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Abstract 
A critical review of lichen mineral studies is presented. Emphasis is placed on 
laboratory studies that discriminate between extracellular exchangeable binding 
and intracellular uptake of metals, biomonitoring studies and the significance 
of trapped particulate matter, and the role of biogenic metal-rich crystals in 
rock-weathering studies. Cross-fertilisation of ideas from such studies is recom­ 
mended in order to avoid the acceptance of partly verified hypotheses. New data 
are presented on the influence of thallus age and morphology on metal uptake. 

Keywords: metal uptake, extracellular and intracellular sites, trapping particulate 
matter, biogenic crystals, morphology and age 

1. Introduction 

"Lichen mineral studies" is an expression that will convey different mean­ 
ings to researchers depending upon their particular interests. Thus a labora­ 
tory worker might view the subject in terms of the exchangeable uptake of 
cations according to predictable physico-chernical laws, emphasizing the cell 
wall as a major cation binding site, or consider the quantitatively smaller, 
trans-membrane carrier-mediated uptake of metals to intracellular sites and 
their metabolic consequences. Field workers using lichens as biomonitors stress 
the occurrence of particles derived from factories, mine sites or automobiles, 
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whereas those interested in phenomena such as rock weathering may high­ 
light the occurrence of biologically formed extracellular metal-rich crystals. 
Regrettably, inadequate cross-fertilisation of ideas occurs between these disci­ 
plines. 

In this article certain aspects of mineral studies are critically reviewed, in 
order to encourage researchers to attempt to test or verify hypotheses directly 
rather than relying upon extrapolation and assumption from other studies. 
Examples are quoted that present the diversity of conclusions, and their choice 
reflects a laboratory worker's knowledge of the literature. Some new data are 
introduced. 

2. Cellular Location of Elements 

The majority of early studies on metal uptake by lichens emphasize the fact 
that most uptake is by a cation exchange process to extracellular sites, pre­ 
sumed to be in the cell walls and on the outer surface of the cell membrane 
(Brown, 1976; Nieboer et al., 1978; Boileau et al., 1985a). This high cation 
exchange capacity has frequently been used to explain enhanced levels of min­ 
erals, especially heavy metals, in both bryophytes and lichens. Cell death can 
increase such uptake, presumably by exposing suitable binding sites previously 
protected by the cell membrane (Nieboer et al., 1976; Richardson et al., 1985). 
The chemical nature of these negatively-charged exchange sites is still the sub­ 
ject of speculation (Richardson et al., 1985). Resolution of this point may 
contribute to our understanding of why different species bind different quan­ 
tities of metals (e.g. Richardson and Nieboer, 1983; Brown and Beckett, 1983; 
Brown, 1987), and permit more reliable predictions to be made of binding ca­ 
pacity and binding affinity. Uncertainty exists as to the relative contribution 
made by each symbiont within a lichen to cation binding, although thallus 
layers have shown a range of uptake capacities in closely related species (Asta 
and Garrec, 1980; Goyal and Seaward, 1981; Richardson and Nieboer, 1983). 
The predictable replacement of one element by another on extracellular ex­ 

change sites has been used as the basis for a sequential elution procedure 
(Beckett and Brown, 1984a; Brown and Buck, 1985; Brown and Wells, 1988). 
After cation exchange, generally using nickel or lead as the displacing agent, 
intracellular elements can be recovered by treating samples with acid to rup­ 
ture the cell membrane and release elements from within the cell. This tech­ 
nique has been used, for example, to determine the effect of desiccation on the 
maintenance of intracellular metal levels (Buck and Brown, 1979), cadmium 
uptake kinetics, interactions with other cations (Beckett and Brown, 1984b; 
Brown and Avalos, 1990), and movement of heavy metals from the cell wall to 
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the cell interior (Brown and Beckett, 1985). The latter observation suggests 
that the cell wall, rather than being a device to protect the cell interior from 
toxic elements, may potentially act as a reservoir for such metals. 
Toxicity of heavy metals to lichens has been assessed by short-term labora­ 

