtot;

// back transforming each individual row

for(int m=0; m<data.rows(); m++){

rowtot = 0.0;

for(int l=0; l<(data.cols()+1); l++) mult(m,l) = 0;
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for(int j=0; j<(data.cols()+1); j++){

for(int k=0; k<data.cols(); k++)

{

mult(m,j) += data(m,k)*V(j,k);

}

trans(m,j) = exp(mult(m,j));

rowtot += trans(m,j);

}

trans.row(m) = trans.row(m)/rowtot;

}

return(trans);

}

template<class Type>

vector<Type> modzeros(vector<Type> data, double delta)

{

Type nozero;

vector<Type> dnozero(data.size());

// for(int j=0; j<data.rows(); j++){

nozero = 0.0;

for(int k=0; k<data.size(); k++){

if(data(k)==0.0) nozero += 1.0;

}

for(int i=0; i<data.size(); i++){

if(data(i)==0.0) dnozero(i) = delta;

else dnozero(i) = (1 - nozero*delta)*data(i);

}

return(dnozero);

}
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template<class Type>

matrix<Type> modzerosmat(matrix<Type> data, double delta)

{

Type nozero;

matrix<Type> dnozero(data.rows(), data.cols());

for(int j=0; j<data.rows(); j++){

nozero = 0.0;

for(int k=0; k<data.cols(); k++){

if(data(j,k)==0.0) nozero += 1.0;

}

for(int i=0; i<data.cols(); i++){

if(data(j,i)==0.0) dnozero(j,i) = delta;

else dnozero(j,i) = (1 - nozero*delta)*data(j,i);

}

}

return(dnozero);

}

template<class Type>

matrix<Type> ilrm(matrix<Type> data, matrix<Type> V)

{

matrix<Type> trans(data.rows(), data.cols());

matrix<Type> mult(data.rows(),data.cols()-1);

Type gmean;

Type product;

// going over each row to individually transform rows

for(int m=0; m<data.rows(); m++){
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product = 1.0;

for(int i = 0; i < data.cols(); i++) product *= data(m,i);

gmean = exp(log(product)/data.cols());

for(int l=0; l<trans.cols(); l++) trans(m,l) = log(data(m,l)/gmean);

for(int j=0; j<(trans.cols()-1); j++){

mult(m,j) = 0.0;

for(int k=0; k<trans.cols(); k++)

{

mult(m,j) += trans(m,k)*V(k,j);

}

}

}

return(mult);

}

template<class Type>

vector<Type> ilrc(vector<Type> data, matrix<Type> V)

{

vector<Type> trans(data.size());

vector<Type> mult(data.size()-1);

// going over each row to individually transform rows

// for(int m=0; m<data.rows(); m++){

Type product = 1.0;

for(int i = 0; i < data.size(); i++) product *= data(i);

Type gmean = exp(log(product)/data.size());

for(int l=0; l<trans.size(); l++) trans(l) = log(data(l)/gmean);

for(int j=0; j<(trans.size()-1); j++){
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mult(j) = 0.0;

for(int k=0; k<trans.size(); k++)

{

mult(j) += trans(k)*V(k,j);

}

}

// }

return(mult);

}

template<class Type>

Type objective_function<Type>::operator() () {

// Data:

DATA_MATRIX(y);

// each row is observed ilr transformed FAs of predators

// DATA_MATRIX(x);

// observed ilr transformed prey FAs, each row represents and

// individual prey FA

DATA_VECTOR(n);

// number of observed prey FAs for each specific prey

// species in x (in same order as in x)

DATA_MATRIX(varz);

// estimated pooled variance-covariance matrix of the

// untransformed prey xi

DATA_MATRIX(mu);

// each row is the mean vector for species i (Note this

// is the mean of the ilr transformed prey FAs)

DATA_MATRIX(V);

// V matrix that is D*(D-1) to go from clr transformation

//to ilr transformation

// DATA_MATRIX(G);
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// G matrix that is required to go from T to clr variance

DATA_VECTOR(sind);

// start values for the mean quantile of the diagonal

// of the covariance

// Parameters:

// PARAMETER(lambda);

// Lagrange multiplier parameter

PARAMETER_MATRIX(alpha);

// each row is diet proportion vector for predator i, I-1 proportions

PARAMETER_ARRAY(z);

// unobserved ilr transformed prey effect, for each

// individual predator

PARAMETER_VECTOR(sepsilon);

// The diagonal entries of the variance-covariance

// matrix of the ilr transformed epsilon

// Procedures:

// ADREPORT(alpha);

// ADREPORT(sepsilon);

//ADREPORT(sepsilon);

int D = y.cols(); // number of fatty acids - 1 (since ilr transformed)

int I = n.size(); // number of species

int npred = y.rows(); // number of predators

Type nll = 0.0; // initialize negative loglik

// Latent process:

vector<Type> tmp(D);

// initialize point at which to evaluate neg log-density

// vector<Type> yomean(D+1); // initialize the mean of

// the predator yo
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matrix<Type> ymean;

// initialize the transformed mean of the predator y

// Rcout << ymean;

array<Type> zarray;

matrix<Type> zo;

matrix<Type> zt;

matrix<Type> eta;

// getting the variance-covariance of z from T

//matrix<Type> varz = V.transpose()*G;

//varz = varz*T;

//varz = varz*G;

//varz = varz*V;

//varz = -0.5*varz;

//REPORT(varz);

MVNORM_t<Type> nll_dist(varz);

// declare multivariate normal with cov mat for prey

// creating a diagonal matrix

matrix<Type> Sigmay(D,D);

Sigmay.fill(0);

for(int k = 0; k < D; k++){

for(int l=0; l < 4; l++){

if(sind(k)==(l+1)) Sigmay(k,k) = sepsilon(l);

}

}

// matrix<Type> Sigmay = sepsilon*Id;

REPORT(Sigmay);

MVNORM_t<Type> nll_y(Sigmay);
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// declare multivariate normal with cov mat for y

//

//

matrix<Type> alphafull(npred,I);

for(int r=0; r<npred; r++){

vector<Type> vr = alpha.row(r);

for(int c=0; c<I; c++){

if(c<I-1) alphafull(r,c) = alpha(r,c);

else alphafull(r,c) = 1 - sum(vr);

}

}

for(int w=0; w<npred; w++){

zarray = z.col(w);

zt = zarray.matrix();

