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Abstract

Data security includes but not limited to, data encryption, tokenization, and key

management practices that protect data across all applications and platforms. In

this thesis, I aim to explore whether any data leakage takes place in data encryption

when encrypted data is analyzed using supervised machine learning techniques. In

the literature, researchers studied reverse engineering the encrypted data or brute

forcing the attacks against encryption algorithms in order to study data leakage.

However, in this research, my goal is not to reverse engineer or brute force the cipher-

text, but to explore whether a supervised learning algorithm could identify a pattern

that could potentially leak data in ciphertext. To this end, I analyze four encryp-

tion algorithms using five supervised learning techniques on four different datasets.

The results show that as the encryption algorithms get stronger, the data leakage

decreases, even though the data leakage is never zero percent.
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Chapter 1

Introduction

Nowadays, technology is evolving rapidly to make our lives easier and more efficient.

As an outcome, there are all sorts of information, including daily messages, private

information, security information, etc. are transferred through the internet.In order

to secure this information from any threat, it is necessary to provide a way that only

the intended recipients can read it. That is when encryption becomes useful. It is a

technical term that ensures the data that is being sent to the internet is secure. In

a nutshell, encryption is the process of encoding messages and/or information. The

primary purpose of the encryption is to convert the actual text (plaintext) from the

user to a ciphertext that only the receiver can read it. This process is usually done by

using a key in the middle that only the sender and receiver have access to it. In this

method, when a host sends a message to the client, it encrypts it with a private key,

and when the message reaches the destination, the client can translate the encrypted

message and revert it to the plaintext using its own private key. This key could be

the same for both sender and receiver which is called Symmetric Encryption as it is

illustrated in figure 1.1, or it can be different, which is called Asymmetric Encryption,

as it is shown in figure 1.2. I will discuss these methods more in the methodology

chapter. Also, there are different types of encryption developed for different reasons.

In this thesis, I will cover four types of widely known symmetric encryption algorithms

and do the experiments on them.

Moreover, Artificial Intelligence (AI) is another outcome of the recent develop-

ments, which is developing intelligence for machines to learn from the experience. A

subset of AI is Machine Learning (ML), which is considered to be the most inter-

esting concept in recent days. Using ML, a computer can be fed a huge amount of

data, which is called a dataset, and the object is to learn and analyze them in an

automated process. This process is highly dependent on the input data that the user

provides to the machine learning algorithm. In other words, the more data we feed

1



2

Figure (1.1) Symmetric Encryption process[36]

Figure (1.2) Asymmetric Encryption process[36]
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to the algorithm, it can make the more computationally complicated decision. Hence

the final solution is closer to reality. Machine Learning mainly contains two methods,

which are Supervised Learning, Unsupervised Learning.

• Supervised Learning: Most of the work in the ML field is done via supervised

learning. It maps data samples from the dataset to an output variable. In

this case, the correct classification is already assigned to the training set. This

process consists of two methods, called regression and classification. When the

output of the classification is categorical, it is classification, and if the output

is a continuous value, it will be a regression. [39]

• Unsupervised learning: In this case, users are not aware of the output class,

and only input data is provided. The main purpose of this method is to find a

structure or a pattern in the data that could lead to reasonable assumptions or

results. [39]

My research objectives in this thesis is to explore whether any data leakage takes

place in data encryption when encrypted data is analyzed using supervised machine

learning techniques. The goal here is not to reverse engineer the encryption but

to investigate whether there are any patterns in the encrypted data that could be

identified using supervised learning techniques to analyze the encrypted data. For

this purpose, I study if the topic of an encrypted text could be identified or not. Such

an analysis could be useful for not only to explore data leakage in encrypted data but

also could be useful for forensic analysis for cybersecurity purposes.

In this thesis, I will discuss the proposed system, which can learn from the en-

crypted data without any previous knowledge to identify the related topics of each

ciphertext. This process is done by implementing several supervised learning algo-

rithms on different sets of data using different types of encryption.

The rest of this thesis is organized as follows. Related work is discussed in Chap-

ter 2. The classification algorithms, Datasets, Encryption algorithms, the approach

taken and the tools that I used to implement the model are discussed in Chapter3.

Evaluations and results are presented in Chapter 4. Finally, conclusions are drawn

and future works are discussd in Chapter 5.



Chapter 2

Literature Review

Due to the complexity of privacy risks, analysis of services that provide security is

now more essential than ever. Also, machine learning classification is widely used in

numerous applications for text classification such as medical, finance, speech recog-

nition, etc. Since privacy is a concern, the data need to remain confidential while

transferring. Thus, the algorithm used to provide this confidentiality should be clear

of any leakage. In this chapter, related works on encrypted text classification are cov-

ered. To this end, most of the work that has been done already, focus on preserving

privacy during the training. Some of these works are investigated in the following.

2.1 Classification of plaintext data

Text classification is the task of assigning one or more labels to a text. This process

makes it easier to sort. Natural Language Processing helps to find the essential

keywords through this process so the machine learning algorithm can understand the

text data. Here I am using four different datasets, and I will discuss the papers

published on these datasets and their approach towards text classification in the

following. Moreover, I will cover some of the techniques that can be used in order to

make the raw text data understandable to machine learning algorithms and discuss

some of the related works that have been done in that area.

2.1.1 Datasets

There are not many publicly available datasets that have sufficient records and can be

used for classifying the raw text data. During my research, I found particularly four

datasets that will be useful for this task. There are some papers published on these

datasets, and most of them are focusing on data pre-processing and Natural Language

processing techniques to achieve a high score on the classification task. These datasets

are Kaggle Isis dataset [5], Kaggle News Category dataset [6], Kaggle Sentiment 140

4
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dataset [7] and AG news dataset [2]. In 2018, Fernandez et al. [21] experimented

on the Kaggle Isis dataset and used contextual meanings for better discrimination of

radical content. For this purpose, they built classifiers to process contextual seman-

tics, and in order to distinguish the terms that are related to radicalized rhetoric,

have found terms for both target classes (Pro-ISIS and Non-Pro-ISIS). 15.7 percent

of the terms belong to Pro-ISIS tweets, 5.6 percent to Non-Pro-ISIS, 47.9 Percent for

Pro-ISIS and Non-Pro-Isis, and 30.8 Percent of the terms did not appear in any of

the two classes. They used two different classifiers, one is unigrams only classifier,

and another one is semantically enhanced classifier. The goal of making these two

classifiers is to see if the semantics could improve the already existing methods by

giving more information. They made a dataset with 27,400 tweets with each class

containing 13,700 tweets. Using this approach, they were able to achieve the F1 score

of 0.851.

In another study, Olga Fuks [22] experimented on Kaggle News Category dataset with

a combination of TF-IDF method and word embeddings to predict the category of the

news from their short descriptions and their headlines. She used both traditional ML

and deep learning methods. For their word embedding, they used a Keras layer and

considered only 30,000 most common words in the dataset. Moreover, truncated each

example to a maximum length of 50 words. She used four different classifiers for the

traditional ML method, Naive Bayes, Multinomial Logistic Regression, Kernel SVM,

and Random Forest. Also, CNN and RNN were used for the deep ML method. They

used pre-trained Glove word embeddings [26] with 100 dimensions for the part of the

neural networks. After pre-processing, she used 113,342 samples with 25 labels. She

divided the data into three parts of the train, dev, and test. The best result belonged

to the ensemble of four neural network models, with a 68.85 percent accuracy score.

Moreover, Yogatama et al. [17] compared the complexity and error rate of discrim-

inative and generative LSTM-based text classification models. In addition to their

generative and discriminative datasets, they used Naive Bayes classifier, Kneser–Ney

Bayes classifier, and Naive Bayes neural network. In their experiments, they set the

word embedding dimension and the LSTM hidden dimension to 100. They discovered

that discriminative models are faster in training and inference time. On the other
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hand generativeModels are using the vocabulary of hundreds of thousand words, which

makes them computationally intensive. They experimented on AG news, Sogou, Yelp

Bin, Yelp Full, DBPed, and Yahoo datasets. Since I used the AG News dataset fur-

ther on in my research, I am going to focus on the results based on this particular

dataset. They divided this dataset into three parts, 115,000 records for the training

set, 5,000 records for dev set, and 7,600 records for the test set. The highest accuracy

score, which they achieved, was 92.5 percent using fasttext embeddings [10].They also

tried zero-shot learning as another part of their experiments. In addition, Go et. al

[9], illustrated that using emoticons as noisy labels in the training data is an effec-

tive way to improve machine learning algorithms. In their approach, they intend to

classify the sentiment of Twitter messages using emoticons automatically. Their ma-

chine learning classifiers are Naive Bayes, Maximum Entropy (MaxEnt), and support

vector machines (SVM). Moreover, their feature extractors are uni-grams, bigrams,

unigrams and bigrams, and unigrams with part of speech tags. The side effect of their

approach is that they need to strip out the emoticons while learning the classifier.

After pre-processing the data, they ended up having 1.6 million tweets with 800,000

tweets in each class. They used word N-grams for their feature extraction. Their best

result belongs to a combination of Unigram and Bigram, where the highest accuracy

score is 83.0 percent.

2.1.2 Feature extraction

Since most machine learning algorithms cannot take in straight text, a numerical

matrix should be created to represent the text. There are several approaches about

how to extract features from a text document, which in this section, I will briefly go

over the papers and researches that used these approaches. One of the most popular

methods for feature extraction is using a bag of words representation. In 2017, James

Barry [12], conducted research and a compared bag of words and neural networks-

based approaches for sentiment classification. He used an LSTM model [44] for neural

networks part, which is able to handle sequential data as well as pre-trained GloVe

embeddings [26] and Word2vec embeddings [48]. He found that although neural

networks outperform bag of words method, a bag of words still performs very well,

and it has considerably shorter training time periods. Another research conducted by
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Bijoyan Das et al. [13], which performed sentiment analysis on their datasets Using

the bag of words model and Term Frequency–Inverse Document Frequency (TF-IDF)

model. Also, they proposed a model that consists of a combination of TF-IDF and

Word Negation. They used ten fold cross-validation and extracted 5000 features from

their text corpus. Their results indicate that TF-IDF model and, in particular, the

combination of TF-IDF and word negation will improve the accuracy score by a good

percentage.

