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ABSTRACT 

Clinical documentation is an audio recording of the clinical encounter by the specialist 

which is subsequently manually transcribed to be added to the patient’s medical record. 

The current clinical documentation process is tedious, error-prone and time-consuming, 

more so for specialists working in the emergency department given the rapid turnaround 

of high-acuity patients. In this thesis, we investigate methods to automate the clinical 

documentation processes for a pediatric emergency department, leading to the generation 

of a SOAP report of the clinical encounter. Our approach involves (a) speech recognition 

to transcribe the audio recording of the clinical encounter to a textual clinical encounter 

report; and (b) identifying and classifying the sentences within the textual report in terms 

of the standard SOAP format for clinical reports. For speech recognition, we worked with 

the DeepSpeech application and used recurrent neural network and n-gram based methods, 

augmented with medical terminologies and heuristics, to develop domain-specific acoustic 

and language models. Our approach resulted in a reduction of 49.02% of critical errors as 

compared to the baseline acoustic and language models provided by DeepSpeech. For 

generating a SOAP report from the clinical text, we extended an exemplar-based concept 

detection algorithm to learn a sentence classifier to identify and annotate the clinical 

sentences in terms of subjective, objective, assessment and plan. Our SOAP classifier 

achieves a precision of 0.957 (subjective), 0.919 (objective), 0.626 (assessment) and 0.82 

(plan). 
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Chapter 1. INTRODUCTION 

Clinical reports are vital in providing quality healthcare. These reports facilitate physicians 

to recall previous episodes of care given to patients [1]. Moreover, these reports ensure 

quality healthcare by providing a medium to perform regular audits of the care delivery 

process [2]. Clinical documentation is a process in which physicians note down encounter 

synopsis and generate clinical reports. It is a challenging (Section 2.3.1) and tedious 

process, which can sometimes take twice as much time as it takes for patient interaction 

[3], [4]. Clinical documentation is done in three modes (Section 2.3.2): hand-written, type-

written, and dictations; while adhering to two work-flows (Section 2.3.3): front-end and 

back-end [6]. Hand-written reports are mostly illegible and unsatisfactory [5]. Type-written 

and dictations are currently the most common mode of documentation among physicians. 

In general, the process of clinical documentation poses five major problems (Section 2.3.4) 

that are caused by either any or all combinations of modes and work-flows. These problems 

provide motivation for this thesis to work on methods to automate the process of clinical 

documentation.  

1.1 Solution Approach 

This thesis focuses on using the physician’s dictated audio notes to autonomously generate 

structured clinical reports. Dictations are given in audio; therefore, Speech Recognition 

(SR) is used to transcribe audio notes. Transcriptions are then analyzed for SOAP 

categories, which can be organized to form a standardized clinical report. 

After a detailed review of the use of speech recognition in clinical documentation (Section 

2.5), this thesis made two recognitions. Firstly, there is a need for more accurate SR 

systems. Secondly, physicians prefer to dictate in freestyle; hence there is a need to research 

in the direction of autonomous preparation of reports from transcribed notes. This thesis 

considers the documentation process from an end-to-end perspective, where physicians can 

get the ability to dictate in freestyle. Dictated audio notes should firstly transcribe into text 

using a noise-robust domain-specific SR system. Subsequently, transcribed notes should 
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organize to form a structured clinical report using autonomous language processing 

techniques. Henceforth, our approach aims to form two separate research objectives, whilst 

keeping the focus of this thesis on the individual methods within each objective. Figure 1.1 

illustrates the solution design for this thesis. 

 

Figure 1.1 Solution approach for clinical documentation 

1.2 Research Objectives 

This thesis aims to work as a multi-layer solution pipeline, where each layer possesses its 

own set of problems that needs active rounds of research. Two main research problems are 

identified that are requisite towards setting a conclusion. These problems act as the 

objectives of this thesis, which are defined in the subsections below. 

1.2.1 First Objective 

The first objective of this thesis is “to accurately recognize speech content from physicians’ 

dictated audio notes”. To facilitate the better achievement of this objective, this research 

forms a set of three research questions.  

1. What are the challenges and shortcomings of SR technology in clinical environments? 

2. What are the current advancements and in SR that can address those challenges? 

3. What are the steps required to develop robust SR systems in clinical environments? 
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The first research question is responded to in Section 2.5, which presents a detailed review 

of the use of SR in clinical documentation, its challenges, shortcomings, and reasons for 

those shortcomings. For the second question, Section 2.6 and 2.7 presents the current 

advancements in SR technology that addresses the challenges of noise-robustness and 

domain-robustness. Finally, this thesis responds to the third question by presenting our 

methods in Chapter 4, which are evaluated in Chapter 5. 

1.2.2 Second Objective  

The second objective of this thesis is “to organize transcribed physicians’ dictated audio 

notes into meaningful categories of the clinical report structure”. To achieve this objective, 

we investigate algorithms to classify the transcribed text into SOAP categories.  

1.3 Research Scope 

The main scope of this thesis is limited to research problems within the individual layers 

of our approached solution pipeline. The feasibility and end-to-end performance of our 

solution pipeline are not examined in this work.  

Clinical reports are of various types since documentation is done in almost every healthcare 

activity. The scope of this thesis is also limited to the pediatric emergency department that 

usually generates reports in SOAP (Subjective, Objective, Assessment, and Plan) format; 

therefore, this thesis follows the SOAP structure. 

In the area of speech recognition, this work considers the single-channel audio input. For 

SR systems, the scope of this thesis is limited to open-sourced systems in the offline 

domain.  

1.4 Thesis Contribution 

This thesis spans over two domains of computer science; thus, it contributes to both 

domains. This thesis reports five contributions that are listed below. 
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1. This work approaches the process of clinical documentation from an end-to-end 

perspective. To the best of our knowledge, this perspective has never approached 

before. This thesis seeks freestyle dictations as input and proceeds to generate a 

formatted clinical report as output. The operating scope of this solution currently 

experiments only within emergency departments following SOAP structure. 

Nevertheless, this solution has the potential to expand in other clinical departments and 

domains as well. 

2. In this work, we demonstrate the use of Project DeepSpeech [7] in the paradigm of the 

healthcare domain.  

3. We apply methods to adapt out-of-domain pre-trained DeepSpeech models and train 

healthcare domain-specific models without requiring a large healthcare dataset. 

4. We propose a method to augment the healthcare domain-specific dataset by generating 

simulated domain-relevant data using principles of synonym replacement method.  

5. Lastly, this thesis contributes by extending an exemplar-based concept detection 

algorithm to develop a sentence classifier to classify SOAP categories.  

1.5 Thesis Organization 

This thesis consists of 7 chapters. Chapter 2 provides background details about the 

individual concepts that are frequently referred to in this thesis. Chapter 3 presents the 

methodology of this research and all the tools that are used for this research. Chapters 4, 5, 

and 6 demonstrate the work that is done for each layer of our solution model. Lastly, 

Chapter 7 constructs a thorough discussion upon the observations, limitations and future 

work while providing a conclusion to the thesis. 
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Chapter 2. BACKGROUND AND RELATED WORK 

2.1 Health Record 

A patient’s health record entails chronologically sequenced assortment of a variety of 

clinical documents, such as clinical reports, lab reports and x-rays, that are generated over 

time by healthcare professionals providing care services to that patient. These records 

present medical history and events of care given within the healthcare providers’ 

institution. The term health record is often used conversely with the medical record or 

medical chart.  

2.1.1 Electronic Health Record (EHR) 

Electronic Health Record (EHR) are software systems that manage patients’ health records 

electronically. Like health records and medical records, EHR also often gets interchanged 

with Electronic Medical Record (EMR). However, there exists a subtle difference between 

both terms. EMR has limited working jurisdiction and can only operate in one provider’s 

institutional domain, while EHR’s are designed to serve across multiple institutions i.e., 

available to multiple providers as well as researchers and policymakers [8], [9].  

2.2 Clinical Report 

A clinical report is a type of clinical document that appends into a patient’s health record. 

Clinical reports include details of a patient's clinical status and assessments, recorded by 

healthcare providers during the hospitalization visit or in outpatient care [10]. Clinical 

reports facilitate communication between healthcare providers [11]. These reports can be 

of various types, such as progress reports, visit reports and discharge summaries [12]. 

Clinical reports can be unstructured, semi-structured, or systematically structured [13]. 

Unstructured and semi-structured reports include information in free texts, which blends 

relevant and vital information with insignificant details and make retrieval of required 

information difficult, oftentimes along with adversely increased cognitive load [14]. 

However, structured reports follow some systematic guidelines to structure the 
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information; thus, important information comes under observation quickly without putting 

much effort. In this thesis, we work with systematic reports that follow a defined structure.  

2.2.1 SOAP 

SOAP is a universally accepted method that provides systematic guidelines to write 

structured clinical reports [13], [15]. SOAP is the acronym for Subjective, Objective, 

Assessment, and Plan which represents the categories within its structure. SOAP was first 

theorized over 50 years ago [16] to advise medical students in writing effective reports 

[17], which later accepted widely among healthcare professionals [16]. Table 2.1 mentions 

a summary of SOAP guidelines as listed by Sando [13]. There are various benefits that 

SOAP formatted reports offer above unstructured or semi-structured reports. 

1. SOAP reports follow a defined structure. It lowers mental efforts to extract the required 

information efficiently and quickly [14].  

2. SOAP reports are clear, concise, accurate, and allows efficient communications 

between healthcare providers. Due to this, providers explicitly use these reports to give 

recommendations to each other [10], [17].  

3. SOAP encourages providers to write complete reports by reminding them about 

specific tasks. This way, SOAP ensures complete reports and enhances the quality of 

healthcare delivery [16]. 

4. SOAP reports systematically record encounters of healthcare professionals and 

patients. Hence, it can also serve as an evaluation tool for accountability, billing, and 

legal documentation [1], [2], [18]. 

5. When care delivery requires multiple healthcare providers, effectively written SOAP 

reports can fasten the delivery process by eliminating the need for redundant history 

taking episodes for each provider [18]. 
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Table 2.1 Documentation Guidelines of SOAP categories adapted from [13] 

Category Documentation Guidelines (Semantic concepts for each category) 

Subjective 

• Demographics 

• Patient concerns and complaints 

• Current health problems 

• Current medications 

• Current allergies  

• Past medical history 

• Family history  

• Social history 

Objective 

• Drugs administered  

• Physical signs and symptoms  

• Vital signs 

• Medication lists  

• Laboratory data 

Assessment 

• Active problem list with an assessment of each problem 

• Actual and potential problems that warrant surveillance 

• Therapeutic appropriateness including route and method of 

administration 

• Goals of therapy for each problem.  

• Degree of control for each disease stated 

Plan 

• Adjustments made to drug dosage, frequency, form or route of 

administration 

• Patient education and counseling provided 

• Oral and written consultations to other health care providers 

• Follow-up Plan 

• Monitoring parameters 
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On the one hand, SOAP is appraised for its easy to use guidelines. On the other hand, some 

studies highlight some limitations as well. Lin [19] questions if swapping the structure of 

SOAP to APSO increases any efficiency. Moreover, many studies propose extended 

versions of SOAP. However, all those studies, perhaps only add more guidelines above the 

basic ones. In this thesis, we focus on the categories of SOAP but not their sequence; 

therefore, our produced reports can be sequenced in any order to satisfy any structural 

variation of SOAP. Each SOAP category is further explained in later subsections. 

• SUBJECTIVE 

The subjective category suggests documenting everything that is coming from the 

patient’s perspective and experiences [16]. It distinguishes between what a patient is 

thinking about the situation from what healthcare providers believe.  

• OBJECTIVE 

In the Objective category, providers are guided to include all the observations, 

examination findings, and diagnostic tests; specifically, those findings that the provider 

can objectively confirm. Providing objective measures in a separate category allows 

readers to immediately focus on the relevant and clinically verifiable information 

without ever needing to know more about the subjective details [18]. 

• ASSESSMENT 

In the Assessment category, providers explicitly mention the diagnosis along with the 

rationale that leads to the diagnosis. It might also include all those tradeoffs that were 

considered while reaching to the said diagnosis [16]. 

• PLAN 

The plan category is there to document any treatment plans or directions that the 

provider might have for the patient or any other provider. This section is also used to 

write down secondary treatment plans that will get into consideration if the primary 

plan does not show appropriate results [16]. 
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2.3 Clinical Documentation 

Clinical Documentation (CD) is the process where healthcare providers generate clinical 

reports after every patient encounter. These encounters can be of any purpose and of any 

length. Even the minor patient-physician interactions must be noted accurately and timely 

with the same level of responsibility that is usually taken to prepare reports of surgeries 

and other lifesaving treatments. Clinical documentation is a fundamental skill [13] and is 

the core responsibility of healthcare providers to generate clinical reports that are accurate 

and complete. The process of clinical documentation has multiple aspects of details that 

are defined in later subsections. 

2.3.1 Challenges 

The goal of the clinical documentation process is to generate high-quality and practical 

clinical reports to ensure efficient and effective healthcare delivery; however, achieving 

this goal is a challenging task. Primarily, the process of clinical documentation poses 5 

main challenges. 

• ACCURACY 

The first challenge of clinical documentation is to produce accurate clinical reports. It 

means that all the contents within a report must reflect the truth, and nothing that is in 

the report is wrong. 

• COMPLETENESS 

Completeness is the second challenge, which refers that reports must cover all the 

aspects of the patient-provider encounter, and no detail goes unnoticed. 

• TURNAROUND TIME 

Turnaround time is the time that providers take to perform documentation related tasks 

after finishing one encounter and before starting another encounter. The third challenge 

of this process is to keep turnaround times as low as possible. 
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• PROVIDER THROUGHPUT 

Throughput reflects the efficiency level of a provider. Documentation related tasks can 

sometimes take more time and effort than the encounter itself and can overburden the 

providers, which can lower the quality of healthcare delivery. Therefore, the fourth 

challenge of the clinical documentation process is to keep provider throughput as high 

as possible. 

• COST 

The fifth challenge is to reduce the overall cost. There are two types of costs that are 

linked with this challenge; setup cost and report generation cost. Setup cost can be 

defined as the cost it takes to set up any tools that assist with the process, while 

generation cost can be defined as the cost it takes to generate each report. 

2.3.2 Modes 

Clinical documentation is usually done in three modes: hand-written, type-written, or 

voice-dictated. Institutions adopt one of these ways, whereas many of them use multiple 

modes to create redundancy in the documentation. This section will define each mode in 

detail. 

• HAND-WRITTEN  

Classically, clinical reports are produced by hand on a piece of paper. It is the simplest 

of all modes, and it consists of a plethora of problems around it. Reports prepared by 

hand are illegible to read and are often never consulted again by providers. Moreover, 

producing reports in this way takes much time. Handwritten reports are also prone to 

damage as they exist in physical format, and making a copy is also a hassle. 

• TYPE-WRITTEN  

Adaption of EHR changes the way clinicians did documentation tasks. EHR’s require 

the digital entry of information within reports. Healthcare providers use the keyboard 

and mouse to type-write the reports directly into the software systems of EHR. It 

reduces the clutter of illegible paper-based reports and makes comprehension easier. 
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However, healthcare providers are now forced to learn using these new systems. 

Without learning, there is still low or no impact on documentation times. A study has 

shown that even with EHR, healthcare providers still spend 38.5% of their time in 

creating documentation [4]. 

• VOICE-DICTATED 

Voice dictations are not new for healthcare providers. In many institutions’ providers 

are facilitated with dedicated transcriptionists who oversee all the documentation 

related tasks. Healthcare providers brief transcriptionists about the clinical encounter 

by giving them dictations, who then complete the reports. This practice shifts the 

burden of documentation away from providers, who are busy with other crucial tasks. 

In institutions where no transcriptionist is available, the practice of dictation still 

benefits providers. They record dictations after encounters and manage their time on 

more important things when needed. At the end of all encounters or later, when they 

get time, they then complete the documentation tasks by using pre-recorded dictations.  

A number of newer EHR systems are also now providing voice-enabled options to enter 

information within reports. These EHR systems use speech recognition technology and 

allow providers to use their voice to enter information within individual sections of 

clinical reports. An increasing number of institutions are now implementing voice-

enabled EHR systems to facilitate providers; nevertheless, provider adaption of this 

documentation mode is still a concerning question.  

2.3.3 Workflows 

Documentation is usually done in two workflows: front-end and back-end. Both workflows 

start when the provider is finished dealing with patients in an encounter and ends when a 

report is generated and submitted. Details about both workflows are defined below. 
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• FRONT-END 

In the front-end workflow, the provider is responsible for the proper generation and 

submission of clinical reports right after the encounter, and before starting any other 

encounter. 

• BACK-END 

In the back-end workflow, the provider has the liberty to delay the report generation 

process to the time of their choosing before a deadline that is set by the institution or 

any other regulatory body. In this work-flow, the provider can perform encounters back 

to back to finish patient queues and can then generate all the clinical reports at once. 

2.3.4 Problems 

To meet all five challenges of clinical documentation is a challenge in itself. 

Documentation modes and workflows usually focus on a subset of these challenges. 

Institutions often practice those modes and workflows that are closer to their requirements. 

In essence, there is nothing at this moment that can offer to meet all five challenges at the 

same time. Therefore, the current practices of the documentation process fail to meet some 

challenges and express various problems. There are five major problems. Some of these 

problems are caused by specific workflow or mode, while others are due to the overall 

process. The problems are defined below. 

• LOW QUALITY OF CLINICAL REPORTS 

A major problem in the clinical documentation process is the low quality of clinical 

reports, which is primarily caused within those institutions that overlook accuracy and 

completeness in favor of low turnaround times, high throughput, and low costs.  

• HIGH TIME CONSUMPTION 

Writing a clinical report takes time. In the case of dictated notes, physicians get the 

ability to postpone the development of reports to increase throughput, while also 

increasing report turnaround times. With current workflows and modes, this poses a 

major problem.  
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• LOSS OF MINOR CLINICAL ENCOUNTERS 

Due to the tedious nature of the process, minor encounters are usually ignored, which 

in turn poses a high risk of lower quality in healthcare delivery. 

• HIGH COST 

Many institutions employ dedicated transcriptionists and implement advanced EHR 

systems to facilitate providers with the burden of the documentation process. Both 

options are costly and require extensive funds. 

• LACK OF OPPORTUNITY TO DEVELOP DATASETS FOR RESEARCH 

This problem mainly arises due to illegible hand-written reports on paper forms, as 

patient records become cluttered, and managing them is a hassle [14]. This problem is 

also present in type-written reports to some extent. Physicians get this habit to copy 

and paste, and incompleteness is rather common in these reports [20].  

2.3.5 Summary 

Clinical documentation is the backbone of quality healthcare; however, it often takes more 

time than treating patients. There are five main challenges of clinical documentation: 

accuracy, completeness, turnaround time, provider throughput, and cost. Each institution 

sets policies that focus on a subset of these challenges and practice a workflow and 

documentation mode that comply with their policies. There are two commonly practiced 

workflows: front-end and back-end; and three documentation modes: hand-written, type-

written and voice-dictated. Currently, no combination of documentation mode and 

workflow offers to meet all challenges; therefore, the documentation practices raise a 

number of problems. The five major problems of the clinical documentation process are 1) 

low quality of reports, 2) high time consumption, 3) loss of minor clinical encounters, 4) 

high cost, and 5) lack of opportunity to develop datasets for research.  
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2.4 Speech Recognition 

This section provides a background on the fundamental concepts of Speech Recognition 

(SR). Speech recognition refers to any machine-based method that functions over speech 

input and processes it into text. SR research is generally categorized into three areas: 

isolated word recognition, continuous speech recognition, and speech understanding [21]. 

Isolated word recognition methods are applied to those speech inputs in which speaker 

utter individual words, separately. However, continuous speech recognition methods are 

used when speech is continuous and in a natural manner. Speech Understanding, whereas, 

is used when we are more interested in understanding the sense of speech instead of specific 

words. In this thesis, we explore methods from continuous speech recognition, as we work 

with natural and continuous speech.  

Speech is recorded in the form of audio signals. These signals are defined as the long arrays 

of timed sound intensity values. These values represent the acoustic features of the speech 

in the form of phonemes that are the basic sound units within a language. Phonemes, when 

combined, form the basis for words and other lexicons within the speech. For efficient 

recognition, SR requires a prior understanding of such acoustic behaviors, along with the 

knowledge of grammatical and other rules that exists within the language. This information 

is provided to SR methods using acoustic and language models that are trained on the 

speech data from a language. These models are the core components within any SR system. 

Firstly, acoustic features from input audio are matched with the given acoustic model to 

identify language units (phonemes) which then produce an estimated sequence of words 

using the rules from the language model. The robustness of these models is vital in the 

performance of Recognition. Figure 2.1 illustrates the structure of any SR system in its 

simplest form. 
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Figure 2.1 Structure of any SR system in its simplest form 

When a speech input is given, the objective of SR is to obtain the optimal word sequence 

for the given speech (𝑿), which is a form of well-known maximum a posteriori (MAP) 

problem [22].  

Equation 1 

𝑊̂ = arg 𝑚𝑎𝑥𝑾 𝑃Λ,Γ(𝑾|𝑿) 

In Equation 1, optimal word sequence 𝑊̂ is a word sequence 𝑾 that maximizes the 

likelihood for the given speech signal 𝑿 by the use of an acoustic model 𝚲 and language 

model 𝚪. Both models are the components inside the construction of SR systems that are 

further explained in subsequent sections. 

2.4.1 Acoustic Model 

The acoustic model forms the basis of any SR system [23]. The purpose of the acoustic 

model is to provide estimations that a particular phoneme is uttered in a given audio 

sequence. Acoustic models are either a statistical or machine learning model that maps the 
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relationship between audio signals and linguistic units. These models are trained upon 

hours of speech data to generalize linguistic relationships effectively. 

Audio signals are digitally recorded sound waves, which are made up of sequential 

samples. The sample rate of an audio file denotes the number of samples recorded in one 

second. The resolution of a sample refers to the amount of memory (bits) that is used to 

record each sample. For example, a 10-second audio file of sample rate 16000 Hz and 

resolution of 16 bits means that it contains a total of 160,000 samples that are recorded in 

16 bits each, which translates into a raw size of 312 kilobytes (160,000 x 16 bits) of 

memory. Audio signals are long arrays; therefore, these signals are segmented into equal 

intervals, called frames, for processing and model construction. Frames are small but 

overlapping windows within audio files. Frame size remains fixed throughout the SR 

system. As an example, for a 16000 Hz audio signal, if we choose a frame of length 256 

samples, then the first frame covers from 0th sample to 255th sample, and then the second 

frame starts from 128th sample and so on.  

SR systems extract various types of features from frames. The commonly used features are 

power spectrum, Mel-frequency cepstral coefficients, and delta features. In continuous 

speech recognition systems, features within the frames of training audio files base the 

construction of acoustic models. To perform recognition, a query audio file is extracted for 

frames, and its features match the acoustic model to get the estimated sequence of linguistic 

units.  

SR systems from their inception are using statistical acoustic models. These systems use 

the Gaussian Mixture Models (GMM) and Hidden Markov Models (HMMs) to recognize 

the sequences of phonemes. GMMs detects the phonemes within each frame, and HMMs 

estimates the likelihood of having detected phonemes given the prior detected sequence. 

Statistical acoustic models then use estimation maximization algorithms to get the optimal 

phoneme sequence out of audio signals.  
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The current advancements in machine learning have enabled researchers to develop end-

to-end acoustic models that eliminate the need to use domain expertise as it is required to 

train the statistical models. End-to-end models take benefit of powerful machine learning 

techniques, such as Artificial Neural Networks (ANN) and Deep Neural Networks (DNN), 

to develop acoustic models. These models work on the same inputs, i.e., acoustic features 

of audio signals; however, a number of current approaches produce direct word sequences, 

as opposed to traditional models that produce phonemes. In such cases, characters are used 

as the output sequences.  

