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Abstract

The Tangled Program Graph framework (TPG) is a genetic programming approach to
reinforcement learning. Canonical TPG is limited to performing discrete actions. This
thesis investigates mechanisms by which TPG might perform real-valued actions. Two
approaches are proposed. In the first, a decision-making network extracts state from
TPG’s internal structure. A gradient-based learning method tailors the network to
this representation. In the second, TPG is modified to generate a state representation
in an external matrix visible to the decision-making network. No additional learning
algorithm is used to configure the decision-making network. Instead, TPG adapts
to use the default configuration. This thesis applies these approaches to a modified
version of the classic CartPole environment that accepts real-valued actions. This
enables the comparison between discrete action configurations of the task and the
real-valued formulation. Results indicate that there is no additional complexity in
TPG solutions under real-valued action versus discrete action configurations.

ix



Chapter 1

Introduction

Tangled Program Graphs (TPG), a genetic programming-based Monte-Carlo rein-
forcement learning algorithm developed by Kelly and Heywood [17], has demonstrated
an ability to compete with state-of-the-art deep learning approaches to reinforcement
learning, demonstrating high performance in both the Arcade Learning Environment
[5] [16] and VizDoom [18] [30]. However, the algorithm as originally implemented
suffers from the limitation that it is only applicable to environments that accept dis-
crete actions; the current action suggestion mechanism built into TPG is inherently
unable to take real-valued actions. This is due to the pre-assignment of sampled dis-
crete actions to the modules within TPG responsible for action selection. This work
attempts to modify TPG using additional data structures that facilitate real-valued
action selection without a fundamental modification to TPG as currently developed.

Real-valued action selection in reinforcement learning problems is typically achieved
using a decision-making network (usually a neural network or deep neural network)
that takes the environment state as input and produces one or more real values as
output. To continually encourage exploration, these suggested actions are then typi-
cally used to build a normal distribution or distributions centered around the output
values(s). The final actions taken are then sampled from those distributions. This
allows the agent to occasionally take unexpected actions that may lead to increased
performance. These networks are computationally expensive to both train and use.
For example, the network used by DeepMind in [25] to play Atari games used 32
8x8 convolutional filters in its first convolutional layer, 64 4x4 convolutional filters in
its second convolutional layer, 64 3x3 convolutional filters in its third convolutional
layer, and a final 512-unit fully-connected hidden layer. TPG successfully solves
similar problems with multiple orders of magnitude less computational cost [17] [16].

This work adopts a hybrid approach by attaching a linear decision-making net-
work to a TPG instance. The TPG instance is responsible for engineering features
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which are provided as input to the decision-making network. Neural networks can
achieve better performance more quickly and using a less computationally expensive
architecture when presented with deliberately-engineered features [15]. This work al-
lows TPG to assume the role of feature engineer. This is done on the basis that TPG’s
action-selection mechanism necessarily requires that TPG is already building a robust
state representation/feature set deliberately suited for action selection. The hybrid
algorithms examined in this work involve providing this feature set to a lightweight
neural network capable of suggesting real-valued actions. By ‘lightweight’ it is implied
that the mapping from features to real-valued action is of the form y = mx + c (i.e.
linear). This minimizes the complexity of the mapping, but assumes that TPG can
find features that are sufficiently informative to derive a useful real-valued action.

This work explores two possible implementations of the hybrid algorithm for op-
eration under the conditions described above. Initially, a neural network-based learn-
ing algorithm, REINFORCE [33], was passed data from within existing TPG data
structures as its input. These data structures hold TPG’s own internal state repre-
sentation, which it uses to suggest actions in the case where no additional decision
network is involved, and so are presumed to hold useful features that might be lever-
aged by another learning algorithm. In this implementation, TPG is unmodified and
REINFORCE is only provided with TPG instances that have already been trained
in isolation and with no knowledge of REINFORCE. REINFORCE is then respon-
sible for learning to make use of the features provided by TPG. Following this, a
second approach is explored in which TPG is encouraged to perform explicit feature-
engineering in an external ‘indexed memory’ data structure. Actions are chosen by a
separate decision-making network which acts as the sole action-selection mechanism
at all times to ensure that TPG must learn to provide useful features.

In all experiments, the classic CartPole environment [4] was used. This was cho-
sen because it is a widely-used reinforcement learning benchmark [27] [12] [26] [1] [3]
and known by the author to be readily tractable to TPG. Specifically, the OpenGym
Python implementation was assumed1. All other aspects of this thesis were then
coded from first principles using Python. Such an approach enabled a particularly

1https://gym.openai.com/envs/CartPole-v1/

https://gym.openai.com/envs/CartPole-v1/
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tight coupling between the various components of TPG, indexed memory and REIN-
FORCE.

The remainder of this thesis is organized as follows. Chapter 2 provides a back-
ground for readers who may be unfamiliar with one or more of the major components
discussed in this work. Specifically, this chapter: explains the principles of rein-
forcement learning; explains the principles of evolutionary algorithms and genetic
programming in particular; discusses the major pre-cursors to TPG to ensure read-
ers understand the major concepts behind the TPG algorithm and the path that
led to its development; provides a detailed description of TPG as implemented in
this work such that it could be reproduced; explains gradient-based reinforcement
learning in general and the specific gradient-based reinforcement learning algorithm
used in this work, REINFORCE; and reviews the CartPole reinforcement learning
environment on which the experiments in this thesis are performed. Chapter 3 dis-
cusses the motivation behind the algorithms examined in this work. Specifically, it
discusses the current obstacles to extending TPG to produce real-valued actions and
how the hybrid algorithms discussed in this thesis overcome those obstacles. It pro-
vides an overview of the hybrid algorithms examined. Chapter 4 provides a detailed
description of the experiments carried out in this work. This section provides pre-
cise implementation details of the algorithms discussed in chapter 3. Chapter 5 lists
the results of the experiments carried out in this work and discusses the meaning of
these results. Chapter 6 includes a summary of the results collected, a review of their
meaning with regard to the goals set out in this work, and a discussion of future work
that may be performed based on the results collected.



Chapter 2

Background

This work involves the use of reinforcement learning algorithms originating from two
quite different paradigms in machine learning: genetic programming and gradient-
based learning. This section provides a description of the topics upon which this work
is built, including reinforcement learning in general, the REINFORCE algorithm, and
genetic programming, from basic linear genetic programming to the variants of TPG
used in this work.

2.1 Reinforcement Learning

Reinforcement learning (RL) refers to a branch of machine learning in which the goal
is to develop policies, often referred to as agents, through direct interaction with an
environment. This is distinct from most other forms of machine learning in which
learning is performed relative to a static data set. RL agents are intended to learn
policies through a process of continual interaction with the target environment, which
responds to the agent’s performance with a reward. Policies specifically refer to ac-
tion selection given the state of the environment, and may or may not be a function
of both present and previous state. For example, an agent may be a robotic arm
(or more precisely the software controlling the robotic arm) and the environment a
specific build sequence in an assembly line. The arm may be intended to learn how
to separate boxes on a conveyor belt based on size and move them to designated
locations. The robot is intended to operate continually through time, picking up and
moving a new box after the previous one has been placed. Because different machine
learning paradigms often overlap considerably in their methods and objectives, hard
and fast lines between reinforcement learning and other areas of focus in machine
learning are difficult to draw. However, classical reinforcement learning applications
are typically defined as attempts to solve the problem of finite Markov decision pro-
cesses [6]. This is a formalization of sequential decision making where actions taken
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Figure 2.1: The standard reinforcement learning loop. This loop summarizes the
problem of finite Markov decision processes, where the agent affects the environment,
which later affects the agent, and so on. Taken from Sutton and Barto [32].

by an agent influence the future state of the environment, i.e. the learning agent
explicitly interacts with an environment with the objective of maximizing long term
reward. An agent’s policy therefore represents a strategy for maximizing the long
term reward under a specific environment. This problem is well summarized by the
depiction of the agent-environment interface taken from Sutton and Barto’s canonical
text on reinforcement learning [32] and shown in figure 2.1. In this diagram:

• t refers to the current timestep in a sequence of discretized timesteps

• St is the state of the environment at timestep t

• At is the action taken at timestep t

• Rt is the reward signal received by the agent from the environment at timestep
t

• St+1 is the new state of the environment at timestep t + 1 after taking action
At

• Rt+1 is the reward signal received by the agent at timestep t + 1 after taking
action At

These items are discussed further below.
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2.1.1 Continuing vs Episodic Tasks

To fully characterize time as viewed by a learning agent, it is necessary to define the
way in which the duration spent on the task is discretized and seen by the agent.
Typically, the duration spent on a task is divided into discrete timesteps: rather
than receiving a continuous stream of information from the environment, the agent
samples the environment at discrete times, referred to as timesteps in the context of
reinforcement learning.

Reinforcement learning tasks are often broken down further into two categories:
continuing or episodic. While a continuing task may theoretically continue endlessly
without interruption, an episodic tasks has a terminal state. This may be defined
in terms of an environment configuration (for example, the task was solved or the
agent has irrecoverably failed) or a pre-determined maximum number of timesteps or
a combination of both.

2.1.2 State

In a given environment, a learning agent is exposed to a finite and well-defined amount
of information contained in the environment. This information is referred to as the
state of the environment and the state of the environment at timestep t is represented
as St. This state information defines the input on which an agent operates.

The components of the state are highly dependent on the requirements of the
environment and the capabilities of the agent, and are ultimately decided by the
researcher or application designer. For example in the case of the robot arm, the
state may be comprised of video feeds from cameras focused on the arm and boxes as
well as pressure sensors in the arm itself. This state representation may be chosen as
the most feasible given the environment and available hardware and with the belief
that this likely contains sufficient information for the agent to operate. At timestep t,
the state St is comprised of, for example, images sampled from the cameras and sensor
readouts sampled from the pressure sensors. How this information is formatted and
presented to the agent is up to the researcher or application developer and may depend
on the algorithm used. For all algorithms use in this work, the state is represented as
a vector of floating-point values sampled from the environment at each timestamp.
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2.1.3 Actions

The action At is the action suggested by the agent at timestep t. The definition of
actions is highly dependent on the environment and the agent. In the case of the
robot arm, the action taken at timestep t may be the assertion of motor controller
values by the software to reposition the arm. In that formulation, At would be the
expression of a vector of values calculated by the agent as a response to the state St.

Much like the distinction made between continuing and episodic tasks, there is an
important distinction to be made between continuous actions and discrete actions.
A discrete action is an action selected from a pre-defined set of possible actions. In
the case of the robot arm, a (partial) set of possible actions may include the option
to clasp or not to clasp. At any given timestep, the arm must decide whether or
not to attempt to clasp a box and suggesting an action entails sampling from these
behaviours. Although the clasping example given here is a binary decision, the set of
actions may be arbitrarily large.

In the case of continuous actions, the action is a real value chosen from a continu-
ous number line, typically from within a prescribed range. For example, in the case of
the robot arm, the agent may be required to calculate the amount of pressure neces-
sary to apply to the box to successfully lift it, which may be a floating-point value in
Pascals. Continuous actions are typically floating-point values, though lines may be
blurred at times. For example, if the robot expresses Pascals of applied pressure by
writing an unsigned integer value from a finite range to a digital-to-analog converter
then the real-valued action could be re-formulated as a discrete action selected from
a very large set of unsigned integers. In this work, the distinction is simplified: dis-
crete actions describe actions selected from a low-dimensional (e.g. binary) set, while
continuous actions describe the calculation of one or more floating-point values.

2.1.4 Rewards

Reinforcement learning problems are typically formulated such that at any given
timestep, the agent receives a reward from the environment after taking its action.
The reward signal provided to the agent is the agent-environment interface’s primary
feedback mechanism. It is intended to inform the agent whether it has been successful
in its task. The combination of reward and state provide the agent with enough
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information to direct itself during operation: the state lets the agent know how the
environment is configured, and the reward signal provides context to the agent that
allows it to direct its behaviour with the goal of receiving a higher reward.

The design of the reward signal is dependant on the environment and varies in
practice. However, the reward signal typically conforms to some common character-
istics:

• The reward signal is often a numeric value.

• A positive reward signal typically means the agent has performed well.

• A zero or negative reward signal means the agent has performed poorly.

In the case of the robot arm, the agent may receive a reward of +1 every time a
box is re-positioned correctly and -1 every time it drops the box during movement.
The reward Rt+1 represents the reward received by an agent at timestep t + 1, which
is by definition in response to action At. A similar notion is the return, represented
as Gt. This is the cumulative reward received by an agent, calculated as the sum of
all rewards seen from timestep t until the end of the episode. For example, G0 is the
sum of all reward signals received by an agent over a single episode.

Rewards and returns define goals for the agent, which must ultimately learn to
maximize these signals. A solution to the reinforcement learning problem is an algo-
rithm that conforms to the Markov decision process formulation and can adapt its
own behaviour to maximize its return.

The separation of reward and return lead naturally to two classes of learning algo-
rithms: Monte Carlo methods and temporal-difference (TD) methods. In the former,
episodes are allowed to play out in full. The agent’s policy, i.e. the agent’s action
selection mechanism when presented with some environment state, is left unchanged
over the course of the episode. At the end of the episode, the agent or learning algo-
rithm retains a full record of all states, actions and reward signals encountered during
the episode and uses this complete information to attempt to modify the policy in
such a way as to generate a higher return on the next episode. In the latter case, the
learning algorithm updates the agent’s policy simultaneously to acting in the envi-
ronment. In this configuration, the learning algorithm makes use of each new reward
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signal and the corresponding state and action that led to it to update the agent’s
behaviour definition at each timestep. While TD methods attempt to maximize their
reward signal during an episode, Monte Carlo methods are agnostic to the dynamics
of the reward accumulation system and attempt only to maximize the final return.
All algorithms considered in this work are Monte Carlo algorithms.

2.2 Genetic Programming

2.2.1 Evolutionary Algorithms

Genetic programming is a variation of evolutionary algorithms, which are themselves
a category within the wider field of evolutionary computation [10]. Evolutionary al-
gorithms attempt to simulate aspects of natural evolution with the goal of optimizing
a solution to a given problem [2]. Under an evolutionary algorithm, solutions are for-
mulated such that they can be copied (i.e. that they can reproduce, often referred to
in the literature as cloning), that they can be incrementally modified (i.e. that they
can be mutated, often referred to in the literature as variation), and that they can be
assigned a quantitative measure of their quality as a solution to the given problem,
where this quantitative measure is typically referred to as the solution’s fitness. As
described by Bäck et. al. [2] and modified here, a general evolutionary algorithm
operates according to the following steps:

1. Randomly initialize a population of candidate solutions.

2. Assess the fitness of each member of the population.

3. Remove some portion of the least fit candidates.

4. From the remaining candidates, refill the population by stochastically:

(a) Selecting from the remaining candidates.

(b) Reproducing (i.e. cloning) a new candidate from the selection.

(c) Mutating the new candidate to produce a modified solution (i.e. perform-
ing variation).
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5. Repeat from step 2 until some termination criteria, e.g. pre-determined ade-
quate fitness, is reached. At this point, the most fit candidate solution is the
final result and output from this algorithm.