tory experiments (Boileau et al., 1985b). Observations suggest that cyanobac­ 
terial lichens are more sensitive than chlorophycean lichens to heavy metals 
(Brown and Beckett, 1983), that specific metal tolerance may be induced in the 
laboratory (Beckett and Brown, 1983) and that populations of Peltigera spp. 
on abandoned mine sites may possess tolerance due to reduced intracellular up­ 
take of toxic metals (Beckett and Brown, 1984b), although the latter requires 
further investigation (Brown and Avalos, 1990). Damage to cell membranes 
can cause loss of soluble intracellular chemicals (Buck and Brown, 1979). Garty 
et al. (1985a) showed that chlorophyll damage correlated with metal uptake 
when lichens were transplanted to polluted areas. The recovery of soluble ele­ 
ments in incubation media or washing solutions has been used as a measure of 
cellular damage by metals in the laboratory (Puckett, 1976), or air pollution 
in the field (Alebic-Juretic and Arko-Pijevac, 1989), but these can be underes­ 
timates due to cations becoming bound to the cell wall exchange sites during 
the release process (Buck and Brown, 1979). 

3. Biomonitoring and Trapping Particulate Matter 

Lichens appear to be efficient at trapping particulate matter from the en­ 
vironment. Thus, with distance from particle emission sources, declines have 
been reported in ash content (Richardson and Nieboer, 1980), and a variety of 
metals, including mercury (Bargagli et al., 1987a, 1989), uranium and lead ( e.g. 
Beckett et al., 1982), and iron and titanium (e.g. Nieboer et al., 1982; Looney 
et al., 1985). Distribution patterns are not always identical for all elements 
and species (e.g. Thompson et al., 1987). Analyses of iron, titanium, alu­ 
minium and silicon have all been used as measures of particulate matter in the 
form of soil, rock or factory emissions (Addison and Puckett, 1980; Bosserman 
and Hagner, 1981; Moser et al., 1983; Puckett, 1985, Vestergaard et al., 1986; 
Bargagli et al., 1989), with the presumption that they are relatively insoluble 
and, for the latter three, are assumed to be non-essential elements. Although 
Gough et al. (1988) showed a correlation between titanium and ash content 
in the terricolous lichen Parmelia chlorochroa, they failed to detect such a 
correlation with the epiphytes Hypogymnia enteromorpha and Usnea spp. 
Linear correlations between the iron and titanium concentrations in lichens 

have been used to reinforce the concept of trapping of unmodified soil particles. 
They have been extended to suggest that similar correlations between iron, 
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titanium, aluminium, or silicon and other elements imply a common particulate 
origin (e.g. Nieboer et al., 1978). However, in the same article, it was shown 
that extrapolation of the relationship between iron and titanium content to 
zero titanium showed a positive iron content in the lichen, which was suggested 
to be the quantity of this essential element required by the plant. Whether the 
iron was derived from the partial dissolution of soil particles trapped in the 
lichen, or from an entirely different source was not established, but it raises 
the possibility that metal-rich particles may not be entirely inert within the 
lichen. No attempt appears to have been made to test this possibility directly. 
Washing lichens with water before analysis often, but not invariably, de­ 

creases the recovery of heavy metals (Lawrey and Rudolph, 1975; Brown, 
1976; Lawrey and Hale, 1981, 1985). Gough and Erdman (1977) showed that 
washing removed contaminating particles from the surface of rhizinae. It is 
concluded that such losses represent removal of surface particulate matter, 
although most experiments failed to monitor for loss of intracellular soluble 
elements in order to distinguish particulate release from desiccation-induced 
damage (Buck and Brown, 1979). There have been relatively few reports 
demonstrating the chemical nature of particles trapped within lichens ( Garty 
et al., 1979; Galun et al., 1984; Olmez et al., 1985), but these show that 
metal-rich particles can reach the interior of the thallus, thereby making re­ 
lease by washing difficult. Bargagli et al. (1987a) concluded, after a sequence 
of homogenisation, centrifugation and digestion of organic material, that, with 
Parmelia sulcaia from Mt. Amiata, the presence of aluminium may have been 
due to soil particles but that mercury was acquired as volatile mercury that had 
become associated with organic matter. The same lichen from Mt. Etna may 
contain soil-derived mercury-rich soil particles (Bargagli et al., 1989). As the 
usual exponential decline in mercury content with distance was seen in both 
studies, these papers emphasize that caution must be shown when generalising 
about metal acquisition processes. 