Since the ultimate goal of SR is to get the optimal word sequence, SR systems take the 

output of the acoustic model, either statistical model outputting phoneme sequence or 

machine learning model outputting character sequence, and pass it through decoders to 

achieve the optimal word sequence. In the decoding part, output sequences are searched in 

lexicon dictionaries for matching words. In this step, most SR systems also exploit 

language models to refine the output of acoustic models. The details about language models 

are in the next subsection. 

2.4.2 Language Model 

The language model maps the relationship between the words from a given language. In 

speech recognition, it provides the contextual information of words by assigning a 

probability distribution over the trained word sequences [24]. It is usually trained on large 

samples of text from a language. Language models facilitate SR systems to detect 

connections between the words in a sentence with the help of a pronunciation dictionary 

[23]. Language models also introduce domain-specific vocabulary to the SR paradigm. It 

refines the output of SR systems. However, it is not always required for the recognition 

task. When language models are used in SR systems, their calculated likelihood 

probabilities are merged with the decoded word sequence probabilities from acoustic 

models, and then the combined probabilities are used to get the optimal word sequence.  

The most common method to construct language models is n-gram language modeling, 

where n is the order of language model. An nth order language model calculates the counts 
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for having 1-grams, 2-grams … n-grams from a training corpus. These n-grams occurrence 

counts are used to calculate the likelihood of having a word W based on the given sequence 

of n-1 preceding words [23].  

Equation 2 

𝑃(𝑊) = 𝑃(𝑊𝑛|𝑊1, 𝑊2, 𝑊3 … 𝑊𝑛−1) =
𝐶(𝑊1, 𝑊2, 𝑊3 … 𝑊𝑛)

𝐶(𝑊1, 𝑊2 … 𝑊𝑛−1)
 

In Equation 2, 𝑃(𝑊𝑛|𝑊1, 𝑊2, 𝑊3 … 𝑊𝑛−1) denotes the probability of having a word 𝑊𝑛 

when given a sequence 𝑊1, 𝑊2, 𝑊3 … 𝑊𝑛−1. 𝐶(𝑊1, 𝑊2, 𝑊3 … 𝑊𝑛) shows the count of 

having n-gram within the corpus. 𝐶(𝑊1, 𝑊2, 𝑊3 … 𝑊𝑛−1) shows the count of having (n-1)-

gram. 

When dealing with probabilities, n-gram based language models are prone to problems 

such as zero probability problem and out of vocabulary problem. The zero probability 

problem is due to the unavailability of an n-gram within the training corpus. For these 

unseen situations, language modeling techniques offer solutions such as smoothing and 

discounting. In smoothing techniques, n-gram counts are manipulated to give weights to 

unseen events. Add-one smoothing and add-k smoothing are some examples of smoothing 

techniques. In discounting techniques, if an n-gram is unseen, then the counts from (n-1)-

gram are considered with some discounts. This strategy is also known as backing off.  

The out of vocabulary problem arises when a language model does not have a word in its 

vocabulary. That means not even 1-gram is available for that word. Therefore, solutions to 

zero probability problems do not work here. A common strategy to tackle the out of 

vocabulary problem is to use pseudowords such as unknown <UNK>, start <S> and stop 

</S>. The pseudoword <UNK> is appended with all seen n-1 grams to form a new n-gram, 

whereas, the pseudowords <S> and </S> are appended in the start and end of each sentence. 

They are then treated as normal words while calculating probabilities and training n-gram 

language models. 
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2.4.3 Evaluation Metric 

SR systems are evaluated by investigating differences between their output text and ground 

truth text. If the SR system works according to expectation, then output text match the 

ground truth. However, if there are differences, it highlights the system’s shortcomings and 

provides an evaluation of the system. The most commonly adopted evaluation metric for 

SR is the Word Error Rate (WER) [25]. 

• WORD ERROR RATE 

Word Error Rate (WER) is an evaluation metric that highlights the ratio of mistakes. 

WER returns a value between 0 and 1, where 0 means that the SR system was not able 

to recognize a single word correctly, and 1 means that everything was recognized 

perfectly. Mistakes are counted in the form of insertions, deletions, and substitutions. 

When comparing output text with ground truth, if a word is missing, then it is inserted, 

and insertions count is incremented. If a word is in the output sequence and ground 

truth does not expect to have it, then it is deleted, and deletions count is incremented. 

If for a word found in output sequence ground truth expects a different word, then it is 

substituted, and substitutions count is incremented. After finishing comparisons, WER 

counts all mistakes and divides them by word count of ground truth to get the error rate. 

WER is commonly expressed as a percentage [25], which can be done by multiplying 

WER by 100. 

𝑊𝐸𝑅 =
𝐼 + 𝐷 + 𝑆

𝑊
 

∴ 𝐼 = # 𝑜𝑓 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠 

∴ 𝐷 = # 𝑜𝑓 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 

∴ 𝑆 = # 𝑜𝑓 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 

∴ 𝑊 = # 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 
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2.5 Speech Recognition in Clinical Documentation 

To overcome the challenges of clinical documentation, researchers are looking towards SR 

technology since the time of its inception [22]. In theory, the idea of using speech to create 

clinical documentation is quite promising. However, multi-factored evaluations show that 

it is not as simple to adapt. Changing modes of report generation workflows can open a 

plethora of issues that may come with the new mode of input. The introduction of EHR 

reformed the process of clinical documentation when it offered typing as the form of input; 

however, this input method added up to the already existing issues [26]. With EHR, 

providers spend roughly double their time in creating documents as compared to care 

delivery [4]. Many healthcare providers are not very good at operating computer systems, 

so they still prefer the classical methods of documentation. Since EHR offers much more 

than the change of input mode, and it is not possible to use handwriting as the method to 

input notes within EHR, many studies have tried to use SR technology as an alternative to 

enter notes within EHR. When compared to traditional dictation and transcription methods, 

speech assisted EHR significantly reduces turnaround times and costs [27]. Consequently, 

as SR technology is improving, the increasing number of institutions are adopting SR 

enabled systems to generate clinical reports [27]. However, speech assisted EHR puts the 

responsibility of the management of note input and report creation upon healthcare 

providers, which limits the provider adoption of this technology. Therefore, in this section, 

we investigate the various aspect of SR adoption in documentation workflows and analyze 

the limitations and shortcomings of SR in the clinical documentation process. 

2.5.1 Review Objective 

The purpose of this review is to investigate prior efforts of using SR to overcome the 

challenges and problems of documentation. Therefore, we form three main objectives. 

1) To explore previous attempts on using speech as a tool for clinical documentation. 

2) To scrutinize the methodology and evaluations of explored attempts. 

3) To identify all the factors that limit the intended outcomes of explored attempts. 
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2.5.2 Literature Exploration 

This thesis deals with a problem in the medical domain; therefore, we primarily used 

PubMed [28] as the source to look for literature. We identified a set of keywords that were 

combined using ‘AND’ and ‘OR’ operators to retrieve the best matching articles. Figure 

2.2 shows the query tree that was used to search PubMed to retrieve the relevant studies. 

 

Figure 2.2 Query Tree for Literature search 

2.5.3 Analysis 

Healthcare providers use dictations in traditional documentation workflows. However, 

they are now required to use an EHR for report generation. Speech-enabled EHRs 

contribute more to the challenges of the documentation process. Therefore, in this analysis, 

we iterate and analyze the impact of SR on the challenges of the clinical documentation 

process. 

• ACCURACY AND COMPLETENESS 

Accuracy and completeness reflect the overall quality of the report; therefore, studies 

usually address these two challenges together. When providers type-write their reports 

on EHR, they usually make 0.4 mistakes for every 100 words (0.4% error rate) in back-

end workflow [29]. Zhou conducted a study to test SR on the same workflow, where 

he noted an increment of errors by 7.8% [29]. However, he added that reports managed 

to achieve the same level of quality after a final review from the provider. 

Studies by Hodgson and Goss address the use of SR in front-end workflow. They show 

similar results to Zhou, where the report quality significantly declined [27], [30]. 
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Although, in a study where experiments were conducted in an ideal environment, with 

no real-life constraints and stress, 81% of providers reported improvement in the 

overall quality of reports with the use of SR enabled tools [26].  

• TURNAROUND TIME AND PROVIDER THROUGHPUT 

Providers spend most of their time to generate reports [29]; this means, an efficient 

documentation process can reduce turnaround times and boost provider throughput. 

Studies report that most of the providers are convinced that SR improves efficiency and 

is easy to use [26], [27]. In back-end workflows, SR has shown to reduce turnaround 

times and increase productivity [29]. However, when SR is used in front-end 

workflows, no significant time difference was reported [30].  

• COST 

In the clinical documentation process, the cost is the aspect that is the least studied in 

the academic domain. One reason could be that costs are primarily a concern of 

departments that are not connected with academics. In any case, the cost is a profound 

variable in the adoption of any solution, and also plays a vital role in the adoption of 

SR in the clinical documentation process. These days, more and more institutions are 

tilting towards the adoption of SR enabled solutions since they are thought to reduce 

costs [27]. A provider adoption survey done in 2018 has also concluded that SR enabled 

systems can reduce monthly transcription costs by 81% [26]. Since we were not able 

to find any study that reports any adverse findings in terms of the cost of using SR 

enabled systems, there is no reason to disbelieve the above-stated opinions. 

2.5.4 Findings 

The approach to use SR for documentation is not new. Studies from 1981 [31] and 1987 

[32] experimented with SR when this technology was developing as a new concept, where 

they found SR to be worsening the problem. SR technology improved a lot since then. This 

trend is reflected in the studies done throughout the decade of 1990 [33]–[39]. This trend 

remains in the decade of the 2000s [40]–[43]. A study done in 2010 [44] reported that about 

two-thirds of their participants feel that SR can improve report quality and can reduce 
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documentation times as well. Another study that was done in 2012 [45] supports the claim 

that SR now has the ability to reduce documentation times. Almost all of the recent studies 

[27], [46]–[49] affirms that SR has the tendency to overcome problems of documentation. 

However, with all the optimism, SR enabled solutions still lack adaption among healthcare 

providers [26], [50]. Studies document four main reasons behind the low adoption of SR 

enabled solutions. 

• HIGH EXPECTATIONS FROM SR ENABLED SYSTEMS. 

SR systems are viewed as they can dramatically reduce mistakes and documentation 

times. However, current SR technology still struggles to maintain high accuracy due to 

real-world issues, such as noise and domain-specific vocabularies. Therefore, noise-

robustness and domain-robustness are real challenges of SR that limit the confidence 

of healthcare providers in SR at this point. 

• RESPONSIBILITY FOR CORRECTIONS. 

SR systems make mistakes, and physicians are responsible for correcting those 

mistakes. Due to this, sometimes they spend even more time in corrections. When any 

machine-based system makes a mistake, humans are expected to correct for those 

mistakes; however, in this scenario, the overall confidence in SR technology can be 

increased by making robust systems that do not make mistakes in the first place. The 

same challenges apply here as well that are mentioned in the above-stated point. 

• CHANGE IN DICTATION STYLE. 

SR is merely a tool for note entry in many reporting systems. Physicians are responsible 

for controlling the structure of reports where they have to manually select the report 

section for which they wish to add the notes. As an example, for the SOAP structured 

reports, physicians have to select one of the SOAP categories to enter its content at one 

time. This practice breaks their dictation pace as they have to tailor their dictation style 

according to the structure of the report. Due to this hassle, physicians prefer recording 

conventional dictations where they get the ability to record in freestyle at the time of 

encounter. This hassle also calls for autonomous features that are specialized for 
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documentation tasks, and can intelligently separate the content for different sections of 

a clinical report from a freestyle recorded dictation.  

• PHYSICIANS’ TRAINING 

Physicians require training to use SR enabled systems efficiently [51]. A 2010 study 

[44] reported positive response when participants got adequate training, whereas, when 

they were not satisfied with the training, they reviewed SR enabled systems negatively. 

Such training includes teaching physicians to enable SR features within the system and 

other reporting features that are linked to SR.  
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2.6 Handling Noise in Speech Recognition  

SR is an area of interest with more than three decades of active research [22]. In ideal 

environments where noise and distortions do not interfere with speech signals, the latest 

developments have enabled SR systems to perform increasingly closer to human speech 

recognition performance [52]–[54].  

Noise is referred to as any phonetic element in the audio signal that is other than the speech 

signal [55]. In real-life environments that are filled with a huge concentration of noise, SR 

systems lack that robustness to compete with humans [56]–[58]. This degradation is mainly 

due to the difference in the acoustic features from input audio to the ones in the trained 

model [59]. Noise from surroundings changes the acoustic features of speech with 

unwanted additives from noise. Traditionally, SR-enabled devices used to create an ideal 

environment using close-talking microphones and other acoustic adjustments. However, 

with the rise in large-scale hand-held mobile devices, it is not further possible to provide 

SR with ideal speech inputs. It is inevitable for SR to work in challenging acoustic 

environments and noise robustness is now a key challenge for SR to maintain its 

performance levels [60].  

Noise robustness is a trending problem in the SR domain. Colossal amounts of methods 

and techniques have been proposed to provide noise-robust solutions for SR. A number of 

systematic reviews of noise-robust speech recognition [22], [23], [61] have presented the 

current advancements in systematic manners. In this review, we explain and analyze 

techniques about the development of noise-robust systems for domain-specific 

environments. We are particularly interested in indoor environments where there are 

reverberant distortions and speech overlaps; nevertheless, this review is not limited to such 

environments. However, we only review those techniques that deal with single-channel 

audio signals.  

Noise-robustness techniques can be divided into two main groups: feature-space and 

model-space [22]. Feature-space techniques consider the preprocessing of audio signals to 

extract clean speech before passing it to SR components. Model-space techniques, on the 
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other hand, deal with the internal construction of noise-robust components. The subsequent 

sections explain both groups further and provide an analysis of techniques within each 

group. 

2.6.1 Feature-space Techniques 

SR works well with clean speech. A straightforward and classic solution is to process the 

incoming audio to extract clean speech before passing it to the SR system. Feature-space 

techniques apply this classic solution by using signal processing techniques to enhance the 

acoustic features of speech. These techniques do not change the acoustic model or any 

component within SR systems.  

Enhancing acoustic features from noisy audio is a difficult problem in single-channel as 

compared to multi-channel audio spectrum [62], where techniques, such as acoustic beam-

forming, are performing close to human transcription performance [63]. However, we do 

not see such accuracies while using single-channel audio.  

Spectral Subtraction [64] and Weiner filtering [65] are classical techniques to filter noise 

from the audio signals. These methods do not depend upon training [22]; instead, they use 

statistical tools that estimate the noisy speech spectrum and remove any intensity 

distribution over that estimated spectrum. These techniques are acceptable when noise is 

stationary throughout the span, such as noise from wind, fan, or anything that emits a 

continuous stream of sound. However, their performance degrades with the interaction of 

varying or convolutional noises such as reverberation and overlapped speeches.  

Without prior knowledge of noise or speech patterns, statistical models sometimes over 

filter the speech signals, consequently clipping and losing acoustic details [66]. There are 

various learning-based techniques to tackle the problems of reverberation and speech 

overlap such as Weighted Prediction Error (WPE) using Short-Time Fourier Transform 

(STFT) domain [67], de-noising auto-encoder [68] and a statistical-neural hybrid Cepstra 

Minimum Mean Squared Error–Deep Neural Network (CMMSE–DNN) based learning 

model [69]. However, these techniques shift away from the area of speech recognition 
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while belonging more to the area of signal processing, which is not the working domain of 

this thesis. 

2.6.2 Model-space Techniques 

Model-space techniques aim to develop noise-robust SR components, particularly acoustic 

models. These techniques are linked directly with the objective function of acoustic 

modeling to absorb the effects of noise and distortion [22]. These techniques have generally 

shown to achieve higher accuracies in comparison to feature-space techniques. However, 

in comparison, they use significantly more computational resources.  

Noise adaptive training [70] and noise aware training [61] are the candidates of the model-

space techniques. In noise adaptive training, acoustic features infused with the noise are 

relayed directly into the acoustic models, whereas in noise aware training, an estimated 

noise model is generated to calculate corruption in the training noise [61] which then acts 

as the mask to filter noise from testing audio. Noise Adaptive techniques are reporting 

high-performance gains [71]–[73]. Acoustic models trained using ANN-based noise 

adaptive framework were introduced to the same levels of noise that are expected in the 

execution life of SR systems, where they have shown performance boosts as high as 20% 

[74]. Seltzer [61] shows the use of DNN for noise aware training with a relative 

performance boost of 7.5%. Noise based acoustic training works well on the single-

channeled audios and incorporates most of the effects of additive noise. However, models 

trained using these techniques are not generalizable [68] to use on environments with 

different noise signatures then of where the models were trained. 

The development of current end-to-end SR systems has defined a new state-of-the-art [75]–

[78]. These systems are built on the underlined principles of model-space techniques with 

the goal to tackle the problem of the noise of real environments. These systems train their 

acoustic models in a data-driven way without relying on any expert domain knowledge 

[79] such as noise estimates and phonetic dictionaries. Their end-to-end nature allows them 

to directly train their model based on paired data, where training audio and its 
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corresponding text is paired. However, to achieve higher accuracies, they require vast 

amounts of training data. 

2.6.3 Summary 

The problem of noise-robustness in SR is addressed using two types of approaches. The 

first approach presents techniques that seek treatment to noisy audio before feeding it to 

SR systems. These techniques span over unsupervised as well as supervised learning. 

However, they shift the problem to the signal processing domain, where the good signal is 

enhanced, and undesired signals are suppressed. Variations of such problems are de-

noising and noise removal. The second approach seeks the construction of robust SR 

components, particularly the acoustic model. It shows that noise adaptive training is 

currently the top-performing technique on which various end-to-end SR systems are 

constructed. The review has also mentioned that end-to-end systems are setting the current 

state-of-the-art in the technology of SR. 
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2.7 Domain-Specific Speech Recognition 

In speech recognition, domain entails the combination of the acoustic domain as well as 

the language domain. The acoustic domain includes speakers, audio channels, and 

environmental noise. The current state of the art end-to-end SR systems have covered many 

grounds of robustness over acoustic domains, though domain robustness is still a 

challenging problem [80]. The problem primarily remains due to the domain-specific 

language which includes specific words and their relations. Handling the rules of language 

is the integral responsibility of the language model within SR systems. However, this 

problem broadens when there is a shortage of domain-specific data and language modeling 

techniques struggle in training robust language models. Therefore, in this review, we 

analyze two major techniques that deal with the development of domain-specific language 

models when domain-relevant data are scarce.  

2.7.1 Out-of-Domain Model Adaptation 

Model adaptation refers to the use of language models that are trained on one language 

domain to a different target domain where there is little or no training data available. 

Various scenarios are linked to model adaptation that we review one by one. A typical 

scenario is that when the available language model is from the general-purpose domain 

that seeks adaptation in a specific target domain. In such cases, a direct adaptation of the 

out-of-domain language model can give domain agnostic behaviors; therefore, it is better 

in such cases to perform some fine-tuning operations. Another scenario is when the source 

language model is coming from a domain-specific environment that is different from the 

domain of the target environment. Lyer [81] experimented with multiple out-of-domain 

models that were combined to form a single model that improved performance on a general 

task. You [80] show a 10.4% relative improvement in performance by using an all-rounder 

approach where multiple domain-specific models were used to train a single language 

model to apply on a general-purpose target.  

Adapted models are combined with domain-specific models by either pooling or 

interpolation [82]. The pooling technique deals with the creation of one dataset from 
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multiple sources, and then use that dataset to create one combined model [83], whereas, in 

interpolation, multiple datasets train multiple language models which are then combined 

using interpolation weights.  

2.7.2 Domain Relevant Data Generation 

Language models work well when there is sufficient domain-specific training data 

available. Domain relevant data generation techniques seek various strategies to produce 

such domain-specific training data when there is a scarcity problem. There are three main 

types of strategies for data generation: conversion, extraction, and augmentation.  

Data conversion strategies seek such data sources that exhibit domain-relevant data in 

different format or language, then apply techniques to convert such data into the desired 

format or language. As an example of data conversion, Horia [84] proposes a technique 

that exploits the use of machine translation to convert domain-relevant data that exhibits in 

a different language into the language of the target domain.  

Data extraction strategies are similar to conversion as it explores domain-relevant data on 

other platforms, and instead of conversion, it focuses on the extraction of such data from 

the source platform to the target platform. Abhinav [85] has shown relative progress of 6% 

by the use of a data extraction technique to extract domain-relevant data from the web and 

train language models from extracted data.  

Data augmentation strategies offer a different way to generate domain-relevant data. It 

focuses on the augmentation of available information within existing data to generate new 

data points. Enhancing language models by augmenting domain-specific vocabulary and 

synonyms have shown a decrement of absolute recognition error by 5.41% in noisy 

environments of tennis championship while having all variety of noises like emotional 

outbursts, game noise, crowd noise [86]. Another study shows considerable progress by 

using models that were created by web extracted and augmented data using pooling [83]. 
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2.7.3 Summary 

Domain robustness is a challenge in speech recognition, which is due to the combination 

of acoustic and language domains. Approaches of noise-robustness, particularly from end-

to-end SR systems, considerably address the challenges from the acoustic domain. 

However, language models still need to be taken care of for robustness. We review two 

main techniques that deal with the robustness of language models. The first technique seeks 

adaptation of models from different domains to perform tasks on the target domain. These 

techniques complement the adaptation process with domain-specific fine-tuning and model 

enhancements to achieve higher performance. The second technique focuses on the 

generation of domain-relevant data for language models. This technique exploits various 

strategies such as data conversion, extraction, and augmentation to artificially generate 

domain-relevant data that can then be used to generate domain-specific language models. 
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2.8 Speech Recognition Systems 

This section provides an overview of multiple SR systems and toolkits. In this review, we 

have a special focus on the state-of-the-art end-to-end open-source offline systems. In SR, 

the term “end-to-end” refers to those systems that recognize text from the given speech 

without the use of any phonetic representation, which used to be the core of traditional SR 

systems [79]. Traditional speech recognition systems used to depend on significant human 

expertise for the development of such representations. End-to-end speech recognition is a 

recent development that was achieved due to the advancements in Deep Neural Network 

(DNN). It was first presented in 2014 [87], in which it reports state-of-the-art accuracy on 

the Wall Street Journal corpus. Later, a number of researchers expanded the end-to-end 

concept and reported significant performance improvements. 

The following SR systems and toolkits are reviewed. 

1. Deep Speech  

2. ESPnet 

3. Wav2Letter++ 

4. CMUSphinx 

5. Kaldi 

6. Julius 

7. Google Speech-to-Text 

2.8.1 Deep Speech 

Deep speech is a DNN based end-to-end acoustic modeling technique that uses the 

Recurrent Neural Network (RNN) to construct a robust SR system. It is built with the focus 

on noise-robustness, by enabling RNN to consume thousands of hours of unaligned, 

transcribed audio to train its models. It performs character-level recognition. It was 

presented in 2014, where it claimed better performance than other commercial SR systems 

on both, clean and noisy datasets [77]. It outperformed previously established SR systems 

by achieving 16% WER on the Switchboard corpus [88]. Later in 2015, deep speech 

presented a state-of-the-art performance in two vastly different languages: English and 
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Mandarin; and showed that it can be adapted to perform recognition tasks on any other 

language [76].  

Deep speech models are composed of 6 layers (input + 5 layers) (Figure 2.3), where the 

second last layer is a bi-directional recurrent layer [89]. The output layer in deep speech 

predicts the character probabilities for the input audio sequence. The structure of deep 

speech is straightforward and uncomplicated as compared to other RNN based models [87]. 

Therefore, deep speech depends upon extensive training data to achieve high-performance 

standards. However, due to simplicity in structure, the RNN model is prone to overfitting; 

thus, deep speech applies dropout rate in between 5-10% to its layers along with using 

techniques to synthesize training data with artificial noise.  