//int size = z.cols();

//REPORT(size);

zo = invilrc(zt,V);

//REPORT(zo);

//

//eta = Multiply(alpha.row(w),zo);

eta = alphafull.row(w)*zo;

REPORT(eta);

eta = modzerosmat(eta, 0.00005);

ymean = ilrm(eta,V);

REPORT(ymean);

// // Observation models:

tmp = y.row(w) - ymean; // centers it

nll += nll_y(tmp);
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// adding in the likelihood of z, the random effect

for(int i = 0; i < I; i++){ //

tmp = zt.row(i) - mu.row(i); // centers it

nll += nll_dist(tmp);

}

}

//

//REPORT(nll);

return nll;

}

A.2 Bootstraps

A.2.1 R Code

gen.est <- function(npred, preym, preymt, poolvar, diet, D,

preybaseq, FAs, V,G, sepstrue=rep(0.001,D-1),

sindtrue = NA){

# Simulating from the true diet

sim.mat <- matrix(NA, nrow=npred, ncol=ncol(preym))

if(is.matrix(diet)){

for(i in 1:n.pred){

sim.mat[i,] <- pseudo.seal.norm(preymt, poolvar, diet[i,])

}

}else

for(i in 1:n.pred){
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sim.mat[i,] <- pseudo.seal.norm(preymt, poolvar, diet)

}

if(is.na(sindtrue)){

e <- rmvnorm(nrow(sim.mat), rep(0,D-1), diag(sepstrue))

}else{

diagseps <- numeric(D-1)

for(j in 1:4){

diagseps[sindtrue==j] <- sepstrue[j]

}

e <- rmvnorm(nrow(sim.mat), rep(0,D-1), diag(diagseps))

}

e0 <- acomp(ilrInv(e))

sim.use <- perturbe(sim.mat,e0)

colnames(sim.use) <- colnames(preybaseq)[-1]

test <- p.QFASA(predator.mat=sim.use,prey.mat=preym,

cal.mat=matrix(rep(1,npred*I),ncol=npred), dist.meas=2,

start.val=rep(1/I,I), ext.fa=FAs )

start.val <- test$‘Diet Estimates‘[,-I]

ers <- matrix(NA, nrow = 50*npred, ncol = ncol(sim.use))

for(j in 1:50){

yest <- matrix(NA, nrow = npred, ncol = ncol(sim.use))

for(i in 1:nrow(yest)){

yest[i,] <- pseudo.seal.norm(preymt, poolvar,

test$‘Diet Estimates‘[i,])
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}

yest <- acomp(yest) #without error, untransformed

lb <- (j-1)*npred + 1

ub <- j*npred

ers[lb:ub,] = -yest + sim.use

}

print(ers)

ers <- acomp(ers)

sep.start <- diag(-1/2*t(V)%*%G%*%variation(ers)%*%G%*%V)

quan <- quantile(sep.start)

quan.start <- numeric(4)

groupind <- numeric(length(sep.start))

for(j in 1:4){

quan.start[j] <- mean(sep.start[sep.start>=quan[j] &

sep.start<=quan[j+1]])

groupind[sep.start>=quan[j] & sep.start<=quan[j+1]] <- j

}

pred <- mod.zeros.FA.sig.mat(sim.use,0.00005)

#print(pred)

ilr.data <- ilr(pred)

parameters <- list(alpha = start.val,

z = array(rep(preymt), c(nrow(preymt),

ncol(preymt), npred)),

sepsilon = quan.start

)

#Data to send to tmb

data <- list(y = ilr.data,
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# x = preybase.t,

n=n,

varz=poolvar,

mu = preymt,

V=ilrBase(D=(ncol(ilr.data)+1)),

sind=groupind

)

objnt <- MakeADFun(data,parameters,random="z")

npars <- length(objnt$par)

# constraining alphas to be between 0 and 1

lb <- rep(0,npars)

ub <- c(rep(1,(npars-length(quan.start))), rep(Inf,length(quan.start)))

# Full parameter set

al.sum <- function(pars){

npars <- length(pars)

alpha <- matrix(pars[1:(npars-length(quan.start))], ncol=I-1)

return(apply(alpha,1,sum))

}

# Full parameter set

optnt <- solnp(pars=objnt$par, fun=objnt$fn, ineqfun=al.sum,

ineqLB = rep(0,npred), ineqUB = rep(1,npred), LB=lb,

UB=ub, control=list(delta=0.0001, tol=0.00001))

L <- optnt$values[length(optnt$values)]

alpha <- matrix(optnt$pars[1:((I-1)*(n.pred))],nrow=n.pred)

seps <- optnt$pars[((I-1)*(n.pred)+1):length(optnt$pars)]
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alpha <- cbind(alpha,1-apply(alpha,1,sum))

conv <- optnt$convergence

return(list(L=L,alpha=alpha,seps=seps, sind=groupind, conv=conv))

}

##### Use these estimates as start values

#preymt =prey.mt

#poolvar = Spool

#preym = prey.m

#sind = groupind

# MLEvals is a list with L=negative log likelihood value,

#alpha=diet estimates

# obtained from ML method, seps = epsilon diagonal obtained from

# ML method, sind = indicator of the diagonal of epsilon

# for where each estimate goes, conv = 0 for convergence

boots.run <- function(npred, preym, preymt, poolvar,

diet, D, preybaseq, FAs, V, G, sepstrue, r, sindtrue=NA){

for(i in 1:r){

run.r <- gen.est(npred, preym, preymt,

poolvar,diet,D,preybaseq,FAs, V,G,sepstrue, sindtrue)

als <- run.r$alpha

seps <- run.r$seps

Ls <- run.r$L

if(i==1){

Lr <- Ls

alr <- als

epsr <- seps
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conv <- run.r$conv

}else{

Lr <- c(Lr,Ls)

alr <- rbind(alr, als)

epsr <- rbind(epsr, seps)

conv <- c(conv,run.r$conv)

}

}

return(list(L=Lr, alpha = alr, seps=epsr, conv=conv))

}

library(doMC)

registerDoMC(cores=5)

library(foreach)

bootset <- foreach(r = rep(20,5)) %dopar%

boots.run(n.pred, prey.m, prey.mt, Spool, MLEvals$alpha, D,

preybase.q, FAset, V, G, sepstrue=MLEvals$seps,r,

sindtrue=MLEvals$sind )