Factory emissions come in a range of particle sizes and compositions, espe­ 
cially where metals are surface deposited on such particles. The relationships 
between the efficiency of particle entrapment, size of particle and form of the 
acceptor have been considered for other groups of plants (e.g. Clough, 1975; 
Little, 1979; Brown, 1984). Schuepp (1984) used an unidentified, fruticose, 
nickel-plated lichen (sometimes with wax infilling of interstitial spaces) and 
nickel-wire roughness (wire) to show that such porous surfaces acquired more 
submicron-size aerosol by convective deposition than did flat surfaces. Garty 
et al. (1985b) coated Ramalina duriaei with various polymers and found that 
some decreased copper and nickel uptake, but not lead uptake, during trans­ 
plant experiments. In a comparison of lichen chemistry and air-borne particles, 
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Olmez et al. (1985) concluded that foliose epiphytic Parmelia spp. preferen­ 
tially trapped larger-sized particles, probably by dry deposition or impaction 
rather than rainfall. Garty (1985) and Garty and Ammann (1987) considered 
that a high coefficient of variation between lichen samples for their metal con­ 
centration was indicative of the entrapment of large particles. However, the low 
coefficient of variation reported for zinc may reflect its status as an essential 
element that is generally found in higher concentrations than the more vari­ 
able (but also essential) copper and manganese and (assumed non-essential) 
chromium and nickel. 

Correlations between atmospheric deposition ( which includes both wet and 
dry deposition) and lichen composition have been attempted occasionally (e.g. 
Andersen et al., 1978; Pilegaard, 1979; Olmez et al., 1985; Vestergaard et 
al., 1986). Vestergaard et al. (1986) considered that poor correlation between 
bulk precipitation and lichen chemistry close to an emission source reflected a 
change in particle size distribution. Other studies have compared lichen com­ 
position with annual deposition data (Herzig et al., 1989). Uptake by trans­ 
planted lichens was relatively rapid (Pilegaard, 1979; Deruelle, 1984; Bartok, 
1988). Such studies appear to assume that metal uptake is a one-way process: 
once acquired metals are never released. Decreases in lichen heavy metal con­ 
centrations have been reported when particulate emissions from power plants 
and a foundry were reduced (Showman and Hendricks, 1989). However, be­ 
cause the age of the lichens sampled after controls were introduced was not 
stated, it is not clear whether only recently formed tissue was analysed or 
whether actual loss of metal occurred. Deruelle (1984) showed that lead ac­ 
quired by lichens transplanted to sites contaminated with automobile exhaust 
was lost within months when they were returned to their original uncontami­ 
nated site. 

Field radio-isotopic studies are amongst the few where consideration is given 
to the biological residence time of an element (reflecting thallus growth and 
redistribution within the thallus ). Differences between elements probably re­ 
late to the solubility of trapped particles, meteorological conditions at the site 
investigated, and expectations about the biological behaviour of comparable 
physiological elements (e.g. Ellis and Smith, 1987). However, it is not known, 
for example, whether 210Pb ( or its daughter product 310Po) is initially acquired 
in the form of particulate matter (Ellis and Smith, 1987) is then dissolved to 
behave as a cation (Schwartzman et al., 1987), nor has this been tested exper­ 
imentally. 

Using various, more or less detailed, computational procedures many workers 
have concluded that it is possible to establish the nature of the source of 
individual elements in lichens (Saeki et al., 1977; Puckett and Finegan, 1980; 



212 D.R. BROWN 

Bosserman and Hagner, 1981; de Bruin et al., 1986; Jenkins, 1987). These 
reports tend to imply that the lichen is incapable of modifying or controlling the 
quantity or balance of elements it acquires. Variations occur in the potassium 
to calcium ratio in different epiphytic species but, although the actual amounts 
may differ, within a species this ratio is fairly constant, irrespective of the tree 
species involved (Kuziel, 1973). Lichens are known to modify the chemistry 
of rainfall as it passes over them (Lang et al., 1976; Crittenden, 1983, 1989), 
although the actual results may have been modified by the use of incomplete 
lichen thalli and/or desiccation-induced damage. Puckett (1985) found that 
potassium and magnesium concentrations were correlated within the lichen but 
not in the incident precipitation and that seasonal variation in the aluminium 
and potassium concentrations in lichens and precipitation did not coincide. It 
was suggested that the latter observation may reflect the different responses 
of lichens to metals in rain and snow; snow-melt may wash off more elements 
than it introduces. Crittenden (1983, 1989) showed that the concentration of 
elements is rapidly reduced during rainfall events. How the lichen reacts to this 
changing concentration is unknown, but most researchers use average chemical 
values for rain without taking account of the dynamic situation which exists. 
The enhanced accumulation with increasing altitude that occurs with some, 
but not all, elements (Kwapulinski et al., 1985a, 1985b; Bargagli et al., 1989) 
may be related to greater rainfall and wash-out of particles dispersed over long 
distances. 
While interspecies calibrations have been reported between lichens and other 