2.1.3 Classification algorithms

In supervised learning, a classification algorithm weighs the input features and assigns

a label to them. In this section, I will discuss some researches that used various types

of classification algorithms to classify the text data. In further, I will implement these

classifiers on my approach. In 2018, Shou [53], investigates the performance of Naive

Bayes classifier for his work. Their study proposes three Bayesian classifiers, which are

Multinomial, Bernoulli, and Gaussian event models. They used two different datasets

for their model 20newsgroup and WebKB. They implemented parameter tuning for

each of the classifiers in their research using grid search and reported their results

with Precision, Recall, and F1 score. At the end of their experiments, they have found

out that the NB classifier with a multinomial event model outweighs the Bernoulli

model, which Bernoulli itself outweighs the Gaussian event model. In the same year,

Umnity et. al [50], conducted research and attempted to classify the reports based on

complaints and non-complaint using the Logistic Regression classifier. They gathered

their data from The people’s online aspiration and complaints services (LAPOR!),

which is an Indonesian governmental website, and they labeled the dataset themselves.

After that, they performed pre-processing and used TF-IDF and CountVectorizer

algorithms to extract features from the text. In the next step, they modeled the data

using training data and classified the test data. In the final step, they measure the

performance using precision, recall, and F1 score. Lastly, they were able to achieve

a better result on Logistic regression using Countvectorizer than TF-IDF feature

extraction. In 2017, Vora et al. [37], proposed a model to classify tweets based on

the emotions expressed by their authors. They used word vectors to convert text into

numbers that could be classified with machine learning algorithms. They gathered
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data from their twitter API and automatically assigned labels to their dataset by using

Hashtags. They have labeled their dataset into four different categories, Happy, Sad,

Angry, and Surprise. They implemented NLP methods in order to pre-process their

dataset and replaced the emojis and emoticons with a related text. They trained

their model using Word2vec, Glove and Fasttext word embeddings with different

dimensions and different number of estimators. Finally, they chose the Random Forest

classifier to perform classification on their model. Also, out of 160138 samples,112096

samples as training data, and 48042 samples as test data. Based on their results, the

Fasttext model with 300-dimension and 200 estimators outperforms the other models.

In 2012, Deshmukh et al. [41], proposed an SVM approach for emotion recognition

from text. They created their own dataset by extracting news headlines from major

newspapers such as the York Times, CNN, and BBC News, as well as from the Google

News search engine. They used emotions, namely, Anger, Disgust, Fear, Joy, Sad,

and Surprise, as the labels for their dataset. They used six annotators to label their

dataset (one for each emotion). They ended up using two different datasets, one

development dataset which is consisted of 250 annotated headlines and a test dataset

consisting of 1,000 annotated headlines. They used SVM for their classification and

trained it with 250 news headlines, also evaluated it using 1,000 newspaper headlines.

In the end, they compared their model by three similar existing models SWAT [32],

UPAR7 [15] and UA [29] . They Illustrated that their SVM based classification on

their data can be as good as the other three systems.

2.2 Encrypted text classification

During my research, I have found that there is not much research that has been done

in this field yet. Most of the researches that try to find leakage in an encryption

algorithm are trying to decrypt the encryption algorithm which is not possible yet

and takes a huge amount of computational resource or trying to imply techniques like

counting the frequency which is not useful for most of the modern and complicated

encryption algorithms. I will go over some of the best works that I have found related

to this task. In 2001, Matsui [34], conducted a research about linear cryptanalysis

method for DES cipher. Using this method they were able to implement the first

known-plaintext attack of the full 16 round DES cipher. They had to deal with various



9

problems resulting from non-randomness of the plaintext. They were successfuly able

to attack the ciphers with a success rate of 99.9 percent. Yang et al. [23], published

a paper in 2017 investigating black keywords that are being used frequently by the

underground community to help them escape from being tracked by law enforcement.

Since these are black keywords, there seems to be no specific pattern that they can

recognize them, and that is why they call it Klingon (a constructed language in

the fictional Star Trek universe, without reference to any dictionary). In order to

find these keywords, they developed a KDES (Keywords Detection and Expansion

System), which is trained with 478,879 black keywords, and they were able to achieve

the accuracy of 94.3 percent on detecting the black keywords with it. They used the

Baidu search engine and collaborated with them to gather their experiments. This

collaboration led them to scan their indexed pages using their spider pool detection

system from Aug 25th to Sep 10th, 2016, which in total yielded 2,733,728 SEO pages.

Overall, they gathered 63,424 pages marked as "evil" by Baidu, including 60,000 porn

pages and 3,424 gambling pages. The term "Evil" means that they are related to sex,

gambling, dangerous goods, surrogacy, drug, faked sites and etc. They extracted

black keywords from pages and removed the duplicates. They filtered the keywords

and then expanded them to include more possible and related black keywords. In the

next step, they developed a method to identify core words and clusters similar to the

black keywords. Since they did not have any ground truth, they had to review the

detected keywords manually, so they sampled 1,000 keywords randomly, and in the

end, 943 keywords were classified as black correctly (94.3 percent accuracy). In 2006,

Mason et al. [28], conducted a research to explore the keystream reuse which allows a

practical attack when data being encrypted. In this case, keystream means a key that

stream ciphers use to encrypt the data. It is a well-known fact that the keystream

should not be used again because if keystream k is reused to encrypt two different

plaintexts p and q then the p⊕ k and q ⊕ k can be XORed together to recover p⊕ q

which is called the two-time pad problem. A feasible solution is that the string pair

(p, q) such that p⊕q = x. In their method they considered the probability distribution

of p and q as independent. They tried to recover the plaintext using their smoothed

n-gram Language model. They took n = 7 as their n-gram for plaintext string and

estimated probabilities for p and q. They used Finite-State Language models and
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Cross product of language models to build their method and had an investigation

on feasible solutions. In their experiments, they found out that if the keystream is

used more than twice, their method will work better. They captured their results in

three different types of files, unstructured English text files (emails, with headers),

English text files with text-based structure (HTML documents) and English text files

with a binary structure (Microsoft Word documents). In the end, they illustrated

the problem of reusing the keystream, and they were able to achieve over 99 percent

accuracy in recovery in some instances and said their attack is general and can be

applied easily to the other types of data. In another research, Islam et al. [35],

they did an investigation on access pattern disclosure and formalized a query identity

inference model. They also verified the effectiveness of their model by analyzing it

on a real-world dataset. They illustrate by knowing first, underlying keywords for k

of the queries in the sequence Q, and second, knowing m × m matrix M which in

each cell it contains the expected probability of both ith and jth keywords appearing

in a random document. Later on, they indicate, with using this information and

probabilistic analysis they are able to build a model and test in on Enron dataset

[30]. For this purpose they used 30109 documents from the _sent_mail folder of

the Enron dataset. They determined the root of each word and discarded the most

common words. They measured the accuracy of their model with different keyword

set and query set sizes. They illustrate that their model was able to achieve more than

80 percent accuracy on the default settings. In 2010, O. Sharif et al. [47], published a

paper regarding the classification of encryption algorithms using pattern recognition

techniques. They used eight different classifiers and an accurate measure for this task.

Also, The following block cipher algorithms, DES, IDEA, AES, and RC operating in

ECB mode, were considered. They created two datasets, the first one has eight

classes (with different key sizes), and the second one contains four classes (one for

each encryption algorithm). Their optimal result for these two datasets after doing a

ten fold cross-validation is 30.83 percent for the first dataset and 53.33 for the second

one. They also discovered that their approach was not able to distinguish between the

different versions of AES encryption (128, 194, and 256). In 2018 Kaggle initiated a

challenge [3] which users were supposed to classify the encrypted text. Their dataset

was a sub-sample of 20 newsgroup dataset [1] which they encrypted into 4 different
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encryption difficulties. Luis Bronchal published a kernel in that challenge [4] and tried

to classify the dataset without breaking the ciphers. Using this approach, he was able

to achieve an almost 48 percent F1 score. Moreover, it seems like his approach was

much more successful for the two simpler encryptions since he could get an F1 score of

more than 60 percent for each one of them. They experimented with different Query

and keyword set sizes to show the effectiveness of their model.

2.3 Summary

In this chapter, I covered the concept of text classification as well as related researches

that motivated me towards the encrypted text classification. First, I discussed the

datasets that are currently available and can be used in my approach. Also, I went

through the researches that has been done on these datasets and the results that they

were able to achieve using their approach. Then I briefly talked about two of the

most common feature extraction methods for text, which are Bag Of Words (BOW)

and Term Frequency–Inverse Document Frequency (TF-IDF). In the next step, the

classification algorithms that are useful for the classification of text data have been

discussed. The aforementioned researches show that Naive Bayes, Logistic Regression,

Random Forest, and SVM are useful for the classification of text data. In the next

step, I covered the researches, which provided an insight toward finding a leakage

in the encrypted text data. For this purpose, different approaches have been taken,

such as classifying the black keywords, trying to decrypt the text data by keystream

reuse, probabilistic analysis of the keywords, or using pattern recognition techniques.

In the end, I used them as a motivation to propose my approach.
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Methodology

In this chapter, I will discuss the proposed model and different types of encryption

algorithms. The datasets mostly consist of short text records like twitter text which

makes the task of identifying the topic more challenging. Since some of the datasets

are difficult to classify even in plaintext, I implemented the same parameters for all

the classifiers. In figure 3.1, A general overview of the steps that I took towards

implementing the methodology is illustrated.

3.1 Text Classification

In recent years text classification has become more popular, and it has been used

in a variety of applications. [43] The improvements of Natural Language Processing

(NLP), have been led to attract researches attention. The two important steps of the

text classification are feature extraction and pre-processing. Pre-processing means

that the data would be converted into a format that can be predicted. For instance,

there are some unnecessary words in many of the text documents and data sets

such as stop-words, misspelling, slang, etc. which should not be considered for the

classification task. Also, feature extraction, in this case, means transforming the text

into numerical representation in the form of a vector. [31]

1. N-grams

N-grams of texts are widely used in the text mining and natural language pro-

cessing tasks. [49][45][51] They are a set of co-occurring words or characters

inside a window. When computing an n-gram, typically, we move the window

one or even more than one word or characters forward. [31] For instance, in

the sentence "Amir is drinking coffee", "Amir" could be a word n-gram for a

window with a word range of 1. In the same sentence, "Am" is also an N-gram

of characters with a range of 2, which we call it bi-grams. [31] Character N-

grams is the method that I used because we cannot identify any words in the

12
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Figure (3.1) A general overview of methodology
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ciphertext.

