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“Far better an approximate answer to the right question, which is often

vague, than an exact answer to the wrong question, which can always be

made precise” – John W. Tukey.
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ABSTRACT

With high-dimensional measurements becoming increasingly common in chemistry, the

efficient extraction of meaningful information from chemical data has never been more

important. Chemometrics, a sub-discipline of analytical chemistry, emerged from the need

for more advanced multivariate data analysis methods capable of solving more complex

chemical problems. The goal of chemometrics can simply be stated as the differentiation

between chemical variance and the variance due to measurement error. All analytical

measurements are subject to errors, sometimes called noise, that contribute uncertainty to

any type of analysis. The current state of the literature lacks both realistic noise simulation

in the evaluation of new algorithms, as well as approachable methods to perform such

noise simulation. Chapters 2, 3, and 4 of this thesis address these shortcomings. Chapters

2 and 3 describe a simple method for simulating realistic analytical measurement errors

while Chapter 4 describes a method for accommodating different error structures in the

analysis of fused multivariate data, an advance that circumvents the need for complicated

preprocessing of these increasingly common data structures.

Although many advances have been made in developing new algorithms that provide

meaningful results when exploring modern chemical data sets, variance-based methods,

such as principal component analysis (PCA), still dominate the field. A promising alterna-

tive algorithm that is not based on variance is projection pursuit analysis (PPA). However,

due to the nature of the ordinary PPA algorithm, it requires the use of PCA when there are

many response variables with respect to samples, which is the case in most multivariate

chemical data sets. Chapter 5 and 6 address this issue by proposing a sparse PPA algorithm

that is independent of PCA and is shown to reveal meaningful results where PCA and

ordinary PPA cannot. Another issue with ordinary PPA is that it performs poorly when

applied to unbalanced data sets or data sets with a number of classes not equal to a power

of 2. Chapter 7 addresses this issue by implementing an augmentation strategy that allows

for the analysis of unbalanced data and the sequential extraction of clusters with projection

pursuit.
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CHAPTER 1

INTRODUCTION

With an increase in data complexity, mostly driven by advancements in instrumentation, an-

alytical chemistry has evolved over the past few decades into much more of an information

science. Intelligent instruments that provide high-dimensional data in the form of matrices

and vectors are now the norm.1 This evolution in the field, and the parallel increase in com-

putational power, spawned a new sub-field of analytical chemistry called chemometrics.2

Chemometrics, a term coined by Svante Wold in a grant application in the 1970s, seeks

to improve the efficient extraction of chemical information from data.3 Tools developed

to address multivariate problems in other fields, such as principal component analysis

(PCA),4 hierarchical cluster analysis (HCA),5 and partial least squares (PLS) regression,6

are now at the forefront of data analysis in chemistry. However, there is a demand for new

analysis tools that are useful for investigating the wide array of evolving problems in many

analytical applications and techniques (e.g. metabolomics,7 hyperspectral imaging,8,9

environmental analysis10).

Most often, the roots of the data analysis tools used in chemometrics come from

techniques founded in other scientific disciplines (e.g. deep learning,11 support vector

machines (SVM)12), or the adaption of a previous method that provides improved analysis

results. Regardless of a method’s origin, it is of the utmost importance to understand how

the method operates and compares to others in the field. A key component in understanding

the fundamentals of an algorithm is the simulation of realistic data and their errors. This

not only benefits the researcher employing the method, but also the scientific community,

as new insights can be made which can lead to improved methods or the development of

superior alternatives.
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This chapter serves to present the reader with the background required to appreciate

the results of the remaining chapters. We will begin with a discussion of multivariate

chemical data and the relevant tools used for its exploration. Following this, a discussion

of algorithm development and the important role of simulation is presented. The chapter

concludes with an illustrative example to unify the central themes of the thesis and a

discussion of the key topics that serve to motivate the problems addressed in the work

presented in the remaining chapters.

1.1 Multivariate Chemical Data

The measurement tools used by early researchers in the field of analytical chemistry pro-

duced predominantly univariate data, acquiring a single scalar measurement on a system.

For example, techniques based on weighing, titrating, and single channel spectroscopy

are all univariate measurements which were used to investigate various problems of

interest during that time.13 In contrast to univariate measurements, modern analytical tech-

niques are mainly multivariate in nature, such as high-performance liquid chromatography

(HPLC), mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, and

infrared (IR) spectroscopy.14 Each of these multivariate measurement techniques measure

a response as a function of multiple variables (retention time for HPLC, wavelength for

IR, chemical shift for NMR, and mass-to-charge ratio for MS). In turn, this produces

multivariate data in the form of vectors, matrices, and in some cases, such as hyphenated

methods,15–18 higher-rank tensors (multiway data). Typically, when more than one sample

is analyzed using a multivariate technique, the data are organized such that one dimension

corresponds to the various samples and the other corresponds to the response variables

common for all samples. For example, if multiple spectra were obtained for different

mixtures, one could construct a matrix where each row corresponds to a different sample

and each column corresponds to a specific wavelength channel. For multiway data that

involve additional variables (e.g. time), additional dimensions are typically added to form

higher-order tensors (cubes or hyper-cubes).

Although the structure of multivariate data is more complex than univariate data, it

undoubtedly has the opportunity to contain more information about the measured system.19

Not only does multivariate data contain information from each channel individually, but it

also contains information about the relationships among the channels. This allows for the
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extraction of information that cannot be obtained through any of the individual variables,

but is expressed in a combination of the individual variables. These combinations of

observable variables cannot be measured directly and, therefore, are referred to as latent

variables. However, since modern data sets contain thousands or even millions of response

variables, finding the relationships among variables is practically impossible without

implementing a set of rules that are applied to the data in attempt of uncovering useful

information. These rules, or collection of rules, define the data processing methods or

algorithms. These methods usually rely on principles of multivariate statistics and the act

of applying such methods is called multivariate analysis.20

1.2 Exploratory Data Analysis

One of the most popular approaches for analyzing multivariate data is “exploratory data

analysis”, a phrase originally coined by John W. Tukey. The idea of exploratory data

analysis is to approach a data set with an open mind and an adaptability, where the goal is to

find information in the data set that may reveal a hypothesis worthy of further investigation.

This is the opposite of confirmatory data analysis, where one uses traditional statistical

concepts such as confidence, inference and significance to accept or reject an already

defined hypothesis. Tukey describes this idea by stating “finding the question is often more

important than finding the answer”.21 However, he was not proposing that exploratory data

analysis replace confirmatory data analysis, merely that exploratory data analysis is an

additional approach an analyst can use in attempt to reveal information in a complex data

set.

A major element of exploratory data analysis is data visualization.22 Representing

high-dimensional data in one, two, or three dimensions allows the analyst to visualize

relationships among objects (e.g. samples from an experiment) in a lower-dimensional

space. This can be interpreted as mapping the high-dimensional data to a lower-dimensional

space. Of course, there are many ways to define this mapping function. One method

that is ubiquitous across multiple scientific disciplines is principal component analysis

(PCA).4,23,24 Within the fields of chemistry, a wide variety of visualization methods have

been employed to examine the relationships among objects (e.g. hierarchical clustering,

self-organizing maps), but PCA is unequivocally the most widely applied, with applications

including chemotaxonomy, medical diagnostics, forensics, metabolomics and proteomics.
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Exploratory data analysis is usually performed with unsupervised data analysis methods,

which is in direct contrast with another class of analysis algorithms called supervised

data analysis methods.25 Unsupervised methods, sometimes referred to as unsupervised

learning methods or algorithms, attempt to extract useful information from data without

utilizing any input about the information they are attempting to discover (e.g. sample class,

chemical concentration). Because of this, unsupervised methods are less vulnerable to

bias introduced by prior knowledge within the algorithm and reveal natural structures in

data. For example, suppose there is a set of analyzed tissue samples that were obtained

from both normal and diseased patients. This is a two-class data set with respect to the

normal and diseased states. Although this class information would not be used by an

unsupervised algorithm, the results may reveal that the data naturally separate into two

clusters in the low-dimensional space obtained by the algorithm. By labeling the classes in

this space using the class information it is possible to reveal that this analysis method is

able to discriminate between the diseased and normal patients using only the information

from the measurements. For this reason, unsupervised exploratory methods have become

de facto methods for evaluating hypotheses for multivariate data sets.

In contrast, supervised methods, which include supervised classification (e.g. linear

discriminate analysis (LDA)) and multivariate calibration (e.g. partial least squares regres-

sion (PLS)), provide the algorithm with the target information (e.g. object class, chemical

concentration). The algorithm builds a model to predict this information, but because the

number of variables often greatly exceeds the numbers of objects (samples), such models

can be prone to bias, referred to as “overfitting”. This means that, while the model may

be effective for data in the data set used to train it (the training set), it will fail when

applied to new samples. From a classification perspective, this means that supervised

methods may give a satisfactory visual representation of classes for the training set, but fail

to correctly classify future samples because the model is based on spurious correlations.

Although supervised methods are potentially more powerful than unsupervised methods,

they require careful validation (external data, cross-validation, etc.) and experimental

design to ensure the validity of the results.26–31 Inadequate validation is often the source of

poor reproducibility in reported results.

The clear advantage of using unsupervised methods is twofold. First, the requirement

for validation is less strict since no class information is used to obtain the low-dimensional
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representation of the data and, second, it is possible to find relationships in the data that

were unknown to the analyst at the beginning of the experiment. The principal disadvantage

is that, without any additional information, they are more restricted in their ability to model

the data, which highlights the need for more powerful exploratory tools to be developed.

1.3 Algorithm Development and Evaluation through
Simulation

Developing new data analysis algorithms, or modifying existing algorithms, is a major

research area for many in the chemometrics community. Computer simulations are a key

element in many scientific disciplines and algorithm development/evaluation in chemomet-

rics is no exception. The two main components in simulating any multivariate data set are:

1) the pure data in the absence of any measurement artifacts or noise, which is defined by

some parameterized system model, and 2) measurement artifacts (nonlinearities, channel

shifts, etc.) and random noise (offset, drift, measurement noise, etc.) that obscure the

target information in the data. Both of these components contribute to the total variance

in the data set. Simulation studies allow researchers to evaluate the performance of an

algorithm as a function of the parameters used to simulate the data set. For new data

analysis algorithms, simulations applied during the development process help to confirm

the expected behaviour of an algorithm in specific, well-controlled environments and guide

improvement of the algorithm.

Since in any simulation the “true” values describing the data are known, it is trivial to

evaluate the performance of an algorithm in terms of obtaining the “true” result. However,

for such an evaluation to be useful, it is crucial that the simulation is representative of the

experiment. If not, the evaluation provides no new practical insight into the behaviour

of the algorithm. This is especially true for noise simulation, where the structure of the

errors being added to a simulated data set are critical. This has been an area overlooked

by the chemometrics community, as most simulated error in the literature is represented

by statistical characteristics that are rarely observed in experiments, such as white noise

(see for example references 32–34). There are several possible reasons for this. The most

obvious is that white noise, consisting of independent random variations with a normal

distribution and uniform variance, is easy to parameterize and simulate. A second reason

is that many algorithms are designed with the assumption of white noise, so extending
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this to the simulation seems natural, even if it does not reflect reality. A third factor is

that measurement errors in most measurement systems are really well-characterized. Even

when such information is available, methods to simulate complex error structures can be

challenging. Regardless of the reason, it is clear that there is a need for an approachable

method for realistic analytical measurement noise simulation for use in the evaluation and

development of multivariate data analysis algorithms.

1.4 Thesis Goals

It is the goal of this thesis to explore and expand on two main facets concerning the

differentiation between chemical variance and noise variance in multivariate chemical

measurements: 1) the simulation of realistic measurement noise to aid the development

and evaluation of multivariate chemical data analysis algorithms and 2) the development of

alternative projection methods for the exploratory analysis of high-dimensional chemical

data. The remaining sections of this introductory chapter define the mathematical structures

and techniques that are the foundation of the work presented later in this thesis. We begin

with the fundamental concept of measurement error.

1.5 Measurement Errors

Measurement error, e, can be defined as the difference between a measured value y and

the “true” value µ,

e = y − µ. (1.1)

This definition is central to any measurement science and is the foundation of all data

processing algorithms. In practice, µ is not generally known, so the exact value of e for an

individual measurement cannot be determined. However, the statistical behaviour of the

measurement error can be characterized by performing replicate measurements. This is

commonly achieved in practice by taking the mean of the replicate measurements as an

approximation of µ and then using the difference from the mean to estimate the dispersion

of e. An important consideration in this calculation, however, is how a replicate is defined,

since this can greatly influence the distribution of measurement errors.
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In discussing the different types of replication it is helpful to consider a hypothetical

experiment. Suppose a technician is to prepare a solution and measure its absorbance at a

certain wavelength to determine the concentration of an analyte. In addition, the technician

is told to perform replicate measurements. Without being told any additional information,

there are several possibilities as to what defines a replicate in this scenario. At the lowest

level, simply scanning the same sample many times would be defined as an instrumental

replicate, which would give insight to the variability of the measurement introduced by the

instrument itself (e.g. detector noise). Another possibility would be to perform replicate

scans, but with removal and replacement of the sample cell between measurements. This

is what is referred to as a replacement replicate. To investigate the error associated with

the certain steps of the sample preparation, replicates of specific procedural steps could

be performed. This is an example of a technical replicate. Other types of replicates are

also possible, but are not discussed here. The purpose of this example is to introduce the

importance of the definition of a replicate and the sources of variation included, as this has

a direct consequence on the characterization of what is being defined as error. Once this

definition has been established, the statistical characteristics of the measurement can be

calculated.

The population variance, σ2, of the measurement errors is the expectation value, denoted

as E(•), of the squared error, or the average squared deviation from the mean taken over

N replicates as N goes to infinity,

σ2 = E(e2) = E[(y − µ)2] = lim
N→∞

1

N

N∑︂
i=1

(yi − µ)2. (1.2)

In practice, the sample variance s2 is calculated from a limited number of replicate

measurements using the sample mean ȳ as an approximation to the true mean µ,

σ2 ≈ s2 =
1

N − 1

N∑︂
i=1

(yi − ȳ)2. (1.3)

The sample variance and standard deviation are the most widely used measures of error

dispersion, although the mean absolute deviation (MAD) is sometimes used as a more

robust measure. The variance and standard deviation are routinely used in calculations

involving confidence intervals, test statistics, and figures of merit.

While the sample variance is useful for univariate measurements, modern analytical
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instruments generate vectors of data (e.g. spectra, chromatograms) for which the sample

variance is insufficient to describe the measurement errors. For this reason, it is more

important for chemists to discuss multivariate measurement errors and their statistical

properties.

1.5.1 Multivariate Measurement Errors

Multivariate measurement error is often synonymous with measurement “noise”, implying

a sequence of errors that are potentially related. In analytical chemistry, it is easy to

understand the idea of measurement noise by considering an experiment in which replicate

spectra are obtained for a sample. For each individual wavelength channel, one can attribute

univariate statistical properties associated with the error. To organize this information, it is

useful to define the multivariate measurement error vector, e, that has length equal to the

number of measurement channels, n, and describes the individual error at each channel of

the system,

e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3
...

en

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.4)

However, unlike the univariate case, the multivariate system has an additional statistical

property, called the error covariance, that defines the relationship between the measurement

error at one channel with that at the other channels. For any two variables, x and y, the

error covariance σxy describes the statistical relationship between the errors in x and y,

σ2
x = E(e2x), σ2

y = E(e2y), σxy = E(ex · ey). (1.5)

Similar to the sample error variance, the sample error covariance can be defined by

including the estimations on ex and ey with a limited number of replicates N ,

σxy ≈ sxy =
1

N − 1

N∑︂
i=1

(xi − x̄)(yi − ȳ). (1.6)

The error variance and covariance are important in characterizing multivariate errors

in chemical systems. For example, if the system of interest is a function of wavelength
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channels, then it is important to compare the error variances of each channel to determine if

the variance is uniform. If the variances are the same, the errors are said to be homoscedas-

tic. If the variances are non-uniform, then the errors are heteroscedastic. Although this

information is important, it gives no indication of the correlation among the errors. The

error covariance determines whether the errors are independent or related to one another.

If the error covariances within a group of variables, or channels, is zero, then errors are

said to be independent. Otherwise, if the covariances are non-zero, then the errors are said

to be correlated. This type of error characterization becomes important when applying

current data processing procedures as well as developing new data processing methods.

It is in the transition from univariate to multivariate measurements in chemistry that

the field of chemometrics was spawned. With vectors and matrices being the norm, the

goal of chemometrics can simply be stated as differentiating the meaningful chemical

variance from other sources of variance (including measurement noise and chemical noise)

to provide the maximum extraction of chemical information from data. This can be done

most effectively when the characteristics of the measurement variance are well known.

Methods for characterizing and describing the properties of multivariate measurement

errors are presented in the following section.

1.5.2 Characterization of Multivariate Measurement Errors

The term “measurement noise” is often taken to be synonymous with “measurement error”,

but carries with it a suggestion of an ordered sequence, or vector, of errors, as well as an

association with purely instrumental sources of analytical error, as opposed to, for instance,

errors in sample preparation. The concept of a noise vector is particularly important

when the analytical measurement is multivariate in nature, such as a vector representing a

spectrum or chromatogram. In such cases, the descriptions of the error must go beyond a

point description of the variance; a full characterization of the error must describe how the

variance changes from one channel to the next (i.e. its heteroscedasticity), as well as any

correlations that exist among the errors at different channels. Two approaches are com-

monly used to characterize measurement error vectors: the power spectral density (PSD)

function (based on the Fourier transform)35 and the error covariance matrix (ECM),36

calculated on the basis of replicated experiments. The approaches are complementary,

although the ECM generally provides a more complete description of the errors.
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1.5.2.1 The Error Covariance Matrix

To obtain all combinations of covariance terms for a system of n variables, the expectation

of the outer product of the measurement error vector e with itself gives rise to the ECM Σ,

Σ = E(e · eT) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
1 σ12 σ13 . . . σ1n

σ12 σ2
2 σ23 . . . σ2n

σ13 σ23 σ2
3 . . . σ3n

...
...

... . . . ...

σ1n σ2n σ3n . . . σ2
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.7)

This formulation generates a n× n square symmetric matrix with diagonal elements, σj=k,

containing the variance at each channel and the off-diagonal elements, σj ̸=k, containing the

covariance of the measurement errors at channels j and k. For example, if a system contains

only uncorrelated errors, then Σ is a diagonal matrix. The diagonal of the ECM provides

direct information on the scedasticity of the errors; if the values of σj=k are significantly

different, then the errors are considered to be heteroscedastic. Otherwise, if the values

along the diagonal are uniform, then the error structure is said to be homoscedastic. The

ECM is sensitive to many properties of noise (e.g independence, correlation, scedasticity,

power law dependence) which makes it a good tool for identifying and characterizing noise

in analytical measurements.

An alternative way of representing the error structure is the error correlation matrix.

With the same dimensions as the ECM, the error correlation matrix has elements ρjk given

by

ρjk =
σjk

σjσk

. (1.8)

This produces a matrix where all of the diagonal elements are equal to 1 and all of the

off-diagonal elements have values that can range from -1 to 1. The error correlation matrix

provides information that may be qualitatively hidden in the ECM due to scale. In practice,

it is recommended to investigate both the error covariance matrix, which gives information

regarding the magnitude of the errors and their relationships, as well as the error correlation

matrix, which shows these relationships independent of scale.

10



1.5.3 The Fourier Transform

Another common method for characterizing multivariate measurement errors is Fourier

analysis. Most modern day instruments use discretely sampled values of ordered variables

as part of their measurement procedure, which makes it possible to discuss the frequency

profile of the measurement error vector. Although traditional Fourier analysis is usually

applied to systems for which the ordinal variable is time, it is more common in chemical

data to have other ordinal variables, such as wavelength or chemical shift. In this case, the

other domain will be referred to as the Fourier domain as it is not technically frequency.

In practice, the discrete Fourier transform (DFT) of a vector x that has length n can be

calculated as follows:

y(k) =
n∑︂

j=1

x(j)W (j−1)(k−1)
n . (1.9)

From Equation 1.9, the inverse Fourier transform can be calculated as

x(j) =
1

n

n∑︂
k=1

y(k)W−(j−1)(k−1)
n , (1.10)

where

Wn = e(−2πi)/n (1.11)

for both equations.

To obtain the two-sided amplitude spectrum from y, one must take the magnitude of y

(square root of the sum of the squared real and imaginary parts) divided by n. Since this

contains both the positive and negative side of the spectrum, which will be symmetric for

real-valued measurements, it is common to only look at the one-sided spectrum; in this

case half of the two-sided spectrum must be multiplied by 2 to obtain the correct amplitude.

This analysis procedure is shown visually in Figure 1.1. In modern software, the DFT

is calculated using fast Fourier transform (FFT) algorithms. The most popular of these

algorithms is the Cooley-Tukey algorithm.37

It is not uncommon for measurement errors in chemistry to have various types of noise

that can be identified using Fourier analysis, although research in this area with respect

to analytical measurements is sparse at best. Perhaps the most well-known type of noise

is white noise. White noise gets its name from its behaviour in the frequency domain.
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Figure 1.1: (a) A pink noise signal 100 channels in length. (b) The two-sided amplitude
spectrum resulting from the Fourier transform of the signal in (a). (c) One-sided amplitude
shown on a log-log plot. (d) The same plot as (c) except from the average of 1000
realizations of the pink noise signal amplitude spectrum.

With equal amplitude at all frequencies it is analogous to white light. Other types of

noise, such as interference noise and power law noise, are often referred to as “coloured

noise” to differentiate them from white noise. Power law noise has an amplitude that

depends on the frequency in the Fourier domain as 1/fα where α is related to the noise

type. Power law dependent noise such as pink noise and brown noise are also observed

in analytical measurements. When investigating possible power law dependent noise, it

is often convention to use a log-log plot of the the amplitude squared, or power, as a

function of frequency. The slope of the line from the log(power) vs log(frequency), or

power spectral density (PSD), plot is a way to characterize the noise. White noise, as

mentioned earlier, has a slope of zero and can be referred to as 1/f 0 noise. Pink noise,

or 1/f noise, has a slope of -1 and brown noise has a slope of -2 (commonly called 1/f 2

noise or random-walk noise).

It is important to use many replicates when using Fourier analysis as a diagnostic tool for

measurement errors. For example, trying to determine if a signal is white (flat amplitude
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vs frequency plot), or pink (sloped amplitude vs frequency plot), can be difficult with only

a few replicates. As shown in Figure 1.1(c), looking at only one amplitude spectrum of

pink noise, for example, it is hard to determine if there is a non-zero slope, but if many

amplitude spectra are averaged, the resulting spectrum will approach a profile consistent

with a pink noise signal, as shown in Figure 1.1(d). For this reason, replicate samples of a

noise sequence are collected if one wants to classify it using Fourier analysis. These types

of noise, along with other common noise structures observed in analytical chemistry are

discussed in the following section.

1.6 Common Multivariate Measurement Error
Structures

Although complex, commonly observed measurement error structures can be classified in

various ways. Two of the most important terms for classifying these commonly observed

structures are stationarity and independence. In the context of analytical measurements, a

noise signal is considered stationary if it only depends on the measurement channels, as

opposed to, for example, the signal amplitude. A noise signal is considered independent

if the values for all measurement channels are uncorrelated with one another. Within

each of these classes there exists multiple examples of noise structures that are commonly

observed in analytical chemistry. This section details these noise structures in terms of the

ECM.

1.6.1 Stationary Independent Noise

Stationary independent noise is uncorrelated and only a function of the measurement

channels. This is the most basic type of noise observed experimentally and can be

identified by specific structural features of the ECM. Due to independence, this type of

noise only impacts the diagonal of the ECM. Therefore, there are two possibilities, either

all diagonal elements are equal (homoscedastic), or not (heteroscedastic).

1.6.1.1 Homoscedastic White Noise

Homoscedastic white noise is the simplest type of noise. It is observed as simple detector

noise where all variables have the same measurement error variance drawn from the same

distribution. If this distribution is Gaussian, then this type of noise is called iid normal
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(independent and identically distributed with a normal distribution). Most data processing

algorithms assume that the measurement error structure is iid normal because it is simple

to model. Figure 1.2 shows an iid normal noise signal of length 100 and the corresponding

average ECM from 1000 replicate signals.

1.6.1.2 Heteroscedastic White Noise

Heteroscedastic white noise is similar to iid noise in that they both are independent, but it

differs due to the fact that it has a non-uniform variance across channels. In other words,

this type of noise has an ECM that is diagonal, but contains different values. Although,

as the variance is only dependent on each individual channel, this type of noise is still

stationary and uncorrelated. Figure 1.3 shows a heteroscedastic white noise signal of

length 100 and the corresponding average ECM of 1000 replicate signals.

As seen in Figure 1.2 and 1.3, the ECM from 1000 replicate signals still has a slightly

noisy ECM. The reliability of experimental ECMs is dependent on how many replicate

samples are analyzed. Only a few realizations of the noise vector, which is common in

most experimental designs, makes it difficult to classify the ECM.

1.6.2 Stationary Correlated Noise

Stationary correlated noise is the simplest type of correlated noise. In this case, the ECM

exhibits non-zero off-diagonal elements, but the error structure still only depends on the

measurement channels. The most common types of stationary correlated noise in analytical

chemistry are offset noise and power law, or 1/fα, noise.

1.6.2.1 Offset Noise

Sometimes called additive noise, offset noise arises from the signal shifting up or down.

Common sources of this type of error include changes in cell position between measure-

ments or a slowly drifting detector baseline. This results in a random offset in the signal

which corresponds to a flat non-zero ECM. To illustrate this, Figure 1.4 shows 10 Gaussian

signals with a random baseline offset and the corresponding ECM.

1.6.2.2 1/fα Noise

1/fα noise, or source flicker noise, is a type of noise observed due to baseline variation

introduced from the detector. The most common type of 1/fα in analytical measurements
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Figure 1.2: A homoscedastic white noise signal over 100 channels (top) and its ECM
averaged over 1000 realizations (bottom).
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Figure 1.3: A heteroscedastic white noise signal over 100 channels (top) and its ECM
averaged over 1000 realizations (bottom).
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Figure 1.4: 10 random additive offsets of a Gaussian like signal over 100 channels (top)
and the corresponding ECM (bottom).
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is pink noise (α = 1). For example, researchers have reported observing source flicker

noise from vacuum tubes as early the 1920s.38,39 This is the last of the common types of

observed measurement noises to be studied in terms of its ECM and noise simulation for

use in analytical chemistry. A long standing problem in analytical measurement noise

simulation and modeling is the lack of accessible methods for simulating and modeling

1/fα noise that is relevant to analytical chemists. Chapter 2 of this thesis presents a newly

proposed and accessible method for simulating 1/fα noise in analytical measurements.

1.6.3 Non-stationary Independent Noise

Non-stationary independent noise is a type of noise that only impacts the diagonal of the

ECM, but in a way that the the profile of this diagonal is dependent on the signal. These

types of errors are typically associated with the source (e.g. flame, ion source) and can be

divided further into two sub-classes, proportional noise and shot noise.

1.6.3.1 Proportional Noise/Multiplicative Noise

Proportional noise is such that the standard deviation of the error is proportional to the

signal intensity. Figure 1.5 shows a Gaussian signal with a maximum intensity of 1 (µ = 50,

σ = 10) and 0.15 RSD proportional noise over 100 channels, and the corresponding ECM

averaged over 1000 realizations.

1.6.3.2 Shot Noise

Shot noise is a type of noise where the variance of the error is proportional to the square

root of the signal intensity. It arises from counting statistics at detectors that measure

quantized signals in time (e.g. electron multipliers). These randomly arriving signals

follow the Poisson distribution and result in the square root proportionality between the

standard deviation of the error and the signal. Figure 1.6 shows a Gaussian signal with

a maximum intensity of 1 (µ = 50, σ = 10) and 0.05 proportionality parameter (not

technically RSD, as will be explained in later sections) shot noise, and the corresponding

ECM averaged over 1000 realizations.

1.6.4 Non-stationary Correlated Noise

Perhaps the most problematic type of noise in terms of analysis, non-stationary correlated

noise exhibits non-uniform correlated components that are dependent on the signal. This
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Figure 1.5: A Gaussian signal with a maximum intensity of 1 (µ = 50, σ = 10) and 0.15
RSD proportional noise over 100 channels (top), and the corresponding ECM averaged
over 1000 realizations (bottom).
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Figure 1.6: A Gaussian signal with a maximum intensity of 1 (µ = 50, σ = 10) and 0.05
RSD shot noise over 100 channels (top), and the corresponding ECM averaged over 1000
realizations (bottom).
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type of noise is the largest deviation from the iid normal noise assumed by most data

analysis algorithms. Unfortunately, it is somewhat common in analytical measurements.

The two most dominant cases of non-stationary correlated noise in analytical chemistry

are multiplicative offset noise and proportional 1/fα noise.

1.6.4.1 Multiplicative Offset Noise

Multiplicative offset noise is similar to the offset noise mentioned previously in that the

impact of this noise arises from a shift of the signal up or down, but in this case the effect

is multiplicative and not constant over all channels. This type of noise introduces an

offset that is proportional to the signal. This is commonly seen in near-infrared (NIR)

measurements from path length variation. Figure 1.7 shows 10 Gaussian signals originally

with a maximum intensity of 1 (µ = 50, σ = 10) subjected to 0.5 RSD multiplicative

offset noise, and the corresponding ECM.

1.6.4.2 Proportional 1/fα

Proportional 1/fα noise is 1/fα noise that is only present when there is a signal. This can

arise from variations in source intensity in spectrometers or ionization efficiency in mass

spectrometers. Although this type of noise is speculated to be present in many analytical

measurements, little research has been done on its modeling and simulation. More details

on 1/fα noise, both stationary and non-stationary, will be presented in Chapter 2.

1.7 Projection Methods for Exploratory Data Analysis

The proceeding discussion of measurement noise characteristics is relevant to exploratory

data analysis because the fundamental goal of chemometrics is to isolate the relevant

variance due to chemical difference (i.e. the chemical information) from irrelevant sources

of variance, including measurement noise. The development of data analysis tools for this

purpose naturally imposes some assumptions regarding the noise to facilitate this task, and

when these assumptions are violated, the methods can perform sub-optimally to a greater

or lesser degree. Therefore, it is important to understand how different error structures

might affect data analysis.

A main goal of exploratory analysis is to obtain a subspace of the original data where

there is discrimination between classes of samples due to the chemical variance. There

are many methods that can be used to perform exploratory data analysis. A common
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Figure 1.7: 10 Gaussian signals with a maximum intensity of 1 (µ = 50, σ = 10) and
multiplicative offset noise of 0.5 RSD, and the corresponding average ECM).
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sub-class of these methods is linear projection methods. Projection methods attempt to

project high-dimensional data into a low-dimensional space that can be visualized (1, 2,

or 3 dimensions). These projections are subspaces of the original data and the idea is to

capture the most relevant information in this subspace. The purpose of this section is not

to give the reader a complete overview of projection methods, but to present the relevant

projection methods commonly used in chemistry and related to the work presented in later

chapters of this thesis. Two methods in particular are the focus of the background material

presented here. The first is principal component analysis (PCA), which has already been

mentioned as the workhorse of exploratory data analysis. The second method, projection

pursuit analysis (PPA), has seen more limited application in chemistry due to algorithmic

limitations, but these have been recently overcome with the introduction of kurtosis-based

PPA using a quasi-power algorithm.40 Extensions of this algorithm are a central theme of

this thesis and are discussed in more detail in Chapter 5-7.

1.7.1 Principal Component Analysis

PCA is applied to multivariate chemical data for a variety of purposes.4 Rather than

changing information in the original data, its purpose is to perform an orthogonal rotation

on the original variables to obtain a new set of measurements (the “scores”) which are

linear combinations of the original variables. Mathematically, PCA is usually implemented

through singular value decomposition (SVD) to produce a scores matrix, T, and a loadings

matrix, L, as shown in Equation 1.12,

X = TL. (1.12)

If X is m× n (where m ≤ n), T is m×m and L is m× n. The rows of L are also called

the eigenvectors, which describe the rotation of the original space. Row i of T contains

the scores, which are the coordinates of the row i of X on the new space defined by L.

The advantage of PCA comes from the truncation of the scores and loadings to represent

the data in a space of lower dimensionality, p, where p < m. This is possible because

the rotation of the original space is such that the first eigenvector accounts for the largest

amount of variance in the data, the second eigenvector accounts for the largest proportion

of the remaining variance, and so on. In principle, then, retaining the first p columns of T

and the first p rows of L retains the maximum amount of information in a p-dimensional
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subspace. This is represented as

X̂p = TpLp, (1.13)

where Tp (m× p) and Lp (p× n) are the truncated scores and loadings matrices.

The dimension reduction of PCA is exploited in several ways, but there are three main

applications. In exploratory data analysis, the goal is to visualize the data in a space

of lower dimensionality. In other cases, especially multivariate calibration and curve

resolution, the goal is subspace estimation, where it is anticipated that the subspace

contains all (or most) of the chemical variance. For example, if X contains spectra for

mixtures of three chemical components (i.e. it has a so-called pseudorank or chemical

rank of 3), it is anticipated that the eigenvectors for p = 3 will define the space containing

the spectral vectors of the three components. These eigenvectors can then be used as a

basis for developing a calibration model (multivariate calibration) or extracting the pure

component spectra (curve resolution).

When measurement errors in X are iid normal and p is equal to the number of observable

components present, PCA is the maximum likelihood estimation of the subspace (unbiased

solution with minimum variance). However, when heteroscedastic and/or correlated errors

are present, this is no longer true and the estimation of the subspace is sub-optimal. The

extent to which results are affected depends on the characteristics of the measurement

error. Erroneous estimation of the subspace affects all three applications (exploratory data

analysis, multivariate calibration and curve resolution).

1.7.2 Maximum Likelihood Principal Component Analysis

As noted above, PCA assumes homoscedastic and uncorrelated errors for maximum likeli-

hood subspace estimation. In chemical data, this error structure is rarely the case, resulting

in a sub-optimal estimation of the chemical subspace by PCA. Maximum likelihood prin-

cipal component analysis (MLPCA) was proposed to address this issue.36,41,42 MLPCA

incorporates knowledge of the error structure in the data when estimating the chemical

subspace. The specific objective function used to perform the optimization, which is

analogous to weighted least squares in univariate regression where a weighted sum of

squared residuals is minimized, depends on the structure of the measurement errors. This

results in improved subspace estimation when an accurate estimate of the error structure
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and the rank of the data are known. However, accurate estimates of the ECM are rarely

available unless the experiment was well designed and sufficient replicates were obtained

with the idea of leveraging error information in the data analysis.

Commonly, MLPCA is applied assuming that error correlation exists only in the rows of

the data (i.e. in the direction of the response variables). In this case, the objective function

that is minimized is

S2
obj =

m∑︂
i=1

(xi − x̂i)Σ
−1
i (xi − x̂i), (1.14)

where xi represents the ith row of the m×n data matrix X (m samples and n measurement

vectors), x̂i is the estimate of the ith measurement vector obtained from the MLPCA

decomposition, and Σi is the ECM associated with the ith measurement vector. In the

special case where the ECM for each row is the same, minimization of the objective

function can be solved in one step. If the ECM is different, then the function is minimized

using alternating least squares (ALS). Instead of performing an orthogonal projection into

the subspace like what is done in PCA, MLPCA performs an oblique projection. This

projection is weighted by the measurement error information. In theory, MLPCA should

provide the optimal subspace estimation if the rank of the data and the ECM are known.

However, in practice, the rank of a data set is sometimes not clearly defined and, more

often than not, there is not a good estimate of the ECM, although there have been efforts to

model ECMs with a limited number of replicates using a variety of methods.43,44 Despite

these two requirements, MLPCA has been shown to provide superior results compared to

PCA in many applications.45–48

A critical component to both the modelling of ECMs and assessing the utility of MLPCA

is the simulation of measurement errors for analytical measurements, as discussed in

Chapters 2 and 3. Additional applications of MLPCA are discussed in Chapter 4.

1.7.3 Kurtosis-Based Projection Pursuit Analysis

Revealing clusters of similar samples (classes) in data is a common goal in exploratory data

analysis. Although PCA is the most widely applied projection method in this regard, an-

other method that can be employed when PCA fails is projection pursuit analysis (PPA).49

PPA is an exploratory data analysis method that searches for “interesting” projections of

the data by optimizing a projection index. For a data matrix X(m× n) with m samples
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and n response variables, PPA seeks the projection matrix Pp(n× p) to project X into a

p-dimensional space with coordinates, or scores, Tp:

Tp = XPp. (1.15)

Here, the columns of Pp contain the projection vectors for each of the p dimensions. These

vectors are typically orthogonal, but this is not a requirement. In most implementations

of PPA, the projection vectors are found sequentially. After finding the first projection

vector, the variance associated with that vector is removed from the data set and then the

next projection vector is sought. This process is referred to as deflation. Many different

projection indices have been investigated for targeting specific structures in multivariate

data.50–54 For clustering, it is usually of interest to search for non-Gaussian distributions

as these tend to reveal useful information. PCA can be thought of as a projection pursuit

method where the projection index is the variance and the goal is to find projection

vectors that maximize this index. Finding projection vectors that maximize the variance is

equivalent to obtaining the PCA decomposition of a data set.

Although different projection indices have been explored, one index that has been

shown to reveal meaningful clusters in multivariate chemical data is the minimization of

kurtosis.40,55,56 Kurtosis is the fourth statistical moment and is a measure of the density in

the tails, or “tailedness”, of a distribution.57 The univariate sample kurtosis, κ, is

κ =
1/N

∑︁
(xi − x̄)4

(1/N
∑︁

(xi − x̄)2)2
, (1.16)

where xi is the ith measurement out of a total of N measurements. The kurtosis is a

useful and simple metric for determining the non-Gausianity of distributions as a Gaussian

distribution has a value of 3 and deviations from this either increase or decrease the kurtosis.

Therefore, minimizing or maximizing the kurtosis can be used to target non-Gaussian

distributions in data. Maximization of the kurtosis tends to reveal outliers in data whereas

minimization tends to reveal binary clusters of data.

Although the idea of kurtosis as a projection index makes intuitive sense for finding

“interesting” distributions in data, there was major problem limiting its practicality: how

does one optimize the kurtosis as a projection index to find projection vectors in multivariate
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data? In 2011, Hou and Wentzell proposed an efficient algorithm, termed the quasi-

power algorithm, that enabled kurtosis-based PPA to be used as an exploratory method.40

Providing solutions for optimizing both the univariate and multivariate kurtosis as the

projection index, this contribution allows one to explore multivariate data using something

other than variance as the projection index.

In kurtosis-based PPA (kPPA), the univariate kurtosis of the data matrix X projected

onto a projection vector p can be defined as

κ =
1/m

∑︁m
i=1(xip)

4

(pTXTXp)2
, (1.17)

where xi is a row from the data matrix X. Instead of extracting individual projection

vectors sequentially, which is required when optimizing univariate kurtosis, the projection

matrix P can also be found by optimizing the multivariate kurtosis. The multivariate

kurtosis K can be defined as

K = m
n∑︂

i=1

{tr[(PTXTXP)−1(PTxix
T
iP)]}. (1.18)

To minimize or maximize the univariate or multivariate kurtosis, kPPA implements the

quasi-power algorithm, which is similar to the power method used for eigenvalue estima-

tion. The algorithm uses an iterative learning method for finding the projection vectors.

The structure of this learning algorithm changes depending on whether the univariate or

multivariate kurtosis is being used as the projection index, as well as whether or not they

are being minimized or maximized. For example, below is the learning algorithm for the

minimization of univariate kurtosis,

pj(new)←

[︄
m∑︂
i=1

(xipj)
2xT

i xi

]︄−1(︁
XTX

)︁
pj, (1.19)

where j is the iteration number. After convergence, which can be defined in a number

of different ways, Equation 1.19 provides a single projection vector associated with a

minimum of the kurtosis of the corresponding scores. If more dimensions are of interest,

the data are then deflated by the variance associated with the first projection vector and the

same steps are applied to obtain a second projection vector and so on.

kPPA has proved useful in many exploratory analysis applications. For example, it has
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been used as a tool to assess the similarity and clustering of chiral polysaccharide-based sys-

tems,58 unsupervised analysis for the forensic investigation of fraudulent documents using

IR hyperspectral images,59 exploratory analysis of natural health products by NMR,60 and

the unsupervised clustering of four different species of Brazilian trees by NIR reflectance.61

In the rest of this work kurtosis-based PPA will be referred simply as PPA.

1.7.3.1 Drawbacks of PPA

Despite its many advantages the original stepwise-univariate PPA algorithm, which is the

most effective for classification problems, suffers from several deficiencies that limit its

widespread application to analytical data: (1) it requires “skinny” data sets, where the

number of samples is larger than the number of variables, (2) it is optimally designed for

balanced data sets, in which there are equal number of samples in each class, and (3) it is

most effective for binary data sets (2, 4, or 8 classes). The solutions to these problems are

a main focus of this thesis and elaborated on below.