plants (Folkeson, 1979), metal uptake by lichens does not invariably correspond 
with the patterns shown by other monitoring systems, e.g. bark (Laaksovirta 
et al., 1976) and pine needles (Bargagli et al., 1987b ). This may partly re­ 
flect differences in particle-trapping ability (Puckett and Finegan, 1980), but 
some note must be taken of the possibility of lichens removing minerals from 
their substratum. Although Kabata-Pendias et al. (1989) reported significant 
correlations between lichen zinc and total and extractable zinc in soils, this 
still does not preclude zinc uptake being due to soil-particle trapping. Kovacs­ 
Lang and Verseghy (1974) noted that the potassium and calcium contents of 
terricolous lichens varied during the year, being generally higher during the 
autumn and winter, but found no correlation between lichen concentration 
and the water-soluble soil elements, despite comparable seasonal changes. For 
many elements, epiphyte chemistry has been significantly correlated with sur­ 
face and underlying bark chemistry ( de Bruin and Hachenitz, 1986) and lichen 
hyphae have been shown to penetrate as far as xylem elements in trees ( Ascaso, 
1985). Unfortunately statistical correlations only show numerical relationships 
between two features and not that there are direct biological relationships. The 
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selectivity of element uptake to the cell wall and cell interior shown in labora­ 
tory experiments often appears to be overlooked in field studies in which the 
lichen is treated almost as a passive single unit. 

4. Rock Weathering and Biogenic Particles 

Lichens alter the chemistry of rocks on, or in, which they are growing (Kerr 
and Zavada, 1989). This process can either involve dissolution and loss of spe­ 
cific elements or, more regularly reported, concentration of elements in specif­ 
ically generated chemicals. Thus biogenic oxalates containing either calcium, 
magnesium, copper or manganese have been reported using X-ray diffraction 
or visualised by scanning electron microscopy ( Jones and Wilson, 1986; Jones, 
1988). Most studies have investigated crustose lichens but, since Erdman et al. 
(1977) found calcium oxalate in Parmelia chlorochroa, biogenic crystals should 
be sought amongst the particulate matter present in samples used for biomon­ 
itoring. Buck and Brown (1979) postulated the occurrence of calcium oxalate 
crystals in epiphytes from dry habitats to account for the very variable calcium 
analyses in such plants. 
Lichen phenolic substances have often been proposed as suitable agents for 

rock weathering due to their metal chelating abilities (Rundel, 1978). Ascaso 
(1985) reviewed the possibility of lichen acids causing release of elements from 
rock and the formation of clay minerals. Others have questioned the quanti­ 
tative significance of these processes in nature, both from direct observation 
and because of the low solubility of lichen phenolics (Jones and Wilson, 1986). 
Recently copper-norstictic acid (Purvis et al., 1987) and copper-psoromic acid 
(Purvis et al., 1990) have been identified in crustose lichens from copper-rich 
substrata. These have been suggested to contribute to the heavy metal tol­ 
erance of the lichen involved but, as not all species in such habitats contain 
these complexes and copper is an essential element, this cannot be a universal 
extracellularly developed tolerance mechanism. It is also notable that acetone 
treatment of lichens, which removes phenolic lichen acids and probably dam­ 
ages cell membranes, leads to enhanced, rather than reduced, metal uptake 
(Brown, 1976; Richardson et al., 1985). 