2. Text Vectorization

Textual contents are needed to be converted to meaningful numerical repre-

sentations, hence the machines would be able to understand them. This part

is called feature representation. I am using TF-IDF method for that purpose.

TF-IDF is one of the most common methods in NLP. It will convert the text

documents into a matrix representation of vectors in a way that reflects the

prominence of a word in the collection of documents. [46]

3. Term Frequency-Inverse Document Frequency (TF-IDF)

One of the simplest ways of vectorizing the text documents is to just count

the number of words in each document then assigning it to the feature space,

which is called term frequency. K. Sparck Jones [27] purposed Inverse Docu-

ment Frequency (IDF) method and combined it with term frequency to reduce

the effect of common words in the text document. [31] TF-IDF determines a

number for a word in each document indicating how relevant that word is in

the document. By using this approach, it will create a numerical vector which

represents each document. Thus, the documents with similar words will have

similar representations. [40]

Given a document collection D, a word w, and an individual document dϵD,

we calculate:

wd = fw,d ∗log(|D|/fw,D )

Where fw,d equals the number of times w appears in d, |D| is the size of the

corpus, and fw,D equals the number of documents in which w appears in D

(Salton & Buckley, 1988, Berger, et al, 2000).

The pre-processing step is crucial. However, the task is to deal with the ciphertext,

which is consisted of different types of encoded characters. Therefore, we will not be

able to distinguish the actual words in our document, hence pre-processing step is

not going be helpful.
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3.2 Encryption Algorithms

Encryption is the process of converting the plaintext into the ciphertext with a key.

However, In the past, there used to be encryption algorithms that did not use a key

like Caesar encryption. One of the crucial steps of having secure communication is

cryptography. It provides services like confidentiality, data integrity, access control,

authentication, and non-repudiation. It is important to select those encryption al-

gorithms which will provide more security, accuracy, and effciency. The two main

encryption methods are Probabilistic and deterministic. Deterministic encryption

will always have the same ciphertext as the outcome because there is a one to one

relationship between the keys and ciphertext. This process is done by repeating the

encryption process for many times. On the other hand, the probabilistic encryption

is way more secure compared to the deterministic encryption because it will add ran-

domness to the encryption, which will produce a different ciphertext for the same

plaintext after each encryption. [36] Below, we introduce some of the most popular

encryption algorithms which I used to do the experiments on them:

1. Caesar Cipher

Caesar Cipher is one of the classic and simple encryption algorithms available.

It will use a fixed number to generate the letter. For instance, if n is the

number, it will replace the letters with the one that is n places ahead of them.

Encryption of a letter x by a shift n can be described mathematically:

En(x) = (x+ n) mod26

As can be seen, Caesar cipher can easily break using brute force because there

are only 25 possibilities for the key available, which is easy to decrypt for nowa-

days computers. [20]

2. Base64 Encryption

Base64 introduced to protect the emails. It can easily be decrypted since it does

not use a key to encrypt the plaintext. It will encode binary data and transfers

it to a representation of base 64. It will use the 64 printable characters in order

to transfer the data across the media. The index value of the Base64 can be

seen in table 3.1: [25]
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Index Char Index Char Index Char Index Binary
0 A 16 Q 32 g 48 w
1 B 17 R 33 h 49 x
2 C 18 S 34 i 50 y
3 D 19 T 35 j 51 z
4 E 20 U 36 k 52 0
5 F 21 V 37 l 53 1
6 G 22 W 38 m 54 2
7 H 23 X 39 n 55 3
8 I 24 Y 40 o 56 4
9 J 25 Z 41 p 57 5
10 K 26 a 42 q 58 6
11 L 27 b 43 r 59 7
12 M 28 c 44 s 60 8
13 N 29 d 45 t 61 9
14 O 30 e 46 u 62 +
15 P 31 f 47 v 63 /

padding =
Table (3.1) Base64 index table

Since Base64 results are in the format of plaintext, it will be easier to send

compared to the form of binary. Thus, Base64 encryption is being commonly

used on the internet. [25]

3. Data Encryption Standard (DES)

This standard introduced by IBM and adopted as a national standard in 1977.

DES, takes a 64-bit plaintext and uses a 56-bit key to encipher it and produces

64-bit ciphertext messages. Considering key k ciphertext message block is: [19]

c = Ek(m)

DES performs an Initial Permutation(IP), which will result in having two halves

of the permuted block. These two are Left Plain Text (LPT) and Right Plain

Text (RPT). In the next step, they will go through 16 rounds of the encryption

process. Furthermore, there will be a Final Permutation which rejoins LPT and

RPT and creates a combined block. Finally, we will have 64-bit block, which is

the final ciphertext block.[19]

4. Advanced Encryption System (AES)
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This algorithm is introduced by the National Institute of Standards and Tech-

nology (NIST) in 2000. The goal of publishing this algorithm was to replace

DES due to its vulnerabilities. AES is supporting three different key sizes,

namely 128, 192, and 256 bit. The size of each ciphertext block in the AES

algorithm equals to 128 bits.

For each one of AES-128, AES-192, and AES-128 keys, AES would process en-

cryption and decryption in 128 bits blocks. Since it is a symmetric method, the

secret key should be known to both the sender and receiver. There are 10, 12,

and 14 rounds of encryption for 128, 192, and 256 key sizes, respectively. [8]

For the last two encryption, we also have the option to choose between Elec-

tronic codebook (ECB) and Cipher Block Chaining (CBC). For the ECB en-

cryption, each block is encrypted and decrypted separately. Using this model,

the plaintext might show up in the block but not very clear, which makes it

more vulnerable to attacks. However, the advantage of it is that you can en-

crypt and decrypt the blocks in parallel and process them simultaneously. On

the other hand, CBC has another way to connect the blocks together. As can

be seen in figure 3.2, instead of processing each block separately, they will be

XOR’ed with the outcome of the previous encryption block. In this case, the

parallel encryption is not possible because first, we need to encrypt one block,

then we will be able to process the next block’s encryption. In addition, it needs

an Initialization Vector (IV), which is the same size as the block size. It will

be XOR’ed with the first plaintext block, which will prevent the repetition of

corresponding duplicate character sequences in the final ciphertext.[11]

3.3 Machine Learning Classifiers

Classification is a supervised learning method that learns from the input data to learn

and classify the new data given to it. There are different types of machine learning

algorithms that can be used for classification. However, in this work, I will focus on

the following classification algorithms, since they are in the literature, closest to my

research area. [14]

1. Multinomial Naive Bayes
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Figure (3.2) Cipher block chaining mode(CBC) Encryption mode [42]

Naive Bayes is the simplest algorithm. It assumes that all the variables in the

dataset are independent and not correlated to each other. Naive Bayes is one of

the most common classification algorithms because it is easy to use, and it will

be efficient to get a good result. According to the Bayes rule, the probability of

an example E = (x1, x2, , xn) being class c is:

P (c|E) = P (E|c)p(c)
P (E)

In this equation, c is evidence and E is hypothesis. We consider that features

are independent, so the absence of a particular feature will not affect other

features. It is called multinomial because it works with the data that could be

count like word counts in text and follows a multinomial distribution. It is a

very simple and fast classifier; however, it has the disadvantage of predictors

being independent of each other, which is not true in most of the cases.[54]

2. Random Forest

Random forest classifier is made by several random decision trees. An example

of a Decision tree classification process is illustrated in figure 3.3. Firstly, the

random forest builds a tree on a random sample of the data. Then, for each

one of them, it selects a random set of features to generate the best split. They

are a prediction, and by aggregating them, it will predict the new data. [33]
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Figure (3.3) A decision tree for the “Golf” dataset. Branches correspond to the
values of attributes; leaves indicate classifications.[24]

Building blocks of a random forest model are decision trees. Decision trees first

will define a reasonable solution to our problem. Then they will limit the range

of the solution to get the final answer. For instance, in figure 3.3 we can see

a detailed example of which features do we need to play tennis. In addition,

Random forest increases the diversity by choosing a random subset of features

and performing them on a random set of the training data, which will help us

to have a more robust result.[54]

3. Logistic Regression Logistic Regression Logistic Regression fits the data to the

"Logistic Function" and returns the probability of occurrence. It is commonly

used for multi-class classification tasks. It is a version of linear regression when

the target is categorical. Prediction is made by getting the maximum likelihood,

which provides a constant output. The logistic function is shown in figure 3.4.

By maximizing the likelihood function, it will determine the parameters which

will most likely produce the actual target. It uses a sigmoid function as the

logistic function and maps the value between 0 and 1. Given x the value, the

sigmoid function is: [18]

f(x) = 1
1+e−(x)
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Figure (3.4) Logistic Function for Logistic Regression algorithm.

4. Linear SVM

The support vector machine (SVM) is defined by a separating hyperplane, which

classifies the data points in our dataset. The hyperplane and parameters of SVM

are shown in figure 3.5. There are many possible ways to draw this hyperplane,

but the objective of the SVM is to find the hyperplane that has the maximum

distance between the datapoints of each class. The datapoints that are closer

to the hyperplane are called support vectors since they specify the position of

the hyperplane. For making a new prediction considering x as the input and xi

as each support vector, the equation is :

f(x) = B0 +
∑︁

i=0 ai × (x, xi)

In this equation, the coefficients B0 and ai are coming from the training data,

using the learning algorithm.[16]

3.4 Datasets

1. kaggle Isis dataset

This data set is intended to be a counterpoise to the How Isis Uses Twitter data

set. That data set contains 17k tweets alleged to originate with "100+ pro-ISIS
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Figure (3.5) SVM classification parameters

Figure (3.6) Word cloud representation of Kaggle Isis dataset
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Class 0 1
Items 15000 15000

Train(0.8) Test(0.2)
24000 6000

Table (3.2) Kaggle Isis dataset split, Class 0 = Non-fanboy tweets, Class 1 = Fanboy
tweets

Figure (3.7) Word cloud representation of Sentiment 140 dataset

fanboys". This new set contains 122k tweets collected on two separate days,

7/4/2016 and 7/11/2016, which contained any of the following terms, with no

further editing or selection: "isis, isil, daesh, islamicstate, raqqa, Mosul, islamic

state". Also, there are no "description, location, followers, numberstatuses"

data columns. By looking at the word cloud representation in figure 3.6, it can

be seen some words like Islamic State, ISI, Syria and etc. are used the most

in these tweets, which is helpful to have a better understanding of the dataset.