Unlike most approaches to machine learning genetic programming will:

• Assume multiple candidate solutions simultaneously.

• Modify candidate solutions without use of gradient information.

• Map between representation (genotype) and search (phenotypic) space.

• Support the emergence of structure in addition to the optimization of a specific
structure.

This thesis will assume a linear genetic programming representation, described in
section 2.2.2 and adopt the Tangled Program Graph framework for addressing the
last point in particular, described in section 2.4.

2.2.2 Linear Genetic Programming

Genetic programming (GP) is an approach to evolutionary algorithms in which the
candidate solutions are computer programs. In this approach, the fitness of an indi-
vidual is assessed by executing the program and evaluating the degree to which the
program solves the given problem. Early work in genetic programming structured the
programs as trees of instructions or operations [19]. This work uses an alternative
approach known as linear genetic programming [7] in which the candidates are struc-
tured as a sequential list of instructions. A candidate may be reproduced by creating
a copy of this list, and mutation is a matter of altering one or more instructions in
the sequence. This approach to GP provides the basic representation for programs
assumed in the primary algorithm investigated in this work, Tangled Program Graphs
(TPG), though TPG may assume any representation of GP.

The following is a description of the linear GP model built into the TPG im-
plementation used in this work. Under this formulation, a GP candidate is a list of
instructions that operate on a vector of input attributes as well as eight floating-point
registers. The vector input is highly dependant on the application being developed.
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Under reinforcement learning it is typically the state St, though it can also be one or
more samples from a static dataset in non-reinforcement learning applications. The
eight registers are general purpose registers that may be used by the GP candidate
to store the results of calculations performed on a combination of either or both of
the input vector and other register values. For example, a program may execute the
following instructions:

R[2]← R[2] + S[1]
R[0]← R[0]−R[2]

where S[index] indicates indexing into the state vector and R[index] indicates index-
ing into a particular register.

At the end of it’s execution, a GP candidate will hold eight floating-point values
in its registers which are the result of modifications made during execution. The
values in these registers are the output of program execution. Different applications
will interpret these outputs in varying ways. For example, a linear GP candidate
being trained as a binary classifier may use the value in register 0 as its confidence
in a positive classification. In a multiclass classifier, several registers may be taken
together as the candidate’s confidence scores across multiple classes. When devel-
oping a reinforcement learning agent, it is up to the developer to extract an action
suggestion from the registers. In this work, the action selection mechanism is not
left to individual GP programs but formulated as a process across multiple programs
using the TPG framework, described in section 2.4.

Most instructions used this formulation of linear GP are binary operations of the
form

R[i]← R[i] op V [j]

where

• i and j are the indices into the registers and vector V respectively.

• The vector V is either the input vector or the program’s registers depending on
the mode of the instruction.

• op is the mathematical operation to be carried out.
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The instruction set used also includes unary operations of the form

R[i]← op V [j]

Finally, the instruction set contains a conditional operation of the form

R[i] < V [j] ? R[i]← −R[i] : no-op

A complete instruction comprises four components:

• The target index

• The source index

• The instruction mode

• The op-code

The target index is the index i from the examples above and defines into which
register the result will be stored. The source index is the index j from the examples
above and defines the index into the source or input vector, represented as V in the
examples above, from which the operand will be retrieved. The instruction mode is
a binary setting that indicates whether the source vector V will be the program’s
input vector (i.e. the state in the context of reinforcement learning) or the program’s
registers. Finally the op-code represents the operation to be carried out. A full list
of the instructions used in this work’s formulation of linear GP is described in table
2.1.

Op-code Operation
Addition R[i]← R[i] + V [j]

Subtraction R[i]← R[i]− V [j]
Multiplication R[i]← V [j] ∗ 2.0

Division R[i]← V [j]/2.0
Cosine R[i]← cos(V [j])

Conditional R[i] < V [j] ? R[i]← −R[i] : no-op

Table 2.1: Instruction used in this work’s formulation of linear GP

The conditional operation has been described using the C-style ternary operator
syntax for compactness. Note that the multiplication and division operations have
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been formulated as unary doubling and halving operations, rather than as binary op-
erations similar to addition and subtraction, as might be expected. This is intentional
and part of an effort to ensure stability of the operations carried out during program
execution. This is discussed further in section 4.1.

2.3 Precursors to Tangled Program Graphs

Tangled Program Graphs (TPG) is a genetic programming framework proposed by
Kelly and Heywood [17] and developed for enabling the organization of programs into
teams of programs and further into graphs of teams of programs. The underlying
motivation being to support a process of emergent modularity, and therefore enable
the search process to scale across high-dimensions and multiple tasks. The primary
focus of this work is the extension of TPG to perform continuous actions. TPG
emerged as a natural extension of an earlier genetic programming framework for the
emergent discovery of teams of programs, Symbiotic Bid-Based programming (SBB);
itself a natural extension of Bid-GP. The following sections describe Bid-GP and SBB,
which provide the necessary foundation for understanding TPG.

2.3.1 Bid-GP

The following is a summary description of the Bid-GP algorithm, described by Li-
chodzijewski [20] [22], simplified so as to focus on the details relevant to Bid-GP’s
role as a precursor to SBB. Bid-GP was developed as a classification algorithm and
will be described as such, with the bridge to reinforcement learning described later.

In the description of linear GP provided previously, it was noted that the solution
is a single linear GP program evolved to perform the desired task. This makes the
assumption that the task is ‘doable’ by a single linear GP program. This approach
also discards all usefulness that may be found in the remaining agent population
after the top-performing agent has been extracted. Bid-GP is an attempt to leverage
the usefulness of populations of linear GP agents by having a population of agents
collectively ‘bid’ for the opportunity to present themselves as the candidate solution.
This allows a sub-set of programs to be identified, each with its own useful and
potentially specialized behaviour. Under this approach, programs whose usefulness is
only apparent in certain circumstances, such as for a particular subset of exemplars,
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may be retained in the final solution and put to further use, despite possibly poor
performance when confronted with exemplars outside of that set. This has the effect of
lightening the load placed on any single agent and redistributes the work of classifying
exemplars across an entire population.

In canonical linear GP, each program comprises a complete solution to the task
at hand. During evolution of a solution to, say, classification problems, the output
from canonical linear GP is a class label. It follows that fitness is then some overall
measure of classification accuracy, which in turn is used to rank each program of
the population. Classification is accomplished by interpreting a program’s register
values as confidence scores across classes. For example, in a multi-class classification
problem with n classes (where n < 8), a high-level algorithm might be:

1. For each GP program:

(a) For each exemplar in the dataset:

i. Execute the program’s instructions using the examplar as input.

ii. Predict that the examplar is a member of class i where i is the index
of the program register with the highest value.

iii. Tally each correct prediction.

(b) Assign the program a fitness equal to the ratio of correct predictions out
of the total number of examplars.

2. Order the programs by their assigned fitness.

3. Delete some percentage of the least fit individuals and regenerate new ones from
the remaining fit individuals.

In Bid-GP (as well as SBB and TPG), programs are modified to include a single
scalar value selected at random during agent creation from the set of valid agent
outputs. Let this scalar value be the action. In the case of a classifier, the set of valid
outputs comprises the set of classes from which the classifier is making its prediction.
This action remains with the agent for its lifetime, though the mutation operation
during reproduction may alter this value in offspring of a given agent. Rather than
formulating a program’s output as an interpretation of its registers in terms of a class
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label, each program’s output is now the value stored in R[0], referred to as that agent’s
bid. Only the program with the highest bid gets to provide its action for comparison
against the true class label.

This means that in Bid-GP, programs are not expected to be able to classify all
exemplars. Rather, in a classification problem, any given agent is only evaluated on its
ability to correctly identify whether a given exemplar is or is not a member of the class
assigned to that agent via its action. Under Bid-GP, classification is accomplished by
allowing the entire population of programs to execute their instructions with a given
exemplar as input. After all programs have completed instruction execution, their
bids (the value stored in R[0]) are compared and the exemplar is predicted to be the
class stored in the highest-bidding program’s action. Each program is then acting as
a binary classifier by asserting their level of confidence that a given exemplar is or is
not a member of that program’s assigned class.

This bidding mechanism has the dual effect of not only allowing a program to
submit itself as a solution to the given exemplar, but also to bow out gracefully
via a low bid if the agent is not well-suited to the given exemplar. This will, of
course, typically happen when the program recognizes that a given exemplar is not
of its assigned class. However, this also allows for the case where programs specialize
in subsets of their assigned class. For example, in a classification task where each
exemplar is a photograph of an animal and the task at hand is to identify if the
animal is a dog, cat or bird, some programs may be highly successful in identifying
tabby cats while others are successful at identifying Siamese cats. Though both sets
of programs will be assigned the ‘cat’ class, the tabby identifiers can bow out with
a low bid when presented with a Siamese cat, and vice versa. In this way, programs
not only are freed from the burden of having to generalize across all tasks or classes,
but they can further specialize within that class or task.

At each step of evolution the fitness of all programs is evaluated and the same
removal and reproduction process described in the previous section on linear GP takes
place such that the total population size remains constant. The mechanics of fitness
assessment are not described here as they differ significantly from the assessment
used for TPG agents in this work; it is adequate to say that programs score high
fitness when they either bid highly when presented with their assigned class or bid
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low when presented with a class outside of their assignment. After evolution, the
entire population is itself considered a solution to the task being optimized. After
evolution, the same bidding procedure is followed using the resulting population to
classify new exemplars.

Lichodzijewski and Heywood found that Bid-GP significantly outperformed canon-
ical linear GP in multiclass classification tasks [20] [22]. This result supports the
approach of encouraging linear GP agents to specialize rather than generalize and to
co-operate to form a complete solution. However, Bid-GP pre-defines a population
size that is never varied. This means that the bidding process is broadcast across
the entire population, with all members of the population assessed on each exemplar
before the single program with largest bid value can be identified. Moreover, any
children that represent degenerate behaviours (e.g. bid infinity on all exemplars) will
need identification before performing fitness evaluation. Instead, it would be much
more useful if a search for teams of programs could be performed at the same time,
but independently of the search for useful (Bid-GP) programs.

2.3.2 Symbiotic Bid-Based Programming

Developed by Heywood and Lichodzijewski [23] [21], Symbiotic Bid-Based program-
ming (SBB) is an extension of Bid-GP that addresses some of the shortcomings of
Bid-GP identified above. SBB introduces an additional concept on top of the linear
genetic program instance, the team. Teams are (variable length) vectors of references
to programs, also referred to as learners in in both SBB and TPG. A complete so-
lution to the problem at hand now takes the form of a team. This means that the
search for good combinations of programs is explicitly defined by members of the
team population. Should a degenerate program appear, it will only impact on the
performance of the subset of teams in which it appears. That subset of teams will be
penalized by a low fitness ranking. Selection will cull these teams, and any (Bid-GP)
program not associated with a team will also be deleted. New teams and programs
can then be introduced relative to the remaining (successful) team and program pop-
ulation content. Note that there is no attempt to propagate fitness as evaluated at
the team level back to the level of programs. This is important as it helps mitigate
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the ‘relative overgeneralization’ pathology1.

Teams represent a variable length GP population whose content is defined in terms
of the Bid-GP programs from the learner population, shown in figure 2.2. During
evolution, reproduction and mutation operators are applied not just to individual
learners but to the teams as well, with the effect that the algorithm searches for
both useful learner behaviour as well as useful team sizes and arrangements. This
section gives a general overview of SBB and conveys its central ideas as they apply to
TPG. Specific implementation details can be found in Lichodzijewski and Heywood’s
original paper [23] but, like Bid-GP, are not provided here so as not to distract from
the implementation of TPG.

SBB begins from the position that canonical linear GP and Bid-GP are designed
primarily to search the space of useful linear GP agent behaviours. These algorithms
also point to the limitations of individual GP agents, evidenced by the increased
classification performance seen by Bid-GP over canonical linear GP. Finally, the two
algorithms also suggest that the evolutionary algorithm applied in this way can search
not just for general purpose classifier agents, but for agents that conform well to an
enforced configuration, whether that be operation in isolation as in canonical linear
GP or bidding behaviour within a population of co-operative agents as in Bid-GP.
This suggests the configuration itself as the next target of evolutionary search oper-
ators. This is the standpoint from which SBB introduces the team as the searchable
configuration space.

As described, teams are vectors of references to learners from within a population
of learners. This is shown in figure 2.2. In the C programming language, this might
be implemented as an array of pointers to linear GP agents. These learners keep the
additional action value introduced in Bid-GP. The vectors are the candidate solutions
to the problem to be optimized and act as direct stand-ins for the population of
learners used in Bid-GP. Solution execution entails allowing all learners within a team
to execute their instructions, each with the same exemplar or state as their input. The
learner with the highest bid gets to put forth its action as the classification prediction
or action. In fact, Bid-GP can be thought of as a limited instance of SBB in which

1Relative overgeneralization is when components of a solution receive an average reward over
all the (team) interactions they participated in. This works against the development of specialized
components, that might be very important, but only to a small number of teams. [29]
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there is only one team, i.e. equal to the population size.

Figure 2.2: Team and learner population dynamics of SBB, borrowed and modified
from Lichodzijewski [23].

SBB also introduces search operators that operate on the teams. Specifically,
teams are kept relatively small; Lichodzijewski’s implementation asserts a maximum
size of 10 agents per team. In addition to the population of learners, SBB also main-
tains a population of teams. While canonical linear GP and Bid-GP’s search opera-
tors act directly on the GP agents, SBB’s search operations act directly on the teams
which has a trickle-down effect to indirectly affecting their programs. What follows is
a simplified description of the complete SBB algorithm described by Lichodzijewski
[23]:

1. Initialize population of randomly-created teams:

(a) For each new team, randomly generate 2 unique agents and store pointers
to them in the vector of pointers (i.e. the team).

(b) Add these agents to the agent population.

2. Until a candidate solution (i.e. team) meets some pre-defined fitness criteria:

(a) Generate new teams from previous teams to fill the team population to its
maximum size.

(b) Evaluate all teams on the task at hand and assign each team a fitness value
based on its performance (e.g accuracy in a classification task).
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(c) Reduce the team population size by removing a pre-defined fraction of the
least fit teams.

From this description it is apparent that this algorithm closely follows the algo-
rithm used to search the space of programs, though in the case of SBB the search
is performed over the space of teams. The search is still accomplished via mutation
and reproduction, though of teams rather than learners. This occurs during the ini-
tialization and team generation procedures. At the end of initialization there is both
a population of teams and a population of learners into which the teams point.

At each step of the evolution phase of the algorithm, teams and learners are
subject to the reproduction and mutation operators that enable the search of both
populations. New team generation at this phase is as follows:

1. From the remaining fit individuals, a team is selected at random.

2. This team is reproduced and a copy is added to the team population. This
team holds identical pointers into the learner population as its parent.

3. The team is mutated:

(a) Each learner in the team is considered and removed with uniform proba-
bility p(i−1)

r where i is the number of teams remaining (thus the probability
of removing a learner decreases with each deleted learner). No team may
reduce its size below two learners. It is important to note that the learners
themselves are not deleted and remain in the learner population. The team
simply deletes its pointer to that learner. This ensures that other teams
that may be referencing that learner are unaffected.