All PPA algorithms (univariate, multivariate, minimization, maximization) suffer from

a data dimensionality problem. For kPPA to produce meaningful results the sample to

variable ratio ideally should be ∼5:1. Practically, to overcome this, it is common practice

is to first compress the data with PCA to an appropriate number of principal components

(effectively achieving the ∼5:1 ratio) before applying PPA. This is done to avoid giving

the algorithm too many variables as spurious combinations of variables can result in an

artificially low kurtosis value and separations that are not informative. This is referred to

as “overfitting” or “overmodeling”, although this is not in the usual sense of supervised

methods. This compression is far from ideal as useful information might be stripped from

the data due to low variance. Since, PPA does not seek projection vectors based on their

variance, but their kurtosis, it is possible that the best projection vector is being lost in this

compression step. Chapter 5 of this thesis seeks to solve this problem by implementing a

variable selection genetic algorithm to make the proposed method truly independent of

PCA and improve variable interpretability.

Another major problem with the ordinary univariate PPA algorithm is that it favors

data sets with a number classes equal to a power of 2. This is a consequence of the

univariate kurtosis as in each dimension the PPA algorithm is looking to segregate the

data into two clusters (the reason for this will be discussed in Chapter 5 and 7). This

results in a geometric restriction on the separation space where, ideally, a maximum of 8
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classes can be separated in a 3-dimensional space (each class clustered around a vertex of

a cube). Additionally, when classes are unbalanced (i.e. they have a different number of

samples), the ordinary univariate PPA algorithm will fail to separate even two classes from

one another as the minimization of univariate kurtosis favors equal bimodal distributions.

This results in projections that have heavily overlapped classes when one class has fewer

samples than the other class. In Chapter 7 of this thesis an augmented method is proposed

that addresses both of these problems.

1.7.4 Variance and Chemical Information

Earlier in this chapter, it was stated that the goal of exploratory data analysis is to separate

meaningful chemical variance from variance that is not relevant using only the measured

data (no external information). Since the advancement of methods to achieve this goal is

the central theme of this thesis, this section provides an illustrative example to unite the

ideas of measurement noise, chemical variance and exploratory data analysis.

The illustrative data sets consist of two-dimensional data (two variables, x1 and x2)

that are to be projected into one dimension. The two dimensions are a surrogate for

high-dimensional data. Although the relationships of the objects are easily visualized in

two dimensions, this would not be possible for high-dimensional data. The first set of data,

shown in Figure 1.8(a) consists of two classes of 100 samples each. Each class of samples

is subject to two sources of variance, represented by the circular and elliptical boundaries.

Both boundaries represent independent (uncorrelated) variance sources. Variance source

1 (solid circles) is characterized by equal variance in x1 and x2, while variance source 2

(dotted ellipses) has a higher variance in x2 (heteroscedastic).

For interpretation purposes the variance sources can be assigned to two origins: (1)

natural chemical variation arising from heterogeneity of samples around the population

mean (i.e. sampling variance), and (2) measurement error variance, arising from noise

in x1 and x2. The assignment of these origins to the sources is irrelevant to the data

obtained. In other words, the same observed data would be obtained whether the elliptical

(heteroscedastic) variance were assigned to chemical variance or measurement noise. This

is critical, since PCA makes no distinction about sources of variance.

The objective of exploratory data analysis is to separate the two classes of samples

when projected into a one-dimensional subspace. PCA models the total variance of the

data, so the first loading vector (eigenvector) shown in Figure 1.8(a) aligns predominantly
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Figure 1.8: (a) A two-class (100 samples in each class), two-variable, uncorrelated data set
where the variance in x2 is larger than that in x1 and the corresponding projection vectors
obtained by PCA and MLPCA. (b) The same data, but autoscaled. (c) The corresponding
scores on the projection vectors for (a) and (b).

with x2 since that is the largest source of variance in the data. Consequently projecting

onto this vector, shown at the top of Figure 1.8(c) does not separate the classes. This

illustrates how PCA, which is based on total variance, can fail to reveal the important

chemical information. Unlike PCA, MLPCA uses information about the measurement

error variance (in the ECM) to attempt to isolate the chemical variance. If the elliptical

variance (source 2) is associated with measurement noise and its corresponding ECM

is provided to MLPCA, the resulting projection vector is as shown in Figure 1.8(a) and

is much more closely aligned with the x1 axis. Consequently, the maximum likelihood

(oblique) projection of data onto this axis leads to a complete separation of the classes, as

shown the bottom part of Figure 1.8(c). This illustrates how the application of MLPCA

when measurement error information is available can (sometimes) improve the outcome
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of exploratory data analysis. However, it is important to stress that, if the measurement

variances were associated with the chemical variance (source 1), MLPCA would fail and

produce the same result as PCA. This is because, although it would model the chemical

variance, the important chemical variance (for our purposes) is not aligned with x2.

In cases where the measurement variance is unknown or is not the dominant source of

variance, another widely used option is scaling of the data. Autoscaling is a routinely used

process where each variance is normalized to a total variance of unity. The effect of this

on the data and the resulting PCA eigenvector is shown in Figure 1.8(b). The eigenvector

is rotated closer to x1 because of the compression of the x2 axis and results in an improved

separation of classes as shown in Figure 1.8(c) (middle). The separation is better than

PCA, but not as good as MLPCA.

To expand this example, a second data set is introduced which has the same characteris-

tics as the first, except that covariance has been introduced into variance source 2 (ellipses)

as shown in Figure 1.9(a). This is equivalent to rotating the ellipses so that they are no

longer aligned with the axis as in Figure 1.8(a). The loadings (PCA, MLPCA, autoscaled

PCA) and scores were generated as before (Figure 1.9) and results in the following ob-

servations: (1) PCA still fails to separate the classes since the eigenvector aligns with the

direction of greatest variance, (2) MLPCA is still able to separate the classes as long as

the measurement variance is associated with the ellipses (source 2) and is known a priori,

(3) MLPCA will still fail if the measurement error variance is associated with source 1

(circles), and (4) Autoscaled PCA is ineffective in this case. So what can be done if the

measurement error ECM is unknown, or the chemical variance is in a direction that does

not align with the direction of class separation? One approach is to use PPA, which does

not rely on variance to extract information. In this example, the PPA projection vector

will be aligned to minimize kurtosis, generating a bimodal distribution. The PPA vector

shown in Figure 1.9(a) results in the sample scores shown at the bottom of Figure 1.9(c),

demonstrating a complete separation of sample classes. Thus, it represents a powerful

option when other methods of exploratory analysis fail.

1.8 Overview of Thesis

The preceding sections have attempted to illuminate the main premises of this thesis that

unify its central chapters.
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Figure 1.9: (a) A two-class (100 samples in each class), two-variable, correlated data set
where the variance in x2 is larger than that in x1 and the corresponding projection vectors
obtained by PCA and MLPCA. (b) The same data, but autoscaled. (c) The corresponding
scores on the projection vectors for (a) and (b).

1. Exploratory data analysis is a fundamental application of chemometrics, but a

primary tool in this application, PCA, often fails because it models total variance.

2. MLPCA can improve classification by incorporating measurement error variance

information if the ECM is known.

3. With respect to 2, the ability to simulate measurement errors accurately is critical to

assess there impact on data analysis strategies, including exploratory data analysis.

4. Where measurement error information is unknown or unhelpful, PPA is a powerful

alternative to variance based methods, but suffers from a number of deficiencies that
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limit its utility.

Chapter 2 of this thesis addresses a persistent limitation of noise simulation methods,

namely the development of methods to simulate power law noise based on the ECM.

Despite its prevalence in experimental systems, this approach to simulating power law

noise has not been previously attempted. In Chapter 3, a publicly available software

package (in MATLAB) is described that incorporates power law noise simulation with

other types of noise generation to provide a versatile approach to the simulation of noise

for any type of data. The software is demonstrated using MLPCA and baseline fitting as

examples.

The application of noise generation software is further demonstrated in Chapter 4,

which proposes the application of MLPCA to data fusion, where different types of data

are combined to enhance information content. Simulated data are used to support the

hypothesis that MLPCA is an optimal way to compensate for differences in error structures

among data sets. Experimental data are then used to illustrate this point.

Where PCA and MLPCA fail, PPA is a promising alternative and Chapters 5-7 address

the current deficiencies in PPA algorithms. Chapter 5 introduces a sparse form of PPA that

addresses the problem of “fat” data and improves interpretability. Chapter 6 introduces

a “banded” form of this algorithm that leads to more stable solutions. Finally, Chapter 7

solves the persistent problems of non-binary and unbalanced data sets by a modification

referred to as augmented PPA.
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CHAPTER 2

SIMULATION OF 1/fα NOISE FOR
ANALYTICAL MEASUREMENTS *

This chapter presents a simple procedure that can be used to generate 1/fα noise, also

known as power law noise, in simulated analytical measurement vectors. Certain types of

power law noise, such as pink noise (α = 1), dominate many types of analytical signals,

so its simulation is important in optimizing and evaluating data processing strategies. In

this work, simulated 1/fα error sequences are created directly from white noise via the

theoretical measurement error covariance matrix (ECM) by rotation and scaling. The

1/fα ECM is obtained from the coefficients of a finite impulse response filter and is

easily adapted to generate multiplicative 1/fα noise, which is probably more common

for analytical systems exhibiting proportional or shot noise characteristics. Simulating

1/fα noise directly from the ECM offers two main advantages. First, 1/fα noise can

be easily simulated in the presence of other common analytical measurement errors by

additive combination of the ECMs. Second, the theoretical ECM can be used to model

real experimental measurement noise. It is shown that the power spectral density function

of measurement error sequences generated by the proposed method closely approximates

the theoretical behaviour of 1/fα noise. To demonstrate the utility of this method in

evaluating data processing methods, simulated data exhibiting 1/f (pink) noise is analyzed

by maximum likelihood principal component analysis (MLPCA), which takes measurement

error structure into account, and baseline noise is simulated using brown noise to test

*This chapter is based on the published article: Driscoll, S, Dowd, M, Wentzell, P.D. Simulation of 1/fα

noise for analytical measurements. Journal of Chemometrics. 2019;e3137. https://doi.org/10.1002/cem.3137.
Contribution to Manuscript SD performed all calculations, and wrote all drafts of the manuscript with
edits by MD and PW. PW supervised the project.
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baseline fitting by asymmetric least squares (AsLS).

2.1 Introduction

All analytical measurements are subject to errors that lead to uncertainty in derived results.

For this reason, a great deal of research in analytical chemistry has been directed towards

understanding these measurement errors, including various aspects of their origins, their

mitigation and their consequences for analytical results. For example, in their classical

textbook on spectrochemical analysis, Ingle and Crouch discuss the origins of measurement

uncertainty for a variety of spectroscopic techniques.62 Measurement errors are also an

essential element in any discussion of analytical figures of merit, such as the limit of

detection, for both univariate and multivariate methods.1,63

From the perspective of method development, especially as it relates to any kind of

data processing (ranging from simple calibration to computationally intensive machine

learning), the simulation of analytical measurement errors is an important part of any

evaluation. Unfortunately, most approaches to the simulation of analytical signals in

the literature rely on the addition of iid normal (independent and identical draws from a

normal distribution) errors (see for example references 32–34). This limits the general-

ity of the simulation, since most commonly encountered analytical measurement errors

exhibit heteroscedasticity (non-uniform variance) and/or correlation.36,44,64 The accurate

representation of noise is important for the assessment of both simple signal processing

procedures (e.g. smoothing, differentiation, integration, baseline correction, peak detection,

normalization, scaling) and more complex operations, such as PCA,4 curve resolution,65

and multivariate calibration.66 By evaluating data analysis methods under a variety of

noise structures, it is possible to assess the impact of the noise characteristics on the results.

More recently, noise simulation was used as a key element in the evaluation of multivariate

figures of merit67 and the bootstrap evaluation of measurement error models for analytical

measurement systems.43

The most basic approach for simulating noise is generating a random sequence of

numbers, each drawn from the same normal distribution with the identical variance (inde-

pendent and homoscedastic). This is referred to as white noise or iid normal noise. For

independent (uncorrelated) noise, it is straightforward to adapt noise simulation to account

for heteroscedasticity (e.g. proportional noise, shot noise) simply by scaling each element
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of the noise sequence according to the standard deviation at that channel. However, real an-

alytical measurement errors are often comprised of many types of errors, both independent

and correlated, so a more effective way to approach noise simulation is through the ECM.

The ECM describes the variance and covariance terms for all combinations of measurement

channels in a system. It has been shown that noise simulation can be performed by scaling

and rotating white noise via the ECM of the desired noise.43 Correlated noise components,

such as baseline offset noise and multiplicative offset noise, are easily simulated when

formulated in terms of the ECM, the latter typically being represented as the outer product

of two fixed or signal-shaped vectors.36 However, one type of correlated noise that is

widely observed in analytical systems, 1/fα noise or power law noise, is more challenging

to simulate.

A common example of power law noise is so-called “pink noise”, also known as source

flicker noise or 1/f noise. The name 1/f noise arises from its characteristics in the Fourier

domain, where the power decays proportionally to the inverse of the frequency. Although

the behaviour of 1/fα noise is referenced to frequency in the Fourier domain, implying the

original signal was in the time domain, the behaviour can be observed even if the original

signal was recorded in a different domain (e.g. wavelength), since ordinal variables may

be correlated with time. While the Fourier transform of white noise exhibits a flat power

spectrum, the power spectrum of pink noise decays to have lower magnitudes at high

frequencies. In practical terms, this means that error components are concentrated at lower

frequencies which results in long-range correlated errors. This is especially troublesome

for chemical signals, as these signals are typically in the same frequency domain as the

noise. Visually, a 1/f noise sequence varies more slowly than white noise, as shown in

Figure 2.1 where white noise (α = 0) and pink noise (α = 1) are separately added to a

Gaussian signal. The addition of pink noise introduces correlation in the idealized (iid

normal) errors, easily seen in Figure 2.1 near the baseline where another peak appears to

emerge in the noise, even though this is an artifact.

The origin of 1/f noise is not entirely understood, but it has been observed to apply to

a wide variety of behaviours that include kinetics in condensed matter,68 radiation from

black hole objects,69 heart rate variability,70 respiratory intervals,71 traffic flow/jams,72

and is consistent over large frequency ranges.73 Specific to analytical chemistry, 1/f noise

has been explored in measurement systems such as inductively coupled plasma mass
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Figure 2.1: (a) The addition of white noise and (b) pink noise to a Gaussian peak (red
dashed line).

spectrometry,74 liquid chromatography,75 fluorometry,76 and polarimetry,77 and methods

have been proposed for its detection in a wide variety of analytical signals.78 In the present

case, instead of focusing on the simulation of a specific type of power law noise, such as

pink noise (α = 1), a better and more general approach is to develop a description for

simulating a range of power law noise types that are observed in analytical measurements.

This restriction will limit our discussion to α values in the range 0 < α ≤ 2. The purpose

of this work is to develop a method for simulating 1/fα noise in the presence of other

common types of analytical measurement errors for use in the evaluation data analysis

procedures. The approach for power noise simulation developed here differs from other

strategies in that it is based on the generation of an ECM. Using the additive properties

of covariance matrices, power noise can be easily combined with other types of noise to

efficiently simulate complex noise structures in analytical data.

2.2 Background

2.2.1 The Power Spectrum of 1/fα noise

The relationship between the power, P , and frequency, f , of noise is referred to as the

power spectral density (PSD). The spectral density gives information on how the variance

of a sequence or process is distributed over a frequency range. The notation 1/fα is

derived from this relationship as noise of this type has power inversely proportional to its

frequency and so the absolute value of the slope of the line formed when plotting logP vs
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logf corresponds to the value of α in 1/fα. When α = 0, the noise has equal power at all

frequencies and is said to be white. This type of noise is assumed in most data analysis

methods, such as PCA. However, real analytical signals typically exhibit more complex

noise structures, including power law noise, with α = 1 (pink noise) and α = 2 (brown

noise) being the most common.

In this work, the PSD is used as a tool to determine the frequency characteristics of

simulated noise signals. The standard approach for calculating the PSD is the periodogram

spectrum method, where the squared amplitude components of the discrete Fourier trans-

form (DFT) estimate the power spectrum.79 However, the power spectrum of one signal,

or even the average obtained from a few signals, does not give an accurate representation

of the true power spectrum due to large stochastic variations. To overcome this, large sets

of simulated signals can be ensemble averaged to give a better estimate of the true power

spectrum.

2.2.2 Methods for Generating 1/fα noise

A thorough review on the simulation of 1/fα noise was published by Kasdin in 1995, in

which the advantages and drawbacks of many techniques for power law noise simulation

are discussed.80 Generally, the approaches to discrete simulation can be placed into two

categories: 1) simulation of power law noise by filtering white noise in the time domain

and, 2) simulation of power law noise by filtering white noise in the frequency domain. A

brief and very general overview of these methods will be given here.

In the time domain, the convolution of a white noise sequence with a set of filter

coefficients can produce noise with specific frequency characteristics. In general, either

non-recursive (finite impulse response, FIR) or recursive (infinite impulse response, IIR)

digital filters can be used, but the latter are more efficient in terms of the number of

coefficients. For 1/fα noise, this method can be represented as an autoregressive process

of order n (AR(n)) with coefficients defined by α. This is consistent with an IIR filter of

sufficient length to represent the process. The MATLAB DSP System Toolbox contains the

object “dsp.ColoredNoise” that uses this method to generate power law noise,81 originally

proposed by Kasdin in the review. Specifically, it uses an AR(63) model, designated in

standard form by Equation 2.1, where the filter coefficients, ak, are defined by Equation
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2.2, α is the noise power, and w represents a zero mean white noise process.

63∑︂
k=0

aky(n− k) = wn. (2.1)

ak = (k − 1− α

2
)
ak−1

k
. (2.2)

In practical terms, each element of the coloured noise sequence yn, is obtained by applying

the recursive filter to a white noise sequence, as shown in Equation 2.3,

yn = wn −
63∑︂
k=0

aky(n− k). (2.3)

Filtering of white noise by FIR filters to generate power law noise is also possible. The

design of FIR filters from the desired power spectrum, as discussed in Section 2.3.2, is

more straightforward than for IIR filters. However, more FIR coefficients will be needed

for results of similar quality, increasing the computational time substantially.

It is also possible to generate power law noise in the Fourier domain.82 This can be

accomplished by first generating a white noise sequence in the time domain and then

applying a Fourier transform (FT). The real and imaginary parts of the transformed data are

then multiplied by the desired (normalized) noise power spectrum and then transformed

back to the time domain through an inverse FT.

All of the above methods are effective and have trade-offs with respect to design

complexity, accuracy, and computational burden. However, for applications to analytical

measurements, simulation of noise via the ECM is often most convenient because it more

easily allows for mixed error models often observed. This approach has not previously been

used for power law noise, but can be implemented via the FIR filter approach described

above. More details are given in Section 2.3.2.

2.2.3 The Error Covariance Matrix

The ECM is introduced here since it is a critical part of the current implementation.

Defining x◦ as the n× 1 true measurement vector and x as a n× 1 vector of experimental

measurements, we can define the difference between them as the measurement error vector,

e,

e = x− x◦. (2.4)
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To obtain all combinations of covariance terms for a system of n variables, the expectation,

E(*), of the outer product of the measurement error vector e with itself gives rise to the

ECM, Σ,

Σ = E(eeT). (2.5)

Obtaining an expression for the theoretical ECM of 1/fα noise offers two main ad-

vantages. First, simulation of noise consistent with the ECM is simple if the ECM is

known. This is detailed in the following section. Second, previous measurement error

models and data processing methods have been developed using the ECM at their core.

For example, methods that include measurement error information, such as MLPCA41,42

and multivariate curve resolution-weighted alternating least squares (MCR-WALS),48 use

the ECM to incorporate the measurement error information in the analysis. The goal of

this chapter is not strictly to simulate 1/fα noise, but to express the characteristics of this

unique type of noise in the form of the ECM. As shown in a previous section, there are

many satisfactory methods for simulating 1/fα noise. However, these do not provide the

ability to easily simulate 1/fα noise in the presence of other types of noise commonly

encountered in analytical signals (e.g. shot noise, baseline offset). Obtaining an expression

for the 1/fα ECM as a function of α allows for the simulation of any type of power law

noise in the presence of other common noise via rotation and scaling of iid normal noise

(similarity transform).

2.3 Theory

2.3.1 Noise Simulation

As shown in Equation 2.6, by applying a transformation (rotation), P (n × n), derived

from singular value decomposition (SVD) of an ECM, Σ (n× n), to a vector of iid normal

errors eiid, an error vector eΣ consistent with the ECM is obtained.43

eΣ = LΛ
1
4eiid = Peiid. (2.6)

In this equation, Λ (n×n) is a diagonal matrix containing the eigenvalues and the columns

of L (n×n) contain the eigenvectors, both obtained from the SVD of Σ, while eiid (n× 1)

is a vector of iid normal errors. Using this method, one is able to obtain correlated and
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heteroscedastic noise simply by rotating and scaling iid normal noise with the proper

information obtained from the SVD.

More commonly, in chemical applications, signals are represented as rows of a matrix,

X (m× n), so Equation 2.6 can be generalized to:

X = X◦ + EiidP
T, (2.7)

where X◦ is the noise-free simulated data (m × n), X contains the noisy data with the

desired structure, and Eiid is a matrix of iid normal errors. Of course, if Σ is signal

dependent (e.g. proportional noise) noise vectors need to be generated individually. This

method is powerful and makes it clear that, if we can obtain the theoretical ECM for power

law noise, then simulation of 1/fα noise can be performed simply by scaling and rotating

iid normal noise. Therefore, the first step in this investigation is finding an expression for

the 1/fα ECM as a function of α. Formulating the problem from the perspective of a FIR

filter provides direct access to the 1/fα ECM in an intuitive way.

2.3.2 FIR Filter Design

An FIR filter is a digital filter that produces an output by the convolution of a fixed set of

filter coefficients, represented by a vector c of length m, with a vector x of length n, as

shown in Equation 2.8, where y is the output vector and “∗” represents the convolution

operator.

y = c ∗ x. (2.8)

In practice, both c and x are finite in length and so will define the length of y. If we

define c =
[︂
c−w c−w+1 . . . c0 . . . cw

]︂
, where m = 2w + 1, x =

[︂
x1 . . . xn

]︂
and y =

[︂
y1 . . . yp

]︂
, we can write Equation 2.9 as:

yi =
w∑︂

j=−w

cjxi+j+w. (2.9)

This convolution defines p = n −m + 1 = n − 2w, requiring that n (the length of the

signal vector) is greater than or equal to m (the length of the filter). The filter coefficients,

c, define the frequency response of the filter, i.e. the Fourier spectrum of y when x is

a white noise sequence. The most common example of an FIR filter is a least squares
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polynomial (Savitzky–Golay) filter,83,84 which attenuates the high frequency components

of a signal, x.

If the frequency response of a FIR filter is known, the filter coefficients can be obtained

from the Fourier domain. In the present case, simulation of 1/fα noise is carried out by

filtering white noise in the time domain. Since the desired frequency response is known

(1/fα, by definition), we work backwards to determine the filter coefficients.

To determine the filter coefficients, we first define a vector of frequency values, f of

length m(= 2w + 1), where w is a positive integer, that extends from -0.5 to 0.5 in steps

of 1/2w: f = [ f−w ... f0 ... fw ] . These frequencies are given relative to the sampling

frequency, fs, and the limit of 0.5 represents the Nyquist frequency, where fN = 1/(2∆t)

and ∆t is the sampling interval. The filter mask, H, for the white noise is then defined

in terms of the power law noise desired for both positive and negative frequencies. This

vector is symmetric about its centre, H0, such that H−w = Hw.

H =
[︂

1

f
α/2
−w

. . . 1

f
α/2
0

. . . 1

f
α/2
w

]︂
. (2.10)

This definition has some practical implications that need to be addressed. The most obvious

of these is that 1/f0 is undefined since f0 is zero, but there are also implications associated

with the filter width, m. These will be set aside for the moment and discussed in detail in

Sections 2.3.2.1 and 2.3.2.2.

Once H is defined, the coefficients of the filter are obtained by first taking the inverse

Fourier transform of H and then calculating the amplitude. This two step operation is

shown in Equations 2.11 and 2.12, where F−1 denotes the inverse Fourier transform

operator (implemented as the fast Fourier transform (FFT)).

Z = F−1(H). (2.11)

ci =
√︁

ZiZ∗
i . (2.12)

Here, Z∗
i indicates the complex conjugate of zi. A Hamming window85 is then applied to

the filter coefficients. This is a common apodization function used in signal processing to

reduce artifacts in the filter coefficients and was found to improve the quality of power law

noise in this study. The coefficients for a Hamming window of length m can be generated
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using Equation 2.13, where the multiplication of Hamming coefficients, w(i), with the

filter coefficients, c(i), produce the windowed coefficients. In this work, the number of

Hamming coefficients was set equal to the length of the FIR filter coefficients.

w(i) = 0.54− 0.46 cos

(︄
2π

i− 1

m− 1

)︄
, 1 ≤ i ≤ m. (2.13)

After applying the Hamming window, the coefficients are then normalized to produce an

output whose variance matches the input, as shown in Equation 2.14.

c′ = c/||c||. (2.14)

It should be noted that the actual implementation of the procedure described above

in the MATLAB programming environment is somewhat different due to the format of

the Fourier coefficients. This requires a reordering of the vectors consistent with the

specifications of the FFT.

2.3.2.1 Practical Considerations: DC Noise

As previously noted, Equation 2.10 is problematic since f0 = 0 and therefore H0 is

undefined. This relates to the fact that true 1/fα noise has an undefined variance. To

apply the proposed method, it is necessary to define a finite filter response value for

f0. Although this assignment might seem arbitrary and of little consequence since it

relates to the DC noise level, it is actually important to the practical application of the

filter and the calculation of the ECM. Suppose, for example, that H0 were simply set to

zero, implying no DC offset but 1/fα behaviour everywhere else. This seems reasonable,

but discontinuities in H lead to artifacts at low frequencies that cause deviations from

1/fα behaviour. Moreover, the assignment of a value to H0 implies, by interpolation, the

response of the filter at the low frequencies between f0 and f1. These low frequencies have

the greatest effect on long-range correlation, and therefore the magnitude of H0 will affect

the appearance of the ECM.

The solution to the problem of discontinuities in H is a smooth extrapolation of the

frequencies approaching f0, using a simple function such as a polynomial to estimate a

value for H0. Although the exact value of the extrapolated point will depend on several

factors (order of polynomial, number of points, etc.) it has been found in this work that

good results are obtained if H0 is assigned a value of (6w)α/2 (or (3m)α/2) as shown in
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Figure 2.2(a). Alternatively, f0 can be set to 1/(6w) prior to applying Equation 2.10. These

values produced reliable behaviour in the frequency domain for all reasonable values of

filter width (m) and power factors (α).

2.3.2.2 Practical Considerations: Filter Width

Another important consideration is the length of the filter, m, selected in a given application.

In general, larger filter widths (relative to the number of data points to be generated, n)

will lead to a frequency response which more accurately reflects the desired behaviour,

with shorter filters leading to a flatter response at low frequencies. Under conditions

where, m > n (w ≥ n/2), the distortion in the frequency response is minimal, but the

selection of the filter width will also affect the shape of the ECM generated. This can

be understood by recognizing that extending the length of the filter does not change the

Nyquist frequency, but it does decrease the interval between points on the frequency axis.

In particular, because the interval between f0 and f1 is decreased and the value of H0 is

changed, the low frequency region (which affects long-range correlation) is modified. This

will tend to increase the degree of correlation among measurements as the filter length

is increased. Taking another perspective, long-range correlation can extend only to the

length of the filter. Where m < n, the ECM will drop to zero whenever the separation of

the channels is greater than m. Where m > n, correlations can extend beyond the window

of the data, leading to an ECM which shows a higher degree of correlation.

The power noise simulated in this manner essentially depends on two parameters: α and

the ratio of the filter width to the number of points generated in the signal vector, m/n,

which we will define as ρ. When α is changed, the slope of the PSD plot (logP vs log f )

will change accordingly and the ECM will show higher correlations as α is increased,

since the variance is shifted to lower frequencies. When ρ > 1, the slope of the PSD plot

remains essentially unchanged as ρ increases (as long as α remains fixed) but the vertical

position of the PSD will shift by a small amount, as shown in Figure 2.2(b). However, the

value of ρ will have a significant effect on the ECM, and therefore the nature of the noise

generated from it, with higher values of ρ leading to more correlated noise.

The foregoing description correctly implies that there is not a unique ECM for 1/fα

noise, which may seem counterintuitive, but is again a consequence of undefined variance

at f = 0. All analytical measurement systems are band-limited in some way, and so

the variance in the DC signal must be constrained to reasonable values. Likewise, many
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Figure 2.2: (a) PSD obtained from 1000 realizations of noise (n = 500, α = 1, ρ = 1)
with H0 = 6wα/2 (solid black line), H0 = 0.6wα/2 (solid black line with circle markers),
and H0 = 60wα/2 (solid black line with square markers). Note thesis plots are offset for
clarity. (b) PSD obtained from 1000 realizations of noise (n = 500, α = 1) with ρ = 0.25,
1, 2, 5, and 50. These plots were not offset to show the vertical shift observed between
each of the cases.
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instrument systems employ anti-aliasing filters at high frequencies. It is the low frequency

behaviour in particular that influences the correlation in the measurements. Because

extending the filter width decreases the interval between f0 and f1, the value of H0 and the

implied behaviour between DC and the next lowest frequency observable in the Fourier

transform of the data are modified. This modification changes the distribution of the power

at the low frequencies. Although this behaviour cannot be observed directly in the PSD

of the noise signal, whose lowest frequency is defined by the number of measurement

channels, it is observable in the ECM, where the redistribution at low frequencies leads

to more correlated noise as the filter width (ρ) is increased. Since, in general, the low

frequency behaviour of the analytical signal is not known, it is impossible to know the

“correct” ECM. In principle, the low frequency behaviour could be determined empirically

by taking a very long sample sequence, but this is generally impractical since many

analytical measurement systems have a finite sequence length (e.g. a finite number of

spectral channels in a spectrometer).

To simulate a 1/fα noise sequence of length n using the ECM, the recommendation of

this work is to adjust the value of ρ (i.e. the filter length, m), to match the level of noise

correlation anticipated, or to use a range appropriate for the simulation. For low values of

ρ, the signal channels will be correlated over a short range, extending only the length of the

filter. For larger values, low frequency (drift noise) components become more dominant,

ultimately approaching simple DC offset (baseline shift) noise in the limit of large ρ. Some

examples of this will be presented under Results and Discussion.

2.3.3 Generation of the 1/fα ECM

Once the filter coefficients have been generated using the above method in Section 3.2,

they can be directly transformed into an ECM. Conceptually, this can be described in terms

of the creation of a filter matrix using the following procedure. First, the filter coefficients

are converted into a filter matrix that generates filtered data from the input data as shown

in Equation 2.15.

y = Fx. (2.15)

In this equation, y is the output sequence (n × 1), x is the sequence to be filtered ((n +

2w) × 1) and F is the filter matrix (n × (n + 2w)). The filter matrix contains the filter

coefficients such that each row i contains the full set of filter coefficients beginning at
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column i and ending at column i+ n, with all other elements equal to zero, producing a

band diagonal matrix. When the filtering procedure is presented in this way, the ECM can

be described by Equation 2.16.

Σ = FFT. (2.16)

Although this procedure correctly reflects the process behind the generation of the ECM,

the matrix manipulations can be computationally inefficient, especially when large filter

widths are involved. For this reason, the actual procedure uses a more efficient convolution

of the filter vector with itself to produce an equivalent result.

When the 1/fα ECM is formulated using the above definitions, all channels have a

theoretical variance of unity. From here, the 1/fα ECM for power law noise, ΣPL, can be

multiplied by the desired variance and used with Equation 2.6 to generate 1/fα noise. To

obtain the multiplicative 1/fα noise ECM, ΣPPL (proportional power law noise), Equation

2.17 can be used, where x◦ is the signal vector (n × 1), RSD is the relative standard

deviation of the noise with respect to X◦ and ⊙ indicates the Hadamard product.

ΣPPL = ΣPL ⊙ (x◦x◦T)(RSD)2. (2.17)

Code for the procedures described in Section 2.3 can be found in Appendix A.

2.4 Experimental

2.4.1 Computational Details

All calculations were performed using programs written in-house with the MATLAB pro-

gramming environment (MathWorks, Natick, MA).81 A MATLAB function for performing

the proposed method is included in Appendix A. The MATLAB function “subspace.m”

was used to obtain subspace angles.86,87

2.4.2 Simulation Studies

To demonstrate the utility of this method, two simulations were used. In the first simulation,
1H NMR data from 231 three-component mixtures (propanol, butanol, and pentanol) were

used as a reference data set to evaluate the performance of PCA and MLPCA after the

addition of 1/fα noise.88 A specific region (0.8369 ppm - 0.9510 ppm) of the original data
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set (231× 14000) was chosen to produce a truncated data set (231× 500). This data set

was subjected to PCA and MLPCA after the addition of 1/fα noise (α = 1 and 2, ρ = 1).

In a second study, to demonstrate the utility of this method with respect to data prepro-

cessing, a simple chromatographic data set was simulated and its baseline was estimated

using the asymmetric least squares (AsLS) smoothing algorithm89 after the addition of

1/f 2 noise. The simulated chromatographic vector (1×2000) was constructed by summing

6 Gaussian peaks centered at channel 100 (σ = 5, maximum height, h = 1), 300 (σ = 10,

h = 0.5), 350 (σ = 10, h = 0.5), 500 (σ = 15, h = 0.3), 1100 (σ = 25, h = 0.2), and

1500 (σ = 50, h = 0.1).

2.5 Results and Discussion

2.5.1 Simulation of 1/fα Noise via the Theoretical ECM

Various noise sequences were simulated using the proposed method based on scaling

and rotation via the generated 1/fα ECM. Sequences of 500 measurements with σ2 = 1

were obtained for α = 0 (white noise), 0.5, 1, 1.5, and 2, with a filter width of m = 501

(ρ = 1). Typical noise sequences (offset for clarity) are shown in Figure 2.3. The general

trend towards lower frequency variation is evident in these plots as α is increased. To

further confirm the frequency behaviour of these noise sequences, 1000 realizations were

generated under each set of conditions and individual power spectra were averaged to

create a PSD plot. These plots are given in Figure 2.4, where the cases are offset from one

another vertically for clarity (note that the markers used in the plot do not imply anything

about the confidence levels of the simulation at certain frequencies). The highly linear

behaviour and slopes of PSD plots confirm the 1/fα behaviour of the noise generated in

this manner. Mesh plots of the ECMs corresponding to α = 1 and α = 2 used to generate

the noise sequences in Figure 2.3 can be found in Figure 2.5.

A more efficient way to show the correlation observed in the ECM is to plot the first

row (or column) of the ECM, since this indicates the correlation of the first channel

with all of the other measurements. Figure 2.6 shows the correlation of channel 1 with

other measurement channels for different values of α, again confirming the increase in

correlation as low frequency noise components are more heavily weighted with increasing

α.

The algorithm proposed here requires specification of the parameters H0 and ρ, with the
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Figure 2.3: Sequences of 500 measurements (n = 500, m = 501, σ2 = 1) simulated using
the proposed method for α = 0, 0.5, 1, 1.5, and 2. The sequences are offset vertically for
clarity.
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Figure 2.4: Average PSD plots obtained from 1000 realizations of simulated sequences
(n = 500, m = 501) for α = 0, 0.5, 1, 1.5, and 2. The dashed lines have a slope of -1 and
the plots are arbitrarily shifted vertically for clarity.

former related to the finite DC variance and the latter defining the filter width. Simulations

were performed to explore the effects of these parameters on the PSD plot using n = 500

and α = 1, with 1000 replicates employed to evaluate the PSD. It was found that when

H0 changes significantly from the recommended value of (6w)α/2, negative or positive

deviations in the PSD plot can result, although small deviations from the recommended

value have limited impact, as shown in Figure 2.2(a). Similar behaviour was observed for

different values of w and α, confirming our recommendation to assign the value of H0

as described. On the other hand, the value of ρ is an adjustable parameter. When ρ < 1,

distortion of the PSD plot away from the ideal is observed, with a flatter response at low

frequencies. When ρ > 1, the slope remains true to the expected value regardless of the

value of ρ, and only a small shift in the vertical position of the curve is evident (see Figure

2.2). However, the effect on the corresponding ECM is more significant, as illustrated

in Figure 2.7(a), which shows the calculated channel 1 correlations for various values

of ρ with n = 500 and α = 1. As ρ is increased, the correlations in the measurement

errors expand in magnitude across all of the channels. Figure 2.7(b) shows samples of the

noise for each of these cases (offset for clarity). Despite the differences in the ECM there

are no obvious features that distinguish the identity of the noise sequences because the
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Figure 2.5: (a) Theoretical ECM and (b) experimental ECM for α = 1 (n = 500, m = 501,
1000 replicates) as well as (c) the theoretical ECM and (d) the experimental ECM for
α = 2 (n = 500, m = 501, 1000 replicates).
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Figure 2.6: The first row of the theoretical ECM for α = 0, 0.5, 1, 1.5, and 2 (n = 500,
m = 501).

changes are at very low frequencies that can only be detected by a statistical examination

of multiple sequences. The effect of increasing ρ becomes greater as α is increased, but

the shape of the ECM remains largely unchanged with increasing n; that is, the same shape

is observed but over a larger range of channels.

The reason for the change in ECM as a function of ρ can be understood by looking at the

frequency response of the corresponding filter over a wide range. The amplitude response

of any symmetric FIR filter with coefficients given by c at a frequency, f , is given by :90–92

H(f) = A cosϕ+B sinϕ. (2.18)

where,

ϕ = tan−1(B/A). (2.19)

A =
w∑︂

k=−w

ck cos(2πkf). (2.20)

B =
w∑︂

k=−w

ck sin(2πkf). (2.21)

Figure 2.7(c) shows a log-log plot of the frequency response for the filters corresponding
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response for the filters constructed using various values of ρ (0.5, 1, 2, 5 , 50).
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to Figures 2.7(a) and (b) extending to low frequency regions. The vertical line indicates the

lowest non-zero frequency available in the PSD plots. The behaviour below this frequency

shows how low frequencies are attenuated by the filter, with each one showing a plateau

approaching zero frequency. As ρ increases, a greater fraction of the low frequency region

is incorporated into the filter. Since the low frequencies are associated with long-range

correlation, this explains why the ECM shows greater correlation as the filter width is

increased, even though the slope of the PSD plot does not change in the observable region.

Without knowing the behaviour of the analytical measurement system at low frequencies, it

is impossible to anticipate which (if any) of the ECMs represents the “true” characteristics,

but for simulation purposes, adjustment of ρ allows these features to be manipulated to

explore the limits of the data analysis procedure.

Application of the power noise simulation in the examples that follow requires the spec-

ification of three parameters: the number of points (n), the power factor (α), and the filter

width multiplier (ρ). For these examples, the parameters have been selected to demonstrate

the utility of the noise simulation, but are not intended to represent recommended values.

2.5.2 NMR Spectral Simulation

The principal objective of this work is to create a method to generate power law noise

through the ECM for the purpose of simulating analytical measurements and testing data

analysis strategies. While other methods can be used to generate power law noise, the

main advantage of using the ECM is that it can be easily added to ECMs representing other

noise contributions (white noise, offset noise, multiplicative offset noise, etc.) to measure

the overall impact under various conditions. To demonstrate this, NMR data are used here

to test the hypothesis that maximum likelihood principal components analysis (MLPCA)

should perform better than PCA under non-iid noise conditions. MLPCA methods take

the measurement error structure into account in estimating the subspace of the data; in

essence, they try to separate the noise variance from the chemical variance in an optimal

way. A drawback with this method is that it is difficult to evaluate to what extent MLPCA

improves results under different conditions since reliable ECMs (which MLPCA requires)

are generally unavailable for experimental data sets due to limited replication. This is just

one example of where simulation is a critical tool in assessing the efficacy of proposed new

techniques and, by implication, the value of better understanding analytical measurement

errors.
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For the simulation here, 1/fα (α = 1 and α = 2) noise sequences were added to the

reference NMR data. Pink and brown noise are fairly common in spectroscopy, where

source components are often subject to these kind of variations. (It is not implied here that

the NMR data used are subject to power noise, they were simply used as a model data set.)

To make the simulation more interesting and demonstrate the additivity of noise sources,

white noise was also added to the data.

To demonstrate the value of the noise simulation method, the standard deviation of the

1/fα noise was increased from 0 to 15% of the maximum signal in steps of 0.5% while the

level of white noise remained fixed at 1% of the maximum signal. The performance of PCA

and MLPCA was evaluated at each noise level used by examining the angle between the

reference component subspace (based on reference NMR data) and the subspace estimated

by the decomposition methods. With this approach, smaller subspace angles indicate a

better fit to the reference, which is important in applications such as multivariate curve

resolution and multivariate calibration. To obtain statistically meaningful results, these

angles were averaged over 50 runs (same data structure, different noise realizations). The

value of ρ was kept at 1 for all simulations. The results of this study for both α = 1 and

α = 2 are shown in Figure 2.8.

As expected, increasing the amount of 1/fα noise added to the data hinders the ability

of both methods to estimate the reference subspace, but as anticipated, MLPCA provides a

more reliable subspace estimate than PCA under all conditions. This is observed for both

α = 1 and α = 2, but is more drastic for α = 2. This can be rationalized by considering

the increase in correlation of the noise being added to the system for α = 2, relative to

α = 1. PCA assumes that there is no correlation in the noise structure of the data and its

ability to estimate the reference subspace is impacted more by noise with a more prominent

correlation structure. Although the subspace angle profile obtained using MLPCA for both

cases is similar, there are some noticeable differences. At the maximum addition of noise

(15% RSD), MLPCA seems to obtain a lower subspace angle (∼ 10 degrees) for the α = 2

case compared to the α = 1 case (∼ 25 degrees). This most likely has to do with the

correlation of the noise with respect to the pure component spectra of the reference data.