 

Figure 2.3 Structure of Deep Speech Model [77] 

One advantage of deep speech is that it provides techniques to accelerate the training 

process by using parallelism to enable execution over GPUs. The first technique it provides 

takes the approach to train a model on many input examples in parallel. Secondly, it 

provides some techniques to parallelize the overall model training process. Since recurrent 
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layers have a sequential nature, it is challenging to parallelize them; therefore, deep speech 

approaches to optimize the execution of all other layers.  

In November 2017, Mozilla research lab developed project DeepSpeech that implemented 

the techniques defined above and released the first stable version of an SR system in the 

open-source domain. Under the hood, DeepSpeech uses TensorFlow [90] neural network 

toolkit. Training deep speech acoustic model is a compute expensive operation, as it 

requires a vast amount of data to efficiently learn the domain characteristics; however, it 

has the ability to run inferences in real-time by using a decent sized GPU due to the native 

GPU support that TensorFlow provides. To refine its output, DeepSpeech uses an n-gram 

based language model. The language model generation is not directly handled by 

DeepSpeech; rather, it is dependent upon the implementations by KenLM [91] language 

modeling toolkit.  

2.8.2 ESPnet 

ESPnet is a recent addition to the end-to-end SR systems, presented in 2018 [75]. It is based 

on a hybrid DNN/HMM approach. It makes use of two vastly different approaches, 

Connectionist Temporal Classification (CTC) and attention mechanism, in the hybrid 

manner to train its acoustic models. Although it is a newer edition, it presented comparable 

performance as compared to the state-of-the-art systems [75].  

ESPnet is based on an attention-based encoder-decoder network to perform recognition 

tasks. Attention-based networks do not require explicit acoustic and language models. 

However, ESPnet presents a mechanism to develop a hybrid network by fusing the scores 

from an attention decoder network with CTC decoder. Moreover, it also provides a 

mechanism to make use of explicit language models. The final proposed recipe of ESPnet 

works in 6 (1+5) stages (Figure 2.4). Stage 0 prepares the audio data using data preparation 

scripts from Kaldi toolkit [92], Stage 1 again uses Kaldi to extract features from training 

data. Stage 2 perform data preparation again, although this time preparation is for training 

encoders and explicit language models. Stage 3 trains explicit language models. Stage 4 

trains SR encoders. Finally, stage 5 performs recognition.  



35 

 

 

Figure 2.4 Processing stages in ESPnet recipe [75]  

The first stable version of ESPnet was released in March 2019. It was built on PyTorch 

[93], which is a neural network toolkit mainly for research purposes. Therefore, it can have 

some issues in the case of scaling applications. Like deep speech, it is also dependent upon 

huge datasets for efficient operation.  

2.8.3 Wav2Letter++ 

Wav2Letter++ is the most recently presented end-to-end SR toolkit that is presented in 

early 2019 [94]. It is developed entirely on C++ by the Facebook research lab to boost 

performance and speed. It reports the lowest error rates on the same datasets on which deep 

speech and ESPnet report their performance numbers. The first stable version of 

Wav2Letter++ was released in early 2019. As it is based on the end-to-end concept, it also 

depends upon massive training data to train efficient acoustic models. However, until the 

start of October 2019, it was not offering any pre-trained models with the system.  

Wav2Letter++ provides a platform to test various DNN based SR recipes. Recipes in 

Wav2Letter++ consists of DNN architectures for acoustic modeling and decoding 

information for language models. Currently, the official repository of Wav2Letter++ 

provides recipes that use Convolution Neural Network (CNN-DNN) based architectures 
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[95], [96]. When using architecture from deep speech, Wav2Letter++ reported 5% WER 

on LibriSpeech clean dataset [94].  

2.8.4 CMUSphinx 

CMUSphinx is not an end-to-end system, as it is built upon traditional pipelines of speech 

recognition. It was developed by Carnegie Mellon University (CMU) and was presented in 

2004 [97]. We reviewed this system since it has the most recent version of the traditional 

HMM-based acoustic model, along with a considerable community presence. Even recent 

studies consider to compare it with leading commercial cloud-based SR [98]. However, 

with the recent advancements of the end-to-end SR concept, the popularity of CMUSphinx 

is now fading away. 

2.8.5 Kaldi 

Kaldi is a speech recognition toolkit, rather than a standalone system, that was presented 

in early 2011 with the purpose of research [92]. The main focus of Kaldi is towards acoustic 

model research. However, a number of recent end-to-end systems have borrowed various 

components from this toolkit [52], [75]. Kaldi toolkit is built upon traditional HMM/GMM 

based SR pipelines.  

2.8.6 Julius 

Julius was presented in 2009 as a large-vocabulary continuous speech recognition 

(LVCSR) system for both research and industrial applications [99]. It was also a traditional 

system using HMM-based acoustic models. Its main features were the ability to perform 

real-time processes with low memory usage. However, it was last updated in 2014 and has 

never updated since. 

2.8.7 Google Speech-to-Text 

Google speech-to-text [100] is a cloud-based speech recognition service that is currently 

leading in real life general-purpose speech recognition [98]. It offers services in 120 

languages and supports real-time recognition. The cloud service is based on powerful deep 

neural network models and it offers recognition via easy to use API. 
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2.8.8 Summary 

This review has covered six open-sourced and one cloud-based SR systems. Within open-

sourced systems, three are built upon end-to-end concept whereas the remaining three are 

built upon traditional SR pipelines. This review analyzes these systems upon three factors: 

performance, ease of use and scalability. We have shown that performance and scalability 

wise, all end-to-end systems are cutting edge. However, training and using them in domain-

specific environments are challenging tasks due to their need for substantial training data. 

In terms of noise-robustness, end-to-end systems are the best ones along with the reviewed 

cloud-based system. Due to the dependability of traditional systems on accurate training 

sets, they usually do not catch up end-to-end systems in real-world environments. When 

comparing end-to-end systems with each other, DeepSpeech seems to be the most practical 

one to use at this point. 
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2.9 SOAP Classification 

Classification is the procedure of assigning one or more classes to some entity. Sentence 

classification is the type of classification that falls under the umbrella of NLP and works 

on text sentences. It is commonly applied in both medical and non-medical domains. It 

stems from the document classification, categorization, or segmentation that works on the 

scope of documents. Some examples of classification in NLP are classifying newspaper 

articles based on topics and identifying an email as spam. An example of sentence 

classification is the sentiment analysis of tweets.  

This thesis uses sentence classification to assign SOAP categories to the transcription of 

provider dictations. In a clinical report, subjective and objective sections bare most of the 

content, whereas the assessment and plan sections are filled with marginally a smaller 

number of sentences. This trend has shown in the dataset of this thesis which is also 

affirmed by the dataset class proportion reported by Mowery [101]. This trend creates an 

imbalanced dataset which may lead to a biased analysis of the performance. Another point 

to note while dealing with SOAP format is that each category has a semantic definition, 

and a SOAP formatted report expects its content to adhere to those definitions. In this 

regard, it is a good idea for a classifier to pick those semantic patterns from the training. 

Word sequence of a sentence plays a vital role in highlighting those patterns. It means that 

keeping word sequence intact can positively impact the classification performance. 

SOAP classification is attempted before by Mowery [101] in which SVM was used and 

showed positive gains; however, Mowery did not address the imbalanced nature of SOAP 

datasets and also did not exploit the sentence sequences in its solution. We were not able 

to find any other study on SOAP classification to compare the results of this study. 

Mowery, in its work, also mentioned about this unavailability. However, we reviewed other 

studies on similar problems in the medical domain. We adapted an exemplar-based concept 

detection algorithm that is defined by Juckett [102] in an effort to extract concepts from 

clinical text. This algorithm explicitly takes care of the word sequences and aims to work 

efficiently on imbalanced datasets. 
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2.10 Conclusion 

In this chapter, we define the clinical documentation process, along with its challenges, 

modes, and workflows. We discuss the structure of SR systems along with some recent 

developments that are happening in the SR research domain. A literature review presents 

the use of SR in the healthcare domain with respect to the challenges of the documentation 

process. We also present a review of 6 top-of-the-line speech recognition systems. In the 

end, we review techniques to classify sentences into SOAP categories, where we present 

an exemplar-based concept detector algorithm with the idea to implement it into a SOAP 

classifier.  
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Chapter 3. RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter describes the methodology undertaken to address the research objectives of 

this thesis. The process of research started after performing a systematic review of the 

problem, which led us to define a solution approach that spans over two separate layers 

and separate domains. The rationale for this multi-layered multi-domain approach is 

provided in the introductory chapter (Section 1.1). This chapter now highlights all the steps 

that are taken to form a conclusion within each layer. Figure 3.1 highlights the overall 

methodology of this thesis. 

 

Figure 3.1 Steps in Research Methodology spanning over two layers 

3.2 Layer 1: Transcription of Physicians’ Audio Notes 

The focus of this layer is to achieve higher recognition accuracy in the noise rich 

environments. It aims to apply the solutions to transcribe physicians’ dictation audio files. 

This layer achieves its objective in four steps.  

3.2.1 Selection of Methods 

Noise-robustness and domain-robustness are two key challenges towards achieving the 

first objective of this layer. Both challenges were reviewed in detail (Section 2.6 and 2.7) 

to explore the top-of-the-line techniques. After a detailed review (Section 2.8), one Speech 

Recognition (SR) system was selected based on the ability to implement our explored 
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techniques. The selection of the SR system and robustness techniques goes hand in hand 

to ensure the compatibility between the selections.  

• SPEECH RECOGNITION (SR) SYSTEM 

We have selected project DeepSpeech [7] in our work. DeepSpeech is an open-source 

speech recognition engine that is developed by Mozilla. Project DeepSpeech uses 

acoustic models that are trained on the machine learning techniques of deep speech 

[77] and language models that are trained using KenLM [91] language modeling 

toolkit. When the DeepSpeech engine works with a deep speech acoustic model and a 

KenLM language model, the whole combination becomes a complete speech 

recognition system.  

Name Short Name Description 

Project 

DeepSpeech 

DeepSpeech Speech Recognition Engine requires an acoustic 

and a language model to perform recognition 

tasks. 

Deep Speech 

Acoustic Model 

Deep speech 

model 

OR 

Acoustic 

Model 

An acoustic model that is developed using Deep 

Neural Network (DNN) based machine learning 

techniques. 

KenLM Language 

Model 

KenLM Model  

OR 

Language 

model 

A language model that is trained using the 

KenLM toolkit. 

Deep speech [77] also provides pre-trained acoustic and language models that have 

learned from massive datasets. It also provides utilities to train custom models. We 

selected the release 0.5.1 for our experiments, which is the latest stable release at this 

point in time.  
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• PRE-TRAINED MODELS 

Pre-trained acoustic and language models provided by DeepSpeech are trained over 

3,000 hours of transcribed audio from Fisher [103], LibriSpeech [104] and Switchboard 

[88] datasets. All datasets are in American English. Details of each dataset are given 

below. 

Corpus 

Name 
Fisher [103] 

LibriSpeech 

[104] 
Switchboard [88] 

Corpus Size 2,000 hours 1,000 hours 250 hours 

Nature of 

Data 

telephone 

conversations 
audiobooks conversations 

Source of 

Data 
16,000 conversations audiobooks 

2,500 conversations by 500 

speakers 

The pre-trained deep speech model was trained using the following hyperparameters.  

Parameter 
Layer 

width 

Dropout 

rate 

Learning 

rate 

Language model 

weight (CTC 

Decoder) 

Word insertion 

weight (CTC 

Decoder) 

Value 2048 15% 0.00001 0.75 1.85 

The language model was trained till 5-grams. The total size of the pre-trained language 

model is over 4 gigabytes. 

3.2.2 Preliminary Analysis 

Cloud-based SR systems generally perform better [105] as compared to offline systems, 

but they do not offer customization options as open-sourced offline SR systems offer. 

Moreover, in data-sensitive domains, such as the healthcare domain, offline solutions are 

preferred due to privacy and such concerns. Therefore, in this work, we will be exploring 

robustness techniques to apply them to an open-sourced offline SR system to maximize 

accuracy gain. However, we are interested in comparing the performance of the selected 

SR system with the top-of-the-line cloud SR system in both settings; before and after 
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applying our solution. In this step, we experimented with DeepSpeech and Google Speech 

[100] using our full dataset. 

3.2.3 Development of Solution 

This step developed a solution to overcome the challenges of this layer. The solution is 

motivated by the insights gathered from the preliminary analysis and is based on the 

reviewed robustness techniques. It proposes methods to maximize accuracy gains using 

both, acoustic and language models.  

3.2.4 Evaluation of solution 

SR systems are generally evaluated using Word Error Rate (WER) [25], which gives equal 

weight to all mistakes. However, in the domain-specific environment, some mistakes can 

have more impact than others. For example, in the healthcare domain, a mistaken drug 

name or diagnosis is a critical hazard, in comparison to most of the grammatical mistakes. 

Therefore, we developed a custom domain-specific evaluation metric, Critical Error Rate 

(CER), to evaluate such errors. We evaluated our models on both of these evaluation 

metrics (WER and CER).  

• CRITICAL ERROR RATE (CER) 

Critical mistakes are defined as those mistakes that involve medical concepts. CER 

counts critical mistakes and takes its ratio out of all critical concepts within the ground 

truth. First, it counts all the critical mistakes, and then it divides the count by the number 

of all medical concepts in the ground truth. CER uses Metamap [106] to query the word 

to find if it is a critical mistake. 

𝐶𝐸𝑅 =
𝐶

𝑊
 

∴ 𝐶 = # 𝑜𝑓 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑀𝑖𝑠𝑡𝑎𝑘𝑒𝑠 

∴ 𝑤 = # 𝑜𝑓 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠 𝑖𝑛 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 
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3.3 Layer 2: Autonomous Generation of Clinical Report 

A SOAP formatted clinical report contains sections representing all four SOAP categories; 

therefore, the focus of this layer is to develop a classifier to categorize sentences from the 

transcription of physicians’ notes into one of the SOAP categories. We achieved the 

objectives for this layer in four steps.  

3.3.1 Data Labeling 

In the first step, we labeled the dataset for the classification task. 

3.3.2 Selection of Method 

In this step, an exemplar-based algorithm was selected, which is proposed by Juckett [102] 

for concept detection within clinical texts.  

3.3.3 Development of Solution 

The selected algorithm detects concepts at the word level, whereas we aim to work at the 

sentence level. Thus, in this step, we extended the selected algorithm to give a single 

confidence score for each class for the given sentence. We also identified four key areas to 

investigate and develop the solution. 

3.3.4 Evaluation of Solution 

In this step, we evaluated our solution based on the four independent variables that were 

formed from the identified areas. For the evaluations, we used Average Precision (AP) as 

the primary measure of performance. We did not evaluate the area under the ROC curves 

due to the class imbalance in the dataset. 

3.4 Dataset 

To achieve the objectives of this research, the IWK health center in Halifax, Nova Scotia, 

Canada, provided a set of 105 physicians dictated notes, which were then processed into a 

structured dataset.  
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3.4.1 Data Collection 

Audio clips of clinical dictations were provided by the Pediatric Emergency Department 

of IWK health center. 20 out of 105 dictation audio clips contained a complete dictated 

note, whereas the rest of the dictations were chunks of incomplete notes. Only 16 dictations 

were coupled with gold standard text. In total, all dictations accumulate to 2 hours, 28 

minutes, and 14 seconds of audio data. Out of all dictations, 100 were recorded by one 

person in different areas of the hospital, whereas, remaining five dictations were recorded 

by different persons. 

3.4.2 Dataset Preparation 

The dataset was prepared in two steps. In the first step, gold standards were generated and 

validated. For all those dictation clips where no gold standard was provided, manual 

transcription process was completed by three fellow researchers of our lab, one of these 

fellows holds a medical degree that helped us in maintaining the exact vocabulary. Every 

researcher transcribed all dictation clips; afterward, all three variations were analyzed to 

generate gold standards. After generating the missing gold standards, all 105 dictations 

were manually validated. 

In the second step, the dataset was structured. All dictation and transcription files were 

renamed into a sequence of numbers, where a prefix was given to each file. Prefix A was 

given to all audio clips, and corresponding text files. A dictation and its respective gold 

standard couple were given the same filename; nevertheless, they had separate extensions 

(.wav for audio clips, .txt for text files), e.g., (A001.wav, A001.txt).  

After setting up all the files for the dataset, we segmented our dataset into two parts. The 

first part included 100 dictations that were recorded by one person. We called this an 

original dataset and used it for experiments and analysis. The remaining five dictations 

form a validation dataset that we used explicitly to validate the final results of our 

experiments. We did not use the validation dataset at the time of defining, experimenting 

and refining our methods.  
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3.5 Research Environment 

This research is performed on two computer systems that were used in parallel. Table 3.1 

provides a summary of both systems that were used. System 1 was primarily used for 

review, documentation, and light scripting work where the windows operating system is 

required. For all the compute-intensive tasks such as model training and fine-tuning, 

System 2 was used that was equipped with a well-functioning GPU. 

Table 3.1 Summary of Research Environment 

 System 1 System 2 

Processor Intel Core i7 Intel Core i7 

RAM 16GB 20GB 

GPU - NVIDIA GeForce GTX 960 (2GB VRAM) 

Storage HDD SSD 

Operating System Windows 10 Pro Ubuntu 18.04 LTS 

Metamap [106] was used to extract medical concepts from texts. In this thesis, vocabulary 

was limited to MeSH (Medical extended Subject Headings) [107]. Metamap server was 

initialized on system 2, which was readily available over the network. We were more 

comfortable working with the JAVA implementation of Metamap client; hence all the 

scripts that required interaction with Metamap were written in JAVA.  

We used Python to experiment with DeepSpeech. We used system 2 for experiments since 

DeepSpeech uses TensorFlow [90] libraries to run Deep Learning algorithms that facilitate 

execution over NVIDIA based GPU.  

Cloud-based SR systems were tested on the JAVA platform. Exemplar based algorithm in 

NLP was also implemented in JAVA where results were stored in files which were later 

analyzed by python scripts using the scikit-learn library to calculate and plot the precision-

recall graphs.  
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3.6 Conclusion 

In this chapter, we present the steps we took in each layer of our solution to address both 

of our objectives. We highlight the methods that are selected in each layer, along with the 

reasons for such selections. We also mention details about the dataset and working 

environment that we used throughout our research.  
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Chapter 4. SPEECH RECOGNITION – METHODS 

4.1 Introduction 

This chapter presents our methods to explore robust and domain-specific Speech 

Recognition (SR) for scenarios when there is a shortage of domain-relevant data. In this 

chapter, methods pertaining to both components: acoustic model and language model; are 

explored to achieve maximum recognition accuracy. Acoustic models are primarily 

focused on achieving noise-robustness, as they are directly responsible for dealing with the 

noise within the feature space. Language models, on the other hand, contribute more to 

domain-robustness, as they learn from domain-specific language (vocabulary and speech 

patterns).  

4.2 Domain Adaptation 

Domain adaptation is a sub-discipline of machine learning which “deals with scenarios in 

which a model trained on a source distribution is used in the context of a different (but 

related) target distribution” [108], [109]. In many realistic and low-resourced target 

domains, where the collection of data is costly and sometimes impossible, training domain-

specific models become a challenge. In such scenarios, domain adaptation serves as a 

highly practical option [110] to bootstrap the model development process [84].  

Transfer learning and fine-tuning are two main methods of domain adaptation. In both 

methods, models that are already trained on one problem domain are used as the starting 

point to use in another problem domain. However, the difference lies in the way these 

models are adapted. If the adapted model is shown some training data from a different 

target domain to learn the domain specifics, this method is referred to as fine-tuning. 

However, if some or all layers of the adapted model are taken to develop a new model, this 

method is transfer learning.  
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4.3 Preliminary Analysis 

In this section, we address some fundamental questions that require answers to drive this 

research. DeepSpeech is a recognition engine that depends on acoustic and language 

models to perform recognition tasks; however, we have not trained any domain-specific 

models yet. Therefore, our first logical question is, ‘what will be the performance of 

DeepSpeech on our dataset by simple domain adaptation of pre-trained (general purpose) 

models?’; secondly, ‘what type of mistakes do pre-trained models do on a domain-specific 

dataset?’; and thirdly, ‘how does this performance compare with top-of-the-line 

commercial cloud-based SR systems like Google SR?’  

Table 4.1 Preliminary Results: WER and CER of Cloud and Offline SR 

  CER WER 

DeepSpeech 49.38% 46.63% 

Google 20.18% 21.69% 

To answer these questions, all 100 audio clips from our original dataset were transcribed 

using both SR systems/services (DeepSpeech and Google). Table 4.1 presents the error 

rates for both systems. In general, we observed that DeepSpeech, with its pre-trained 

models, made a mistake for almost every two words. 

In comparison with the cloud-based SR (Google), DeepSpeech made relatively 114.98% 

more general mistakes (WER) and 144.69% more critical mistakes (CER). In isolation, 

DeepSpeech made more critical mistakes than general mistakes, whereas Google was 

better in recognizing domain critical vocabulary. These differences highlight the domain 

agnostic behavior of pre-trained models of DeepSpeech.  

Table 4.2 Examples mistakes by DeepSpeech during preliminary experiments. 

Ground Truth DeepSpeech Google 

with the t max of with a tax of with a t maxx of 

ibuprofen age profane ibuprofen 

tracheal palpation trail at a patient I killed a palpation 
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The reason for a large number of critical mistakes by DeepSpeech is that its models are not 

trained on the vocabulary that is deemed critical in our domain. We present some examples 

of critical mistakes done by both systems/services in Table 4.2. From the example, one can 

observe that DeepSpeech returned hypotheses that are most common in generally spoken 

language. For example, ‘t max’ was inferred as ‘tax’, and ‘tracheal’ was conceived as 

‘trail’. This behavior is precisely the same that is within the dataset on which the pre-trained 

language model is trained, i.e., mostly conversational and general speeches. Thus, we 

should investigate techniques to incorporate more domain-specific vocabulary within the 

language model. 

Google was also not able to conceive many, if not most, of the critical concepts either; 

however, we observed that such mistakes were less then DeepSpeech. Most of the time, 

when DeepSpeech made a critical mistake, the audio happens to be valid. For example, in 

the case of ‘tracheal palpation’, Google recognized ‘palpation’ correctly, while giving a 

completely out of context hypothesis for ‘tracheal’, but DeepSpeech did not recognize any 

part of that phrase, which is worse. We verified this specific instance manually and found 

that the distortion in this audio clip is below the average level of noise within our dataset. 

Therefore, for better inferences, there is also a need to explore methods to develop accurate 

acoustic models. 



51 

 

4.4 Acoustic Modeling 

In preliminary experiments, the pre-trained acoustic model was not aware of the acoustic 

environment of the target domain. Therefore, we explored methods to train domain-

relevant acoustic models. In this regard, we outlined two research questions. 1) what will 

be the impact on performance if the pre-trained acoustic model incorporates the acoustic 

environment of our target domain? and 2) how will DeepSpeech perform with a new 

acoustic model that is trained solely on our dataset?  

Our first question sought domain adaptation of the pre-trained model along with an 

enhancement method to incorporate the target domain. There are two methods to do it in a 

machine learning paradigm: transfer learning and fine-tuning. Both of these methods adapt 

an existing model that is learned in a separate domain. These methods require less training 

data from the target domain. In our case, the pre-trained acoustic model has already learned 

from general conversations. Moreover, we do not require any change in the input or output 

classes. Therefore, we considered using the fine-tuning method to incorporate our target 

environment within the pre-trained model. 

The second question requires the development of a new acoustic model using supervised 

learning. DeepSpeech is an end-to-end system that relies on large datasets to generalize; 

therefore, with our dataset of about two and a half hours of audio, we were not able to train 

the model to the point of convergence. Even after training a new model for 500 epochs, we 

did not observe any reduction in the error rates, whereas, in comparison, the pre-trained 

model is only trained for 75 epochs. Hence, we did not pursue this question further. 