(b) Each learner in the population of learners is considered and a reference
added to the team with uniform probability p(i−1)

a up to the maximum
number of learners per team.

(c) Each learner in the team is considered and mutated with some probability
pm via the mutation operations described in canonical linear GP. When
mutating a learner, the following steps are taken to preserve the original
learner in the event that other teams are also indexing it:
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i. The learner is copied.

ii. The team in question’s pointer to the original learner is re-assigned to
point to the copy.

iii. The copy is then mutated.

After the team population has been filled back to its maximum capacity, the pop-
ulation of learners is reviewed and any learners to whom no teams are pointing are
deleted from the population.

While standard linear GP and Bid-GP only facilitate direct search of the space
of learners, the algorithm described above searches both the space of learners and
configurations of learners. By maintaining a population of learners, SBB allows a
library of learner behaviours to accumulate. The combined effect of steps 3(a) and
3(b) is that of searching through this library for learners that complement the team’s
current behaviour. Much like Bid-GP, SBB thus encourages the generation of special-
ist learners since all learners must act together to form a complete solution. Unlike
Bid-GP, though, SBB’s maximum program size and removal/re-adding steps provide
a filtering mechanism to weed out degenerate learners. Moreover, should a learner
appear in a ‘wrong’ team it is still free to ‘hitchhike’ to other teams as long as it is
not explicitly detrimental to team fitness. In this way, SBB can retain the benefits of
learner co-operation developed in Bid-GP while reducing needless computation.

Steps 3(a) and 3(b) alone are inadequate to search the space of solution candidates;
these steps presume the existence of adequate learners in the learner population, which
would otherwise be fixed at initialization, and are limited to searching the space of
combinations of current learners. Through step 3(c), SBB expands this search to
include the entire space of programs and teams. The learner space is searched via
learner mutation. This lifts the restriction of searching only the space of combinations
of existing learners, since the population of existing learners is now dynamic.

When compared to canonical linear GP, Lichodzijewski found that SBB displayed
a definitive improvement over linear GP in classification accuracy over canonical linear
GP under four classification tasks. Additionally, Lichodzijewski’s analysis showed
that learners under SBB do indeed ‘specialize’. Lichodzijewski examined the learners
in the final task solution candidates to determine into which features of the input
space the learners indexed during execution of their instructions. For two of the
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four datasets, it was shown that over 90% of the features indexed were indexed by
only one learner within the team. This suggests that, while developing their bidding
behaviour, programs learn to focus on a subspace within the exemplar space. Finally,
Lichodzijewski also found that in most cases the number of effective instructions (i.e.
only instructions that have an effect on the final bidding behaviour) for an SBB
candidate solution was less than that for a competing lone canonical GP learner on
the same task, despite the SBB candidate containing multiple learners itself. Not
only does this translate to lower computational effort even compared to canonical
GP, let alone Bid-GP, but it suggests that added constraints on a program (i.e.
the requirement that a program generalize across all classes in a classification task
rather than focus on one) lead to program bloat; the learner will be forced to execute
programmatic contortions via a much larger list of instructions to produce a successful
program. This extra complexity presumably translates to a more arduous search of
the space of programs.

These findings strongly support the use of the teaming paradigm in linear GP.
However, SBB still suffers from some limitations. Specifically, while SBB permits a
search of learner configurations, these configurations have imposed on them both a
maximum size and an assertion that the members of the configuration are necessarily
all linear GP programs. While SBB proves the value of searching the space of con-
figurations, it artificially limits scope of this space. These limitations are addressed
by TPG, which is the primary focus of this work and is explained in the following
section.

2.4 Tangled Program Graphs

Developed by Kelly and Heywood, Tangled Program Graphs (TPG) is a genetic
programming-based reinforcement learning algorithm and as such represents a Monte
Carlo approach to reinforcement learning, i.e. it is episodic and only updates after
the interaction with the environment reaches a suitable end condition. It builds
directly on top of SBB by incorporating the same teaming paradigm. However, while
SBB is limited to constructing solutions in the form of a tree consisting of a single
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node2, TPG allows solutions to take the form of arbitrarily structured graphs. This is
accomplished via a modification to the learner definition. In the algorithms discussed
previously, learners have been made up of a list of sequential instructions, a bank of
eight floating-point registers, and a single scalar action value. If a learner wins a bid,
either in the context of a population (e.g. Bid-GP) or team (e.g. SBB) they win the
right to suggest their action value. TPG extends the learner definition such that the
suggested action upon winning a bid may be a scalar action value or a reference to
another team. When a learner in the latter case wins the bid, this pointed-to team
then executes all of its learners as per SBB. This is shown in figure 2.3, taken and
modified from Kelly [17]. Its highest-bidding learner puts forward its action, which
is either the final scalar action value or a pointer to another team, and so on.

Figure 2.3: Team-to-team pointer dynamics of TPG, borrowed and modified from
Kelly [17].

While graphs are not guaranteed to be acyclic, acyclic execution is enforced by dis-
allowing any one team from being reached more than once during solution execution;
if a team is encountered a second time during execution, the second highest-bidding
learner puts forward its action instead. The process repeats until either a new team
or a scalar action value are encountered. This is further guaranteed by enforcing the
rule that each team must contain at least two scalar actions.

By allowing the formation of arbitrarily large graphs, TPG completes a research
theme that began with the extension of single linear agents to populations of agents

2Extensions to equal depth trees were also pursued [11], but only by applying evolution in inde-
pendent phases (one per tree level).
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in Bid-GP: under the paradigm where the smallest unit of execution (a module) is the
genetic program bidding to submit their solution to a given instance of the problem
at hand (e.g. classification exemplar, state value, etc.) TPG allows the evolutionary
algorithm complete freedom in designing both linear genetic program instances as well
as arbitrarily-ordered hierarchical combinations of these instances, simultaneously
leveraging the advances discovered in bid-based execution, populations, and teaming,
while broadening the space of candidate solutions being searched to include solutions
of arbitrary size and complexity.

TPG has proven itself to be highly capable of solving a wide range of reinforcement
learning problems [17] and is the primary focus of this work. Indeed, TPG solutions to
the Arcade Learning Environment [5] (ALE) visual reinforcement benchmark are com-
petitive with a wide range of deep learning solutions [16], while producing solutions
that are a fraction of the computational cost. What follows is a detailed description
of TPG as implemented by the author and used in the experiments discussed here.

2.4.1 Linear Genetic Programs

Like Bid-GP and SBB, TPG uses linear genetic programs with the addition of a fixed
action value as its fundamental unit of computation.3 The linear genetic programs
used in this work are identical to those described in section 2.2.2 in their instruction
set, mutation operations, register definitions, and execution. TPG modifies these
programs so that the action value decided at program creation may be either a discrete
scalar action value from the set of valid (application specific) actions or a reference
(or pointer) to a pre-existing team. Discrete scalar (application specific) action values
under TPG are typically referred to as atomic actions.

TPG maintains a single population of learners into which teams may reference (or
point). An additional learner component, introduced in SBB but first discussed here,
is a counter owned by each learner. This counter tracks the number of teams that
hold a reference to this learner. This lets learners track a crucial piece of their status
within the learner population. Namely, this allows for the identification of orphaned
learners, i.e. learners in the population to which no team is pointing. The learner

3As per Bid-GP and SBB, TPG does not require that these units must implement linear ge-
netic programming; any genetic programming paradigm that supports mutation and reproduction
operations and is capable of submitting a scalar bid upon execution may be used.
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Parameters Value
padd 0.6
pdel 0.6
pmut 0.6

pmut.action 0.6
patomic 0.5
smin 8
smax 128

Number of registers 8

Table 2.2: Parameters used in this implementation of linear GP programs

population and the use of this counter is described later in section 2.4.3, in which the
evolutionary algorithm is fully defined. Table 2.2 defines all parameters used in this
implementation of the linear genetic programs.

Initialization

On creation of a new program, a number of initial instructions is chosen between and
including smin and smax using a uniform random number generator. This number
of instructions is then created by randomly generating mode (i.e. register or input),
target index, source index and op code values. These are also generated using uniform
random number generators from within the ranges described in section 2.2.2. These
instructions are appended to a list owned by the genetic program.

In addition to its instructions, a new program also generates an atomic action
that it will reference for its lifetime. This is created by sampling the set of atomic
actions with uniform probability. During reproduction, offspring from this learner
may generate a new action value that is either another atomic action or a reference
to a team.

Mutation

Four mutation operations are defined on a linear genetic program instance: instruction
addition, instruction removal, instruction modification, and action modification. The
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addition and removal mutation operators, ‘addRandomInstruction’ and ‘deleteRan-
domInstruction’ stochastically remove randomly-selected instructions. The modifica-
tion operators, ‘mutateRandomInstruction’ and ‘randomlyModifyAction’, stochasti-
cally modify randomly-selected instructions and potentially the learner’s action re-
spectively. The algorithms used all employ the ‘weighted coin flip’, defined in algo-
rithm 1.

Algorithm 1: weightedCoinFlip
Input: Probability p

Output: True or False
r ← number generated from URNG between between [0.0, 1.0]
if r < p then

return true
else

return false

In these algorithms, uniform random number generators are referred to as URNGs.
The program instance’s current list of instruction is referred to as ‘instructions’. This
structure is an array that is assumed to have insertion and deletion operators ‘in-
sert’ and ‘delete’ defined on it that can insert a new element or delete an element,
respectively, at a certain index, as well as a ‘length’ operation that returns the array’s
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length. The four operations are defined below in algorithms 2 to 5.
Algorithm 2: addRandomInstruction

if weightedCoinF lip(padd) and instructions.length < smax then
inst ← randomly generated instruction
index ← index generated from URNG between [0, instructions.length)
instructions.insert(inst, index)

Algorithm 3: deleteRandomInstruction

if weightedCoinF lip(pdel) and instructions.length > smin then
index ← index generated from URNG between [0, instructions.length)
instructions.delete(index)

Algorithm 4: mutateRandomInstruction

if weightedCoinF lip(pmut) then
index ← index generated from URNG between [0, instructions.length)
component ← uniform random selection from [MODE, TARGET,
SOURCE, OPCODE]

bounds ← 0
if component == MODE then

bounds ← number of instruction modes
else if component == TARGET then

bounds ← number of registers
else if component == SOURCE then

bounds ← length of input vector
else

bounds ← number of possible opcodes
value ← integer generated from URNG between [0, bounds)
while value == instructions[index][component] do

value ← integer generated from URNG between [0, bounds)
instructions[index][component] ← value

where

• ‘number of instruction modes’ is always 2 in this implementation, since an in-
struction can be a register mode instruction (i.e. the second or primary operand
is indexed from the program’s registers) or an input mode instruction (i.e. the
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second or primary operand is indexed from the input vector) The ‘MODE’
component is a flag indicating the type of instruction.

• ‘number of registers’ is always 8 in this implementation.

• ‘length of input vector’ is dependent on the environment or task at hand.

• ‘number of possible opcodes’ is 6 for this implementation (though this changes
if memory operations are introduced, as described later in section 2.4.4).

The final while-loop ensures that mutation does indeed create a new instruction, even
in the event that the first new component created would actually result in no change
to the instruction.

Algorithm 5: randomlyModifyAction
Input: Probability patomic

if weightedCoinF lip(pmut action) then
action ← nil
if weightedCoinF lip(patomic) then

action ← atomic action sampled with uniform probability from the set
of atomic actions

else
action ← reference to team selected with uniform probability from
team population

program.action ← action

Note that while patomic typically takes the value defined in table 2.2, it may op-
tionally be set to 1.0, i.e. the new action is guaranteed to be atomic. This is done
when that learner is the last learner in the team whose action value is atomic. Since
all teams must contain at least one learner whose action is atomic this learner is not
allowed to convert its action to a team reference.

The full mutation operation is implemented in the learners ‘mutate’ operation
which simply calls the previous functions in sequence, shown in algorithm 6.
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Algorithm 6: mutate
Input: Probability patomic

addRandomInstruction()
deleteRandomInstruction()
mutateRandomInstruction()
radomlyModifyAction(patomic)

Note that the final mutation operation takes an argument. This facilitates setting
patomic to 1.0.

2.4.2 Teams

The fundamental unit of configuration in TPG is the team. In general, the imple-
mentation of teams under TPG is as described for SBB in section 2.3.2, where a team
is a vector of references to learners that implements mutation and reproduction op-
erations, learner addition and removal operations, and a bidding/action mechanism.
These operations are fully described below.

As it does for learners, TPG maintains a single population of teams. As described
in the introduction to TPG in section 2.4 these teams may, via one or more of their
learners, point to other teams within the population. Correspondingly, they may
be pointed to by any other team in this population. This introduces the concept
of root teams: a root team is any team to which no other teams point. These root
teams provide the entry point for program execution and so define a candidate so-
lution/agent: for a given input, a solution is exercised by executing the root team’s
learners on that input and taking the action suggested by the highest-bidding learner.
This may then be a pointer to another team in which case the process is repeated.
This process is described fully below. In this implementation of TPG, teams own
a counter that tracks the number of learners pointing to this team. This counter is
maintained during evolution and allows for a team’s status as root or non-root to be
polled directly.

Table 2.3 defines several parameters that determine the evolution dynamics of
teams under this implementation of TPG. Most of these parameters will be explained
as they appear in the mutation algorithms described below. The parameter smax

refers to the maximum team size, i.e. the maximum number of learners allowed per
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Parameters Value
padd 0.7
pdel 0.7
pmut 0.3
smax 8

Table 2.3: Parameters that define team-specific evolution dynamics in TPG.

team. The following sections describe team-specific operations, including mutation,
reproduction and learner addition and removal.

Initialization

Unlike in the case of learners, which have a high level of autonomy during their self-
initialization procedure, the initialization of teams in TPG is handled primarily by
the evolutionary algorithm itself since team creation requires knowledge of the learner
population. On creation of a new team, the team generates a maximum size using a
uniform random number generator that selects an integer value between and including
2 and smax. This value is never altered and the team enforces that maximum size
during all future operations. The team’s complement of learners is managed by the
evolutionary algorithm through the team’s learner addition and removal operations.

Mutation

Teams implement operations for both adding or removing a learner that exists in the
population to its complement, and three mutation operations that are built on these
addition and removal algorithms. All are described below. As in the description of
linear genetic programs, these algorithms utilize the ‘weightedCoinFlip’ algorithm.
The algorithms below reference several variables that are presumed to exist already:

• ‘team.learners’ refers to the team’s vector of references to learners. This vector
implements the ‘append’ function which appends an element to the vector, the
‘remove’ function which deletes an element from a vector that contains it, and
exposes a ‘length’ variable that reports the number of learners in the vector.

• ‘team.max’ is the maximum number of learners allowed in the team, established
at team creation.
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• ‘team.num atomic actions’ is a counter that tracks the number of learners in
the team’s complement whose action is atomic.

• ‘learners’ (note the absence of the prefixed ‘team’) refers to a global vector of
learners the comprises the learner population, described in section 2.4.3.