2.5.3 Baseline Correction Simulation

The simulation of power law noise is useful not only for testing complex multivariate

analysis methods, but also for the evaluation of simpler data treatments such as baseline
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Figure 2.9: Simulated chromatographic vector vector with 1/f 2 noise (5% RSD) and an
estimate of its baseline obtained using AsLS (λ = 9.5× 104).

correction. Many baseline correction algorithms have been developed, but the generation

of realistic stochastic baselines for testing that do not have a defined functional form

is a challenge. Power law noise typically exhibits low frequency variations consistent

with baseline drift and was used to test asymmetric least squares (AsLS),89 a popular

baseline correction method, in this simulation. The ability of the AsLS smoothing baseline

correction algorithm to estimate the baseline of the simulated chromatographic data set

with 5% RSD (relative to the max signal in the reference data) 1/f 2 noise was investigated.

Due to the adjustable parameter λ in the algorithm, which determines the smoothness of

the baseline estimate, multiple simulations were performed to determine an optimal value

by inspection (λ = 9.5 × 104). Figure 2.9 shows typical results for the AsLS baseline

estimation after brown noise was added to the chromatographic signal.

The AsLS algorithm is able to estimate the low frequency fluctuations in the baseline

introduced by the 1/f 2 noise. However, small deviations are observed in higher frequency

fluctuations. This can be rationalized considering the main variation introduced by the

1/f 2 noise is in the low frequency domain.

2.6 Conclusions

In this work, a method for simulating 1/fα noise, which can easily be extended to simulate

multiplicative 1/fα noise has been described. The proposed method is based on scaling and

rotation of iid normal noise by a projection obtained from the singular value decomposition
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of the desired noise ECM which, in the case of 1/fα noise, is obtained from an FIR filter.

To generate the ECM, the parameters specified are the number of measurement channels

(n), the power factor (α) and the filter width parameter (ρ). The last parameter can be

used to adjust the influence of low frequency noise on the ECM, but does not affect the

slope of the PSD plot for the noise generated. A major advantage of simulating 1/fα noise

via the ECM is that it can be simulated in the presence of other analytical measurement

errors by assuming an additive ECM model. The quality of the 1/fα noise produced

using this method was assessed by inspection of the PSD for various values of α and was

found to closely match the theoretical values. To demonstrate the utility of this method, a

simulation was performed where increasing amounts of 1/fα noise was added to a known

three-component data set. The angle between the reference subspace and the subspace

predicted by both PCA and MPLCA was calculated as a function of the increased 1/f

noise. MLPCA, which includes information on the ECM in its analysis, was found to

give better subspace estimations than that of PCA. To further demonstrate the utility of

the proposed method, the ability of the AsLS smoothing baseline correction algorithm to

estimate the baseline of simulated chromatographic data was assessed by using 1/f 2 noise

to simulate random low frequency baselines. It is anticipated that there are many other

examples of analytical signal processing methods where the ability to simulate power law

noise will greatly benefit the evaluation of procedures.
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CHAPTER 3

NOISEGEN - ANALYTICAL
MEASUREMENT ERROR SIMULATION
SOFTWARE *

This chapter presents analytical measurement noise simulation software in the form of

a MATLAB toolbox. Through the use of this easy-to-use software, multivariate noise

structures that imitate those observed in real analytical measurements can be simulated

for use in evaluating data processing procedures. In its current form, NoiseGen can

simulate iid normal noise, multiplicative noise (shot noise, or any other proportionality),

multiplicative offset noise, baseline offset noise, and independent and proportional power

law noise. An overview of the simulation algorithm is given and some examples using

both the command-line and graphical user interface are presented.

3.1 Introduction

As discussed in Chapter 1 and 2, the accurate simulation of measurement noise plays a

crucial role in the development and evaluation of data analysis methods. The assumption

of iid normal measurement errors has been shown to be a major drawback of popular data

analysis methods such PCA4 when applied to data sets that exhibit heteroscedastic and/or

correlated noise.45,93–95 Applying methods that assume a homoscedastic measurement error

structures makes it difficult to differentiate between the meaningful variance in the data

*This chapter is based on the published article: Driscoll, S, Wentzell, P.D. NoiseGen - Noise Simulation
Software for Analytical Measurements. Chemometrics and Intelligent Laboratory Systems. 189 (2019)
155-160 https://doi.org/10.1016/j.chemolab.2019.04.011. Contribution to Manuscript SD performed all
calculations, and wrote all drafts of the manuscript with edits by PW. PW supervised the project.

59



and the variance due to noise. This leads to a sub-optimal estimation of the true chemical

subspace. Despite this knowledge, there is still a tendency in the literature to represent

measurement error as iid normal noise when evaluating data processing methods,32–34

most likely due to the simplicity in its simulation. That being said, some recent articles

have reported the utilization of simulated non-iid normal errors. For example, in the

assessment of new data processing procedures96 and in the evaluation of measurement

error models.43 The clear advantage in these studies is that the nature of the simulated

measurement noise increases the generality of the evaluation and development process. In

other words, the simulation of non-iid normal noise provides a more realistic and reliable

evaluation/development environment. Unfortunately, these examples are rare in the current

analytical chemistry literature. It is clear that there is a demand for comprehensive noise

simulation software that is easy to implement and able to simulate the types of noise

commonly observed in analytical measurement systems. Therefore, the purpose of this

chapter is to introduce freely available software developed in-house as a MATLAB81

toolbox that meets this demand.

To briefly refresh the reader with the basics of noise simulation, some strategies for

simulating some error structures discussed in Chapter 1 are considered. In general, simple

noise simulation can be performed using a random number generator, such as those

available in most programming languages. For example, multivariate iid normal noise can

be simulated by drawing numbers from a single normal distribution, N(0, σ2), for each

measurement channel in the system. Similarly, heteroscedastic noise can be simulated by

allowing the variance of the distribution to change as a function of measurement channel,

i.e. N(0, σ2
i ). For example, systems using photomultiplier or photodiode detectors usually

exhibit shot noise, a common type of heteroscedastic noise where the standard deviation of

the noise is proportional to the square root of the signal.97 In this case, the simulation can be

done by scaling the standard deviation of the distribution from which the random numbers

are being drawn at each measurement channel by the square root of the corresponding

value of the signal. Other common types of measurement noise, such as correlated noise,

can be simulated by introducing dependent structures in the errors across the measurement

channels. For example, this can be done by using an autoregressive process to generate

a series of values that each depend on the previous value in the sequence plus a random
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component.79 This type of correlated noise is characteristic of systems that exhibit source-

flicker noise, also known as 1/fα noise.62 Although these individual methods provide a

way to simulate more realistic individual noise components, they become cumbersome

when the simulation of multiple sources of noise is required (e.g. iid normal noise in the

presence of shot noise), which is characteristic of real measurement errors.

A more general method for noise simulation was reported by Wentzell and coworkers in

a study that involved bootstrapping to validate measurement error models.43 The method

requires access to the theoretical error covariance matrix (ECM), a square-symmetric

matrix that describes the variance and covariance between all channels in the system, of

the noise to be simulated. This ECM is then used to rotate and scale iid normal noise via

its eigenvalues and eigenvectors. Using this methodology, one only needs to know the

theoretical ECM for the type of noise, or combinations of noise, they want to simulate.

The ECM offers two main advantages in terms of noise simulation. First, it makes the

simulation of multicomponent noise trivial by assuming a simple additive model for the

ECM. Second, the simulation algorithm is general enough that any type of noise can be

simulated as long as the ECM structure is known. Previous studies have reported how

to represent common types of measurement noise using the ECM.36,44,98 For example,

multiplicative offset noise, a type of correlated heteroscedastic noise that randomly shifts

the signal up or down proportional to the magnitude of the signal, can be represented as

the outer product of the signal multiplied by the relative standard deviation of the noise.

Using this information, the NoiseGen software allows for modular input of various types

of noise sources, so the only information required from the user is the components of the

noise to be simulated and their magnitudes. This is the core of the NoiseGen algorithm

which makes the simulation of single and multicomponent noise easy to perform.

3.2 Algorithm

In general, any noise sequence, regardless of its complexity, can be generated if the

theoretical ECM, Σ, is known. By performing SVD on the ECM to rotate and scale

iid normal noise, a realization of noise, eΣ, consistent with the theoretical ECM can be

obtained. This relationship is shown in Equation 3.1, where S and V are the matrices that

contain the singular values and loadings, respectively, obtained via SVD of Σ and eiid
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(1× n) is a vector of iid normal errors with σ = 1.

eΣ = eiidS
1
2VT. (3.1)

This formulation can be generalized to create m realizations of noise simultaneously by

redefining the dimensionality of eiid as m×n, where each row is a realization of iid normal

noise.

From a user’s perspective, it would be cumbersome to input the ECM of the noise

sequence they want to generate. Instead, NoiseGen takes the parameters associated with

different noise sources as input and constructs the theoretical ECM, Σ, as shown in

Equation 3.2.

Σ = ΣIID +ΣMN +ΣBO +ΣMO +ΣPL +ΣPPL. (3.2)

The following subsections will define and describe each of the terms in Equation 3.2.

3.2.1 Independent and Identically Distributed from a Normal Distri-
bution Noise

Noise which is independent and identically distributed with a normal distribution (iid

normal) noise, or white noise, is the most commonly assumed type of noise in chemical

data. This noise is defined by having zero correlation among all measurement channels and

uniform variance. In terms of the ECM, white noise shows up as a constant and uniform

diagonal term which can be modeled using Equation 3.3.

ΣIID = α2
1diag(a1). (3.3)

In Equation 3.3, a1 is a vector of ones (n × 1) and α1 represents the standard deviation

of the noise. Figure 3.1 shows the theoretical ECM for some iid normal noise (α1 = 0.1)

and the addition of a realization of this noise to a Gaussian signal (µ = 250, σ = 50, and a

maximum height of 1).

3.2.2 Multiplicative Noise

Multiplicative noise is a type of noise where the standard deviation of the error is propor-

tional to the signal intensity. This type of noise is uncorrelated, but is heteroscedastic. This

can be modeled in the ECM by creating a matrix where the diagonal elements are equal to
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Figure 3.1: (a) The ECM model of some iid normal noise (α1 = 0.1) and (b) this noise
added to a Gaussian signal (µ = 250, σ = 50, and a max height of 1).

a representative signal vector raised to some power, as show in Equation 3.4.

ΣMN = α2
2diag(a2). (3.4)

In Equation 3.4, a2 is a representative signal vector with its elements raised to the power of

2γ1. If γ1 = 1, this is true proportional noise and α2 represents the noise RSD. However,

γ1 can generally take on other values, with γ1 = 0.5 (shot noise) being the most common.

Shot noise arises from counting statistics at detectors that measure quantized signals in time

(e.g. electron multipliers). These randomly arriving signals follow the Poisson distribution

and result in a proportionality between the variance of the error and the signal. Figure

3.2 shows the theoretical ECM for shot noise with α2 = 0.1 relative to a Gaussian signal

(µ = 250, σ = 50, and a max height of 1) along with a realization of this noise added to

the same Gaussian signal.

3.2.3 Baseline Offset Noise

Sometimes referred to as additive noise, baseline offset noise arises from the signal shifting

up or down. A common example of this type of error is changes in cell position between

measurements, but it can also result from instrument drift. This results in a random offset in

the signal which corresponds to a flat non-zero ECM. This can be modeled using Equation
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Figure 3.2: (a) The ECM model of shot noise (γ1 = 0.5, α2 = 0.1) and (b) this noise
added to a Gaussian signal (µ = 250, σ = 50, and a max height of 1).

3.5.

ΣBO = β2
1b1b

T
1 . (3.5)

In Equation 3.5, b1 is a vector of ones (n × 1) and β1 represents the standard deviation

from that source. To illustrate this, Figure 3.3 shows random offset noise (β1 = 0.1) of a

Gaussian signal (µ = 250, σ = 50, and a max height of 1) and the corresponding ECM.

3.2.4 Multiplicative Offset Noise

Multiplicative offset noise is similar to baseline offset in that the impact of this noise arises

from a shift of the signal up or down, but in this case the effect is multiplicative and not

constant over all channels. This type of noise introduces an offset that is proportional to

the signal and is commonly observed in near-infrared (NIR) reflectance measurements due

to path length variation. Equation 3.6 can be used to model multiplicative offset noise.

ΣMO = β2
2b2b

T
2 . (3.6)

As with proportional noise b2 is a representative signal vector raised to the power of

γ2. Most often, γ2 = 1 and β2 will represent the RSD of the multiplicative offset, but

other values can be used. Figure 3.4 shows the theoretical ECM for multiplicative noise

(β2 = 0.1, γ2 = 1) relative to a Gaussian signal (µ = 250, σ = 50, and a max height of 1)

and 10 realizations of this noise added to the same Gaussian signal.
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Figure 3.3: (a) The ECM model of baseline offset noise (β1 = 0.1) and (b) 10 realizations
of this noise added to a Gaussian signal (µ = 250, σ = 50, and a max height of 1).
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Figure 3.4: (a) The ECM model of multiplicative offset noise (γ2 = 1, β2 = 0.1) and (b)
10 realizations of this noise added to a Gaussian signal (µ = 250, σ = 50, and a max
height of 1).
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3.2.5 Power Law Noise

Power law noise, also called 1/fα noise or source-flicker noise, is a type of low frequency

noise observed in almost all fields of science. In analytical chemistry, this type of noise

is thought to originate in instrumental components such as flames and ion sources. It is

defined in terms of the power spectral density (PSD), which describes the power of a signal,

P , as a function of frequency, f . The α value in 1/fα is equal to the negative slope of the

line formed when plotting logP vs logf . As α increases, more power is observed in the

low frequency components of the noise (i.e. more correlation among channels). Values

that are of interest and observed in analytical chemistry are α = 1 and α = 2, sometimes

called pink and brown noise, respectively. These noise types are especially worrisome in

analytical chemistry because measured chemical signals can often be found in the same

frequency domain.

The work completed in Chapter 2 allows for a theoretical ECM of power law noise

using a finite impulse response filter.98 The results of this work allow for the simulation

of 1/fα noise with α as an adjustable parameter. In addition, an important finding of this

work is that it is possible to obtain 1/fα noise using a theoretical ECM that depends on

not only α, but ρ as well, which is the ratio of the length of the filter to the number of

channels. Practically, these are the only two value that need to be defined to simulate

power law noise using this method, where an increase in α changes the type of power law

noise and an increase in ρ increases the correlation within a type of power law noise. The

model ECM can be constructed using Equation 3.7, where λ1 is the standard deviation of

the power law noise and C1 is the 1/fα theoretical ECM designed with unit variance. It

should be noted that C1 is both a function of α (defined in NoiseGen as γ3 for notational

consistency) and ρ.

ΣPL = λ2
1C1. (3.7)

Figure 3.5 shows an example of a theoretical 1/f 2 noise ECM (α = 2, ρ = 1, λ = 0.1)

and the corresponding noise added to a Gaussian signal (µ = 250, σ = 50, and a max

height of 1).

In systems that exhibit shot-noise like characteristics, it is expected that the 1/fα noise is

multiplicative in nature. To simulate this type of noise, Equation 3.8 can be used, where C2

defined as the Hadamard (element by element) product of the 1/fα noise matrix (specified
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Figure 3.5: (a) The ECM model of 1/f 2 noise (α = 2, ρ = 1, λ = 0.1) and (b) the
corresponding noise added to a Gaussian signal (µ = 250, σ = 50, and a max height of 1).

by C1) with the outer product of the representative signal vector.

ΣPPL = λ2
2C2. (3.8)

3.2.6 The Overall ECM Model

Using the model expressions for the individual types of noise we want to model, the

individual terms in Equation 3.2 that describe the additive ECM model can expanded, as

shown in Equation 3.9,

Σ = α2
1diag(a1) + α2

2diag(a2) + β2
1b1b

T
1 + β2

2b2b
T
2 + λ2

1C1 + λ2
2C2. (3.9)

With the model ECM formulated in this fashion, the only input from the user is the length

of the noise sequence to be generated, how many sequences to generate, and the type of

noise and the parameters (α, β, γ) associated with each type. Of course, for proportional

components (i.e. ΣMO, ΣMN, and ΣPPL), a reference signal needs to be provided. Using

this information, the model ECM is constructed and SVD is performed along with the

generation of a white noise sequence. Equation 3.1 is then applied to generate the simulated

noise sequence consistent with Σ. A general flowchart for this methodology is shown in

Figure 3.6.
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Figure 3.6: General flowchart for the NoiseGen algorithm.

3.3 Software Specifications and Dependencies

NoiseGen is developed as a MATLAB toolbox in MATLAB release 2018a (MathWorks,

Natick, MA).81 The toolbox contains two files, NoiseGen.m and NoiseGenGUI.mlapp.

Both files can be found at the following public repository: https://github.com/S-Driscoll/NoiseGen.

Appendix B contains code for the command line implementation of NoiseGen. The

NoiseGen.m file is the main function called for performing the noise simulation. The

explicit inputs to the function are the number of channels, chan, and the number of noise

sequences to be generated, reps. Additional variable-length input arguments (varargin)

are introduced to allow for modular input of noise components and parameters. Input to

the NoiseGen function is structured such that the user only needs to specify the necessary

parameters for the noise they wish to simulate. Some types of noise, such as power law

noise, have additional parameters that can be changed, but defaults are used if they are

not specified. All variables and their descriptions, types and defaults are listed in Table

3.1. The returned variables, written in bold italics here for clarity, are the matrix of the

simulated noise, X (reps× chan), the theoretical ECM, COVM (chan× chan), and the
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Table 3.1: NoiseGen variables and their descriptions and default values for the command-
line interface.

Noise Type Description Parameters Default Value

chan Number of channels - Required
reps Number of replicates - Required
‘BO’ Baseline offset noise SD Required
‘MO’ Multiplicative offset noise RSD Required

Reference signal Required
Proportionality 1

‘IID’ White noise SD Required
‘MN’ Multiplicative noise RSD Required

Reference signal Required
Proportionality 1

‘PL’ Power law (1/fα) noise SD Required
α 1
ρ 1

‘PPL’ Proportional power law noise RSD Required
Reference signal Required

α 1
ρ 1

ECM calculated based on the number of replicates, COV (chan× chan).

The call format of the NoiseGen function in MATLAB function syntax is as follows:

[X, COV, COVM] = NoiseGen(chan, reps, varargin). Where varargin takes the variable

input arguments, such as ‘MO’ or ‘BO’. When specifying a noise type the user must make

sure to specify the appropriate parameters immediately after or the default values will

be used. Structuring the function in this way allows for modular input of noise types.

For example, [X, COV, COVM] = NoiseGen(100, 30, ‘MN’, 0.05, y, ‘BO’, 0.1) would

generate 30 noise sequences 100 channels in length that have (theoretically) a multiplicative

(proportional) noise RSD of 0.05, and baseline offset noise with a standard deviation of 0.1.

It is important to specify the reference signal vector for the multiplicative noise (in this

case as y (1× 100), which would hold the reference signal in the MATLAB workspace)

because this type of noise depends on the reference signal. The order of the noise types

requested in the function call does not matter, so calling the NoiseGen function as [X,

COV, COVM] = NoiseGen(100, 30, ‘BO’, 0.1, ‘MN’, 0.05, y) is equivalent to the call in

the previous example. Although the order of types of noise does not matter, the order of
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the parameters for each type of noise does matter. Each noise type has a required number

of parameters and optional parameters that have defaults. This information is also found in

Table 3.1. For example, in the previous call if we wanted to change the proportionality of

the multiplicative noise to the reference signal to be 0.5 (shot noise), then the structure

of the function call would be: [X, COV, COVM] = NoiseGen(100, 30, ‘BO’, 0.1, ‘MN’,

0.05, y, 0.5). Since NoiseGen builds the theoretical ECM from the individual ECMs it is

possible to simulate multiple types of the same noise type. For example, to generate 100

samples of noise 500 channels in length that exhibits both pink and brown power law noise

(α = 1 and α = 2) each with a SD of 1, the structure of the input would be: [X, COV,

COVM] = NoiseGen(500, 100, ‘PL’, 1, 1, ‘PL’, 1, 2 ).

For proportional components (‘MO’,‘MN’, and ‘PPL’), different reference signals can

be used for each replicate (reps× chan) to mimic a constant proportional noise RSD, but

varying spectral profiles in a data set. It is even possible to have individual proportional

noise RSDs and individual reference signals for each replicate by defining a vector of

RSDs (1× reps) and a matrix of reference signals (reps× chan). In this case, the output

ECMs (theoretical and experimental) have dimensionality of chan× chan× reps. This

proves useful when adding proportional components to an already defined set of data.

As noted above, a version of NoiseGen with a graphical user interface (GUI) is also

available in the toolbox (NoiseGenGUI.mlapp). It is developed as a MATLAB AppDe-

signer application and requires MATLAB release 2016b or later to run. A general overview

of the user interface and an example of using the GUI in practice is given in the next

section. The GUI version is algorithmically the same as the command-line version, but the

input environment is different. An annotated picture of the GUI layout is shown in Figure

3.7, where two screen captures of NoiseGen with descriptions of each of the components

are shown. The output from the GUI is written to the MATLAB workspace with the same

variable names as the command line interface by default; the output simulated sequences

are stored in the matrix X (reps× chan), and the theoretical ECM and the ECM based

on the number of replicates are stored in COVM and COV, respectively, by default in the

workspace. Although, these variable assignments can be changed in the GUI. A limitation

of the current version of the NoiseGen GUI is that multiple contributions of noise of the

same type is not supported.
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Figure 3.7: The NoiseGen GUI.
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Figure 3.8: An iid normal (i.e. white noise) sequence 500 channels in length (black solid
line) and a 1/f 2 (i.e. brown noise) sequence 500 channels in length (red dashed line).

3.4 Example Simulations

3.4.1 Command-line Noise Simulation

In this example, the NoiseGen function is used to investigate the impact brown noise

(1/f 2) has on the visualization of PCA scores for a simulated data set designed to cluster

four different classes. Brown noise is a class of power law noise characterized in the

frequency domain by having a decaying power spectral density that falls off with a slope of

-2 on a log-log plot of power vs frequency. This results in lower frequencies having more

power which corresponds to high correlation between adjacent measurement channels. The

origin of the noise is not fully understood, as with all power law related noise, but is most

likely introduced from source components in instruments (flames, plasmas, etc.). This is a

concern for most analytical measurements as the signals containing chemical information

are usually in the same frequency domain. A sample signal of brown noise is shown in

Figure 3.8 where a iid normal noise sequence (white noise) is plotted for comparison. It is

easy to see the non-zero correlation in the brown noise, made clear by the “slow-moving”

features that almost look like informative peaks.
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As PCA assumes iid normal errors for maximum likelihood estimation, the brown noise

should cause the subspace estimated by PCA to be inaccurate. To test both the error-free

case and the case of brown noise, a simulated data set was constructed as follows. The data

set consisted of 400 objects equally divided into four classes. The center of these classes

were designed such that in a two-dimensional space they were located on the vertices of

a square centered at the origin with the length of each side equal to unity. The objects

were randomly clustered around the centers according to a symmetric bivariate distribution

with a standard deviation of 0.20. This data set is shown in Figure 3.9 (A). The data set

was then rotated into a 500 dimensional space using a random rotation matrix, creating a

400× 500 multivariate data matrix. PCA was then applied to the error-free data, shown

in Figure 3.9 (B), and the data tainted by brown noise (σ = 0.30), shown in Figure 3.9

(C). To generate the brown noise, the NoiseGen function was called as follows: [X, COV,

∼]=NoiseGen(500, 400, ‘PL’, 0.30, 2) in the MATLAB command window.

To demonstrate the benefit of including error information in the subspace estimate,

maximum likelihood principal component analysis (MLPCA) was applied to the same

data set using the estimated covariance matrix and the corresponding scores were plotted,

as shown in Figure 3.9 (D). MLPCA, developed by Wentzell and coworkers, includes

measurement error information in the subspace estimation procedure via the ECM and

should give a better subspace estimate as long as the ECM is known. This ECM, which

was assigned to COVM when NoiseGen was called to generate the brown noise, was fed

into the MLPCA algorithm (case d - equal row ECMs) and the subspace was determined.

These results show that brown noise can severely impact a simple clustering problem when

applying PCA. The assumption that the ECM is simply the identity matrix multiplied by a

constant (the variance) causes an inaccurate representation of the data and, in this case, the

inability to correctly cluster all four classes.

3.4.2 GUI Noise Simulation

The NoiseGen GUI can be used to quickly visualize the behavior of different combinations

of noise types. In this example, the NoiseGen GUI is used to simulate noise comprised of

shot noise, proportional brown noise, also known as 1/fα noise, and multiplicative offset

noise. It is often hard to distinguish between multiplicative offset noise and proportional

1/fα noise due to their similar impact on the ECM. The NoiseGen GUI can be used to

quickly visualize this impact in both the theoretical ECM and the ECM calculated from
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Figure 3.9: (A) Simulated data consisting of four classes, each clustered around the vertices
of a square (symmetrical bivariate distribution with σ = 0.20). These data were then
rotated into a 500 dimensional space to make them multivariate. (B) PCA scores plot of
the error-free data (C) PCA scores plot of the data tainted with brown noise (1/f 2 noise,
σ = 0.3). (D) MLPCA-D scores plot of the tainted data using the ECM model obtained
from NoiseGen.
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the the simulated noise sequences. Here, I explore this qualitative change as a function of

the ratio between proportional pink noise and multiplicative offset noise in the presence of

shot noise.

To start the NoiseGen GUI in MATLAB type NoiseGenGUI in the command window

(note that this is case sensitive). Note that either the working directory needs to contain

the NoiseGenGUI.mlapp file or it needs to be added to the search path. The window when

the app is called is similar to that shown in Figure 3.2, but with the default values for all

parameters. Here, the parameters of the noise to be simulated can be defined. In the current

case, we first simulate 50 replicates, 1000 channels in length, of a noise sequence that

exhibits a theoretical shot noise standard deviation of 0.5, proportional brown noise RSD

of 0.5, and multiplicative offset noise RSD of 0.5. Of course, because all three of the noise

components in this simulation depend on an input signal, a simulated Gaussian profile that

is 1000 channels in length centered on channel 500 with a standard deviation of 100 and a

max value of unity is created for demonstration purposes. This is stored as refsignal in

the MATLAB workspace. This signal can be specified by selecting it from the drop-down

menu. Note that this drop-down menu only becomes visible when a proportional noise

type is given a value greater than zero. To update the drop-down menu the reset button

can be pressed; this will also reset all noise type parameters. A screenshot of the GUI

configured with the parameters used in this example is shown in Figure 3.10.

Clicking the button with the green lamp labeled “Generate” will generate noise, as well

as the ECMs, with the specified parameters. While simulating, the button text will change

to “Working!” and the lamp will turn from green to red, indicating that the program is

still running. This feature becomes more noticeable when the size of the output matrix X

increases. Of course, this is also dependent on the computer performance. Once complete,

the button will reset back to its original state and sample noise sequences will be shown

under the “Noise Preview” tab. Clicking the “Error Covariance Matrix” tab will show

both the theoretical ECM used to simulate the noise (right) and the ECM created using the

number of replicates requested (left). First, a closer visual inspection of the theoretical

ECM can be done by clicking the “Mesh” button. This creates a new figure containing a

mesh plot of the ECM. To explore the qualitative change of the ECM, five cases that vary

the ratio of multiplicative offset noise to proportional brown noise were simulated. The

parameters defining these simulations are shown in Table 3.2.
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Figure 3.10: NoiseGen GUI example configuration for simulating 50 replicates of a
noise sequence 1000 channels in length that has a theoretical shot noise RSD of 0.5,
multiplicative offset noise RSD of 0.5, and a proportional brown noise (1/f 2 RSD of 0.5.
Since all of these noise types depend on a reference signal, the reference signal refsignal is
selected from the MATLAB workspace.

Table 3.2: RSD Parameters used in NoiseGen to inspect the structure of the model ECM.

Case Shot Noise Multiplicative Offset Noise Proportional Brown Noise

Case (a) 0.50 0.50 0.50
Case (b) 0.50 0.25 0.75
Case (c) 0.50 0.00 1.00
Case (d) 0.50 0.75 0.25
Case (e) 0.50 1.00 0.00
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For each case, the ECM variable was assigned in the workspace as a different variable

so a quick inspection can be done after all cases were simulated. This can be done in

the NoiseGen GUI by changing the name of the “Theoretical ECM” in the “Store Output

Variables” panel. The results are shown in Figure 3.11 where all 5 theoretical ECMs

defined by the parameters shown in Table 3.2 are shown along with the ECM profile (The

n = 500 row of the ECM). The results show that while there is only a slight qualitative

change in the ECM as the proportion of multiplicative offset noise to proportional brown

noise is varied, there is a more noticeable change when the profile of the ECMs are plotted.

Comparing Cases (c) and (e), it is clear that multiplicative offset noise has a slightly broad

profile compared to proportional brown noise, meaning it introduces more correlation

into the noise. The remaining Cases provide insight to how this changes as the ratio of

the two types of noise varies. Of course, this analysis could of been performed using the

command-line as well, but the GUI provides a more immediate qualitative results when

surveying impacts of different noise types on the ECM and the resulting simulated noise

sequences.

3.5 Conclusions

NoiseGen provides a structured approach to simulating realistic analytical measurement er-

rors. The present implementation offers both command-line and GUI versions of NoiseGen

in the form of a MATLAB toolbox. Multicomponent noise sequences are easily simulated

using NoiseGen, where only the magnitude of the noise types and their associated parame-

ters are required as input from the user. The algorithm used for simulating noise revolves

around scaling and rotating iid normal noise using the scaling and rotation matrices ob-

tained from SVD of the theoretical ECM constructed from user inputs. It is the authors’

hope that this software will promote the use of more realistic measurement errors in the

evaluation of current data analysis methods and the development of new data analysis

methods.

3.6 Independent Testing

Dr. Ana de Juan. Associate Professor in the Department of Analytical Chemistry at the

University of Barcelona, Diagonal, 645. 08028 Barcelona.
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Figure 3.11: Theoretical ECMs obtained from the NoiseGen GUI output for the following
cases: Case (a) shot noise (SN) RSD of 0.50, multiplicative offset noise (MON) RSD of
0.50, and proportional brown noise (PBN) RSD of 0.50; Case (b) SN RSD of 0.50, MON
RSD of 0.25, and PBN RSD of 0.75; Case (c) SN RSD of 0.50, MON RSD of 0.00, and
PBN RSD of 1.00; Case (d) SN RSD of 0.50, MON RSD of 0.75, and PBN RSD of 0.25;
Case (e) SN RSD of 0.50, MON RSD of 1.00, and PBN RSD of 0.00.
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The NoiseGenGUI is a useful and user-friendly toolbox to get acquainted with different

kinds of noise and to clearly see how they can modify reference signals. It is an asset that

the different noise contributions be very well defined and separated both in the GUI and the

related publication, since analytical and, in general, scientific measurements, present noise

patterns that can issue from very diverse combinations of these contributions. The use of

NoiseGenGUI does not only have an educational side, oriented to help in understanding

the nature of the different noise contributions, but it is also a very handy tool to generate

easily and properly datasets affected by different noise levels and patterns to test how these

variations may affect the performance of the data analysis algorithms that we design or that

we commonly use in our data analysis tasks. Future wishes for updates could be having a

standalone version of the GUI and, more ambitious, setting an auxiliary tool to diagnose

noise patterns in real data sets provided that an estimate of the global noise is available.
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CHAPTER 4

DATA FUSION WITH NOISY
MEASUREMENTS

The preceding two chapters introduced methods to simulate complex error structures of

various types for multivariate chemical measurements through the error covariance matrix

(ECM). This capability is important for the evaluation of data analysis methods ranging

from simple signal processing (smoothing, differentiation, baseline correction, multiplica-

tive signal correction, transformation, etc.) to more complex applications (decomposition,

multivariate calibration, curve resolution, classification, etc.). A natural consequence of

this evaluation is to address the question: given a particular error structure (i.e. the ECM),

what is the best way to analyse the data?

The connection between error structure and optimal data analysis has been recognized

implicitly and explicitly since chemometric tools were first employed. The issue is most

frequently addressed through preprocessing of the data, i.e. by modifying the data to fit

the analysis method rather than the other way around. For example, if heteroscedastic

errors are an issue, scaling of individual channels is often used to render the error variance

more uniform. If multiplicative offset noise is the main problem, techniques such as

derivative filtering or multiplicative signal correction (MSC) can be applied. However,

these methods are generally ad hoc and limited in their ability to treat complex error

structures arising from multiple sources. A better way would be to incorporate the error

information contained in the ECM into the data analysis algorithm itself.

For methods that rely on decomposition through PCA, MLPCA41 can be an optimal or

near optimal way to model the data if the ECM is available, since subspace estimation

and data projection are based on principles of maximum likelihood estimation. This has
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been demonstrated for multivariate calibration,99–102 multivariate curve resolution,48,103

and exploratory data analysis.93 In this chapter, the extension of MLPCA to the problem

of data fusion is demonstrated using both simulated and experimental data.

4.1 Introduction

All chemists are aware that different analytical tools provide different kinds of information.

For example, infrared (IR) spectroscopy and nuclear magnetic resonance (NMR) spec-

troscopy reveal different structural information about a molecule and this complementary

information can lead to the elucidation of the complete structure in a way that could not be

achieved by either method individually. Likewise, if two sets of multivariate measurements

(e.g. UV-visible and IR spectra) are made on a common set of samples, combining these

measurements in the case of multivariate data analysis may reveal information that could

not be obtained through the analysis of each set individually. This process of combining

data matrices with a common dimension of information (the rows or samples in this case) is

known as data fusion, but is often referred to as multi-block analysis or data integration.104

The concept of data fusion has been around for some time, but has become more promi-

nent in chemistry over the last two decades as instrumental capabilities have expanded

and new kinds of information have been sought. Many different types of instrumental

measurements have been combined through data fusion and these are often quite distinct

from one another. Examples include X-ray fluorescence with Raman spectroscopy,105

1H NMR and UV-vis spectroscopy,106 HPLC and MS,107 and IR, Raman and NIR spec-

troscopy.108 Applications are also quite diverse, ranging from assessing the varietal origin

of olive oil109 and food and beverage authentication,110,111 to biosynthesis monitoring,112

and classification of pigments in works of art.113

In principle, data fusion is a simple matter of concatenating two or more data matrices

along the rows, as shown in Figure 4.1, effectively pushing them together and then applying

an appropriate data analysis tool such as PCA. This is known as “low-level” data fusion.

In practice, this simple approach often presents problems. First, there is a question of

scale, since measurements will have different units which may cause one or the other

to dominate the variance. Although scaling may address this, differences in the error

structures can complicate preprocessing options. While one block might have issues with

heteroscedastic noise, another may require MSC to remove multiplicative offset noise.
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Figure 4.1: Concatenation, or fusion, of data set X1 (m× n1) and X2 (m× n2) to form
the multi-block data set X (m× n). Concatenated PCA produces a rank k estimation of X
from the scores, T (m× k), and the loadings, L (k × n).

Optimizing preprocessing for multi-block data is more complex, since results may be

sub-optimal if any of the blocks are not treated correctly. In addition, blocks contain both

common and mutual information,114 which increases the complexity of the process.

Beyond low-level fusion, mid-level fusion extracts features (e.g. scores) from each data

set independently and these features are then combined to make the fused data set. In

high-level data fusion, each data set is analysed individually and the final results (e.g. class,

concentration) are combined.115 This chapter focuses on low-level data fusion.

It has long been recognized that resolving the incompatibilities in the measurement

error structure of multi-block data is a key challenge for data fusion. Most often, this

is addressed through a variety of preprocessing strategies applied to each block. Since

optimal preprocessing is a challenge even for a single block, it becomes even more difficult

when multiple blocks are involved, since the nature of the data and errors can be very

different. Recently, Waaijenborg et al.116 discussed some of the challenges and solutions

for metabolomics data sets. In this chapter, I consider a more direct and versatile approach

through MLPCA.

PCA is the basis for a wide variety of common multivariate data analysis methods, and

by extension multi-block data analysis methods as well. It is known that PCA provides
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a sub-optimal subspace estimate in the presence of non-iid normal measurement errors,

such as those observed in most chemical data.93 A common strategy to overcome this is to

preprocess the data such that the measurement errors become more similar to iid normal

errors. However, a standing issue in multi-block analysis, and single-block analysis, is

how to preprocess the individual data sets that are to be fused.117–120 As with single-block

data, preprocessing procedures are highly variable and data set dependent. Preprocessing

of multi-block data is especially difficult as improper preprocessing of even one of the data

sets would likely negatively influence the analysis and defeat the purpose of data fusion.

As mentioned in Chapter 1, MLPCA is a “single-block” subspace estimation method

proposed by Wentzell and co-workers.41,42 MLPCA takes the measurement error structure

into account when estimating the subspace of the data, leading to more reliable results in

the presence of non-iid normal noise and obtaining the PCA result when the errors are

exactly iid normal. Of course, a major drawback of MLPCA is that the error structure

must be known, but an estimate of the error structure can often be obtained if replicates

are available. A desirable property of MLPCA is that preprocessing does not need to be

done prior to applying the algorithm as this information is encoded in ECM. Therefore,

applying MLPCA to concatenated blocks of data should lead to better subspace estimation

without the need of complicated preprocessing if a proper estimate of the fused ECM is

known. The purpose of this chapter is to explore the use of MLPCA in multi-block data

analysis to improve information extraction from multi-block data.

4.2 Theory

4.2.1 Data Fusion

To introduce the general terms of data fusion, the theoretical framework for performing

concatenated PCA on a two-block data matrix will be presented. Let X1 (m× n1) be the

block 1 data matrix and X2 (m× n2) be the block 2 data matrix with m samples and n1

and n2 variables, respectively. The horizontal concatenation of these two blocks forms the

fused data matrix X (m× n), where n = n1 + n2. By this formulation it is required that

the same samples are represented in each block. Performing PCA on the concatenated

matrix can be done the same way as conventional PCA to produce a rank k solution from

the scores, T (m× k), and the loadings, L (k × n). This procedure is shown in Figure 4.1.

In practice, optimal preprocessing must be done on X1 and X2 before performing PCA
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on X because the PCA model assumes that the measurement errors are iid normal across

both blocks. This decomposition is often done using singular value decomposition (SVD),

shown in Equation 4.1,

X̂ = UkSkV
T
k = TL, (4.1)

where UkSk is equal to the scores (T) and VT
k is equal to the loadings (L) for the rank k

decomposition.

4.2.2 Multi-block MLPCA

Conceptually, extension of MLPCA to the multi-block case is straightforward. The

concatenated matrix, X, is formed in the same way as described above, i.e. X = X1|X2.

All that remains is to define the ECM, ΣX , prior to carrying out MLPCA. However,

this requires some further discussion of the practical implementation of MLPCA and the

estimation of the ECM.

MLPCA is based on a single philosophy of subspace estimation, but is practically

embodied by six separate algorithms (cases A–F) that reflect different error structures.42

Cases A–C apply to independent errors and cases D–F to correlated errors. Case A, which

is just PCA, applies to iid normal errors, and therefore can be excluded as a trivial case.

Case F applies to instances where correlation may exist in both the row and column

direction (e.g. in a fluorescence excitation–emission matrix). It is not generally applicable

to cases where the rows represent individual samples and, additionally, is computationally

demanding to the point of making it impractical except for small matrices. Therefore, case

F can also be excluded. Of the remaining cases, B and D apply to stationary noise (i.e. the

ECM is the same for all rows of X) while C and E apply to non-stationary noise (i.e. each

row of X has a different ECM). While the latter situation is certainly observed in chemical

measurements and can be employed, stationary noise is usually assumed because (1) cases

B and D are computationally more efficient, (2) it can be difficult to estimate individual row

ECMs reliably, and (3) because signals are typically very similar, the differences in ECMs

among rows is usually too small to have an effect. Finally, since case B (independent

errors) is a special case of case D (correlated errors) we will limit our discussion to case D

for simplicity. However, any of the error structures could be employed with some relatively

minor adjustments.
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Based on the preceding discussion, the error structures in X1 (m×n1) and X2 (m×n2)

can be described separately by the ECMs ΣX1 (n1 × n1) and ΣX2 (n2 × n2). For the

fused data matrix, X, however, we also need to describe (in principle) the covariance

between the errors in X1 and those in X2. This matrix is designated as ΣX12 (n1 × n2) or

its transpose ΣX21 (n2 × n1). While in principle ΣX12 could be estimated using identical

replicates on the two instruments, in practice it is normally assumed that ΣX12 = ΣX21 =

0. This is equivalent to saying that measurement errors on one instrument, say an IR

spectrometer, should have no relationship with those on another instrument, such as an

NMR spectrometer. This is a reasonable assumption unless dominant errors are associated

with some non-instrumental characteristic, such as sample preparation, that affects both

instruments in the same way. With simplification, the fused ECM is a block diagonal

matrix ((n1 + n2)× (n1 + n2)) as shown in Figure 4.2

Figure 4.2: The general structure of the ECM for the multi-block data set X, which is
comprised of the ECM from block 1, ΣX1, and block 2, ΣX2, as well as their interactions,
ΣX12 and ΣX21.