4.4.1 Audio Pre-Processing 

Audio clips in our dataset have an average length of 1:30 mins, whereas the pre-trained 

model was trained on the audio files that are of sentence length (4-5 seconds). The length 

of audio has a direct correlation on the memory consumption while training deep speech 

acoustic models. Therefore, we needed to split the audio clips in shorter chunks to keep the 

memory allocation under the affordability of our hardware. 



52 

 

A series of considerations were acknowledged before splitting. Firstly, attention was given 

towards the completion of words in each split. Any cut in between the utterance of a word 

can make it impossible to recognize that splitting word. Secondly, splits were made in a 

way to keep the average length around 5 seconds mark. 

To effectively break audio clips following all considerations, a silence finding process was 

used. The idea is that if a cut is made on silence, that is long enough, then the probability 

of breaking a word will greatly diminish. Audio clips were analyzed to find silences upon 

various threshold values. There are two thresholds that a silence finder process requires: 

max intensity level and duration of silence. Both are defined below. 

1) Maximum Intensity Level: This requires a value for maximum sound intensity level 

below which everything is considered silence.  

2) Duration of silence: This requires a value that denotes time in milliseconds of 

continuous silence to mark it as a valid silence period. Whenever sound intensity 

drops below the above-defined level a true silence does not need to occur. It is quite 

possible that while pronouncing a word, the sound intensity drops below the above-

defined intensity level for a moment; hence this threshold gives an option to select a 

duration of silence period, such that only silences of periods more than specific 

duration will be marked as true silence. 

For each audio clip, the silence finding process was executed with varying threshold levels. 

After each execution, all splits were checked for word completion and the average split 

length. If any of the considerations failed, thresholds were readjusted, and the process was 

re-executed. The whole process was performed manually for each audio clip to ensure that 

speech content preserves even after the splits. 

Once all the audio clips were broken into smaller splits, they were then stored in a folder 

by appending a number from a sequence to their filenames. For Example, the first split of 

‘A001.wav’ was given filename ‘A001-01.wav’. All splits were then copied into a folder 

that was named ‘A001’. After storing all the splits, their corresponding gold standard 
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transcriptions were also modified in such a way that they contain the same number of lines 

as there are splits, where the nth line has the text for the nth split. 

4.4.2 Fine-tuning 

Project DeepSpeech provides checkpoints for its pre-trained deep speech model. 

Checkpoints capture the exact value of all weights and parameters within a model and are 

stored in a directory. The checkpointing directory within the project DeepSpeech contains 

the latest values for which the deep speech model was exported. Therefore, we used the 

provided checkpoints to perform fine-tuning.  

Table 4.3 Hyperparameters used for acoustic model fine-tuning 

Hyperparameter Value 

audio_sample_rate 16000 

train_files Path/to/train.csv 

alphabet_config_path Path/to/alphabet.txt 

export_dir Path/to/export-directory 

checkpoint_dir Path/to/checkpointing-directory 

train_batch_size 5 

n_hidden 2048 

epochs 1 

dropout_rate 0.15 

learning_rate 0.0001 

lm_alpha 0.75 

lm_beta 1.85 

The fine-tuning process is the same as model training in DeepSpeech. While training, if a 

checkpointing directory is defined and the directory contains valid checkpoints, then 

DeepSpeech starts fine-tuning the existing model; otherwise, it creates a new model. In our 

scenario, we downloaded the checkpointing directory and started the training process from 

that directory. Table 4.3 provides a list of hyperparameters that we used. Details about 

these hyperparameters are as follows. 
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1. Training files.  

The parameter train_files expects a path to a comma-separated file (CSV) that contains 

three columns: wav_filename, wav_filesize, and transcript. The column wav_filename 

record paths of the audio files that we want to use for training the model, wav_filesize 

note the sizes of each audio file in bytes, and transcript have the ground truth of each 

audio file that other columns enlist. Each row in the CSV represents one audio clip 

within the dataset. 

2. Alphabet file 

The parameter alphabet_config_path expects a path to a text file that contains a list of 

all distinct characters that are within the ground truth.  

3. Export directory 

The parameter export_dir is used to specify the directory in which we wish to export 

the trained model. If this parameter is not supplied, then the trained model parameters 

will be stored in the checkpointing directory only, without exporting the model for 

inference use. 

4. Batch size 

The parameter train_batch_size is used to set the batch size of training. The pre-trained 

deep speech model was trained on a batch size of 24 clips when there were 12 gigabytes 

of memory available to the developers of the pre-trained model. With one-sixth of that 

memory available to us and while using audio clips of similar lengths (after splits), we 

were facing memory exhaustion errors. Therefore, we explored the batch size 

iteratively by reducing it on each step. We were able to successfully complete the 

training process by using the batch size of 5 audio clips. 

5. Epochs 

For our evaluations, we were interested in analyzing the error rates after each epoch of 

fine-tuning. Therefore, we executed the training one epoch at a time and exported the 
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trained model after each epoch. After each export, the training was resumed from the 

same checkpointing directory. 

6. Other hyperparameters 

Project DeepSpeech reports the hyperparameters that were used to train the pre-trained 

model. All other hyperparameters were kept unchanged in this fine-tuning process. 

After finishing the fine-tuning process, all generated models are evaluated, whose details 

are provided in the next chapter. 
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4.5 Language Modeling 

Language is a combination of words (vocabulary) and speech patterns (grammar). Specific 

domains may have specialized languages; therefore, domain-specific language model plays 

an important role in the domain-robustness of any SR system. Ideally, language models 

require training on vast volumes of domain-relevant data [111]. However, in realistic 

situations, problems arise when there is little or no domain-specific data available [82]. We 

also observed such problems in our preliminary analysis, when we used the pre-trained 

model which is an out-of-domain model for our problem domain. Therefore, we explored 

various methods to develop robust language models that are specific to our target domain. 

The main concern is the insufficiency of domain-relevant training data. In the review, we 

highlight two main techniques to develop domain-specific language models when there are 

data scarcity problems. The first technique seeks domain adaptation of the out-of-domain 

language model while enhancing the adapted model using domain-relevant data and using 

various model combination methods. The second technique, on the other hand, focuses on 

the generation of domain-relevant data. Therefore, in this work, we experimented with 

methods from both techniques. We are also interested to see the recognition performance 

without applying any of these techniques. Hence, we also developed standalone language 

models using only our original dataset. In summary, we worked on three key tasks to 

investigate the impact of language modeling techniques. 

1) Dataset Augmentation with Domain-Relevant Data. 

2) Developing Domain-Specific Language Models  

3) Enhancing Pre-Trained Language Model 

4.5.1 Dataset Augmentation with Domain Relevant Data 

Our dataset includes clinical notes representing narrated cases of patients’ diagnosis and 

treatment, along with rationales and reasons coming from the healthcare provider’s 

perspective. These notes contain domain-specific concepts, for example, diseases, 

diagnoses, and observations. However, with the limited number of notes having 1966 

sentences in total, it is not possible to cover all the concepts within the domain. Therefore, 
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to develop domain-specific and robust language models, it is required to augment our 

dataset with most of the domain-relevant information.  

We reviewed three techniques for data augmentation: extraction, conversion, and 

generation. Extraction and conversion techniques consider that domain-relevant data is 

available somewhere else perhaps in a different format, language or source. These 

considerations are ineffective for sensitive domains like healthcare since such data is 

usually heavily protected and is available with scrutiny and restrictions. Therefore, the only 

logical option left is to use data generation techniques to simulate domain-relevant data.  

Data generation techniques vary for each domain and require domain knowledge. In the 

NLP domain, synonym replacement [112] is a simple technique that is also the most natural 

choice to augment small datasets [113]. In its simplified form, synonym replacement 

generates new textual units by replacing words from its synonyms. Most implementations 

of this technique use thesaurus like WordNet [114] or thesaurus.com [115] to get the list 

of synonyms for replacement. Synonym replacement requires two things for execution: 

which words in the text should be replaced, and which synonyms should be used for the 

replacement [113]. In synonym replacement, words to replace are identified from the 

original dataset, whereas, synonyms are extracted from knowledge sources. Once both: 

words and synonyms; are identified, then each word is permuted with its synonyms to 

generate new variations of text. 

In this work, we generated domain-relevant data based on the synonym replacement 

technique. To apply this technique in our domain, we considered synonyms as those 

medical concepts that belong to the same semantic classes. We used MeSH [107] as the 

knowledge source to extract medical concepts within the healthcare domain. MeSH is a 

thesaurus that lists medical concepts in a tree hierarchy. Previous work has also shown to 

use MeSH with the same technique for the data simplification task [116]. We used 

Metamap [106] to identify medical concepts within our dataset, which is a concept 

recognizer that annotates medical concepts within texts. Our data generation method 

consists of three steps.  



58 

 

• STEP 1: PATTERN EXTRACTION 

Each sentence within our dataset can have multiple medical concepts. We observe that 

most of the time, these concepts semantically depend on each other, and a replacement can 

semantically invalidate the sentence. As an example, in the sentence, “She was prescribed 

a course of cephalexin to treat bacterial infection”, there are three medical concepts: 

“prescribed”, “cephalexin” and “bacterial infection”. The concepts “cephalexin” and 

“bacterial infection” belong to ‘drug’ and ‘disease’ classes respectively and are 

semantically dependent upon each other. A replacement of the ‘disease’ concept “bacterial 

infection” to another ‘disease’ concept “lung cancer” might semantically invalidate the 

sentence. Therefore, we approached for extracting patterns from the sentences, so that a 

replacement does not invalidate the semantics. We define that a pattern within a sentence 

has exactly one medical concept while having maximum neighboring words that are not 

medical concepts. In our given example, patterns are “She was prescribed a course of”, “a 

course of cephalexin to treat” and “to treat bacterial infection”. Since our goal is to generate 

robust language models, we generated patterns with overlaps to maximize the count of 

neighbors around the medical concepts.  

 

Figure 4.1 Steps of Pattern Extraction 

Pattern extraction starts by annotating a sentence using MetaMap by restricting it to use 

MeSH vocabulary. These annotations are upon the concepts within the sentence. The 

number of annotations defines the number of patterns that can be extracted from the 

sentence. Each annotation is then used as the starting point of a new pattern. All the words 
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to the left and right of that annotation that are not part of another annotation are added to 

that pattern. When the sentence boundary or boundary of another annotation is reached, 

then the pattern stops growing and is then added to a global list of patterns. This step is 

repeated with all the annotations to extract all possible patterns from the sentence. Then 

the whole sentence level work is repeated for all sentences in the dataset. Figure 4.1 

illustrates the sentence level pattern extraction along with an example. 

• STEP 2: KNOWLEDGE EXTRACTION 

In this step, we extract synonyms from the knowledge source. MeSH classifies each 

medical concept into 16 root category classes. The concepts within these classes are 

specific to the healthcare domain and are far from the general-purpose conversational 

paradigm upon which the pre-trained models were trained. Even our dataset does not 

account for all concepts from these classes. From preliminary experiments, we observe that 

most of the mistakes are coming from the concepts of ‘disease’ and ‘drug’ classes. 

Therefore, we decide to generate data to cover only these two classes for now. In MeSH, 

‘disease’ concepts are kept under the root node “Diseases[C]” and ‘drug’ concepts under 

the “Chemical and Drugs[D]” node. We traverse all the child nodes under these two nodes 

and extract all the concept terms for each child node.  

 

Figure 4.2 Steps of Knowledge Extraction 
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In MeSH, each medical concept enlists all candidate and qualifier terms, while defining a 

separate list for the preferred terms of that concept. Many of these terms are closely related 

to the concept but are not strictly synonymous with the terms that are in use by the 

physicians. Moreover, root nodes of MeSH include all the concepts that are from all 

domains of medical science, while for this work we are only interested in those concepts 

that are applicable in the pediatric emergency departments. As an example, the “Chemical 

and Drugs[D]” node contains a concept “Propoxur” which is an insecticide. “Propoxur” is 

not related to pediatric care and is not applicable in our case. Therefore, it is required to 

filter out such terms from our extracted lists to ensure that the terms are semantically 

similar to our working domain. To filter the lists, we considered a validation step where 

only those terms are validated and kept that are semantically closer to our dataset, and all 

other terms were dropped.  

To validate the extracted concepts, we passed each concept term to the Metamap and 

examined the detected semantic type. If the semantic type matches those that are already 

existing in our dataset while the semantic type belongs to the same root node from which 

the term is coming, then we consider that term as valid. We collected all the valid terms 

for each of the two semantic classes that we extracted. Figure 4.2 depicts the whole process 

of knowledge extraction. After the extraction and validation of concepts, we get 24,071 

concepts from the ‘disease’ class and 29,935 concepts from the ‘drug’ class. 

• STEP 3: AUGMENTATION 

In this step, we generate simulated data by using patterns and medical concepts extracted 

in previous steps and then augment the simulated data with our original text corpus. Our 

strategy in this step is similar to synonym replacement, with a small change that seeks 

selection of concept list depending upon the class of concept within each pattern. For this 

step, we know that each pattern has exactly one medical concept within it. 
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Figure 4.3 Steps to Generate Augmented Corpus 

For each pattern from the patterns list, we check the class of the medical concept. If the 

concept belongs to the ‘drug’ class, we select the list of drugs for the augmentation. In case 

the concept belongs to the ‘disease’ class, we select the list of diseases. For anything else, 

the pattern does not augment. To augment the pattern with the selected list of concepts, 

each concept within the list is used to replace the existing concept in the pattern to form a 

simulated variation. Each new variation after the replacement is then recorded in the list of 

simulated patterns (Figure 4.3). These simulated patterns are then combined with the 

original text corpus to form an augmented corpus. 

Our data augmentation task enabled us to work with two datasets: original and augmented. 

We use both datasets to evaluate our language modeling methods that we define in later 

tasks. For the evaluations, we require data augmentation on multiple subsets of our original 

dataset. Therefore, we develop a utility program using JAVA to automate the augmentation 

process. Our utility program takes lists of concepts (Drugs and Diseases) and a text dataset, 

and then it outputs the augmented dataset.  

4.5.2 Developing Domain-Specific Language Models 

In this task, we develop language models using only the domain-relevant data. For this 

purpose, we use both datasets: original and augmented. Augmentation is done using the 
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methods presented in the previous task. Language models are created using the KenLM 

toolkit.  

KenLM provides methods to develop n-gram based language models in ARPA [117] 

format. ARPA is a file format to list down all the calculated probabilities within an n-gram 

language model. ARPA formatted models are bulky and not efficient to use for inferences; 

hence, for efficient execution, it is required to convert ARPA models into specific data 

structures [118]. KenLM also provides functions to convert the ARPA formatted models 

into PROBING and TRIE data structure based language models [91]. PROBING data 

structure is faster but uses extensive amounts of memory for inferences. In comparison, the 

TRIE data structure aims to lower memory consumption. As our compute environment has 

a limited stack of memory, we adapt the TRIE data structure to develop our language 

models. Project DeepSpeech also supports TRIE structure by providing a native client to 

convert the TRIE based language models into efficient binaries that aim speedy execution.  

In this task, we use four steps to develop language models. In the first step, we streamline 

the dataset by removing all leading and trailing whitespaces from all the sentences and 

converting them into lower case. In the second step, the streamlined dataset trains an ARPA 

based language model of the 5th order. We use the maximum n-gram order length of 5 

because the pre-trained model from DeepSpeech uses the maximum of 5-grams; therefore, 

we keep the n-gram order similar for valid comparisons. In the third step, the ARPA model 

converts into a TRIE based model. Finally, the TRIE model converts into DeepSpeech 

specific binary using its native client.  

In this task, we develop language models in two strategies. In the first strategy, we directly 

use the original dataset to develop the language models. In the second strategy, we apply 

augmentation methods on our original dataset and then use the augmented dataset to 

develop the language models.  
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4.5.3 Enhancing Pre-Trained Language Model 

In this task, we enhance the pre-trained language model by incorporating information from 

our domain-relevant dataset. There are two main reasons to seek this task for the 

development of robust language models. The first reason is the insufficiency of our 

domain-relevant dataset. We have only 127 kilobytes of text available in the original 

dataset. Although after augmenting, we are able to generate about 2 gigabytes of text; 

however, the pre-trained DeepSpeech model is trained on about 4 gigabytes of text, which 

is still double. Therefore, we hypothesize that developing language models using text from 

both data sources can be a better solution. The second reason is due to the preliminary 

analysis, where DeepSpeech, with its pre-trained language model, made more critical 

mistakes then general mistakes. From the nature of mistakes, we observed that the pre-

trained language model lacks domain-specific vocabulary, evidently due to its training 

upon an out-of-domain data source. Therefore, we consider a reduction in critical errors by 

introducing domain-relevant vocabulary in the pre-trained model.  

Enhancement of the language model entails combining the information from other data 

sources (domains) to the existing language model. Language models can be combined by 

any of two methods: pooling and interpolation. In the pooling method, the corpus of the 

existing language model is pooled with the text from other data sources. The pooled corpus 

then trains an enhanced language model. In the interpolation method, a separate language 

model is trained using the text from each data source. Afterward, all language models; 

existing and newly trained, are merged using weights that are tuned on some validation 

text. This validation text is fetched from the target domain.  

The interpolation method has some variations [119]. The simplest of all is linear 

interpolation, in which all intermediary language models (𝑃𝑖) are combined linearly using 

tuned weights (𝜆𝑖) (Equation 3). These weights are tuned over the validation set such that 

it maximizes the likelihood operator 𝑃(𝑊|𝐻) for the combined model.  



64 

 

Equation 3 

𝑃(𝑊|𝐻) =  ∑ 𝑃𝑖(𝑊|𝐻)𝜆𝑖

𝑖

 

KenLM [91] toolkit uses the log-linear interpolation method, which is a slight variation of 

the linear interpolation method. In the log-linear interpolation method, individual models 

are merged by applying weights as the power and multiplying the powered models 

(Equation 4).  

Equation 4 

𝑃(𝑊|𝐻) =  
1

𝑍𝜆(𝐻)
∏ 𝑃𝑖(𝑊|𝐻)𝜆𝑖

𝑖

 

After merging all the models, to complete the interpolation probability, the product is 

divided by a normalizing term 𝑍𝜆(𝐻) to ensure that the sum of all probabilities over words 

W equals to 1. The normalizing term calculates the product of all words in the vocabulary 

of all language models (Equation 5).  

Equation 5 

𝑍𝜆(𝐻) =  ∑ ∏ 𝑃𝑖(𝑊|𝐻)𝜆𝑖

𝑖𝑊

 

To enhance the pre-trained language model, we experiment with both; pooling and 

interpolation; methods. Similar to the previous task, we adopt strategies to use both 

datasets; original and augmented. In total, we develop language models in four strategies, 

by the combination of methods and datasets. In the first strategy, we use the original dataset 

to enhance the pre-trained language model using the pooling method. In the second 

strategy, the same dataset is used with the interpolation method. The third and fourth 

strategies are similar to the first two, in terms of methods; however, we use augmented 

dataset in these strategies. 
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When we use the pooling method, the source corpus of the pre-trained model is pooled 

with the domain-specific text of our datasets, and then the pooled text trains new language 

models. When we apply the interpolation method, the pre-trained model remains the first 

intermediary model, while we train separate models from our datasets and interpolate all 

intermediaries. All the models developed in this task are trained using the n-gram order of 

5, which denotes the maximum n-gram length in the language model. 

4.5.4 Summary  

In the language modeling phase, we work on three tasks. In the first task, we focus on the 

generation of artificial domain-relevant data using the principles of the synonym 

replacement method. We define a three-step method that expects a text corpus to work on, 

and in turn, it provides an augmented corpus. In the second and third tasks, we provide 

strategies to develop language models by using both datasets; original and augmented. Both 

tasks, in combination, develop six strategies to train language models.  

1) Training a new language model using the original dataset. 

2) Training a new language model using the augmented dataset 

3) Enhancing the pre-trained language model using the original dataset using the pooling 

method. 

4) Enhancing the pre-trained language model using the augmented dataset using the 

pooling method. 

5) Enhancing the pre-trained language model using the original dataset using the 

interpolation method. 

6) Enhancing the pre-trained language model using the augmented dataset using the 

interpolation method. 

All these strategies seek the development of n-gram based language models that are of 5th 

order.  
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4.6 Discussion 

We consider our solution to be replicable in other domains where noise and domain 

robustness is required, and there is insufficient relevant data available. In the acoustic 

modeling method, we approached to fine-tune a general-purpose model. As this model is 

generic, the same method can be applied in any other domain. However, to replicate our 

language modeling methods, particularly the data augmentation, one will need to look for 

the domain-specific knowledge sources and concept detection tools for the successful 

adaptation of these techniques.  

4.7 Conclusion 

In this chapter, we present our explored techniques and developed methods to train robust 

and domain-specific models. Our methods focused on those acoustically distorted and 

sensitive scenarios where there is a shortage of domain-relevant data. We first did the 

preliminary analysis using pre-trained models of DeepSpeech. We then developed acoustic 

modeling and language modeling methods by taking insights from the analysis. The 

acoustic modeling method sought domain adaptation of the pre-built model along with a 

fine-tuning operation using our dataset. On the other hand, language modeling focus on the 

generation of domain-relevant data. It worked on a three-step method to generate an 

augmented dataset, and then it developed six strategies to develop robust language models.  
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Chapter 5. SPEECH RECOGNITION – EVALUATIONS 

5.1 Introduction 

This chapter provides a detailed evaluation of the methods that we presented in the previous 

chapter. Evaluations were done in 2 phases. Figure 5.1 shows the flow of the experiments 

that we executed for our evaluations. 

 

Figure 5.1 Flow of experiments 

5.2 Setup  

5.2.1 Evaluation Phases 

Our solution defines methods to enhance both, acoustic and language models within the 

speech recognition system, therefore our evaluation strategy consisted of two phases.  

1) In the first phase, methods pertaining to each model were evaluated in isolation. 

When evaluating the acoustic modeling method (in Section 0), we used the pre-

trained language model for the experiments. Similarly, when evaluating language 

modeling methods (in Section 5.4), we used the pre-trained acoustic model. For the 

evaluations in this phase, we did experiments with both, training and testing data to 



68 

 

analyze the performance when models have seen everything as compared to unseen 

environments. We did not use the testing results to tweak the models, therefore we 

did not use any separate validation set to test the models in this phase. 

2) In the second phase, we evaluated both models in combination. The best performing 

models from the first phase were selected to perform evaluations in combination. 

We did not evaluate low performing methods in this phase, particularly due to the 

fact that the first step of evaluation already gave us such insights. Finally, in this 

phase, we used our validation set to present the final validation of our trained 

models.  

5.2.2 Cross-Validation 

We used 10-fold cross-validation throughout the evaluations. Since we used the same 

dataset to train both: acoustic and language: models, a conventional method of cross-

validation where the dataset shuffles and split into folds each time before conducting an 

experiment can cause problems; specifically in the second phase of evaluations where we 

intend to use trained models in combinations. Due to the limited dataset, we also cannot 

afford to set aside a testing dataset. Therefore, to ensure reliable and valid evaluations, we 

performed the shuffling and splitting task once, and recorded all the folds. Afterward, we 

supplied the same folds whenever an experiment used cross-validation.  

5.2.3 Interpretation of Results 

In the evaluations, we analyze the impact of our methods by examining the difference in 

performance and comparing it to baselines. As speech recognition systems are primarily 

evaluated on error rates, we will be considering Word Error Rate (WER) along with our 

custom metric Critical Error Rate (CER) to measure the performance where a lower error 

rate means better performance. However, all the crucial decisions are made on the basis of 

CER. There are two ways to examine the difference in performance. One way is to examine 

the absolute change in error rates, while the other is to check the relative change with 

respect to the error rate of baseline. In our evaluations, we have considered both ways to 

examine our results, however, attention is given to the relative performance differences. 



69 

 

5.3 Evaluating Acoustic Modeling 

This section provides an evaluation of our acoustic modeling method. In this method, we 

fine-tuned the pre-trained acoustic model with our dataset. Fine-tuning was done till 8 

epochs. We stopped at the 8th epoch due to the continuous increase in testing error rates. 