• ‘teams’ refers to a global vector of teams that comprises the team population,
described in section 2.4.3.

• ‘learner.num referencing teams’ is the counter tracking the number of teams
pointing to this learner.

• ‘learner.atomic’ is a boolean flag that is true if the learner’s action is atomic.

The algorithms that define mutation at the team level are described below.

Algorithm 7: addSingleLearnerToTeam
Input: team, learner
if learner is in team.learners then

return
learner.num referencing teams ← learner.num referencing teams + 1
team.learners.append(reference to learner)

The sole purpose of algorithm 7 is to add a learner to the team’s vector of learners
and perform any associated book-keeping. It is not a mutation operation on its own.

Algorithm 8: removeSingleLearnerFromTeam
Input: team, learner
if learner is not in team.learners then

return
learner.num referencing teams ← learner.num referencing teams - 1
team.learners.remove(reference to learner)

The sole purpose of algorithm 8 is to remove a learner from a team’s vector of learners
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and perform any associated book-keeping. It is not a mutation operation on its own.
Algorithm 9: randomlyAddLearners

Input: team
p← padd

while weightedCoinF lip(p) do
p← p ∗ padd

if team.learners.length == team.max then
return

candidates ← learner population minus learners that already exist in this
team’s complement and learners whose action is a pointer to this team

new learner ← learner selected with uniform probability from candidates
addSingleLearnerToTeam(team, new learner)

Algorithm 9 is a mutation operation. It adds some number of new learners from
the learner population to the team’s complement. Due to its stochastic nature, this
function will not necessarily add a new learner every time it is called. The statement
p ← p ∗ padd ensures that the probability of adding a new learner decreases on each
iteration of the loop. A similar mechanism is used in learner removal and learner
mutation.

Algorithm 10: randomlyRemoveLearners
Input: team
p← pdel

while weightedCoinF lip(p) do
p← p ∗ pdel

if team.learners.length == 2 then
return

if team.num atomic actions > 1 then
candidates ← team.learners

else
candidates ← team.learners minus the remaining learning with an
atomic action

learner to delete ← learner selected with uniform probability from
candidates

removeSingleLearnerFromTeam(team, learner to delete)

Algorithm 10 is a mutation operation. It stochastically removes existing learners
from the team’s complement. The learner is not deleted from the learner population.
This encourages other teams to add this learner to their own complement. Due to
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its stochastic nature, this function will not necessarily remove a learner every time it
is called. The statement p ← p ∗ padd ensures that the probability of adding a new
learner decreases on each iteration of the loop. A similar mechanism is used in learner
removal and learner mutation.

Algorithm 11: randomlyMutateLearners
Input: team
for learner in team.learners do

if weightedCoinF lip(pmut) == false then
return

p← patomic

if team.num atomic actions == 1 and learner.atomic then
p← 1.0

new learner ← copy of learner
new learner.mutate(p)
removeSingleLearnerFromTeam(team, learner)
addSingleLearnerToTeam(team, new learner)
learner.append(new learner)

Algorithm 11 is a mutation operation. It stochastically selects some number of learn-
ers from the team’s complement and invokes the learner’s own mutation operation.
All mutations are performed on copies of the learner so that the original is always
preserved in the learner population. This ensures that other teams referencing this
learner are not disrupted. Due its stochastic nature, this function will not necessarily
mutate a learner every time it is called.

Algorithm 12: mutate
Input: team
removeLearner(team)
addLearner(team)
mutateLearners(team)

Teams implement the “mutate” operation shown in algorithm 12 which calls each of
the previous mutation operations in succession.

Program Execution (Bidding and Action Selection)

Action selection at the team level is performed as follows:

1. For each learner in the team’s learners:
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(a) Execute that learner’s instructions on the current state vector.

(b) Identify the learner with the highest value in register 0.

(c) If the learner’s action is atomic, return that action.

(d) Else, if the learner’s action is a reference to a team repeat these steps using
the new team’s learners.

Action selection at the solution level is identical with the caveats that the first
team whose learners are invoked is a root team, and that no team may be invoked
twice. This results in the following modified steps:

1. Identify the root team corresponding to the solution to be executed.

2. Create an empty set of teams, representing teams that have been visited during
execution.

3. Execute the root team (i.e. perform action selection with this team).

4. If the learner’s action is atomic, return that action.

5. Else, if the learner’s action is a reference to another team:

(a) Add the current team to the set of visited teams.

(b) If the pointed-to next team is not in the set of visited teams, repeat steps
3 to 5 with the new team’s learners.

(c) Else, if the pointed-to team has been visited already, identify the current
team’s learner with the next highest value in register 0 and repeat steps 4
and 5.

The set of visited teams prevents cycles during execution, while the assertion that
each team must contain at least one learner whose action is atomic ensures that the
algorithm will terminate and return an atomic action.
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Parameters Value
rsize 200

repisodes Variable
rgenerations Variable

rgap 0.3

Table 2.4: Parameters used by TPG’s evolutionary algorithm.

2.4.3 Evolutionary Algorithm

The evolutionary algorithm used to generate a solution is, at a high level, equivalent
to the algorithm described in section 2.2.1, modified to use TPG-specific implemen-
tations of solution candidates, candidate reproduction, and candidate mutation. The
evolutionary algorithm implemented for this work does differ in one aspect: rather
than halting evolution after a candidate is discovered that achieves some pre-defined
desired level of fitness, TPG halts evolution after a pre-defined number of generations
(iterations of selection, reproduction and mutation).

TPG evolution is configured through the setting of several parameters, described
in table 2.4. The parameter rsize refers to the number of root teams enforced at
the beginning of every generation, and rgap is the fraction of root teams remaining
after selection is performed. The number of root teams comprise the population of
solution candidates and emerges as a property of the current team population; because
team mutation can add or remove connections to and from other teams within the
population, the number of root teams is variable after mutation is performed and
must be re-discovered at the beginning of each new generation.

The parameter rgenerations refers to the number of generations during evolution,
i.e. the number of iterations of candidate selection, reproduction and mutation. The
table above lists this as ‘Variable’: this refers to the fact that different experiments
in this work modified this parameter differently; however, for a given experiment and
execution of the evolutionary algorithm, this value is fixed.

The parameter repisodes is introduced in this implementation of TPG. This pa-
rameter is specific to TPG’s use as a reinforcement learning algorithm in episodic
environments. At each generation, the fitness of a solution is assessed by executing



35

the solution in an environment that directly assigns a score to the agent at the comple-
tion of an episode and using that score as the candidate’s fitness. In the environment
used in the work, higher score means higher fitness, i.e. better performance. Because
the starting configuration of the environment is randomized and because some start-
ing configurations are more difficult than others, repisodes was introduced to provide a
better representation of a candidates’s fitness: rather than evaluating the agent over
a single episode, the candidate is evaluated over repisode episodes and their fitness is
taken to be the mean of all scores received. The high-level steps for the evolutionary
algorithm are as follows:

1. Initialize the team population and learner population.

2. Repeat the following steps rgeneration times:

(a) Generate new root teams using the team reproduction and mutation op-
erations until there are rsize root teams.

(b) Evaluate each root team over repisode episodes and assign each one a fitness
value.

(c) Select and remove the (1.0− rgap) ∗ rsize least fit root teams.

(d) Select and delete any learners in the learner population that are no longer
referenced by any teams.

After rgeneration iterations, the root team with the highest fitness is taken to be the
solution to the environment.

Initialization

Initialization (step 1 in the previous section) can be broken into two components:
the initialization procedure for a new team, and the initialization procedure for the
team population. These procedures are described below. Both presume the existence
of both a team and learner population. These are global vectors available during
evolution. The following steps describe the initialization of an individual team:

1. An empty team structure (i.e. a team with a zero complement of learners) is
created.
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2. Two unique learners are randomly initialized, as described in section 2.4.1. Note
that the action of a newly-created learner is necessarily atomic.

3. References to these learners are added to the team via its ‘addSingleLearner-
ToTeam’ procedure (algorithm 7).

4. These learners are also added to the learner population.

5. The team is added to the team population.

The following steps describe the initialization of the team population:

1. Repeat for rsize ∗ rgap iterations:

(a) Perform the individual team initialization procedure described previously.
At this stage the team population contains rsize∗rgap teams, each with two
unique learners whose actions are atomic.

2. For each team in the team population:

(a) While the current team’s size is less than its maximum size:

i. Randomly select a learner with uniform probability from the learner
population. If this learner is already in the team’s complement, con-
tinue selecting learners until one is found that is not in the team’s
complement.

ii. Add a reference to this learner to the team using the ‘addSingleLearn-
erToTeam’ procedure.

After these steps are complete, the team population is made up of rsize ∗ rgap teams,
each with a full complement of learners, all of whose actions are atomic. Note that
at this stage, all teams are root teams. The learner population holds 2 ∗ rsize ∗ rgap

learners whose actions are all atomic.

Generation

Generation of new root teams at each generation is accomplished via the reproduction
and mutations operations. At the end of the reproduction step, the team population
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is guaranteed to contain at least rsize root teams (as well as any number of non-root
teams). The generation procedure is as follows:

1. While the number of root teams is less than rsize:

(a) Randomly select a team to reproduce.

(b) Create a new empty team structure.

(c) Assign the new team the same maximum size as the team being repro-
duced.

(d) Copy the vector of references to learners from the reproducing team to
the new team. This is accomplished via the ‘addSingleLearnerToTeam’
operation (algorithm 7), performed on the new team, so that each learner’s
count of referencing teams is incremented appropriately.

(e) Invoke the ‘mutate’ operation on the team (algorithm 12). Note that
because this team may include a learner which is the only learner pointing
to another team, mutation of these learners may result in the mutation
of that pointer into either a pointer to another root team, a pointer to
another non-root team, or an atomic action. This means that there are no
guarantees about the effect of a single iteration of the generation loop on
the total number of root teams, and so the number of root teams must be
continually re-calculated at step 1.

(f) Add the team to the team population.

Note that any team created this way is a root team, regardless of whether the original
reproducing team was a root team. This is due to the fact that on creation, a team
can not be pointed to by any learners.

Selection

Selection is performed on both the root team and learner populations. It is performed
after all root teams have been evaluated in the current environment and assigned a
fitness.
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After evaluation, the root teams are sorted by their fitness. The rsize ∗ rgap root
teams are left unchanged. All others are deleted. The following steps describe the
process of deleting a root team:

1. All learners are removed from the team via the ‘removeSingleLearnerFromTeam’
operation. Because this operation decrements the learner’s count of referencing
teams, this may result in learners to which no team is pointing.

2. The team is deleted completely from the team population.

After root team selection, there may be learners in the learner population to which no
team is pointing, referred to as orphaned learners. These are deleted via the following
procedure:

1. All orphaned learners are checked to determine if they contain one or more
pointers to other teams. These teams’ referencing learner counters are then
decremented in anticipation of the removal of the learner. Note that this may
create new root teams.

2. All orphaned learners are deleted completely from the learner population.

2.4.4 TPG Memory

The implementation of TPG described in the previous sections will be referred to as
canonical TPG in this work and closely follows implementations by Kelly [17] (with
the notable difference that this work implements a different instruction set in its linear
GP instances; this is discussed further in section 3.2). However, since the original
successes of TPG, the algorithm has been expanded by Smith and Heywood [30] [31]
to include a mechanism that acts as both a long- and short-term memory. Smith and
Heywood have successfully used this mechanism to produce TPG agents capable of
some degree of long-term planning as well as acting in environments with only partial
observability. This mechanism is used in parts of this work, although not necessarily
as a memory device (as discussed in section 3.2).

The mechanism introduced by Smith and Heywood is comprised of an additional
single n × r matrix, where r is the number of registers used by linear GP agents
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(8 in canonical TPG, TPG with memory, and this work’s implementation of TPG)
and n has historically been set to 100. In addition to this matrix, two new op-codes
were introduced to the instruction set: a write operation that probabilistically copies
values from a learner’s registers into the memory matrix, and a read operation that
directly pulls a value out of memory and stores the value in a learner’s register. The
memory matrix itself represents a single instance of a global structure. Thus, it is
available not only to all learners within a given TPG solution, but to all learners
across all candidate TPG solutions that are present during evolution. In addition to
providing TPG solutions with memory, this global availability has three major effects:

• In allowing all learners across a single TPG solution access to the same (global
memory) matrix, all learners in a solution are provided with a mechanism
through which they can communicate with each other. This means that in-
dividual learners have the potential to participate in and become aware of the
global state of TPG

• By allowing all learners across all TPG solutions access to the same matrix,
learners are encouraged to arrive at a consistent use and interpretation of what
information is stored where in the memory matrix. This is significant because
learners/teams are essentially independent at initialization. By providing a
single global instance of memory, Smith encourages learners/teams to treat the
memory as a commons. If specific learner’s ‘pollute’ the commons or do not
have a common view as to where short and long term memory are, then they will
develop incompatible assumptions about how to use memory. As teams/learners
become integrated into a larger TPG graph, the use of a single instance of global
memory helps ensure compatibility between different teams/learners as the TPG
graph emerges.

• Global memory is never reset. When one agent completes evaluation, the state
that global memory is in will be inherited by the next agent. This represents a
further mechanism by which ‘respect for the commons’ is encouraged. This does
not preclude different uses, thus some TPG teams/learners might concentrate on
long term memory content, others short term, and indeed only specific learners
emerge that perform write operations [31].
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The mechanism described above is used in this work in general, though its exact
formulation is slightly modified. These modifications are discussed in section 3.2.2 in
which the memory matrix’s use in this work is defined. Implementation details for
the memory matrix as used by Smith and Heywood are described below.

Write Operation

As described, the write operation is probabilistic and is implemented as an additional
op-code and instruction in its own right. The algorithm for a single write operation
is described in algorithm 13. The operation is defined on the program data structure
and assumes the existence of the following variables:

• A global instance of the memory matrix, referred to as ‘mem’ and indexed as
‘mem[row][column]’, which defines a ‘rows’ property equal to the number of
rows in the matrix and a ‘columns’ property equal to the number of columns in
the matrix.

• An array ‘registers’ which is owned by the program and comprises the array of
8 doubles that make up a program’s registers

Algorithm 13: writeOperation
Input: learner
for row in mem.rows / 2 do

r1 ← mem.rows/2 - row
r2 ← mem.rows/2 + 1 + row
p ← 0.25− (0.01 ∗ row)2

for column in mem.columns do
if weightedCoinF lip(p) then

mem[r1][column] ← learner.registers[column]

if weightedCoinF lip(p) then
mem[r2][column] ← learner.registers[column]

The outer loop iterates over the rows of of the memory matrix two at a time from
the middle outward with the probability decreasing quadratically toward the first and
final rows. This is shown in figure 2.4.
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Figure 2.4: Graphical representation of memory matrix and probabalistic write access.

The inner loop then iterates over each entry in the two current rows in turn and
optionally writes the corresponding register value to that location. Using a proba-
bilistic curve as shown in figure 2.4 is intended to encourage programs to derive the
concepts of long- and short-term memory: values stored in rows nearer to the middle
will be frequently over-written and so are only useful for short-term storage, whereas
values stored in rows nearer to the ends will be over-written less frequently and so
will remain accessible for a longer period.