A.3 Covariates

A.3.1 R Code

source("est.functions.R")

#FAset to use

FAset <- read.csv("DietFAPhocidGreys.csv")

FAset <- as.vector(unlist(FAset))

## Preybase to use
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preybase <- read.csv("SableHgModelPreySetFallWinter.csv")

# No 16:4w3 for greys

preybase <- preybase[,!(colnames(preybase)=="c16.4w3")]

species <- unique(preybase$SableHgModelGroupNameFallWinter)

species <- sort(species)

I <- length(species)

# Extracting and ordering prey species

for(j in 1:length(species)){

if(j==1) {preybase.spec

<- preybase[preybase$SableHgModelGroupNameFallWinter==species[j],] }

else{

preybase.spec <- rbind(preybase.spec,

preybase[preybase$SableHgModelGroupNameFallWinter==species[j],])

}

}

preybase <- preybase.spec

# Winsorizing (optional)

preybase.w <- matrix(NA,nrow=nrow(preybase), ncol=(ncol(preybase)-5))

rownames(preybase.w) <- preybase$SableHgModelGroupNameFallWinter

for(i in 1:I){

preyi

<- preybase[preybase$SableHgModelGroupNameFallWinter==species[i],][,-(1:5)]

for(j in 1:(ncol(preybase)-5)){

iqr <- IQR(preyi[,j])

vals <- quantile(preyi[,j], c(0.25, 0.5, 0.75))

low <- vals[1] - 1.5*iqr

high <- vals[3] + 1.5*iqr

preybase.w[rownames(preybase.w)==species[i],j]
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<- Winsorize(preyi[,j], minval = low, maxval=high)

}

}

colnames(preybase.w) <- colnames(preybase[,-(1:5)])

preybase.q <- preybase.w

# Extract FAs from prey data base

preybase.q <- preybase.q[,FAset]

preybase.q <- preybase.q/apply(preybase.q,1,sum)

sort.preytype <- order(rownames(preybase.q))

preybase.q <- preybase.q[sort.preytype,]

# Transforming full prey base

preybase.t <- mod.zeros.FA.sig.mat(preybase.q,0.00005)

#analytic precision is two decimals after the percentage.

rownames(preybase.t) <- rownames(preybase.q)

preybase.t <-ilr(preybase.t)

## Seals

seals.full <- read.csv("SealFASignaturesMay2020.csv", header=TRUE)

seals <- seals.full[,FAset]/rowSums(seals.full[,FAset])

npred <- nrow(seals)

## Calibration Coefficients

cals.orig <- read.csv("HgCCs.csv")
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cals <- cals.orig$GreySealCC

names(cals) <- cals.orig$FA

cals <- cals[FAset]

# getting the number sampled from each species

I <- length(species)

n <- tapply(rownames(preybase.q), rownames(preybase.q), length)

## Estimating the variance covariance matrices of our prey data

prey.var <- vector("list", I)

prey.mt <- matrix(0, nrow=I, ncol=length(FAset)-1)

prey.m <- matrix(0, nrow=I, ncol=length(FAset))

for(i in 1:I){

preyi <- preybase.q[rownames(preybase.q)==species[i],]

preyit <- preybase.t[rownames(preybase.t)==species[i],]

prey.var[[i]] <- variation.acomp(preyi)

prey.mt[i,] <- apply(preyit,2,mean)

prey.m[i,] <- apply(preyi,2,mean)

}

D <- length(FAset)

V <- ilrBase(D=length(FAset))

G <- V%*%t(V)

## Calculating the pooled variance estimate

Spool <- matrix(0, D-1,D-1)

for(j in 1:I){

Sigma <- -0.5*t(V)%*%G%*%prey.var[[j]]%*%G%*%V

Spool <- Spool + (n[[j]]-1)*Sigma

}

Spool <- Spool/(sum(n) - length(n))
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### create and load function from .cpp template

compile("ErrorCovariates.cpp", flags="-Wno-unused-variable")

# create .o and .so

#dyn.unload(dynlib("ErrorCovariates"))

dyn.load(dynlib("ErrorCovariates")) # load .so

# Sex and Year Group

X <- cbind(rep(1,nrow(seals.full)),dummy(seals.full$Sex),

dummy(seals.full$YearGroup))

# Estimation function

cov.est <- function(preds, preym, calmat, FAs, preymt, poolvar,

D, V,G, X){

test <- p.QFASA(predator.mat=unclass(preds),prey.mat=preym,

cal.mat=calmat, dist.meas=2, start.val=rep(1/I,I),

ext.fa=FAs )

start.val <- test$‘Diet Estimates‘

# Seals after calibration coefficients

Sealsc <- matrix(NA,nrow=nrow(preds), ncol=ncol(preds))

for(i in 1:length(test$‘Additional Measures‘)){

Sealsc[i,] <- test$‘Additional Measures‘[[i]]$ModFAS

}

# Start values for betas

start.beta <- atob(X,start.val)

npred <- nrow(preds)



170

ers <- matrix(NA, nrow = 50*npred, ncol = ncol(preds))

for(j in 1:50){

yest <- matrix(NA, nrow = npred, ncol = ncol(preds))

for(i in 1:nrow(yest)){

yest[i,] <- pseudo.seal.norm(preymt, poolvar,

test$‘Diet Estimates‘[i,])

}

yest <- acomp(yest) #without error, untransformed

lb <- (j-1)*npred + 1

ub <- j*npred

ers[lb:ub,] = -yest + preds

}

print(ers)

ers <- acomp(ers)

sep.start <- diag(-1/2*t(V)%*%G%*%variation(ers)%*%G%*%V)

quan <- quantile(sep.start)

quan.start <- numeric(4)

groupind <- numeric(length(sep.start))

for(j in 1:4){

quan.start[j] <- mean(sep.start[sep.start>=quan[j] &

sep.start<=quan[j+1]])

groupind[sep.start>=quan[j] & sep.start<=quan[j+1]] <- j

}

pred <- mod.zeros.FA.sig.mat(Sealsc,0.00005)

#print(pred)
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ilr.data <- ilr(pred)

# Parameters to be passed to TMB

parameters <- list(beta = start.beta

z = array(rep(prey.mt), c(nrow(prey.mt),

ncol(prey.mt), npred)),

sepsilon = quan.start

)