We use "tweets" column as our text data and "Fanboy" as the target. Each

tweet has been labeled with 0 (Related Tweet) or 1 (Fanboy Tweet). I split the

dataset into 80 percent train and 20 percent test, which can be found in table

3.2.

2. Sentiment 140

Sentiment 140 started as a class project at Stanford University which led to
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Class 0 4
Items 15000 15000

Train(0.8) Test(0.2)
24000 6000

Table (3.3) Sentiment 140 dataset, Class 0 = Negative tweets, Class 4 = Positive
tweets

studying various aspects of sentiment classification. They automatically gath-

ered and labeled the training data by labeling each tweet that contained positive

emotions like :) as positive and the ones who had a negative emotion like :(

as negative and twitter search API is used to collect these tweets. I used a

subset of the original dataset, which can be found on the Kaggle website. This

dataset contains 1.6 million extracted from twitter. Since the dataset consists

of different topics, the classification task is already difficult on the plaintext.

Also, the results should be reliable on plaintext so they can be compared more

precisely with the plaintext while classifying the encrypted data. In order to

get better performance on the dataset, I decided to use certain topics of the

tweets and create a subset of the data to work on. For that purpose, I used

the topic of technology and IT and extracted the tweets which contained the

name of the most famous high tech companies like Facebook, Apple, Microsoft

etc. The word cloud representation of this dataset illustrated in figure 3.7. The

dataset is classified into two targets (0 = negative, 4 = positive), and they can

be used to detect sentiment. I used 30000 tweets from that dataset and split it

into 80 percent train and 20 percent test, which can be found in table 3.3.

3. News Category dataset

In figure 3.9, , we can observe an example of the news category dataset. This

dataset includes approximately 200k news headlines from Huffpots, which gath-

ered from the year 2012 to 2018. Each headline corresponds to a category, and

we chose four categories that had enough records to make a multi-class dataset.

We used a short description of the news as our text data, and this dataset also

contains 30000 records, and I split it into 80 percent train and 20 percent test,

which is shown in table 3.4. Also, we used an additional feature (headline)

to classify the records in a different part of our experiment to see how much
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Figure (3.8) Word cloud representation of News Category dataset

Class 1 2 3 4
Items 7500 7500 7500 7500

Train (0.8) Test (0.2)
24000 6000

Table (3.4) News category dataset, Class 1 = Entertainment, Class 2 = Politics,
Class 3 = Style & Beauty, Class 4 = Wellness

difference an additional feature can make in the performance of our classifier.

Moreover, figure 3.8 shows a word cloud representaion of this dataset.

4. AG News dataset [2]

This dataset is collected from 1 million news articles. They have been gathered

from more than 2000 news sources over a period of 1 year. The academic

community provided this dataset for research purposes, and it is constructed

by Xiang Zhang. They also used it as a text classification benchmark in a

paper [52]. Figure 3.10 is illustrating the word cloud representation for this

dataset. The dataset is constructed by choosing 4 largest classes, which are

World, Sports, Business, Sci/Tech from the original corpus. It contains 120000

records, and there are 30000 records in each class. Also, I used the same strategy

for this dataset and split it into 80 percent train and 20 percent test, which can

be seen in table 3.5.
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Figure (3.9) Example of News Category dataset

Figure (3.10) Word cloud representation of AG News dataset

Class 1 2 3 4
Items 30000 30000 30000 30000

Train (0.8) Test (0.2)
96000 24000

Table (3.5) AG news dataset with 4 different topics
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3.5 Performance Metrics

1. Accuracy Score [38]

This metric is used to evaluate the classification model using the fraction of pre-

dictions that model, successfully predicted. Following, is the formal definition

of accuracy:

Accuracy = Number of correct predictions
Total Number of predictions

It can also be defined as below for Binary classification:

Accuracy = TP+TN
TP+TN+FP+FN

Where TP = True Positives, TN = True Negatives, FP = False Positives, and

FN = False Negatives.

2. Precision Score [38]

Precision is the ratio of correctly predicted positive observations to the total

predicted positive observations. Precision formula is as follows:

Precision = TP
TP+FP

3. Recall Score [38]

Recall is the ratio of correctly predicted positive observations to the all obser-

vations in actual class and the formula to calculate it is:

Recall = TP
TP+FN

4. F1 Score [38]

F1 can be considered as the weighted average of Precision and Recall. Since it

takes both false positive and false negatives into account, it will be more useful

in case of having an uneven class distribution. The equation for this metric is:

F1 Score = 2×(Recall×Precision)
(Recall+Precision)
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3.6 Tools and Environments used

For the implementation I wrote the code in Python language. I used Pandas pack-

age to read the data. In addition, Labelencoder Package from Sklearn is used

to convert categorical target names to numerical so that the classifiers could easily

categorize them, and for encrypting the text data, I used Crypto package. Also, I

used Numpy pakckage to create an array as the input to feed to the classifiers. In

order to convert the text into a vector, I used Countvectorizer and TfidfTrans-

former packages from Sklearn. Moreover, train_test_split function from Sklearn

is used to split the data into train and test. Finally, I used Multinomial Naive

Bayes, Random Forest, Logistic Regression and Linear SVM from Sklearn to

classify the data, same as accuracy_score, precision_score, recall_score and

F1_score.

Also, for the neural networks experiments I used Matlab which already included

necessary tools inside of it.

3.7 The Approach

As I described earlier, the classification of ciphertext has more difficulties, which

makes it different from a normal text classification task. More specifically, because

my focus is to find patterns in ciphertext rather than mapping the ciphertext to the

actual plaintext, I will not be able to implement NLP techniques such as stemming,

lemmatization, named entity recognition and sentiment analysis. I used TF-IDF

method as the feature representation to vectorize the data because the data is large

enough and we know that the most frequent word is a less useful metric and the

characters in the ciphertext are representing these words in a different order, since

some words like’ this’,’ a’ occur very frequently across all documents. I balanced

the dataset and removed the duplicated texts. Then, I split the dataset into train

and test. In the next part, I encoded the text using the encryption function. For

the feature extraction, after doing some experiments, I chose 5000 as the maximum

number of features and the N-gram range of (3,6). Finally, I trained the classifier,

calculated the scores (Accuracy, Precision, Recall, and F1), and draw the confusion

matrices and learning curves. Also, in another experiment, I implemented neural
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networks for this approach. I created a feedforward neural network in Matlab, and I

demonstrated it with different neurons and different set of features to see the effect

of neural networks in the approach. For this part, confusion matrices and learning

curves are illustrated.

3.8 Summary

As summarized in this chapter, dealing with the ciphertext has a lot of unique chal-

lenges since we cannot implement the NLP techniques on them. Also, text classifica-

tion steps such as n-grams and text vectorization have been discussed in this chapter.

The experiments implemented on four different encryptions named Base64, Caesar,

DES, and AES. for the last two encryptions, there are two modes ECB (Electronic

Code Book) and CBC (Cipher Block Chaining). The experiments are done on four

different datasets. Kaggle Isis and Sentiment 140 are binary, News Category, and

AG News are multi-class datasets. The classification task on these datasets has been

done without any parameter tuning to have a baseline score. The parameters are the

same across all the datasets for the purpose of having a better comparison among

the datasets and encryptions. In the end, a neural network experiment is done to see

the difference of using a neural networks model on the task to check if it can perform

better than regular classification on the task.



Chapter 4

Results

In this chapter, I will illustrate the results of our approach to see how each classifier

performed on each dataset on different types of encryption. Also, we take a look at

the deep learning results and compare them to our regular classification results.

4.1 Machine Learning Classifiers

1. Plaintext Results

It can be seen that balancing the dataset made the results more precise in

terms of their scores. In addition, It is obvious from table 4.1 that in almost

all the datasets, Logistic Regression and Linear SVM outperformed the two

other classification algorithms. For sentiment 140, the results are around 76

percent for Linear SVM, around 72 percent for Multinomial Naive Bayes, and

around 70 percent for Random forest on the plaintext. Moving forward to

the News Category dataset, the same trend is obvious in table 4.2. Again,

the two best classifiers, Linear SVM, and Logistic Regression, are having a

result of around 80 percent. However, in this dataset, Multinomial Naive Bayes

outperforms the Random Forest with around 67 percent comparing to the 64.

Also, by taking a look at the figure from table 4.3, by adding a feature to the

News category dataset, it is obvious that all the classifiers had much better

performance, and the results were increased 5-10 percent depending on the

classification algorithm. The added feature is the headline, which contains

more information about the tweets as a short text. Hence, it shows that having

a longer text will boost the result of the classification task. Next, I did the

experiments on AG News dataset in table 4.4.For Logistic Regression and Linear

SVM the results are approximately 89 percent which considering that it is a

multi-class dataset. The results on plaintext are surprisingly good. On the

other hand, Random forest and Multinomial Naive Bayes were not as good with

29
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.7363 0.7693 0.7942 0.8194
Precision 0.7377 0.7708 0.7941 0.8192
Recall 0.7373 0.7704 0.7943 0.8194
F1 0.7363 0.7693 0.7941 0.8193
Test
Accuracy 0.7231 0.6995 0.7573 0.7527
Precision 0.7245 0.7002 0.7575 0.7528
Recall 0.7241 0.7002 0.7577 0.7530
F1 0.7230 0.6995 0.7573 0.7526

Table (4.1) Results on train and test set for Sentiment 140 Dataset using Plaintext

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6603 0.7847 0.8439 0.8818
Precision 0.6783 0.8178 0.8455 0.8833
Recall 0.6605 0.7845 0.8438 0.8817
F1 0.6560 0.7850 0.8437 0.8817
Test
Accuracy 0.6458 0.6773 0.7977 0.7980
Precision 0.6647 0.7092 0.7991 0.7993
Recall 0.6449 0.7850 0.7978 0.7982
F1 0.6403 0.6714 0.7975 0.7979

Table (4.2) Results on train and test set for News Category Dataset using Plaintext

around 72 and 76 percent, respectively. Finally, Kaggle Isis dataset seemed to

have the best results on plaintext according to table 4.5. The F1 score for

Linear SVM and Logistic regression is around 97 and 96 percent, respectively.