I 

~ 5. Influence of age and morphology of lichen thalli 

Elevated metal concentrations in central, older, parts of foliose lichen thalli 
have been attributed to slow and prolonged mineral uptake (Schutte, 1977; 
Hale and Lawrey, 1985; Bargagli, 1989). Higher concentrations of divalent 
metals in older parts of Cladonia thalli could also be related to the longevity 
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of the tissue (Pakarinen, 1985; Brown, 1987). If metal uptake is in the form of 
insoluble particles, then this relationship could be a reasonable explanation, 
especially if particles can penetrate through cortical layers into the thallus 
interior. However, the above discussion suggests that equilibration to new 
metal levels can be achieved relatively rapidly in both the laboratory ( section 2) 
and the field (section 3). 
It is possible that higher metal concentrations in older tissue may reflect a 

greater cation exchange capacity in older parts of the thallus. Somewhat sur­ 
prisingly, there do not appear to be any reports of age-related uptake of soluble 
cations. Table 1 shows the results of one such experiment where 6 mm discs 
of rhizinae-free Peltigera membranacea (collected from a calcareous woodland, 
at Goblin Combe, Avon) were bubbled in deionised water or 0.01 M zinc sul­ 
phate for 60 min, before subjecting them to the sequential elution procedure 
(Beckett and Brown, 1984a). "Young" discs were taken from within 1 cm of 
the lobe margin and "old" discs 5 cm from the lobe margin. The results show 
that untreated field samples contain higher concentrations of zinc and calcium 
in older tissues. The slightly lower concentrations of magnesium and potas­ 
sium in older tissues may reflect minor cell senescence with loss of intracellular 
ions and the exposure of additional cation exchange sites (see section 2). High 
and variable levels of calcium in the acid fraction may represent particulate 
material or calcium oxalate crystals rather than strictly intracellular metals. 
For both zinc and calcium, field samples showed approximately the same metal 
concentrations on the extracellular exchange sites and in the intracellular frac­ 
tion. 

Following zinc treatment, substantial zinc uptake occurred at the exchange 
sites, with loss of pre-existing wall-bound divalent cations (Table 1 ). As a 
consequence of using high zinc concentrations some release of intracellular 
potassium occurred, which was recovered in the washing solutions and from 
the exchange sites. Greater zinc uptake occurred in the older discs, mostly to 
the cell wall exchange sites, but some also to the cell interior. This experiment 
shows that while older tissue of P. membranacea may contain elevated metal 
levels, these may be particulate. Addition of saturating levels of zinc showed 
that the old tissue has, compared to the young, a higher cation exchange 
capacity. How much of an individual exchangeable metal is present in field 
material must reflect the composition of the last solution to bathe the thallus, 
the route of acquisition by a particular tissue, and the affinity of sites in tissues 
of different age for the available elements. 
The role of morphology in metal acquisition is a seriously under-investigated 

topic. Nash and Sommerfield (1981) suggested that morphological form may 
account for some variation in element composition. Goyal and Seaward (1982a) 
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Table 1. Location of elements in samples of two different ages from untreated and zinc­ 
treated Peltigera membranacea 

Condition Concentration in cellular fractions (µg g-1) 
Inter- Extracellular Intra- Total1 
cellular exchangeable cellular 

Zinc 
Untreated young2 7 46 23 76±22 

old 6 56 83 145±6 

Treated3 young 591 2809 181 3581±101 
old 641 4542 254 5437±211 

Calcium 
Untreated young 96 1785 1057 2938±555 

old 58 2495 2105 4658±1626 

Treated young 36 604 1125 1765±1394 
old 71 384 550 1005±574 

Magnesium 
Untreated young 41 278 895 1214±61 

old 20 261 537 818±107 

Treated young 1 100 1038 1139±178 
old 1 65 346 412±42 

Potassium 
Untreated young 105 216 5002 5323±526 

old 93 60 4825 4978±859 

Treated young 453 305 4972 5730±1636 
old 168 204 3949 4321±90 

1 Mean ± standard deviation (n=3). 
2 Discs cut 1 cm (young) or 5 cm (old) from thallus margin. 
3 Bubbled for 60 min in deionised water (untreated) or 0.01 M zinc sulphate (treated). 

suggested that differences in tissue dimensions may have been induced by ex­ 
posure to heavy metals. However, some of the reported changes may reflect 
responses to other stresses, such as desiccation (Snelgar and Green, 1981), ex­ 
perienced in different metal-contaminated habitats. Goyal and Seaward (1981) 
reported highest metal levels in the rhizinae of field samples of Peltigera col­ 
lected from metal-rich sites, where, despite washing, particulate contamination 
within the fungal mass was still possible. Subsequently Goyal and Seaward 
(1982b) experimentally verified that rhizinae acquired higher total concentra­ 
tions of metals than did thallus discs without rhizinae. 