4.2.3 Estimation of the ECMs

The question remains regarding how to estimate the ECMs ΣX1 and ΣX2 for the practical

implementation of MLPCA on the fused data. Experimentally the ECM can be estimated

in the same way as the variance by measuring replicates for each sample. Suppose X

represents s samples, each replicated r times (i.e. m = r · s). We can construct an error

matrix, E, that contains the difference between each row in X and its corresponding sample
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mean. In other words,

ei = xi − x̄j. (4.2)

Here ei is a row vector of E (i = 1 . . .m), xi is the corresponding row of X, and x̄j is

the mean vector (j = 1 . . . s) associated with xi. Based on this, the ECM can now be

estimated from

Σ̂ =
ETE

m− s
. (4.3)

This is a pooled ECM based on the replicate measurements and can be applied to X1 and

X2 individually. If the number of replicates is different for each sample, some adjustments

to the degrees of freedom is necessary, but the same process applies.

In principle, the ECMs calculated in this way could be used for MLPCA, but in practice

this is problematic unless the number of replicates is very large because: (a) the Σ̂ is

often rank deficient (singular) leading to certain computational complications, and (b) the

covariance estimates can have a large uncertainty. Consequently, it is much better to use

an ECM obtained by one of the following means:

1. Theoretical prediction. Except in rare cases, this is only possible for simulations in

which the true error structure is known.

2. Theoretical modelling. This is based on developing a mathematical description of the

ECM using experimentally measured ECMs and a parameterized model consistent

with the types of errors expected. By fitting the model, reasonable estimates can be

obtained.43,44 However, this requires a good knowledge of the system under study.

3. Empirical modelling. Like theoretical modeling, this approach generates a fit of the

experimental ECM, but does so using principal axis factorization (PAF), which does

require a causal model.121 PAF is similar to PCA and also based on SVD. It provides

a model that separates out correlated sources of error from independent sources of

error.

In this work, method 1 is used for proof of principle for a simulated data set. For the

experimental data, method 3 is used.
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4.3 Experimental

4.3.1 Computational Details

All calculations were performed in MATLAB release 2018a (MathWorks, Natick, MA)81

using scripts programmed in-house. As standard practice, all data was mean centered

before applying PCA or MLPCA unless otherwise stated.

4.3.2 Simulated Data Set

To evaluate the performance of multi-block MLPCA, a four-class (50 samples each),

two-block data set was simulated. The two blocks, X1 and X2, were simulated according

to the following mixture model:

X1 = CS1, (4.4)

X2 = CS2, (4.5)

where row i of C (200 × 4) describes the concentration of the four species in sample i,

and S1 (4× 200) and S2 (4× 200) describe the spectral response for each of the 4 species

in block 1, and block 2, respectively. The concatenation of these two blocks forms the

error-free fused data matrix, X (200× 400) = X1|X2. The first two columns of C were

constructed using a set of 50 samples randomly clustered (bivariate normal distribution

with σ2 = 0.3) around each of the following concentration coordinates: (2, 4), (4, 2), (4, 4),

and (2, 2). This describes the first two columns of C and will be referred to as the principal

species, as they contain the information that will form four distinct clusters (50 samples

each) in a two-dimensional space. Additionally, two ancillary species were also defined,

but drawn from the same concentration coordinate distribution for all samples with a much

smaller concentration variance relative to that in the first two columns (concentration

coordinate of (3, 3), bivariate normal distribution with σ2 = 0.02). This describes the

last two columns of C. These ancillary components should not be the dominant source

of variance in the error-free data. To encode the unique response information for each of

these species, each block has its own S matrix, and in conjunction with C, was designed

to separate the four classes into only two groups when PCA is applied to the individual

blocks. S1 was designed to only contain a response that separates group 1 and 4 from

87



groups 2 and 3 and S2 to separate groups 2 and 4 from groups 1 and 3. Specifically, each

row of S1 was constructed with a Gaussian profile over the 200 channels: row 1, centered

at 160 with a height of 0.05; row 2, centered at 120 with a height of 0.01; row 3, centered at

80 with a height of 0.8; row 4, centered at 40 with a height of 1. The standard deviation for

all Gaussian profiles was 20. S2 was designed similarly, but with the following parameters

for the Gaussian profiles: row 1, centered at 40 with a height of 0.01; row 2, centered at 80

with a height of 0.1; row 3, centered at 120 with a height of 1.2; row 4, centered at 160

with a height of 0.8. The row profiles for S1 and S2 are shown in Figure 4.3(a) and (b),

respectively.

NoiseGen,122 which was highlighted in Chapter 3, was employed to simulate noise for

each block. Brown noise with a standard deviation equal to 1% of the maximum value of

the mean signal in X1 was added to X1. Proportional white noise (RSD equal to 1% of

the maximum value of the mean signal in X2 and proportional to the mean signal in X2)

along with white noise (standard deviation equal to 1% of the maximum value of the mean

signal in X2) was added to X2. The simulated data are shown in Figure 4.3, where the

error-free data, X, are shown in Figure 4.3(c) and the data with the added noise is shown

in Figure 4.3(d).

4.3.3 UV, NIR, and MIR Olive Oil Data Set

This unpublished data set was obtained from the group of Dr. Patricia Valderrama from

Maringá State University in Brazil. The data set consists of 24 samples of three different

brands of flavoured olive oil (extra virgin, lemon, pepper, garlic, basil, bell pepper, and

orange) from different regions of Italy (Puglia, Emilia-Romagna, and Umbria) acquired

in Brazil and the Netherlands. The samples from Brazil have two different lots for two

different brands and the samples from the Netherlands were produced manually and on

a small scale from the same lot. For each olive oil sample a total of 10 replacement

replicates were acquired on three different instruments. The measurements in the UV-Vis

region were carried out using a quartz cuvette 1 mm optical path in the range of 200 to

800 nm, with a portable spectrometer (Ocean Optics Red Tide USB 650). NIR spectra

were collected using a glass cuvette and a portable MicroNIR spectrometer (JDSU) in the

range of 900 to 1700 nm. The MIR spectra for the olive oil samples were obtained using

a Shimadzu spectrometer (IRAffnity-1) equipped with ZnSe attenuated total reflectance

(ATR) sampling interface and the spectra were collected from 600 to 2200 nm. Using
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Figure 4.3: The simulated spectral response for (a) block 1, S1 (4× 200) and (b) block 2,
S2 (4× 200). (c) The simulated error-free fused data X (200× 400) and (d) the same data
where each block is subjected to a different noise structure and then fused.

these measurements a three-block fused data set was built where block one (UV-vis) is

240× 651, block two (NIR) is 240× 124 and block three (MIR) is 240× 934. Therefore,

the fused data set has dimensions of 240× 1709.

4.4 Results and Discussion

4.4.1 Simulated Data

Figure 4.4(a) shows the simulated multi-block data in the two-dimensional space that

was designed to separate four clusters (two principal species concentrations, or the first

two columns of C), as well as the scores obtained after applying PCA to the block 1

data (Figure 4.4(b)) and block 2 data (Figure 4.4(c)), and the fused data matrix (Figure

4.4(d)). As expected, after applying PCA to the block 1 data, the corresponding scores

were observed to separate classes 1 and 4 (red circles and purple upward-pointing triangles,

respectively) from class 2 and 3 (blue squares and green downward-pointing triangles,

respectively), while applying PCA to block 2 was found to separate classes 2 and 4 from
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classes 1 and 3. The result of applying PCA to the fused error-free data is shown in Figure

4.4(d), where the scores plot reveals all four clusters. In the absence of error, the directions

of maximum variance in the fused data correspond to the directions that discriminate

among the four classes. In the case of applying PCA to only block 1, only the first PC

corresponds to one of the discriminating vectors, as the spectral contribution associated

with the other discriminating direction was designed to have small variance compared to

the ancillary components. The same is true for block 2, but the discriminating vectors are

reversed. This mimics the ideal case of real data fusion, where fused data can contain more

chemical information than each of the blocks independently. However, in reality, the error

structures for block 1 and 2 would be different and likely not iid normal. To probe the

impact of the errors on fused data, PCA was also applied to the fused data in the presence

of error (brown noise in block 1 and both proportional and non-proportional white noise in

block 2).

Figure 4.4: (a) Clustering observed when plotting the two principal species concentrations
against one another. Scores plot obtained from applying PCA to the (b) error-free block 1
data, (c) the error-free block 2 data, and (d) the error-free fused data.

Figure 4.5(a) shows the result of applying PCA to the noisy fused data. As expected,

due to the non-iid normal error structure in the fused data, PCA fails to reveal the target
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clustering space. Neither PCs correspond to the chemical variance of interest due to the

addition of noise to the data. As mentioned in the introduction of this chapter, when

applying PCA to fused data, it is common practice to individually scale the independent

blocks prior to the analysis to get their responses in the same range. Figure 4.5(b) shows

the result of applying PCA to the fused data set after scaling the individual blocks by the

standard deviation of the corresponding mean spectrum. The quality of the separation was

observed to improve, with a projection similar to that observed when applying PCA to the

error-free block 2 data, Figure 4.4(c). Autoscaling was also explored, but the resulting

PCA scores were not as good as scaling the individual blocks by the standard deviation of

the mean spectrum.

Figure 4.5: (a) PCA scores obtained from applying PCA to the fused noisy data. (b) PCA
scores obtained from applying PCA to the data after scaling block 1 and 2 to the respective
standard deviation of the mean signal of each block. (c) The fused ECM constructed
from the block 1 and 2 model ECMs used to generate the noise added to the data set. (d)
MLPCA scores obtained using the ECM in (c).

MLPCA was then applied to the fused noisy data using the fused ECM shown in Figure

4.5(c). The ECM was constructed from the individual model ECMs that were used to

generate the noise. The results of the application of MLPCA are shown in Figure 4.5(d).
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As anticipated, these results show a clear improvement over the PCA results on the noisy

data, although the separation of the clusters is not as distinct as for the error-free data.

The application of PCA to the scaled data (Figure 4.5(b)) shows mainly the separation

consistent with the block 2 data, suggesting that the brown noise is more problematic

than the proportional noise in block 2. The MLPCA results suggest that MLPCA is more

effective at extracting the information in block 2.

This is a very simple simulation with only four chemical components and ECMs which

are known in advance, but it serves to support the idea that MLPCA could be an effective

tool to fuse data with different error structures.

4.4.2 UV, NIR, and MIR Olive Oil Data Set

The individual spectra for all 240 samples of olive oil measured on each of the three

instruments are shown in Figure 4.6. The UV-Vis data, Figure 4.6(a), contains some

notable areas. First, in the UV region, it appears that low light levels at the detector are

contributing to noisy signals for all samples. It is anticipated that this will be a significant

contribution to variance in the corresponding ECM. Peaks in the 400 to 550 nm may

contain information for discriminating between some samples and some baseline offset

is evident. The magnitude of the NIR data, Figure 4.6(b), is much greater than that of

both the UV-Vis and MIR data, which will cause PCA to primarily model variance in this

data set first if scaling is not performed. In terms of the ECM, the error structure of this

block is likely to be dominated by offset noise and should be the main component of the

fused ECM purely due to scale. The MIR data, Figure 4.6(c), is on the same scale as the

UV-Vis data (both are absorbance) and is hard to tell by visual inspection if there is any

discriminatory information in the spectra.

The ECMs for each of the individual blocks were modelled by Thays R. Gonçlaves as

part of her research. The ECMs were each modelled using principal axis factoring (PAF), a

method similar to PCA, but allows for heteroscedastic measurement error.121 As this thesis

is not concerned with the ability of PAF to model ECMs, the details of the modelling and

quality will not be discussed, however, by visual comparison to the sampled ECMs, the

PAF reconstructed ECMs seemed to adequately model the error structure in the data. Mesh

plots of the PAF reconstructed ECMs for the UV-Vis, NIR, MIR data, and fused data are

shown in Figure 4.7.

Figure 4.8 shows the scores obtained from various decomposition methods on the fused
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Figure 4.6: (a) UV-Vis, (b) NIR, and (c) MIR spectra of the olive oil data set.
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Figure 4.7: PAF reconstructed ECMs for (a) block one (UV-Vis) (b) block two (NIR), and
(c) block three (MIR) of the olive oil data set. (d) is the result of constructing the fused
ECM which was used for MLPCA of the fused data.

data including (a) PCA on the intensity normalised data, (b) PCA on the autoscaled data,

and (c) MLPCA using the fused ECM. To aid interpretation of the results, the samples in

all three plots have their brand encoded by shapes: brand 1 represented by circle markers,

brand 2 represented by square markers and brand 3 represented by triangle markers,

their lot number encoded by unfilled (lot 1) and filled (lot 2) markers, and their flavour

encoded by colour: extra virgin olive oil flavour represented by red markers, lemon flavour

represented by blue markers, pepper flavour represented by green markers, garlic flavour

represented by purple markers, basil flavour by orange markers, bell pepper flavour by

yellow markers, and orange flavour by brown markers.

The PCA scores in Figure 4.8(a) suggest some grouping by flavour, where a majority of

the pepper flavoured oils (green markers) in the first two dimensions are clustering away

from all other flavours. This is not surprising, since the pepper oils show distinctive colour.

However, there does not seem to be much clustering of the other flavours, and it is difficult

to extract other information from the patterns observed. Looking at results of applying

PCA to the autoscaled data, Figure 4.8(b), it seems that the separation between the green

class (pepper flavoured oils) is amplified, but all other samples are heavily overlapped,
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resulting in an inferior projection compared to applying PCA to the scaled data alone. This

result is expected, as the autoscaling transform is giving equal weight to the noise in the

baseline as well as the informative chemical variance, effectively obscuring any useful

information.

In contrast to the two results of PCA applied to the fused olive oil data set, the MLPCA

scores shown in Figure 4.8(c) reveal more information about the relationships among the

samples. First, all replicates are tightly clustered together, which was only somewhat

observed for the PCA results, where some replicates were not showing up in the same

groupings. Second, there seems to be a more distinctive (although not perfect) separation

of brand and lot which is mostly independent of the flavouring. This can be seen with

the unfilled square markers (lot 1, brand 2), the unfilled triangle markers (lot 1, brand

3), and, to a somewhat lesser extent, the unfilled circle markers (lot 1, brand 1). The

same groupings can generally be seen for lot 2 for both brands (filled markers). This

suggests something about the manufacturing process of the oils, where the flavourings

may be added at the end of the process and do not have as much impact on the chemical

information of the oil compared to the batch or lot to which the oil belongs. Another

notable difference is that all Dutch samples are grouping together (triangle markers). This

aligns with the experimental preparation where the Dutch samples were made up in small

batches from the same lot and produced manually, which one would expect to have similar

characteristics and spectral response. However, this data set is complex and drawing any

hard conclusions based on the results, without more data, is difficult. Nonetheless, it is

clear that by including the error information in the analysis of the fused matrix, information

that was not expressed in the PCA results is obtained.

4.5 Conclusions

The advantage of applying MLPCA to multi-block data was demonstrated in this work.

First, it was shown that applying MLPCA to fused data is conceptually the same as

applying PCA, but requires some reformulation in terms of defining the fused ECM.

Through simulation, it was found that applying MLPCA with a good representation of the

fused ECM provides an improved representation of the true chemical subspace without

the need of individually preprocessing the different data blocks. Applying the method

to a three-block UV-Vis, NIR and MIR data set concerned with various lots, batches,

95



-15 -10 -5 0 5 10 15

PC1

-6

-4

-2

0

2

4

6

-2 -1 0 1 2

PC2 105

-1.5

-1

-0.5

0

0.5

1
105

(a)

(b)

(c)

-5 0 5 10

PC1 105

-1.5

-1

-0.5

0

0.5

1
105

-5 0 5 10

PC1 105

-2

-1.5

-1

-0.5

0

0.5

1

1.5
105

-50 0 50 100

PC1

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

PC2

-40

-20

0

20

40

60

-50 0 50 100

PC1

-60

-40

-20

0

20

40

60

-15 -10 -5 0 5 10 15

PC1

-5

0

5

10

15

-5 0 5 10 15

PC2

-6

-4

-2

0

2

4

6

Figure 4.8: Scores plots from applying (a) PCA, (b) PCA on the autoscaled data, and (c)
MLPCA using the PAF calculated fused ECM. The shapes denote the different brands,
filled or unfilled marker denotes the lot, and colour denotes the flavour: brand 1 represented
by circle markers, brand 2 represented by square markers and brand 3 represented by
triangle markers, their lot number encoded by unfilled (lot 1) and filled (lot 2) markers, and
their flavour encoded by colour: extra virgin olive oil flavour represented by red markers,
lemon flavour represented by blue markers, pepper flavour represented by green markers,
garlic flavour represented by purple markers, basil flavour by orange markers, bell pepper
flavour by yellow markers, and orange flavour by brown markers.
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and flavourings of olive oils proved useful in revealing information about the data that is

obscured when traditional methods, such as PCA, are applied. It is my hope that this work

motivates researchers to perform properly designed experiments with many replicates to

get access to the fused ECM. The initial investment in time (i.e. performing replicates)

should result in time saved by not needing to try various combinations of preprocessing

strategies.
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CHAPTER 5

SPARSE PROJECTION PURSUIT
ANALYSIS: AN ALTERNATIVE FOR
EXPLORING MULTIVARIATE
CHEMICAL DATA *

In the preceding chapter, it was demonstrated how the addition of measurement error

information can improve the outcome of chemometric methods, specifically exploratory

data analysis, by allowing chemical variance to be distinguished from measurement

variance. However, as demonstrated in Chapter 1, this approach has limitations when it is

the chemical variance structure that impedes the extraction of the desired information. In

this case, projection pursuit analysis (PPA) has been demonstrated as a viable alternative to

variance-based methods. In this chapter, sparse projection pursuit analysis (SPPA), a new

approach for the unsupervised exploration of high-dimensional chemical data, is proposed

as an alternative to traditional exploratory methods such as PCA and hierarchical cluster

analysis (HCA). Where traditional methods use variance and distance metrics for data

compression and visualization, the proposed method incorporates the fourth statistical

moment (kurtosis) to access interesting subspaces that can clarify relationships within

complex data sets. The quasi-power algorithm used for projection pursuit is coupled with a

genetic algorithm for variable selection to efficiently generate sparse projection vectors that

*This chapter is based on the article: Driscoll, S.P, MacMillan, Y.S, Wentzell, P.D. Sparse Projection
Pursuit Analysis: An Alternative for Exploring Multivariate Chemical Data. Analytical Chemistry. 2019.
10.1021/acs.analchem.9b03166. Contribution to Manuscript SD and YM performed all calculations. YM
is responsible for writing the first version of the SPPA algorithm and SD is responsible for writing the final
version of the algorithm. SD wrote the first draft of the manuscript. PW contributed to the final version of
the manuscript. PW supervised the project.
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improve the chemical interpretability of the results while at the same time mitigating the

problem of overfitting. Several multivariate chemical data sets are employed to demonstrate

that SPPA can reveal meaningful clusters in the data where other unsupervised methods

cannot.

5.1 Introduction

The essential role of multivariate statistical tools in modern analytical chemistry has

been firmly established. For example, in 2018, roughly 6% of the articles in Analytical

Chemistry made reference to PCA as a data analysis tool,123 and this percentage is even

higher (ca. 50%) in specialized fields such as metabolomics. PCA and HCA are particularly

popular methods because they are unsupervised approaches that allow the compression

and visualization of high dimensional data.4,124–128 The application of PCA often involves

the depiction of scores plots to visualize the relationships among objects (e.g. samples)

in two or three dimensions, but it is also used as a data compression tool prior to the

implementation of methods such as linear discriminant analysis, multivariate calibration,

image analysis and multivariate curve resolution. The role of PCA and HCA in data

exploration and visualization is not purely cosmetic, as the observed separation of classes

(e.g. normal vs. diseased states) is widely used to establish proof-of-principle that a

method can discriminate among samples of different types. Because they are unsupervised,

these tools have become de facto standards to establish the validity of scientific hypotheses

involving high-dimensional data. In this context, unsupervised methods are generally

viewed as more reliable than supervised methods (e.g. discriminant analysis), especially

where the number of samples is limited, since there is no training step that uses class

information and therefore there is less chance of bias in the results arising from improper

validation.30,31,129–132

Despite the importance of unsupervised methods in establishing the veracity of analytical

studies involving multivariate data, PCA and HCA have remained essentially the only tools

employed for many years. While the separation of objects by class using these methods

can validate a hypothesis, their failure to do so does not invalidate it, since they represent

only two ways of looking at the data. These approaches use metrics based on variance

(PCA) and Euclidean distance (HCA) to establish relationships among the objects. Both

are predicated on the assumption that the between-class separation of objects is larger
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than within-class separation in the selected variable spaces, presenting a restricted view of

complex relationships. Moreover, both methods are highly sensitive to preprocessing (e.g.

scaling) of the data.128,133 Clearly there is a need to expand the toolbox of unsupervised

methods that can be used to validate chemical studies.

Here I describe a new method, sparse projection pursuit analysis (SPPA), as a powerful

alternative for the unsupervised exploration of multivariate chemical data. Based on

principles established five decades ago and exploiting more recent algorithmic advances,

projection pursuit is a simple linear projection method that allows access to subspaces

distinct from PCA and HCA to provide alternative views of multivariate data. Moreover,

the proposed method incorporates variable selection to provide an avenue for chemically

meaningful interpretation of results. Through the use of several multivariate data sets,

SPPA is shown to provide class separation where traditional approaches such as PCA and

HCA fail.

5.2 Theory

Projection Pursuit Analysis. The objective of projection pursuit analysis (PPA), first

formulated by Kruskal134 and expanded by Tukey and Friedman,49 is simply to find

interesting projections of the data. Like PCA, PPA is a linear mapping method that

involves the projection of high-dimensional data into a low-dimensional subspace through

the use of a projection matrix, P, such that T = XP. For the original matrix X (m objects

by n variables), P (n× p) projects the m objects into the lower p-dimensional space of

scores, T (m× p, where p < n). The columns of P are known as the projection vectors

and the dimension of the scores space is normally much less than that of the original data,

with p = 2 or 3 for visualization.

To find the projection vectors, the “interestingness” of the projection is optimized using

a projection index (PI). Strictly speaking, PCA can be considered a PPA method where

the PI is the percentage of variance captured. More generally, the implementation of PPA

has explored a variety of PIs, but the definition of useful PIs and their optimization has

been a barrier to practical applications in chemistry and other fields. One PI that has

been effectively used is kurtosis, the fourth statistical moment, since the minimization of

this parameter emphasizes a separation of groups. However, practical implementation of

kurtosis-based PPA was limited by the lack of an efficient optimization algorithm until the
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recent development of a quasi-power method,40 which has shown promising results for the

analysis of chemical data sets.40,55,56,59,61,135–138 Although there are several variants of this

algorithm, the focus here is on the stepwise univariate approach, which extracts projection

vectors successively by minimizing the kurtosis of the scores, K, as defined by Equation

5.1,

K =
1

ms4t

m∑︂
i=1

(ti − t̄)4. (5.1)

Here, the ti are the elements of the scores vector (t = Xpj , where pj is the projection

vector being optimized) and st is the standard deviation of the m projected scores around

the mean value, t̄. Following the optimization of each projection vector, pj(j = 1 to p),

the matrix X is deflated to remove the variance associated with that dimension and the

subsequent projection vector is found using the deflated matrix. The projection vectors are

constrained to form an orthonormal set through this algorithm. The optimization uses a

simple iterative learning rule given in Equation 5.2.

pj(new)←

[︄
m∑︂
i=1

(xipj)
2xT

i xi

]︄−1(︁
XTX

)︁
pj. (5.2)

In this equation, xi is a row vector of X (deflated X if j > 1) and pj is the column

vector of the projection matrix that is sought. This approach has been referred to as the

quasi-power method because of its similarity to the power method used to solve eigenvalue

problems. Although it is a nonlinear optimization, it generally converges quickly and

provides reliable solutions, especially if multiple starting points are used.

The procedure described above is known as stepwise univariate PPA because it optimizes

each dimension in succession. An alternative approach, called multivariate PPA, optimizes

a multivariate form of kurtosis in several dimensions simultaneously and is better suited to

certain kinds of data sets.40 A similar iterative learning rule is employed.

Kurtosis is an effective projection index because it is a quantitative metric of normality,

and non-normal projections are usually the most interesting. Moreover, it is independent of

scale, which makes it well-suited for exploratory analysis, but it has a complex relationship

with the shape of a distribution. Figure 5.1 shows kurtosis values for selected distributions.

A normal distribution has a kurtosis value of 3, while flatter distributions tend to have

lower values and more tailed distributions have higher values. In particular, minimization
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of K along each dimension tends to partition the data into two groups, if such partitioning

is possible. A limiting value of unity results when two balanced groups are separated

into infinitely narrow distributions, as shown in Figure 5.1(i). Because it is not based on

variance, previous studies have demonstrated that PPA methods can separate classes where

PCA and HCA fail.40,55,56,59,61,135,136
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Figure 5.1: Kurtosis values for selected distributions: (a) normal, (b) uniform, (c), truncated
Cauchy, (d) mixed normal, (e) mixed normal, (f) unbalanced mixed normal, (g) mixed
uniform, (h) mixed truncated Cauchy, (i) mixed delta.

Fat Data. Despite their advantages, one weakness of PPA methods is a susceptibility

to overfitting when the number of variables exceeds the number of objects (samples),

i.e. so-called “fat” data matrices where m < n. This is not overfitting in the usual

sense of supervised classification methods, since no class information is provided to the

algorithm. Rather, the excess of data allows PPA to arbitrarily partition objects using

spurious correlations in the variables. Ideally, the ratio of objects to variables should be

greater than 5, but this condition is widely violated for chemical data. Effective solutions

to this problem include matrix regularization56 and compression of the original data using

PCA,59,136 although both approaches require some optimization of parameters and run the

risk of losing information. Additionally, with PCA, interpretation is further complicated

because the projection vectors are linear combinations of the loading vectors instead of the

original variables. To address both the interpretability and overfitting problems associated

with PPA, a sparse implementation is proposed here.
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Sparse PPA. While PCA is not subject to the same object-to-variable issues as PPA,

sparse implementations of PCA have been proposed to improve the interpretability of

the loading vectors.139–143 Such methods impose a penalty function in the PCA decom-

position that favors a reduction in the number of variables represented in the loadings,

making meaningful associations with chemical measurements easier. A similar sparse

implementation of PPA was sought in this work, but because of difficulties in incorporating

a penalty function into the quasi-power algorithm, an alternative strategy based on variable

selection was employed. The approach is similar to other variable selection methods used

for calibration and classification, but because it is based on kurtosis for selection rather

than the quality of fit to a training set, the integrity of PPA as an unsupervised method is

maintained. The objective is to choose a subset of the original variables that minimizes

the kurtosis obtained through PPA. Although many variable selection methods have been

employed for other methods,144–147 it was felt that the use of a genetic algorithm (GA) was

the most compatible with PPA.

Genetic Algorithm. While the use of GAs for variable selection is not new,148 they are

well-suited to PPA where the variables in the subset are considered collectively rather than

one at a time. With this approach, an initial population of chromosomes is established

containing genes representing the n variables in X, as shown in Figure 5.2. If a gene is

set to 1, the variable is selected, so each individual in the population represents a different

subset of variables. The initial population of N individuals is created so that p of the n

variables in each chromosome are randomly selected. These are adjustable parameters, but

the default values for SPPA are N = 100 and p = 5. It was found that setting p ≈ m/25

(with a minimum of 3) gave good performance over a wide range of data sets.

Once the initial population is set, the fitness of each individual is evaluated by performing

PPA using the subset of p variables and returning the optimized kurtosis value, κ. The

optimization is fast since the dimensionality is typically small and only one initial guess is

used. Normally, multiple initial guess (ca. 100) would be used for PPA to ensure a global

optimum, but this is not required here since the optimization is more reliable for smaller

dimensions and individuals retained in subsequent generations are re-evaluated, with the

minimum value of κ retained. In this way, only the best subsets are reassessed.

The individuals in the population are ranked at this stage and parents to be used for recom-

bination (exchange of variables) are selected using a standard roulette wheel approach.149
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Figure 5.2: Genetic algorithm for variable selection in SPPA.

For this purpose, the fitness is defined as 1/κ4, with the inversion and transformation

optimized for the ranking step. In this calculation, kurtosis values below 1.5 (or 4.5 for

multivariate kurtosis) are set to this limit, since they are considered equally viable for

class separation (see Figure 5.1) and this helps prevent premature elimination. For even N ,

N−2 parents are selected (N−1 for odd N ) using the roulette wheel strategy, in which the

probability of the selection favors individual with high fitness (small κ). Recombination

(mating) occurs by random pairing of the selected parents followed by random exchange

of selected variable with a probability of P = 0.3. The resulting children (N − 2 or N − 1)

then undergo mutation where there is a 10% probability that each variable will be substi-

tuted with another variable not already in the subset. The probabilities for recombination

and mutation are adjustable, but these values have been found to be effective for a range of

data sets.
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The children produced in this process are united with r “elite” individuals which had

the highest fitness in the parent population. For even N , the original size is retained

with r = 2, whereas r = 1 for odd N . These individuals are reintroduced to ensure that

the best solutions are not eliminated through the recombination and mutation steps. The

fitness of this new population of N individuals is evaluated in the same way as the original

population and the process is repeated until the solution converges (no change in the best

solution for 50 generations) or a time limit is exceeded. Upon convergence, the selected

optimum variable subset is re-evaluated with multiple starting points to ensure the global

optimum has been found.

Another parameter specified in the optimization is the number of dimensions (projection

vectors) to be extracted, normally one to three. For stepwise univariate PPA, successive

dimensions are extracted after deflation of X. For multivariate PPA, the projection vectors

are extracted simultaneously.

In addition to the projection vectors, the final population provides information about

the variables that are most useful for separating the classes. Alternatively, SPPA can be

applied multiple times and the optimal solutions can be used to extract this information.

5.3 Experimental

5.3.1 Data Sets

To demonstrate the utility of the SPPA algorithm for different types of multivariate chemical

data, four experimental data sets were selected and are summarized in Table 1. The data

sets are available in the public domain. Three of these are spectroscopic data sets (Vis/NIR,

IR, NMR) and one contains compositional data. The data are characterized by different

numbers of samples (48-480), variables (47-3351) and classes (3-8) to be as representative

as possible. As well, one contains unbalanced classes. Further information on the data is

provided in the Results and Discussion and in the original references, given in Table 5.1.

5.3.2 Computational Details

All calculations were performed using programs written in-house with the MATLAB

programming environment (MathWorks, Natick, MA).81 Code for implementing the

proposed method is available in Appendix C. As standard practice, PCA and SPPA were

applied to the data after column mean centering. In some cases, scaling of the columns
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Table 5.1: Summary of Data Sets.

Data Set No. of No. of No. of Ref
Classes Samples a Variables b

1. Wine Grape (vis-NIR) 3 250 (100,100,50) 256 (10) 150

2. Ink (FTIR) 8 480 (8× 60) 3351 (15) 151

3. Salmon (NMR) 5 75 (5× 15) 1117 (5) 152

4. Pacific Cod (Fatty Acids) 4 48 (4× 12) 47 (3) 153

a The class partitions of the samples are shown in parentheses.
b The number of variables extracted for each dimension of SPPA is shown in parentheses.

by the column standard deviation (i.e. autoscaling) was also applied for PCA if superior

results were obtained. Scaling has no effect on the SPPA results.

5.4 Results and Discussion

5.4.1 SPPA vs. PCA

In exploratory data analysis, which is by definition unsupervised, there is no defined

optimal subspace projection. However, where class information is available, projections

which establish the separation of classes are generally viewed as supporting the hypothesis

that the classes are separable on the basis of the measurement employed. In many cases,

techniques such as PCA and HCA are sufficient to support this hypothesis, but the examples

presented here demonstrate that this is not always the case and PPA methods present a

powerful alternative.

The Wine Grape Data Set consists of visible/near-infrared (Vis-NIR) spectra of 100

samples each of carignan (ca) and grenache blanc (gb), and 50 samples of grenache

noir (gn) grapes. This represents a typical case where, as shown in Figure 5.3(a), PCA

fails to produce a clear separation of the classes. The figure shows the results with only

mean-centering of the data prior to PCA, but the use of auto-scaling did not improve

class separation, even after the exclusion of baseline regions. In contrast, Figure 5.3(b)

shows that the same data set produces a definitive separation of classes when subjected

to SPPA (stepwise univariate PPA with 10 variables selected), although there is some

contamination of the gb class with the ca class, which may be due in part to unbalanced

classes. Nevertheless, the projection clearly indicates that the data contain information

about the grape variety.
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Figure 5.3: Projections for Wine Grape and Ink data sets: (a) PCA scores for Wine Grape
data, (b) SPPA scores for Wine Grape data, (c) PCA scores for Ink data, (d) SPPA scores
for Ink data.

The Ink Data Set provides perhaps the most compelling example of the capabilities of

SPPA. These data, consisting of IR spectra of eight brands of pen inks, were collected in

a carefully designed experiment intended to establish the potential of IR spectroscopy to

detect forgery. The data set is both balanced (60 samples per group) and binary (23 = 8

classes) so it is well-suited to analysis by stepwise univariate SPPA. The best PCA results,

shown in Figure 5.3(c), were obtained with mean-centered data. Although not obvious

from the angle of the figure, which was oriented for maximum visibility of all of the classes,

brand 7 is well separated from the rest of the brands and brand 8 is partially separated.

Some other groupings are evident, but no clear separation of the eight brands is apparent.

On the other hand, the SPPA projection (with 15 variables) shown in Figure 5.3(d) reveals

a distinct separation of all eight pen brands. For an unsupervised method, it is remarkable

to achieve such a clear partitioning of a large number of classes. Although such results are

not universally achieved, they do indicate the potential when metrics other than variance

are employed in exploratory analysis.
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SPPA can also be applied to multivariate kurtosis, which is often better suited for

unbalanced and/or non-binary separations. Although multivariate PPA seeks to achieve

a radial separation of the objects rather than clusters, separation of classes is often a

fortuitous consequence. The Salmon data set, consisting of NMR spectra of salmon blood

plasma from a metabolomics study, serves to illustrate this point. The aim of the original

study was to examine the sources of variation in the NMR data using 15 replicate blood

samples from each of five individual fish that served as biological replicates. It was

of interest to know if the analysis of the data would show unique characteristics of the

individuals. The PCA results for autoscaled data (one outlier removed) presented in Figure

5.4(a), show some class structure, but PCA fails to separate three of the fish from each

other. In contrast, the multivariate SPPA results presented in Figure 5.4(b) (using only five

variables) show a clear separation of the replicate samples from each individual, indicating

baseline differences in their metabolic profiles.

Another type of multivariate data commonly encountered consists of discrete variables,

such as elemental concentrations, where optimal scaling for PCA or HCA can be challeng-

ing. Scaling is usually necessary in these cases to account for different variable ranges, but

this can amplify the effects of noisy variables. Since PPA is not scale dependent, these

issues are removed. The Pacific Cod Data Set, consisting of fatty acid (FA) profiles for 48

fish serves to illustrate this. As part of a larger study, the relative abundances of 47 fatty

acids (normalized to 100%) were determined in Pacific cod sampled at two sites, Graves

Harbor (Site A) and Islas Bay (Site B), in the Gulf of Alaska in 2011 and 2013. Mean

FA proportions ranged from about 0.02% to 30%. The best PCA results, shown in Figure

5.4(c), were obtained with autoscaled data. The figure shows a reasonable grouping of the

four classes (with the exception of one sample), although the boundaries between groups

are not clearly defined. In contrast, the SPPA projection in Figure 5.4(d) shows a distinct

division of all four groups by year (dimension 1) and location (dimension 2).

5.4.2 Variable Selection

Prior application of PPA suggests that the sample-to-variable ratio should be at least 5:1

to avoid overfitting. This condition is violated for all of the data sets examined here, so

some type of variable reduction was necessary. Variable compression through PCA is one

approach but requires some optimization to ensure that the necessary class information

is included in the retained components.136 Moreover, the chemical interpretation of the
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Figure 5.4: Projections for Salmon and Pacific Cod data sets: (a) PCA scores for Salmon
data, (b) SPPA scores (multivariate PPA) for Salmon data, (c) PCA scores for Pacific Cod
data, (d) SPPA scores for Pacific Cod data.

resultant loadings is confounded by the linear transformation and the important variables

are hard to identify. SPPA is an alternative to reduce the number of variables and provide

direct interpretability.

The analysis of variables selected by SPPA is complicated by the nonlinear nature of

the algorithm and correlations among the variables. SPPA uses multiple starting points

for each run to avoid local minima and, while multiple applications to the same data set

produce consistent class separation, it is probable that no two will be identical or result

in the extraction of exactly the same set of variables. Therefore, rather than identifying

the variables from a given run, characterization typically involves the application of SPPA

multiple times (usually 100) and examination of the aggregate of variables chosen. For

spectra, these data can be represented in terms of the number of times variables were

selected, revealing not only the most useful variables, but also bands where correlated

variables may have substituted for each other in different runs.

Examples of this representation are presented in Figure 5.5, where the spectra (mean for
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each class) are superimposed on a heat map showing the number of times variables were

selected over 100 runs. Figures 5.5(a–c) show the variables selected for each dimension

of the Ink data. Variables with counts below a set threshold (< 3 in this case, based

on a binomial distribution) were excluded. Visual inspection of the results of the 100

trials confirmed similar separations of the classes, although orientations and exact sample

positions varied from run to run.

Figure 5.5: Variable selection counts for 100 SPPA runs. (a)-(c) Ink data set (dimensions
1-3), (d)-(e) Wine Grape data set (dimensions 1 and 2), (f) Salmon data set. Mean spectra
for each class are superimposed on heat maps.

Several regions of interest can be identified for the Ink data and, not surprisingly, most

are in the fingerprint region below 1700 cm−1. Although distinct regions are more strongly

associated with certain dimensions (e.g. 1360, 1220 and 1730 cm−1), selected channels

may appear across multiple dimensions because the dimension order can be permuted on

successive runs, leading to “cross-talk” in the variables selected for each dimension. How-

ever, such a mapping indicates which variables or regions contain important information

for interpretation or the development of supervised classification methods.

A similar mapping is shown for two dimensions of the Wine-Grape data in Figures

5.5(d–e). In this case, fewer variables were available (256), so the counts are higher and

the threshold was set to 10. Variables for the separation of gb from the other two varieties

(dimension 1) are mainly in the 500-650 nm region, which was anticipated based on

spectral differences. The second dimension, separating gn from ca, is dominated by the

signal at about 820 nm, but includes other channels in this region, as well as around 700
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and 1000 nm.

The analysis of Salmon data was carried out using multivariate PPA, so only one set of

variables is extracted in each run, even though the scores plot shows two dimensions. The

variable map in Figure 5.5(f) shows, not surprisingly, that the selected variables typically

align with peaks in the NMR spectrum, but some align with very specific features (e.g.

3.282 and 3.512 ppm) while others are part of a broader regions (e.g. 2.8 and 1.3 ppm).

Since only five variables were required for each run, the NMR features appear to contain

some redundancy.

For discrete/compositional data such as the Pacific Cod data, density maps are not as

useful because there is not a local correlation of variables. Application of the SPPA method

over 100 trials produced 8 unique sets of six variables (three in each dimension), with each

solution having very similar quality of separation (K = 1.26 to 1.30). Of these, two sets

represented 82% of the solutions and included the global optimum. The variables selected

for this optimum are shown in Figure 5.6, along with the mean FA compositions for each

class. The FAs have been ordered by mean concentration and a log scale is used due to

the large data range. Separation by location (second dimension) employed variables 3 (FA

16:0), 35 (17:1) and 45 (16:3 n-4), with the first two variables present in 100% of solutions.

The separation by year in the first dimension (K = 1.26) used variables 8 (22:5 n-3), 9

(16:1 n-7), and 23 (iso-16:0), but an equally frequent solution (K =1.28) employed an

alternate set of variables (5, 20, 41). These results indicate that a small number of variables

can be used to distinguish the classes, although direct interpretation may be complicated

by the complex correlations introduced by the row normalization of the original data.

Figure 5.6: Variables selected for Pacific Cod data superimposed on mean FA concentra-
tions for each class.

111



5.5 Conclusions

Data visualization methods are critical for discovery in modern chemical measurement

science. As demonstrated here using diverse data sets, SPPA is a powerful method that

extends the toolbox of exploratory methods beyond variance based techniques like PCA. It

is not intended to replace supervised classification methods, but provides a much needed

alternative to support hypotheses and guide variable selection and interpretation.

As demonstrated here, SPPA provides a solution to the two problems commonly encoun-

tered in the application of PPA methods. The first is the problem of variable reduction.

Other methods used to address this problem, PCA and matrix regularization, risk losing

information by excluding variables whose variance is too small. By considering all vari-

ables with equal weight, SPPA avoids this problem. A second advantage of SPPA is that it

simplifies the interpretation of results. This is a problem with all dimensionality reduction

methods in that it is difficult to provide a chemical rationale for the observed projection

(i.e. which variables are important and why). While some claim that PCA loading vectors

provide this ability, in practice this is dubious because of the large number of variables

involved and the complex correlation represented in the loading vectors. SPPA indicates

the relevant variables directly, which is more likely to facilitate rational interpretation.