#Data to send to tmb

data <- list(y = ilr.data,

# x = preybase.t,

n=n,

varz=Spool,

mu = prey.mt,

V=ilrBase(D=(ncol(ilr.data)+1)),

Xcov= X,

sind=groupind

)

objnt <- MakeADFun(data,parameters,random="z")

npars <- length(objnt$par)

lb <- c(rep(-Inf,npars-4), rep(0,4))

ub <- rep(Inf,npars)

optnt <- nlminb(start=objnt$par, objective=objnt$fn, lower=lb,

upper=ub) #control=list(abs.tol=0.001, iter.max = 1,

eval.max=1000)

L <- optnt$objective
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betaopt <- matrix(optnt$par[1:(npars-4)], nrow=((npars-4)/(I-1)))

alphaopt <- btoa(X,betaopt)

seps <- optnt$par[(length(optnt$par)-3):length(optnt$par)]

conv <- optnt$convergence

starts <- start.val

return(list(L=L,beta=betaopt,seps=seps, conv=conv, Q=starts,

groupind=groupind))

}

MLEvals <- cov.est(as.matrix(seals), prey.m, cals, FAset,

prey.mt, Spool, D, V, G, X)

A.3.2 C++ Code

#include <math.h>

// Including covariates, first simple just male and female

#include<iostream>

#include <TMB.hpp>

// library needed for the multvariate normal distribution

using namespace density;

template<class Type>

matrix<Type> Beta2Alpha(matrix<Type> mat1, matrix<Type> mat2) {

int i = mat1.rows(); // this is number of predators

int j = mat2.cols(); // this is number of prey species I-1

matrix<Type> mat3 = mat1 * mat2; // multiplying X and B
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matrix<Type> al(i,(j+1)); // alpha is nxI

for(int r=0; r<i; r++){ // over the rows

//Type alsum = 0.0;

al(r,0) = exp(0);// first column is 1s

//alsum = al(r,0);

for(int c=1; c<(j+1); c++){ // over I, the number of prey species

al(r,c) = exp(mat3(r,(c-1)));

// alsum += al(r,c);

}

al.row(r) = al.row(r)/al.rowwise().sum()(r);

// divide by sums so alpha is compositional

}

return(al);

}

template<class Type>

matrix<Type> invilrc(matrix<Type> data, matrix<Type> V)

{

matrix<Type> mult(data.rows(), data.cols()+1);

matrix<Type> trans(data.rows(),data.cols()+1);

Type rowtot;

// back transforming each individual row

for(int m=0; m<data.rows(); m++){

rowtot = 0.0;

for(int l=0; l<(data.cols()+1); l++) mult(m,l) = 0;

for(int j=0; j<(data.cols()+1); j++){

for(int k=0; k<data.cols(); k++)

{
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mult(m,j) += data(m,k)*V(j,k);

}

trans(m,j) = exp(mult(m,j));

rowtot += trans(m,j);

}

trans.row(m) = trans.row(m)/rowtot;

}

return(trans);

}

template<class Type>

vector<Type> modzeros(vector<Type> data, double delta)

{

Type nozero;

vector<Type> dnozero(data.size());

// for(int j=0; j<data.rows(); j++){

nozero = 0.0;

for(int k=0; k<data.size(); k++){

if(data(k)==0.0) nozero += 1.0;

}

for(int i=0; i<data.size(); i++){

if(data(i)==0.0) dnozero(i) = delta;

else dnozero(i) = (1 - nozero*delta)*data(i);

}

return(dnozero);

}

template<class Type>

matrix<Type> modzerosmat(matrix<Type> data, double delta)

{
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Type nozero;

matrix<Type> dnozero(data.rows(), data.cols());

for(int j=0; j<data.rows(); j++){

nozero = 0.0;

for(int k=0; k<data.cols(); k++){

if(data(j,k)==0.0) nozero += 1.0;

}

for(int i=0; i<data.cols(); i++){

if(data(j,i)==0.0) dnozero(j,i) = delta;

else dnozero(j,i) = (1 - nozero*delta)*data(j,i);

}

}

return(dnozero);

}

template<class Type>

matrix<Type> ilrm(matrix<Type> data, matrix<Type> V)

{

matrix<Type> trans(data.rows(), data.cols());

matrix<Type> mult(data.rows(),data.cols()-1);

Type gmean;

Type product;

// going over each row to individually transform rows

for(int m=0; m<data.rows(); m++){

product = 1.0;

for(int i = 0; i < data.cols(); i++) product *= data(m,i);

gmean = exp(log(product)/data.cols());
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for(int l=0; l<trans.cols(); l++) trans(m,l) = log(data(m,l)/gmean);

for(int j=0; j<(trans.cols()-1); j++){

mult(m,j) = 0.0;

for(int k=0; k<trans.cols(); k++)

{

mult(m,j) += trans(m,k)*V(k,j);

}

}

}

return(mult);

}

template<class Type>

vector<Type> ilrc(vector<Type> data, matrix<Type> V)

{

vector<Type> trans(data.size());

vector<Type> mult(data.size()-1);

// going over each row to individually transform rows

// for(int m=0; m<data.rows(); m++){

Type product = 1.0;

for(int i = 0; i < data.size(); i++) product *= data(i);

Type gmean = exp(log(product)/data.size());

for(int l=0; l<trans.size(); l++) trans(l) = log(data(l)/gmean);

for(int j=0; j<(trans.size()-1); j++){

mult(j) = 0.0;

for(int k=0; k<trans.size(); k++)

{

mult(j) += trans(k)*V(k,j);
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}

}

// }

return(mult);

}

template<class Type>

Type objective_function<Type>::operator() () {

// Data:

DATA_MATRIX(y);

// each row is observed ilr transformed FAs of predators

DATA_VECTOR(n);

// number of observed prey FAs for each specific prey

// species in x (in same order as in x)

DATA_MATRIX(varz);

// estimated pooled variance-covariance matrix of

// the untransformed prey xi

DATA_MATRIX(mu);

// each row is the mean vector for species i

// (Note this is the mean of the ilr transformed prey FAs)

DATA_MATRIX(V);

// V matrix that is D*(D-1) to go from clr transformation

// to ilr transformation

// DATA_MATRIX(G);

// G matrix that is required to go from T to clr variance

DATA_MATRIX(Xcov);

// Matrix npred*(p+1), first column 1s, column 2

// covariate 1, etc

DATA_VECTOR(sind);