Table 2 shows the results of a comparable experiment to that reported in 
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Table 2. Location of elements in discs and rhizinae of untreated and zinc-treated Peltigera 
membranacea 

Condition Quantity in cellular fractions (µg sample=+) (µg g-1) 
Inter- Extracellular Intra- Total Total1 
cellular exchangeable cellular 

Zinc 
Untreated! Disc3 0.59 0.87 0.49 1.95 115±20 

Rhizinae 0.10 0.21 1.54 1.85 · 1085±585 
Treated2 Disc 2.48 14.16 4.21 20.85 1345±280 

Rhizinae 7.40 50.48 0.60 58.48 33565±4780 

Calcium 
Untreated Disc 1.30 31.81 5.32 38.43 2720±135 

Rhizinae 2.99 5.14 9.07 17.20 9845±3735 

Magnesium 
Untreated Disc 0.86 5.67 4.05 . 10.58 610±25 

Rhizinae 0.54 0.94 0.42 1.90 1050±190 

Potassium 
Untreated Disc 3.29 0.99 81.51 85.79 4845±875 

Rhizinae 8.62 4.62 3.56 16.80 9545±3360 
1 Mean ± standard deviation (n=3). 
2 See Table 1 for explanation of conditions 
3 Discs cut 3 cm from thallus margin. 

Table 1 but where intact discs cut 3 cm from the margin were treated with 
water or a zinc solution and subsequently, after separation into rhizinae and 
discs, assayed by the sequential elution procedure. Because of the difficulty 
of obtaining reliable weights for the small mass of rhizinae, data are mainly 
presented as zinc (µg) per sample. Rhizinae represented approximately 10% of 
the total disc weight. This data cannot, therefore, be directly compared with 
that of Goyal and Seaward (1981, 1982b) but does, however, show the relative 
proportions of zinc in the two fractions. Total metal concentrations are also 
included to permit such direct comparisons. 

Field samples contained, on a weight per sample basis, almost 50% of the 
zinc in the rhizinae, which increased to 73% after zinc treatment (Table 2). 
For field samples rhizinae contained, as a percentage of the intact disc, cal­ 
cium 31 %, magnesium 14%, and potassium 18%. Field samples of rhizinae 
had high levels of zinc in the "intracellular" fraction but this could partly rep­ 
resent trapped particulate matter. After zinc treatment the low level of zinc 
in the intracellular fraction of the rhizinae may reflect the loss of soluble cell 
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constituents, viz. potassium, possibly as a result of desiccation of the rhizinae 
before starting the sequential elution sequence. The smaller percentage loss 
of potassium from the discs suggests that they are less damaged by handling. 
Following zinc treatment, zinc was mostly located on the cell wall exchange 
sits of the rhizinae. The results show that rhizinae can represent a major site 
for exchangeably binding zinc but, in these samples from a relatively uncon­ 
taminated site, this property is apparently not fully utilised. 

6. Conclusions 

The present discussion has attempted to demonstrate some of the areas of 
lichen mineral studies where one group of researchers may consider definite 
statements can be made while other groups may see uncertainty. For exam­ 
ple, laboratory studies involving the location of elements in different cellular 
fractions by the sequential elution procedure is adequate unless measurable 
particulate contamination occurs. Metal-rich particles may become trapped 
by lichens, especially where particulate emissions occur, but final metal con­ 
centrations, and therefore discussions on metal origin, must take into account 
the possibility of partial particle dissolution and redistribution of elements onto 
extracellular exchange sites, into the cell or re-disposition as organic crystals. 
Material bound to exchange sites is susceptible to relatively rapid removal 
when environmental conditions change, i.e. as a consequence of meteorolog­ 
ical changes during the year. Lichen mineral studies are a highly complex 
and dynamic activity, deserving fuller investigation in order to improve the 
use of these plants as precise, quantitative, and predictive biomonitors of the 
environment. 
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