Also, using Multinomial Naive Bayes the F1 score is around 87 percent, and for

Random Forest is around 89 percent.

2. Caesar Encryption

Generally, Caesar encryption results are not so different from plaintext since

Caesar algorithm just shifts the characters, and we are using character n-grams.

Table 4.6 rrepresents the scores of the tweets encrypted by Caesar encryption

method on the Sentiment 140 dataset. This figure reveals that the scores are

almost identical to the plaintext scores using any of the four described classifiers.

News Category dataset on tables 4.7 and 4.8, AG News dataset on table 4.9,

and Kaggle Isis dataset on Table 4.10 are following the same trend. This also
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.8143 0.7786 0.9078 0.9553
Precision 0.8220 0.8186 0.9096 0.9555
Recall 0.8142 0.7786 0.9078 0.9552
F1 0.8144 0.7828 0.9079 0.9553
Test
Accuracy 0.8037 0.7275 0.8782 0.8930
Precision 0.8131 0.7690 0.8816 0.8945
Recall 0.8039 0.7277 0.8784 0.8933
F1 0.8041 0.7327 0.8786 0.8933

Table (4.3) Results on train and test set for News Category with additional feature
Dataset using Plaintext

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.7714 0.7687 0.9015 0.9206
Precision 0.7876 0.7722 0.9012 0.9204
Recall 0.7711 0.7685 0.9014 0.9205
F1 0.7663 0.7674 0.9011 0.9204
Test
Accuracy 0.7613 0.7220 0.8873 0.8933
Precision 0.7773 0.7243 0.8873 0.8933
Recall 0.7625 0.7226 0.8877 0.8936
F1 0.7563 0.7201 0.8874 0.8934

Table (4.4) Results on train and test set for AG News Dataset using Plaintext

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.9031 0.9340 0.9736 0.9897
Precision 0.8843 0.9417 0.9727 0.9889
Recall 0.8636 0.8887 0.9597 0.9849
F1 0.8731 0.9109 0.9660 0.9869
Test
Accuracy 0.8990 0.9201 0.9678 0.9778
Precision 0.8825 0.9260 0.9672 0.9744
Recall 0.8610 0.8712 0.9518 0.9699
F1 0.8708 0.8936 0.9591 0.9721

Table (4.5) Results on train and test set for Kaggle ISIS Dataset using Plaintext
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.7383 0.7741 0.7919 0.8215
Precision 0.7397 0.7792 0.7918 0.8214
Recall 0.7392 0.7759 0.7920 0.8216
F1 0.7383 0.7737 0.7918 0.8214
Test
Accuracy 0.7253 0.6920 0.7567 0.7531
Precision 0.7270 0.6962 0.7566 0.7529
Recall 0.7267 0.6943 0.7570 0.7532
F1 0.7253 0.6916 0.7566 0.7530

Table (4.6) Results on train and test set for Sentiment 140 Dataset using Caesar
encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6610 0.7971 0.8454 0.8872
Precision 0.6830 0.8260 0.8468 0.8884
Recall 0.6611 0.7973 0.8455 0.8873
F1 0.6569 0.7974 0.8453 0.8872
Test
Accuracy 0.6520 0.6885 0.7948 0.7983
Precision 0.6742 0.7151 0.7959 0.7987
Recall 0.6513 0.6873 0.7944 0.7979
F1 0.6467 0.6831 0.7944 0.7979

Table (4.7) Results on train and test set for News Category Dataset using Caesar
encryption

proves the consistency of our experiments, since I achieved the results that I

expected already.

3. Base64 Encryption

As we move forward to the more complicated encryptions, it is eminent that

the scores will drop down, and the performance would not be the same. The

results of the Base64 encryption algorithm on the Sentiment 140 dataset are

shown in table 4.11. The results show that Logistic regression and Linear SVM

classifiers could achieve the F1 score of 72 percent on the test set. Meanwhile,

Multinomial Naive Bayes’ performance was down by 4 percent comparing to the

first two classifiers with a score of around 68 percent. Moreover, the Random

forest score seems to be the lowest as it had a 65 percent F1 score on the test
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.8166 0.7829 0.9052 0.9547
Precision 0.8236 0.8191 0.9072 0.9551
Recall 0.8167 0.7830 0.9053 0.9548
F1 0.8170 0.7867 0.9054 0.9548
Test
Accuracy 0.8113 0.7405 0.8887 0.8985
Precision 0.8191 0.7786 0.8911 0.8994
Recall 0.8110 0.7401 0.8885 0.8984
F1 0.8117 0.7443 0.8889 0.8986

Table (4.8) Results on train and test set for News Category with additional feature
Dataset Caesar encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.7729 0.7708 0.9006 0.9191
Precision 0.7878 0.7745 0.9004 0.9190
Recall 0.7731 0.7708 0.9006 0.9191
F1 0.7678 0.7695 0.9004 0.9190
Test
Accuracy 0.7666 0.7252 0.8878 0.8940
Precision 0.7821 0.7264 0.8873 0.8936
Recall 0.7661 0.7252 0.8878 0.8940
F1 0.7613 0.7230 0.8875 0.8937

Table (4.9) Results on train and test set for AG News Dataset using Caesar encryp-
tion

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.8842 0.9608 0.9630 0.9823
Precision 0.8867 0.9609 0.9630 0.9823
Recall 0.8843 0.9608 0.9630 0.9823
F1 0.8840 0.9608 0.9630 0.9823
Test
Accuracy 0.8837 0.9383 0.9508 0.9597
Precision 0.8856 0.9384 0.9508 0.9597
Recall 0.8833 0.9383 0.9508 0.9597
F1 0.8834 0.9383 0.9508 0.9597

Table (4.10) Results on train and test set for Kaggle Isis Dataset using Caesar
encryption
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6960 0.7300 0.7607 0.7892
Precision 0.6983 0.7412 0.7606 0.7891
Recall 0.6972 0.7329 0.7605 0.7890
F1 0.6958 0.7283 0.7605 0.7891
Test
Accuracy 0.6846 0.6499 0.7208 0.7213
Precision 0.6875 0.6603 0.7208 0.7211
Recall 0.6864 0.6539 0.7206 0.7209
F1 0.6845 0.6475 0.7206 0.7210

Table (4.11) Results on train and test set for Sentiment 140 Dataset using Base64
encryption

set. The performance of the News Category dataset is illustrated in table 4.12.

SVM did slightly a better job of classifying the encrypted text with the F1 score

of around 74 percent, comparing to the Logistic regression with 73 percent on

the test set. Random forest and Multinomial Naive Bayes come after these two

with the F1 score of around 62 and 57 percent, respectively. In this case, having

an additional feature helped a lot with the task. By looking at table 4.13, we

can see that the performance of Linear SVM boosted by almost 12 percent with

the F1 score of 86. It was the same for Logistic Regression with almost 83

percent F1 score. However, the boost was not as much for the remaining two

classifiers Multinomial Naive Bayes with around 64 and Random Forest with

almost 66 percent F1 score. For AG news dataset in table 4.14, Linear SVM

and Logistic Regression had almost similar results with the F1 score of around

89 percent. In addition, by using Random forest and Multinomial Naive Bayes,

the F1 score was around 73 and 76 percent, respectively. Also, it is obvious

from table 4.15, that even with Base64 encryption, Kaggle Isis classifier still

has the best results.

4. DES(ECB) Encryption

Since this encryption is a little more complicated than we covered so far, it is

expected to have much lower scores than the previous encryptions. In table 4.16,

the best classification results belong to the Linear SVM and Logistic Regression,

with almost 55 percent F1 score. Similarly, for Multinomial Naive Bayes and
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6000 0.8700 0.8043 0.8497
Precision 0.6175 0.8804 0.8046 0.8508
Recall 0.6002 0.8701 0.8043 0.8497
F1 0.5900 0.8708 0.8039 0.8494
Test
Accuracy 0.5862 0.6312 0.7383 0.7472
Precision 0.5989 0.6327 0.7379 0.7473
Recall 0.5855 0.6302 0.7382 0.7470
F1 0.5738 0.6246 0.7379 0.7466

Table (4.12) Results on train and test set for News Category Dataset using Base64
encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6484 0.7254 0.8702 0.9270
Precision 0.7306 0.7804 0.8742 0.9278
Recall 0.6489 0.7251 0.8703 0.9270
F1 0.6432 0.7229 0.8703 0.9270
Test
Accuracy 0.6375 0.6582 0.8340 0.8557
Precision 0.7270 0.7102 0.8389 0.8573
Recall 0.6355 0.6591 0.8340 0.8557
F1 0.6337 0.6568 0.8344 0.8559

Table (4.13) Results on train and test set for News Category Dataset with additional
feature using Base64 encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.7724 0.7713 0.9015 0.9194
Precision 0.7875 0.7755 0.9013 0.9193
Recall 0.7728 0.7715 0.9016 0.9195
F1 0.7675 0.7705 0.9014 0.9193
Test
Accuracy 0.7662 0.7309 0.8868 0.8940
Precision 0.7821 0.7333 0.8862 0.8934
Recall 0.7644 0.7299 0.8862 0.8934
F1 0.7606 0.7289 0.8861 0.8933

Table (4.14) Results on train and test set for AG News Dataset using Base64 en-
cryption
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.8701 0.9160 0.9578 0.9853
Precision 0.8701 0.9179 0.9578 0.9853
Recall 0.8701 0.9160 0.9578 0.9853
F1 0.8701 0.9159 0.9578 0.9853
Test
Accuracy 0.8647 0.8875 0.9427 0.9598
Precision 0.8648 0.8889 0.9427 0.9598
Recall 0.8647 0.8877 0.9427 0.9598
F1 0.8647 0.8874 0.9427 0.9598

Table (4.15) Results on train and test set for Kaggle ISIS Dataset using Base64
encryption

Random Forest, the score is around 53 and 43, respectively. Also, it seems

like the classifiers were not able to classify the News Category targets correctly.