// start values for the mean quantile of the diagonal

// of the covariance
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// Parameters:

// PARAMETER(lambda);

// Lagrange multiplier parameter

PARAMETER_MATRIX(beta);

// Coefficients matrix, (p+1)*(I-1)

PARAMETER_ARRAY(z);

// unobserved ilr transformed prey effect, for each individual predator

PARAMETER_VECTOR(sepsilon);

// The diagonal entries of the variance-covariance

// matrix of the ilr transformed epsilon

// Procedures:

// ADREPORT(sepsilon);

//ADREPORT(sepsilon);

matrix<Type> alpha = Beta2Alpha(Xcov,beta);

// REPORT(alpha);

// REPORT(beta);

// REPORT(Xcov);

//

// ADREPORT(alpha);

int D = y.cols(); // number of fatty acids - 1 (since ilr transformed)

int I = n.size(); // number of species

int npred = y.rows(); // number of predators

Type nll = 0.0; // initialize negative loglik

// Latent process:

vector<Type> tmp(D);

// initialize point at which to evaluate neg log-density
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// Rcout << ymean;

array<Type> zarray;

matrix<Type> zo;

matrix<Type> zt;

// matrix<Type> eta;

MVNORM_t<Type> nll_dist(varz);

// declare multivariate normal with cov mat for prey

// creating a diagonal matrix

matrix<Type> Sigmay(D,D);

Sigmay.fill(0);

for(int k = 0; k < D; k++){

for(int l=0; l < 4; l++){

if(sind(k)==(l+1)) Sigmay(k,k) = sepsilon(l);

}

}

MVNORM_t<Type> nll_y(Sigmay);

// declare multivariate normal with cov mat for y

//

for(int w=0; w<npred; w++){

zarray = z.col(w);

zt = zarray.matrix();

zo = invilrc(zt,V);
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matrix<Type> eta = alpha.row(w)*zo;

//REPORT(eta);

eta = modzerosmat(eta, 0.00005);

matrix<Type> ymean = ilrm(eta,V);

// REPORT(ymean);

// Observation models:

tmp = y.row(w) - ymean; // centers it

nll += nll_y(tmp);

// adding in the likelihood of z, the random effect

for(int i = 0; i < I; i++){ //

tmp = zt.row(i) - mu.row(i); // centers it

nll += nll_dist(tmp);

}

}

return nll;

}

A.4 Inference

A.4.1 R Code

source("est.functions.R")

#FAset to use
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FAset <- read.csv("DietFAPhocidGreys.csv")

FAset <- as.vector(unlist(FAset))

## Preybase to use

preybase <- read.csv("SableHgModelPreySetFallWinter.csv")

# No 16:4w3 for greys

preybase <- preybase[,!(colnames(preybase)=="c16.4w3")]

species <- unique(preybase$SableHgModelGroupNameFallWinter)

species <- sort(species)

I <- length(species)

for(j in 1:length(species)){

if(j==1) {preybase.spec <-

preybase[preybase$SableHgModelGroupNameFallWinter==species[j],]}

else{

preybase.spec <- rbind(preybase.spec,

preybase[preybase$SableHgModelGroupNameFallWinter==species[j],])

}

}

preybase <- preybase.spec

preybase.w <- matrix(NA,nrow=nrow(preybase), ncol=(ncol(preybase)-5))

rownames(preybase.w) <- preybase$SableHgModelGroupNameFallWinter

for(i in 1:I){

preyi <- preybase[preybase$SableHgModelGroupNameFallWinter

==species[i],][,-(1:5)]

for(j in 1:(ncol(preybase)-5)){

iqr <- IQR(preyi[,j])

vals <- quantile(preyi[,j], c(0.25, 0.5, 0.75))
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low <- vals[1] - 1.5*iqr

high <- vals[3] + 1.5*iqr

preybase.w[rownames(preybase.w)==species[i],j]

<- Winsorize(preyi[,j], minval = low, maxval=high)

}

}

colnames(preybase.w) <- colnames(preybase[,-(1:5)])

preybase.q <- preybase.w

# Extract FAs from prey data base

preybase.q <- preybase.q[,FAset]

preybase.q <- preybase.q/apply(preybase.q,1,sum)

sort.preytype <- order(rownames(preybase.q))

preybase.q <- preybase.q[sort.preytype,]

# Transforming full prey base

preybase.t <- mod.zeros.FA.sig.mat(preybase.q,0.00005)

#analytic precision is two decimals after the percentage.

rownames(preybase.t) <- rownames(preybase.q)

preybase.t <-ilr(preybase.t)

## Seals

seals.full <- read.csv("SealFASignaturesMay2020.csv", header=TRUE)

seals <- seals.full[,FAset]/rowSums(seals.full[,FAset])

seals <- as.matrix(seals)
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npred <- nrow(seals)

## Calibration Coefficients

cals.orig <- read.csv("HgCCs.csv")

cals <- cals.orig$GreySealCC

names(cals) <- cals.orig$FA

cals <- cals[FAset]

# getting the number sampled from each species

I <- length(species)

n <- tapply(rownames(preybase.q), rownames(preybase.q), length)

## Estimating the variance covariance matrices of our prey data

prey.var <- vector("list", I)

prey.mt <- matrix(0, nrow=I, ncol=length(FAset)-1)

prey.m <- matrix(0, nrow=I, ncol=length(FAset))

for(i in 1:I){

preyi <- preybase.q[rownames(preybase.q)==species[i],]

preyit <- preybase.t[rownames(preybase.t)==species[i],]

prey.var[[i]] <- variation.acomp(preyi)

prey.mt[i,] <- apply(preyit,2,mean)

prey.m[i,] <- apply(preyi,2,mean)

}

D <- length(FAset)

V <- ilrBase(D=length(FAset))

G <- V%*%t(V)

## Calculating the pooled variance estimate

Spool <- matrix(0, D-1,D-1)

for(j in 1:I){
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Sigma <- -0.5*t(V)%*%G%*%prey.var[[j]]%*%G%*%V

Spool <- Spool + (n[[j]]-1)*Sigma

}

Spool <- Spool/(sum(n) - length(n))

### create and load function from .cpp template

compile("ErrorCovariates.cpp", flags="-Wno-unused-variable")