Read Operation

The read operation is not a probabilistic operation, but rather a deterministic unary
operation. It takes a source index which is here used to index into the memory matrix.
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The instruction is implemented as:
Algorithm 14: readOperation

Input: learner, i, j
j ← j mod (n ∗ r)
row ← floor(j/r)
column← floor(j mod n)
learner.registers[i] ← memory[row][column]

where ‘i’ and ‘j’ are the target and source indices described in section 2.2.2 on linear
GP.

2.5 Gradient-Based Reinforcement Learning

Previous sections focused primarily on the genetic programming paradigm and its
application to reinforcement learning. However, this work makes heavy use of another
reinforcement learning algorithm, REINFORCE [34] [33] [32]. REINFORCE is a
Monte Carlo gradient-based learning algorithm that can produce arbitrary action
types, from discrete (atomic) actions from within a pre-defined set, to real-valued
actions.

While this work is singularly concerned with the expansion of TPG to real-valued
actions, REINFORCE plays a significant role in that expansion. Being a gradient-
based approach, the methodology behind REINFORCE differs substantially from the
genetic programming paradigm discussed so far. The following sections provide a brief
overview of the workings of gradient-based methods and the REINFORCE algorithm
itself.

2.5.1 The Policy Gradient Theorem

Gradient-based reinforcement learning methods formulate their policy as a differen-
tiable probability distribution over actions a, conditioned on states s, and parame-
terized over some collection of weights θ. The policy is represented as:

π(a|s, θ)

where the result is the probability of taking action a under the current conditions
defined by s and θ.
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Williams [34] defines a family of reinforcement learning algorithms, which he
names REINFORCE algorithms, that formulate their policies as described above
and use the gradient of this formulation to perform policy updates via the weights θ.
Sutton et. al. formalized this approach and defined the policy gradient theorem [33],
which states that:

∇J(θ) ∝ ∑︁
s µπ(s) ∑︁

a qπ(s, a)∇π(a|s, θ)

where

• J(θ) is a scalar performance measure of the current policy

• µπ(s) is the distribution of states s over policy π

• qπ(s, a) is the action value function evaluated at state s and action a. This is
the estimated return G (see section 2.1.4) if action a is taken. This is described
further in Sutton and Barto [32].

• π(a|s, θ) is the policy, evaluated at state s and action a, and parameterized by
θ

This definition of the policy gradient theorem is the same formulation that appears
and is proved in Sutton and Barto [32]. The text also presents the REINFORCE
algorithm. Incidentally, REINFORCE is presented in Sutton and Barto as a single
algorithm rather than a family. This algorithm does indeed fit into Williams’ family
definition and can be seen as a representative instance of this family. In this work,
‘REINFORCE’ refers to the specific implementation found in Sutton and Barto, which
was re-implemented and used for these experiments.

The policy gradient theorem states that for several formulations of a performance
metric J(θ), i.e. a metric that provides a quantitative indication of how well or poorly
the policy is performing, the gradient of this performance metric, which typically
cannot be determined in practice, is proportional to the gradient of the policy itself,
which often can be determined or approximated in practice. REINFORCE algorithms
take advantage of this statement by following the gradient of the policy itself in
order to incrementally update their policy and optimize this performance metric. In
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practice, the performance metric function is not actually defined; it is adequate just
to have a method for approximating its gradient.

The policy gradient as it is defined above is not immediately useful. It requires
knowledge of µπ(s) and qπ(s, a), neither of which can typically be determined in real-
world applications. In order to make use of the policy gradient theorem it is usually
reduced to the following equivalent formulation:

∇J(θ) ∝ E[Gt∇ ln π(At|St, θ)]

This formulation reduces the policy gradient theorem from a general formula to a
function of random variables that may be sampled in practice to approximate ∇J(θ).
The policy

ln π(At|St, θ)

can be implemented as a differentiable linear function or neural network using autod-
ifferentiation libraries such as TensorFlow [24] or Torch [9] making this formulation
tractable in practical implementations of REINFORCE.

2.5.2 REINFORCE

REINFORCE algorithms as defined by Williams [34] are those that follow the update
rule

θ ← θ + α∇J(θ)

or

θ ← θ + αGt∇ ln π(At|St, θ)

Sutton and Barto more specifically define REINFORCE as a complete Monte
Carlo reinforcement learning algorithm, re-printed here in listing 15 from Sutton and
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Barto [32]. This listing shows that this formulation of REINFORCE uses the update
rule described by Williams.

Algorithm 15: REINFORCE
Input: A differentiable policy parameterization π(a|s, θ)
Algorithm parameter: step size α > 0
Initialize policy parameter θ ∈ IRd

for each episode do
Generate an episode S0, A0, R1, ...ST −1, AT −1, RT , followingπ(·|·, θ)
for each step of the episode t = 0, 1, ..., T − 1 do

G← ∑︁T
k=t+1 γk−t−1Rk

θ ← θ + αγtG∇lnπ(At|St, θ)

As described in the previous section, practical use of the policy gradient theorem
requires that Gt and ln π(At|St) be sampled in order to perform policy updates. In
this formulation of REINFORCE, entire episodes are allowed to play out under a
given policy π(At|St, θ) during which Gt and ∇ ln π(At|St, θ) are sampled at each
timestep. After an episode terminates, the weights θ may be updated according to
the rule defined above. The outer loop may be terminated after either a fixed number
of episodes or when the policy achieves some pre-determined minimum performance
requirement. In this work, REINFORCE was set to run for a fixed number of episodes,
though this number varied across experiments.

Algorithm 15 modifies this update rule to include the discount factor γ. This is a
scaling factor added to reduce the value of rewards received at timesteps t + T when
viewed at time t, where T is any integer number of timesteps. This is incidental to
this work; more details may be found in Sutton and Barto [32].

2.5.3 Action Formulations

REINFORCE requires that the policy used is differentiable and parameterized over
some weight collection θ. As long as these requirements are met, REINFORCE
allows for a variety of policy configurations which in turn allow for a variety of action
formulations. This includes real-valued actions, which are the focus of this work.

Rather than learning a probability distribution over a finite set of discrete actions,
REINFORCE may instead learn statistics about a continuous probability distribution



46

from which real-valued actions may be sampled. As described in Sutton and Barto
[32], this is achieved by re-formulating the policy as a normal distribution

π(a|s, θ) ≡ 1
σ(s,θ)

√
2π

exp(− (a−µ(s,θ))2

2σ(s,θ)2 )

with mean µ(s, θ) and standard deviation σ(s, θ) parameterized over the collection
of weights θ. Because this is still in accordance with the policy gradient theorem as
described previously, the same algorithm may be used to generate policy updates.
Whereas previously, updates had the effect of modifying the relative probabilities of
each action, updates now modify a single normal distribution from which new actions
are sampled.

In this work, the simplification was made that σ(s, θ) was set to a fixed value of
0.1 and only the mean µ(s, θ) was parameterized on θ and updated. This simplified
the implementation without hindering the algorithm. It also avoided errors seen in
early experiments where both the mean and standard deviation were parameterized
functions as described above: because there is nothing under this formulation that
directly enforces a minimum standard deviation (i.e. exploration is not directly en-
couraged), degenerate behaviour could often drive σ(s, θ) to output 0.0 or nearly 0.0,
resulting in divide-by-zero errors.

2.6 CartPole Environment

This work uses only a single reinforcement learning environment, commonly known as
the CartPole environment [4]. This environment was selected because it is a widely-
known benchmark that can also be readily expressed in both a discrete action and a
real-valued action without changing any other property of the task. This environment
is one of several that has been re-implemented in Python and made available through
Python’s OpenAI Gym library [8].

CartPole is a 2D environment in which the task at hand is to learn how to balance
a pole that is attached to a moving cart at a single pivot point. The OpenAI Gym
library optionally allows the environment to be rendered. Figure 2.5 shows a screen
shot taken from this render.

The cart has full freedom to slide along the track from side to side and the pole
can rotate freely. Both act according to classical physics and the pole will fall to one
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Figure 2.5: Sample rendering of the CartPole environment [8].

side or the other if the cart is not acted upon. Upon resetting the environment, the
cart and pole are randomly positioned within a range such that the environment can
possibly be solved, i.e. the cart and pole cannot start such that failure is guaranteed.
At every timestep, the state presented by the environment, s⃗(t), is a vector of four
floating-point values indicating the cart’s position along the track (x), the cart’s
sideways velocity (ẋ), the angle between the pole and cart (θ), and the pole’s angular
velocity (θ̇).

In its classic formulation, the set of valid actions includes a discrete push of the
cart to the left or a discrete push of the cart to the right. Taking no action at all
is not a valid action in this environment. A discrete instance of a push applies 10
Newtons of force to the cart. At every timestep, the agent receives a reward of +1.
The episode ends when:

• The agent has received a cumulative return of 500

• The angle between the pole and cart drops below 12 degrees, i.e. the pole falls
over

• The cart reaches the boundaries of the viewing area

The goal of the learning agent is to maximize the cumulative return.
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2.6.1 Continuous Actions

This work used both the classical environment that accepts discrete actions from the
set { left push (-10.0N), right push (+10.0N) } as well as a custom modified version
that accepts real-valued actions in the range [-1.0, 1.0]. The push applied to the cart
is then the real-valued action multiplied by 50.0N. All other behaviour is the same.



Chapter 3

Motivation and Approach

As currently implemented, TPG inherently supports only discrete actions, which
significantly limits the scope of environments to which TPG can be applied. This
limitation is the result of actions taking the form of the fixed scalar action value
assigned to each learner on creation and possibly modified via mutation, where this
scalar value is sampled from the set of the environment’s valid atomic actions. This
effectively assigns each learner a ‘type’ and so promotes specialization, as discussed
in section 2.3.1 on Bid-GP. For example, in the CartPole environment, this promotes
the creation of learners who learn when to assert a push to the left and those who
learn when to assert a push to the right.

This limitation reduces TPG’s usefulness in practical applications. Many real-
world environments in which a learning algorithm may be applied do not lend them-
selves to discrete action definitions. For example, a self-driving car necessarily needs
to learn concepts such as: how far to turn the steering wheel, how much acceleration
to apply, and how hard to apply the brakes. As mentioned in section 2.1 on reinforce-
ment learning, a policy that provides control of a robotic arm must learn concepts
such as how much pressure to apply during a grasping action, as well as how many
degrees to rotate each joint. All of these examples are best represented as real-valued
actions and so in both of these examples, TPG would not be applicable. There is
therefore strong motivation to introduce a new action mechanism to TPG that would
allow it to be applied to a broader variety of reinforcement learning tasks.

3.1 Obstacles in Extending TPG’s Action Mechanism

Given that the limitation to discrete actions is the bidding/action formulation de-
scribed in previous sections and above, it may appear that the path to real-valued
actions lies in the reformulation of this mechanism. Several candidate reformulations
that may appear obvious at first are discussed below, as well as the drawbacks to each
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that have thus far led to them being left unexplored. This is presented to further
motivate the path chosen in this work.

The first possible approach to modifying the bidding/action mechanism to pro-
duce real-valued actions is dropping the assigned scalar action entirely and using the
value in the winning learner’s R[0] as the real-valued action. This method would seem
to be hinted at in the original formulation of standard linear genetic programming,
in which the output is indeed directly interpreted from the learner’s register values.
However, the introduction of populations and/or teams to the evolution and solution
formulation precludes this approach. In canonical linear GP, there is no notion of
competition applied to the values in the learners’ registers. However, in population
and teaming approaches, these values are used directly to define a hierarchy of learn-
ers, where the register values correspond to an agent’s self-proclaimed usefulness.
Thus, during evolution, learners can separate the tasks of learning to operate in the
environment, i.e. learning what action to apply, with learning when to assert their
action, i.e. bidding behaviour. However, by conflating the bid value and action value,
learners can no longer separate the tasks of learning what to do with learning when to
do it: to successfully assert yourself as the most useful learner, you must also suggest
a high-valued action. This approach is highly unlikely to produce successful solutions.

To address the conflation of bid values with action values, a possible modification
of the previous approach would be to continue to use register 0 as the bid value, while
using another register as the action value. Indeed, the separation of bid from action
would likely lead to improved performance over the first approach. However, a sim-
ilar conflating effect would still arise under this approach, where each learner would
effectively have to learn two programs: one for calculating a bid value and one for
calculating a real-valued action. These programs would need to execute simultane-
ously in the same register space without conflict: the instruction list would need to be
capable of performing both functions, a substantial addition to the workload foisted
on the evolutionary algorithm. The combined instructions mean that learners would
need to evolve both capabilities simultaneously, since mutation could not discrimi-
nate between disrupting the development of bidding behaviour and the development
of action calculation. The combined effect is an exponential increase in the difficulty
of searching the space of solutions and is highly unlikely to produce successful agents.
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A final approach that may seem apparent on identifying the scalar action as the
limiting factor would be to expand valid scalar action values to include all real values
within the range accepted by the environment. Unlike the approaches discussed pre-
viously, it is not obvious that this approach would fail to produce successful agents.
However, this approach also sacrifices much of TPG’s efficiency in searching the space
of candidate solutions and, similarly to the previous approach, would likely dampen
the evolutionary algorithm’s selective pressure toward successful solutions. This neg-
ative effect comes from the loss of learner specialization that would accompany the
modification of the scalar action values. In its current formulation, TPG is able to
exploit learner specialization by dividing up the solution space into discrete subspaces
in which solutions are simplified to binary decision-makers. As described in section
2.3.1 on Bid-GP, learner specialization has been shown to increase the performance of
solutions, speed up time to working solution, and reduce the complexity of discovered
solutions. Modifying the scalar action values such that they sample from a continuous
range of values rather than assert one of a class of actions would result in the loss
of these subspaces and likely in the loss of the benefits just described. Additionally,
not only would the space of solutions lose the natural divisions described above, it
would grow exponentially in size. The larger subspace combined with the decreased
search efficiency are strong factors discouraging the use of this method for effective
evolution of policies capable of producing useful real-valued actions..

3.2 Proposed Solutions

This work proposes that the solution, in general, is the combination of TPG and a
decision-making network acting on state information contained entirely within TPG’s
graph structure. This decision-making network is chosen to be REINFORCE in
this work, which is not only capable of producing one or more real-valued actions
from state input, but is capable of optimizing its policy even after TPG has finished
evolving. This work explores two variations of this approach with the final aim
of producing one or more successful proof-of-concept algorithms that validate the
approach in general.
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3.2.1 Register Contents as State

The two variations differ primarily in their formulation of state. In the first varia-
tion, state is extracted from TPG’s register values. Under TPG’s original definition,
where no additional memory vector is used, actions are based on the values held in
a candidate’s learners’ registers, specifically on the values contained in each learner’s
register 0. Noting this, TPG can be reframed as a combination of both a feature- or
state-engineering mechanism and a policy that operates on that state, where the state
comprises the values held in the collection of R[0] values. Because a TPG solution
capable of performing well in a given environment must necessarily hold actionable
information in these registers, the bidding component of TPG execution is necessarily
simultaneously a feature engineering algorithm. The first variation of TPG designed
to produce real-valued actions through the addition of a decision-making network
consists of attaching REINFORCE directly to an evolved TPG solution by feeding
that solution’s register 0 collection into REINFORCE as state at each timestep and
allowing REINFORCE to determine the next action.