Moreover, selected variables provide an indication of which regions are most likely to be

most useful for supervised classification methods.

Despite these gains, there are still some limitations to the PPA methodology. With regard

to SPPA specifically, the variation in selected variables from one run to another hinders the

interpretability. From a broader perspective, PPA algorithms also have limitations when

unbalanced classes (unequal class membership) are used, or non-binary class separation is

required (i.e.) other than 2, 4, or 8 classes). These issues are addressed in the chapters that

follow.
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CHAPTER 6

BANDED SPARSE PROJECTION
PURSUIT ANALYSIS

This chapter presents a modification of the SPPA algorithm, called the banded sparse

projection pursuit analysis algorithm, that is shown to provide improved results when

applied to ordinal data (e.g. spectroscopic data). Although the SPPA algorithm was found

to provide improved clustering results on a wide variety of multivariate chemical data

sets, it lacks some interpretability and efficiency when applied to data sets with a large

number of response variables because of the large search space. This can cause sub-optimal

solutions to be obtained, which is indicated in some instances by some selected variables

clearly not being important in revealing clusters (e.g. a variable in an area with zero signal

for all samples in the data set). Here, instead of treating each response variable as a gene

in the genetic variable selection algorithm, I propose reformulating the algorithm to treat

a band of neighboring variables, with a pre-determined size, as genes that comprise the

individuals. This strategy can be rationalized for multivariate ordinal chemical data by

asserting that neighboring response channels are likely to contain similar information up to

some correlation limit. The proposed algorithm is shown to be able to provide projections

competitive with SPPA while also providing improved variable interpretation.

6.1 Introduction

As discussed in Chapter 5, PPA is a capable alternative to PCA4 and HCA5 for the

exploratory analysis of chemical data. The sparse implementation of PPA proposed in

Chapter 5 (SPPA) was shown to be an effective solution to the sample-to-variable ratio
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problem that was previously overcome using PCA compression. The added benefits of

sparse PPA (SPPA) are that (1) there is no longer a need for PCA compression prior to

applying PPA, and (2) variable interpretation is possible through genetic variable selection.

Although the SPPA algorithm was found to provide improved clustering results on a wide

variety of multivariate chemical data sets, there are cases where some variables selected by

the algorithm are clearly not relevant to the associated low-dimensional clustering. This is

due to either the retention of an excess number of variables, or to premature convergence

of the algorithm, both of which are inefficiencies in terms of algorithm performance and

hinder the interpretability of the variable selection. To address this observation, I restricted

the genetic variable selection algorithm to produce only solutions that contain bands of

variables since, intuitively as chemists, we know that neighboring channels in ordinal data

are expected to contain similar information.

All plots of the variables selected by SPPA when applied to ordinal data in Chapter 5

clearly show that selected variables in repeated runs form bands in the spectra. This is a

reassuring result, as each variable is considered a “gene” in the SPPA variable selection

algorithm and there is nothing in the algorithm forcing this behaviour. As mentioned in

Chapter 5, this suggests that when we observe neighboring variables being selected and

clusters being revealed in the resulting projection, that these variables contain similar

information. However, in these same figures, there are variables selected that do not form

bands and may not be important to the observed clustering. The purpose of this chapter

is to describe a modification to the SPPA algorithm that restricts the SPPA algorithm to

selecting bands of variables. This modification should result in more efficient convergence

as well as improved variable interpretation for ordinal data.

6.2 Theory

A brief overview of sparse projection pursuit will be given as it forms the core of the

banded sparse projection pursuit algorithm.

6.2.1 Sparse Projection Pursuit (SPPA)

In SPPA, the objective of the genetic variable selection algorithm is to find sets of variables

that minimize the kurtosis of the optimized projection vector obtained by applying ordinary

PPA to the sparse data (the data with all variables other than the selected variables cut out).
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These variables are considered genes and the individuals are comprised of a set of these

variables. To begin the genetic algorithm, individuals are created by randomly selecting

subsets of the original variables (with a size appropriate for the number of samples). The

fitness values of the individuals are then evaluated (f = 1/K4) and the recombination

procedure begins, where individuals with high fitness (low kurtosis) are more likely to

pass on their genes (variables) to their children. The children are obtained by recombining

two individuals from the parent population. This involves swapping, at random, a certain

number of variables (genes) between the two parents to produce the children. The children

produced by recombining the parent vectors comprise the new population. To help avoid

local optima, each selected variable has a small chance of being changed to another variable

from the original data set. Finally, elite individuals (the top 1 or 2 individuals with the

lowest kurtosis) are passed onto the next generation without alteration to ensure that the

best current solution is not lost through recombination or mutation. This procedure is

repeated until there is no change in the population over a defined number of generations.

6.2.2 Banded Sparse Projection Pursuit (banded SPPA)

The benefit of implementing the proposed method in the framework of SPPA is that only

the definition of the gene and individual need to be changed in the context of the genetic

variable selection algorithm. Instead of treating each response variable as a possible gene,

the goal of banded SPPA is to impose a constraint that treats bands of neighboring variables

as single genes. To impose this constraint in the framework of SPPA, two parameters must

be defined: 1) the width of the band, w, and 2) the number of bands, a.

The algorithm for banded SPPA is a simple adaptation of the SPPA algorithm. Based on

prior knowledge of the system under study, the user decides on an appropriate number of

measurement channels to include in a band, w. For systems with information condensed

into relatively narrow regions (e.g. sharp peaks, such as in NMR spectroscopy), the size

of the band may represent a smaller fraction of the spectral range than for cases where

the information is more dispersed (e.g. UV spectroscopy). For ease of implementation,

the banded SPPA algorithm has been designed with bands of uniform width and position,

but it could be readily adapted to custom widths and positions for specific applications.

This could specifically exclude spectral regions or even combine non-contiguous regions if

appropriate for a given application.

A possible drawback of the proposed method is that, depending on the band size
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and number of bands, the number of variables can increase quickly and could lead to

overmodelling from PPA. However, carefully choosing a and w such that an acceptable

sample-to-variable ratio is achieved should make this a non-issue for most data sets.

Another alternative would be to optimize the band width and size during the GA process.

This creates certain algorithmic complications, such as how to carry out the evolutionary

operators, how to deal with one band impinging on another, and the limits on the actual band

size. It is also likely to slow the optimization. In the end, it was decided that the simplicity

and efficiency of the fixed band size implementation outweighed the potential advantages

of more elaborate approaches, especially at the proof-of-principle stage. Nevertheless,

future refinements may improve the overall approach.

Once the banded variables have been assigned, the GA proceeds in the same way as

SPPA, with the banded variables set used to define the genes.

6.3 Experimental

6.3.1 Data Sets
To demonstrate the performance of the banded SPPA algorithm relative to the original

SPPA algorithm, the Wine Grape Vis-NIR Data Set and the Salmon 1H NMR Data Set

from Chapter 5 are once again employed.

Wine Grape Vis-NIR Data Set. This data set contains three classes of wine grapes

analyzed by Vis-NIR (Grenache noir (50 samples), Carignan (100 samples), and Grenache

blanc (100 samples)).150

Salmon 1H NMR Data Set. This data set contains five classes of individual atlantic

salmon analyzed by 1H NMR. Each class contains 15 samples except one class, which

only contains 14 samples.152

6.3.2 Computational Details
All calculations were performed using programs written in-house with the MATLAB

programming environment (MathWorks, Natick, MA).81

6.4 Results and Discussion

The results of applying banded SPPA to the Wine Grape Vis-NIR Data Set are shown

in Figure 6.1. In this case, SPPA was limited to selecting a = 2 bands (w = 5, which
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corresponds to 15 nm) in each of the two dimensions. Figure 6.1A shows the bands selected

by the algorithm for dimension 1 (red) and dimension 2 (blue). In the first dimension (PP

score 1) two distinct, non-overlapping, bands (535-550 nm and 730-745 nm) were found

to be selected by the algorithm. In dimension 2 (PP score 2), two distinct non-overlapping

bands were selected (816-831 nm and 965-980 nm). The corresponding projection is

shown in Figure 6.1B, where a projection of similar quality to the SPPA results in Chapter

5 is observed. Although the discrimination between Grenache noir and Carignan is worse

in the present implementation, this is not surprising as the banded implementation of SPPA

has less of an opportunity to fine tune the kurtosis value as it is operating in a restricted

variable space.

Applied to the Salmon 1H NMR Data Set, banded SPPA optimizing the multivariate

kurtosis in 2 dimensions is able to cluster all five classes in a similar projection obtained

by ordinary SPPA, as shown in Figure 6.2B. However, the banded SPPA projection was

found by limiting the algorithm to select a single band w = 5 (0.05 ppm) in size. The

banded algorithm selects a band of variables around 3.3 ppm, as shown in Figure 6.2A. In

this case, since only one band is being selected, the algorithm is equivalent to sliding a

w = 0.005 ppm band across the variables and determining which region gives the smallest

kurtosis, with no real need for applying the steps of the genetic algorithm.

A closer look at the band selected in Figure 6.2A reveals that the banded SPPA algorithm

is picking a shoulder region of a peak at 3.3 ppm. One might expect the algorithm to

position the band over the full peak somewhere in the 3.25–3.3 ppm region, however,

shifting the band to include more of the actual peak must increase the kurtosis obtained

by the algorithm since this was not the result observed in practice. This could be due to

the fact that the real chemical information that is discriminating these classes is contained

only in the shoulder of the peak, or that because the banded SPPA algorithm is operating

in a reduced search space, including the variables to the left or right of the obtained band

position results in a higher kurtosis value. This suggests that some fine-tuning of the

band size might be needed to further interpret the results of banded SPPA. However, as

proof-of-principle, it is clear that the banded algorithm is obtaining a projection of similar

quality to SPPA without the additional selection of dubious variables.

To determine the important variables involved in the projection obtained via ordinary

SPPA, the algorithm must be applied repeatedly and the resulting selected variables must
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Figure 6.1: Result of applying banded univariate SPPA to the Vis-NIR Wine Grape Data
Set with a = 2 bands, w = 15 nm in size (5 variables), for each of the two dimensions.
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Figure 6.2: Result of applying banded multivariate SPPA to the salmon data set (a = 1
band, w = 0.05 ppm in size (5 variables)).
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be stored and analyzed. For banded SPPA, since the search space is much more confined,

the selected variables should be more stable (a smaller number of unique variables selected

over 100 runs). In other words, the banded SPPA algorithm is less likely to converge on

local optima. To explore the stability of the selected variables by banded SPPA relative

to that of ordinary SPPA, banded SPPA was applied to the Wine Grape Vis-NIR Data

Set 100 times. Figure 6.3 shows a histogram (bin size of 5) of the selected variables in

each dimension over 100 runs for both ordinary SPPA and banded SPPA. Comparing the

selected variables frequencies by ordinary SPPA in dimension 1 (Figure 6.3(a)) and banded

SPPA in dimension 1 (Figure 6.3(c)) it is clear that the banded algorithm is providing

more consistent solutions over repeated applications of the algorithm. The set of variables

selected by banded SPPA over the 100 runs is dominated by two bands starting at 535

nm and 730 nm. It is important to note that these regions in the spectra have a modest

amount of selection frequency in the ordinary SPPA results as well, but they are not the

highest frequency regions. In dimension 2, the two bands selected by the single application

of banded SPPA in Figure 6.1, 816 nm, and 965 nm, are also frequent in the 100 runs

shown in Figure 6.3(d), but there appears to be an equally frequent band in the 690 nm

region. These three regions are also the dominant regions in the ordinary SPPA dimension

2 frequency results shown in Figure 6.3(b). These results suggest that the banded SPPA

algorithm can dramatically improve variable interpretation by providing important variable

information without the need of excessive runs.

6.5 Conclusions

By imposing a restriction on the genetic variable selection algorithm in the SPPA algorithm

which only allows a specific number of bands of neighboring variables to be selected,

it was shown that the problem of defunct variables in ordinary SPPA can be mitigated.

Additionally, the proposed modification to SPPA, termed banded SPPA, was shown to

provide improved selected variable interpretation. The obtained results and performance

of banded SPPA depends on two additional parameters, the width of the bands, w, and the

number of bands, a. Although banded SPPA was only applied to select spectroscopic data

sets, another possible, and immediate, application of this methodology is for hyperspectral

images (feature enhancement, edge detection, etc.).
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Figure 6.3: Histograms (bin size of 5, corresponding to a 15 nm width) of the selected
variables in dimension 1 when applied Wine Grape Vis-NIR Data Set 100 times for (a)
SPPA and (c) banded SPPA (a = 2, w = 15 nm). Data for dimension 2 is shown for (b)
SPPA and (d) banded SPPA. It should be noted that for banded SPPA the histograms only
reflect the frequency of the first variable in the selected band. As there are no bands in
ordinary SPPA, all selected variables are represented in the histograms (a) and (b).

121



CHAPTER 7

AUGMENTED PROJECTION PURSUIT
ANALYSIS

Kurtosis-based projection pursuit analysis (PPA), an unsupervised exploratory data analysis

algorithm, has been shown to reveal meaningful clusters in multivariate chemical data that

are inaccessible by traditional data analysis methods such as PCA and HCA. However,

PPA often provides poor results when applied to unbalanced data sets (i.e. data sets that

exhibit unequal class sizes) due to the nature of the projection index (univariate kurtosis).

Additionally, since the stepwise univariate PPA algorithm is limited to a binary separation

space in each dimension of visualization, there is a geometric restriction imposed on the

analysis that favors data sets with a number of classes equal to a power of two (2, 4, 8).

The work in this chapter demonstrates that it is possible to reveal clusters in an unbalanced

data set using a simple augmentation strategy referred to as augmented PPA (augPPA).

Additionally, it is shown that by applying augPPA with specific augmentation parameters

it is possible to sequentially extract clusters from both simulated and real data. This

sequential extraction using augPPA is referred to as seqPPA.

7.1 Introduction

Perhaps the area most lacking in method diversity in modern multivariate chemical data

analysis is exploratory data analysis. This is unfortunate as exploratory methods are a key

component in modern analytical chemistry applications such as metabolomics, clinical

analysis, food analysis, forensics, and many others. Exploratory methods are often used to

confirm the hypothesis that an experimental method is able to discriminate between classes
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of interest (e.g. malignant vs. benign tumours) in cases where multivariate data make

the application of traditional hypothesis testing difficult due to high false discovery rates.

Principal components analysis (PCA) and hierarchical cluster analysis (HCA) dominate the

scientific literature as the “go-to” exploratory methods due to their simplicity, performance,

and intuitive visual presentation of results. Although these methods are useful for revealing

information in multivariate data, such as clusters of similar samples (classes) or identifying

possible outliers, they operate on variance (PCA) and distance metrics (HCA), which

represent only two ways of displaying the complex information in the data in a reduced

space. Therefore, it is important to realize that just because information to support a

hypothesis is not found using one of these exploratory methods, it does not mean that the

relevant information is not contained in the data. For example, in a multivariate data set

designed to discriminate two classes (e.g. healthy and diseased), if the information required

to separate these classes is expressed in variables that have relatively low variance, then

PCA will not be able to reveal the class separation in the first few principal components.

This is a problem inherent to the method, and although some judicious preprocessing of

the data (autoscaling, for example) prior to applying PCA may increase the likelihood

of revealing the class separation, all preprocessing methods have limitations based on

their assumptions and may even make the data analysis results worse (e.g. by amplifying

background noise). Rather than attempting the virtually unlimited options of preprocessing

methods that may not work, a promising alternative is moving beyond the variance-based

paradigm.

Kurtosis-based projection pursuit analysis (PPA), an alternative exploratory method

proposed by Hou and Wentzell, offers a different approach to finding reduced represen-

tations of high-dimensional data. Univariate PPA is an unsupervised method that seeks

a projection vector that minimizes the kurtosis of the samples when they are projected

onto this vector. This tends to lead to projections that reveal binary separation of clusters

in each dimension. One of the main advantages of PPA is that it requires little to no

preprocessing of the data. This is due to the fact that kurtosis is not affected by changes

in location or scale. PPA has been shown to perform as well as traditional methods and

even reveal clusters in situations where they fail to do so. Despite this, PPA has not yet

been picked up by the analytical chemistry community as a standard exploratory method

for two main reasons. First, the development of PPA for applications in chemistry is in its
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infancy relative to PCA and HCA, therefore, it has not seen the same general exposure.

Second, and perhaps more important from a practical standpoint, is that PPA has some

requirements that must be met for the algorithm to produce useful results.

One of the limitations of ordinary stepwise univariate PPA (the most useful algorithm)

is that the classes in the data set should be balanced. In other words, there should be

roughly an equal number of samples in all classes. This requirement is met for many data

sets, especially simple two-class problems based on designed experiments. However, it

is certainly not uncommon to have data sets that are unbalanced due to the differences in

the availability of samples. In this case, the current implementation of stepwise univariate

PPA may fail to correctly separate the unbalanced classes. This is because kurtosis is

a simple univariate metric that depends on both the separation of object groups and the

numbers within those groups. Thus, the minimization will attempt to partition objects

into well-separated groups, but also make those groups equal in number. For unbalanced

data sets, these two objectives work in opposition to one another and inevitably result in

a compromise. This is evident through an examination of Figure 5.1 (Chapter 5). The

unbalanced bimodal distribution in Figure 5.1(f) has a kurtosis almost equal to that of the

balanced case in Figure 5.1(d), even though the latter is more poorly separated, and it is

higher than that in Figure 5.1(b), which shows no separation. This problem becomes more

pronounced as the differences in class membership become larger. This is an obvious

limitation of the current implementation of ordinary PPA and, therefore, the first purpose

of this work was to develop an improved method, termed augmented projection pursuit

analysis (augPPA), for exploring unbalanced multivariate chemical data sets.

Due to the nature of the stepwise univariate kurtosis algorithm, another limitation of PPA

is that the number of classes in the data set should be a power of 2 (2, 4, or 8), referred to

as binary classification. This is connected to the problem of balanced classes. For example,

if a data set contains four balanced classes of 50 samples each, the stepwise application

of PPA would attempt to first partition the data into two groups of 100 (for example, by

grouping classes 1 and 2 and classes 3 and 4). At the next stage, an orthogonal partitioning

(e.g. separating classes 1 and 3 from 3 and 4) would also generate two groups of samples.

Overall, this would result in a successful separation of four groups at the corners of a

square in the space of the scores. However, if there were only three groups, the initial

balanced partitioning is not possible, making the separation of clusters less likely (although
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not impossible). The separation of three groups would be more feasible if class sizes were

100, 50 and 50, allowing the initial binary partitioning. This complex relationship between

class size and number of classes is a problem that needs to be addressed if PPA is to be

more widely applied. Therefore, a secondary purpose of this work is to demonstrate how

augPPA can be applied to sequentially extract clusters from data sets regardless of the

number of classes.

7.2 Theory

7.2.1 Kurtosis-Based Projection Pursuit

To formulate the proposed algorithm for augPPA, a brief overview of univariate PPA

(minimization) is required. PPA seeks the projection vector p that minimizes the kurtosis,

K, of the data projected onto p. The univariate kurtosis of the projected data onto p can

be written as

K =
m
∑︁m

i=1(p
TxT

i xip)
2

(pTXTXp)2
, (7.1)

where m is the number of samples, xi is the ith row of the m× n column mean centered

data matrix X and p is the n× 1 projection vector. To minimize Equation 7.1 with respect

to p, it has been shown that the following learning algorithm can be applied:

pj(new)←

[︄
m∑︂
i=1

(xipj)
2xT

i xi

]︄−1(︁
XT

jXj

)︁
pj. (7.2)

Here, pj indicates the projection vector for the jth dimension of the stepwise procedure and

Xj represents the data matrix after deflation from the previous step. The PPA algorithm

starts by providing a random guess for p1 (unit length) and then applying Equation 7.2

until the solution converges on a minimum. However, Equation 7.2 does not guarantee

a global minimum, so several different guesses of p1 are used and the final projection

vectors are screened for the smallest kurtosis value. The default number of guesses in the

PPA algorithm is 100 as it seems to provide consistent solutions over a wide range of data

sets without too much computational effort. This methodology provides one projection

vector that tends to segregate the data into binary clusters. To extend this to multiple

dimensions, the data matrix is deflated to remove the information associated with the
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first dimension and that the scores in the second dimension will be orthogonal to those in

the first dimension. The process is then repeated, starting with a random p2, to obtain a

projection vector in the second dimension. Due to the nature of univariate kurtosis, the

PPA algorithm results in projections that provide binary separations of classes in each

dimension. This means that PPA will look to separate the data into two clusters in one

dimension, and 4 and 8 clusters in two and three dimensions, but the projection on each

dimension is binary.

7.2.2 Unbalanced Classes

In the case of class size imbalance, the current implementation of PPA may fail to find

the projection where the unbalanced clusters are separated because the kurtosis of this

projection is not a minimum. To illustrate this, a simple two-dimensional, two-class data

set was simulated with a class ratio ranging from 1 to 5, where the size of the larger class,

class 1, was held constant (200 samples). The samples were drawn from a bivariate normal

distribution with mean of (-2, 0) and (2, 0) for class 1 and class 2, respectively. Both

distributions had a covariance matrix with a diagonal of
[︂
0.5 2

]︂
and all off-diagonal

elements set to zero. Figure 7.1 shows the optimal kurtosis value obtained using ordinary

PPA (one dimension only) and the kurtosis of the ideal projection (i.e. the projection that

discriminates the classes) as a function of the class ratio. When there are balanced classes

(class ratio=1) the ideal and optimal projections have the same kurtosis value. As the class

ratio increases there is a deviation in the kurtosis value for the optimal and ideal projections

at a class ratio of about 3. After this point, the optimal projection obtained with ordinary

PPA has a lower kurtosis value, but the classes can no longer be discriminated. Conversely,

the ideal projection has a large kurtosis value, so it will never be obtained by the ordinary

PPA algorithm. Although the point of divergence for the “ideal” and “optimal” solutions

will depend on the distribution of the objects in multidimensional space for real problems,

it is clear that there will be a performance breakdown at some non-unity class ratio.

There are two general approaches to solving the problem of unbalanced classes: altering

the optimization algorithm or altering the data. Algorithmic modifications were considered

first. One strategy would be to find an objective function which still targeted binary

separation, but was less sensitive to class balance. Such an objective function would

have to be carefully designed to avoid, for example, separating one or two samples as

a single class. Even if such a function could be identified, a second problem is the
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Figure 7.1: Mean univariate kurtosis for the optimal projection found with ordinary PPA
(blue solid line) and the mean univariate kurtosis of the ideal projection (i.e. the projection
that discriminates the classes, black dashed line) as a function of the class ratio between
the two classes created through simulation (means are obtained from 100 realizations of
the simulation).
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efficient optimization, since it would be unlikely to be adaptable to the quasi-power

method currently used. Another strategy is to adapt the the current kurtosis calculation to

accommodate the class imbalance. While a weighted kurtosis calculation can certainly

be carried out, this can only be done if the samples in the smaller class are identified in

advance. However, identifying classes would make PPA a supervised method and defeat

the purpose of exploratory data analysis. As there are much more efficient supervised

methods this was not seen as a useful direction.

Earlier efforts at algorithmic modification for imbalance resulted in technique called

recentered PPA (rcPPA).55 This was based on the premise that the main issues associated

with the imbalance could be addressed by redefining the population mean used in the

kurtosis calculation. In this modification, a two-step learning algorithm is used to simul-

taneously define the optimal projection vector and the position of the multivariate mean.

While this algorithm demonstrated some success, the simultaneous optimization of two

vectors also made the optimization slower and less reliable, so alternatives were sought.

Failing efforts to develop a solution based on algorithmic modification, this work focused

on modification of the data provided to the standard PPA algorithm through augmentation

of the experimental data through resampling. This is described in the section that follows.

7.2.3 Data Augmentation Strategies

The principle of data augmentation is to artificially rebalance the classes by adding to the

class with fewer objects (samples) in an unbiased way. To this end, the discussion will

focus on data sets with only two classes. The extension of thesis ideas to multiple classes

(sequential PPA) is discussed in Section 7.2.5.

Resampling is a standard statistical approach where new samples are drawn from existing

data. In the current context several strategies can be employed. For the sake of illustration,

a hypothetical case will be employed where class 1 (X1) is three times as large as class

2 (X2), with the two classes making up the entire data set, X. The various strategies are

illustrated in Figure 7.2 and described below.

The first strategy is one of subsampling of the larger class, perhaps more accurately

described as sample elimination. If we simply discard sufficient samples from the larger

data set, creating a smaller Xi from X, as shown in Figure 7.2A, then balance can be

restored. While this may work, it has a number of disadvantages. First, the selection of

retained samples may be biased unless random sampling is used or selection is based
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Figure 7.2: Different strategies for restoring class balance through data augmentation.
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on an appropriate algorithm such as that of Kennard and Stone.154 From a philosophical

perspective, however, we are throwing away information when samples are discarded. For

PPA, this has real consequences since the reduction in the total number of samples reduces

the number of variables we can retain to avoid overmodelling.

A second approach, shown in Figure 7.2B, would be to increase the number of samples

in the smaller class by drawing samples from that class and adding them to the data matrix.

In effect, we make copies of X2 and add them to the bottom of X in sufficient number to

rebalance the classes (adjustments for partial copies may be necessary, depending on the

class ratio). This is essentially equivalent to the method of weighted kurtosis described in

the previous section and suffers from the same drawback in that it requires prior knowledge

of the classes and means that PPA is no longer an unsupervised method. Therefore, this

option, while effective, was rejected.

While block resampling was rejected because it introduced prior knowledge of the

classes into the algorithm, it is clear that, for resampling to work, it was at least necessary to

have prior knowledge of the class ratios. Because this does not require specific assignment

of the classes, however, it was not considered as diminishing the unsupervised exploratory

nature of PPA.

A third approach, to avoid prior knowledge of sample class, is to build augmentation

matrices randomly as shown in Figure 7.2C. In this approach, random samples are taken

from X (without replacement) sufficient to equal the number of samples in X2. These

form the matrix Xr, which is used to augment X in the same manner as described above.

Of course, it is hoped that all of these samples will be drawn from X2, but this is highly

unlikely, so some sort of random or directed optimization of Xr (on top of the kurtosis

minimization) is required to find the optimal subset. Various optimization strategies were

employed in this work including iterative approaches and genetic algorithms, but these

were all slow and prone to becoming trapped in local minima.

A less ideal but far more practical alternative to random sampling is shown in Figure

7.2D, where a single sample drawn from X is repeated a sufficient number of times to

augment class 2. The idea here is that, while full resampling of X2 is statistically the

most ideal, the use of a simple representative sample may be sufficient to produce a nearly

equivalent result. Moreover, the optimization of the sample is computationally very fast,

since it only involves testing each sample in the data set once. This was the approach
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chosen for this work.

7.2.4 Augmented PPA

The algorithm for augmented PPA (augPPA) is specifically designed for two class separa-

tion problems involving unbalanced classes. Although the method could, in principle, be

extended to more classes in certain circumstances, multiple non-binary class separation

with unbalanced classes is more readily treated by sequential PPA, described in Section

7.2.5.

The augPPA algorithm requires the specification of the number of augmented samples to

employ, p, which is based on the ratio of class sizes and the total number of samples. The

augmentation of X with p samples is designed to give balanced class sizes. The algorithm

consists of an outer loop which repeats m times to extract each row of the original X to be

used as the augmentation vector. The extracted vector, xi, is then copied p times to the end

of X and univariate PPA (one dimension) is applied to the augmented matrix in the usual

way. At the end of the loop, the solution which produced the minimum kurtosis is then

retained. The scores and loadings are returned. The loadings are reported for data in the

original space of X, which avoids any inconsistencies between the column means of the

original data and the augmented data.

In applications involving more than two classes and higher dimensions, application

of augPPA is possible but with some caveats. First, additional steps would have to be

carried out with augmentation of the the deflated X. Second, because of the nature of the

augmentation, the augmentation would need to represent a single class. For example, if

three classes with sizes of 200, 75, and 50 were to be separated, p would have to be set

to 225 (275-250) and 175 (250-75) to accommodate the separation of the three classes

in two dimensions. Additionally, this method does not make full use of the space, so the

maximum number of classes that could be extracted in three dimensions is four. Because

of these complications, augPPA has not been extended to more than two classes at present.

A better approach is to use sequential PPA (seqPPA), which uses the sample principles of

augmentation in a different way, as described below.

7.2.5 Sequential Cluster Extraction

If X contains multiple classes, balanced or unbalanced, it is proposed here that sequential

extraction of the classes should be possible by repeatedly implementing the augPPA
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algorithm described above. First, one of the classes containing r1 objects is targeted. This

choice is somewhat arbitrary, but if there are multiple classes of the same size, it is not

possible to target one of them unambiguously. augPPA is then applied with the length of

augmentation, p, set to p1 = m1 − 2r, where m1 is the number of rows in the original X.

If the scores plot shows successful isolation of the r1 samples, these are removed from

X, creating X2 (m2 × n) and another class of objects, with size r2 and p2 = m2 − 2r2 is

targeted. This process is repeated until all of the classes have been successively isolated.

Note that this procedure can continue only if it is successful at each step. However, if

the class sizes are different, the process can be re-initiated with a different sequence of

targets to try and resolve the impasse.

This process, unlike PCA or standard PPA, does not try to project all of the samples

into a single space. It proceeds in a manner analogous to classification trees155 which

employ multiple steps to subdivide samples. However, the goal here is not to perform clas-

sification, but rather to confirm that the measurements contain the information necessary

for classification. In this regard, it is a very powerful tool for problems involving a large

number of classes.

7.3 Methods

To illustrate the proposed augPPA method, a simple two-class, two-dimensional, data set

was simulated to confirm the expected behaviour of the algorithm. To extend this to higher

dimensions and more classes, a data set that contained seven classes at the vertices of

a 6-simplex was simulated. A simplex geometry was chosen as this geometry ensures

that a projection vector exists where each class is isolable by the augPPA algorithm. This

data set was used to test the seqPPA algorithm. The algorithms were then applied to two

different sets of multivariate chemical data and their performance was compared to PCA

and ordinary PPA.

7.3.1 Simulated Data Sets

Data set 1. A simple two-dimensional, two-class, unbalanced data set was simulated

to investigate the kurtosis as a function of the projection vector angle for both the non-

augmented and augmented data. The non-augmented data set contained data drawn from

two bivariate normal distributions. The covariance matrix for both of these populations
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was set to

Σ =

[︄
0.5 0

0 2

]︄

and the population means were µ1 =
[︂
−2 0

]︂T
and µ2 =

[︂
2 0

]︂T
. To create the unbalance,

200 samples were drawn from the first population and 50 samples were drawn from the

second. These data were then rotated by 45° to introduce correlation between the two

variables.

Data set 2. This data set was simulated by placing seven multivariate normal clusters of

size 100 at the vertices of a 6-simplex centered around zero with the length of each edge

being constant (Euclidean distance of 12.2). Each cluster had a covariance matrix equal to

the 6× 6 identity matrix.

7.3.2 Experimental Data Sets

To demonstrate the performance of augPPA and seqPPA on experimental data, two data

sets were chosen.

Breast cancer: This well known data set (569×30) was obtained from the UCI Machine

Learning Repository (Breast Cancer Wisconsin (Diagnostic), 1995). The data set consists

of 30 features computed for cell nuclei from “digitized images of a fine needle aspirate of

a breast mass”. Examples of these features include the radius, perimeter, and area of the

nuclei. It consists of 357 benign and 212 malignant samples.

Ink data: This data set was obtained from a study designed for the classification of

blue pen by ink Fourier-transformed infrared (FTIR) spectroscopy.151 The original data

set contains 10 brands of ink, each with 6 batches, and 10 spectra per pen, which totals to

60 spectra per brand. This results in a 600× 3351 data matrix. This is the same data set

analysed in Chapter 5, but with all 10 brands of pen ink included.

7.3.3 Computational Details

All calculations were performed in MATLAB R2018a (MathWorks, Natick, MA)81 using

scripts written in-house. Code for implementing the proposed method can be found in

Appendix D. As standard practice, column mean centering was performed before applying

PCA, PPA, augPPA, and seqPPA.
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7.4 Results

7.4.1 Simulated Data Sets

To explore the simplest case of the optimization space explored by PPA with augmented

data, the kurtosis of the projected scores was calculated as a function of the angle of

the projection vector to the horizontal line at y = 0. Figure 7.3A shows the simulated

two-dimensional data. Qualitatively, an ideal projection vector would be ∼ 135°.
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Figure 7.3: A Simulated two-dimensional, two-class, unbalanced data set with 200 samples
in class 1 (blue circle markers) and 50 in class 2 (green square markers). B Kurtosis as a
function of the angle of the projection vector for both PPA and augPPA (sample with black
square marker in A indicates the sample used for augmentation of size 150). C Scores
obtained when the data in A are projected onto the vector with an angle of 58°. D Scores
obtained when the data in A are projected onto a vector with an angle of 139°of the data in
A augmented with 150 samples of the sample with the black square marker.

As shown in Figure 7.3B, the projection vector with the minimum kurtosis of the non-

augmented data (which is equivalent to the PPA algorithm) is at 58°. The scores of the

samples when they are projected onto this vector are shown in Figure 7.3C. As expected,

it is clear that there is no separation of the classes in this space. Conversely, Figure 7.3B

shows that for the data augmented with 150 samples, the minimum kurtosis value is found
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at a projection vector angle of 139°. The black square marker shows the sample that was

determined to be optimal for the augmentation, which was identified using the simple

search algorithm proposed in Section 7.2.3. The scores projected onto this vector are

shown in Figure 7.3D, which show a clear separation of the two classes even though one

is unbalanced. This confirms that augPPA is able to provide superior results to PPA in a

simple two-dimensional, two-class, unbalanced data set.

Data set 2 contains 7 clusters on the vertices of a 6-simplex which was simulated to

confirm the expected behaviour of augPPA in the sequential extraction of clusters from

high-dimensional data (seqPPA). Figure 7.4(A-F) shows the scores plots for each step in

the sequential extraction using augPPA. In each step, augPPA was able to find a projection

that isolates one cluster from the remaining clusters. Of course, for real data, the quality

of the results would be a function of the cluster positions relative to each other in the

multidimensional space. Data set 2 was simulated as an ideal case, where each cluster is

clearly defined with no overlap between the classes. However, these results suggest, that

under ideal circumstances, seqPPA is able to sequentially extract multiple clusters and is

not restricted to data sets with binary class sizes.
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Figure 7.4: Scores plots obtained from applying seqPPA on a simulated 7 class data set.

7.4.2 Experimental Data Sets
The breast cancer data set was employed to demonstrate a case where PCA does a satisfac-

tory job at separating binary classes while ordinary PPA fails to do so. Figure 7.5 shows
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the first scores obtained with PCA, PPA, and augPPA for the breast cancer data set. Since

the data set is unbalanced, augPPA was applied using an augmentation size of p = 145

with sample 237 (malignant) determined as the optimal augmentation location using the

simple search algorithm described in Section 7.2.3. The PCA results (Figure 7.5A) show

a tight clustering of the benign class relative to the malignant class and some overlap

between the two classes. These results support the hypothesis that these measurements can

provide discriminatory information between the benign and malignant classes. In contrast,

the scores obtained with PPA (Figure 7.5B) show both classes heavily overlapped with

no clear discrimination between the two. The augPPA results (Figure 7.5C) are similar to

the PCA results, showing clustering of the the two classes with a slight overlap between

them. These results suggest that the reason PPA is unable to find this projection is due to

the imbalance in the class sizes. Employing the augmentation strategy balances the classes

out and obtains a lower kurtosis value for the projection of interest.

The Ink Data Set was chosen to determine if the sequential extraction of clusters using

seqPPA proposed in Section 7.2.5 and demonstrated on simulated data in Section 7.4.1

could be possible on a real data set. Since the ink data set contains 10 classes, each

of size 60, augPPA was applied 8 times with the appropriate augmentation. Since this

data set contains 3351 response variables, PCA compression was performed such that a

sample to variable ratio of 10:1 was achieved before applying augPPA to the PCA scores.

This was performed for each sequential extraction with the augmentation parameters

p = m− 120, where m is the number of samples for the data matrix in the current step,

and the augmentation vector which was chosen by the simple search algorithm presented

in section 7.2.3. To make the procedure fully automated, the samples extracted in each

step were removed by determining the 60 samples furthest away from the median of the

data. Figure 7.6A–I shows the scores obtained for each step of this process.

Overall, the seqPPA method was able to extract one cluster of the ten total clusters in

each step. As expected with real data, the quality of the separation in each step varies. For

example, Figure 7.6F and I show an example of the extracted class being more dispersed in

the score space compared to classes extracted in other steps. For the step that extracts Brand

5 (Figure 7.6F), for example, this could be due to a number of reasons. Since the proposed

method uses a very simple procedure for determining the optimal augmentation vector, it

may be that, for clusters that have irregular or multivariate non-normal distributions, the
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Figure 7.5: Scores plot for the breast cancer data set produced by (A) PCA, (B) PPA, and
(C) augPPA.

procedure is not accurate enough in determining the augmentation vector to fully extract

the class. However, these are minor deviations from the behaviour observed with the

simulated data set, which was designed to be the ideal case.

7.5 Conclusions

A major drawback of stepwise univariate kurtosis-based projection pursuit is that it fails

to identify clusters in unbalanced data sets. Using a simple augmentation strategy, it was

shown that it is possible to identify samples in underrepresented classes and reveal clusters

in unbalanced data sets by rebalancing the data through augmentation. Furthermore, we

show that sequential class separation can be achieved by applying this method iteratively,
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which is a good starting point for a kurtosis-based projection pursuit algorithm that is not

confined to the traditional 2n separation geometry in n-dimensions.
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CHAPTER 8

CONCLUSION

A central goal in the application of chemometrics to multivariate chemical data is to

separate the relevant chemical variance (changes in the signal that are related to chemical

changes of interest) from measurement noise (variance associated with analytical sources

of error) and chemical noise (chemical variance related to chemical changes not of interest).

The relevant chemical variance can then be correlated with the chemical information of

interest, such as class membership (classification), concentration (multivariate calibration),

or a model of system behaviour (multivariate curve resolution). The work presented here

has attempted to address various aspects related to this core problem. This section presents

the main conclusions from this thesis and provides some direction for future work.

The ability to isolate chemical variance from measurement noise variance is a key

aspect of any chemometric tool. It is now widely accepted that this capability is closely

linked to the structure of measurement noise in a given system and the assessment of data

analysis tools and/or preprocessing methods for a given application requires consideration

of relevant error structures. Therefore, the first part of this thesis focuses on methods to

simulate various types of noise structures and demonstrating the utility of this strategy in

assessing data analysis methods.

Despite the importance of measurement noise, there are many instances where its

characteristics have not been elucidated, limiting applications of methods that require the

availability of such information to be effective (e.g. MLPCA). Likewise, such methods

are ineffective when chemical noise limits the extraction of chemical information. PPA

is a powerful alternative to variance-based methods for exploratory analysis and data

visualization, but is subject to certain practical limitations. The second part of this thesis
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addresses some of these limitations with a goal of extending the capabilities of PPA.

The results of Chapter 2, titled Simulation of 1/fα Noise for Analytical Measurements,

and Chapter 3, titled NoiseGen - Analytical Measurement Error Simulation Software,

provide an approachable methodology to perform realistic noise simulation for evaluating

data processing algorithms. Prior to the publication of the work described in these chapters,

much of the reported noise simulation in the analytical chemistry literature was comprised

only of single- component noise simulation. Together, these two chapters provide a

workflow for the simulation of any type and combination of noise by rotation and scaling

of white noise via the ECM of the target noise. The advantage of formulating the proposed

simulation methodology around the ECM is twofold. First, it allows the simulation of

any type of noise as long as an expression for the ECM is known. For example, previous

simulation strategies for generating 1/fα noise were not trivial; formulating the simulation

from the standpoint of the ECM proved beneficial in both interpretation of the noise

structure and its simulation. Second, the simulation of combinations of different noise

types is simple by assuming an additive noise model of the ECM. In attempt to make this

method of noise simulation even more approachable, the NoiseGen package was developed

for the simulation of common analytical noise types. Although the NoiseGen algorithm

is fast, it was not a goal of our investigations to optimize its speed. This leaves room for

further optimization that could almost certainly lead to faster generation of noise structures

(for example, NoiseGen is currently implemented with no parallelization). However, this is

a minor point as, on modern hardware, the software can simulate realistic noise structures

for use in algorithm evaluation in time frames on the order of fractions of a second to

seconds.

The impact of the realistic noise simulation work in this thesis should be observed in

years to come as researchers continue to develop and evaluate more advanced analysis

algorithms. It is important to note that, while these two chapters were structured around

noise observed in chemical analysis platforms, these types of noise are observed in almost

all measurements regardless of discipline. As such, the application of these tools are not

limited to just chemical data, but to data from all disciplines concerned with measurement

error.

Chapter 4, titled Data Fusion with Noisy Measurements, provides a theoretical frame-

work for mitigating the impact errors have on chemical subspace estimation for fused data
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using a maximum likelihood approach. The benefits of the proposed method were shown

using the simulation of fused data with different error structures. The proposed method

was then applied to a real fused data set concerned with the clustering of various olive

oils analyzed by UV-Vis, NIR, and MIR spectroscopy. Because this data set contained

many replicates, an accurate estimate of the fused ECM could be calculated. The results

of applying MLPCA to the fused data with the fused ECM proved to greatly increase

the quality of the projection compared to PCA and PCA applied to the autoscaled data.