# create .o and .so

#dyn.unload(dynlib("ErrorCovariates"))

dyn.load(dynlib("ErrorCovariates")) # load .so

#Covariate matrix

# Sex and Year Group

X <- cbind(rep(1,nrow(seals.full)),dummy(seals.full$Sex))

# I is the number of prey species

I <- nrow(prey.mt)

#########################################

np <- nrow(seals)

cov.est <- function(preds, preym, calmat, FAs, preymt, poolvar,

D, V,G, X){

test <- p.QFASA(predator.mat=unclass(preds),prey.mat=preym,

cal.mat=calmat, dist.meas=2, start.val=rep(1/I,I),

ext.fa=FAs )

start.val <- test$‘Diet Estimates‘
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npred <- nrow(preds)

# Seals after calibration coefficients

Sealsc <- matrix(NA,nrow=nrow(preds), ncol=ncol(preds))

for(i in 1:length(test$‘Additional Measures‘)){

Sealsc[i,] <- test$‘Additional Measures‘[[i]]$ModFAS

}

# Starting values for betas

#reg <- zadr(start.val,X[,-1],xnew=X[,-1])

#start.beta <- reg$be

start.beta <- atob(X,start.val)

ers <- matrix(NA, nrow = 50*npred, ncol = ncol(preds))

for(j in 1:50){

yest <- matrix(NA, nrow = npred, ncol = ncol(preds))

for(i in 1:nrow(yest)){

yest[i,] <- pseudo.seal.norm(preymt, poolvar, start.val[i,])

}

yest <- acomp(yest) #without error, untransformed

lb <- (j-1)*npred + 1

ub <- j*npred

ers[lb:ub,] = -yest + preds

}

print(ers)

ers <- acomp(ers)

sep.start <- diag(-1/2*t(V)%*%G%*%variation(ers)%*%G%*%V)
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quan <- quantile(sep.start)

quan.start <- numeric(4)

groupind <- numeric(length(sep.start))

for(j in 1:4){

quan.start[j] <- mean(sep.start[sep.start>=quan[j] &

sep.start<=quan[j+1]])

groupind[sep.start>=quan[j] & sep.start<=quan[j+1]] <- j

}

pred <- mod.zeros.FA.sig.mat(Sealsc,0.00005)

#print(pred)

ilr.data <- ilr(pred)

parameters <- list(beta = start.beta,

z = array(rep(prey.mt), c(nrow(prey.mt),

ncol(prey.mt), npred)),

sepsilon = quan.start

)

#Data to send to tmb

data <- list(y = ilr.data,

# x = preybase.t,

n=n,

varz=Spool,

mu = prey.mt,

V=ilrBase(D=(ncol(ilr.data)+1)),

Xcov= X,

sind=groupind

)

objnt <- MakeADFun(data,parameters,random="z")
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npars <- length(objnt$par)

I <- nrow(preym)

lb <- c(rep(-Inf,npars-4), rep(0,4))

ub <- rep(Inf,npars)

optnt <- nlminb(start=objnt$par, objective=objnt$fn, lower=lb,

upper=ub)

L <- optnt$objective

betaopt <- matrix(optnt$par[1:(npars-4)], nrow=((npars-4)/(I-1)))

alphaopt <- btoa(X,betaopt)

seps <- optnt$par[(npars-3):npars]

conv <- optnt$convergence

starts <- start.val

return(list(L=L,beta=betaopt,seps=seps, conv=conv, Q=starts,

groupind=groupind))

}

MLEval <- cov.est(seals, prey.m, cals, FAset, prey.mt, Spool, D, V,G, X)

n.pred <- nrow(seals)

groupind <- MLEval$groupind

diageps <- numeric(length(groupind))

for(j in 1:4){

diageps[groupind==j] <- MLEval$seps[j]

}

bootsbeta <- function(betaopt, X, npred, preym, cal.mat, preymt,

poolvar, D, preybaseq, FAs, V, G, diageps, r){
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diet <- btoa(X,betaopt)

for(i in 1:r){

#pseudo-predators with true values of MLE diets

sim.mat <- matrix(NA, nrow=npred, ncol=ncol(preym))

for(j in 1:npred){

sim.mat[j,] <- pseudo.seal.norm(preymt, poolvar, diet[j,])

}

e <- rmvnorm(nrow(sim.mat), rep(0,D-1), diag(diageps))

#

e0 <- acomp(ilrInv(e))

sim.use <- perturbe(sim.mat,e0)

colnames(sim.use) <- colnames(preybaseq)

I <- nrow(preym)

seals <- as.matrix(sim.use)

simset <- cov.est(seals, prey.m, cals, FAset, prey.mt, Spool, D, V,

G, X)

als <- as.vector(betaopt[-1,])

seps <- seps

Ls <- L

if(i==1){

Lr <- Ls

alr <- als

epsr <- seps
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conv <- convr

}else{

Lr <- c(Lr,Ls)

alr <- rbind(alr, als)

epsr <- rbind(epsr, seps)

conv <- c(conv,convr)

}

gc()

}

return(list(L=Lr, beta = alr, seps=epsr, conv=conv))

}

library(doMC)

registerDoMC(cores=10)

library(foreach)

simset <- foreach(n.sim = rep(5,10)) %dopar%

bootsbeta(MLEvalbeta, X, n.pred, prey.m, cals, prey.mt, Spool,

D, preybase.q,

FAset, V, G, diageps, n.sim )

beta <- boots$beta

Tbar <- apply(beta,2,mean)

st <- cov(beta)

mdists <- mahalanobis(beta, center=Tbar, cov=st)

Dub <- quantile(mdists, 0.95)

D02 <- (t(Tbar))%*%solve(st)%*%t(t(Tbar))

## Fail to reject if D02 < Dub
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A.5 est.functions

## Functions script for comparison study

## Created: Jan 25, 2017

## The next two functions are used for all methods.

# They replace the zeros in the

## FA signatures

mod.zeros.FA.sig.mat <- function(y.mat,delta) {

# JANUARY 24TH, 2014

# MODIFIES THE ZEROS IN A SAMPLE OF FA SIGNATURES USING THE

# MULTIPLICATIVE REPLACEMENT

# STRATEGY (AND THE SAME delta FOR EVERY ZERO)

y.mat <- t(apply(y.mat,1,mod.zeros.FA.sig,delta=delta))

return(y.mat)