This variation has several requirements that preclude its use as a complete rein-
forcement learning algorithm and it is proposed exclusively to determine whether or
not TPG is currently performing useful feature/state engineering. A simplification of
the proposed algorithm applied to the CartPole environment is as follows:

1. Evolve a TPG solution capable of performing well in the discrete-action Cart-
Pole environment, where performing well may be defined as achieving a suffi-
ciently high average score in post-evolution test runs (i.e. TPG policies with an
average score of 100%). Note that the discrete-action CartPole environment is
here necessitated by TPG’s inherent limits as discrete-action algorithm.

2. Train REINFORCE in the continuous-action CartPole environment using the
following action-taking mechanism:

(a) At each timestep, feed TPG the environment’s state (the state formulation
in both the discrete and continuous CartPole environments is identical) and
allow it to execute its bidding algorithm.

(b) Feed the set of values found in TPG’s collection of register 0 values after
bidding to REINFORCE and allow REINFORCE to calculate an action.
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(c) Feed REINFORCE’s action back to the environment, i.e. take this action.

A successful policy generated through this approach would be evidence that:

• TPG is indeed engineering useful state representations internally, where ‘useful’
means that the state can be acted on by non-TPG policies to generate useful
behaviour.

• The combination of TPG with a linear decision-making network is a viable
method for producing real-valued actions.

Evidence of the first item in the preceding list would not only reveal more usefulness
in current TPG solutions than was previously understood, but would also validate
the re-framing of TPG as a state-engineering algorithm.

While this algorithm would be useful in validating this approach to real-valued
action production, it suffers from two limitations that prevent its use as a complete
reinforcement learning approach. First, it requires both a discrete and continuous ver-
sion of the same environment. This is unlikely to be the case in practical applications
in which the desired outcome is an agent capable of producing real-valued actions. In
these cases the environment presumably requires real-valued actions. While a discrete
version of the environment could potentially be simulated or contrived for the first
phase of the algorithm in some cases, it is not necessarily true that this would be
possible in all cases. Even when possible, its simulation may be non-trivial. An ideal
algorithm would be useful in cases where only the continuous-action environment is
available and the algorithm can still be used ‘out-of-the-box’.

A second factor deterring this formulation is REINFORCE’s requirement that the
size of the state variable serving as its input must be known ahead of time and cannot
be changed later. Because the total number of registers in a TPG solution can vary
during its evolution, this means that the TPG solution serving as the feature engineer
must be fully evolved in isolation and frozen prior to being fed to REINFORCE so
that the number of registers will be fixed. This means that TPG must be frozen before
being able to evaluate the usefulness of its state representation and cannot be updated
if this representation is found to be inadequate. Additionally, because the TPG
solution is evolved in isolation prior to the introduction of REINFORCE, TPG does
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not ‘know’ during evolution how its state representation will ultimately be used: TPG
will optimize the state representation in its register 0 collection to best serve its own
policy, after which time REINFORCE will be tasked with optimizing its policy based
on features that were engineered for another algorithm entirely. This disassociation
of the two algorithms introduces a cap on the capabilities of REINFORCE in that
TPG may have been more effective in its feature engineering had it received feedback
during evolution informing it of the usefulness of its state as seen by REINFORCE.
The following variation on the solution is introduced as a response to these limitations.

3.2.2 External State Representation

As noted, a successful result under the first variation of the TPG and decision-making
network combination would provide evidence of TPG’s capabilities as a feature en-
gineer. The second variant described here is devised as an attempt to direct this
capability deliberately and to have TPG create a better-behaved state solely for the
purpose of feeding the decision-making network. In this case, ‘better-behaved’ means
that the state has a pre-determined size and is intentionally leveraged as input to the
decision-making network.

This variation builds on top of discoveries discussed earlier in section 2.4.4, in
which TPG was found to be capable of using a memory vector to store register values
and make use of them at a later point. When formulated as a memory, this vector
allowed TPG to achieve a form of long-term planning. However, a wider applicability
of the external vector is suggested by re-framing the vector not as simply a memory
device but as a general-purpose state representation, albeit (or additionally) one
capable of persisting state over multiple episodes. Just as the collection of values
held in each learner’s register 0 served as a state representation from which TPG
derived bidding and action behaviour, the collection of values held in the external
memory serves as a state representation from which TPG can build more complex
bidding and action behaviour, including long-term planning. This ability to evolve
more complex behaviour came, in this case, from the state representation’s ability
to persist state, an additional complexity not found in the original representation.
However, beyond its ultimate use as a memory vector, the external vector serves as
further evidence of TPG’s ability to act as a feature/state engineer, and additionally
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suggests that TPG can be made to generate this state in an arbitrary location as best
serves the application.

The latter point suggests the use of an external state representation as input to
the decision making network as the natural next step in this proof-of-concept. Here,
the memory can be used nearly as described in section 2.4.4 and Smith’s original
paper [31]. This vector can be fed to the decision-making network at each timestep
in order to select an action. This variation of the TPG and decision-making network
combination overcomes several of the limitations of the previously-described variation.
Because the external vector’s size and existence can be known prior to evolution,
it would no longer be necessary to generate a fully-evolved TPG solution before
introducing the decision-making network. This also removes the necessity of the
discrete-action version of the environment that is being solved. Rather, the combined
TPG and decision-making network policy can be brought to bear on the continuous-
action environment immediately, with TPG’s own final action suggestions ignored
in favour of the decision-making network’s action suggestions. Additionally, TPG is
fully ‘aware’ that its performance is based on the values it learns to write to this
vector: the selective pressure is on the generation of an optimal state representation
for the decision-making network from the outset. A final incidental benefit of this
variation is that this algorithm also allows TPG to derive benefits from the external
vector’s facility as a memory device.

Though it is mitigated, the de-coupling of the two learning algorithms exists in
this variation as well. Just as the de-coupling required the first variation to produce
a fully-evolved TPG instance to bootstrap the final training algorithm, it now forces
the second variation to choose one of the two components (either the TPG instance
or the network weights) as fixed before it can train or evolve the other. This results
in one of the two learning algorithms being entirely unintelligent for the first phase
of training. However, because further evolution of the TPG instance has no effect on
the shape of the external state vector, this variation allows for either algorithm to be
re-trained or re-evolved additional times, allowing for multiple phases of alternating
TPG evolution and network training. In this work, the environment was sufficiently
simple that multiple phases were not required and in fact the implementation of the
second variation did not require the decision-network to be trained at all.
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Experiments

Three groups of experiments were carried out in this work. One experiment, a pre-
cursor to the attempts to combine TPG with decision-making networks, was carried
out to compare the effect of two different instruction sets on the frequency and range
of values found in TPG registers. The remaining experiments focused on validating
the algorithms under test and the viability of producing real-valued actions.

Efforts to combine TPG and REINFORCE were initially limited by what turned
out to be the volatility of the register values found in trained TPG instances. Specif-
ically, the original instruction set suggested by Banzhaf [7] and used by Kelly [17]
in previous implementations of TPG, resulted in register values that span the en-
tire range of valid 32-bit floating-point numbers.1 The result was that multiplicative
weighting calculations performed during REINFORCE training would often attempt
to multiply extremely large (positively or negatively) floating-point values. Given that
TPG was operating as a binary left/right controller, these values are never ‘seen’ from
the application perspective. However, when attempting to apply gradient algorithms
such as REINFORCE to state information from TPG, no effective scaling heuristic
could be found. Ultimately, the research of this thesis resolved the issue by modifying
the instruction set in an attempt to reduce the volatility of register values. The first
experiment, comprising the first experiment group, compared the effect on register
values of the instruction set used in canonical linear genetic programming with that
of a modified set that was ultimately used for the remainder of this work.

After modifying the instruction set to accommodate the addition of REINFORCE,
the remainder of the experiments were carried out. The two experiments comprising
the second experiment group were designed to evaluate the viability of the combi-
nation of TPG and REINFORCE. These were intended to explore whether or not
it is reasonable or even possible to generate a full reinforcement learning solution

1Register values in TPG as implemented in this work were 32-bit floating-point values, specifically
the Numpy type ‘float32’ [28]
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by feeding REINFORCE the contents of a TPG instance’s register 0 collection as
REINFORCE’s state input. The underlying observation that guides this approach is
that REINFORCE need not be any more complex than a linear model, but naturally
returns real-valued actions. TPG in this case is pre-trained using a version of the
task using discrete actions alone. REINFORCE then attempts to use the real-valued
bid values from TPG to define state. Evaluation was performed using the well known
CartPole task, a benchmark reinforcement learning task that can be defined equally
well in terms of discrete and real-valued actions.

The remaining experiments, comprising the final set, were designed to evaluate the
viability of directly evolving a TPG solution to produce a useful state representation
for an external fixed-size vector of real-values via memory. In this context, the insight
is to assume that the values TPG writes to memory can be directly transformed (using
a static linear mapping) to a real-valued action. This was evaluated as a method
for producing a solution to both the standard discrete-action CartPole environment
as well as the modified continuous-action CartPole environment. Success in this
configuration would demonstrate that TPG can produce real-valued actions without
any additional learning algorithm.

4.1 Register Space Evaluation

In this experiment, two versions of TPG were compared, each of which adhered to the
implementation described in section 2.4 on TPG in all aspects except the instruction
set: one version implemented the instruction set described in section 2.4, while the
other implemented the instruction described by Banzhaf [7] and used in previous
implementations of TPG [17]. Both instruction sets are shown in the tables 4.1 and
2.1. In table 4.1, fmax and fmin refer to the maximum and minimum possible 32-bit
floating-point values.

In both instruction sets, each assignment operation (i.e. the ← operation) in-
cludes a check for NaN as well as a clamping operation to keep values between the
minimum and maximum allowable values, which were the minimum and maximum
32-bit floating-point values. The latter check is necessitated by the Numpy type ‘Inf’
i.e. infinity.
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Op-code Operation
Addition R[i]← R[i] + V [j]

Subtraction R[i]← R[i]− V [j]
Multiplication R[i]← R[i] ∗ V [j]

Division V [j] = 0.0 ? R[i]← fmax : R[i]← R[i]/V [j]
Cosine R[i]← cos(V [j])

Logarithmn V [j] < 0.0 ? R[i]← fmin : R[i]← log(V [j])
Exponential R[i]← exp(V [j])
Conditional R[i] < V [j] ? R[i]← −R[i] : no− op

Table 4.1: Instruction set used by canonical linear genetic programs

4.1.1 Instruction Set Differences

There are several notable differences in the instruction sets that can reasonably be
expected to have a large impact on the final frequency and range of register values
encountered during program execution.

The instruction set implemented in canonical linear GP and in prior implemen-
tations of TPG include both (natural) logarithm and exponential operations. Both
of these instructions have behaviour likely to produce values at or near the range of
valid 32-bit floating-point values: ln is asymptotic and approaches negative infinity
as its input approaches 0.0, and exp easily produces large values from relatively low
magnitude input. Hence, an input of 89.0 to the exponential operation will produce
a value greater than the maximum positive 32-bit floating-point value. Additionally,
the conditional check on the input to ln enables the production of the maximum nega-
tive 32-bit floating-point value if presented with any negative input. These operations
alone significantly increase the likelihood that a linear genetic program instance’s reg-
isters may contain values across the entire range of valid 32-bit floating-point values.

The instruction sets also differ in their implementations of the multiplication and
division operations. The instruction set used in this work implements multiplication
and division as doubling and halving operations respectively while the instruction set
used in canonical linear GP allows the multiplication and division of any arbitrary
register values. The former implementation has the effect of limiting the amount
of change any register might see during a single multiplication or division instruc-
tion execution. For example a register holding a value of 10.0 cannot hold anything
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larger than 20.0 or smaller than 5.0 after a single multiplication or division opera-
tion. This means several multiplications or divisions in a row (from the perspective
of that register) are required to affect a large change to a register. In the canonical
implementation, however, a single multiplication or division operation can result in
a large change to a registers value. For example, if two registers hold 10.0, then a
single multiplication instruction could increase one of them to 100.0 (and then 1000.0,
then 10000.0 and so on). Correspondingly, the division operator is also potentially
volatile: if a register holding a small value between 0 and 1 is used as the divisor
in a division operation, a single division instruction may increase a register’s value
drastically. Both of these instructions can increase or decrease a register’s value by
orders of magnitude and so these operations also increase the liklihood that a linear
genetic program’s registers may contain values across the entire range of valid 32-bit
floating-point values.

4.1.2 Test Procedure

To evaluate the effect of each instruction set on the range and frequency of values
found in the registers of TPG instances, multiple TPG agents were evolved and tested
using each instruction set. During testing, all register 0 values for the instance under
test were recorded. The complete testing algorithm is as follows:

1. Perform the following n times:

(a) Evolve a TPG agent in the discrete CartPole environment for rgenerations

generations. Each agent was executed over repisodes episodes per generation,
and surviving agents were allowed to skip re-evaluation for up to rskip

generations.

(b) Test the highest-performing agent from evolution for rtest episodes episodes.
At each timestep during testing, collect and record the values stored in
each learner’s register 0.

This was repeated for both instruction sets. The values used are defined in table 4.2.
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Parameter Value
n 10

rgenerations 20
repisodes 3

rskip 2
rtest episodes 10

Table 4.2: Parameters used in instruction set comparison experiment

4.2 TPG and REINFORCE

Two experiments were performed to evaluate the viability of the combination of TPG
and REINFORCE as an approach to producing complete reinforcement learning so-
lutions in general, and as an approach to producing reinforcement learning solutions
capable of performing real-valued actions in particular. In general, this set of ex-
periments set out to evaluate the approach described in section 3.2.1. The first
experiment used only the discrete-action CartPole environment and was intended to
evaluate whether the pairing of TPG and REINFORCE could produce functioning
agents. The second experiment allowed TPG to evolve in the discrete-action Cart-
Pole environment, while REINFORCE was trained in the continuous-action CartPole
environment to determine whether useful real-valued actions could be produced.

4.2.1 Discrete-Action Solution

In the first experiment in this set, TPG with no additional memory vector was allowed
to evolve in the discrete-action CartPole environment. A TPG agent evolved in this
step was intended to be used as a feature engineer for REINFORCE. After a TPG
agent was evolved, a REINFORCE agent was trained which used that TPG agent’s
register 0 collection as its state input. This second step was performed multiple
times, i.e. multiple REINFORCE agents were trained on the same TPG agent. This
was done to account for the possibility that the gradient-based REINFORCE may
become stuck in a local maximum due to unfortunate random initialization of its
weights. A failure of REINFORCE to produce a working agent after only a single
training attempt should not be considered proof that the approach is not viable.