However, this method requires a conscious decision from the researcher designing the

experiment to make sure the design is able to capture the structure of the ECM for each

instrument used in the fusion. Although MLPCA seems like the best alternative to PCA

for differentiating between chemical variance and noise variance, the requirement of an

accurate representation of the ECM makes it difficult to apply to data sets that do not

contain this information, and, unfortunately, the majority of published data is not designed

for this purpose.

As mentioned in the introduction of this thesis, another strategy for differentiating

between noise variance and chemical variance is projection pursuit analysis. Chapters 5, 6,

and 7 presented modifications of a kurtosis-based projection pursuit algorithm, which pro-

vides an alternative approach to accessing useful chemical subspaces in high-dimensional

chemical data. The goal of projection pursuit analysis (PPA) is to find “interesting” projec-

tions based on a projection index, which, in this case, is the kurtosis. PPA has been shown

to isolate relevant chemical variance from variance due to measurement and chemical

noise in data by searching for projections with low kurtosis. This has practical implications

in exploratory data analysis, as PPA is not prone to the scaling issues of PCA and does

not require information of the error covariance matrix to correct for these issues (the

result of applying maximum likelihood principal component analysis). However, despite

the initial success of PPA, there are two issues with the algorithm that prevent it from

having the same utility of traditional exploratory methods. First, PPA requires “skinny

data”, or data with more samples than variables. With chemical data, this condition is

usually met by compressing the data with PCA to k components such that an acceptable

sample-to-variable ratio is achieved (previous applications of PPA have determined that at

least a ∼ 5 : 1 sample-to-variable ratio is required to avoid overfitting). The problem with

this methodology is that useful information may be lost at this initial PCA compression
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step, which is also sensitive to scaling. The second issue relates to the performance of

ordinary PPA on unbalanced and non-binary data sets. As illustrated in Chapter 7, ordinary

PPA, performs poorly on unbalanced data due to the behaviour of the univariate kurtosis

value with unbalanced distributions. The results in this thesis have provided solutions to

both of these problems.

Chapter 5, titled Sparse Projection Pursuit Analysis- An Alternative for Exploring

Chemical Data, presents a sparse implementation of kurtosis-based PPA that circumvents

the need for PCA compression. This work is a major advancement in PPA for multivariate

data as it does not rely on PCA and, further, provides chemical interpretation of the

observed projection through repeated variable selection. In ordinary PPA, the interpretation

of the “loadings” can be difficult if not impossible. SPPA facilitates direct interpretation of

the variables which leads to an improved understanding of important chemical information

in the system. In this work, SPPA was found to out-perform PCA in all cases when applied

to a diverse collection of data sets, supporting the notion that SPPA offers a competitive

alternative to PCA in the exploratory analysis of multivariate chemical data.

Chapter 6 presented a modification to the genetic variable selection SPPA algorithm,

termed banded SPPA, which constrains the variables selected by SPPA to bands of neigh-

boring variables. This was shown to provide improved selected variable interpretation

without the need for repeated applications of SPPA to determine the important variables

responsible for an informative projection. As shown in the application of repeated runs

of banded SPPA to the Wine Grape Vis-NIR Data Set, where two dominant bands were

found in the first dimension and three dominant bands were found in the second dimension,

there may be a need for allowing a different number and size of bands in each dimension.

This would ultimately give the algorithm more flexibility and may provide even more

stability in the selected variables. This chapter represents one way of implementing a

banded SPPA method and it is possible that other implementations could perform better.

For example, another possible strategy could be to calculate the average response in each

band of variables in the genetic selection algorithm. This would reduce the number of

variables being used to perform PPA as one band of variables would be represented as

one variable (the average response in the band). In terms of performance, this strategy

would likely perform better than the current banded SPPA strategy in situations with a

small number of samples.
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Chapter 7, titled Augmented Projection Pursuit Analysis, describes a data augmentation

strategy that can be used to reveal useful projections in unbalanced and non-binary data

sets. As illustrated in this work, ordinary univariate PPA fails to provide useful projections

in unbalanced data sets due to the behaviour of univariate kurtosis. Through simulation

it was discovered that, in the case of unbalanced data, the projection that discriminates

unbalanced classes does not necessarily have the minimum univariate kurtosis. To remedy

this, augmentation of the unbalanced class with the appropriate number of “dummy”

samples prior to applying PPA was proposed. To keep the method unsupervised, the

augPPA algorithm builds trial solutions of the augmented data using only the samples in

the original data set and prior knowledge of the class size ratio. Ordinary PPA is applied to

the original data augmented with each trial augmentation matrix. The sample that gives the

lowest kurtosis value when used for the augmentation matrix is used for the final solution.

This strategy proved useful in revealing clusters in both simulated and real unbalanced data

sets. A secondary finding of this work was that, by redefining the size of the augmentation

matrix, it is possible to sequentially extract clusters from both simulated and real data

sets. As a demonstration of the algorithm’s utility, the method was applied to sequentially

extract 10 clusters from the ink FTIR data set, a truly remarkable result for an unsupervised

method.

In general, the kurtosis-based PPA variants developed as a part of this thesis have been

shown to provide an alternative way of searching multivariate chemical data for interesting

subspaces. The application of these methods to both simulated and real multivariate data

sets proved to reveal informative subspaces that are unobtainable by traditional methods

such as PCA. However, the PPA methods proposed in this thesis are all still kurtosis-

based methods and only represent a few ways of performing unsupervised exploration

on multivariate data. Therefore, there is room for more exploratory methods to further

diversify the number of analysis tools available to researchers. An obvious place to begin,

in the realm of projection pursuit, is to explore different projection indices that may have

desirable properties for exploring data. For example, another possible approach to solving

the unbalanced data issue with ordinary PPA is to use a skewness-invariant measure of the

kurtosis as the projection index.156 In terms of revealing clusters in general, there are a

couple of well defined metrics that could be used, such as the bimodality coefficient157

and Ashman’s D statistic.158 However, optimization of these metrics as a function of the
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projection vector would be a major component of the research involved with the practical

implementation of these methods.

The differentiation between informative chemical variance and all other variance is

the quintessential challenge in analyzing high-dimensional chemical data. The early

work in this thesis lays the foundation for realistic noise simulation for evaluating and

developing algorithms that attempt to tackle this challenge. The final sections of this thesis

contain solutions to the issues preventing one of the most promising alternative exploratory

methods, kurtosis-based projection pursuit analysis, from being applied alongside PCA

and HCA in the analytical chemistry literature.
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APPENDIX A

MATLAB CODE FOR SIMULATING
1/fα NOISE

1 f u n c t i o n [ NoiseOut , ECMout , c o e f f ]= S I D r i s c o l l ( samp , chan , a , p )

2 % F u n c t i o n t o g e n e r a t e 1 / f ̂\ a lpha n o i s e

3 % I n p u t s :

4 % samp i s t h e number o f s e q u e n c e s t o be g e n e r a t e d

5 % chan i s t h e number o f c h a n n e l s t o s i m u l a t e t h e n o i s e over ( d e f i n e d

6 % as n i n t h e m a n u s c r i p t

7 % a i s t h e a lpha v a l u e i n 1 / f ̂\ a lpha

8 % p i s rho , which c o n t r o l s t h e amount o f c o r r e l a t i o n i n t h e n o i s e

9 % s e q u e n c e

10 % O u t p u t s :

11 % NoiseOut i s t h e samp x chan m a t r i x o f s i m u l a t e d power n o i s e

12 % ECMout i s t h e t h e o r e t i c a l ECM o f t h e n o i s e

13 % c o e f f i s a v e c t o r c o n t a i n i n g t h e c o e f f i c i e n t s o f t h e f i l t e r

14 %

15 % Example : S I D r i s c o l l ( 1 0 0 , 5 0 0 , 1 , 1 ) g e n e r a t e s 100 samples o f p i n k n o i s e 500

16 % c a h n n e l s i n l e n g t h w i t h a rho=1

17

18 % S t e v e D r i s c o l l 2019 , s t e p h e n . d r i s c o l l @ d a l . c a , s t v d r i s c . m e

19

20 w= round ( chan / 2 ) ;

21 m=2*w+1; % F i l t e r w i d t h

22 f = [ 1 / ( 3 *m) 1 / ( 2 *w) : 1 / ( 2 *w) : 0 . 5 ] ; % Frequency v e c t o r

23 H= abs (1 . / ( f . ̂ ( a / 2 ) ) ) ;

24 H=[H f l i p l r (H(2:end) ) ] ; % Mask

25 Z= f f t (H) ;

26 c= s q r t ( r e a l ( Z ) . ̂2 + imag ( Z ) . ̂2 ) ; % C o e f f i c i e n t s

27 c =[ c (w+1:end) c ( 1 :w) ] ;

28 win=0 .54 -0 . 4 6 * cos (2* p i * [ 1 : l e n g t h ( c ) ] / l e n g t h ( c ) ) ; % Hamming window

29 c= c . *win ;

30 c=c / norm ( c ) ; % Normal i z e c o e f f i c i e n t s

31

32 % ECM v i a f i l t e r m a t r i x

33 ECMout= z e r o s ( chan , chan ) ;

34 n p t s =chan +2*w;

35 F= z e r o s ( np t s , chan ) ;

36 f o r i =1 : chan

37 indx = i +2*w;

38 F ( i : indx , i ) =c ' ;

39 end
40 ECMout=p̂2 * ( F ' * F ) ; % C o n s t r u c t ECM w i t h f i l t e r

41
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42 % % ECM v i a s e l f c o n v o l u t i o n o f c ( migh t be s l i g h t l y s lower , b u t don ' t have t o s t o r e F )

43 % ECMout=z e r o s ( chan , chan ) ;

44 % sc2=conv ( c , c ) ;

45 % f o r i = 1: chan

46 % k =1;

47 % f o r j = i : chan

48 % ECMout ( i , j )=sc2 ( k+m) ;

49 % k=k +1;

50 % end

51 % end

52 % ECMout= t r i u ( ECMout )+ t r i u ( ECMout , 1 ) ' ;

53

54 % Noise

55 [¬ , S ,V]= svd ( ECMout ) ;

56 P=V* d i a g ( s q r t ( d i a g ( S ) ) ) ;

57 NoiseOut = randn ( samp , chan ) *P ' ;

58 c o e f f =c ;
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APPENDIX B

NOISEGEN COMMAND LINE
MATLAB CODE

1 f u n c t i o n [X,COV,COVM] = NoiseGen ( chan , r eps , v a r a r g i n )

2 %%

3 % NoiseGen v . 1 . 1

4 %

5 % T h i s f u n c t i o n s i m u l a t e s m u l t i p l e t y p e s o f i n s t r u m e n t n o i s e commonly

6 % o b s e r v e d i n a n a l y t i c a l c h e m i s t r y u s i n g a 6 - term model o f t h e e r r o r c o v a r i a n c e

7 % m a t r i x . ( See PAPER REFERENCE) . The e x p l i c i t i n p u t s p as s ed t o t h e f u n c t i o n are :

8 %

9 % chan - t h e l e n g t h o f t h e o u t p u t s i g n a l .

10 %

11 % r e p s - t h e number o f s i g n a l s t o g e n e r a t e .

12 %

13 % A d d i t i o n a l v a r i a b l e l e n g t h i n p u t argument s are :

14 % 'BO ' - Random b a s e l i n e o f f s e t n o i s e

15 % [X , COV, COVM]= NoiseGen ( chan , reps , ' BO' , SD ) ;

16 % SD (1 x 1)

17 %

18 % 'MO' - M u l t i p l i c a t i v e o f f s e t n o i s e

19 % [X , COV, COVM]= NoiseGen ( chan , reps , 'MO' , RSD , R e f e r e n c e S i g n a l ) ;

20 % [X , COV, COVM]= NoiseGen ( chan , reps , 'MO' , RSD , R e f e r e n c e S i g n a l , P r o p o r t i o n a l i t y ) ;

21 % RSD (1 x 1) or (1 x r e p s )

22 % R e f e r e n c e S i g n a l (1 x chan ) or ( r e p s x chan )

23 %

24 % ' IID ' - Whi te n o i s e

25 % [X , COV, COVM]= NoiseGen ( 5 0 0 , 4 0 0 , ' IID ' , SD ) ;

26 % SD (1 x 1)

27 %

28 % 'MN' - M u l t i p l i c a t i v e n o i s e

29 % [X , COV, COVM]= NoiseGen ( 5 0 0 , 4 0 0 , 'MN' , 0 .1 , y , 1 ) ;

30 %

31 % ' PL ' - Power law n o i s e ( 1 / f ̂ a lpha n o i s e )

32 % [X , COV, COVM]= NoiseGen ( 5 0 0 , 4 0 0 , ' PL ' , 0 .1 , y , 1 ) ;

33 %

34 % ' PPL ' - P r o p o r t i o n a l power law n o i s e ( 1 / f ̂ a lpha p r o p o r t i o n a l n o i s e )

35 % [X , COV, COVM]= NoiseGen ( 5 0 0 , 4 0 0 , ' PPL ' , 0 .1 , y , 1 ) ;

36 %

37 %

38 % The r e t u r n e d v a r i a b l e s are :

39 %

40 % X - t h e ( r e p s x chan ) m a t r i x o f s i m u l a t e d n o i s e s i g n a l s .

41 %
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42 % COV - t h e ( chan x chan ) c o v a r i a n c e m a t r i x f o r X ( X ' * X / ( reps - 1 ) ) .

43 %

44 % COVM - t h e ( chan x chan ) t h e o r e t i c a l c o v a r i a n c e m a t r i x

45 % I f d i f f e r e n t ECM f o r each row , t h e n i t has d i m e n s i o n ( chan x

46 % chan x r e p s )

47 %

48 % Author : S t e v e D r i s c o l l

49 % Trace A n a l y s i s Research Centre , Depar tment o f Chemis t ry ,

50 % D a l h o u s i e U n i v e r s i t y , H a l i f a x , Nova S c o t i a , Canada B3H 4 J3

51 % Email : S t e p h e n . D r i s c o l l @ d a l . c a

52 % W e b s i t e : h t t p : / / g r o u p w e n t z e l l . c h e m i s t r y . d a l . c a /

53 % A p r i l 2017; L a s t r e v i s i o n : Nov 2018

54 % V1.1 change l o g : - Added f u n c t i o n a l i t y t o add m u l t i p l e n o i s e s o u r c e s o f

55 % t h e same t y p e

56 %%

57

58 % Comb v a r a r g i n t o g e t parame te r s t r u c t u r e

59 I n p t = v a r a r g i n ; % R e s s i g n i n p u t

60 % Check f o r any i n v a l i d paramter c a l l s

61 s2={ 'MO ' , 'BO ' , ' I ID ' , 'MN ' , ' PL ' , ' PPL ' } ;

62 f o r i =1 : l e n g t h ( I n p t )

63 i f i s c e l l s t r ( I n p t ( i ) ) ==1

64 P check = s t r c m p i ( I n p t{ i } , s2 ) ;

65 i f i s e m p t y ( f i n d ( P check ==1 ,1) ) ==1

66 tempT =[ ' Unrecogn ized i n p u t s t r i n g ” ' , ( I n p t{ i }) , ' ” ( P o s s i b i l i t i e s a r e MO, BO, IID , MN, PL , and ...
PPL ) ' ] ;

67 e r r o r ( tempT )

68 end
69 end
70 end
71 % B u i l d boo lean v e c t o r o f I n p t s t r u c t u r e wr t v a l i d p a r a m e t e r s

72 c e l l f i n d =@( s t r i n g ) (@( c e l l c o n t e n t s ) ( s t r c m p i ( s t r i n g , c e l l c o n t e n t s ) ) ) ; % I n l i n e f u n c t i o n f o r s t r c m p i --> boo lean

73 % D e f i n e c yp he r f o r paramater l i s t [1=MO 2=BO 3=IID 4=MN 5=PN 6=PPN]

74 BooPa= c e l l f u n ( c e l l f i n d ( 'MO ' ) , I n p t ) ;

75 BooPa=BooPa+2* c e l l f u n ( c e l l f i n d ( 'BO ' ) , I n p t ) ;

76 BooPa=BooPa+3* c e l l f u n ( c e l l f i n d ( ' I ID ' ) , I n p t ) ;

77 BooPa=BooPa+4* c e l l f u n ( c e l l f i n d ( 'MN ' ) , I n p t ) ;

78 BooPa=BooPa+5* c e l l f u n ( c e l l f i n d ( ' PL ' ) , I n p t ) ;

79 BooPa=BooPa+6* c e l l f u n ( c e l l f i n d ( ' PPL ' ) , I n p t ) ;

80 % Now s e a r c h boo lean v e c t o r f o r model p a r a m t e r s a c c o r d i n g t o c y ph er

81 Pos= f i n d ( BooPa ) ; % Find where n o i s e t y p e s are i n i n p u t

82 PosID=BooPa ( Pos ) ; % Find what n o i s e t y p e s are i n i n p u t

83 k =2; % Counter f o r # o f params a s s o c i a t e d w i t h each n o i s e t y p e a f t e r param s t r i n g (2 because ( 1 ) i s t h e ...
n o i s e t y p e s t r i n g )

84 ECM count =1; % Counter f o r # o f ECMs t o be summed

85 ECM MO Row Flag =0; % Flag f o r m u l t i p l i c a t i v e o f f s e t n o i s e per row

86 ECM MN Row Flag =0; % Flag f o r m u l t i p l i c a t i v e n o i s e per row

87 ECM PN Row Flag =0; % Flag f o r power law n o i s e per row

88 Mcount BO =1; % Counter f o r m u l t i p l e BO o f f s e t c o n t r i b u t i o n s

89 Mcount MO =1; % Counter f o r m u l t i p l e MO o f f s e t c o n t r i b u t i o n s

90 Mcount PN =1; % Counter f o r m u l t i p l e PL o f f s e t c o n t r i b u t i o n s

91 Mcount PPN =1; % Counter f o r m u l t i p l e PPL o f f s e t c o n t r i b u t i o n s

92 Mcount IID =1; % Counter f o r m u l t i p l e IID o f f s e t c o n t r i b u t i o n s

93 Mcount MN =1; % Counter f o r m u l t i p l e MN o f f s e t c o n t r i b u t i o n s

94 ECM= z e r o s ( chan , chan , 1 ) ; % Pre - a l l o c a t i n g

95 f o r i =1 : l e n g t h ( BooPa )

96 i f BooPa ( i )̸=0 % a 0 i n BooPa means we are n o t i n t e r e s t e d i n e l e m e n t v a l u e

97 i f BooPa ( i ) ==1 % MO n o i s e b e g i n

98 RefS ig = z e r o s ( 1 , chan ) ; % Force d e f a u l t

99 c =1; % Counter f o r hopping a long p a r a m e t e r s ( v a r i a b l e l e n g t h )

100 i f l e n g t h ( Pos ) ==1

101 f o r j = i +1 : l e n g t h ( BooPa )

102 P1 ( c ) = I n p t ( j ) ;

103 c=c +1;

104 end
105 e l s e i f PosID(end)==1 && numel ( f i n d ( PosID ==1) )>1 && Mcount MO<numel ( f i n d ( PosID ==1) )

106 f o r j = i +1 : Pos ( k ) -1
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107 P1 ( c ) = I n p t ( j ) ;

108 c=c +1;

109 end
110 Mcount MO=Mcount MO +1;

111 e l s e i f PosID(end)==1 && numel ( f i n d ( PosID ==1) )>1 && Mcount MO==numel ( f i n d ( PosID ==1) )

112 f o r j = i +1 : l e n g t h ( BooPa )

113 P1 ( c ) = I n p t ( j ) ;

114 c=c +1;

115 end
116 e l s e i f PosID(end)==1

117 f o r j = i +1 : l e n g t h ( BooPa )

118 P1 ( c ) = I n p t ( j ) ;

119 c=c +1;

120 end
121 e l s e
122 f o r j = i +1 : Pos ( k ) -1

123 P1 ( c ) = I n p t ( j ) ;

124 c=c +1;

125 end
126 end
127 i f l e n g t h ( P1{1})==1 && ( i s r o w ( P1{2})==1 | | i s c o lu m n ( P1{2}) ==1) % One RSD , One r e f v e c t o r

128 i f l e n g t h ( P1 ) ==3

129 Con t r =P1{1}; % C o n t r i b u t i o n

130 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

131 Prop=P1{3}; % P r o p r t i o n a l i t y

132 e l s e i f l e n g t h ( P1 ) ==2

133 Con t r =P1{1}; % C o n t r i b u t i o n

134 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

135 Prop =1; % D e f a u l t

136 e l s e
137 e r r o r ( 'MO n o i s e r e q u i r e s a r e f e r e n c e s i g n a l (1 x chan ) ' )

138 end
139 i f i s r o w ( RefS ig ) ==1

140 RefS ig =RefSig ' ;

141 end
142 i f l e n g t h ( RefS ig )̸=chan

143 e r r o r ( ' Length o f t h e r e f e r e n c e s i g n a l s h o u l d be e q u a l t o chan (1 x chan ) ' )

144 end
145 ECM( : , : , ECM count ) =[ R e f S i g . ̂( 2 * ( Prop ) ) ] * [ Con t r ̂2 ] * [ R e f S i g . ̂( 2 * ( Prop ) ) ] ' ; % B u i l d ECM

146 e l s e i f l e n g t h ( P1{1})==1 && i s r o w ( P1{2})==0 && i s co l u m n ( P1{2})==0 % MO prop each row s i n g l e prop

147 ECM MO Row Flag =1;

148 i f l e n g t h ( P1 ) ==3

149 Con t r =P1{1}; % C o n t r i b u t i o n

150 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

151 Prop=P1{3}; % P r o p r t i o n a l i t y

152 e l s e i f l e n g t h ( P1 ) ==2

153 Con t r =P1{1}; % C o n t r i b u t i o n

154 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

155 Prop =1; % D e f a u l t

156 e l s e
157 e r r o r ( 'MO n o i s e r e q u i r e s a r e f e r e n c e s i g n a l (1 x chan ) ' )

158 end
159 [ rowe , c o l e ]= s i z e ( RefS ig ) ;

160 i f rowe̸=r e p s && c o l e̸=chan

161 e r r o r ( ' E x p e c t i n g r e f e r e n c e s i g n a l m a t r i x e i t h e r 1 x chan or m x chan ' )

162 end
163 i f l e n g t h ( RefS ig )̸=chan

164 e r r o r ( ' Length o f t h e r e f e r e n c e s i g n a l s h o u l d be e q u a l t o chan (1 by chan ) ' )

165 end
166 f o r RR=1: r e p s

167 ECM Row MO ( : , : , RR) =[ RefS ig (RR , : ) . ̂( 2 * ( Prop ) ) ] ' * [ Con t r ̂2 ] * [ RefS ig (RR , : ) . ̂( 2 * ( Prop ) ) ] ; % ...
B u i l d ECM

168 end
169 e l s e i f l e n g t h ( P1{1})>1 % MO prop each row d i f f e r e n t prop

170 ECM MO Row Flag =1;

171 i f i s r o w ( P1{2})==1 | | i s c o lu m n ( P1{2})==1

172 e r r o r ( ' E x p e c t i n g r e f e r e n c e s i g n a l m a t r i x o f s i z e r e p s by chan ' )
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173 end
174 i f l e n g t h ( P1 ) ==3

175 Con t r =P1{1}; % C o n t r i b u t i o n

176 i f l e n g t h ( Con t r )̸=r e p s

177 e r r o r ( ' Length o f c o n t r i b u t i o n s s h o u l d be e q u a l t o r e p s ' )

178 end
179 RefS ig =P1{2}; % R e f e r e n c e s i g n a l ( s t a c k e d m by n )

180 i f l e n g t h ( RefS ig )̸=chan

181 e r r o r ( ' Length o f r e f e r e n c e s i g n a l s h o u l d be e q u a l t o chan ' )

182 end
183 Prop=P1{3}; % P r o p r t i o n a l i t y

184 e l s e i f l e n g t h ( P1 ) ==2

185 Con t r =P1{1}; % C o n t r i b u t i o n

186 i f l e n g t h ( Con t r )̸=r e p s

187 e r r o r ( ' Length o f c o n t r i b u t i o n s s h o u l d be e q u a l t o r e p s ' )

188 end
189 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

190 Prop =1; % D e f a u l t

191 e l s e
192 e r r o r ( ' V ec t o r o f c o n t r i b u t i o n s d e t e c t e d ( r e p s by 1) , e x p e c t i n g r e f e r e n c e s i g n a l m a t r i x ...

r e p s by chan ' )

193 end
194 f o r RR=1: r e p s

195 ECM Row MO ( : , : , RR) =[ RefS ig (RR , : ) . ̂( 2 * ( Prop ) ) ] ' . . .

196 *[ Con t r (RR) ̂2 ] * [ RefS ig (RR , : ) . ̂( 2 * ( Prop ) ) ] ;% B u i l d ECM

197 end
198 end
199 k=k +1;

200 ECM count=ECM count +1;

201 end
202 i f BooPa ( i ) ==2 % BO n o i s e s t a r t

203 c =1;

204 i f l e n g t h ( Pos ) ==1

205 f o r j = i +1 : l e n g t h ( BooPa )

206 P1 ( c ) = I n p t ( j ) ;

207 c=c +1;

208 end
209 e l s e i f PosID(end)==2 && numel ( f i n d ( PosID ==2) )>1 && Mcount BO<numel ( f i n d ( PosID ==2) )

210 f o r j = i +1 : Pos ( k ) -1

211 P1 ( c ) = I n p t ( j ) ;

212 c=c +1;

213 end
214 Mcount BO=Mcount BO +1;

215 e l s e i f PosID(end)==2 && numel ( f i n d ( PosID ==2) )>1 && Mcount BO==numel ( f i n d ( PosID ==2) )

216 f o r j = i +1 : l e n g t h ( BooPa )

217 P1 ( c ) = I n p t ( j ) ;

218 c=c +1;

219 end
220 e l s e i f PosID(end)==2

221 f o r j = i +1 : l e n g t h ( BooPa )

222 P1 ( c ) = I n p t ( j ) ;

223 c=c +1;

224 end
225 e l s e
226 f o r j = i +1 : Pos ( k ) -1

227 P1 ( c ) = I n p t ( j ) ;

228 c=c +1;

229 end
230 end
231 i f l e n g t h ( P1{1})==1

232 Con t r =P1{1};

233 ECM( : , : , ECM count ) =[ ones ( chan , 1 ) ] * [ Con t r ̂2 ] * [ ones ( chan , 1 ) ] ' ;

234 e l s e
235 e r r o r ( ' E x p e c t i n g s c a l a r f o r BO c o n t r i b u t i o n ' )

236 end
237 k=k +1;

238 ECM count=ECM count +1;
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239 end
240 i f BooPa ( i ) ==3 % IID

241 c =1;

242 i f l e n g t h ( Pos ) ==1

243 f o r j = i +1 : l e n g t h ( BooPa )

244 P1 ( c ) = I n p t ( j ) ;

245 c=c +1;

246 end
247 e l s e i f PosID(end)==3 && numel ( f i n d ( PosID ==3) )>1 && Mcount IID<numel ( f i n d ( PosID ==3) )

248 f o r j = i +1 : Pos ( k ) -1

249 P1 ( c ) = I n p t ( j ) ;

250 c=c +1;

251 end
252 Mcount IID=Mcount IID +1;

253 e l s e i f PosID(end)==3 && numel ( f i n d ( PosID ==3) )>1 && Mcount IID ==numel ( f i n d ( PosID ==3) )

254 f o r j = i +1 : l e n g t h ( BooPa )

255 P1 ( c ) = I n p t ( j ) ;

256 c=c +1;

257 end
258 e l s e i f PosID(end)==3

259 f o r j = i +1 : l e n g t h ( BooPa )

260 P1 ( c ) = I n p t ( j ) ;

261 c=c +1;

262 end
263 e l s e
264 f o r j = i +1 : Pos ( k ) -1

265 P1 ( c ) = I n p t ( j ) ;

266 c=c +1;

267 end
268 end
269 i f l e n g t h ( P1{1})==1

270 Con t r =P1{1};

271 ECM( : , : , ECM count ) = Con t r ̂2 * d i a g ( ones ( 1 , chan ) ) ;

272 e l s e
273 e r r o r ( ' E x p e c t i n g s c a l a r f o r IID c o n t r i b u t i o n ' )

274 end
275 k=k +1;

276 ECM count=ECM count +1;

277 end
278 i f BooPa ( i ) ==4 % MN

279 RefS ig = z e r o s ( 1 , chan ) ; % Force d e f a u l t

280 c =1; % Counter f o r hopping a long p a r a m e t e r s

281 i f l e n g t h ( Pos ) ==1

282 f o r j = i +1 : l e n g t h ( BooPa )

283 P1 ( c ) = I n p t ( j ) ;

284 c=c +1;

285 end
286 e l s e i f PosID(end)==4 && numel ( f i n d ( PosID ==4) )>1 && Mcount MN<numel ( f i n d ( PosID ==4) )

287 f o r j = i +1 : Pos ( k ) -1

288 P1 ( c ) = I n p t ( j ) ;

289 c=c +1;

290 end
291 Mcount MN=Mcount MN +1;

292 e l s e i f PosID(end)==4 && numel ( f i n d ( PosID ==4) )>1 && Mcount MN==numel ( f i n d ( PosID ==4) )

293 f o r j = i +1 : l e n g t h ( BooPa )

294 P1 ( c ) = I n p t ( j ) ;

295 c=c +1;

296 end
297 e l s e i f PosID(end)==4

298 f o r j = i +1 : l e n g t h ( BooPa )

299 P1 ( c ) = I n p t ( j ) ;

300 c=c +1;

301 end
302 e l s e
303 f o r j = i +1 : Pos ( k ) -1

304 P1 ( c ) = I n p t ( j ) ;

305 c=c +1;
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306 end
307 end
308 i f l e n g t h ( P1{1})==1 && ( i s r o w ( P1{2})==1 | | i s c o lu m n ( P1{2}) ==1) % One RSD , One r e f v e c t o r

309 i f l e n g t h ( P1 ) ==3

310 Con t r =P1{1}; % C o n t r i b u t i o n

311 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

312 Prop=P1{3}; % P r o p r t i o n a l i t y

313 e l s e i f l e n g t h ( P1 ) ==2

314 Con t r =P1{1}; % C o n t r i b u t i o n

315 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

316 Prop =1; % D e f a u l t

317 e l s e
318 e r r o r ( 'MN n o i s e r e q u i r e s a r e f e r e n c e s i g n a l (1 x chan ) ' )

319 end
320 i f i s r o w ( RefS ig ) ==1

321 RefS ig =RefSig ' ;

322 end
323 i f l e n g t h ( RefS ig )̸=chan

324 e r r o r ( ' Length o f t h e r e f e r e n c e s i g n a l s h o u l d be e q u a l t o chan (1 by chan ) ' )

325 end
326 ECM( : , : , ECM count ) = Con t r ̂2 * d i a g ( R e f S i g . ̂( 2 * ( Prop ) ) ) ; % B u i l d ECM

327 e l s e i f l e n g t h ( P1{1})==1 && i s r o w ( P1{2})==0 && i s co l u m n ( P1{2})==0 % MN prop each row s i n g l e prop

328 ECM MN Row Flag =1;

329 i f l e n g t h ( P1 ) ==3

330 Con t r =P1{1}; % C o n t r i b u t i o n

331 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

332 Prop=P1{3}; % P r o p r t i o n a l i t y

333 e l s e i f l e n g t h ( P1 ) ==2

334 Con t r =P1{1}; % C o n t r i b u t i o n

335 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

336 Prop =1; % D e f a u l t

337 e l s e
338 e r r o r ( 'MN n o i s e r e q u i r e s a r e f e r e n c e s i g n a l (1 x chan ) ' )

339 end
340 [ rowe , c o l e ]= s i z e ( RefS ig ) ;

341 i f rowe̸=r e p s && c o l e̸=chan

342 e r r o r ( ' E x p e c t i n g r e f e r e n c e s i g n a l m a t r i x e i t h e r 1 by chan or m by chan ' )

343 end
344 i f l e n g t h ( RefS ig )̸=chan

345 e r r o r ( ' Length o f t h e r e f e r e n c e s i g n a l s h o u l d be e q u a l t o chan (1 by chan ) ' )

346 end
347 f o r RR=1: r e p s

348 ECM Row MN ( : , : , RR) = Con t r ̂2 * d i a g ( RefS ig (RR , : ) . ̂( 2 * ( Prop ) ) ) ; % B u i l d ECM

349 end
350 e l s e i f l e n g t h ( P1{1})>1 % MN prop each row d i f f e r e n t prop

351 ECM MN Row Flag =1;

352

353 i f i s r o w ( P1{2})==1 | | i s c o lu m n ( P1{2})==1

354 e r r o r ( ' E x p e c t i n g r e f e r e n c e s i g n a l m a t r i x o f s i z e r e p s by chan ' )

355 end
356 i f l e n g t h ( P1 ) ==3

357 Con t r =P1{1}; % C o n t r i b u t i o n

358 i f l e n g t h ( Con t r )̸=r e p s

359 e r r o r ( ' Length o f c o n t r i b u t i o n s s h o u l d be e q u a l t o r e p s ' )

360 end
361 RefS ig =P1{2}; % R e f e r e n c e s i g n a l ( s t a c k e d m by n )

362 i f l e n g t h ( RefS ig )̸=chan

363 e r r o r ( ' Length o f r e f e r e n c e s i g n a l s h o u l d be e q u a l t o chan ' )

364 end
365 Prop=P1{3}; % P r o p r t i o n a l i t y

366 e l s e i f l e n g t h ( P1 ) ==2

367 Con t r =P1{1}; % C o n t r i b u t i o n

368 i f l e n g t h ( Con t r )̸=r e p s

369 e r r o r ( ' Length o f c o n t r i b u t i o n s s h o u l d be e q u a l t o r e p s ' )

370 end
371 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

372 Prop =1; % D e f a u l t
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373 e l s e
374 e r r o r ( ' V ec t o r o f c o n t r i b u t i o n s d e t e c t e d ( r e p s by 1) , e x p e c t i n g r e f e r e n c e s i g n a l m a t r i x ...

r e p s by chan ' )

375 end
376 f o r RR=1: r e p s

377 ECM Row MN ( : , : , RR) = Con t r (RR) ̂2 * d i a g ( RefS ig (RR , : ) . ̂( 2 * ( Prop ) ) ) ; % B u i l d ECM

378 end
379 end
380 k=k +1;

381 ECM count=ECM count +1;

382 end
383 i f BooPa ( i ) ==5 % PN

384 c =1; % Counter f o r hopping a long p a r a m e t e r s

385 i f l e n g t h ( Pos ) ==1

386 f o r j = i +1 : l e n g t h ( BooPa )

387 P1 ( c ) = I n p t ( j ) ;

388 c=c +1;

389 end
390 e l s e i f PosID(end)==5 && numel ( f i n d ( PosID ==5) )>1 && Mcount PN<numel ( f i n d ( PosID ==5) )

391 f o r j = i +1 : Pos ( k ) -1

392 P1 ( c ) = I n p t ( j ) ;

393 c=c +1;

394 end
395 Mcount PN=Mcount PN +1;

396 e l s e i f PosID(end)==5 && numel ( f i n d ( PosID ==5) )>1 && Mcount PN==numel ( f i n d ( PosID ==5) )

397 f o r j = i +1 : l e n g t h ( BooPa )

398 P1 ( c ) = I n p t ( j ) ;

399 c=c +1;

400 end
401 e l s e i f PosID(end)==5

402 f o r j = i +1 : l e n g t h ( BooPa )

403 P1 ( c ) = I n p t ( j ) ;

404 c=c +1;

405 end
406 e l s e
407 f o r j = i +1 : Pos ( k ) -1

408 P1 ( c ) = I n p t ( j ) ;

409 c=c +1;

410 end
411 end
412 i f l e n g t h ( P1 ) ==3

413 Con t r =P1{1}; % C o n t r i b u t i o n

414 Alpha=P1{2}; % Alpha

415 Rho=P1{3}; % Rho

416 e l s e i f l e n g t h ( P1 ) ==2

417 Con t r =P1{1};

418 Alpha=P1{2};

419 Rho =1;

420 e l s e i f l e n g t h ( P1 ) ==1

421 Con t r =P1{1};

422 Alpha =1;

423 Rho =1;

424 end
425 ECM( : , : , ECM count ) = fgen ( chan , Alpha , Contr , Rho ) ;

426 k=k +1;

427 ECM count=ECM count +1;

428 end
429 i f BooPa ( i ) ==6 % PPN

430 c =1; % Counter f o r hopping a long p a r a m e t e r s

431 i f l e n g t h ( Pos ) ==1

432 f o r j = i +1 : l e n g t h ( BooPa )

433 P1 ( c ) = I n p t ( j ) ;

434 c=c +1;

435 end
436 e l s e i f PosID(end)==6 && numel ( f i n d ( PosID ==6) )>1 && Mcount PPN<numel ( f i n d ( PosID ==6) )

437 f o r j = i +1 : Pos ( k ) -1

438 P1 ( c ) = I n p t ( j ) ;
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439 c=c +1;

440 end
441 Mcount PPN=Mcount PPN +1;

442 e l s e i f PosID(end)==6 && numel ( f i n d ( PosID ==6) )>1 && Mcount PPN==numel ( f i n d ( PosID ==6) )

443 f o r j = i +1 : l e n g t h ( BooPa )

444 P1 ( c ) = I n p t ( j ) ;

445 c=c +1;

446 end
447 e l s e i f PosID(end)==6

448 f o r j = i +1 : l e n g t h ( BooPa )

449 P1 ( c ) = I n p t ( j ) ;

450 c=c +1;

451 end
452 e l s e
453 f o r j = i +1 : Pos ( k ) -1

454 P1 ( c ) = I n p t ( j ) ;

455 c=c +1;

456 end
457 end
458 i f l e n g t h ( P1{1})==1 && ( i s r o w ( P1{2})==1 | | i s c o lu m n ( P1{2}) ==1) % One RSD , One r e f v e c t o r

459 i f l e n g t h ( P1 ) ==4

460 Con t r =P1{1};

461 RefS ig =P1{2};

462 Alpha=P1{3};

463 Rho=P1{4};

464 e l s e i f l e n g t h ( P1 ) ==3

465 Con t r =P1{1};

466 RefS ig =P1{2};

467 Alpha=P1{3};

468 Rho =1;

469 e l s e i f l e n g t h ( P1 ) ==2

470 Con t r =P1{1};

471 RefS ig =P1{2};

472 Alpha =1;

473 Rho =1;

474 end
475 i f i s r o w ( RefS ig ) ==1

476 RefS ig =RefSig ' ;

477 end
478 i f l e n g t h ( RefS ig )̸=chan

479 e r r o r ( ' Length o f t h e r e f e r e n c e s i g n a l s h o u l d be e q u a l t o chan (1 by chan ) ' )

480 end
481 ECM= fgen ( chan , Alpha , 1 , Rho ) ;

482 fcovp =ECM.*( RefS ig * RefSig ' ) ;

483 ECM( : , : , ECM count ) = Con t r ̂2 * fcovp ; % B u i l d ECM

484 e l s e i f l e n g t h ( P1{1})==1 && i s r o w ( P1{2})==0 && i s co l u m n ( P1{2})==0 % PN prop each row s i n g l e prop

485 ECM PN Row Flag =1;

486 i f l e n g t h ( P1 ) ==4

487 Con t r =P1{1};

488 RefS ig =P1{2};

489 Alpha=P1{3};

490 Rho=P1{4};

491 e l s e i f l e n g t h ( P1 ) ==3

492 Con t r =P1{1};

493 RefS ig =P1{2};

494 Alpha=P1{3};

495 Rho =1;

496 e l s e i f l e n g t h ( P1 ) ==2

497 Con t r =P1{1};

498 RefS ig =P1{2};

499 Alpha =1;

500 Rho =1;

501 end
502 [ rowe , c o l e ]= s i z e ( RefS ig ) ;

503 i f rowe̸=r e p s && c o l e̸=chan

504 e r r o r ( ' E x p e c t i n g r e f e r e n c e s i g n a l m a t r i x e i t h e r 1 by chan or m by chan ' )

505 end
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506 i f l e n g t h ( RefS ig )̸=chan

507 e r r o r ( ' Length o f t h e r e f e r e n c e s i g n a l s h o u l d be e q u a l t o chan (1 by chan ) ' )

508 end
509 f o r RR=1: r e p s

510 ECM= fgen ( chan , Alpha , Contr , Rho ) ;

511 fcovp =ECM.*( RefS ig (RR , : ) ' * RefS ig (RR , : ) ) ;

512 ECM Row PPN ( : , : , RR) = fcovp ; % B u i l d ECM

513 end
514

515 e l s e i f l e n g t h ( P1{1})>1 % PN prop each row d i f f e r e n t prop

516 ECM PN Row Flag =1;

517

518 i f i s r o w ( P1{2})==1 | | i s c o lu m n ( P1{2})==1

519 e r r o r ( ' E x p e c t i n g r e f e r e n c e s i g n a l m a t r i x o f s i z e r e p s by chan ' )

520 end
521 i f l e n g t h ( P1 ) ==4

522 Con t r =P1{1}; % C o n t r i b u t i o n

523 Alpha=P1{3};

524 Rho=P1{4};

525 i f l e n g t h ( Con t r )̸=r e p s

526 e r r o r ( ' Length o f c o n t r i b u t i o n s s h o u l d be e q u a l t o r e p s ' )

527 end
528 RefS ig =P1{2}; % R e f e r e n c e s i g n a l ( s t a c k e d m by n )

529 i f l e n g t h ( RefS ig )̸=chan

530 e r r o r ( ' Length o f r e f e r e n c e s i g n a l s h o u l d be e q u a l t o chan ' )

531 end
532 e l s e i f l e n g t h ( P1 ) ==3

533 Con t r =P1{1}; % C o n t r i b u t i o n

534 Alpha=P1{3};

535 Rho =1;

536 i f l e n g t h ( Con t r )̸=r e p s

537 e r r o r ( ' Length o f c o n t r i b u t i o n s s h o u l d be e q u a l t o r e p s ' )

538 end
539 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

540 e l s e i f l e n g t h ( P1 ) ==2

541 Con t r =P1{1}; % C o n t r i b u t i o n

542 Alpha =1;

543 Rho =1;

544 i f l e n g t h ( Con t r )̸=r e p s

545 e r r o r ( ' Length o f c o n t r i b u t i o n s s h o u l d be e q u a l t o r e p s ' )

546 end
547 RefS ig =P1{2}; % R e f e r e n c e s i g n a l

548 e l s e
549 e r r o r ( ' V ec t o r o f c o n t r i b u t i o n s d e t e c t e d ( r e p s by 1) , e x p e c t i n g r e f e r e n c e s i g n a l m a t r i x ...

r e p s by chan ' )

550 end
551 f o r RR=1: r e p s

552 ECM= fgen ( chan , Alpha , Con t r (RR) , Rho ) ;

553 fcovp =ECM.*( RefS ig (RR , : ) ' * RefS ig (RR , : ) ) ;

554 ECM Row PPN ( : , : , RR) = fcovp ; % B u i l d ECM

555 end
556 end
557 k=k +1;

558 ECM count=ECM count +1;

559 end
560 end
561 end
562 % A l l done b u i l d i n g ECMs , now check i f we s h o u l d g e n e r a t e per row

563 i f ECM MO Row Flag>0 | | ECM MN Row Flag>0 | | ECM PN Row Flag>0

564 COVMt=sum (ECM, 3 ) ;

565 f o r i =1 : r e p s

566 i f ECM MO Row Flag>0

567 COVM Ri=ECM Row MO ( : , : , i ) ;

568 e l s e
569 COVM Ri= z e r o s ( chan , chan ) ;

570 end
571
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572 i f ECM MN Row Flag>0

573 COVM Ri2=ECM Row MN ( : , : , i ) ;

574 e l s e
575 COVM Ri2= z e r o s ( chan , chan ) ;

576 end
577

578 i f ECM PN Row Flag>0

579 COVM Ri3=ECM Row PN ( : , : , i ) ;

580 e l s e
581 COVM Ri3= z e r o s ( chan , chan ) ;

582 end
583 COVM( : , : , i ) =COVM Ri + COVM Ri2 + COVM Ri3 + COVMt;

584 [¬ , S ,V]= svd (COVM( : , : , i ) ) ;

585 e i i d = randn ( 1 , chan ) ;

586 e s i g = e i i d * s q r t ( S ) *V ' ;

587 X( i , : ) = e s i g ;

588

589 end
590 COV=(X' *X) / ( r eps - 1 ) ;

591 e l s e % i f not , t h e n sum t h e ECMs and g e n e r a t e n o i s e

592 COVM=sum (ECM, 3 ) ;

593 [¬ , S ,V]= svd (COVM) ;

594 e i i d = randn ( reps , chan ) ;

595 e s i g = e i i d * s q r t ( S ) *V ' ;

596 COV=( e s i g ' * e s i g ) / ( r eps - 1 ) ;

597 X= e s i g ;

598 end
599 end
600

601 %% F u n c t i o n t o g e n e r a t e 1 / f ̂\ a lpha ECM

602 f u n c t i o n [ ECMout ]= fgen ( chan , a , p , rho )

603 w= round ( chan / 2 ) ;

604 m= rho *2*w+1; % F i l t e r w i d t h

605 f = [ 1 / ( 3 *m) 1 / ( 2 *w) : 1 / ( 2 *w) : 0 . 5 ] ; % Frequency v e c t o r

606 H= abs (1 . / ( f . ̂ ( a / 2 ) ) ) ;

607 H=[H f l i p l r (H(2:end) ) ] ; % Mask

608 Z= f f t (H) ;

609 c= s q r t ( r e a l ( Z ) . ̂2 + imag ( Z ) . ̂2 ) ; % C o e f f i c i e n t s

610 c =[ c (w+1:end) c ( 1 :w) ] ;

611 win=0 .54 -0 . 4 6 * cos (2* p i * [ 1 : l e n g t h ( c ) ] / l e n g t h ( c ) ) ; % Hamming window

612 c= c . *win ;

613 c=c / norm ( c ) ; % Normal i z e

614

615 % ECM v i a f i l t e r m a t r i x

616 n p t s =chan +2*w;

617 F= z e r o s ( np t s , chan ) ;

618 f o r i =1 : chan

619 indx = i +2*w;

620 F ( i : indx , i ) =c ' ;

621 end
622 ECMout=p̂2 * ( F ' * F ) ; % C o n s t r u c t ECM w i t h f i l t e r

623

624 % % ECM v i a s e l f c o n v o l u t i o n o f c ( migh t be s l i g h t l y s lower , b u t don ' t have t o s t o r e F )

625 % ECMout=z e r o s ( chan , chan ) ;

626 % sc2=conv ( c , c ) ;

627 % f o r i = 1: chan

628 % k =1;

629 % f o r j = i : chan

630 % ECMout ( i , j )=sc2 ( k+m) ;

631 % k=k +1;

632 % end

633 % end

634 % ECMout= t r i u ( ECMout )+ t r i u ( ECMout , 1 ) ' ;

635 end
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APPENDIX C

MATLAB CODE FOR IMPLEMENTING
SPPA

1 f u n c t i o n [ T , V, Var , k u r t ]= SPPA 73 (X, v a r a r g i n )

2 %SPPA s p a r s e p r o j e c t i o n p u r s u i t a n a l y s i s u s i n g g e n e t i c a l g o r i t h m .