Looking at table 4.17, it can be understood that Logistic Regression performed

better than the other classifiers with almost 52 percent F1 score. Linear SVM

was the second best with around 50 percent. Multinomial Naive Bayes and

Random forest both had the same score of around 37 percent. Considering this

dataset is multi-class (4 classes), it can be said that the scores are better than

a random prediction; hence, maybe the classifiers were able to find a pattern

in the encrypted data for the classification task. In the next step, it is obvious

from table 4.18 that adding a feature did not help the classification task since

there’s not much improvement in the F1 scores. Moreover, AG News dataset

seems to fail the classification task as well. Because what can be seen in table

4.19, all the F1 scores for the classifiers are around 25 percent or less. While

knowing that the dataset has only four classes, it means that it is basically a

random selection of classes. On the other hand, the Kaggle Isis dataset in table

4.20, was the dataset that the classifiers had the best performance. Logistic

Regression and Linear SVM classified almost 75 percent of the test records

correctly. Although Multinomial Naive Bayes, with only 51 percent F1, seems

to fail the task, Random Forest does a slightly better job in classification with

around 58 percent. Considering the discussed results, it seems like there is the

possibility of finding a pattern to classify encrypted text with the DES(ECB)

method.
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6399 0.5662 0.6891 0.6994
Precision 0.6539 0.6366 0.6889 0.6991
Recall 0.6441 0.5537 0.6880 0.6988
F1 0.6354 0.4807 0.6882 0.6989
Test
Accuracy 0.5418 0.5203 0.5478 0.5483
Precision 0.5476 0.5306 0.5472 0.5478
Recall 0.5446 0.5120 0.5467 0.5476
F1 0.5355 0.4285 0.5460 0.5474

Table (4.16) Results on train and test set for Sentiment 140 Dataset using
DES(ECB) encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.4513 0.4325 0.6994 0.7222
Precision 0.5419 0.5771 0.6985 0.7217
Recall 0.4511 0.4321 0.6993 0.7221
F1 0.4282 0.4056 0.6971 0.7198
Test
Accuracy 0.3968 0.4038 0.5273 0.4998
Precision 0.4743 0.5068 0.5235 0.4960
Recall 0.3981 0.4054 0.5278 0.5003
F1 0.3684 0.3695 0.5238 0.4965

Table (4.17) Results on train and test set for News Category Dataset using
DES(ECB) encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.3651 0.4480 0.6895 0.7245
Precision 0.6136 0.5313 0.6937 0.7263
Recall 0.3645 0.4478 0.6895 0.7246
F1 0.3048 0.4453 0.6894 0.7244
Test
Accuracy 0.2990 0.4013 0.5267 0.5140
Precision 0.4798 0.4662 0.5320 0.5154
Recall 0.3013 0.4022 0.5265 0.5139
F1 0.2361 0.3966 0.5273 0.5138

Table (4.18) Results on train and test set for News Category Dataset with additional
feature using DES(ECB) encryption
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.5012 0.3822 0.5406 0.5446
Precision 0.5023 0.4604 0.5409 0.5448
Recall 0.5013 0.3827 0.5407 0.5446
F1 0.5009 0.3679 0.5404 0.5443
Test
Accuracy 0.4509 0.3484 0.4678 0.4654
Precision 0.4513 0.4020 0.4675 0.4651
Recall 0.4506 0.3465 0.4677 0.4653
F1 0.4503 0.3278 0.4674 0.4649

Table (4.19) Results on train and test set for AG News Dataset using DES(ECB)
encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.5905 0.6392 0.8257 0.8475
Precision 0.5910 0.7642 0.8260 0.8475
Recall 0.5906 0.6409 0.8257 0.8475
F1 0.5901 0.5923 0.8256 0.8475
Test
Accuracy 0.5145 0.6307 0.7493 0.7497
Precision 0.5141 0.7400 0.7498 0.7496
Recall 0.5140 0.6239 0.7488 0.7495
F1 0.5133 0.5765 0.7489 0.7495

Table (4.20) Results on train and test set for Kaggle ISIS Dataset using DES(ECB)
encryption
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6617 0.5743 0.6828 0.6877
Precision 0.6616 0.6397 0.6831 0.6875
Recall 0.6618 0.5628 0.6814 0.6870
F1 0.6616 0.4994 0.6815 0.6871
Test
Accuracy 0.5043 0.5073 0.5031 0.5043
Precision 0.5040 0.4960 0.5018 0.5035
Recall 0.5040 0.4982 0.5017 0.5034
F1 0.5039 0.4207 0.5008 0.5032

Table (4.21) Results on train and test set for Sentiment 140 Dataset using
DES(CBC) encryption

5. DES(CBC) Encryption

This encryption seems to be one of the most complicated encryptions we are

covering so far. By having a glance at table 4.21, it can be understood that

because the F1 scores for all the classifiers are 50 percent or below that. In

addition, since this dataset is binary, it can be said that this approach fails for

the Sentiment 140 dataset with DES(CBC) encryption. The News Category

dataset, however, shows some better results than the Sentiment 140 in table

4.22. Achieving around 52 percent F1 score on the test set for Logistic Regres-

sion and around 50 percent for Linear SVM, it seems like these two classifiers

did a slightly better job than random classification. Also, similar to the previous

dataset adding the feature did not improve the scores as it can be seen in table

4.23. In table 4.24, it is clear that the results for AG news dataset are basically

the same as DES(ECB). Hence, classifying this dataset with DES encryption

seems to be a challenging task. Finally, form table 4.25, it can be seen that

even for the dataset that had the best classification results so far, the scores are

the same as a random classification. From this information, it can be said that

this approach is not successful classifying DES(CBC) encrypted texts.

6. AES(ECB) Encryption

Going towards the next encryption, the same trend as DES is evident for AES.

For the Sentiment 140 dataset in table 4.26, it can be stated that all the classi-

fiers failed in classification task since all the F1 scores are 50 percent or less on
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.5485 0.5879 0.6645 0.6781
Precision 0.5484 0.5976 0.6614 0.6748
Recall 0.5484 0.5876 0.6643 0.6779
F1 0.5482 0.5789 0.6611 0.6735
Test
Accuracy 0.2840 0.3757 0.4195 0.3930
Precision 0.2840 0.3607 0.4094 0.3798
Recall 0.2844 0.3775 0.4204 0.3941
F1 0.2838 0.3467 0.4133 0.3844

Table (4.22) Results on train and test set for News Category Dataset using
DES(CBC) encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.5264 0.3752 0.6235 0.6424
Precision 0.5265 0.5057 0.6219 0.6407
Recall 0.5264 0.3750 0.6234 0.6424
F1 0.5264 0.3198 0.6207 0.6399
Test
Accuracy 0.2645 0.3185 0.3500 0.3443
Precision 0.2645 0.3662 0.3426 0.3377
Recall 0.2646 0.3195 0.3501 0.3444
F1 0.2644 0.3195 0.3451 0.3401

Table (4.23) Results on train and test set for News Category Dataset with additional
feature using DES(CBC) encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.3783 0.2943 0.3852 0.3858
Precision 0.3782 0.3544 0.3851 0.3857
Recall 0.3783 0.2935 0.3852 0.3858
F1 0.3782 0.2391 0.3851 0.3857
Test
Accuracy 0.2538 0.2591 0.2535 0.2531
Precision 0.2538 0.2639 0.2534 0.2530
Recall 0.2539 0.2621 0.2536 0.2532
F1 0.2538 0.1991 0.2534 0.2530

Table (4.24) Results on train and test set for AG News Dataset using DES(CBC)
encryption
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6726 0.6198 0.6993 0.7054
Precision 0.6733 0.6474 0.6993 0.7054
Recall 0.6725 0.6192 0.6993 0.7054
F1 0.6722 0.6004 0.6993 0.7054
Test
Accuracy 0.5145 0.5107 0.5233 0.5185
Precision 0.5150 0.5151 0.5235 0.5186
Recall 0.5150 0.5127 0.5235 0.5186
F1 0.5141 0.4916 0.5233 0.5186

Table (4.25) Results on train and test set for Kaggle ISIS Dataset using DES(CBC)
encryption

the test set. In table 4.27, the results for the News category can be seen. Logis-

tic Regression with around 45 percent F1 score and Linear SVM with almost 43

Percent were able to classify slightly better than a random classification on the

test set. However, Multinomial Naive Bayes and Random Forest results are not

useful for classification since their F1 score is close to a random classification

score. Also, just like the DES encryption adding a feature did not improve

the classification results as it can be illustrated in table 4.28. In addition, by

looking at table 4.29, it can be stated that Logistic Regression and Linear SVM

with almost 33 and 32 percent and Multinomial Naive Bayes with around 32

percent F1 on the test set had a similar result which can be considered as a

better result than random classification. On the other hand, random forest with

around 29 percent F1 failed on classifying this dataset. The best results can be

seen in table 4.30. Linear SVM and Logistic Regression F1 score on the test set

is around 69 Percent. It is obvious that even for Multinomial Naive Bayes and

Random Forest, the results are above average. The F1 score for these classifiers

is around 62 percent and 58 percent, respectively.