In this and all work using REINFORCE, the policy network was a single linear
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network with one output unit fed into one of two non-linearities. This architecture is
shown in figure 4.1. In this figure, the linear network is shown between the Memory
Matrix and Non-linearity components. Note that these units receive the register 0
values unaltered before applying the network weights, i.e. the first set of arrows
represent direct transfer of values whereas the second set represent multiplicative
weighting.

Figure 4.1: Architecture of the hybrid algorithm combining TPG, via its register
0 values, and REINFORCE, used to perform gradient ascent to update the weight
vector.

Which non-linearity was used depends on whether REINFORCE was being used to
produce discrete and real-valued actions: for discrete actions, the output was passed
through a sigmoid function2 and rounded to 0.0 or 1.0, the two actions accepted by the
discrete-action CartPole environment; for continuous actions, the results were passed
through a tanh function to produce a real value between -1.0 and +1.0, and an action
was sampled from a normal distribution using this value as the mean. In short, the
‘non-linear’ element provides an asymptotic mapping from the TPG register values
(which might still span a large dynamic range) to either the [0.0, ..., 1.0] interval
or the [1.0, ... -1.0] interval. The non-linear function is essentially linear (y = x)
around the origin. However, as the magnitude of the dependent variable (x) increases
the corresponding limits are asymptotically approached. A high-level diagram of this
mechanism is shown in figure 4.2. In this diagram, St represents the environment
state and S ′

t represents TPG’s internal state representation, contained in its register
0 values. The full algorithm used in this experiment is as follows:

2Sigmoid function: hθ(x) = 1
1+e−θT x



62

Figure 4.2: Action selection diagram of the hybrid algorithm combining TPG, via its
register 0 values, and REINFORCE.

1. Repeat the following nruns times:

(a) Evolve a TPG agent in the discrete-action CartPole environment for rgenerations,T P G

generations. Each agent was executed over rtrain episodes,T P G episodes per
generation, and surviving agents were allowed to skip re-evaluation for
up to rskip,T P G generations. At each generation the top agent score was
recorded.

(b) Test the highest-performing agent from evolution for rtest episodes,T P G episodes.
After each episode, the agent’s final score was recorded.

(c) Repeat the following ntraining sessions,REINF ORCE times:

i. Train REINFORCE in the discrete-action CartPole environment for
rtrain episodes,REINF ORCE where at each timestep:

• TPG receives the state of the CartPole environment.

• TPG executes its bidding/action mechanism.

• The values in each learner’s register 0 are collected into a single
vector (the order in which learners’ registers are checked is always
the same).

• REINFORCE receives this vector at its state input and selects an
action. When the entire episode is complete, REINFORCE’s score
is recorded.

ii. Test the resulting REINFORCE agent for rtest episodes,REINF ORCE episodes.
These episodes’ initial conditions are identical to the initial conditions
seen by TGP agents during testing. At each episode, the agent’s score
is recorded.

The parameters described above are defined in table 4.3.
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Parameter Value
nruns 20

rgenerations,T P G 20
rtraining episodes,T P G 25

rtest episodes,T P G 1000
rskip 2

rtraining sessions,REINF ORCE 10
rtraining episodes,REINF ORCE 5000

rtest episodes,REINF ORCE 1000

Table 4.3: Parameters used in discrete-action TPG + REINFORCE experiment

4.2.2 Continuous-Action Solution

The second experiment in this set was designed to determine if REINFORCE was
capable of producing real-valued actions using the state engineered by TPG. This
experiment was identical to the one described previously, with the modification that
REINFORCE was trained and tested in the continuous-action CartPole environment.
The architecture and action-selection mechanisms are as described in the previous
section.

4.3 TPG and External State Vector

The final set of experiments were performed to determine whether a decision-making
network could produce useful solutions to the discrete-action and continuous-action
CartPole environments using an external memory vector component of TPG as state
input, as described in section 3.2.2. The first experiment used only the discrete-action
CartPole environment, while the second used only the continuous-action CartPole
environment.

For these experiments, TPG was modified to re-introduce an external memory
matrix, as used by Smith and Heywood and described in section 2.4.4. The trainable
REINFORCE was dropped in favour of a simple linear decision network with fixed
weights. This network was equivalent to the network used in the previous experiments
with REINFORCE with all weights initialized to 0.1 and never updated. This leaves
open the possibility that the network could be trained in future work. Decisions
were made by feeding the external memory vector values into this network. This
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architecture is shown in figure 4.3. In this figure, the linear network is shown between
the Memory Matrix and Non-linearity components. Note that these units receive
the register 0 values unaltered before applying the network weights, i.e. the first
set of arrows represent direct transfer of values whereas the second set represent
multiplicative weighting.

Figure 4.3: Architecture of the hybrid algorithm combining TPG, its external memory
matrix, and a linear decision network.

Actions were selected identically to the methods used by REINFORCE: for dis-
crete actions, the results was passed through a sigmoid function and rounded to 0.0
or 1.0, the two actions accepted by the discrete-action CartPole environment; for
continuous actions, the results were passed through a tanh function to produce a real
value between -1.0 and +1.0, and an action was sampled from a normal distribution
using this value as the mean. A high-level diagram of this mechanism is shown in
figure 4.4. In this diagram, St represents the environment state and S ′

t represents
TPG’s internal state representation, contained in its memory matrix.

Figure 4.4: Action selection diagram of the hybrid algorithm combining TPG, its
external memory matrix, and a linear decision network.

4.3.1 Memory Matrix Modifications

The memory matrix used in this work is modified from the version described in
section 2.4.4. Specifically, the matrix is reduced from a size of 100×8 to 5×8. While
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the larger, 800-entry matrix may encourage behaviour such as short-term and long-
term memory, it generally produces sparse matrices. Moreover, the state space and
duration of the reinforcement learning tasks used to demonstrate the original work
involved ≈ 76, 000 attributes, programs consisting of 1000 instructions and thousands
of temporal steps. Conversely, the state space of CartPole is only 4 and programs
in this work are allowed a maximum of 128 instructions. With this in mind, a much
smaller memory parameterization is adopted, as follows:

p = 0.7− (0.2 ∗ row)2

over the 5 rather than 100 rows. This increases the maximum probability of any given
write to 70% over the 25% used in the original formulation, which in turn reduces
the likelihood of spare memory content. Sparsity is deemed potentially undesirable
because it implies that any mapping to a real-valued action will be that much more
sensitive to the few values written to memory.

4.3.2 Experiment

This experiment was performed two times: once in which the discrete-action CartPole
environment was used, and a second time in which the continuous-action CartPole
environment was used. The full algorithm used in this experiment was as follows:

1. Repeat the following nruns times:

(a) Evolve a TPG agent in the CartPole environment for rgenerations genera-
tions. Execute each agent over rtrain episodes episodes per generation. Sur-
viving agents may skip re-evaluation for up to rskip subsequent generations.
At each generation, record the top agent score.

(b) Test the highest-performing agent from evolution for rtest episodes episodes.
At each episode, record the agent’s final score.

At each timestep, action selection was performed as follows:

1. TPG receives the state of the CartPole environment.

2. TPG executes its bidding/action mechanism, which may write values to the
external memory vector.
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3. The memory vector is flattened and fed to the decision-making network.

4. The decision making network produces an action suggestion as described above.
This action is fed back into the environment.

The parameters described above are defined in table 4.4.

Parameter Value
nruns 20

rgenerations 100 in discrete-action CartPole, 50 in continuous-action CartPole
repisodes 5

rtest 1000
rskip 2

Table 4.4: Parameters used in discrete-action TPG + REINFORCE experiment



Chapter 5

Results

5.1 Comparison of Instruction Sets

Figure 5.1: Histogram showing the distribution of register values, sampled from TPG
agents using the canonical instruction set

All agents used in the comparison of the effects of the instruction set on register
values were evolved to be highly performant: the average score of both sets of agents
(those using the canonical instruction set and those using the modified instruction
set) over 10 test episodes in the discrete CartPole environment was above 480.0 (out
of a maximum of 500.0). These agents are therefore expected to be representative of

67
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Figure 5.2: Histogram showing the distribution of register values, sampled from TPG
agents using the canonical instruction set, cut off to better display the spread of
values.

typical fully-evolved CartPole agents.

Figures 5.1 and 5.2 show the results of sampling register 0 values from the TPG
agents that used the canonical instruction set over 10 test episodes each. Register
values are put into one of 50 bins. Figure 5.1 displays the histogram with its bounds
set based on the minimum and maximum bin values as well as bin height, while figure
5.2 displays the same results with the bin heights artificially set to 50 to better display
the results in those bins with relatively few entries. As shown, the register values do
indeed span the range of 32-bit floating-point values, where the maximum magnitude
of a floating-point value is ≈ 3.4 × 1038. In fact, the groupings shown in figure 5.1
suggest that TPG makes significant use of both the positive and negative maximum
value: though most values are within the two bins adjacent to and including 0, the
relative height of the bins including the positive and negative maximum value indicate
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Figure 5.3: Histogram showing the distribution of register values, sampled from TPG
agents using the modifed instruction set.

that most registers containing a value outside the two 0-adjacent bins contain either
the positive or negative maximum floating-point value.

Figure 5.2 indicates that indeed all bins contain values, though some contain a
relatively small number. Therefore, for at least those agents sampled, the entire range
of 32-bit floating-point values is used by TPG agents.

Figures 5.3 and 5.4 show the same results of sampling register 0 values over 10
test episodes, this time from the TPG agents that used the modified instruction set.
Register values were again put into one of 50 bins. As shown in figure 5.3, most register
0 values fall within a relatively small range around 0 (relative when compared to the
same data taken from the canonical instruction set agents). After artificially cutting
the bin height at 50 again, figure 5.4 shows a similar grouping effect to that seen in
the canonical instruction set agents’ register 0 values. These groupings may suggest
that TPG makes use of these groups to represent coarse information. However, in
agents using the modified instruction set, these groupings span only a fraction of the
available 32-bit floating-point values.

These results suggest that the modified instruction set encourages TPG to store
the same state information as agents using the canonical set in a smaller value space.
This instruction set was used in all the following experiments in this work on the
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Figure 5.4: Histogram showing the distribution of register values, sampled from TPG
agents using the modifed instruction set, cut off to better display the spread of values.

basis that the smaller range of values would be more useful to decision networks that
typically benefit from input normalization. Input normalization to neural networks
typically leads to faster training with higher learning rates and less sensitivity to
weight initialization [13]; therefore this modified instruction set will likely aid REIN-
FORCE and any other gradient methods used in the future. Additionally, the smaller
range of register values seen should minimize the loss of information when register val-
ues were clipped to between -20.0 and +20.0 before being fed to the decision networks,
which was performed in all experiments in this work. Normalization/standardization
is typically applied to neural network attributes, but is only effective when the nu-
merical values do not include ‘special values’ (e.g. under/overflow limits) since these
preclude the use any normalizing operation.
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5.2 TPG and REINFORCE

5.2.1 Discrete Action REINFORCE and CartPole

For this experiment, 20 TPG agents were evolved over 20 generations. Figure 5.5, 5.6
and 5.7 provide an overview of the relative complexity of the TPG agents produced
during evolution. It is apparent that for the most part agents consisted of less than
10 teams and less than 40 programs. No preference for a particular instruction type
was observed.

Figure 5.5: Distribution of total Team counts across TPG agents used in the discrete-
action REINFORCE experiment.

As each agent was evolved, the top-scoring agent’s score at each generation was
recorded. After evolution, a 20 × 20 matrix (20 runs of evolution, each including
20 generations) of these recorded training scores was collected. To review the per-
formance of these agents during evolution, the maximum, median, and minimum
top score at each generation was extracted. Figure 5.8 shows these results. It is
worth noting that the procedure just described for extracting scores does not extract
scores of individual agents, but rather produces a representative curve of what the
best, worst and ‘average’ agents’ performance was during evolution. As shown in
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Figure 5.6: Distribution of total Learner counts across TPG agents used in the
discrete-action REINFORCE experiment.

figure 5.8, even the representative median agent achieves high performance after 20
generations, scoring 100% for the last several generations of evolution.

Each of these agents was tested over 1000 episodes, each with different starting
configurations (though each agent saw the same sequence of 1000 different starting
configurations). Figure 5.9 shows the distribution of TPG agents’ test scores across
the 1000 test episodes. The mean agent performance was 486.46 out of 500.0 with a
standard deviation of 41.22. The top-scoring agent achieved an average score of 500
over all 1000 episodes.

The training curves and test results suggest that TPG is capable of producing
high-performing agents in the discrete CartPole environment. As shown in figure 5.9,
8 out of 20 agents scored 500.0/500.0 on all 1000 test episodes, while most others
show a tight cluster of high scores near the 500.0 mark. Based on this, it can be
assumed that REINFORCE is operating with high-quality TPG agents as its input
in most cases.

For each TPG agent produced, a discrete-action REINFORCE agent1 was trained

1The architecture for a REINFORCE agent is always a linear perceptron. Inputs are the R[0]
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Figure 5.7: Distribution of op-code counts across TPG agents used in the discrete-
action REINFORCE experiment.

over 5000 episodes using that agent as its input. Each REINFORCE agent was
given 10 opportunities to re-train from a random initialization so that ‘unlucky’ ini-
tialization could be ruled out as a likely cause for any poor performance seen by
REINFORCE. Each re-training from the same TPG agent is referred to below as
a REINFORCE session. The task of settling on a final REINFORCE agent out
of all 10 session candidates per TPG agent was done by calculating the mean test
score for each session candidate and selecting the candidate with the highest mean
test score. The training scores for all 20 of these top-performing candidates were
collected into a 20 × 5000 matrix. Similarly to TPG, the maximum, median, and
minimum score at each episode was extracted. Figure 5.10 shows these results, with
each curve smoothed using a 50-episode rolling average. As shown in figure 5.10,
even the representative median REINFORCE agent achieves a high score after 5000
episodes. However, unlike TPG, the representative worst-performing agent effectively

registers from each program comprising a TPG solution. Output is the force applied to the cart, as
described in section 2.6.
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Figure 5.8: TPG training curve showing the top agent scores per generation for TPG
agents used in the discrete-action REINFORCE experiment.

Figure 5.9: Distribution of TPG agents’ test scores across 1000 test episodes for TPG
agents used in the discrete-action REINFORCE experiment. Each violin represents
the distribution of a single TPG agent’s 1000 test scores.

achieves a performance of nearly 0 on average. This indicates that REINFORCE is
not guaranteed to converge on useful behaviour.
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Figure 5.10: Discrete-action REINFORCE training curve showing the top agent scores
per episode.

After each session, REINFORCE was presented with the same 1000 test episode
configurations presented to TPG. REINFORCE’s score was recorded after each test
episode. Figure 5.11 show the distribution of test scores over all 20 finalized RE-
INFORCE agents. The mean agent performance was 473.90 out of 500.0 with a
standard deviation of 83.44. The top-scoring agent also achieved an average score of
500.0/500.0 over all 1000 episodes. The distribution shows strong clustering of results
around 100% for all but one of the finalized REINFORCE agents, though the wide
distributions show that even a highly capable agent, i.e. one with a high average test
score, occasionally scores very poorly, consistent with TPG.