3 %

4 %O u t p u t s :

5 %

6 %T = SPPA ( X ) p e r f o r m s s p a r s e p r o j e c t i o n p u r s u i t on t h e m*n ( samples x v a r i a b l e s )

7 % m a t r i x X , and r e t u r n s t h e s c o r e s i n T , a m*dim mat r i x , where dim i s

8 % t h e number o f d i m e n s i o n s o f s e p a r a t i o n .

9 %

10 %[T , V] = SPPA ( X ) a l s o r e t u r n s t h e v e c t o r s i n V , a dim*n m a t r i x c o n t a i n i n g t h e

11 % p r o j e c t i o n v e c t o r s f o r each d i m e n s i o n .

12 %

13 %[T , V , VAR] = SPPA ( X ) r e t u r n s t h e v a r i a b l e s i n VAR , a dim* n v a r s ma t r i x , w i t h each

14 % column c o n t a i n i n g t h e chosen v a r i a b l e s f o r each d i m e n s i o n o f s e p a r a t i o n .

15 %

16 %[T , V , VAR , KURT] = SPPA ( X ) a l s o r e t u r n s t h e k u r t o s i s v a l u e ( s ) f o r t h e

17 % s o l u t i o n , i n a dim *1 mat r i x , w i t h each d i m e n s i o n h av ing a k u r t o s i s

18 % v a l u e a s s o c i a t e d w i t h t h e s e p a r a t i o n .

19 %I n p u t s :

20 %

21 %SPPA ( X , . . . , Optionname , O p t i o n v a l u e , . . . ) p e r f o r m s s p a r s e p r o j e c t i o n

22 % p u r s u i t a c c o r d i n g t o t h e o p t i o n s p r o v i d e d . Optionname i s a s t r i n g ,

23 % as i d e n t i f i e d below , and O p t i o n v a l u e i s e i t h e r a s c a l a r or a s t r i n g ,

24 % t o i d e n t i f y t h e v a l u e .

25 %

26 %O p t i o n s :

27 %

28 % Dim : Number o f d i m e n s i o n s a long which s e p a r a t i o n i s d e s i r e d ( 1 - 3 )

29 % D e f a u l t : 2

30 % Recommendation : 1 dim f o r 2 c l a s s e s , 2 dim f o r 3 -4 c l a s s e s ,

31 % 3 dim f o r 5 -8 c l a s s e s

32 % Nvars : Number o f v a r i a b l e s

33 % D e f a u l t : 5

34 % Recommendation : Nvars ̸= nsamp / 2 5 , such t h a t n v a r s ≥ 3

35 % Mutra te : M u t a t i o n r a t e ( d e c i m a l be tween 0 and 1)

36 % D e f a u l t : 0 . 1

37 % P o p s i z e : P o p u l a t i o n s i z e

38 % D e f a u l t : 100

39 % Meth : U n i v a r i a t e ( u n i ) or m u l t i v a r i a t e ( mul ) k u r t o s i s

40 % D e f a u l t : u n i

41 % Opt : Ord inary ( ord ) or r e c e n t e r e d ( r e c ) k u r t o s i s
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42 % D e f a u l t : ord

43 % Maxtime : Maximum t i m e ( i n s e c o n d s ) , a f t e r which t h e a l g o r i t h m s t o p s i f

44 % i t hasn ' t converged

45 % D e f a u l t : 300

46 % C t o f f : F i t n e s s v a l u e below which a l l i n d i v i d u a l s are c o n s i d e r e d

47 % e q u i v a l e n t i n mat ing , because t h e y g i v e a d e q u a t e s e p a r a t i o n .

48 % D e f a u l t : 1 . 5 ( u n i v a r i a t e ) , 4 . 5 ( m u l t i v a r i a t e ) , 2 . 2 5 ( prod ) ,

49 % 3 ( sum ) .

50 %

51 %

52 %Example : To per form s p a r s e p r o j e c t i o n p u r s u i t w i t h 10 v a r i a b l e s ,

53 % u s i n g r e c e n t e r e d k u r t o s i s and a m u t a t i o n r a t e o f 20%, e n t e r :

54 % [T , V , VAR] = SPPA ( X , ' nvars ' , 1 0 , ' opt ' , ' rec ' , ' mu t ra t e ' , 0 . 2 )

55

56 %Demo : Th

57

58 p= i n p u t P a r s e r ;

59 a d d O p t i o n a l ( p , ' o b j c l a s s ' , [ ] )

60 a d d O p t i o n a l ( p , ' c l a s s l i s t ' ,{} , @ i s c e l l )

61 a d d P a r a m e t e r ( p , ' dim ' , 2 ,@( x ) a s s e r t (0<x && x<4) ) ;

62 a d d P a r a m e t e r ( p , ' n v a r s ' , 5 ,@( x ) a s s e r t ( x>1) ) ;

63 a d d P a r a m e t e r ( p , ' m u t r a t e ' ,0 .1 ,@( x ) a s s e r t (0≤x && x<1) ) ;

64 a d d P a r a m e t e r ( p , ' p o p s i z e ' , 100 ,@( x ) a s s e r t ( x>0) ) ;

65 a d d P a r a m e t e r ( p , ' o p t ' , ' o rd ' ,@( x ) a s s e r t ( i s s c a l a r ( s t r f i n d ( ' o r d r e c ' , x ) ) ) ) ;

66 a d d P a r a m e t e r ( p , ' meth ' , ' u n i ' ,@( x ) a s s e r t ( i s s c a l a r ( s t r f i n d ( ' un imul ' , x ) ) ) ) ;

67 a d d P a r a m e t e r ( p , ' maxtime ' , 300 ,@( x ) a s s e r t ( x>0) ) ;

68 a d d P a r a m e t e r ( p , ' pc t r ecomb ' ,0 .3 ,@( x ) a s s e r t ( x>0) ) ;

69 a d d P a r a m e t e r ( p , ' sumprod ' , ' norm ' ,@( x ) a s s e r t ( i s s c a l a r ( s t r f i n d ( ' normsumprod ' , x ) ) ) ) ;

70 a d d P a r a m e t e r ( p , ' e x p o n e n t ' , 4 ,@( x ) a s s e r t ( x>0) ) ;

71 a d d P a r a m e t e r ( p , ' c t o f f ' ,1 .5 ,@( x ) a s s e r t ( x>0) ) ;

72 a d d P a r a m e t e r ( p , ' s t a t ' , 5 0 ,@( x ) a s s e r t ( x>0) ) ; %D e f i n i t i o n o f a s t a t i c p o p u l a t i o n ( how many g e n e r a t i o n s )

73 p a r s e ( p , v a r a r g i n { :} )

74 f = p . R e s u l t s ;

75 i f s t r c mp ( f . m e t h , ' mul ' ) && s t r c mp ( f . sumprod , ' norm ' ) == f a l s e

76 e r r o r ( ' M u l t i v a r i a t e k u r t o s i s i s i n c o m p a t i b l e wi th sum / p r o d u c t o p t i o n s ' )

77 end
78 i f s t r c mp ( f . o p t , ' r e c ' ) && s t r c mp ( f . sumprod , ' norm ' ) == f a l s e

79 warn ing ( ' Use o f r e c e n t e r e d k u r t o s i s i s n o t recommended wi th sum / p r o d u c t o p t i o n s ' )

80 end
81 i f s t r c mp ( f . sumprod , ' norm ' )

82 [ T , V, Var , k u r t , pop ]= ppga2 (X, v a r a r g i n { :} ) ;

83 e l s e
84 [ T , V, Var , k u r t ]= ppga6 (X, v a r a r g i n { :} ) ;

85 end
86 end
87 %% - - - - - - - - - - - - - Dimension - by - d i m e n s i o n s e p a r a t i o n a l g o r i t h m - - - - - - - - - - - - - - - - - - -%%

88 f u n c t i o n [ s c o r e s , v e c t o r s , v a r i a b l e s , k u r t , pops ]= ppga2 (X, v a r a r g i n )

89 %PPGA2 V a r i a b l e s e l e c t i o n f o r p r o j e c t i o n p u r s u i t a n a l y s i s , w i t h a g e n e t i c

90 % a l g o r i t h m ( v e r s i o n 2 . 0 ) w i t h d imens ion - by - d i m e n s i o n s e p a r a t i o n .

91

92 p= i n p u t P a r s e r ;

93 a d d O p t i o n a l ( p , ' o b j c l a s s ' , [ ] )

94 a d d O p t i o n a l ( p , ' c l a s s l i s t ' ,{} , @ i s c e l l )

95 a d d P a r a m e t e r ( p , ' dim ' , 2 , @isnumeric )

96 a d d P a r a m e t e r ( p , ' n v a r s ' , 5 ) ;

97 a d d P a r a m e t e r ( p , ' maxgen ' , 1000 ,@( x ) a s s e r t ( x>0) ) ;

98 a d d P a r a m e t e r ( p , ' maxtime ' , 300 ,@( x ) a s s e r t ( x>0) ) ;

99 a d d P a r a m e t e r ( p , ' meth ' , ' u n i ' ,@( x ) a s s e r t ( i s s c a l a r ( s t r f i n d ( ' un imul ' , x ) ) ) ) ; %U n i v a r i a t e v s m u l t i v a r i a t e k u r t o s i s

100 a d d P a r a m e t e r ( p , ' o p t ' , ' o rd ' ,@( x ) a s s e r t ( i s s c a l a r ( s t r f i n d ( ' o r d r e c ' , x ) ) ) ) ; %Ordinary vs r e c e n t e r e d k u r t o s i s

101 a d d P a r a m e t e r ( p , ' m u t r a t e ' ,0 .1 ,@( x ) a s s e r t (0≤x && x<1) ) ;

102 a d d P a r a m e t e r ( p , ' p o p s i z e ' , 100 ,@( x ) a s s e r t ( x>0) ) ;

103 a d d P a r a m e t e r ( p , ' pc t r ecomb ' ,0 .3 ,@( x ) a s s e r t ( x>0) ) ;

104 a d d P a r a m e t e r ( p , ' s t a t ' , 5 0 ,@( x ) a s s e r t ( x>0) ) ; %D e f i n i t i o n o f a s t a t i c p o p u l a t i o n ( how many g e n e r a t i o n s )

105 a d d P a r a m e t e r ( p , ' e x p o n e n t ' , 4 ,@( x ) a s s e r t ( x>0) ) ;

106 a d d P a r a m e t e r ( p , ' c t o f f ' ,1 .5 ,@( x ) a s s e r t ( x>0) ) ;

107 a d d P a r a m e t e r ( p , ' sumprod ' , ' norm ' ,@( x ) a s s e r t ( i s s c a l a r ( s t r f i n d ( ' normsumprod ' , x ) ) ) ) ;

108 p a r s e ( p , v a r a r g i n { :} )
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109 f = p . R e s u l t s ;

110 %Determine how many s e t s o f v a r i a b l e s i t w i l l o u t p u t ( d imvar )

111 %Determine how many d i m e n s i o n s t o ask from t h e p r o j e c t i o n

112 % p u r s u i t a l g ( p u r s u i t d i m )

113 i f s t r c mp ( ' mul ' , f . m e t h )

114 dimvar =1;

115 p u r s u i t d i m = f . d i m ;

116 f . c t o f f =4 . 5 ;

117 e l s e dimvar = f . d i m ;

118 p u r s u i t d i m =1;

119 end
120

121 [ nsamp , t o t v a r s ]= s i z e (X) ; %t o t a l number o f v a r i a b l e s

122 s c o r e s = z e r o s ( nsamp , f . d i m ) ; %W i l l ho ld pp s c o r e s

123 v a r i a b l e s = z e r o s ( dimvar , f . n v a r s ) ; %W i l l ho ld chosen v a r i a b l e s

124 v e c t o r s = z e r o s ( t o t v a r s , f . d i m ) ;

125 i f rem ( f . p o p s i z e , 2 ) %S e t number o f e l i t e i n d i v i d u a l s

126 numret =1;

127 e l s e numret =2 ;

128 end
129 n c h i l d = f . p o p s i z e - numret ; %t h e r e m a i n i n g p o p u l a t i o n i s made o f r e t a i n e d i n d i v i d u a l s

130 %Mean c e n t e r t h e da ta :

131 Morig= ones ( nsamp , 1 ) *mean (X) ;

132 X=X- Morig ;

133 X0=X;

134 t i c

135 f o r d =1: f . d i m

136 % d i s p ( [ ' Dimension ' num2s t r ( d ) ] )

137 %% D e f i n e d e f a u l t v a r i a b l e s

138 pop= z e r o s ( f . p o p s i z e , f . n v a r s ) ;

139 p o p u l a t i o n s = z e r o s ( f . p o p s i z e , f . n v a r s , f .maxgen ) ; %3d m a t r i x t o s t o r e a l l o f t h e h i s t o r i c a l p o p u l a t i o n s

140 f i t n e s s = z e r o s ( f . p o p s i z e , f .maxgen ) ; %Ma tr i x s t o r i n g f i t n e s s o f a l l p r e v i o u s i n d i v i d u a l s

141

142 %% C o n s t r u c t i n i t i a l p o p u l a t i o n

143 % d i s p ( ' G e n e r a t i o n 1 ' )

144 f o r i =1 : f . p o p s i z e

145 pop ( i , : ) = randperm ( t o t v a r s , f . n v a r s ) ;

146 [¬ ,¬ ,PPOUT]= p r o j p u r s u i t (X ( : , pop ( i , : ) ) , p u r s u i t d i m , 1 , f . m e t h , f . o p t ) ;

147 f i t n e s s ( i , 1 ) =PPOUT.K ;

148 end
149 [ f i t n e s s ( : , 1 ) , i s o r t ]= s o r t ( f i t n e s s ( : , 1 ) ) ; %s o r t i n d i v i d u a l s by f i t n e s s

150 f o r i =1 : f . p o p s i z e

151 pop ( i , : ) =pop ( i s o r t ( i ) , : ) ;

152 end
153

154 %%

155 p o p u l a t i o n s ( : , : , 1 ) =pop ; %S t o r e f i r s t g e n e r a t i o n

156 f o r k =2: f .maxgen

157 %% E l i t e s e l e c t i o n

158 p o p e l i t e =pop ( 1 : numret , : ) ;

159 %% Mating

160 p o p c h i l d = mat ing7 ( f . n v a r s , pop , n c h i l d , f i t n e s s ( : , k - 1 ) , p o p e l i t e , t o t v a r s , f . p c t r e c o m b , f . c t o f f , f . e x p o n e n t ) ;

161 %% Random m u t a t i o n

162 pop= m u t a t i o n ( n c h i l d , f . m u t r a t e , f . n v a r s , t o t v a r s , p o p e l i t e , p o p c h i l d ) ;

163 %% E v a l u a t e f i t n e s s o f each member

164 % d i s p ( [ ' G e n e r a t i o n ' , num2s t r ( k ) ] )

165 f i t n e s s 2 = f i t n e s s ;

166 f o r i =1 : f . p o p s i z e

167 [¬ ,¬ ,PPOUT]= p r o j p u r s u i t (X ( : , pop ( i , : ) ) , p u r s u i t d i m , 1 , f . m e t h , f . o p t ) ;

168 f i t n e s s ( i , k ) =PPOUT.K ;

169 %% Check f o r b e t t e r f i t n e s s p r e v i o u s l y

170 r =1;

171 whi le r<51 && r<k %Check l a s t 50 g e n e r a t i o n s i n s e q u e n c e

172 l o c t f = ismember ( p o p u l a t i o n s ( : , : , k - r ) , pop ( i , : ) , ' rows ' ) ; %Find matches

173 i f sum ( l o c t f )>0

174 l o c = f i n d ( ( l o c t f == t r u e ) , 1 ) ;

175 f i t n e s s ( i , k ) =min ( f i t n e s s ( i , k ) , f i t n e s s 2 ( loc , k - r ) ) ;%Replace
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176 break
177 end
178 r = r +1;

179 end
180 end
181 [ f i t n e s s ( : , k ) , i s o r t ]= s o r t ( f i t n e s s ( : , k ) ) ; %s o r t i n d i v i d u a l s by f i t n e s s

182 %% I n t e r m e d i a t e p l o t t i n g o f f i t n e s s

183 i f k==2

184 f i g u r e ( 5 0 )

185 c l f

186 drawnow

187 end
188 % p l o t ( median ( f i t n e s s ( : , 1 : k ) ) , ' r ' , ' L ineWidth ' , 2 . 5 )

189 % hold on

190 % p l o t ( min ( f i t n e s s ( : , 1 : k ) ) , ' b ' , ' L ineWidth ' , 2 . 5 )

191 % l e g e n d ( ' Median k u r t o s i s ' , ' Minimum k u r t o s i s ' )

192 % x l a b e l ( ' G e n e r a t i o n number ' )

193 % y l a b e l ( ' F i t n e s s ' )

194 % s e t ( gca , ' L ineWidth ' , 2 , ' F o n t S i z e ' , 9 , ' FontWeight ' , ' bold ' )

195 % drawnow

196 %

197 i f k>2

198 d e l e t e ( h1 ) ;

199 d e l e t e ( h2 ) ;

200 end
201 p l o t ( median ( f i t n e s s ( : , 1 : k ) ) , ' r ' , ' L ineWidth ' ,2 . 5 )

202 ho ld on

203 p l o t ( min ( f i t n e s s ( : , 1 : k ) ) , ' b ' , ' L ineWidth ' ,2 . 5 )

204 g r i d on

205 a x i s t i g h t

206 x l a b e l ( ' G e n e r a t i o n number ' )

207 y l a b e l ( ' K u r t o s i s ' )

208 h1= a n n o t a t i o n ( ' t e x t b o x ' , [ . 6 0 . 7 . 3 . 2 ] , ' S t r i n g ' , s t r c a t ( ' Median K u r t o s i s : ...
' , num2s t r ( median ( f i t n e s s ( : , k ) ) ) ) , ' EdgeColor ' , ' none ' , ' Co lo r ' , ' r e d ' ) ;

209 h2= a n n o t a t i o n ( ' t e x t b o x ' , [ . 6 0 . 6 5 . 3 . 2 ] , ' S t r i n g ' , s t r c a t ( ' Minimum K u r t o s i s : ...
' , num2s t r ( min ( f i t n e s s ( : , k ) ) ) ) , ' EdgeColor ' , ' none ' , ' Co lo r ' , ' b l u e ' ) ;

210 drawnow

211 o ldpop =pop ;

212 f o r i =1 : f . p o p s i z e

213 pop ( i , : ) = o ldpop ( i s o r t ( i ) , : ) ;

214 end
215

216 %% S t o r e p o p u l a t i o n

217 p o p u l a t i o n s ( : , : , k ) =pop ;

218 %% T e s t c o n v e r g e n c e

219 i f k== f .maxgen

220 d i s p ( [ ' F a i l e d t o c o n v e r g e a f t e r ' num2s t r ( k ) ' g e n e r a t i o n s ' ] )

221 break
222 end
223 i f k>f . s t a t && i s e q u a l ( ( p o p u l a t i o n s ( 1 , : , k ) ) , ( p o p u l a t i o n s ( 1 , : , k - f . s t a t ) ) )

224 d i s p ( [ ' S t o p p i n g due t o s t a t i c p o p u l a t i o n ( ' num2s t r ( k ) ' g e n e r a t i o n s ) ' ] )

225 break
226 end
227 i f toc>f . m a x t i m e *d

228 d i s p ( [ ' Maximum t ime r e a c h e d ( ' num2s t r ( f . m a x t i m e ) ' s e c o n d s ) ' ] )

229 break
230 end
231 end
232

233 %% E v a l u a t e c l a s s s e p a r a t i o n

234 f i g u r e ( 5 0 )

235 ho ld o f f

236 v a r i a b l e s ( d , : ) = s o r t ( pop ( 1 , : ) ) ;

237 i f s t r c mp ( ' mul ' , f . m e t h ) == t r u e

238 [ s c o r e s , v e c t o r s , PPOUT]= p r o j p u r s u i t (X ( : , v a r i a b l e s ( d , : ) ) , p u r s u i t d i m , ' mul ' ) ;

239 k u r t =PPOUT.K ;

240 pops=pop ;
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241 break
242 end
243 [ T 1 , V 1 , PPOUT]= p r o j p u r s u i t (X ( : , v a r i a b l e s ( d , : ) ) , 1 , f . o p t ) ;%Re - run w i t h 100 g u e s s e s

244 k u r t ( d ) =PPOUT.K ; %S t o r e k u r t o s i s

245 V2= z e r o s ( t o t v a r s , 1 ) ;

246 V2 ( v a r i a b l e s ( d , : ) ) =V 1 ;

247 s c o r e s ( : , d ) =T 1 + ( ones ( nsamp , 1 ) *mean (X) *V2 ) - ( ones ( nsamp , 1 ) *mean ( X0 ) *V2 ) ;

248 v e c t o r s ( : , d ) =V2 ' ; %Prepare v e c t o r s f o r o u t p u t

249 pops ( : , : , d ) =pop ;

250 i f d<f . d i m %D e f l a t i o n

251 t =X*V2 ;

252 T1 ( : , d ) = t ;

253 P ( : , d ) =X' * t / ( t ' * t ) ;

254 X=X0 - ( T1*P ' ) ;

255 i f d==2

256 t =( s c o r e s ( : , 1 ) ) . * ( s c o r e s ( : , 2 ) ) ;

257 T1 ( : , 3 ) = t ;

258 P ( : , 3 ) =X' * t / ( t ' * t ) ;

259 X=X0 - ( T1*P ' ) ;

260 end
261 end
262 end
263

264 V= v e c t o r s * i n v ( P ' * v e c t o r s ) ;

265 v e c t o r s =V;

266 s c o r e s =X0*V;

267

268 %% P l o t t i n g

269 % f i g u r e

270 % i f i s c e l l ( f . o b j c l a s s ) %Conver t c e l l a r r a y t o m a t r i x i f n e c e s s a r y

271 % f . o b j c l a s s =c e l l 2 m a t ( f . o b j c l a s s ) ;

272 % end

273 % i f s i z e ( f . c l a s s l i s t )>1 %Reduce o b j c l a s s c e l l a r r a y t o one d i m e n s i o n i f n e c e s s a r y

274 % f . c l a s s l i s t = f . c l a s s l i s t ( : , 1 ) ;

275 % end

276 % i f i s e m p t y ( f . o b j c l a s s )== f a l s e

277 % i f i s e m p t y ( f . c l a s s l i s t )

278 % f o r i =1:max ( f . o b j c l a s s ) %Make g e n e r i c group names i f no c l a s s s names

279 % f . c l a s s l i s t { i }=[ ' Group ' num2s t r ( i ) ] ;

280 % end

281 % end

282 % Color =[255 57 33;215 25 232;53 33 255;29 156 207; . . .

283 % 12 178 85;122 43 12;0 0 0;29 84 74] . / 2 5 5 ;

284 % i f f . d i m ==1

285 % f o r i =1:max ( f . o b j c l a s s ) %P l o t i n 2d w i t h c o l o u r

286 % p l o t ( s c o r e s ( f . o b j c l a s s ==i , 1 ) , rand ( sum ( f . o b j c l a s s ==i ) , 1 ) , ' . ' , ' Color ' , Color ( i , : ) , ' MarkerS i ze ' , 5 )

287 % hold on

288 % end

289 % l e g e n d ( f . c l a s s l i s t , ' Loca t ion ' , ' B e s t O u t s i d e ' )

290 % end

291 % i f f . d i m ==2

292 % f o r i =1:max ( f . o b j c l a s s ) %P l o t i n 2d w i t h c o l o u r

293 % p l o t ( s c o r e s ( f . o b j c l a s s ==i , 1 ) , s c o r e s ( f . o b j c l a s s ==i , 2 ) , ' o ' , ' Color ' , Color ( i , : ) , ' MarkerS i ze ' , 5 )

294 % hold on

295 % end

296 % l e g e n d ( f . c l a s s l i s t , ' Loca t ion ' , ' B e s t O u t s i d e ' )

297 % e l s e i f f . d i m ==3

298 % f o r i =1:max ( f . o b j c l a s s ) %P l o t i n 3d w i t h c o l o u r

299 % hold on

300 % p l o t 3 ( s c o r e s ( f . o b j c l a s s ==i , 1 ) , s c o r e s ( f . o b j c l a s s ==i , 2 ) , . . .

301 % s c o r e s ( f . o b j c l a s s ==i , 3 ) , ' . ' , ' Color ' , Color ( i , : ) , ' MarkerS i ze ' , 1 0 )

302 % end

303 % l e g e n d ( f . c l a s s l i s t , ' Loca t ion ' , ' B e s t O u t s i d e ' )

304 % end

305 % hold o f f

306 % e l s e

307 % i f f . d i m ==2 %P l o t a l l i n b l a c k i f no c l a s s e s are g i v e n
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308 % p l o t ( s c o r e s ( : , 1 ) , s c o r e s ( : , 2 ) , ' . k ' , ' MarkerS i ze ' , 5 )

309 % e l s e i f f . d i m ==3

310 % p l o t 3 ( s c o r e s ( : , 1 ) , s c o r e s ( : , 2 ) , . . .

311 % s c o r e s ( : , 3 ) , ' . k ' , ' MarkerS i ze ' , 5 )

312 % end

313 % end

314 t o c

315 end
316

317 %% - - - - - - - - - - - - - - - - - - - M u t a t i o n f u n c t i o n - - - - - - - - - - - - - - - - - - - - - - - - - -%%

318 f u n c t i o n [ pop ]= m u t a t i o n ( n c h i l d , m u t r a t e , nva r s , t o t v a r s , p o p e l i t e , p o p c h i l d )

319 f o r i =1 : n c h i l d

320 whi le sum ( ismember ( s o r t ( [ p o p e l i t e ; p o p c h i l d ] , 2 ) , s o r t ( p o p c h i l d ( i , : ) , 2 ) , ' rows ' ) )>1 %No d u p l i c a t e i n d i v i d u a l s

321 mut loc = rand ( 1 , n v a r s ) / m u t r a t e ; %g e n e r a t e a m a t r i x s a y i n g where t o mutate , f o r each c h i l d

322 l o c = f i n d ( mutloc <1) ;

323 f o r j =1 : l e n g t h ( l o c )

324 p o p c h i l d ( i , l o c ( j ) ) = r a n d i ( t o t v a r s , 1 ) ; %Replace w i t h a random v a r i a b l e

325 whi le sum ( p o p c h i l d ( i , l o c ( j ) ) == p o p c h i l d ( i , : ) )>1 %No d u p l i c a t e v a r i a b l e s

326 p o p c h i l d ( i , l o c ( j ) ) = r a n d i ( t o t v a r s , 1 ) ;

327 end
328 end
329 end
330 end
331 pop =[ p o p e l i t e ; p o p c h i l d ] ; %C o n c a t e n a t e e l i t e and c h i l d r e n

332 end
333

334 %% - - - - - - - - - - - - F i t n e s s based mat ing f o r dim by dim - - - - - - - - - - - - - - - - - - - - - - - - - -%%

335 f u n c t i o n [ p o p c h i l d ]= mat ing7 ( nvar s , pop , n c h i l d , f i t n e s s , newpop , t o t v a r s , pc t recomb , c t o f f , e x p o n e n t )

336 p o p c h i l d = z e r o s ( n c h i l d , n v a r s ) ;

337 f i t n e s s ( f i t n e s s<c t o f f ) = c t o f f ;

338 y=1 . / f i t n e s s . ̂ e x p o n e n t ;

339 r a n k s =cumsum ( y ) / sum ( y ) ; %Genera te cummula t i ve d i s t r i b u t i o n f u n c t i o n

340 f o r i = 1 : 2 : n c h i l d -1 %Go 2 c h i l d r e n a t a t i m e

341 i t =0 ;

342 p a r e n t s = z e r o s ( 2 , n v a r s ) ;

343 whi le ( any ( d i f f ( s o r t ( p o p c h i l d ( i , : ) ) ) ==0) | | any ( d i f f ( s o r t ( p o p c h i l d ( i + 1 , : ) ) ) ==0) ) . . . % No d u p l i c a t e v a r i a b l e s

344 | | sum ( ismember ( s o r t ( [ newpop ; p o p c h i l d ] , 2 ) , s o r t ( p o p c h i l d ( i , : ) , 2 ) , ' rows ' ) )>1 . . . % No ...
d u p l i c a t e i n d i v i d u a l s

345 | | sum ( ismember ( s o r t ( [ newpop ; p o p c h i l d ] , 2 ) , s o r t ( p o p c h i l d ( i + 1 , : ) , 2 ) , ' rows ' ) )>1

346 whi le p a r e n t s ( 1 , : ) == p a r e n t s ( 2 , : ) %Ensure no d u p l i c a t e p a r e n t s

347 p a r e n t s ( 1 , : ) =pop ( f i n d ( r a n k s≥r and ( 1 ) , 1 ) , : ) ; %Choose p a r e n t s

348 p a r e n t s ( 2 , : ) =pop ( f i n d ( r a n k s≥r and ( 1 ) , 1 ) , : ) ;

349 end
350 c r o s s o v e r = rand ( 1 , n v a r s ) / pc t recomb ;

351 l o c 1 = c r o s s o v e r <1;

352 l o c 2 =randperm ( nvar s , sum ( l o c 1 ) ) ;

353 p o p c h i l d ( [ i , i + 1 ] , : ) = p a r e n t s ;

354 p o p c h i l d ( i , l o c 1 ) = p a r e n t s ( 2 , l o c 2 ) ;

355 p o p c h i l d ( i +1 , l o c 2 ) = p a r e n t s ( 1 , l o c 1 ) ;

356 i t = i t +1 ;

357 i f i t >30 %Give up and make random i n d i v i d u a l s

358 p o p c h i l d ( i , : ) = randperm ( t o t v a r s , n v a r s ) ;

359 p o p c h i l d ( i + 1 , : ) = randperm ( t o t v a r s , n v a r s ) ;

360 end
361 end
362 end
363 end
364

365 %% - - - - - - - - - - - - - Sum / p r o d u c t s e p a r a t i o n a l g o r i t h m - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%%

366 f u n c t i o n [ s c o r e s , v e c t o r s , v a r i a b l e s , k u r t ]= ppga6 (X, v a r a r g i n )

367 %PPGA6 V a r i a b l e s e l e c t i o n f o r p r o j e c t i o n p u r s u i t a n a l y s i s , w i t h a g e n e t i c

368 % a l g o r i t h m ( v e r s i o n 6 . 0 ) , s i m u l t a n e o u s o p t i m i z a t i o n

369

370 p= i n p u t P a r s e r ;

371 a d d O p t i o n a l ( p , ' o b j c l a s s ' , [ ] )

372 a d d O p t i o n a l ( p , ' c l a s s l i s t ' ,{} , @ i s c e l l )

373 a d d P a r a m e t e r ( p , ' dim ' , 2 ,@( x ) a s s e r t ( x>0 && x<4) )
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374 a d d P a r a m e t e r ( p , ' n v a r s ' , 5 ) ;

375 a d d P a r a m e t e r ( p , ' maxgen ' , 1000 ,@( x ) a s s e r t ( x>0) ) ;

376 a d d P a r a m e t e r ( p , ' maxtime ' , 300 ,@( x ) a s s e r t ( x>0) ) ;

377 a d d P a r a m e t e r ( p , ' o p t ' , ' o rd ' ,@( x ) a s s e r t ( i s s c a l a r ( s t r f i n d ( ' o r d r e c ' , x ) ) ) ) ; %Ordinary vs r e c e n t e r e d k u r t o s i s

378 a d d P a r a m e t e r ( p , ' m u t r a t e ' ,0 .1 ,@( x ) a s s e r t (0≤x && x<1) ) ;

379 a d d P a r a m e t e r ( p , ' p o p s i z e ' , 100 ,@( x ) a s s e r t ( x>0) ) ;

380 a d d P a r a m e t e r ( p , ' sumprod ' , ' p rod ' ,@( x ) a s s e r t ( i s s c a l a r ( s t r f i n d ( ' sumprod ' , x ) ) ) ) ;

381 a d d P a r a m e t e r ( p , ' s t a t ' , 5 0 ,@( x ) a s s e r t ( x>0) ) ; %D e f i n i t i o n o f a s t a t i c p o p u l a t i o n

382 a d d P a r a m e t e r ( p , ' e x p o n e n t ' , 4 ,@( x ) a s s e r t ( x>0) ) ;

383 a d d P a r a m e t e r ( p , ' c t o f f ' ,2 .25 ,@( x ) a s s e r t ( x>0) ) ;

384 p a r s e ( p , v a r a r g i n { :} )

385 f = p . R e s u l t s ;

386 f . s u m p r o d = s t r 2 f u n c ( f . s u m p r o d ) ;

387 %Determine how many s e t s o f v a r i a b l e s i t w i l l o u t p u t ( d imvar )

388 s c o r e s = z e r o s ( s i z e (X, 1 ) , f . d i m ) ; %W i l l ho ld pp s c o r e s

389 v a r i a b l e s = c e l l ( 1 , f . d i m ) ; %W i l l ho ld chosen v a r i a b l e s

390 [ nsamp , t o t v a r s ]= s i z e (X) ; %t o t a l number o f v a r i a b l e s

391 v e c t o r s = z e r o s ( t o t v a r s , f . d i m ) ;

392 k u r t = z e r o s ( f . d im , 1 ) ;

393 i f rem ( f . p o p s i z e , 2 ) %S e t number o f e l i t e i n d i v i d u a l s

394 numret =1;

395 e l s e numret =2 ;

396 end
397 i f s t r c mp ( ' sum ' , f . s u m p r o d )

398 f . c t o f f =3 ;

399 e l s e f . c t o f f =2 . 2 5 ;

400 end
401 n c h i l d = f . p o p s i z e - numret ; %t h e r e m a i n i n g p o p u l a t i o n i s made o f r e t a i n e d i n d i v i d u a l s

402 %Mean c e n t e r t h e da ta :

403 X=X- ones ( nsamp , 1 ) *mean (X) ;

404 X0=X; %S t o r e i n i t i a l X ( because X i s m o d i f i e d w i t h d e f l a t i o n f o r each i n d i v i d u a l )

405 t i c

406

407 %% D e f i n e d e f a u l t v a r i a b l e s

408 pop= z e r o s ( f . p o p s i z e , f . n v a r s * f . d i m ) ;

409 p o p u l a t i o n s = z e r o s ( f . p o p s i z e , f . n v a r s * f . d im , f .maxgen ) ; %3d m a t r i x t o s t o r e a l l o f t h e h i s t o r i c a l p o p u l a t i o n s

410 f i t n e s s = z e r o s ( f . p o p s i z e , f .maxgen ) ; %Ma tr i x s t o r i n g f i t n e s s o f a l l p r e v i o u s i n d i v i d u a l s

411

412 %% C o n s t r u c t i n i t i a l p o p u l a t i o n

413 % d i s p ( ' G e n e r a t i o n 1 ' )

414 f o r i =1 : f . p o p s i z e

415 T= z e r o s ( nsamp , f . d i m ) ; %I n i t i a l i z e

416 T1= z e r o s ( nsamp , 1 ) ;

417 P= z e r o s ( t o t v a r s , 1 ) ;

418 t e m p k u r t 1 = z e r o s ( f . d im , 1 ) ;

419 X=X0 ;

420 f o r d =1: f . d i m

421 pop ( i , ( ( 1 + f . n v a r s * ( d - 1 ) ) : f . n v a r s *d ) ) = randperm ( t o t v a r s , f . n v a r s ) ; %Cr ea te random pop