}

mod.zeros.FA.sig <- function(y,delta) {

# JANUARY 24TH, 2014

# MODIFIES THE ZEROS IN A SINGLE FA SIGNATURES USING THE

# MULTIPLICATIVE REPLACEMENT

# STRATEGY
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no.zero <- sum(y==0)

y[y>0] <- (1 - no.zero*delta)*y[y>0]

y[y == 0] <- delta

return(y)

}

## The following function is the code for pseudo-seal generation.

#It is based on the

## assumption that the ilr transformations are normally

#distributed and the FA of the

## Predator is the linear combination of diet estimates

#and Prey FAs on the untransformed

## scale. This is the more complicated model.

pseudo.seal.norm <- function(mu.mat, sigma.pool, diet){

# mu.mat = matrix where each row represents the mean

#transformed fatty acid signature of each prey type

# sigma.pool = pooled variance-covariance matrix of the

# transformed fatty acid signatures of prey types

# diet = vector of proportions of prey species in diet (true diet)

J <- length(diet)

x.mat <- matrix(0, nrow=J, ncol=ncol(mu.mat))

for (j in 1:J){

x.mat[j,] <- mvrnorm(1, mu=mu.mat[j,], Sigma=sigma.pool)

}

x.mat.o <- ilrInv(x.mat)

x.mat.o <- as.data.frame(x.mat.o)

x.mat.o <- as.matrix(x.mat.o)

Y <- diet %*% x.mat.o
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return(Y)

}

pseudo.seal.nonparam <- function(prey.mat, species, diet){

# diet = vector of proportions of prey species in diet (true diet)

J <- length(diet)

x.mat <- matrix(0, nrow=J, ncol=ncol(prey.mat))

for (j in 1:J){

prey.spec <- prey.mat[rownames(prey.mat) == species[j],]

x.mat[j,] <- apply(prey.spec[sample(1:nrow(prey.spec),

nrow(prey.spec), replace=TRUE),],2,mean)

}

#x.mat.o <- ilrInv(x.mat)

#x.mat.o <- as.data.frame(x.mat.o)

#x.mat.o <- as.matrix(x.mat.o)

Y <- diet %*% x.mat

return(Y)

}

## This function computes Aitchison’s mean

a.mean <- function(comp.mat){

gmean <- apply(comp.mat, 2, prod)

gmean <- exp(log(gmean)/nrow(comp.mat))

gmean <- gmean/sum(gmean)

return(gmean)
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}

MEANmeth <- function(prey.mat) {

# RETURNS THE MULTIVARIATE MEAN FA SIGNATURE FROM EACH PREY TYPE

# RESULT CAN BE PASSED TO prey.mat IN p.QFASA

# INPUT:

# prey.mat --> MATRIX CONTAINING FA SIGNATURES OF THE PREY. NOTE THAT

# FIRST COLUMN INDEXES PREY TYPE.

prey.means <- apply(prey.mat[, -1], 2, tapply, prey.mat[, 1], mean)

return(prey.means)

}

AIT.obj <- function(alpha, seal, prey.quantiles) {

# AUGUST 12TH, 2014

# SIMILAR TO optcompdiff.obj BUT DOES NOT NORMALIZE ALPHA.

# USED IN solnp AS THE OBJECTIVE FUNCTION TO BE

# MINIMIZED

# INPUT:

# alpha --> VECTOR OVER WHICH MINIMIZATION TAKES PLACE

# seal --> VECTOR OF FATTY ACID COMPOSITIONS OF SEAL

# prey.quantiles --> MATRIX OF FATTY ACID COMPOSITION OF PREY.

# EACH ROW CONTAINS AN INDIVIDUAL PREY

# FROM A DIFFERENT SPECIES.
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no.zero <- sum(seal == 0.)

seal[seal == 0.] <- 1e-05

seal[seal > 0.] <- (1. - no.zero * 1e-05) * seal[seal > 0.]

sealhat <- t(as.matrix(alpha)) %*% prey.quantiles

no.zero <- sum(sealhat == 0.)

sealhat[sealhat == 0.] <- 1e-05

sealhat[sealhat > 0.] <- (1. - no.zero * 1e-05) * sealhat[sealhat > 0.]

return(AIT.dist(seal, sealhat))

}

AIT.dist <- function(x, bigX) {

# NOTE THAT THIS FUNCTION IS DIFFERENT THAT compdiff

#BECAUSE IT TAKES SQUARE ROOT

# compdiff IS USED IN CALCULATING DIET ESTIMATES.

# COMPUTES THE DIFFERENCE BETWEEN TO VECTORS OF

#COMPOSITIONAL DATA

# AS DESCRIBED IN AITCHISON (1992) "MEASURES OF

#COMPOSITIONAL DIFFERENCE"

return(sqrt(sum((log(x/mean.geometric(x)) -

log(bigX/mean.geometric(bigX)))^2.)))

}

AIT.more <- function(alpha, seal, prey.quantiles) {
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# OCTOBER 28TH, 2014

# USED TO PROVIDE ADDITIONAL INFORMATION ON MODEL COMPONENTS WHEN

# alpha CORRESPONDS TO THE QFASA DIET ESTIMATES (i.e. ESTIMATES

# THAT MINIMIZED THE AIT DISTANCE.)

# THE OBJECTIVE FUNCTION TO BE MINIMIZED

# INPUT:

# alpha --> VECTOR OVER WHICH MINIMIZATION TAKES PLACE

# seal --> VECTOR OF FATTY ACID COMPOSITIONS OF SEAL

# prey.quantiles --> MATRIX OF FATTY ACID COMPOSITION OF PREY.

# EACH ROW CONTAINS AN INDIVIDUAL PREY

# FROM A DIFFERENT SPECIES.

no.zero <- sum(seal == 0.)

seal[seal == 0.] <- 1e-05

seal[seal > 0.] <- (1. - no.zero * 1e-05) * seal[seal > 0.]

sealhat <- t(as.matrix(alpha)) %*% prey.quantiles

no.zero <- sum(sealhat == 0.)

sealhat[sealhat == 0.] <- 1e-05

sealhat[sealhat > 0.] <- (1. - no.zero * 1e-05) * sealhat[sealhat > 0.]