7. AES(CBC) Encryption

Based on the definition, AES(CBC) can be considered as the most complicated

encryption in this research, hence it is expected to havce lower scores for this

dataset. Sentiment 140 in table 4.26, follows the same trend as the AES(ECB)

encryption and all the classifiers are not able to classify the records correctly.
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6499 0.5697 0.6762 0.6829
Precision 0.6496 0.6459 0.6765 0.6826
Recall 0.6490 0.5583 0.6749 0.6821
F1 0.6491 0.4867 0.6748 0.6822
Test
Accuracy 0.5068 0.5125 0.5112 0.5067
Precision 0.5060 0.5008 0.5099 0.5061
Recall 0.5060 0.5003 0.5099 0.5061
F1 0.5059 0.4189 0.5096 0.5061

Table (4.26) Results on train and test set for Sentiment 140 Dataset using
AES(ECB) encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.4015 0.4204 0.6657 0.6780
Precision 0.5222 0.6393 0.6635 0.6760
Recall 0.4024 0.4214 0.6658 0.6782
F1 0.3608 0.3844 0.6635 0.6743
Test
Accuracy 0.3398 0.3705 0.4508 0.4352
Precision 0.4188 0.4944 0.4456 0.4275
Recall 0.3360 0.3664 0.4501 0.4343
F1 0.2846 0.3124 0.4472 0.4295

Table (4.27) Results on train and test set for News Category Dataset using
AES(ECB) encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.3253 0.4044 0.6397 0.6686
Precision 0.6202 0.5038 0.6413 0.6687
Recall 0.3253 0.4044 0.6397 0.6686
F1 0.2425 0.4004 0.6382 0.6672
Test
Accuracy 0.2700 0.3458 0.4240 0.4088
Precision 0.4710 0.4162 0.4251 0.4072
Recall 0.2700 0.3456 0.4241 0.4089
F1 0.1853 0.3345 0.4229 0.4075

Table (4.28) Results on train and test set for News Category Dataset with additional
feature using AES(ECB) encryption
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.5138 0.5248 0.6001 0.6212
Precision 0.5216 0.6609 0.6007 0.6213
Recall 0.5138 0.5243 0.6001 0.6213
F1 0.5124 0.5155 0.6002 0.6213
Test
Accuracy 0.3218 0.3167 0.3285 0.3242
Precision 0.3281 0.3734 0.3283 0.3237
Recall 0.3218 0.3183 0.3282 0.3239
F1 0.3213 0.2892 0.3282 0.3237

Table (4.29) Results on train and test set for AG News Dataset using AES(ECB)
encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6643 0.6487 0.7794 0.8030
Precision 0.7391 0.7440 0.7813 0.8032
Recall 0.6644 0.6489 0.7794 0.8030
F1 0.6359 0.6109 0.7791 0.8029
Test
Accuracy 0.6500 0.6192 0.6917 0.6847
Precision 0.7201 0.6944 0.6920 0.6847
Recall 0.6496 0.6182 0.6916 0.6847
F1 0.6194 0.5774 0.6915 0.6847

Table (4.30) Results on train and test set for Kaggle ISIS Dataset using AES(ECB)
encryption
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6566 0.5777 0.6809 0.6867
Precision 0.6565 0.6405 0.6814 0.6865
Recall 0.6566 0.5664 0.6793 0.6859
F1 0.6565 0.5070 0.6793 0.6860
Test
Accuracy 0.5032 0.5200 0.5023 0.5017
Precision 0.5030 0.5239 0.5010 0.5010
Recall 0.5030 0.5109 0.5010 0.5010
F1 0.5030 0.4386 0.5002 0.5009

Table (4.31) Results on train and test set for Sentiment 140 Dataset using
AES(CBC) encryption

Moving to the next dataset, we can see News Category Dataset results in table

4.32. All the classifiers had a better than average result on the test set. Lo-

gisticRegression with around 40 percent F1 score had the highest results, while

Multi-nomial Naive Bayes, with almost 30 percent, had the lowest. Moreover,

Random forest with 34 percent and Linear SVM with around 38 percent F1

were also tested. Similar to the previous encryption, we can see in figure 4.33

that adding the feature did not have a positive effect on classifying the News

Category dataset. The classification results of AG News are shown in table

4.34. This dataset’s results are basically the same as a random classification

for this encryption because all the classifiers had similar results of 25 percent

or less F1 score on the test set. In table 4.35, we can see unless the AES(ECB),

the classifiers fail the classification task. With around 50 percent F1 score for

all the classifiers, it can be said that the results are very close to random in this

case.

4.2 Neural Networks

In another experiment, I examined the result of Neural Network on the dataset that

had the best classification score so far, which is the Kaggle ISIS dataset. I did this

experiment to check if using neural networks with a single hidden layer will improve

the results that I already achieved using linear classifiers or not. For this task, I used

three different neural networks for each encryption. The networks have one layer with
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.5545 0.5844 0.6709 0.6785
Precision 0.5540 0.6575 0.6686 0.6755
Recall 0.5543 0.5841 0.6706 0.6780
F1 0.5540 0.5650 0.6675 0.6738
Test
Accuracy 0.2968 0.3820 0.4070 0.3868
Precision 0.2966 0.4093 0.4006 0.3776
Recall 0.2976 0.3838 0.4089 0.3890
F1 0.2968 0.3418 0.4034 0.3813

Table (4.32) Results on train and test set for News Category Dataset using
AES(CBC) encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.5249 0.3681 0.6157 0.6365
Precision 0.5250 0.5516 0.6137 0.6344
Recall 0.5249 0.3671 0.6158 0.6366
F1 0.5249 0.3058 0.6131 0.6340
Test
Accuracy 0.2595 0.3122 0.3573 0.3585
Precision 0.2592 0.3734 0.3496 0.3520
Recall 0.2592 0.3156 0.3569 0.3580
F1 0.2591 0.2390 0.3520 0.3541

Table (4.33) Results on train and test set for News Category Dataset with additional
feature using AES(CBC) encryption

Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.5268 0.5775 0.5573 0.5694
Precision 0.5269 0.5928 0.5573 0.5694
Recall 0.5267 0.5774 0.5573 0.5694
F1 0.5267 0.5783 0.5573 0.5694
Test
Accuracy 0.2493 0.2598 0.2487 0.2532
Precision 0.2498 0.2602 0.2488 0.2534
Recall 0.2495 0.2601 0.2488 0.2532
F1 0.2494 0.2564 0.2487 0.2532

Table (4.34) Results on train and test set for AG News Dataset with using
AES(CBC) encryption
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Classifier Multinomial NB Random Forest Logistic Regression Linear SVM
Train
Accuracy 0.6780 0.6365 0.7000 0.7067
Precision 0.6783 0.6482 0.7000 0.7067
Recall 0.6779 0.6373 0.6999 0.7067
F1 0.6778 0.6301 0.6999 0.7067
Test
Accuracy 0.5038 0.5333 0.5255 0.5235
Precision 0.5043 0.5325 0.5255 0.5235
Recall 0.5043 0.5304 0.5255 0.5235
F1 0.5037 0.5243 0.5254 0.5234

Table (4.35) Results on train and test set for Kaggle ISIS Dataset using AES(CBC)
encryption

100, 300, and 600 nodes. The results show the Confusion Matrix of each network,

along with the Learning Curve. I split the dataset for this task into 70 percent train,

20 percent test, and 10 percent validation to get the highest performance and used

the whole dataset for a test. In addition, I set the maximum number of epochs to

200.

1. Plaintext

As it can be seen from figure 4.1, the results of using a neural network with 100

nodes on the Kaggle Isis dataset are shown. The classifier was able to predict

around 94 percent of the records correctly. Although the accuracy is high but

compared to Logistic regression and Linear SVM, which has covered before, it

is down by almost 4 percent. In addition, by increasing the number of nodes to

300 in figure 4.2, it can be seen that not only did it not improve the accuracy

score, but also it dropped by 0.2 percent. Also, by looking at figure 4.3, the

same trend is obvious, and the accuracy score is around 90 percent. Based on

these results, it is obvious that increasing the number of nodes did not improve

the results.

2. Caesar Encryption

In figure 4.4, the results of a network with 100 nodes on Caesar encryption can

be seen. This network was able to get around 92 percent accuracy on the test

set. By increasing the number of nodes to 300 in figure 4.5, we can see an
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Figure (4.1) Kaggle Isis dataset plaintext confusion matrix (left) and learning curve
(right) on neural networks with 100 nodes

Figure (4.2) Kaggle Isis dataset plaintext confusion matrix (left) and learning curve
(right) on neural networks with 300 nodes
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Figure (4.3) Kaggle Isis dataset plaintext confusion matrix (left) and learning curve
(right) on neural networks with 600 nodes

increase in the accuracy score by 1 percent. However, increasing the number of

nodes did not have any effect on the accuracy score in figure 4.6.

3. Base64 encryption

Using the Base64 encryption in the neural networks experiment, it is evident

that the best results belong to the network with 100 nodes in 4.7. Accuracy

of this network on the test data is 93 percent. In addition, the accuracy for

the networks with 300 nodes and 600 nodes are around 90 and 89 percent,

respectively which can be seen in figures 4.8, 4.9. This means that increasing

the number of features did not have a positive effect on the results for Base64

encryption.

4. DES(ECB) Encryption

By a look at figure 4.10, it can be seen that using the DES(ECB) encryption

with the 100 nodes network, it was able to achieve an accuracy score of 65

percent. In the next part for the 300 nodes network in figure 4.11, the accuracy

is around 1 percent less than the previous network. However, an increase in

the accuracy score can be seen for the 600 nodes network in figure 4.12. This

network with 64.5 percent accuracy did a better job than the 300 nodes network
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Figure (4.4) Kaggle Isis dataset Caesar confusion matrix (left) and learning curve
(right) on neural networks with 100 nodes

Figure (4.5) Kaggle Isis dataset Caesar confusion matrix (left) and learning curve
(right) on neural networks with 300 nodes
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Figure (4.6) Kaggle Isis dataset Caesar confusion matrix (left) and learning curve
(right) on neural networks with 600 nodes

Figure (4.7) Kaggle Isis dataset Base64 confusion matrix (left) and learning curve
(right) on neural networks with 100 nodes
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Figure (4.8) Kaggle Isis dataset Base64 confusion matrix (left) and learning curve
(right) on neural networks with 300 nodes

Figure (4.9) Kaggle Isis dataset Base64 confusion matrix (left) and learning curve
(right) on neural networks with 600 nodes
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Figure (4.10) Kaggle Isis dataset DES(ECB) confusion matrix (left) and learning
curve (right) on neural networks with 100 nodes

slightly, but it is still less than the first network.