Cross-validation was used to calculate testing error rates. For each of the 10 folds, the pre-

trained model was separately fine-tuned, and the error rates from all folds were averaged. 

This process was repeated at each epoch. Error rates for training cases were calculated 

directly by using the whole dataset for fine-tuning and using the same data to calculate 

errors. Figure 5.2 shows the trend of errors on each epoch (horizontal axis) for both error 

rates (vertical axis) and Table 5.1 lists down the values of error rates 

 

Figure 5.2 Error loss in Acoustic Model training 
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Table 5.1 Training and testing error rates for Acoustic Model training 

  

CER WER 

Training CV Testing  Training  CV Testing  

n
th

 E
p

o
ch

 

1 27.59% 38.09% 26.84% 36.94% 

2 19.62% 32.31% 19.43% 32.04% 

3 16.47% 29.57% 16.56% 29.77% 

4 13.06% 27.42% 13.53% 27.83% 

5 12.57% 27.45% 12.94% 28.11% 

6 10.84% 27.22% 11.47% 28.01% 

7 9.25% 28.17% 9.84% 28.86% 

8 9.37% 28.35% 9.75% 29.28% 

5.3.1 Analysis 

Analysis of error rates in comparison with the number of epochs showed that the model 

reached a local minima on our dataset on around 4th to 6th epochs. Our analysis of the error 

rates shows that the 6th epoch is the most efficient (CER: 27.22%) on the basis of CER, 

while the 4th epoch is the most efficient (WER: 27.83%) on the basis of WER. With the 

fine-tuning method, we were able to achieve 22.16% absolute and 44.88% relative 

reduction in CER and 18.8% absolute and 40.32% relative reduction in WER (Table 5.2). 

As the performance comparison was very close (error difference within a range of 0.2%), 

models from the 4th to 6th epoch were selected for further evaluations of the second phase. 

Table 5.2 Absolute and relative change in error rates after acoustic modeling 

 CER WER 

Pre-trained AM 49.38% 46.63% 

Pre-trained AM + fine-tuning 27.22% 27.83% 

└ Absolute change -22.16% -18.80% 

└ Relative change -44.88% -40.32% 
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5.4 Evaluating Language Modeling Methods 

This section provides an evaluation of our language modeling methods. We provided six 

strategies to train domain-relevant language models for improved recognition. In our 

evaluations, we combined all those strategies to develop 8 evaluation scenarios that cover 

all methods. Table 5.3 provides the details of each evaluation scenario.  

Table 5.3 List of scenarios for Language Model evaluations 

S. 

No. 
Evaluation Scenario Strategy Details 

1 Pre-trained LM 
Baseline: Performance from the preliminary 

experiment is considered. 

2 No LM No LM is used in this scenario. 

3 
New LM  

+ Original in-domain corpus 

New LM is trained using the text corpus from 

the original in-domain dataset. 

4 
New LM  

+ Augmented in-domain corpus 

New LM is trained using the text corpus from 

the augmented in-domain dataset. 

5 

Pre-trained LM  

+ Original in-domain corpus  

+ Pooling Method 

Pre-trained LM is enhanced using the text 

corpus from the original in-domain dataset 

using the pooling method. 

6 

Pre-trained LM  

+ Original in-domain corpus  

+ Interpolation Method 

Pre-trained LM is enhanced using the text 

corpus from the original in-domain dataset 

using the interpolation method. 

7 

Pre-trained LM  

+ Augmented in-domain corpus 

+ Pooling Method 

Pre-trained LM is enhanced using the text 

corpus from the augmented in-domain dataset 

using the pooling method. 

8 

Pre-trained LM  

+ Augmented in-domain corpus 

+ Interpolation Method 

Pre-trained LM is enhanced using the text 

corpus from the augmented in-domain dataset 

using an interpolation method. 
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Scenario 1 was developed to provide a baseline for this evaluation; therefore, we did not 

run any experiments in this scenario; instead, the results from preliminary experiments 

were considered. Scenario 2 was developed to test the performance of DeepSpeech without 

the use of any language model, as it is not a required component in speech recognition. For 

the experiments within this scenario, all audio clips from our original dataset were used to 

calculate error rates. In all other scenarios, language models were trained and tested using 

training and testing datasets. While evaluating the training error rates, language models 

were trained using the whole text corpus from the original dataset and all audio clips from 

the same dataset were used to test those models. While evaluating testing error rates, we 

used 10-fold cross-validation. 

5.4.1 Analysis 

The analysis of our results shows that DeepSpeech did mistakes for more than half the time 

in scenario 2 when no language model was used. Upon comparing the error rates with 

baseline, one can see that the average CER increased around 8% and WER increased 

around 10% when DeepSpeech did not use any language model. This provides evidence of 

the importance of language models in the process of speech recognition. Moreover, when 

such language models were used that has already seen the testing data while training, the 

recognition performance matched the top of the line cloud-based SR (Google). This is not 

a valid comparison to build a conclusion; nevertheless, it highlights the ability of language 

models to significantly boost the recognition performance. Table 5.4 shows the error rates 

for all scenarios when the training dataset was used to test the models that were trained 

using the corpus from the same dataset. The table also shows error rates from the first 2 

scenarios to provide a comparison, even though no language model was trained in those 

scenarios. 
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Table 5.4 Training error rates from each evaluation scenario 

 

Table 5.5 Cross-validated error rates from each evaluation scenario 
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Cross-validated experiments show that all our methods improved DeepSpeech 

performance since we observe lower error rates as compared to the baseline in each 

experimented scenario. We note a maximum absolute reduction of 4.81% WER and 9.9% 

CER in our experiments, which translates into a 10.31% relative reduction in WER and 

20.04% CER. Table 5.5 presents a bar chart plot and values of error rates in each scenario, 

while Table 5.6 lists the absolute and relative differences as compared to the baseline. 

Table 5.6 Absolute and relative change in error rates compared to baseline 

Evaluation 

Scenario 

Critical 

Error 

Rate 

Absolute 

Difference 

(CER) 

Relative 

Difference 

(CER) 

Word 

Error 

Rate 

Absolute 

Difference 

(WER) 

Relative 

Difference 

(WER) 

Baseline  

Pre-Trained LM 
49.38% 0.00% 0.00% 46.63% 0.00% 0.00% 

New LM  

+ Original corpus 
39.49% -9.9% -20.04% 41.82% -4.81% -10.31% 

New LM  

+ Augmented corpus 
45.05% -4.33% -8.77% 43.10% -3.53% -7.57% 

Pre-trained LM  

+ Original corpus  

+ Pooled 

47.12% -2.26% -4.59% 45.03% -1.6% -3.43% 

Pre-trained LM  

+ Original corpus  

+ Interpolated 

42.40% -6.98% -14.13% 43.28% -3.35% -7.18% 

Pre-trained LM  

+ Augmented corpus  

+ Pooled 

47.04% -2.35% -4.75% 44.56% -2.07% -4.43% 

Pre-trained LM  

+ Augmented corpus  

+ Interpolated 

44.02% -5.36% -10.86% 42.76% -3.87% -8.29% 
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As we presented multiple methods that are applied in combination with each evaluation 

scenario, we were interested in analyzing the impact of each individual method on the 

performance of DeepSpeech. Therefore, we defined four independent variables based on 

our methods, whose values represent results from each experimented scenario. Table 5.7 

lists all variables and their values along with the scenarios that are represented by each 

value combination. We assigned the value 1 to denote a True or ‘Yes’, meaning that the 

respective variable was applied to the scenario, whereas, the value 0 denotes False or ‘No’. 

Table 5.7 Variables to analyze each experimented method 

Variables → 
Augmentation 

of Original 
corpus 

Development 
of in-domain 

LM 

Enhancement 
of Pre-Trained 

LM using 
Pooling 

Enhancement 
of Pre-Trained 

LM using 
Interpolation 

Evaluation Scenario ↓ 

3 0 1 0 0 

4 1 1 0 0 

5 0 0 1 0 

6 0 0 0 1 

7 1 0 1 0 

8 1 0 0 1 

Based on these variables, we analyzed the contribution of each method in improving the 

performance of DeepSpeech. For this analysis, we applied linear regression where the null 

hypothesis is that there is no change in performance within the different experimented 

scenarios. Our analysis used only three of these variables since we had to drop the use of 

variable “Development of in-domain LM” due to its direct correlation with other 

enhancement variables (“Enhancement of Pre-Trained LM using Pooling” and 

“Enhancement of Pre-Trained LM using Interpolation”). In scenarios 3 and 4, we 

experimented with the methods that are based on the dropped variable; however, values 

from other variables are still able to represent these scenarios (False for both of 

enhancement variables translates into a True for dropped variable). We applied regression 

analysis on both error rates individually by keeping them as the dependent variables. Figure 

5.3 shows the results summary of regression analysis when WER is taken as the predicted 

variable. Figure 5.4 shows the results summary of regression analysis for CER. In total 6 
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scenarios were compared each having 100 observations, therefore the summaries have 

shown 600 observation count. 

 

Figure 5.3 Result summary of regression analysis using WER 

 

Figure 5.4 Result summary of regression analysis using CER 

The ANOVA results from regression analyses reject the null hypothesis when CER is taken 

as the performance factor, which provides the domain-specific error rate. Due to the 

importance of critical errors, we argue that some of our methods have a significant impact 

on the performance of recognition than others, even when there does not seem to have a 

significant difference in general word errors. However, in these analyses, we were not able 

to support any single method in providing a significant contribution to error reduction. 

Therefore, we investigated more on our results to see the combined effects of our methods.  
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We firstly analyzed the results of those scenarios that applied the augmentation method to 

compare with those scenarios that used original datasets. We observe that the augmentation 

method increased error rates as compared to those language models that were created only 

with our original dataset corpus. However, in those scenarios where we were enhancing 

the pre-trained language model, the augmentation method did show some reduction in error 

rates. We noted a maximum of 1.19% relative reduction in WER and 0.18% relative 

reduction in CER; however, these reductions are not reliable, as we also observe substantial 

increase (3.81% relative) in critical errors when enhancement is done using an interpolation 

method. Table 5.8 mentions absolute and relative differences between all scenarios using 

original and augmented datasets. 

Table 5.8 Comparing error rates between original and augmented corpus 

  

CER WER 

New 

LM 

Pre-

Trained 

LM  

+Pooling 

Pre-Trained 

LM 

+Interpolation 

New 

LM 

Pre-

Trained 

LM + 

Pooling 

Pre-Trained 

LM  

+Interpolation 

Original corpus 39.49% 47.12% 42.40% 41.82% 45.03% 43.28% 

Augmented corpus 45.05% 47.04% 44.02% 43.10% 44.56% 42.76% 

└Absolute Diff. 5.57% -0.08% 1.62% 1.28% -0.47% -0.52% 

└Relative Diff. 14.10% -0.18% 3.81% 3.05% -1.03% -1.19% 

Secondly, we analyzed all those scenarios which train new language models to compare 

with those scenarios that enhance the pre-trained model using the pooling method as well 

as those using the interpolation method. We note that enhancement, in general, is not 

effective in reducing error rates; however when interpolation is used to enhance the pre-

trained model, we observed 2.29% relative reduction of CER and 0.78% of WER using the 

augmented corpus. From all other scenarios, a new language model using only the original 

(un-augmented) corpus gave us the lowest error rates. Table 5.9 and Table 5.10 lists the 

absolute and relative differences in error rates when using pooling and interpolation 

methods in comparison to the new domain-specific language modeling method.  
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Table 5.9 Comparing error rates between new and enhanced pooled model 

  

CER WER 

Using 

Original 

Corpus 

Using 

Augmented 

Corpus 

Using 

Original 

Corpus 

Using 

Augmented 

Corpus 

New LM 39.49% 45.05% 41.82% 43.10% 

└Enhanced LM using Pooling 47.12% 47.04% 45.03% 44.56% 

   └Absolute Difference 7.63% 1.98% 3.21% 1.46% 

   └Relative Difference 19.33% 4.40% 7.67% 3.40% 

Table 5.10 Comparing error rates between new and enhanced interpolated model 

  

CER WER 

Using 

Original 

Corpus 

Using 

Augmented 

Corpus 

Using 

Original 

Corpus 

Using 

Augmented 

Corpus 

New LM 39.49% 45.05% 41.82% 43.10% 

└Enhanced LM using Interpolation 42.40% 44.02% 43.28% 42.76% 

   └Absolute Difference 2.92% -1.03% 1.46% -0.33% 

   └Relative Difference 7.39% -2.29% 3.48% -0.78% 

To sum up our analysis, we observe three key performance behaviors of our methods. 1) 

The pooling method to enhance the pre-trained model has the least impact on the reduction 

of error rates. 2) The application of the augmentation method on our original dataset, 

however, did enhance the impact of the pooling method, yet it was not able to surpass the 

standalone impact of the interpolation method. 3) Nevertheless, the development of simple 

domain-specific language models has the highest impact, although, enhancement of the 

pre-trained model seems a more logical option as it provides an opportunity to generate 

models that are trained on a larger set of information. 

To understand these behaviors, we analyzed the construction of the clinical notes from our 

dataset i.e., our target domain. In the notes, we observe many patterns that were recurring 
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in almost the whole dataset. An instance that we observe that usually occur in the start of 

every note is, “This is a <age> <weeks/month/year> old <white/black/other ethnicity> 

<male/female> …”. Some examples that follow this pattern are; “This is a 2 months old 

white male …”, “This is a 4-year-old black female ...”. Due to many of such patterns that 

physicians mostly follow while dictating notes, a language model needs to learn them in 

order to perform efficient recognition. If there happens to be a glitchy output from the 

acoustic side, a language model will only be able to refine that output if it is already aware 

of such patterns. The main purpose of language model training is, in fact, to pick the 

recurring patterns from the training set. Therefore, when we talk about the pre-trained 

model, it implies that this model has already identified patterns from the datasets on which 

it was trained. Hence, when we try to enhance the pre-trained model, we try to teach it 

some new patterns. The pre-trained model was trained on about 4 gigabytes of text, 

whereas the text from our original dataset all combined is not more than 150 kilobytes. 

Therefore, we consider that our smaller text corpus was not able to make a significant 

impact while enhancing the pre-trained model due to the smaller size. The property of the 

pooling method to give equal weight to all data sources also supports this idea. This also 

explains the increased impact of error reduction by the use of the augmentation dataset, as 

it increases the size of the domain-relevant text corpus.  

After analysis, we selected language models from all scenarios for the second phase 

experiments, except those scenarios that implement the pooling method. We dropped the 

pooling method for further evaluations due to two main reasons. Firstly, it has shown the 

least performance gains, as we have mentioned above. Secondly, pooling is one of the two 

model enhancement methods that we experimented with; therefore, we only wanted to 

continue with one best method of enhancement.  
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5.5 Combined Evaluation 

In this section, we provide our second phase of evaluation. In this phase, no new model 

was trained, instead, the best performing models; that we selected from previous 

evaluations; were analyzed further. We selected multiples of both: acoustic and language; 

models and tested all their combinations on our original dataset using the same cross-

validation folds upon which the models were trained. Table 5.11 lists the error rates for all 

tested combinations in this evaluation phase.  

Table 5.11 Error rates after testing with combined models. 

 CER WER 

Acoustic Model → 
4th Epoch 5th Epoch 6th Epoch 4th Epoch 5th Epoch 6th Epoch 

Language Model ↓ 

Pre-trained LM 

+ Original Corpus 

+ Interpolated 

26.55% 26.04% 25.51% 28.30% 28.12% 27.90% 

Pre-trained LM 

+ Augmented Corpus 

+ Interpolated 

25.73% 25.89% 25.17% 26.97% 27.41% 26.95% 

New LM 

+ Original Corpus 
24.03% 24.28% 24.05% 27.18% 27.51% 27.35% 

New LM 

+ Augmented Corpus 
26.65% 26.10% 25.74% 27.13% 27.49% 27.23% 

5.5.1 Analysis 

The combined evaluation showed that we achieved the lowest word error rate (WER: 

26.95%) from the combination of the acoustic model of the 6th epoch and the pre-trained 

language model that is enhanced using augmented corpus. However, this model 

combination was slightly behind with respect to critical error rates. The lowest critical error 

rate (CER: 24.03%) was achieved by the 4th epoch acoustic model in combination with a 

new language model that was trained using only the original dataset.  

The analysis of results shows that the language modeling methods of dataset augmentation 

and model interpolation works best in combination to reduce general error rates. In terms 
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of WER, the augmented interpolated language models performed better than standalone 

augmented and standalone interpolated models and were also the overall best performing 

models.  

 

Table 5.12 Performance comparison of DeepSpeech (before and after) with Google 

When analyzing critical errors, we found that the 4th epoch acoustic model did less critical 

mistakes when combined with new language models, and the 6th epoch acoustic models 

did less critical mistakes with interpolated language models. However, the lowest critical 

error rate was achieved by newly trained language models on the original dataset. The 

augmented interpolated language models were the second-lowest with about 4.7% relative 

difference.  
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In the end, we found that all of our acoustic and language modeling methods, in 

combination, were able to significantly improve the performance of DeepSpeech by 

reducing error rates from 46.63% to 26.95% WER and from 49.38% to 25.17% CER. This 

reduction relatively translates into a 42.2% reduction in WER and 49.02% in CER. This 

improvement enables DeepSpeech to deliver performance that is relatively close to the 

performance of top-of-the-line cloud-based SR (Google). Table 5.12 shows the error rates 

of Google, DeepSpech before applying our methods and DeepSpeech after applying our 

acoustic and language modeling methods.  

5.6 Working Examples  

In this section, we have provided examples of critical and word errors within the 

transcribed notes that we observed with the best performing model combinations. In this 

section, we present a best-case examining transcribed note with the least critical errors, a 

worst-case examining a note with the most critical errors and two random cases. The two 

model combinations that we are examining are 1) 4th epoch acoustic model and new 

language model with the original corpus, and 2) 6th epoch acoustic model and enhanced 

pre-trained language model with the augmented corpus. 

5.6.1 Best Case 

In all our 100 notes, the best-transcribed note achieved a CER as low as 6.25% with the 1st 

model combination where it made only 5 critical mistakes out of 80 total critical concepts. 

With the 2nd model combination, it achieved 7.5% CER and made 6 critical mistakes. The 

quality of the corresponding speech in the audio note is found to be clear without any 

background noise. The dictation is at a normal pace and it appears to be recorded in a closed 

room with a relaxed environment. Almost all critical mistakes, in this case, were found to 

be homonyms. For example, “enterovirus” was mistaken as “ether is” and “two older” as 

“told or”. Table 5.13 lists transcriptions from both model combinations. All the highlighted 

and bold words and phrases are the errors. The yellow highlights are general word errors, 

while green highlighted and underlined are critical errors. 
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Table 5.13 Errors in the best transcribed note 

Ground Truth AM: 4th Epoch 
LM: New LM + Original 
Corpus 
 

AM: 6th Epoch  
LM: Pre-trained LM + 
Augmented Corpus + 
Interpolation 

excerpt seven  excerpt seven  excerpt seven  

past medical history past medical history past medical history 

on birth history BLANK was 
full term  

on birth history BLANK was 
full term  

on birth history BLANK was 
full term  

she had a previous 
admission for bronchiolitis 
to the p m u and this was 
for a r s v positive 
bronchiolitis on BLANK 

she had a previous 
admission for bronchiolitis 
to the p m u and this was 
for an r s v positive 
bronchiolitis on BLANK 

she had a previous 
admission for bronchiolitis 
to the p m u and this was 
for an r s v positive 
bronchiolitis on BLANK 

she has been followed for 
peripheral pulmonary 
artery stenosis by 
cardiology  

she has been followed per 
four peripheral pulmonary 
artery stenosis by 
cardiology 

she has been followed for 
peripheral pulmonary 
artery talusin cardiology 

she has also had most 
recently bronchiolitis with 
human rhinovirus 
enterovirus on BLANK 

she has also had most 
recently bronchiolitis with 
human rhinovirus 
enterovirus on BLANK 

she has also had most 
recently bronchiolitis with 
human rhinovirus ether is 
on BLANK 

this required a short 
admission to i c u for high 
flow 

is required a short 
emission to i c u for high 
flow 

is required a short 
admission to i c u for high 
flow 

medications vitamin d four 
hundred international 
units once daily 

medications vitamin d for 
hundred international units 
once daily 

medications vitamin d for a 
hundred international units 
once daily 

allergies no known drug 
allergies immunizations up 
to date 

allergies no known drug 
allergies immunizations up 
to date 

allergies no known drug 
allergies immunizations up 
to date 

family history BLANK so it is 
unclear of her family 
history 

family history BLANK so as 
on clear of her family 
history 

family history BLANK so 
desone clear of her family 
history 

social history BLANK lives 
with mom and two older 
siblings BLANK and BLANK 
years old BLANK 

social history BLANK less 
with mom and told or 
siblings BLANK and BLANK 
years old old BLANK 

social history BLANK lysis 
with mom and told or 
siblings BLANK and BLANK 
years old BLANK 

several family members 
had been recently 

several family members 
have been recently 

several family members 
have been recently 
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5.6.2 Worst Case 

In our results, the worst transcription achieved the CER of 59.6% with 2nd model 

combination and 54.8% CER with 1st model combination. We observed that the quality of 

the corresponding audio note is significantly lower than other notes. We note high echo 

and reverberation in the audio while appearing that the speaker is away from the recording 

device. This audio note was also filled with a high amount of background noise, especially 

the overlapping noise that is corrupting the speech signals. We hear loud baby cries and 

parents trying to soothe the baby in the background by talking and playing with the baby. 

These interruptions reflect on the mistakes. For example, in one place “abdominal pain” is 

mistaken as “a dona panadol”. This transcription is not a homonym for its gold standard. 

Another similar example is when “upper respiratory tract infection” transcribes into “offer 

reichstein”. These examples show that due to overlapping noise, a lot of speech signal is 

lost, resulting in a sloppy transcription. Table 5.14 presents the comparison of 

transcriptions for both model combinations. Green highlights show critical mistakes. 

Table 5.14 Errors in the worst transcribed note 

Ground Truth AM: 4th Epoch 
LM: New LM + Original 
Corpus 
 

AM: 6th Epoch  
LM: Pre-trained LM + 
Augmented Corpus + 
Interpolation 

this is a four year almost 

five year old female with 

trisomy twenty one 

he is a four year always 

five year old female at ten 

twenty one 

he is a four year as five 

year old female as try 

twenty one 

presenting with two to 

three week history of upper 

respiratory tract infection 

that has lingered 

awakening with a cough 

and having the cough 

during the day and 

sometimes at night 

is an in a to the three 

weeks history as offer 

rather infection of lines 

waiting with her cough 

and having (the) cough 

during the day and some 

time at night 

is anion so to three weeks 

history as offer reichstein 

of linear waiting with call 

and having (the) cough 

during the day had some 

time (at) tight 

ventolin of no benefit 

recently 

that on no better we that on no batel rashes 

she has had no fevers with 

this 

she (has) had no fevers 

with this 

(she has) at no fevers with 

this 
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possible headache no other 

pain 

four headache nor her 

pain 

four endantadine 

she has had abdominal 

pain and vomiting a week 

ago that resolved over 

about a day and resulted in 

multiple episodes of 

vomiting 

she has had a do paid 

(and) vomiting a week no 

that resolved over about a 

vein (and) result is well 

colitis following 

she has had a dona 

panadol in a week no the 

resolved over about ada in 

result as well colicines 

following 

she has been on p o 

steroids for the last five 

days as per the parents 

usual approach to acute 

asthma 

she says on p o per i for 

(the last) five days her the 

parents usual got his used 

for as no 

she see n p o ser for (the 

last) five days her the 

parents usual proctocele 

for as mopeg 

paragraph past medical 

history immunizations are 

up to date 

paragraph past medical 

history immunizations are 

(up to) date 

ph past medical history 

immunizations (are) up to 

date 

she has had a tetralogy of 

fallot repaired trisomy 

twenty one and she is on 

valproic acid and 

clobazam for seizure 

disorder which is quiescent 

for the last two years 

ten had also or care 

trisomy twenty one and she 

(is) on a for acid episode 

for (seizure disorder) 

which is a two years 

on fenoterol some or 

paired trisomy twenty one 

and she (is) on dolo acidic 

anorectics two years 

on exam no respiratory 

stress normal air entry 

with no wheeze airway 

breathing and circulation 

stable 

on exam no respiratory 

stress normal artery with 

no wheezer we breathing 

in certain stable 

on exam no respiratory 

stress normal reentry with 

no leader we breathing and 

circulation stable 

pink soft belly normal left 

ear normal right ear 

pain saw a day normal as 

ear nor rays 

pain sagatal normal last 

ear nor river 

snotty nose but not 

dramatically swollen 

tonsils, slightly red, no pus. 

not dramatically acute 

not of note a iron in last or 

or to widened no refused 

to one week ago i saw so 

so i group is probably a 

mild mild being a certain 

in wide per were more 

operation the in are work 

but i do an a b released 

nodose but no oestro 

intraorbital red neural 

perforin was miosis so so 

iridoids probably mild 

iletin ceresan viper werner 

osteoid an a b q resin 
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5.6.3 Random Cases 

We chose two random notes, in between the above-presented best and worst cases, to 

analyze the mistakes. Upon examining the corresponding audio recordings, we found that 

the noise levels remained between the above-defined two example cases. There were no 

overlapping noises, however, we could listen to some reverberation. On a few occasions, 

the physician’s dictation pace increased dramatically, which directly increased mistakes in 

transcriptions. On one of such occasions, the phrase “feet swept out from underneath him” 

was mistaken as “feet slept out from under eat him”.  