AIT.sq.vec <-

( log(seal/mean.geometric(seal)) -

log(sealhat/mean.geometric(sealhat)) )^2

dist <- (sum(AIT.sq.vec))^(1/2)

out.list <- list(sealhat,AIT.sq.vec,AIT.sq.vec/sum(AIT.sq.vec),dist)

names(out.list) <- c("Yhat","Distance Contributions",
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"Proportional Distance Contributions","Final Distance")

return(out.list)

}

QFASA.const.eqn <- function(alpha,seal=seal.mat[i,],

prey.quantiles=prey.mat, gamma=gamma) {

return(sum(alpha))

}

mean.geometric <- function(x) {

# RETURNS GEOMETRIC MEAN

# INPUT:

# x --> VECTOR

D <- length(x)

return(prod(x)^(1./D))

}

## Link function

btoa <- function(Covmat, coefbetas){

mult <- Covmat%*%coefbetas

alphs <- matrix(NA,nrow=nrow(Covmat), ncol=(ncol(coefbetas)+1))

for(i in 1:nrow(mult)){ # number of preds

for(j in 2:(ncol(mult)+1)){ # number of prey species

alphs[i,j] <- exp(mult[i,(j-1)])

}

alphs[i,(1)] <- 1
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}

alphs <- alphs/rowSums(alphs)

return(alphs)

}

## Approximation of Betas

atob <- function(Xcov, alp){

n <- nrow(Xcov)

I <- ncol(alp)

Xinv <- ginv(Xcov)

S <- 1/alp[,1]

almat <- alp[,-1]/alp[,1]

almat <- log(almat)

bet <- Xinv%*%almat

return(bet)

}



Bibliography

Aitchison, J. (1986). The statistical analysis of compositional data. Chapman &
Hall, Ltd.

Aitchison, J. (1992). On criteria for measures of compositional di↵erence. Mathe-
matical Geology 24, 365–379.

Aitchison, J. & Bacon-Shone, J. (1999). Convex linear combinations of compo-
sitions. Biometrika 86, 351–364.

Aitchison, J. M. (2005). A concise guide to compositional data analysis.

Arriola, A., Biuw, M., Walton, M., Moss, S. & Pomeroy, P. (2013). Se-
lective blubber fatty acid mobilization in lactating gray seals (halichoerus grypus).
Physiological and Biochemical Zoology 86, 441–450.

Austin, D., Bowen, W., McMillan, J. & Boness, D. (2006). Stomach tem-
perature telemetry reveals temporal patterns of foraging success in a free-ranging
marine mammal. Journal of Animal Ecology 75, 408–420.

Azzalini, A. & Valle, A. (1996). The multivariate skew-normal distribution.
Biometrika 83, 715–726.

Badjeck, M., Allison, E., Halls, A. & Dulvy, N. (2010). Impacts of climate
variability and change on fishery-based livelihoods. Marine policy 34, 375–383.

Beck, C., Bowen, W., McMillan, J. & Iverson, S. (2003a). Sex di↵erences in
diving at multiple temporal scales in a size-dimorphic capital breeder. Journal of
Animal Ecology 72, 979–993.

Beck, C., Bowen, W., McMillan, J. & Iverson, S. (2003b). Sex di↵erences
in the diving behaviour of a size-dimorphic capital breeder: the grey seal. Animal
Behaviour 66, 777–789.

Beck, C., Iverson, S., Bowen, W. & Blanchard, W. (2007). Sex di↵erences
in grey seal diet reflect seasonal variation in foraging behaviour and reproductive
expenditure: evidence from quantitative fatty acid signature analysis. Journal of
Animal Ecology 76, 490–502.

Beckmann, C., Mitchell, J., Stone, D. & Huveneers, C. (2013). A controlled
feeding experiment investigating the e↵ects of a dietary switch on muscle and liver
fatty acid profiles in port jackson sharks Heterodontus portusjacksoni. Journal of
Experimental Marine Biology and Ecology 448, 10–18.

198



199

Bowen, W. & Harrison, G. (1994). O↵shore diet of grey seals halichoerus grypus
near sable island, canada. Marine ecology progress series. Oldendorf 112, 1–11.

Bowen, W., Lawson, J. & Beck, B. (1993). Seasonal and geographic variation
in the species composition and size of prey consumed by grey seals (halichoerus
grypus) on the scotian shelf. Canadian Journal of Fisheries and Aquatic Sciences
50, 1768–1778.

Bowen, W., Oftedal, O. & Boness, D. (1992). Mass and energy transfer during
lactation in a small phocid, the harbor seal (phoca vitulina). Physiological Zoology
65, 844–866.

Brander, K. (2010). Impacts of climate change on fisheries. Journal of Marine
Systems 79, 389–402.

Breed, G., Bowen, W., McMillan, J. & Leonard, M. (2006). Sexual segrega-
tion of seasonal foraging habitats in a non-migratory marine mammal. Proceedings
of the Royal Society B: Biological Sciences 273, 2319–2326.

Bromaghin, J. (2015). Simulating realistic predator signatures in quantitative fatty
acid signature analysis. Ecological informatics 30, 68–71.

Bromaghin, J. (2017). qfasar: quantitative fatty acid signature analysis with r.
Methods in Ecology and Evolution 8, 1158–1162.

Bromaghin, J., Budge, S. & Thiemann, G. (2016). Should fatty acid signature
proportions sum to 1 for diet estimation? Ecological research 31, 597–606.

Bromaghin, J., Budge, S. & Thiemann, G. (2017a). Detect and exploit hidden
structure in fatty acid signature data. Ecosphere 8, e01896.

Bromaghin, J., Budge, S., Thiemann, G. & Rode, K. (2017b). Simultaneous
estimation of diet composition and calibration coe�cients with fatty acid signature
data. Ecology and Evolution 7, 6103–6113.

Bromaghin, J., Rode, K., Budge, S. & Thiemann, G. (2015). Distance mea-
sures and optimization spaces in quantitative fatty acid signature analysis. Ecology
and evolution 5, 1249–1262.

Budge, S., Iverson, S., Bowen, W. & Ackman, R. (2002). Among-and within-
species variability in fatty acid signatures of marine fish and invertebrates on the
scotian shelf, georges bank, and southern gulf of st. lawrence. Canadian Journal of
Fisheries and Aquatic Sciences 59, 886–898.

Budge, S., Iverson, S. & Koopman, H. (2006). Studying trophic ecology in ma-
rine ecosystems using fatty acids: a primer on analysis and interpretation. Marine
Mammal Science 22, 759–801.



200
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