5. DES(CBC) Encryption

Moving to one of the more complicated encryptions, the results are dropping

and they are close to a random classification as expected. In figure 4.13, we can

see the classification accuracy score on the test data is around 55 percent. This

score was almost the same for the 300 nodes and 600 nodes network with 55.5

percent and 55.3 accuracy score. They both are shown in the figures 4.14 and

4.15.

6. AES(ECB) Encryption

For this encryption, the best accuracy score on the test set can be seen in figure

4.18, using the network with 600 nodes. In figure 4.16, the network with 100

nodes had and accuracy of 61.5 percent which was slightly better than the 300

nodes network with 59.9 percent accuracy score whcih can be seen in figure

4.17.

7. AES(CBC) Encryption

The same trend as DES(CBC) encryption for the neural network can be seen
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Figure (4.11) Kaggle Isis dataset DES(ECB) confusion matrix (left) and learning
curve (right) on neural networks with 300 nodes

Figure (4.12) Kaggle Isis dataset DES(ECB) confusion matrix (left) and learning
curve (right) on neural networks with 600 nodes
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Figure (4.13) Kaggle Isis dataset DES(CBC) confusion matrix (left) and learning
curve (right) on neural networks with 100 nodes

Figure (4.14) Kaggle Isis dataset DES(CBC) confusion matrix (left) and learning
curve (right) on neural networks with 300 nodes
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Figure (4.15) Kaggle Isis dataset DES(CBC) confusion matrix (left) and learning
curve (right) on neural networks with 600 nodes

Figure (4.16) Kaggle Isis dataset AES(ECB) confusion matrix (left) and learning
curve (right) on neural networks with 100 nodes
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Figure (4.17) Kaggle Isis dataset AES(ECB) confusion matrix (left) and learning
curve (right) on neural networks with 300 nodes

Figure (4.18) Kaggle Isis dataset AES(ECB) confusion matrix (left) and learning
curve (right) on neural networks with 600 nodes
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Figure (4.19) Kaggle Isis dataset AES(CBC) confusion matrix (left) and learning
curve (right) on neural networks with 100 nodes

for AES(CBC) as well. Experimenting on the network with 100 nodes in figure

4.19, the accuracy score is around 54 percent. For this encryption, increasing

the number of nodes had a positive effect slightly on the accuracy score. In

figure 4.20, the accuracy of the 300 nodes network is 54.6 percent, and for the

600 nodes network in figure 4.14, the accuracy score is around 56 percent.

From the observations that has been covered so far, it seems like using neural

networks did not help with the classification task since the results of the linear clas-

sifiers are better than the neural networks classification results. Depending on the

encryption method, on average the accuracy score was almost 5 percent less than

the best linear model. Even with increasing the number of nodes in order to make a

more complicated network, the scores are still less and not comparable to the linear

models.

4.3 Summary

In this section, I developed the method of different types of encryption. The results

are shown for different classifiers, namely, Multinomial Naive Bayes, Random Forest,

Logistic Regression, Linear SVM, and Neural Networks. For the first four classifiers,
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Figure (4.20) Kaggle Isis dataset AES(CBC) confusion matrix (left) and learning
curve (right) on neural networks with 300 nodes

Figure (4.21) Kaggle Isis dataset AES(CBC) confusion matrix (left) and learning
curve (right) on neural networks with 600 nodes
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I gathered the results for both train and test set using accuracy, precision, recall, and

f1 score. Based on the results, it is apparent that most of the encryption algorithms

had some sort of data leakage. For the classic encryption methods, this approach is

very successful since the result of Caesar, and Base64 encryptions were almost the

same as plaintext. Also, for the modern encryptions, namely AES and DES, it can be

seen that there is still some leakage when the ECB method is used. However, using

the CBC method for the last two encryptions, the results are almost near the baseline

(random classification), so it can be stated that the approach is not very effective for

this type of encryption. In the part of the neural networks, I first attempted to get

the best performance using train, test, and validation and saved the model. Then I

developed the model on the test data to get the confusion matrix and shown them

for each encryption method. Neural networks are also following the same trend as

previous classifiers. However, the results are not as promising as the ones that I have

shown before. The results are shown as histograms in the appendix A.



Chapter 5

Conclusion and future work

In this thesis, my goal is to explore data leakage in encrypted data. I built a su-

pervised learning, classification, based model that aims to find the related topic of

each ciphertext, which is encoded using one of the four aforementioned encryption

algorithms. It is a simple approach that analyzes cypertext in order to explore any

data leakage in the encrypted data. Evaluations show that data leakage decreases as

the encryption algorithms get stronger, even though the data leakage is never zero

percent.

5.1 Conclusion

The proposed data analysis model could be implemented quickly and does not need

any prior knowledge of the encryption algorithms or the datasets. As I mentioned

earlier, the pre-processing phase of the ciphertext is not the same as plaintext because

the traditional NLP techniques could not be implemented on encrypted data. Hence,

the pre-processing part of this research only consists of extracting the features using

character n-grams and representing them using TF-IDF. Moreover, following machine

learning literature, training datasets (Kaggle Sentiment 140, Kaggle Newsgroup, Kag-

gle Isis, AG News) are balanced to minimize any data related biases. Additionally, I

encoded the data using the same key for each encryption and then fed the training

data to the classification algorithms (Multinomial Naive Bayes, Random Forest, Lo-

gistic Regression, and Linear SVM). Based on the range of n-grams and the TF-IDF

scores, the goal here was to explore whether the classifier would be able to find a

pattern on the ciphertext that could generalize and use it for the unseen data to pre-

dict the related topic (class) of that ciphertext. Furthermore, to discover the effect

of deep learning, I implemented a feedforward neural network with a single hidden

layer and different number of neurons (100, 300, 600) and presented the results. The

proposed model can be used with any other encryption algorithm on any other text

60
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classification dataset. Finally, based on the results, it can be stated that:

• The model is able to find the leakage successfully using the classic encryption

algorithms.

• The performance of the model on the modern encryption algorithms DES and

AES is above average, which means it could still find some leakage using these

algorithms. However, if these encryption algorithms use CBC mode, data leak-

age decreases, i.e. the model is not able to identify the topic correctly.

• Using a neural network with the specified features did not improve the results.

However, the results achieved with this method were following the same trend

as the other classification algorithms.

• These results are gathered from various datasets which are both binary and

multiclass and all of them have the same trend in terms of the results. Thus,

this model can be used to test the strength of the encryption algorithm.

5.2 Future Works

The following summarizes the potential future work directions:

• One of the limitations that I encountered through this research was finding

an accurate labelled dataset. There are few publicly available datasets for the

purpose of encrypted data leakage analysis. Thus, generating labelled datasets

for this purpose would be an interesting direction to pursue.

• Further analysis on the structure of the data could also be an area that could

shed more light into the analysis of data leakage on encrypted data. For this

model I tried a fixed key size for each encryption however, this work can be

extended to stream ciphers which will use a byte at a time to encrypt instead

of a block of bytes. Also, using different key sizes can be explored.

• Neural Networks are a wide area to explore for any classification task. So, by

using a more complex neural network, there may be a chance of achieving a

higher score.
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• Another area to study is the further analysis of parameter tuning and sensitivity

of the different classifiers including deep learning that are used in this research.



Appendix A

Plots

A.1 Plaintext Results

A.2 Caesar encryption results

A.3 Base64 encryption results

A.4 DES(ECB) encryption results

A.5 DES(CBC) encryption results

A.6 AES(ECB) encryption results

A.7 AES(CBC) encryption results
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Figure (A.1) Sentiment 140 dataset Plaintext results on train and test

Figure (A.2) Kaggle News Category dataset Plaintext results on train and test
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Figure (A.3) Kaggle News Category with additional feature dataset, Plaintext re-
sults on train and test

Figure (A.4) AG News Plaintext dataset results on train and test
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Figure (A.5) Kaggle Isis dataset Plaintext results on train and test

Figure (A.6) Sentiment 140 dataset Caesar encryption results on train and test
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Figure (A.7) News Category dataset Caesar encryption results on train and test

Figure (A.8) News Category with additional feature dataset Caesar encryption
results on train and test
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Figure (A.9) AG News dataset Caesar encryption results on train and test

Figure (A.10) Kaggle Isis dataset Caesar encryption results on train and test
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Figure (A.11) Sentiment 140 dataset Base64 encryption results on train and test

Figure (A.12) News Category dataset Base64 encryption results on train and test
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Figure (A.13) News Category with additional feature dataset Base64 encryption
results on train and test

Figure (A.14) AG News dataset Base64 encryption results on train and test
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Figure (A.15) Kaggle Isis dataset Base64 encryption results on train and test

Figure (A.16) Sentiment 140 dataset DES(ECB) encryption results on train and
test
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Figure (A.17) News Category dataset DES(ECB) encryption results on train and
test

Figure (A.18) News Category with additional feature dataset DES(ECB) encryp-
tion results on train and test
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Figure (A.19) AG News dataset DES(ECB) encryption results on train and test

Figure (A.20) Kaggle Isis dataset DES(ECB) encryption results on train and test
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Figure (A.21) Sentiment 140 dataset DES(CBC) encryption results on train and
test

Figure (A.22) News Category dataset DES(CBC) encryption results on train and
test
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Figure (A.23) News Category with additional feature dataset DES(CBC) encryp-
tion results on train and test

Figure (A.24) AG News dataset DES(CBC) encryption results on train and test
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Figure (A.25) Kaggle Isis dataset DES(CBC) encryption results on train and test

Figure (A.26) Sentiment 140 dataset AES(ECB) encryption results on train and
test
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Figure (A.27) News Category dataset AES(ECB) encryption results on train and
test

Figure (A.28) News Category with additional feature dataset AES(ECB) encryp-
tion results on train and test
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Figure (A.29) AG News dataset AES(ECB) encryption results on train and test

Figure (A.30) Kaggle Isis dataset AES(ECB) encryption results on train and test
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Figure (A.31) Sentiment 140 dataset AES(CBC) encryption results on train and
test

Figure (A.32) News Category dataset AES(CBC) encryption results on train and
test
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Figure (A.33) News Category with additional feature dataset AES(CBC) encryp-
tion results on train and test

Figure (A.34) AG News dataset AES(CBC) encryption results on train and test
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Figure (A.35) Kaggle Isis dataset AES(CBC) encryption results on train and test
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