The first random note we examined achieved 11.66% CER with the 1st model combination 

and 14.4% CER with 2nd model combination. Table 5.15 mentions the transcription we 

received with both model combinations. 

Table 5.15 Errors in the first examined note transcription 

Ground Truth AM: 4th Epoch 
LM: New LM + Original 
Corpus 
 

AM: 6th Epoch  
LM: Pre-trained LM + 
Augmented Corpus + 
Interpolation 

this is an eighteen month 
old black female  

this is a ten month old 
black female  

this is a ten month old 
black female  

presenting with a seizure 
like episode at home  

presenting with a seizure 
like episode at home  

presenting with a seizure 
like episode at home  

child was perfectly well 
until three days ago when 
sniffles and cough became 
apparent  

child was perfectly well 
until three days ago when 
sniffles and cough became 
apparent  

child was perfectly well 
until three days ago when 
sniffles and cough became 
apparent  

last evening at about 
eighteen hundred hours 
the child experienced a 
mild fever of thirty eight 
point five  

last evening (at) about 
eighteen hundred hours 
the child experience on 
mild (of) fever thirty eight 
point five  

last evening (at) about 
eighteen hundred hours 
the child experience a mild 
fever (of) thirty eight point 
five  

this morning on rousing 
her from her bed and she 
stiffened exhibited five to 
fifteen seconds of shaking 
movements suggestive of 

this morning on rising her 
for her bed if she stiffened 
excited five to fifteen 
seconds of of shaking 
movement suggestive of 

this morning on the rising 
her for her bed if she 
stiffened excited five to 
fifteen seconds of of 
shaking movement 
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tonic clonic seizure and 
then settled into a deep 
sleep from which she 
roused fifteen minutes 
later  

tonic clonic seizure and in 
settled into a deep sleep 
for which she was fifteen 
minutes later  

suggestive of tonic clonic 
seizure and intensain to a 
deep sleep for which she 
resistin in the later  

by the time she arrived at 
the i w k emergency she 
was awake and alert and 
cranky  

in time she wrist the i w k 
emergency is she was 
awake and alert and 
cranky  

date she arrived at the i w 
k emergency i she was 
awake and alert and 
cranky  

parents have never seen 
similar seizure activity 
before 

parents have never seen 
similar seizure activity 
before  

parents have never seen 
similar seizure activity 
before  

past medical history 
reveals immunizations up 
to date and normal birth 
and pregnancy history with 
no specialist and no 
regular medications and 
no known allergies 

past medical history 
revealed immunizations up 
to date a normal birth and 
pregnancy history with no 
specialists and no regular 
medications and no known 
allergies  

past medical history 
reveals immunizations up 
to date a normal birth and 
pregnancy history with no 
specialist and no regular 
medications and no known 
allergies  

family history reveals 
febrile seizures in dad as a 
child  

family history reveals 
febrile seizures in dad as a 
child  

family history reveals 
febrile seizures in dead as 
a child  

physical exam revealed a 
cranky child who settled 
with care  

physical exam revealed a 
cranky child who settled 
with care  

physical exam revealed a 
cranky child who settled 
with care  

ear nose and throat exam 
revealed a red throat with 
no exudate suggestive of a 
viral pharyngitis  

ear nose and throat exam 
revealed a red throat with 
no x date suggestive of a 
viral pharyngitis  

ear nose and throat exam 
revealed a red throat with 
no exo date suggestive of 
a viral paris  

ears were normal lungs 
were clear  

ears were normal lungs 
were clear  

ears were normal lungs 
were clear  

cardiac exam was 
unremarkable  

cardiac exam was 
unremarkable  

cardiac exam was 
unremarkable  

abdominal exam was 
normal  

abdominal exam was 
normal  

abdominal exam was 
normal  

neurological exam 
revealed a child who 
following ibuprofen was 
playful and interactive and 
no focal finding on 

neurological exam 
revealed a child who 
following ibuprofen was 
playful and interim and no 
focal findings on 

neurological exam 
revealed a child who 
following ibuprofen was 
playful and interacting and 
no focal findings under 
local exam is cover  
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neurological exam was 
discovered 

neurological exam is 
descend  

new paragraph impression 
is that this is simple febrile 
seizure  

new paragraph impression 
is that this is simple febrile 
seizure  

new paragraph impression 
is that this is simple febrile 
seizure  

parents were counseled 
and reassured  

parents were counseled 
and reassured  

parents were counseled 
and reassured  

instructions were given 
with regards to the 
delivery of ibuprofen as 
needed for pain and fever 
but the parents were 
cautioned that this would 
not reduce the risk of 
further seizures. 

instructions were given 
with regards to the 
delivery of ibuprofen as 
needed for pain and fever 
by the parents were cousin 
that this would not 
reduced the risk of for 
other seizures  

instructions were given 
with regards to the 
delivery of i do provided 
for pain and fever but the 
parents were cation that 
this would not reduced the 
rose of further seizures  

we stated the seizure risk 
at about one or two 
percent over the rest of 
this illness  

we stayed the seizures 
(risk) at about one or two 
percent over the rest of the 
illness  

we state the seizure risk at 
about one or two percent 
over the rest of the sinus  

but cautioned them that 
further febrile seizures 
were likely between now 
and six years of age  

but out on them that 
further febrile i sure were 
likely between now and six 
years of age  

but cation them that 
further febrile tissue 
(were) likely between no 
and six years of age  

her parents were advised 
to return to the emergency 
department with further 
seizures for further 
assessment 

a parents were advised to 
return to the emergency 
department with rather 
seizures refer her 
assessment  

a parents were advised to 
return to the emergency 
department with further 
seizures refer assessment  

diagnosis viral upper 
respiratory tract infection 
with febrile seizure 

diagnosis for upper 
respiratory tract infection 
with febrile seizures 

diagnosis boro upper parry 
tract infection with febrile 
seizure 
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The second random note we examined achieved 22.41% CER with the 1st model 

combination and 24.13% CER with 2nd model combination. Table 5.16 shows the 

transcription of the second random note we examined.  

Table 5.16 Errors in the second examined note transcription 

Ground Truth AM: 4th Epoch 
LM: New LM + Original 
Corpus 
 

AM: 6th Epoch  
LM: Pre-trained LM + 
Augmented Corpus + 
Interpolation 

excerpt thirty one excerpt thirty one  excerpt thirty one  

medications at admission medications at admission  medications at admission  

two hundred and fifty 

milligrams of amoxil t i d 

for ten days started on 

BLANK 

to turn fifty milligrams of a 

lot p i d for ten days see on 

BLANK  

to endrin fifty milligrams of 

a moban t i d for ten days 

are on BLANK  

examination at admission examination and admission  examination and admission  

BLANK was afebrile and 

vitally stable  

BLANK is a febrile advised 

this table  

BLANK was a febrile and 

vita e table  

head and neck exam was 

unremarkable cervical 

lymph nodes were palpable 

and less than one point five 

centimeters in diameter  

head and neck exam was 

unremarkable service 

lymph nodes with health 

able and less than one point 

five centimeters and via  

head and neck exam was 

unremarkable service 

lymph nodes but palpable 

and less than one point five 

centimeters and dia 

cardiac exam was normal  cardiac exam was normal  carb exam was normal 

respiratory exam showed 

increased work of 

breathing  

respiratory exam showed 

increased work of everting  

respiratory exam showed 

increased work of retin  

intercostal indrawing on 

the right side  

intercostal indrawing on 

the right side  

intercostal in von on vit 

side  

good air entry bilaterally 

and course crackles and 

wheezes throughout both 

lung fields  

a good air entry bilaterally 

and course crackles one a 

throat business  

a good air entry bilaterally 

and coarse crackles and 

tear out pulseless  

her abdominal exam was 

unremarkable 

her abdominal exam was 

unremarkable  

her abdominal exam was 

unremarkable  

allergies none  allergies non  allergies on  

immunization status immunizations status immunizations status 
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After reviewing the individual cases, we observed that DeepSpeech was able to understand 

the domain-specific speech for the most part. However, we noted 3 factors that are 

prominently linked with the errors.  

1) Reverberation 

On average our dataset has low levels of reverberation. However, those audio notes 

having high reverberation are consistently linked with high numbers of errors.  

2) Overlapping Noise 

Similar to reverberations, most of the notes in our dataset have moderate noise levels 

that do not interfere with the speech. Therefore, such instances skew the performance 

of transcriptions to a large extent. 

3) Dictation Pace 

Within the notes, we observed that the commonly occurring phrases are uttered at a 

high pace, while complicated sentences are uttered slowly. However, when the speech 

pace is up, transcription starts to show errors mostly by skipping critical words. 
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5.7 Final Validation 

In this section, we report the results of our acoustic and language models on a separate 

validation dataset. In the process of dataset preparation (Section 3.4.2), we separated a 

validation set that we did not use in any of our prior experiments. Therefore, in this final 

validation, we used our validation dataset upon all of our selected models, which were 

trained from the whole original dataset. Table 5.17 lists the error rates for all model 

combinations. 

Table 5.17 Error rates on the validation dataset 

 CER WER 

Acoustic Model → 
4th Epoch 5th Epoch 6th Epoch 4th Epoch 5th Epoch 6th Epoch 

Language Model ↓ 

Pre-trained LM 

+ Original Corpus 

+ Interpolated 

32.09% 30.52% 30.41% 35.99% 34.39% 34.65% 

Pre-trained LM 

+ Augmented Corpus 

+ Interpolated 

33.24% 32.04% 33.30% 35.20% 34.23% 35.02% 

New LM 

+ Original Corpus 
30.98% 29.63% 28.96% 34.99% 34.14% 33.84% 

New LM 

+ Augmented Corpus 
34.30% 33.89% 34.61% 35.70% 35.34% 35.79% 

We observed similar behaviors from the results of the final validation. With respect to 

WER, the lowest error rates were from the enhanced pre-trained models that use the 

augmented dataset and newly trained models on the original dataset. The lowest two error 

rates from these language models only had an absolute difference of 0.09%. However, with 

respect to CER, we found that newly trained models on the original dataset did a relative 

maximum of 5% less critical mistakes then the enhanced pre-trained models.  
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5.8 Discussion 

Throughout the evaluations, we observe that newly trained language models on our original 

(un-augmented) dataset were performing similar to, or sometimes better than those 

language models that apply our augmentation and model enhancement methods, 

specifically in regard to critical errors. We consider that this was due to the extremely small 

size of our dataset, which impacts the performance in two ways. 

1)  Language modeling is all about vocabulary and speech patterns. Thus, the small size 

of our dataset does not cover both aspects sufficiently to reflect the target domain. We 

tried to handle the vocabulary aspect by dataset augmentation method; however, we 

were not able to introduce more domain-specific speech patterns.  

2) The pre-trained model is trained on a significantly larger dataset than ours. Moreover, 

when our small dataset breaks down into folds for cross-validation, it creates many 

unseen scenarios for the testing. Thus, all those unseen domain-specific speech patterns 

get compensation by the prior knowledge of the pre-trained model, which does not 

reflect our target domain. 

In addition to these two reasons, our limited implementation of the augmentation method 

also hinders the reduction of critical errors. Since our definition of critical errors entails all 

the domain-specific vocabulary, yet we only used two domain-specific classes (drugs and 

diseases) to augment our augmentation method. Therefore, all the concepts of remaining 

domain-specific classes also remain unseen in the experiments with testing folds.  

The interpolation method that develops a language model using information from multiple 

data sources has the ability to adjust in case the volume of data is not similar across all 

sources. As there is a huge size difference in the data source of the pre-trained language 

model and our dataset, the interpolation method logically has the means to cope up in this 

situation. However, interpolation requires a separate tuning set from the target domain to 

calculate weights for each data source. Since our dataset is already limited, fetching a 

tuning set from it makes it even smaller. Therefore, we found that in our experiments the 
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interpolation method performed fairly closer to stand-alone models, but they were not able 

to surpass the performance. Had we had a slightly larger dataset; we consider that the 

interpolation method would have been the best in performance. 

5.9 Conclusion 

This chapter presents an evaluation of our defined methods. We have shown that by using 

the fine-tuning method on the pre-trained deep speech acoustic model, WER relatively 

decreased by 40.32% CER by 44.88% on our original dataset. After applying the data 

augmentation method to our dataset and using the interpolation method to enhance the pre-

trained language model, we managed to reduce the error rates further relatively by 42.2% 

WER and 49.02% CER. In our evaluations, we observed that the pooling method to 

enhance the pre-trained language model had the least impact on the reduction of error rates. 

Furthermore, when we applied our language modeling methods in isolation, neither of 

those methods had a reducing impact on error rates. However, when applied in 

combination, we observed lower error rates when the pre-trained language model was 

enhanced using the interpolation method and augmented dataset.  
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Chapter 6. CLASSIFICATION OF TRANSCRIPTION INTO 

SOAP CATEGORIES 

6.1 Introduction 

This chapter presents our work to categorize clinical transcriptions as a SOAP structured 

clinical report. To achieve our second objective, we have selected an exemplar-based 

concept detection algorithm [102] with the motivation to extend it for SOAP classification. 

This algorithm was chosen particularly due to its nature of using the word n-gram based 

approach that we consider working in our problem. In previous work, Mowery [101] have 

used an n-gram based approach as well and showed positive results. However, their work 

poses two major limitations. This exemplar-based algorithm takes care of both limitations. 

Firstly, it makes use of overlapping word grams that fully exploit the sentence sequences. 

Secondly, since it works on exemplar matching, it should not have an impact on class 

imbalance. 

6.2 Methods 

6.2.1 Assigning SOAP categories to Dataset 

Our dataset did not provide prior assignments of sentences into SOAP categories; hence 

we perform data labeling manually on our dataset. We perform this task before working on 

methods to analyze class proportions of our dataset and to make logical decisions. To label 

the sentences within our dataset, we referred to the definitions of SOAP categories and 

related literature to identify the guiding principles for each category. Learning on those 

principles we skimmed over the dataset looking for commonly occurring patterns within 

each category. Based on the understanding we developed by these guiding principles and 

patterns, we heuristically assigned a SOAP label with each sentence within our dataset. 

The heuristics we applied for each of the SOAP category is given below. 

1) Subjective 

Sentences having narrations of tales happened to patients and are from the patient’s 

perspective. Subjective sentences are mostly in the past tense defining a scene 
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involving the patient. There can be some present tense sentences as well in this category 

that are limited to the responses that are coming from patients. The only exception we 

have noticed in this category is mostly the first sentence where the physician starts a 

note by describing the demographics of the patient. Table 6.1 lists the patterns that we 

observed in the sentences that we labeled as ‘Subjective’. 

Table 6.1 Patterns observed in subjective category sentences 

Patterns Comments 

<Child/He/She> <is/was/has> ... Since physicians are narrating patients’ 
perspectives, usually a pronoun ‘Child’, 
‘He’ or ‘She’ starts a sentence along with 
a helping word from present or past 
tense. A tale about patient then follows. 

family history ... When describing the family history, 
physicians generally start with the 
phrase itself and then dictate the 
contents. 

immunizations are <up to date> Physicians are mostly talking about 
immunizations in every note. For all the 
notes we examined, we did not find any 
case where the content changed. 
However, we think that the phrase ‘up 
to date’ will change if a different case 
happens. 

past medical history <is non-
contributory/reveals ...> 

Similar to family history, physicians start 
talking about past history with this 
phrase. If such history is not contributing 
to the case, then they mention mostly. 

this is a <age> <days/months/years> old 
<boy/girl/male/female> ... 

This is the most frequent pattern in all 
notes and comes at the very start.  

2) Objective 

Sentences that describe observations of the physician on the patient. These sentences 

are written in either past or present tense and are usually short in length. They usually 

start with a laboratory test or examination type and then provide a result to those tests 

or results. Table 6.2 shows the patterns for which we labeled ‘Objective’ sentences. 
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Table 6.2 Patterns observed in objective category sentences 

Patterns Comments 

<EXAM NAME> <is/was> 
<normal/unremarkable/uncomplicated/...> 

Subjective sentences are talking about 
laboratory and physical exam results. 
Mostly these exams are good, so 
physicians are noting that down. 

<EXAM NAME> reveals ... In case an exam reveals something, 
they also mention that. 

On exam <child/he/she> <was/has> ... Mostly for physical exams, physicians 
simply use ‘On exam’. 

the rest of exam <was/is> ... This pattern is also fairly visible in the 
notes. 

<BODY PART> <is/are> <normal/clear/...> While defining results of physical exam, 
physicians note down the state of each 
body part they examined. 

 

3) Assessment 

Sentences that describe the assessment of the physician on the patient. These sentences 

usually have the word ‘diagnosis’ in them along with a disease or medical condition. 

Table 6.3 mentions some patters for ‘Assessment’ sentences 

Table 6.3 Patterns observed in assessment category sentences 

Patterns Comments 

diagnosis is <DIAGNOSIS> The word ‘diagnosis’ is prominent in 
assessment category sentences. 

<Medicine name and dosage> was 
prescribed 

This is a loose pattern that we don’t 
find following a general style. In 
concept, this pattern mentions about 
the medications and treatments that 
are prescribed to the patient. 

parents were <reassured/instructed> ... This pattern mentions all the 
instructions and reassurances that the 
physician has given to the parents of 
the patient which starts with the phrase 
‘parents were instructed …’ and 
‘parents were reassured that…’ 
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4) Plan 

Sentences that describe plans of the physician for the future treatments on the patient. 

These sentences are usually written in the future tense. Table 6.4 lists the patterns for 

‘Plan’ category sentences. 

Table 6.4 Patterns observed in plan category sentences 

Patterns Comments 

... follow up ... This is a loose pattern that look for 
sentences with the phrase ‘follow up’. 
One variation that we observed 
multiple time is “Follow up as 
necessary” 

<child/parents> <was/were> advised to 
return if... 

This pattern mentions the advice of 
physician to return if some condition 
happens.  

<Plans for future treatments> This is also a loose pattern. Generally, it 
looks for future treatment options. 
Physician does not seem to follow a 
strict word sequence for this. 

All the sentences from our original dataset are extracted, and each sentence is manually 

labeled according to the heuristics defined above. The labeled dataset is saved such that 

features represent sentences and labels consist of one of the SOAP categories. In this 

process, we observe that there is a class imbalance in our dataset. We note around 47% 

Subjective, 35.3% Objective, 11% Assessment, and 6.7% Plan sentences in our dataset. 

The imbalance property of our dataset matches the way clinical reports are usually written. 

The same spread of classes is shown by Mowery [101] which also supports our observation. 
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6.2.2 Exemplar-based Concept Detection  

Concept detection is a problem in NLP to extract relevant information from text 

collections. Juckett presents an exemplar-based algorithm to link text to semantically 

similar classes [102]. It maps each word within the text with probable class assignments. 

Figure 6.1 highlights the algorithm. The algorithm is named Fuzzy matching. Juckett then 

presents another algorithm Output array creation that takes the output values from Fuzzy 

matching to create an array of detected concepts. 

 

Figure 6.1 Exemplar based algorithms proposed by Juckett [102] 

The Fuzzy matching algorithm expects to have some relevant text available that are already 

categorized by human annotators to train exemplars. Exemplars are defined as the 

collection of unique text strings that belong to specific semantic classes. In this algorithm, 

exemplars are stored as Bag of Words (BOW) and Bag of Bi-characters (BOB). For each 

sentence in the training set, an exemplar pair of BOW and BOB is created. BOW is the set 

of all words within the training sentence. BOB is created after removing spaces from the 
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sentence and then extracting all overlapping character bi-grams. All generated exemplar 

BOW and BOB are then stored along with the class assignments of training sentences.  

To perform concept detection, the query sentence is first filtered for punctuations and 

determiners are removed. It then creates overlapping word n-grams to the maximum of 5th 

order (1-gram, 2-gram … 5-gram). Each word n-gram is converted into BOW and BOB 

and stored. It gives a list of BOW and BOB for all possible word n-grams (till the order 5) 

within the query. For each word n-gram, exemplars are selected that are of length between 

n and 4n. For each selected exemplar, the Jaccard Index [120] of exemplar and word n-

gram is calculated for both; BOW and BOB, and the larger of these two values is selected. 

After having similarity values of word n-gram with each exemplar, top n values are 

selected. Word n-gram and exemplar information for the selected values are then stored.  

 

Figure 6.2 Outline of word-class array [102] 

After selecting the top n values, the algorithm Output array creation generates a word-by-

class map. Word-by-class map is a two-dimensional array where rows are the words in the 

query text, and columns are the classes. Each cell within the array gets the score of word-

class combination. From the stored values in fuzzy matching, all values are selected whose 

n-gram has the word, and exemplar belongs to the class. All these values are then added, 

and the resultant value is stored as the word-class combination score. Figure 6.2 highlights 

a word-class matrix as shown in [102]. 
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6.2.3 Exemplar-based Sentence Classification 

The second objective of this thesis requires the classification of textual units from 

transcriptions into one of the SOAP categories. We consider sentences as a textual unit. To 

achieve our objective, we develop an exemplar-based sentence classification algorithm on 

the principles of exemplar-based concept detection by extending it to work on whole 

sentences and provide confidence scores for each class. We use this algorithm due to its 

nature to exploit word sequences. Moreover, since this algorithm work on exemplars, class 

imbalance does not make a huge impact. As it selects top n scores for each n-gram, it can 

optimally perform as long as there is a minimum of n exemplars available for each class. 

Juckett took many assumptions during the development of the concept-detection algorithm 

[102]. Since we adapt and extend this algorithm for a different problem and situation, we 

identify four key areas that possibly develop an issue. Therefore, we investigate each of 

those areas to find an optimal solution. After having a solution, we consider each area as 

an independent variable to test the impact of our solution concerning the original 

implementation. Details for each identified area are given below. 

1) Stop Words 

Stop words removal is a widely accepted and effective pre-processing step in various 

problems of NLP [121]. However, the concept detection algorithm does not remove 

stop words from their processing step. Moreover, in the arguments, Juckett [102] does 

not provide any justification for keeping the stop words. Therefore, in this work, we 

consider the removal of stop words since it has shown to have significant performance 

improvements in text categorization tasks [122]. We apply a step to remove stop words 

and make it optional in our classification algorithm by including it as an input 

parameter. 