These results are strong evidence for the validity of this method of producing a
reinforcement learning agent by feeding TPG’s register 0 collection into REINFORCE
as a state vector. The consistently-rising median and top training curves and high
test performance are strong indications that REINFORCE is capable of making use
of TPG’s register 0 collection and therefore that TPG is producing a useful state
representation in its register banks that can be interpreted by other algorithms.

Despite the strong indication that this is a valid approach, the higher standard
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Figure 5.11: Distribution of discrete-action REINFORCE agents’ test scores across
1000 test episodes. Each violin represents the distribution of a single REINFORCE
agent’s 1000 test scores.

deviation of the combination of REINFORCE and TPG compared to TPG alone
as well as the extremely poor performance of the representative worst-performing
agent suggest that this method may not be robust: it is evidently possible to run
the algorithm as described without necessarily producing a useful agent. As noted,
REINFORCE is given multiple opportunities (sessions) to re-train with a new initial-
ization of its network parameters. If the poor performance is still due to bad luck in
its network initialization then the only solution would be to increase the number of
allowed sessions. This quickly gets expensive in terms of both time and computation,
since REINFORCE needs to train from scratch on each new initialization attempt.

5.2.2 Continuous REINFORCE and CartPole

The same results were collected for the case of continuous-action REINFORCE agents
trained in the continuous-action CartPole environment, based on TPG agents trained
in the discrete-action CartPole environment. Figure 5.12 shows the training curve for
the 20 TPG agents used in this experiment. Figures 5.13, 5.14 and 5.15 show the
relative complexity of the TPG agents produced. These agents demonstrate similar
complexity and training performance to those produced for the previous experiment.
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Figure 5.12: TPG training curve showing the top agent scores per generation for TPG
agents used in the continuous-action REINFORCE experiment.

This is as expected since both sets of TPG agents were produced in the same discrete-
action CartPole environment.

Each TPG agent was tested under the same conditions as those used in the
discrete-action REINFORCE experiment, described in section 5.2.1. Figure 5.16
shows the distribution of TPG test scores. These agents achieved an average score
of 489.11 out of 500.0 with a standard deviation of 17.56. Again, 8 out of 20 agents
achieved a mean score of 100%. Note that in this experiment TPG was still evolved
in the discrete-action CartPole environment. These results indicate that these agents
performed similarly to those used in the previous experiment.

In this experiment, REINFORCE was trained over 25000 generations rather than
5000. Otherwise, the procedure was identical to that used for discrete-action RE-
INFORCE in section 5.2.1. Figure 5.17 shows the results of training REINFORCE
in this environment. As shown, the representative median-performing agent only
achieves high-performance at the end of the 25000 available training episodes, al-
ready 5 times the number of episodes required by the median-performing agent in
the discrete-action CartPole environment. This indicates that the continuous-action
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Figure 5.13: Distribution of total Team counts across TPG agents used in the
continuous-action REINFORCE experiment.

Figure 5.14: Distribution of total Learner counts across TPG agents used in the
continuous-action REINFORCE experiment.
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Figure 5.15: Distribution of op-code counts across TPG agents used in the continuous-
action REINFORCE experiment.

Figure 5.16: Distribution of TPG agents’ test scores across 1000 test episodes for
TPG agents used in the continuous-action REINFORCE experiment. Each violin
represents the distribution of a single TPG agent’s 1000 test scores.

environment is significantly harder to navigate.

Tests were also performed just as described in section 5.2.1. Figure 5.18 shows
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Figure 5.17: Continuous REINFORCE training curve showing the top agent scores
per episode.

the distribution of test scores. The majority of agents still show a tight distribution
around 100%, though a higher number of agents show a maximum score well below
100% when compared to those produced in the discrete-action environment. The
mean agent performance was 401.68 out of 500.0 with a standard deviation of 151.03.
This represents a drop in performance, evident in the lower mean score, as well as
an indication of increased volatility, evident in the increased standard deviation. The
higher volatility and increased number of sub-optimal agents (those whose maximum
score is less than 100%) shows that this algorithm is not guaranteed to produce
a useful agent. However, high-performing agents (those whose test scores show a
tight cluster around 100%) are still the majority. The top-scoring agents achieved an
average score of 500.0 over all 1000 episodes.

To further characterize REINFORCE’s behaviour, an additional REINFORCE
agent was trained and tested as described above. This agent achieved a mean score of
480.78 over 100 test episodes and so can be roughly considered to be a well-behaved
agent. This agent’s actions were recorded over a single test episode in which the agent
scored 500.0. The recorded action values are shown in figure 5.19. Figure 5.20 shows
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Figure 5.18: Distribution of continuous-action REINFORCE agents’ test scores across
1000 test episodes. Each violin represents the distribution of a single REINFORCE
agent’s 1000 test scores.

a restricted portion of the same plot for better visibility into the oscillations of the
actions. These plots suggest that REINFORCE is not simply re-learning something
equivalent to discrete-action behaviour, e.g. learning to produce either of two large
and opposing values at each timestep. Rather, REINFORCE is learning a policy in
which action values are selected deliberately from within the allowed range of values.

Despite the drop in performance when compared to the case of REINFORCE
trained in the discrete-action CartPole environment, the results of this experiment
are encouraging. These results are strong evidence for the validity of this method
of producing a TPG-based reinforcement learning agent capable of operating in a
continuous-action environment. The training curves show that REINFORCE is still
typically able to make use of TPG’s register 0 collection to derive actions. Even more
encouraging, REINFORCE is capable of using TPG’s ad-hoc state vector (its register
0 collection) to produce continuous actions, despite TPG having only learned to nav-
igate the discrete-action environment. This suggests that TPG is forming a relatively
robust state representation in its register values. It should also be noted that REIN-
FORCE was halted artificially after 25000 episodes based on time constraints during
experiments and it is possible that a higher performance may have been observed had
REINFORCE been afforded more episodes during training. This is suggested by the
median training curve (figure 5.17), which indicates that the median agent learned to
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Figure 5.19: Recorded actions of a continuous-action REINFORCE agent.

Figure 5.20: Crop of recorded actions of a continuous-action REINFORCE agent.

navigate the environment ‘just in time’.
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5.3 TPG and External State Vector

5.3.1 Discrete-action Environment

For this experiment 20 TPG agents with an external memory vector were evolved over
100 generations in the discrete-action CartPole environment. Actions were derived
from the external vector as described in section 4.3.2, i.e. via a linear perceptron
with fixed weights that receive the external state vector as input, feed the output to a
sigmoid function and round the result to either 0 or 1. Results were collected using the
same method for recording TPG scores used in the experiments with REINFORCE,
described in section 5.2. Figures 5.21, 5.22 and 5.15 show the relative complexity of
the TPG agents produced. The average team count, learner count and opcode counts
all approximately double when compared to the agents produced when no external
memory vector is used and actions are derived as per canonical TPG. This may be
ascribed to the doubling of the number of generations assumed for training relative
to the previous experiments.

Figure 5.21: Distribution of total Team counts across TPG agents used in the discrete-
action external memory vector experiment.

Figure 5.24 shows the training curves collected during evolution. As shown, the
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Figure 5.22: Distribution of total Learner counts across TPG agents used in the
discrete-action external memory vector experiment.

Figure 5.23: Distribution of op-code counts across TPG agents used in the discrete-
action external memory vector experiment.
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top- and median-performing agents quickly achieve a score of 100% in less than 50
generations. Even the worst-performing agent displays some level of capability and
improvement during evolution, hovering around the 300.0 mark.

Figure 5.24: TPG training curve showing the top agent scores per generation for TPG
agents used in the discrete-action external memory vector experiment.

These agents were tested exactly as described in section 5.2. Figure 5.25 shows
the distribution of test scores across all agents. The mean agent performance was
483.64 out of 500.0 with a standard deviation of 71.87. The top-scoring agents also
achieved an average score of 500 over all 1000 episodes, which occurred in 9 out of
20 agents. Notably, the distributions of test scores are tighter than those measured
during the discrete-action REINFORCE evaluations, showing that the same effect or
better can be achieved by TPG alone without the addition of a gradient method.

These results indicate that TPG can be taught to produce a useful state represen-
tation in a dedicated location, here the external memory vector, and that a successful
agent can be produced that derives actions exclusively from this state representation.
This is encouraging given that the decision network was never updated or modified
during evolution; rather, TPG learned to cater the state representation to the fixed
decision network.
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Figure 5.25: Distribution of TPG agents’ test scores across 1000 test episodes for
TPG agents used in the discrete-action external memory vector experiment. Each
violin represents the distribution of a single TPG agent’s 1000 test scores.

5.3.2 Continuous-action Environment

The same experiment was performed in the continuous-action CartPole environment
and with TPG only given 50 generations to produce a useful agent. This was done
in the interest of time after the previous experiment suggested that 100 generations
was possibly excessive. Figures 5.26, 5.27 and 5.28 show the relative complexity of
the TPG agents produced. As shown, these agents do not appear significantly more
complex than those produced in the case of the discrete-action environment and in
fact show reduced opcode counts in comparison. This suggests that the move to
continuous actions from discrete actions, derived from the external memory vector,
does not necessarily come at an increased cost of complexity in the TPG agents.

Figure 5.29 shows the training curves collected during evolution. As shown, the
top- and median-performing agent both achieve a score of 100% in less than 40 genera-
tions. Similarly to the previous experiment, even the worst-performing representative
agent achieves some degree of capability.

These agents were tested exactly as described in section 5.2. Figure 5.30 shows the
distribution of test scores across all agents. The mean agent performance was 457.41
out of 500.0 with a standard deviation of 73.19. The scores are typically tightly
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Figure 5.26: Distribution of total Team counts across TPG agents used in the
continuous-action external memory vector experiment.

Figure 5.27: Distribution of total Learner counts across TPG agents used in the
continuous-action external memory vector experiment.
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Figure 5.28: Distribution of op-code counts across TPG agents used in the continuous-
action external memory vector experiment.

Figure 5.29: TPG training curve showing the top agent scores per generation for TPG
agents used in the continuous-action external memory vector experiment.
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clustered around the 100% mark across all but two agents. However the clustering
is not as tight as in the case of agents operating in the discrete-action environment
and a much lower number of agents achieve 100% in all test episodes. Rather, the
majority of the agents tested show a minimum score below 100.0, further indicating
that the continuous-action environment is more difficult to navigate.

Figure 5.30: Distribution of TPG agents’ test scores across 1000 test episodes for
TPG agents used in the continuous-action external memory vector experiment. Each
violin represents the distribution of a single TPG agent’s 1000 test scores.

The first agent to achieve an average score of 100% over its test episodes was
further analyzed to again characterize the selection of action values. This agent was
tested in a single episode and its action values recorded. The agent scored 500.0 in
this test episode. The recorded action values are shown in figure 5.19. Figure 5.20
shows a restricted portion of the same plot for better visibility into the oscillations of
the actions. These plots suggest that, similarly to REINFORCE, TPG is also learning
to deliberately select actions from within the allowed range of values.

Despite the drop in performance when compared to agents trained in the discrete-
action environment, these results show that TPG is capable of tailoring a state rep-
resentation in an external memory vector to a fixed decision network and is capable
of producing useful agents that exhibit high performance in a continuous-action en-
vironment by deriving actions from this state representation.
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Figure 5.31: Recorded actions of a continuous-action TPG agent.

Figure 5.32: Crop of recorded actions of a continuous-action TPG agent.



Chapter 6

Conclusion

This thesis addresses the specific question of how to generalize the operation of the
Tangled Program Graph framework to real-valued actions under a reinforcement
learning context. To do so, two proposals are made. The first augments a TPG
solution with a single weight vector that is used to derive a real-valued action us-
ing the REINFORCE learning algorithm. This implies that TPG is first trained on
a discrete version of the task before REINFORCE can be deployed. In the second
proposal, TPG is trained with ‘indexed memory’ (a representation of internal state)
and a fixed weight vector assumed to directly derive a corresponding real-valued ac-
tion. This means that there is only a single cycle of training and the task can be
directly solved using a real-valued action. The results of both the attempt to derive
actions from TPG’s incidentally-produced state representation (register 0 values) via
REINFORCE and the attempt to derive actions from its intentionally-produced state
representation (external memory vector) successfully produced agents capable of solv-
ing the real-valued action configuration of the CartPole environment. This validates
the re-framing of TPG as a combination of both a feature-engineering algorithm and
an action-selection algorithm, with the output of the former being fed to the latter.
It further indicates that the first component can be decoupled from the second and is
capable of producing a robust state representation useful to multiple action-selection
mechanisms. The success of both approaches in producing solutions to the real-valued
action CartPole environment and the validation of the reframing described above con-
firm that TPG can be extended to perform real-valued actions and provide a method
through which TPG can be modularized to accommodate a variety of action-selection
algorithms.

While REINFORCE’s performance provided the initial evidence to validate this
approach to deriving actions, the algorithm using a combination of TPG and REIN-
FORCE is too cumbersome and constrained to be used in real-world reinforcement
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learning scenarios, due largely to its requirement that a discrete-action version of the
environment be available. However, the final algorithm in which actions are calcu-
lated from TPG’s memory vector has not only been shown to be effective, but is
usable ‘out-of-the-box’. The algorithm as implemented in this work does not suffer
any additional constraints when compared to canonical TPG, requiring only the ad-
dition of the simple decision-making network. Additionally, though this was not a
goal of this work, the results also suggest that the penalty in increased complexity of
the resulting agents when using this algorithm is relatively minor.

Though encouraging, this work serves largely as a proof-of-concept and would
benefit from future experiments to further investigate the external state-based algo-
rithm’s usefulness as well as perhaps extend its applicability. This future work might
include:

• Evaluating the algorithm in more difficult environments. The algorithms in this
work were presented with a readily tractable environment and their capabilities
in more complex environment when compared to canonical TPG is unknown.

• Extending the decision-making network to multiple simultaneous actions. Many
environments allow for or require a combination of multiple discrete and/or real-
valued actions to be taken at each timestep. This could be achieved by further
dividing up the memory matrix such that different sections of memory are fed
into different action-selection networks.

• Extending the memory-based algorithm so that the decision network might be
improved using gradient methods. This would effectively be a combination of
both of the algorithms described in this work and would entail REINFORCE
(or any gradient method) being applied to the external memory vector so that
after TPG had settled on an architecture, the final decision-making network
might be improved.

• Evaluate different gradient-based methods for improving the decision-making
network (e.g. TD methods such as the Actor-Critic).

Regardless of work to be done in the future, the result of these experiments is a work-
ing, practical algorithm for deriving high-performance TPG agents capable of oper-
ating in a continuous-action environment. In terms of related algorithms, as noted in
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the introduction, TPG represents a framework that produces emergent solutions with
comparable quality to those identified using deep learning under visual reinforcement
learning benchmarks such as ALE [17] [16] or VizDoom [30]. Neural-evolutionary
methods such as NEAT and HyperNEAT are capable of providing real-valued out-
puts. However, when empirically evaluated under the suite of 50 ALE game titles [14],
they have not scaled as well as TPG [16]. Future research will continue to characterize
the problem characteristics that discriminate between each representation.
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