2) Maximum word n-gram length limit  

In the concept-detection algorithm, the query sentence converts into word-grams of 

varying lengths from 1-gram to the maximum of 5-grams. There were two reasons 

given for limiting the maximum n-gram length till the 5th order. Frist is that the dataset 
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on which Juckett [102] experimented, had shorter exemplars where 2/3rd of exemplars 

were of word length five or less. The second reason is that each increasing word-gram 

length increases the computation time exponentially. In our situation, the dataset has 

sentences with an average length of 13 words, whereas 2/3rd of sentences are about 17 

words or lower. With the same reasoning, we should look at 17-gram exemplars. 

However, since the magnitude of the difference is more than double, a limit of 17-

grams can cause the algorithm to run for much more extended periods. Therefore, we 

approach not to limit the length of maximum word n-grams in the algorithm; instead, 

move the limit as an input parameter. There are two reasons for this approach. First, it 

is easier to evaluate with varying maximum lengths. Second, this enables adaptation of 

this algorithm to use on a dataset having sentences of different average lengths.  

3) Exemplar type 

The concept detection algorithm keeps full-text strings in the exemplars. Juckett [102] 

does not report the considerations they took while defining exemplars. As we extend 

the algorithm in our problem domain, we recognize that keeping full-text strings in 

exemplars can cause some problems.  

The current approach creates one exemplar per text string from the training text. We 

have a small dataset, in which sentence length ranges from 3 words to 49 words. These 

text strings come from natural speech and can have larger compound sentences. 

Creating one exemplar for these larger text strings limits the opportunity to create 

multiple exemplars. Moreover, due to the longer size of such text strings, they will be 

skipped in many comparisons with shorter word n-grams, as the algorithm only selects 

exemplars of length n to 4n for comparison with any word n-gram.  

 Size Sentence 

A 5 Past medical history is unremarkable 

B 5 Immunizations are up to date 

C 11 Past medical history shows immunizations are up to date and unremarkable 



102 

 

As an example, in the given sentences: A, B and C; sentence C contains semantics of 

both A and B. However if sentence C is used as exemplar, and sentence A and B are 

used as query, they will get lower scores since there will only be a partial match among 

the exemplar and query. Besides, shorter word n-grams from the query text, 1-grams, 

and 2-grams specifically, will get 0 scores since the exemplar will not be selected for 

comparison as its length is greater than 4 (n=1, 4n=4) and 8 (n=2, 4n=8).  

To solve these problems, we consider using word n-gram based exemplars. The text 

strings from the training set converts into word n-grams and are stored with the class 

assignment as exemplars. This way, each overlapped word n-gram (sub-string) from 

the training text string gets an opportunity to have representation. In our algorithm, we 

implement both types of exemplars and gave options in the input parameter to choose 

the exemplar type. 

4) Similarity function 

The concept detection algorithm uses the Jaccard Index as the similarity measure, 

which does not take word count and sequence for similarity calculations. Cosine 

similarity [123], on the other hand, is built upon the idea of tf-idf, which takes the count 

of each dimension in the calculations. Both of these similarity measures are extensively 

used in the information retrieval domain. However, a comparison of documents 

retrieved from Google search shows that cosine similarity is the most relevant metric 

to compare text documents [124]. As we deal with natural speech in our dataset, we 

hypothesize that cosine similarity will improve the classification performance in 

comparison with the Jaccard Index. Therefore, we apply both in our algorithm while 

giving an option to use any one of them in the input parameter.  

After investigating all four key areas, we extend the concept detection algorithm into a 

classifier by applying a two-step process to the word-by-class map output. In the first step, 

a single score calculates for each class by adding the scores of all words. In the second 

step, scores of all classes are normalized to get confidence scores in the range of 0 and 1. 

The pseudocode for the algorithm after the extension is showed in Figure 6.3. 
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Figure 6.3 Pseudocode for Exemplar-based Sentence Classification Algorithm 
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6.2.4 Summary 

To achieve our objective, we extend the exemplar-based concept detection algorithm for 

SOAP classification. Five changes are done in this regard. The first change is to give an 

option in the input parameter to remove stop words. Second, maximum word n-gram length 

is made variable by taking a max length as input. Third, a word n-gram based exemplar is 

developed, and an option is given as an input parameter to select the exemplar type. Fourth, 

an option is given as an input parameter for similarity matric to use either the Jaccard Index 

or Cosine Similarity. Fifth, the word-by-class map output is processed using a two-step 

process to calculate a single confidence score for each class for the query.  
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6.3 Evaluation 

6.3.1 Experimental Setup 

We implemented our exemplar-based sentence classifier and then evaluated it on our 

dataset using four independent variables that correspond to the four proposed 

improvements. These variables are directly derived from the key areas that we identified 

and enhanced. One of the independent variables is the maximum word n-gram length limit, 

for which we did not specify any length; therefore, we experimented with lengths from 1 

to 15. All other independent variables have two conditions each that give us 8 cases for 

experiments. All these cases are given a number. Table 6.5 shows all the cases. Each of 

these cases is experimented with varying maximum word n-gram length limits, which gave 

us 120 total conditions to experiment (8 cases x 15 maximum word n-gram length limits). 

Table 6.5 Cases based on Stop Word, Similarity Function and Exemplar type 

Cases Stop Word Similarity Function Exemplar Type 

1 

w/ Stop Words 

Cosine 
Sentence 

2 n-gram 

3 
Jaccard 

Sentence 

4 n-gram 

5 

w/o Stop Words 

Cosine 
Sentence 

6 n-gram 

7 
Jaccard 

Sentence 

8 n-gram 

For each condition, experiments are done in a one-vs-rest method, which means for each 

SOAP category, a different binary classifier is trained and tested. For instance, when 

experimenting with the ‘Subjective’ category, all subjective sentences in the dataset are 

given positive labels (1), and all other sentences are given a negative label (0). The same 

is repeated for all other categories. Although our classifier can perform multi-class 

classification, yet we choose this strategy because SOAP categories have a very thin line 

of separation which can impact the classification performance with our imbalanced dataset. 

As an example, the sentence “we prescribed him ...” should be an assessment, whereas, 

with a subtle change “we will prescribe him …” becomes a plan. However, in our dataset, 
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both of these categories have limited sentences. We also observe Mowery [101] applying 

the same evaluation strategy, due to the same problems. 

We conducted all experiments with 5x5 cross-validations. Dataset was randomly shuffled, 

and 5-fold cross-validation was performed. This process was repeated four more times. For 

each SOAP category, 25 results were retrieved, which in total gave us 100 results for each 

condition. Ground truth, confidence score, and condition details were stored from all 

experiments. 

Confidence scores from our classifier show the predicted probability of having a positive 

label. In this work, we did not specify any mechanism to select any threshold for binary 

prediction (positive or negative). Therefore, to evaluate our classifier and to compare all 

the experimental conditions, we used Precision-Recall Curve (PRC), since it provides an 

accurate evaluation in case of imbalance dataset as compared to Receiver Operating 

Characteristic (ROC) [125].  

Area Under PRC (AUPRC) is represented by Average Precision (AP), where higher AP 

means better classification performance.  In this work, we used AP as the main 

performance evaluation measure, which also serves as the dependent variable for all our 

independent variables. We used regression testing to analyze the impact of each 

independent variable, and based on the results, we selected the most optimal combination 

of independent variables. We then thoroughly analyze the classification performance of the 

experimental condition that is according to the selected variables. Three of our independent 

variables: stop words, similarity function, and exemplar type; are categorical, though has 

only two values in each. Therefore, we converted them into numerical variables for 

regression testing. 

We analyzed results from all SOAP categories separately as well as in combination. To 

analyze the overall performance, we took both averages: micro-average and macro-

average. In micro-averaging, we directly calculate precision and recall values from overall 
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results, whereas, in macro-averaging, we calculated precision and recall values first for 

individual categories and then averaged them.  

Table 6.6 Conversion of categorical variables to numeric 

Independent Variable Categorical Value Numeric Value 

Maximum word n-gram Length Limit - 1 … 15 

Stop Words 
w/ Stop Words 0 

w/o Stop Words 1 

Similarity Function 
Cosine 0 

Jaccard 1 

Exemplar Type 
Sentence 0 

n-gram 1 

In this evaluation, we focus on six main questions. 

1. What is the baseline performance of the classifier before improvements?  

2. What is the optimal maximum word n-gram length limit for SOAP classification? 

3. Does the removal of stop words enhance classification performance? 

4. What is the best exemplar type for SOAP classification? 

5. What is the best similarity function for SOAP classification? 

6. What is the performance of the classifier using optimal conditions? 

6.3.2 Results 

We experimented with all 120 conditions and analyzed the results to answer the six 

questions. In this section, we first analyze the baseline performance of the classifier before 

applying any improvement. Then we analyze the impact of each improvement on the 

classification performance and select the optimal values for each improvement category. 

Finally, we analyze the performance of the classifier on the conditions that correspond to 

the optimal values. 
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• BASELINE PERFORMANCE 

We consider case 3 using a maximum word n-gram length limit of 5 as the baseline 

condition, as this condition equals of classifier without having any improvements. In this 

condition, we observed an overall micro-averaged AP score of 0.886, while having AP 

scores of 0.932 for ‘Subjective’, 0.911 for ‘Objective’, 0.563 for ‘Assessment’ and 0.765 

for ‘Plan’ category. Figure 6.4 shows the AUPRC for the baseline condition. 

 

Figure 6.4 Precision-Recall curve of the baseline condition 

We compiled a list of example sentences along with their confidence scores from baseline 

condition and actual SOAP category in Table 6.7. We highlight the top confidence scores 

while underlined scores show that the highest confidence score is given to the actual SOAP 

category. The list shows 3 examples each from the ‘Subjective’ and ‘Objective’ category, 

and 2 examples each from ‘Assessment’ and ‘Plan’ categories. 
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Table 6.7 Confidence scores of sentences from the baseline condition 

 Sentence 
Confidence Scores Actual 

SOAP 
Category 

Subjective Objective Assessment Plan 

1 

paragraph past 
medical history 
immunizations are up 
to date 

0.88791 0.0884 0.04866 0.05589 Subjective 

2 

immunizations up to 
date and no 
significant medical 
issues 

0.83285 0.14976 0.11717 0.11628 Subjective 

3 

child was already 
starting to show 
return to normal 
function with crying 
and purposeful 
movements 

0.46867 0.47539 0.41664 0.35019 Subjective 

4 

ear nose and throat 
exam revealed a 
runny nose mildly red 
throat and normal 
ears 

0.17412 0.8412 0.11327 0.13244 Objective 

5 

new paragraph 
family sorry physical 
exam revealed 
entirely normal 
neurological exam 
with no focal findings 

0.29106 0.69507 0.13999 0.14118 Objective 

6 

blood work was taken 
four hours after 
ingestion revealing 
non toxic 
acetaminophen levels 

0.59756 0.23034 0.41212 0.14035 Objective 

7 
a diagnosis was 
croup treatment 

0.3143 0.30527 0.71247 0.18112 Assessment 

8 i note no allergies 0.66861 0.32717 0.19232 0.07669 Assessment 

9 
child will follow up 
with family doctor 

0.23159 0.17391 0.12547 0.74356 Plan 

10 

a throat swab was 
sent today should it 
be positive we will 
call her and start her 
on antibiotics 

0.3523 0.46499 0.41026 0.3531 Plan 
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• ANALYZING THE IMPACT OF IMPROVEMENTS 

In all experimented conditions, the overall best performance was achieved by the condition 

using case 1 with maximum word n-gram length limit of 5th order. This condition achieved 

the highest micro-averaged AP score of 0.897. However, we observed that for individual 

SOAP categories, different conditions showed better performance for different categories, 

and no one condition was optimal for all SOAP categories. We list down the highest and 

lowest AP scores we observed for each SOAP category along with overall combined scores 

in Table 6.8. The magnitude of different highlights that our suggested improvements are 

having a major impact on performance, especially with assessment and plan categories.  

 Table 6.8 Highest and Lowest AP scores for SOAP categories 

SOAP Category Highest AP Lowest AP Difference 

Subjective 0.957 0.881 0.076 

Objective 0.919 0.836 0.083 

Assessment 0.626 0.396 0.230 

Plan 0.820 0.705 0.115 

Micro-Averaged 0.897 0.812 0.085 

Macro-Averaged 0.808 0.716 0.092 

Results from regression tests on all 120 conditions showed that all independent variables 

influenced classification performance, except similarity function which is consistently 

insignificant for all SOAP categories. Table 6.9 highlights the results of regression testing.  

Table 6.9 Summary of regression analysis results 

Independent  

Variables → 
Max n-gram Length Stop Words 

Similarity  

Function 
Exemplar Type 

SOAP Categories ↓ P-value T Stat P-value T Stat P-value T Stat P-value T Stat 

Subjective 1.125E-08 6.155 1.554E-19 -10.944 0.512 0.658 0.0725 -1.812 

Objective 2.988E-07 5.444 3.503E-10 -6.869 0.189 1.321 2.920E-27 -14.292 

Assessment 0.046 -2.019 1.036E-21 -11.874 0.375 -0.891 0.011 -2.584 

Plan 0.009 -2.625 0.002 3.215 0.068 -1.841 0.039 -2.090 

Micro-Average 3.375E-06 4.885 2.783E-32 -16.585 0.284 1.077 2.596E-11 -7.386 

Macro-Average 0.984 -0.020 3.292E-22 -12.087 0.256 -1.141 2.490E-09 -6.469 
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• IMPACT OF MAXIMUM N-GRAM LENGTH LIMIT 

Regression analysis showed that changing the maximum n-gram length limit had a 

significant change in performance. However, the direction of change varied within SOAP 

categories. We observed that sentences from ‘Subjective’ and ‘Objective’ categories were 

better classified with higher order of n-grams, whereas, ‘Assessment’ and ‘Plan’ categories 

favored shorter n-grams. Figure 6.5 draws the trend line of 6th-degree polynomial after 

plotting all AP scores for all cases on ordinate with max n-gram lengths on the abscissa.  

 

Figure 6.5 All AP scores over n-gram max length 
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The trend line validates the regression analysis; however, it highlights diminishing 

increment in AP for ‘Subjective’ and ‘Objective’ categories with the increasing n-gram 

lengths. For the ‘Assessment’ category, we see continuous declination of performance 

along n-gram lengths. ‘Plan’ category, however, shows inconsistency, where performance 

rapidly increased for the first few increments in n-gram lengths, then it started to fall, 

nevertheless, the fall was not much. These opposite behaviors from SOAP categories 

regarding max n-gram length explain the high P-value (0.984) for macro-averaged scores. 

All 8 cases mostly followed the same trend; however, we did observe some anomalies. In 

the ‘Subjective’ category, we marked 3 cases to have slight differences. In cases 3 and 8, 

we saw another spike in scores with the higher values of max n-gram length. In case 5 

specifically, we observed that n-gram lengths had no significant impact. We had the same 

observation about the ‘Objective’ category in case 5. For the ‘Assessment’ category, cases 

5 and 6 seemed to have no impact due to n-gram lengths, and case 8 was observed to be 

favoring larger n-grams. We observed the same behavior with the ‘Plan’ category, where 

cases 5 and 8 had no impact, whereas, case 6 favored larger n-grams. Overall, case 5 

(without stop words, cosine similarity, sentence exemplars) appeared to be immune to the 

n-gram lengths. We confirmed this observation by applying a t-test on the AP scores which 

gave us a P-value of 0.196. After analyzing scores, we realized that there cannot be a single 

selection for max n-gram length; therefore, we picked the best performing max n-gram 

length from each case (Table 6.10). 

Table 6.10 Best performing values for maximum n-gram length for each case 

SOAP Categories ↓ All Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

Subjective 8 8 9 14 6 11 9 14 15 

Objective 11 11 5 11 7 6 7 12 12 

Assessment 1 1 3 1 2 15 15 1 15 

Plan 6 2 3 2 2 14 8 6 8 

Micro-Average 5 5 5 14 7 15 9 10 15 

Macro-Average 3 3 3 6 2 15 15 6 15 
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• IMPACT OF STOP WORDS REMOVAL 

It is evident from the regression analysis that stop words removal had a significant change 

in the classification performance for all categories. However, for all the categories except 

‘Plan’, the direction of change is negative (-ve t-stat value). This means that the 

performance of only the ‘Plan’ category increased by removing stop words, whereas, all 

other categories performed better when we keep stop-words in the sentences. Figure 6.6 

shows the box plots for AP scores after categorizing them with and without stop words.  

In Figure 6.6, all box plots are placed in the same sequence as shown in the legends on the 

left. To be specific, from left to right, the first 2 plots represents the results from all SOAP 

categories combined, the second pair represents results only for ‘Subjective’ category, the 

third pair represents ‘Objective’ category, the fourth pair represent ‘Assessment’ category 

and the fifth pair represent ‘Plan’ category. All the blue shaded plots (left on each pair) are 

made from performance scores when stop words were kept in the sentences. On the other 

hand, green-shaded plots (right on each pair) are from the scores when stop words were 

removed. The x mark within plots shows the mean, and the dots outside plots show outliers. 

While analyzing these plots, we can see that although ‘Plan’ sentences were better 

classified without stop words, this performance was not very reliable, since the plot spread 

is wider along with some outliers.  
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Figure 6.6 Box plots of scores after removing stop words 

• IMPACT OF SIMILARITY FUNCTIONS 

We observed no significant change in performance due to similarity functions. In 

regression analysis, P-values for all categories were consistently above 0.05, which accepts 

the null hypothesis. Figure 6.7 shows the box plots distributed over cases using cosine 

similarity and Jaccard index. The plots are on the same pattern as we saw in the previous 

figure.  
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Figure 6.7 Comparing performance based on similarity function (Cosine vs Jaccard) 

• IMPACT OF EXEMPLAR TYPES 

In our analysis, sentence based exemplars were better than n-gram based exemplars on all 

SOAP categories. Figure 6.8 shows the box plots for scores based on exemplar-type. Blue 

shaded plots are for sentence based exemplars and green shaded plots are for n-gram 

exemplars. These plots validate the results of regression analysis as the mean and median 

for each blue shaded plot is higher than the corresponding green-shaded plot.  



116 

 

 

Figure 6.8 Comparing performance based on exemplar type (sentence vs n-gram) 

• OPTIMAL PERFORMANCE 

Results from regression analysis presented that classification performance varied across 

individual SOAP categories. Therefore, we inspected the optimal performance for each 

category separately. We select the conditions having the highest AP scores for each 

category and analyze the improvements that go within that condition. We also calculate the 

F1 scores for the selected conditions using varying threshold levels. The highest F1 scores 

are reported with each category. Table 6.11 provides a summary of optimal conditions for 
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each SOAP category along with the magnitude of improvement as compared to baseline 

performance. 

Table 6.11 Summary of optimal conditions for each SOAP category 

SOAP 
Category 

Base AP 
Score 

Max AP 
Score 

AP 
Improved 

Optimal Maximum word 
n-gram length limit 

Best 
Case 

Subjective 0.932 0.957 0.025 8 1 

Objective 0.911 0.919 0.008 11 3 

Assessment 0.563 0.626 0.063 1 1 

Plan 0.765 0.82 0.55 6 7 

For the ‘Subjective’ category, we achieved max performance (AP: 0.957) with case 1 using 

the maximum word n-gram length limit of the 8th order. This means that when our classifier 

is set to break query sentences in word n-grams till 8-grams, use sentence based exemplar 

and keep stop words, it will give the best classify ‘Subjective’ category sentences. Since 

the similarity function has no significance, we select the condition with cosine similarity 

as its score was moderately better. Figure 6.9 shows the AUPRC for this condition, where 

we achieved an F1 score of 0.912.  

 
Figure 6.9 Precision-Recall Curve of best performing condition for Subjective 
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We selected some examples and list them in Table 6.12 showing sentences with their actual 

SOAP category and confidence scores we obtained using our classifiers with this condition. 

The top 6 example shows the behavior of this condition on ‘Subjective’ sentences, while 

rest shows behavior on other categories. We highlight the top-scoring category while 

underline shows that our classifier predicted the actual category for the given sentence. 

Table 6.12 Confidence scores of sentences from case 1 using 8-gram limit 

 Sentence 
Confidence Scores Actual SOAP 

Category Subjective Objective Assessment Plan 

1 
no concussive 
findings 

0.80509 0.296 0.25021 0 Subjective 

2 

immediately 
afterwards 
paramedics were 
called on arrival 

0.4717 0.3464 0.50901 0.23972 Subjective 

3 no medications 0.75963 0.24037 0.211 0 Subjective 

4 

past medical 
history reveals a 
healthy athletic 
male with no 
significant medical 
issues 

0.75253 0.25061 0.22631 0.17429 Subjective 

5 

by the time she 
arrived at the IWK 
emergency she 
was awake and 
alert and cranky 

0.51804 0.41937 0.33357 0.38002 Subjective 

6 

family history 
reveals febrile 
seizures in dad as a 
child 

0.51926 0.40717 0.30884 0.38605 Subjective 

7 
tracheal 
palpation did not 
elicit pain 

0.76971 0.39352 0.15284 0.24594 Objective 

8 lungs were clear 0.18333 0.77103 0.24431 0.19585 Objective 

9 
the likely choice of 
antibiotics will be 
amoxicillin 

0.36357 0.37519 0.42211 0.57157 Plan 

10 
diagnosis fracture 
radius ulna 

0 0.55951 0.60422 0 Assessment 
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For the ‘Objective’ category, best scores (AP: 0.919) were achieved by condition using 

case 3 and the maximum word n-gram length limit of 11. We achieved an F1 score of 0.846 

in this condition. Figure 6.10 illustrates the AUPRC for this condition. Table 6.13 mentions 

some examples from this condition, where the top 5 examples show the behavior of this 

condition over the ‘Objective’ category. The rest of the examples show the performance 

over other SOAP categories.  

Table 6.13 Confidence scores of sentences from case 3 using 11-gram limit 

 Sentence 
Confidence Scores Actual 

SOAP 
Category 

Subjective Objective Assessment Plan 

1 

ear nose and throat 
exam revealed a 
red throat with no 
exudate suggestive 
of a viral 
pharyngitis 

0.27987 0.72597 0.18146 0.1777 Objective 

2 

blood work was 
taken four hours 
after ingestion 
revealing non toxic 
acetaminophen 
levels 

0.62871 0.20222 0.37966 0.14458 Objective 

3 
rest of the physical 
exam was without 
comment 

0.20491 0.83209 0.15358 0.24458 Objective 

4 

new paragraph 
family sorry 
physical exam 
revealed entirely 
normal neurological 
exam with no focal 
findings 

0.28433 0.71114 0.12414 0.12644 Objective 

5 

his neurovascular 
status in the 
effected limb is 
normal 

0 0.67539 0 0 Objective 

6 

past medical history 
reveals 
immunizations up 
to date and normal 

0.76841 0.22902 0.15446 0.13135 Subjective 
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birth and pregnancy 
history with no 
specialist and no 
regular medications 
and no known 
allergies 

7 
diagnosis fracture 
radius ulna 

0 0.49184 0.69675 0 Assessment 

8 
chest xray revealed 
a dense left lower 
consolidation 

0.34847 0.69141 0.21597 0.11372 Assessment 

9 
child will follow up 
with family doctor 

0.29484 0.15295 0.0951 0.7286 Plan 

10 
parents were 
counseled and 
reassured 

0.35712 0.33844 0.61333 0.29793 Plan 

 

Figure 6.10 Precision-Recall Curve of best performing condition for Objective 
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For the ‘Assessment’ category, case 1 using maximum word n-gram length limit of 1st 

order excelled (AP: 0.626) among all other conditions. This condition managed an F1 score 

of 0.63. Figure 6.11 depicts AUPRC for this condition. Table 6.14 lists example sentences 

from this condition showing highlighted confidence scores along with the actual SOAP 

category. Top 5 examples show the behavior of this condition over ‘Assessment’ category 

sentences, while rest show the behavior over other categories. 

Table 6.14 Confidence scores of sentences from case 1 using 1-gram limit 

 Sentence 
Confidence Scores Actual SOAP 

Category Subjective Objective Assessment Plan 

1 
a diagnosis was 
croup treatment 

0.39702 0.299 0.71162 0.18063 Assessment 

2 
diagnosis is viral 
respiratory tract 
infection 

0.41961 0.33547 0.64259 0.10616 Assessment 

3 
croup instructions 
were delivered 

0.41324 0.5422 0.54945 0.33527 Assessment 

4 i note no allergies 0.65644 0.35877 0.31561 0.14695 Assessment 

5 

diagnosis viral 
upper respiratory 
tract infection with 
febrile seizure 

0.44084 0.31599 0.52301 0.18636 Assessment 

6 

immediately 
afterwards 
paramedics were 
called on arrival 

0.4717 0.3464 0.50901 0.23972 Subjective 

7 

new paragraph 
impression is that 
this is simple 
febrile seizure 

0.49094 0.33401 0.5078 0.33077 Objective 

8 

post reduction film 
showed good 
placement of the 
bones 

0.5516 0.49871 0.49488 0.31146 Objective 

9 
child was hydrated 
and happy 

0.44425 0.55868 0.4596 0.40219 Objective 

10 
parents were 
counseled and 
reassured 

0.40641 0.38024 0.54527 0.38648 Plan 
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Figure 6.11 Precision-Recall Curve of best performing condition for Assessment 

 
Figure 6.12 Precision-Recall Curve of best performing condition for Plan 
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For the ‘Plan’ category, we observe case 7 using a maximum word n-gram length limit of 

6th order as the best performing condition (AP: 0.82). Figure 6.12 presents the AUPRC for 

this condition. We achieved an F1 score of 0.805 in this condition. Table 6.15 shows the 

example sentences for this condition. Top 6 examples show the behavior of this condition 

over ‘Plan’ category sentences, while others show the behavior over other categories. 

Table 6.15 Confidence scores of sentences from case 7 using 6-gram limit 

 Sentence 
Confidence Scores Actual 

SOAP 
Category 

Subjective Objective Assessment Plan 

1 
follow up as 
necessary 

0 0 0 1 Plan 

2 
child will follow up 
with family doctor  

0.19748 0.27724 0.17992 0.73046 Plan 

3 

i have asked mom to 
follow up with me 
should she fail to 
improve over the 
next few days or 
should she worsen in 
any way 

0.39493 0.1183 0 0.70123 Plan 

4 

child was advised to 
return if worsening 
occurred or if she 
failed to improve 
significantly over the 
course of the next 
seven days 

0.50909 0.27323 0.12239 0.59619 Plan 

5 

child will follow up 
with family doctor if 
there is any other 
issues 

0.2562 0.2489 0.16498 0.68693 Plan 

6 
follow up in the next 
two to three days if 
she does not improve 

0.6324 0.17638 0.16543 0.49534 Plan 

7 

her parents are 
presented with her to 
the emergency 
department for 
further assessment 

0.47742 0.13096 0.36867 0.52188 Subjective 
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8 

child was already 
starting to show 
return to normal 
function with crying 
and purposeful 
movements 

0.5657 0.35864 0.31614 0.47694 Subjective 

9 

she presented to a 
walk in clinic where 
she was told that she 
did not have a 
concussion 

0.53009 0.36812 0.36995 0.54721 Subjective 

10 

instructions were 
given with regards to 
the delivery of 
ibuprofen as needed 
for pain and fever 
but the parents were 
cautioned that this 
would not reduce the 
risk of further 
seizures 

0.43787 0.35454 0.3649 0.44165 Objective 

6.4 Discussion 

In this evaluation, we used 238 sentences to evaluate our classifier, which is far less than 

4130 sentences that Mowery [101] used in their study; however, we achieved comparable 

performance in almost all SOAP categories.  

The performance of our classifier significantly improved with ‘Plan’ category sentences 

when we applied the stop word removal operation. We observe that this change is 

specifically due to the nature of ‘Plan’ sentences. Usually, in this category, physicians talk 

in the future tense. For example, “Child will follow up …” and “We will perform …”. In 

this case, when stop words are removed, the grammatical structure of a sentence becomes 

more prominent and highlights those keywords like ‘will’ and ‘shall’ that be the key 

identifiers of the future tense. 

In our experiments, we also noticed a significant performance change with varying 

maximum n-gram lengths, which ranged from the lowest overall AP score of 0.81 to the 

highest of 0.89. We also observed that each SOAP category behaves differently with 
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different n-grams. Juckett [102] has implemented the concept-detection algorithm with the 

max n-gram length equals to 5 for each class, owing to the small-phrase lengths of their 

dataset. Using the same principle, we expected better performance with longer n-grams.  

In this work, we also evaluated the use of the Jaccard index as the similarity function in 

comparison to the cosine similarity function. We argued that the Jaccard Index only takes 

the union of all lexicons for calculations and does not impact with repeated words, and 

cosine similarity should work better. However, after experiments, our argument failed to 

achieve support from the results, which made it evident that similarity function has no 

significant impact on the performance.  

6.5 Conclusion 

This chapter provides an approach to use an exemplar-based concept detection algorithm 

to develop a SOAP classifier. This classifier was implemented and was experimented with 

four independent variables having a total of 120 variations where each variation was tested 

for each of the SOAP categories separately. These experiments were defined to show a 

directional insight into our approach, yet due to the small dataset, it does not provide a 

meaningful conclusion. With the provided dataset, we make two suggestions. The first 

suggestion is to use the longer n-grams for better classification in ‘Subjective’ and 

‘Objective’ categories, whereas shorter n-grams for ‘Assessment’ and ‘Plan’ categories. 

However, the drawback of longer n-grams is that for each increasing n-gram, processing 

time increases exponentially. The second suggestion is to make separate classifiers for each 

of the SOAP categories and remove stop words specifically for Plan category classifiers.  
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Chapter 7. DISCUSSION 

7.1 Introduction 

This chapter constructs a thorough discussion based on our work for both of our research 

objectives. It highlights the observations that we made while performing this research. This 

chapter then presents a 3-Layer solution framework that is based upon our observations. 

Afterward, it reports the limitations of this work and provides possible and potential 

improvements that can be done in the future. Finally, this chapter ends by providing a 

conclusion towards this thesis. 

7.2 Observations 

We demonstrated our work on a 2-layer solution model, with the approach of having an 

end-to-end solution. However, when we observe the output of the first layer, we found no 

punctuation marks. The reason for this is that SR returns speech in free text format. These 

texts bare no lexical entities other than words, such as punctuation marks, paragraph 

indentation. On the other hand, Natural Language Processing (NLP) tasks usually work on 

text data that are rich with punctuation marks. It means that output from SR systems can 

create havoc with NLP methods; therefore, it is highly desired to enrich SR output with 

punctuation marks before transmitting it to our final layer.  

While working with the dictations, we also observed that some of them were recorded 

while patients were still in the room. For our experiments, this created issues because of 

the increased level of background noise. As we are working towards an end-to-end 

solution, we made a realization that an autonomous report generation solution will allow 

providers to record dictations anywhere and anytime. Most of the time, it should be 

happening right after the encounter, possibly in front of the patient. For such scenarios, we 

believe that patients will be hearing of what is said, hence they will get the chance to 

provide clarification for any detail, which will be beneficial in reducing the dictation errors. 

Fratzke [51] observed the same pattern when they implemented a voice-assisted 

technology. 
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7.3 3-Layer Solution Framework 

In this thesis, we observed that the output from the first layer is not fully compatible to be 

used as the input of our second layer. Therefore, to develop a true end-to-end solution, we 

need to specify a processing layer in between both layers whose purpose should be to 

streamline the output of the first layer for the next layer.  

Sentence boundaries are marked by using a dot, also known as period. This dot shows 

where a sentence has ended in the text. In our final layer, we are using the sentence as the 

unit to classify. Therefore, those transcriptions without punctuation marks will certainly 

have some issues. A quick review shows that there are various solutions available that deal 

with the punctuation prediction task. We found a punctuation predictor based on a 

bidirectional recurrent neural network model with attention mechanism [126] that provides 

pre-trained models based on Wikipedia text. We tested this solution on our dataset and 

analyzed the results visually. We observed a few mistakes, though it generally felt 

satisfactory. This simple review of the problem shown us that punctuation prediction is an 

established problem in the research domain; hence we should give it a separate focus in 

our solution.  

 

Figure 7.1 Design for 3-Layer Solution Framework 

With all the observations we made in this work, we present a potential 3-layer solution 

framework for the problem of clinical documentation. All of the layers in this framework 

are connected as a pipeline. Figure 7.1 represents the design of the 3-layer solution 

framework. Each layer of this framework is defined below.  
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1. The first layer of this framework expects physicians recorded audio clips. This layer 

processes the input audio into text by using a noise and domain robust speech 

recognition system. 

2. In the second layer, the transcriptions from the first layers are analyzed for 

punctuations. Transcriptions are enriched with predicted punctuations and are given to 

the third layer. 

3. In the third layer, punctuated transcriptions are then classified for clinical reports. 

Sentences from transcriptions are extracted and then classified for various categories 

of the report structure.  

7.4 Limitations 

The size of the dataset possesses the biggest limitation of this work. Due to the small size 

of the dataset, we had to tweak our experiments accordingly. While experimenting with 

acoustic models, we initially wanted to train standalone models as well to hold a 

comparison. However, a few trials with training exhibited the limitations. Therefore, we 

skipped that scenario from our experiments. Similarly, during the SOAP classification, we 

sensed a lower level of overall classification performance. The algorithm that we extended 

and implemented in this layer was tested on a dataset five times in size than ours. Hence, 

we believe that a lower dataset has introduced a limitation in our work. 

Another limitation of this work is that all of the dataset labeling tasks were done by us, 

without the help of any domain specialist. We perceived the need for a specialist at two 

points. Firstly, at the time of generating gold standard transcriptions for dictation audios, 

and secondly, when we labeled the sentences into SOAP categories. While preparing 

transcriptions, we took help from one of the fellow members of our research group, who 

has a medical degree. However, we do not consider this fellow a domain specialist since it 

never practiced in the domain. 
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7.5 Future Work 

This work is primarily experimental; however, it sets a direction for further research. This 

thesis presents the solutions in terms of research areas that combine to form a solution 

framework. Particularly, the solution depends on three research areas: continuous speech 

recognition, punctuation prediction, and sentence classification. Any work that is done in 

any of these research areas has the potential to enhance the presented solution framework. 

Open-sourced offline SR are improving at a rapid pace. While working on this thesis, a 

new open-sourced offline SR Wav2Letter++ [94] was released reporting better 

performance then DeepSpeech [76] using similar models and datasets. Wav2Letter++ is 

developed to scale and work in real-life environments. At the time of our experimentations, 

its pre-trained models were not released, however, they are available at the time of writing 

this thesis. Wav2Letter++ is also based on the concept of end-to-end SR, whilst providing 

features to use custom acoustic models of different architectures. Therefore, we consider 

that using this toolkit can be a perfect next step towards the enhancement of this work. 

At the time of selecting methods for our final layer, we did not explore the sentence 

classification solutions from other domains. One can argue this as a limitation, but we 

consider this as the opportunity to move ahead in a logical manner. Since we were only 

able to find one study that addressed the problem of sentence segmentation for SOAP 

categories, the next logical step we took was to explore for similar problems within the 

same (healthcare) domain. Therefore, we consider that this work provides the basis to 

explore solution ideas from a different domain. We expect that examination of supervised 

approaches towards text classification for this problem can pose as an appropriate work in 

this direction. 

In the previous subsections, this chapter presented a 3-layer solution framework. We 

consider that this provides the opportunity to research the problem of clinical 

documentation in a more systematic way. However, the framework still needs active 

research and evaluations. Therefore, as future work, this 3-layer solution framework can 

be enhanced. 
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7.6 Conclusion 

Clinical documentation is a challenging process that poses multiple problems. Researchers 

are experimenting with speech recognition since its inception to develop efficient solutions. 

A review suggests that such solutions still lack adoption among healthcare providers. One 

reason is the lack of accuracy in domain-specific noisy environments. Another reason is 

that providers still need to intervene and perform manual changes. Therefore, this thesis 

considers the problem from the end-to-end perspective. It identifies two research objectives 

and translates them into individual layers of a solution model. 

The first layer seeks efficient transcription of dictations in domain-specific and acoustically 

distorted environments. We selected the DeepSpeech speech recognition system and 

performed preliminary experiments. We then presented methods to enhance the 

performance of both: acoustic and language; models. Evaluations show that all our 

modeling methods improve DeepSpeech performance. We show that by adapting and fine-

tuning the pre-trained acoustic model, along with enhancing the pre-trained language 

model using the augmented corpus from the domain-specific dataset, DeepSpeech can 

achieve performance levels very close to Google Speech API. 

The second layer aims to categorize transcriptions into SOAP categories. We select an 

exemplar-based concept detection algorithm and extend it to develop a sentence classifier. 

We identify four areas to enhance and implement our classifier for SOAP classification. 

Evaluations show that each SOAP category requires a separate setting for optimal 

performance, and no single set of independent variables will deliver the best performance 

for all categories.  

In this work, we observe that a two-layer solution could not exhibit as an end-to-end 

solution due to the lack of punctuations in the transcriptions. Therefore, this thesis 

discusses a 3-layered solution framework that can have the potential to become an end-to-

end solution. 
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Appendix A.  AP SCORES FOR SOAP CLASSIFICATION 

Table A.1 Micro-Averaged AP-Scores of All Classes  

  
Conditions 

1 2 3 4 5 6 7 8 

m
ax

 n
-g

ra
m

 le
n

gt
h

 

1 0.87152 0.84058 0.84252 0.85159 0.85459 0.81910 0.85184 0.81206 

2 0.88061 0.86977 0.86825 0.87163 0.85796 0.84112 0.84968 0.84737 

3 0.89237 0.86801 0.88100 0.87971 0.85346 0.84504 0.86390 0.85155 

4 0.88720 0.87295 0.88759 0.87017 0.86087 0.85578 0.84566 0.84874 

5 0.89675 0.88257 0.88595 0.87578 0.85288 0.83935 0.86702 0.86095 

6 0.88218 0.87506 0.89358 0.87889 0.86509 0.84752 0.86476 0.84768 

7 0.89209 0.87731 0.89252 0.88206 0.85856 0.85403 0.85644 0.85793 

8 0.89512 0.87937 0.89425 0.88162 0.86106 0.85125 0.86177 0.84217 

9 0.89086 0.88086 0.89328 0.87426 0.85684 0.85889 0.86656 0.85883 

10 0.88856 0.88010 0.88967 0.87997 0.86259 0.84090 0.87013 0.85468 

11 0.89134 0.87508 0.89125 0.87686 0.85885 0.85197 0.85369 0.84510 

12 0.88846 0.87587 0.89400 0.88105 0.85362 0.84972 0.86796 0.85585 

13 0.88870 0.86693 0.89375 0.87600 0.85575 0.83931 0.85644 0.85642 

14 0.87369 0.87150 0.89542 0.87421 0.86041 0.85231 0.86727 0.84845 

15 0.88625 0.87110 0.88969 0.87362 0.86681 0.85358 0.85403 0.86945 

Table A.2 Macro-Averaged AP-Scores of All Classes  

  
Conditions 

1 2 3 4 5 6 7 8 

m
ax

 n
-g

ra
m

 le
n

gt
h

 

1 0.79998 0.75426 0.76915 0.76028 0.76414 0.71638 0.77121 0.72274 

2 0.80459 0.77561 0.79090 0.79243 0.75770 0.75826 0.76001 0.75260 

3 0.80807 0.78539 0.79045 0.78538 0.76450 0.75281 0.76895 0.76315 

4 0.79333 0.78249 0.78759 0.76358 0.76157 0.75335 0.75009 0.75843 

5 0.80807 0.78237 0.79266 0.76794 0.75546 0.75181 0.75882 0.77015 

6 0.78405 0.77931 0.80132 0.76689 0.76495 0.75031 0.77623 0.75212 

7 0.79768 0.77712 0.79728 0.76820 0.76913 0.75521 0.74464 0.76786 

8 0.79060 0.77587 0.79075 0.77641 0.76729 0.76235 0.76174 0.75969 

9 0.79412 0.77728 0.78958 0.75259 0.76786 0.75242 0.74746 0.76732 

10 0.78881 0.77820 0.78910 0.76923 0.76689 0.76032 0.76641 0.75721 

11 0.79597 0.77398 0.79302 0.77094 0.76086 0.76354 0.76075 0.73879 

12 0.78550 0.77857 0.79082 0.78332 0.74792 0.76637 0.76998 0.76448 

13 0.79340 0.76907 0.79065 0.75373 0.75489 0.74406 0.75701 0.75932 

14 0.77876 0.77184 0.79121 0.76499 0.76382 0.75211 0.75768 0.76184 

15 0.78395 0.76465 0.78830 0.76070 0.77167 0.77614 0.74695 0.77150 
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Table A.3 AP-Scores of Two Classes (Subjective vs All)  

  
Conditions 

1 2 3 4 5 6 7 8 
m

ax
 n

-g
ra

m
 le

n
gt

h
 

1 0.90501 0.89149 0.88107 0.90806 0.91505 0.89741 0.89351 0.88440 

2 0.93336 0.92283 0.91246 0.92152 0.92710 0.89072 0.88780 0.91804 

3 0.94239 0.91865 0.92768 0.94003 0.90400 0.90593 0.91811 0.90613 

4 0.94333 0.93144 0.94016 0.93299 0.92555 0.92370 0.90864 0.91680 

5 0.95273 0.94288 0.93150 0.94842 0.92308 0.89751 0.92782 0.92390 

6 0.94767 0.94021 0.94799 0.95153 0.92594 0.90369 0.90920 0.91275 

7 0.94967 0.94131 0.94568 0.94773 0.90604 0.92381 0.92287 0.93336 

8 0.95740 0.93798 0.94737 0.95101 0.92411 0.91136 0.90881 0.90886 

9 0.94873 0.95107 0.94773 0.94274 0.90559 0.93126 0.92834 0.92388 

10 0.94585 0.94358 0.94162 0.94536 0.92514 0.90118 0.93022 0.91742 

11 0.94941 0.94000 0.93928 0.94745 0.92916 0.91121 0.90954 0.92416 

12 0.95327 0.93872 0.94868 0.94808 0.91769 0.90859 0.92494 0.91523 

13 0.95026 0.93438 0.95207 0.94390 0.92459 0.90395 0.90351 0.92396 

14 0.93729 0.92832 0.95703 0.95128 0.91915 0.91917 0.93349 0.92274 

15 0.95010 0.93111 0.94280 0.94444 0.92890 0.90565 0.91919 0.93660 

 

Table A.4 AP-Scores of Two Classes (Objective vs All)  

  
Conditions 

1 2 3 4 5 6 7 8 

m
ax

 n
-g

ra
m

 le
n

gt
h

 

1 0.90375 0.85260 0.87347 0.85891 0.87562 0.83632 0.87708 0.84159 

2 0.89769 0.88483 0.89230 0.88298 0.88828 0.87137 0.88961 0.87662 

3 0.90800 0.87393 0.90164 0.88555 0.89864 0.86943 0.88837 0.87976 

4 0.90251 0.88142 0.90932 0.88496 0.89250 0.88372 0.88241 0.88566 

5 0.90749 0.89293 0.91095 0.87892 0.87744 0.87557 0.90670 0.87394 

6 0.89953 0.87594 0.91214 0.88282 0.90129 0.87362 0.90426 0.87490 

7 0.90831 0.88341 0.90971 0.89423 0.89659 0.88469 0.88819 0.87681 

8 0.91126 0.89258 0.91615 0.88261 0.88810 0.87390 0.89979 0.86681 

9 0.91129 0.88297 0.91712 0.89106 0.90063 0.87826 0.90311 0.87514 

10 0.91113 0.88707 0.91147 0.89191 0.89916 0.87251 0.90402 0.87803 

11 0.91130 0.89220 0.91876 0.88074 0.88890 0.87459 0.90308 0.87257 

12 0.90712 0.88976 0.91710 0.88228 0.89269 0.87452 0.90712 0.88933 

13 0.90656 0.87141 0.91521 0.89360 0.89582 0.87049 0.90602 0.88417 

14 0.90707 0.88522 0.91463 0.87518 0.89538 0.88458 0.90084 0.86635 

15 0.90746 0.88614 0.91403 0.88204 0.89858 0.87836 0.88369 0.88256 
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Table A.5 AP-Scores of Two Classes (Assessment vs All)  

  
Conditions 

1 2 3 4 5 6 7 8 
m

ax
 n

-g
ra

m
 le

n
gt

h
 

1 0.62572 0.51981 0.58515 0.54963 0.48264 0.42715 0.50811 0.41564 

2 0.58350 0.52195 0.56644 0.57512 0.43244 0.49223 0.47429 0.44123 

3 0.59137 0.55334 0.55362 0.53872 0.44582 0.47400 0.47320 0.48630 

4 0.53987 0.53424 0.54579 0.47043 0.43733 0.45967 0.40620 0.45350 

5 0.60639 0.50124 0.56271 0.48171 0.43891 0.45345 0.42155 0.51026 

6 0.51899 0.50746 0.56486 0.47294 0.43950 0.46482 0.47102 0.44875 

7 0.55083 0.49840 0.57151 0.48657 0.48152 0.46541 0.42106 0.47560 

8 0.53778 0.49373 0.55106 0.49727 0.45034 0.46598 0.46191 0.46540 

9 0.55811 0.50911 0.53652 0.43471 0.45231 0.46446 0.44352 0.49112 

10 0.55279 0.52788 0.53187 0.47275 0.43585 0.47011 0.46762 0.45519 

11 0.56682 0.51310 0.55637 0.51224 0.43034 0.49273 0.44681 0.44773 

12 0.54444 0.50459 0.54401 0.54557 0.43188 0.50355 0.44888 0.48709 

13 0.56513 0.49285 0.53277 0.44201 0.39557 0.44036 0.45409 0.45822 

14 0.52844 0.51922 0.53272 0.48407 0.42753 0.42670 0.42524 0.49405 

15 0.54566 0.50524 0.53355 0.45283 0.49985 0.52671 0.44175 0.52557 

 

Table A.6 AP-Scores of Two Classes (Plan vs All)  

  
Conditions 

1 2 3 4 5 6 7 8 

m
ax

 n
-g

ra
m

 le
n

gt
h

 

1 0.76542 0.75312 0.73690 0.72453 0.78324 0.70465 0.80615 0.74932 

2 0.80380 0.77281 0.79240 0.79008 0.78297 0.77872 0.78832 0.77451 

3 0.79052 0.79562 0.77884 0.77720 0.80953 0.76187 0.79611 0.78040 

4 0.78761 0.78287 0.75510 0.76593 0.79089 0.74632 0.80311 0.77775 

5 0.76565 0.79241 0.76548 0.76269 0.78241 0.78070 0.77922 0.77251 

6 0.77001 0.79364 0.78029 0.76025 0.79305 0.75910 0.82042 0.77209 

7 0.78190 0.78535 0.76220 0.74425 0.79237 0.74693 0.74642 0.78567 

8 0.75596 0.77918 0.74840 0.77476 0.80662 0.79814 0.77646 0.79768 

9 0.75836 0.76597 0.75696 0.74186 0.81290 0.73569 0.71488 0.77912 

10 0.74545 0.75426 0.77144 0.76691 0.80741 0.79749 0.76379 0.77821 

11 0.75635 0.75062 0.75767 0.74334 0.79502 0.77564 0.78358 0.71071 

12 0.73718 0.78119 0.75350 0.75734 0.74943 0.77882 0.79898 0.76625 

13 0.75164 0.77764 0.76255 0.73542 0.80356 0.76144 0.76442 0.77093 

14 0.74224 0.75461 0.76046 0.74943 0.81323 0.77798 0.77115 0.76423 

15 0.73256 0.73611 0.76280 0.76349 0.75936 0.79384 0.74318 0.74126 

 