422 [ T ( : , d ) ,V, PPOUT]= p r o j p u r s u i t (X ( : , pop ( i , ( ( 1 + f . n v a r s * ( d - 1 ) ) : f . n v a r s *d ) ) ) , 1 , 1 , f . o p t ) ;

423 t e m p k u r t 1 ( d ) =PPOUT.K ;

424 V2= z e r o s ( t o t v a r s , 1 ) ;

425 V2 ( pop ( i , ( ( 1 + f . n v a r s * ( d - 1 ) ) : f . n v a r s *d ) ) ) =V;

426 i f d<f . d i m %D e f l a t i o n

427 t =X*V2 ;

428 T1 ( : , d ) = t ;

429 P ( : , d ) =X' * t / ( t ' * t ) ;

430 X=X0 - ( T1*P ' ) ;

431 i f d==2 %S p e c i a l d e f l a t i o n s t e p t o push f o r 8 groups i n 3 rd dim

432 t =(T ( : , 1 ) ) . * (T ( : , 2 ) ) ;

433 T1 ( : , 3 ) = t ;

434 P ( : , 3 ) =X' * t / ( t ' * t ) ;

435 X=X0 - ( T1*P ' ) ;

436 end
437 end
438 end
439 f i t n e s s ( i , 1 ) = f . s u m p r o d ( t e m p k u r t 1 ) ; %C a l c u l a t e f i t n e s s based on sum or prod , as chosen

440 end
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441 [ f i t n e s s ( : , 1 ) , i s o r t ]= s o r t ( f i t n e s s ( : , 1 ) ) ; %s o r t i n d i v i d u a l s by f i t n e s s

442 f o r i =1 : f . p o p s i z e

443 pop ( i , : ) =pop ( i s o r t ( i ) , : ) ;

444 end
445

446 %%

447 p o p u l a t i o n s ( : , : , 1 ) =pop ; %S t o r e f i r s t g e n e r a t i o n

448 f o r k =2: f .maxgen

449 %% S e l e c t i o n o f e l i t e s

450 p o p e l i t e =pop ( 1 : numret , : ) ;

451 %% Mating

452 p o p c h i l d = mat ing6 ( f . n v a r s , pop , n c h i l d , f i t n e s s ( : , k - 1 ) , p o p e l i t e , t o t v a r s , f . d im , f . c t o f f , f . e x p o n e n t ) ;

453 %% Random m u t a t i o n

454 pop= m u t a t i o n ( n c h i l d , f . m u t r a t e , f . n v a r s * f . d im , t o t v a r s , p o p e l i t e , p o p c h i l d ) ;

455 %% E v a l u a t e f i t n e s s o f each member

456 % d i s p ( [ ' G e n e r a t i o n ' , num2s t r ( k ) ] )

457 f i t n e s s 2 = f i t n e s s ; %N e c e s s a r y i f f i t n e s s i s e v a l u a t e d i n p a r a l l e l

458 f o r i =1 : f . p o p s i z e

459 X=X0 ; %R e s e t X f o r e v e r y i n d i v i d u a l

460 t e m p k u r t = z e r o s ( f . d im , 1 ) ;

461 T= z e r o s ( nsamp , f . d i m ) ;

462 T1= z e r o s ( nsamp , 1 ) ;

463 P= z e r o s ( t o t v a r s , 1 ) ;

464 f o r d =1: f . d i m

465 [ T ( : , d ) ,V, PPOUT]= p r o j p u r s u i t (X ( : , pop ( i , ( 1 + f . n v a r s * ( d - 1 ) ) : f . n v a r s *d ) ) , 1 , 1 , f . o p t ) ;

466 t e m p k u r t ( d ) =PPOUT.K ;

467 V2= z e r o s ( t o t v a r s , 1 ) ;

468 V2 ( pop ( i , ( ( 1 + f . n v a r s * ( d - 1 ) ) : f . n v a r s *d ) ) ) =V;

469 i f d<f . d i m %D e f l a t i o n

470 t =X*V2 ;

471 T1 ( : , d ) = t ;

472 P ( : , d ) =X' * t / ( t ' * t ) ;

473 X=X0 - ( T1*P ' ) ;

474 i f d==2

475 t =(T ( : , 1 ) ) . * (T ( : , 2 ) ) ;

476 T1 ( : , 3 ) = t ;

477 P ( : , 3 ) =X' * t / ( t ' * t ) ;

478 X=X0 - ( T1*P ' ) ;

479 end
480 end
481 end
482 f i t n e s s ( i , k ) = f . s u m p r o d ( t e m p k u r t ) ; %C a l c u l a t e f i t n e s s based on sum / prod

483 %% Check f o r b e t t e r f i t n e s s p r e v i o u s l y

484 r =1;

485 whi le r<51 && r<k %Check l a s t 50 g e n e r a t i o n s i n s e q u e n c e

486 l o c t f = ismember ( p o p u l a t i o n s ( : , : , k - r ) , pop ( i , : ) , ' rows ' ) ; %Find matches

487 i f sum ( l o c t f )>0 %I f found

488 l o c = f i n d ( ( l o c t f == t r u e ) , 1 ) ; %Where are t h e y

489 f i t n e s s ( i , k ) =min ( f i t n e s s ( i , k ) , f i t n e s s 2 ( loc , k - r ) ) ;%Replace

490 break
491 end
492 r = r +1;

493 end
494 end
495 [ f i t n e s s ( : , k ) , i s o r t ]= s o r t ( f i t n e s s ( : , k ) ) ; %s o r t i n d i v i d u a l s by f i t n e s s

496 %% I n t e r m e d i a t e p l o t t i n g o f f i t n e s s

497 i f k==2

498 f i g u r e ( 5 0 )

499 c l f

500 drawnow

501 end
502 p l o t ( median ( f i t n e s s ( : , 1 : k ) ) , ' r ' )

503 ho ld on

504 p l o t ( min ( f i t n e s s ( : , 1 : k ) ) , ' b ' )

505 l e g e n d ( ' Median f i t n e s s ' , ' Minimum f i t n e s s ' )

506 x l a b e l ( ' G e n e r a t i o n number ' )

507 y l a b e l ( ' F i t n e s s ' )
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508 drawnow

509 o ldpop =pop ;

510 f o r i =1 : f . p o p s i z e

511 pop ( i , : ) = o ldpop ( i s o r t ( i ) , : ) ;

512 end
513

514 %% S t o r e p o p u l a t i o n

515 p o p u l a t i o n s ( : , : , k ) =pop ;

516 %% T e s t c o n v e r g e n c e

517 i f k== f .maxgen

518 d i s p ( [ ' F a i l e d t o c o n v e r g e a f t e r ' num2s t r ( k ) ' g e n e r a t i o n s ' ] )

519 break
520 end
521 i f k>f . s t a t && i s e q u a l ( ( p o p u l a t i o n s ( 1 , : , k ) ) , ( p o p u l a t i o n s ( 1 , : , k - f . s t a t ) ) )

522 d i s p ( [ ' S t o p p i n g due t o s t a t i c p o p u l a t i o n ( ' num2s t r ( k ) ' g e n e r a t i o n s ) ' ] )

523 break
524 end
525 i f toc>f . m a x t i m e

526 d i s p ( [ ' Maximum t ime r e a c h e d ( ' num2s t r ( f . m a x t i m e ) ' s e c o n d s ) ' ] )

527 break
528 end
529 end
530 %% E v a l u a t e c l a s s s e p a r a t i o n

531 X=X0 ;

532 T1= z e r o s ( nsamp , 1 ) ;

533 P= z e r o s ( t o t v a r s , 1 ) ;

534 f o r d =1: f . d i m

535 v a r i a b l e s{d}= s o r t ( pop ( 1 , ( 1 + f . n v a r s * ( d - 1 ) ) : f . n v a r s *d ) ) ;

536 [ T 1 , V 1 , PPOUT]= p r o j p u r s u i t (X ( : , v a r i a b l e s{d}) , 1 , f . o p t ) ; %F u l l PP w i t h 100 g u e s s e s

537 k u r t ( d ) =PPOUT.K ; %S t o r e k u r t o s i s

538 s c o r e s ( : , d ) =T 1 ; %S t o r e s c o r e s

539 V2= z e r o s ( t o t v a r s , 1 ) ;

540 V2 ( v a r i a b l e s{d})=V 1 ; %C o n s t r u c t v e c t o r s

541 v e c t o r s ( : , d ) =V2 ' ;

542 i f d<f . d i m %D e f l a t i o n

543 t =X*V2 ;

544 T1 ( : , d ) = t ;

545 P ( : , d ) =X' * t / ( t ' * t ) ;

546 X=X0 - ( T1*P ' ) ;

547 i f d==2 %S p e c i a l d e f l a t i o n s t e p t o push i n t o 8 q u a d r a n t s

548 t =( s c o r e s ( : , 1 ) ) . * ( s c o r e s ( : , 2 ) ) ;

549 T1 ( : , 3 ) = t ;

550 P ( : , 3 ) =X' * t / ( t ' * t ) ;

551 X=X0 - ( T1*P ' ) ;

552 end
553 end
554 end
555 %% P l o t t i n g

556 f i g u r e

557 i f i s c e l l ( f . o b j c l a s s ) %Conver t c e l l a r r a y t o m a t r i x i f n e c e s s a r y

558 f . o b j c l a s s = c e l l 2 m a t ( f . o b j c l a s s ) ;

559 end
560 i f s i z e ( f . c l a s s l i s t )>1 %Reduce o b j c l a s s c e l l a r r a y t o one d i m e n s i o n i f n e c e s s a r y

561 f . c l a s s l i s t = f . c l a s s l i s t ( : , 1 ) ;

562 end
563 i f i s e m p t y ( f . o b j c l a s s ) == f a l s e

564 i f i s e m p t y ( f . c l a s s l i s t )

565 f o r i =1 : max ( f . o b j c l a s s ) %Make g e n e r i c group names i f no c l a s s s names

566 f . c l a s s l i s t { i }=[ ' Group ' num2s t r ( i ) ] ;

567 end
568 end
569 Colo r =[255 57 33 ;215 25 232 ;53 33 255 ;29 156 207 ; . . .

570 12 178 85 ;122 43 12 ;0 0 0 ;29 84 74] . / 2 5 5 ;

571 i f f . d i m ==1

572 f o r i =1 : max ( f . o b j c l a s s ) %P l o t i n 2d w i t h c o l o u r

573 p l o t ( s c o r e s ( f . o b j c l a s s == i , 1 ) , s c o r e s ( f . o b j c l a s s == i , 1 ) , ' . ' , ' Co lo r ' , Co lo r ( i , : ) , ' Marke rS ize ' , 5 )

574 ho ld on
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575 end
576 l e g e n d ( f . c l a s s l i s t , ' L o c a t i o n ' , ' B e s t O u t s i d e ' )

577 end
578 i f f . d i m ==2

579 f o r i =1 : max ( f . o b j c l a s s ) %P l o t i n 2d w i t h c o l o u r

580 p l o t ( s c o r e s ( f . o b j c l a s s == i , 1 ) , s c o r e s ( f . o b j c l a s s == i , 2 ) , ' . ' , ' Co lo r ' , Co lo r ( i , : ) , ' Marke rS ize ' , 1 0 )

581 ho ld on

582 end
583 l e g e n d ( f . c l a s s l i s t , ' L o c a t i o n ' , ' B e s t O u t s i d e ' )

584 e l s e i f f . d i m ==3

585 f o r i =1 : max ( f . o b j c l a s s ) %P l o t i n 3d w i t h c o l o u r

586 ho ld on

587 p l o t 3 ( s c o r e s ( f . o b j c l a s s == i , 1 ) , s c o r e s ( f . o b j c l a s s == i , 2 ) , . . .

588 s c o r e s ( f . o b j c l a s s == i , 3 ) , ' . ' , ' Co lo r ' , Co lo r ( i , : ) , ' Marke rS ize ' , 1 0 )

589 end
590 l e g e n d ( f . c l a s s l i s t , ' L o c a t i o n ' , ' B e s t O u t s i d e ' )

591 ho ld o f f

592 end
593 e l s e
594 i f f . d i m ==2 %P l o t a l l i n b l a c k i f no c l a s s e s are g i v e n

595 p l o t ( s c o r e s ( : , 1 ) , s c o r e s ( : , 2 ) , ' . k ' , ' Marke rS ize ' , 5 )

596 e l s e i f f . d i m ==3

597 p l o t 3 ( s c o r e s ( : , 1 ) , s c o r e s ( : , 2 ) , . . .

598 s c o r e s ( : , 3 ) , ' . k ' , ' Marke rS ize ' , 5 )

599 end
600 end
601 t o c

602 end
603 %% - - - - - - - - - - - - F i t n e s s based mat ing f o r sum / prod - - - - - - - - - - - - - - - - - -%%

604 f u n c t i o n [ p o p c h i l d ]= mat ing6 ( nvar s , pop , n c h i l d , f i t n e s s , newpop , t o t v a r s , dim , c t o f f , e x p o n e n t )

605 p o p c h i l d = z e r o s ( n c h i l d , n v a r s ) ;

606 f i t n e s s ( f i t n e s s<c t o f f ) = c t o f f ;

607 y=1 . / f i t n e s s . ̂ e x p o n e n t ;

608 r a n k s =cumsum ( y ) / sum ( y ) ;

609 f o r i = 1 : 2 : n c h i l d -1

610 i t =0 ;

611 p a r e n t s = z e r o s ( 2 , n v a r s *dim ) ;

612 whi le ( any ( d i f f ( s o r t ( p o p c h i l d ( i , : ) ) ) ==0) | | any ( d i f f ( s o r t ( p o p c h i l d ( i + 1 , : ) ) ) ==0) ) . . . %no d u p l i c a t e v a r i a b l e s

613 | | sum ( ismember ( s o r t ( [ newpop ; p o p c h i l d ] , 2 ) , s o r t ( p o p c h i l d ( i , : ) , 2 ) , ' rows ' ) )>1 %no d u p l i c a t e i n d i v i d u a l s

614 whi le p a r e n t s ( 1 , : ) == p a r e n t s ( 2 , : ) %No d u p l i c a t e p a r e n t s

615 p a r e n t s ( 1 , : ) =pop ( f i n d ( r a n k s≥r and ( 1 ) , 1 ) , : ) ; %S e l e c t p a r e n t s based on cum. d i s t . f u n c t i o n ( r a n k s )

616 p a r e n t s ( 2 , : ) =pop ( f i n d ( r a n k s≥r and ( 1 ) , 1 ) , : ) ;

617 end
618 f o r d =1: dim

619 v a r s e l = randperm ( n v a r s *2) ;

620 poo l = p a r e n t s ( : , ( 1 + ( d - 1 ) * ( n v a r s ) ) : d* n v a r s ) ;

621 p o p c h i l d ( i , ( 1 + ( d - 1 ) * ( n v a r s ) ) : d* n v a r s ) = poo l ( v a r s e l ( 1 : n v a r s ) ) ;

622 p o p c h i l d ( i + 1 , ( 1 + ( d - 1 ) * ( n v a r s ) ) : d* n v a r s ) = poo l ( v a r s e l ( ( n v a r s +1) : ( n v a r s *2) ) ) ;

623 end
624 i t = i t +1 ;

625 i f i t >30 %Genera te random i n d i v i d u a l i f i t ca nn o t f i n d a new u n iq ue one a f t e r 30 i t e r s .

626 p o p c h i l d ( i , : ) = randperm ( t o t v a r s , n v a r s *dim ) ;

627 p o p c h i l d ( i + 1 , : ) = randperm ( t o t v a r s , n v a r s *dim ) ;

628 end
629 end
630 end
631 end
632

633 %% - - - - - - - - - - - - - - - - - P r o j e c t i o n p u r s u i t a l g o r i t h m - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%%

634 f u n c t i o n [ T , V, ppou t ]= p r o j p u r s u i t (X, v a r a r g i n )

635 %PROJPURSUIT P r o j e c t i o n P u r s u i t A n a l y s i s

636 % T = PROJPURSUIT ( X ) p e r f o r m s p r o j e c t i o n p u r s u i t a n a l y s i s on t h e

637 % m a t r i x X , u s i n g d e f a u l t a l g o r i t h m i c p a r a m e t e r s ( s e e below ) and

638 % r e t u r n s t h e s c o r e s i n T . The m a t r i x X i s mxn ( o b j e c t s x v a r i a b l e s )

639 % and T i s mxp ( o b j e c t s x s c o r e s ) , where t h e d e f a u l t v a l u e o f p i s 2 .

640 %

641 % P r o j e c t i o n p u s u i t ( PP ) i s an e x p l o r a t o r y da ta a n a l y s i s t e c h n i q u e t h a t

179



642 % s e e k s t o o p t i m i z e a p r o j e c t i o n i n d e x t o f i n d ” i n t e r e s t i n g ” p r o j e c t i o n s

643 % o f o b j e c t s i n a lower d i m e n s i o n a l s p a c e . In t h i s a l g o r i t h m , k u r t o s i s

644 % ( f o u r t h s t a t i s t i c a l moment ) i s used as t h e p r o j e c t i o n i n d e x .

645 %

646 % T = PROJPURSUIT ( X , P ) r e t u r n s t h e f i r s t P p r o j e c t i o n p u r s u i t s c o r e s .

647 % U s u a l l y P i s 2 or 3 f o r da ta v i s u a l i z a t i o n ( d e f a u l t = 2) .

648 %

649 % T= PROJPURSUIT ( X , P , GUESS) u s e s GUESS i n i t i a l random s t a r t i n g p o i n t s f o r

650 % t h e o p t i m i z a t i o n . Larger v a l u e s o f GUESS d e c r e a s e t h e l i k e l i h o o d o f a

651 % l o c a l optimum , b u t i n c r e a s e c o m p u t a t i o n t i m e . The d e f a u l t v a l u e i s

652 % GUESS=100 .

653 %

654 % T = PROJPURSUIT ( X , . . . , S1 , S2 , . . . ) s p e c i f i e s a l g o r i t h m i c v a r i a t i o n o f

655 % t h e PP a n a l y s i s , where S1 , S2 , e t c . are c h a r a c t e r s t r i n g s as s p e c i f i e d

656 % w i t h t h e o p t i o n s b e l o w .

657 %

658 % S t e p w i s e U n v a r i a t e ( ' Uni ' ) or M u l t i v a r i a t e ( ' Mul ' ) K u r t o s i s

659 % Ordinary ( ' Ord ' ) or R e c e n t e r e d ( ' Rec ' ) K u r t o s i s

660 % Orthogona l S c o r e s ( ' SO ' ) or Or thogona l Load ings ( ' VO ' )

661 % M i n i m i z a t i o n ( ' Min ' ) or M a x i m i z a t i o n ( ' Max ' ) o f K u r t o s i s

662 % S h i f t e d ( ' Sh ' ) or S t a n d a r d ( ' S t ' ) O p t i m i z a t i o n Method

663 %

664 % In each case , t h e d e f a u l t o p t i o n i s t h e f i r s t o n e . These v a r i a t i o n s

665 % are d i s c u s s e d i n more d e t a i l below under t h e head ing ' A l g o r i t h m s ' .

666 %

667 % [T , V] = PROJPURSUIT ( . . . ) r e t u r n s t h e P l o a d i n g v e c t o r s i n V ( nxp ) .

668 %

669 % [T , V , PPOUT] = PROJPURSUIT ( . . . ) r e t u r n s a d d i t i o n a l o u t p u t s from t h e PP

670 % a n a l y s i s i n t h e s t r u c t u r e d v a r i a b l e PPOUT. These vary w i t h t h e

671 % a l g o r i t h m s e l e c t e d , as i n d i c a t e d b e l o w .

672 % PPOUT.K : K u r t o s i s v a l u e ( s ) f o r t h e optimum s u b s p a c e . Can

673 % o t h e r w i s e be found by s e a r c h i n g f o r t h e max / min o f

674 % PPOUT.kurtObj . For m u l t i v a r i a t e methods , t h i s i s a

675 % s c a l a r ; f o r u n i v a r i a t e methods , i t i s a 1xP v e c t o r

676 % c o r r e s p o n d i n g t o t h e optimum v a l u e i n each s t e p .

677 % PPOUT.kurtObj : K u r t o s i s v a l u e s f o r d i f f e r e n t i n i t i a l g u e s s e s .

678 % PPOUT.convFlag : Convergence s t a t u s f o r d i f f e r e n t i n i t i a l g u e s s e s .

679 % PPOUT.W: I f t h e s c o r e s are made o r t h o g o n a l f o r u n i v a r i a t e

680 % methods , W and P are i n t e r m e d i a t e m a t r i c e s i n t h e

681 % c a l c u l a t i o n o f d e f l a t e d m a t r i c e s . The l o a d i n g s are n o t

682 % o r t h o g o n a l i n t h i s case and are g i v e n by V=W* i n v ( P ' *W) .

683 % I f t h e p r o j e c t i o n v e c t o r s are s e t t o be o r t h o g o n a l , or

684 % m u l t i v a r i a t e a l g o r i t h m s are used , t h e s e are n o t

685 % c a l c u l a t e d .

686 % PPOUT.P : See PPOUT.W.

687 % PPOUT.Mu : The e s t i m a t e d row v e c t o r s u b t r a c t e d from t h e da ta

688 % s e t , X , f o r re - c e n t e r e d m e t h o d s .

689 %

690 % A l g o r i t h m s :

691 %

692 % U n i v a r i a t e v s . M u l t i v a r i a t e

693 % In t h e s t e p w i s e u n i v a r i a t e PP a l g o r i t h m , u n i v a r i a t e k u r t o s i s i s

694 % o p t i m i z e d as t h e p r o j e c t i o n v e c t o r s are e x t r a c t e d s e q u e n t i a l l y ,

695 % w i t h d e f l a t i o n o f t h e o r i g i n a l m a t r i x a t each s t e p . In t h e

696 % m u l t i v a r i a t e a l g o r i t h m , m u l t i v a r i a t e k u r t o s i s i s o p t i m i z e d as

697 % a l l o f t h e p r o j e c t i o n v e c t o r s are c a l c u l a t e d s i m u l t a n e o u s l y .

698 % U n i v a r i a t e i s b e s t f o r s m a l l numbers o f b a l a n c e d c l u s t e r s t h a t can

699 % be s e p a r a t e d i n a b i n a r y f a s h i o n and runs f a s t e r than t h e

700 % m u l t i v a r i a t e a l g o r i t h m .

701 %

702 % M i n i m i z a t i o n vs M a x i m i z a t i o n

703 % M i n i m i z a t i o n o f k u r t o s i s i s most o f t e n used t o i d e n t i f y c l u s t e r s .

704 % M a x i m i z a t i o n may be u s e f u l i n i d e n t i f y i n g o u t l i e r s . M a x i m i z a t i o n

705 % i s n o t an o p t i o n f o r r e c e n t e r e d a l g o r i t h m s .

706 %

707 % Orthogona l S c o r e s v s . Or thogona l Load ings

708 % T h i s o p t i o n i s o n l y a p p l i c a b l e t o s t e p w i s e u n i v a r i a t e a l g o r i t h m s
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709 % f o r P>1 and r e l a t e s t o t h e d e f l a t i o n o f t h e da ta m a t r i x i n t h e

710 % s t e p w i s e p r o c e d u r e . Or thogona l s c o r e s are g e n e r a l l y p r e f e r r e d ,

711 % s i n c e t h e s e a v o i d c o r r e l a t e d s c o r e s i n m u l t i p l e d i m e n s i o n s .

712 % However , t h e p r o j e c t i o n v e c t o r s ( l o a d i n g s ) w i l l n o t be o r t h o g o n a l

713 % i n t h i s c a s e . For m u l t i v a r i a t e methods , t h e l o a d i n g s are a lways

714 % o r t h o g o n a l .

715 %

716 % Ordinary v s . R e c e n t e r e d A l g o r i t h m s

717 % For da ta s e t s t h a t are unba lanced ( unequa l number o f members i n each

718 % c l a s s , t h e r e c e n t e r e d a l g o r i t h m s may p r o v i d e b e t t e r r e s u l t s t han

719 % o r d i n a r y PP.

720 %

721 % S h i f t e d v s . S t a n d a r d A l g o r i t h m s

722 % T h i s r e f e r s t o t h e m a t h e m a t i c s o f t h e quas i - power me t h od . The

723 % s h i f t e d a l g o r i t h m s h o u l d be more s t a b l e , b u t t h e o p t i o n f o r t h e

724 % s t a n d a r d a l g o r i t h m has been r e t a i n e d . The c h o i c e i s n o t a v a i l a b l e

725 % f o r r e c e n t e r e d a l g o r i t h m s , and t h e s h i f t e d a l g o r i t h m may s t i l l be

726 % implemen ted i f s o l u t i o n s become u n s t a b l e .

727

728 %%

729 % V e r s i o n 1 . 0

730 %

731 % O r i g i n a l a l g o r i t h m s w r i t t e n by S i yu an Hou.

732 % A d d i t i o n a l m o d i f i c a t i o n s made by P e t e r W e n t z e l l and C h e l s i W i c k s .

733 %

734

735 %% S e t D e f a u l t Parame ter s

736 MaxMin= ' Min ' ;

737 StSh= ' Sh ' ;

738 VSorth= 'SO ' ;

739 Meth= ' Uni ' ;

740 CenMeth= ' Ord ' ;

741 p =2;

742 g u e s s =100;

743 ppout.W = [ ] ;

744 p p o u t . P = [ ] ;

745 ppout .Mu = [ ] ;

746

747 %% Check f o r v a l i d i n p u t s and p a r s e as r e q u i r e d

748

749 i f ¬e x i s t ( 'X ' , ' v a r ' )

750 e r r o r ( ' PP : Def ineVar :X ' , ' P r o v i d e d a t a m a t r i x X ' )

751 e l s e i f ¬i s a (X, ' d ou b l e ' )

752 e r r o r ( ' PP : I n v a l V a r :X ' , ' I n v a l i d d a t a m a t r i x X ' )

753 end
754

755 % E x t r a c t numer ic v a r i a b l e s i f p r e s e n t

756 o p t s t a r t =1 ; % Marks b e g i n n i n g o f a l g o r i t h m i c o p t i o n s i n v a r a r g i n

757 i f n a r g i n>1

758 i f i s a ( v a r a r g i n {1} , ' dou b l e ' ) % Second argument i s p?

759 p= round ( v a r a r g i n {1}) ;

760 o p t s t a r t =2 ;

761 i f n a r g i n>2

762 i f i s a ( v a r a r g i n {2} , ' d ou b l e ' ) % No. o f g u e s s e s g i v e n ?

763 g u e s s = round ( v a r a r g i n {2}) ;

764 o p t s t a r t =3 ;

765 end
766 end
767 end
768 end
769

770 % Check numer ic v a r i a b l e s

771 [m, n ]= s i z e (X) ; % Check numer ic v a r i a b l e s

772 i f numel ( p )̸=1 | | p<1 % Check i f p i s v a l i d

773 e r r o r ( ' PP : I n v a l V a r : p ' , ' I n v a l i d v a l u e f o r s u b s p a c e d i m e n s i o n . ' )

774 e l s e i f numel ( g u e s s )̸=1 | | guess<1 % Check n o . o f g u e s s e s

775 e r r o r ( ' PP : I n v a l V a r : g u e s s ' , ' I n v a l i d v a l u e f o r number o f g u e s s e s . ' )
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776 e l s e i f m<(p +1) | | n<(p +1) % Check X

777 e r r o r ( ' PP : I n v a l V a r :X ' , ' I n s u f f i c i e n t s i z e o f d a t a m a t r i x . ' )

778 end
779

780 % E x t r a c t s t r i n g v a r i a b l e s i f p r e s e n t

781 A l l o w d o p t s = ' u n i m u l o r d r e c s o v o m i n m a x s h s t ' ;

782 O p t S t r g = ' ' ; % S t r i n g t o c o n c a t e n a t e a l l o p t i o n s

783 f o r i = o p t s t a r t : s i z e ( v a r a r g i n , 2 )

784 i f i s c h a r ( v a r a r g i n{ i })

785 temp= lower ( v a r a r g i n{ i }) ;

786 i f i s e m p t y ( s t r f i n d ( Al lowd op t s , temp ) )

787 e r r o r ( ' PP : I n v a l V a r : O p t S t r g ' , ' I n v a l i d o p t i o n s y n t a x . ' )

788 end
789 O p t S t r g = s t r c a t ( OptS t rg , temp ) ; %c r e a t e s s t r i n g o f a l l c h a r a c t e r o p t i o n s

790 e l s e
791 e r r o r ( ' PP : I n v a l V a r : O p t S t r g ' , ' I n v a l i d o p t i o n s y n t a x . ' )

792 end
793 end
794

795 % S e t o p t i o n s f o r a l g o r i t h m

796

797 i f s t r f i n d ( OptS t rg , ' max ' )

798 i f s t r f i n d ( OptS t rg , ' min ' )

799 e r r o r ( ' PP : InvMode : MaxMin ' , ' Choose e i t h e r t o min imize o r max imize . ' )

800 e l s e i f s t r f i n d ( OptS t rg , ' r e c ' )

801 e r r o r ( ' PP : InvMode : MaxMin ' , ' Max imiza t ion n o t a v a i l a b l e f o r r e c e n t e r e d PP. ' )

802 e l s e
803 MaxMin= ' Max ' ;

804 end
805 end
806

807 i f s t r f i n d ( OptS t rg , ' s t ' )

808 i f s t r f i n d ( OptS t rg , ' sh ' )

809 e r r o r ( ' PP : InvMode : StSh ' , ' Choose e i t h e r t h e s t a n d a r d o r s h i f t e d method ' )

810 e l s e
811 StSh= ' S t ' ;

812 end
813 end
814

815 i f s t r f i n d ( OptS t rg , ' vo ' )

816 i f s t r f i n d ( OptS t rg , ' so ' )

817 e r r o r ( ' PP : InvMode : VSorth ' , ' Choose f o r e i t h e r t h e s c o r e s o r t h e p r o j e c t i o n v e c t o r s t o be o r t h o g o n a l ' )

818 e l s e
819 VSorth= 'VO ' ;

820 end
821 end
822

823 i f s t r f i n d ( OptS t rg , ' mul ' )

824 i f s t r f i n d ( OptS t rg , ' u n i ' )

825 e r r o r ( ' PP : InvMode : UniMul ' , ' Choose e i t h e r u n i v a r i a t e o r m u l t i v a r i a t e method ' )

826 e l s e
827 Meth= ' Mul ' ;

828 end
829 end
830

831 i f s t r f i n d ( OptS t rg , ' r e c ' )

832 i f s t r f i n d ( OptS t rg , ' o rd ' )

833 e r r o r ( ' PP : InvMode : OrdRec ' , ' Choose e i t h e r t h e o r d i n a r y o r r e c e n t r e d method ' )

834 e l s e
835 CenMeth= ' Rec ' ;

836 end
837 end
838

839 %% Carry o u t PP u s i n g a p p r o p r i a t e a l g o r i t h m

840

841 i f s t r c mp ( Meth , ' Mul ' )

842 i f s t r c mp ( CenMeth , ' Rec ' )
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843 %d i s p ( ' P e r f o r m i n g r e c e n t e r e d m u l t i v a r i a t e PP ' ) % D i a g n o s t i c

844 [ T , V, R , K, Val l , ku r tOb j , convFlag ]= r c m u l k u r t p p (X, p , g u e s s ) ;

845 ppou t .K =K;

846 p p o u t . k u r t O b j = k u r t O b j ;

847 p p o u t . c o n v F l a g = convFlag ;

848 ppout .Mu=R ;

849 e l s e
850 %d i s p ( [ ' P e r f o r m i n g o r d i n a r y m u l t i v a r i a t e PP ( ' S tSh ' ) ' ] ) % D i a g n o s t i c

851 [ T , V, Val l , ku r tOb j , convFlag ]= mulku r tpp (X, p , guess , MaxMin , StSh ) ;

852 ppou t .K =min ( k u r t O b j ) ;

853 p p o u t . k u r t O b j = k u r t O b j ;

854 p p o u t . c o n v F l a g = convFlag ;

855 end
856 e l s e
857 i f s t r c mp ( CenMeth , ' Rec ' )

858 %d i s p ( [ ' P e r f o r m i n g r e c e n t e r e d u n i v a r i a t e PP ( ' VSor th ' ) ' ] ) % D i a g n o s t i c

859 [ T , V, R ,W, P , ku r tOb j , convFlag ]= r c k u r t p p (X, p , guess , VSorth ) ;

860 ppou t .K =min ( k u r t O b j ) ;

861 p p o u t . k u r t O b j = k u r t O b j ;

862 p p o u t . c o n v F l a g = convFlag ;

863 ppout.W=W;

864 p p o u t . P =P ;

865 ppout .Mu=R ;

866 e l s e
867 %d i s p ( [ ' P e r f o r m i n g o r d i n a r y u n i v a r i a t e PP ( ' S tSh ' , ' VSor th ' ) ' ] ) % D i a g n o s t i c

868 [ T , V,W, P , ku r tOb j , convFlag ]= o k u r t p p (X, p , guess , MaxMin , StSh , VSorth ) ;

869 ppou t .K =min ( k u r t O b j ) ;

870 p p o u t . k u r t O b j = k u r t O b j ;

871 p p o u t . c o n v F l a g = convFlag ;

872 ppout.W=W;

873 p p o u t . P =P ;

874 end
875 end
876 end
877

878 %% O r i g i n a l U n i v a r i a t e K u r t o s i s P r o j e c t i o n P u r s u i t A l g o r i t h m

879 f u n c t i o n [ T , V,W, P , ku r tOb j , convFlag ]= o k u r t p p (X, p , guess , MaxMin , StSh , VSorth )

880 %% Quasi - power methods t o o p t i m i z e u n i v a r i a t e k u r t o s i s

881 %

882 %%

883 % I n p u t :

884 % X : The da ta m a t r i x . Rows d e n o t e samples , and columns d e n o t e v a r i a b l e s .

885 % p : The number o f p r o j e c t i o n v e c t o r s t o be e x t r a c t e d .

886 % g u e s s : The number o f i n i t i a l g u e s s e s f o r o p t i m i z a t i o n , e . g . 100 .

887 % The more d imens ions , t h e b e t t e r t o have more i n i t i a l g u e s s e s .

888 % MaxMin : A s t r i n g i n d i c a t i n g t o s e a r c h f o r maxima or minima o f k u r t o s i s .

889 % The a v a i l a b l e c h o i c e s are ”Max” and ”Min” .

890 % ”Max”: To s e a r c h f o r maxima o f k u r t o s i s

891 % ”Min ”: To s e a r c h f o r minima o f k u r t o s i s

892 % P r o j e c t i o n s r e v e a l i n g o u t l i e r s t e n d t o have a maximum

893 % k u r t o s i s , w h i l e p r o j e c t i o n s r e v e a l i n g c l u s t e r s t e n d t o

894 % have a minimum k u r t o s i s . M a x i m i z a t i o n seems more i m p o r t a n t

895 % i n ICA t o l o o k f o r i n d e p e n d e n t s o u r c e s i g n a l s , w h i l e

896 % m i n i m i z a t i o n appears u s e f u l i n PP t o l o o k s f o r c l u s t e r s .

897 % StSh : A s t r i n g i n d i c a t i n g i f t h e s t a n d a r d or t h e s h i f t e d a l g o r i t h m

898 % i s u s e d . The a v a i l a b l e c h o i c e s are ” S t ” and ”Sh” .

899 % ” S t ”: To use t h e s t a n d a r d quas i - power me t h od .

900 % ”Sh ”: To use t h e s h i f t e d quas i - power me t h od .

901 % VSor th : A s t r i n g i n d i c a t i n g whe ther t h e s c o r e s or p r o j e c t i o n

902 % v e c t o r s are o r t h o g o n a l . The a v a i l a b l e c h o i c e s are

903 % ”VO”: The p r o j e c t i o n v e c t o r s are o r t h o g o n a l , b u t

904 % s c o r e s are not , i n g e n e r a l .

905 % ”SO”: The s c o r e s are o r t h o g o n a l , b u t t h e p r o j e c t i o n

906 % v e c t o r s are not , i n g e n e r a l .

907 % I f n o t s p e c i f i e d ( empty ) , t h e s c o r e s are made o r t h o g o n a l .

908 % Outpu t :

909 % T : S c o r e s .
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910 % V : P r o j e c t i o n v e c t o r s .

911 % W & P : I f t h e s c o r e s are made o r t h o g o n a l , t h e y appear i n t h e

912 % d e f l a t i o n s t e p s . They can be used t o c a l c u l a t e t h e f i n a l

913 % p r o j e c t i o n v e c t o r s w i t h r e s p e c t t o t h e o r i g i n a l m a t r i x .

914 % I f t h e p r o j e c t i o n v e c t o r s are s e t t o be o r t h o g o n a l , t h e y

915 % are n o t n e e d e d .

916 % k u r t O b j : K u r t o s i s v a l u e s f o r d i f f e r e n t i n i t i a l g u e s s e s .

917 % convFlag : Convergence s t a t u s f o r d i f f e r e n t i n i t i a l g u e s s e s .

918

919 %% Note :

920 %

921 % The s c o r e s o r t h o g o n a l i t y i s based on mean - c e n t e r e d d a t a . I f t h e da ta

922 % are n o t mean - c e n t e r e d , t h e mean s c o r e s are added t o t h e f i n a l s c o r e s and

923 % t h e r e f o r e t h e f i n a l s c o r e s may n o t be n o t o r t h o g o n a l .

924 %

925 % For m i n i m i z a t i o n o f k u r t o s i s , t h e s t a n d a r d method ( s t ) may n o t be s t a b l e

926 % when t h e number o f samples i s o n l y s l i g h t l y l a r g e r than t h e number o f

927 % v a r i a b l e s . Thus , t h e s h i f t e d method ( sh ) i s recommended.

928

929 % Author :

930 % S . Hou , U n i v e r s i t y o f P r i n c e Edward I s l a n d , C h a r l o t t e t o w n , PEI , Canada , 2012 .

931 %

932 % Vers ion , Nov. 2012 . T h i s i s t h e upda ted v e r s i o n . The o r i g i n a l v e r s i o n was

933 % r e p o r t e d i n t h e l i t e r a t u r e : S . Hou , and P. D. W e n t z e l l , Fas t and S im p le

934 % Methods f o r t h e O p t i m i z a t i o n o f K u r t o s i s Used % as a P r o j e c t i o n P u r s u i t

935 % Index , A n a l y t i c a Chimica Acta , 704 ( 2 0 1 1 ) 1 -15 .

936 %%

937 i f e x i s t ( ' VSorth ' , ' v a r ' )

938 i f ( s t r c m p i ( VSorth , 'VO ' ) | | s t r c m p i ( VSorth , 'SO ' ) )

939 % Pass

940 e l s e
941 e r r o r ( ' P l e a s e c o r r e c t l y choose t h e o r t h o g o n a l i t y o f s c o r e s o r p r o j e c t i o n v e c t o r s . ' )

942 end
943 e l s e
944 VSorth= 'SO ' ;

945 end
946 %

947 i f s t r c m p i ( StSh , ' S t ' ) | | s t r c m p i ( StSh , ' Sh ' )

948 StSh0=StSh ;

949 e l s e
950 e r r o r ( ' P l e a s e c o r r e c t l y choose ” S t ” o r ” Sh ” method . ' )

951 end
952

953 %% Mean c e n t e r t h e da ta and r ed uc e t h e d i m e n s i o n a l i t y o f t h e da ta

954 % i f t h e number o f v a r i a b l e s i s l a r g e r than t h e number o f s a m p l e s .

955 Morig= ones ( s i z e (X, 1 ) , 1 ) *mean (X) ;

956 X=X- Morig ;

957 rk = rank (X) ;

958 i f p>rk

959 p= rk ;

960 d i s p l a y ( ' The component number l a r g e r t h a n t h e d a t a r ank i s i g n o r e d . ' ) ;

961 end
962

963 [ Uorig , Sor ig , Worig ]= svd (X, ' econ ' ) ;

964 X= Uor ig * S o r i g ;

965 X=X ( : , 1 : rk ) ;

966 Worig=Worig ( : , 1 : rk ) ;

967 X0=X;

968 %% I n i t i a l s e t t i n g s

969 [ r , c ]= s i z e (X) ;

970 maxcount =10000;

971 convFlag = c e l l ( guess , p ) ;

972 k u r t O b j = z e r o s ( guess , p ) ;

973 T= z e r o s ( r , p ) ;

974 W= z e r o s ( c , p ) ;

975 P= z e r o s ( c , p ) ;

976 %%
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977 f o r j =1 : p

978 cc=c +1 - j ;

979 c o n v l i m i t =(1 e - 1 0 ) * cc ; % S e t c o n v e r g e n c e l i m i t

980 w a l l = z e r o s ( cc , g u e s s ) ;

981 [U, S , Vj ]= svd (X, ' econ ' ) ;

982 Vj=Vj ( : , 1 : cc ) ; % T h i s r e d u c e s t h e d i m e n s i o n a l i t y o f t h e da ta

983 X=X*Vj ; % when d e f l a t i o n i s p e r f o r m e d .

984 i f s t r c m p i ( MaxMin , ' Max ' ) % Opt ion t o s e a r c h f o r maxima.

985 invMat2 =1 . / d i a g (X' *X) ; % Note X ' * X i s d i a g o n a l due t o SVD p r e v i o u s l y

986 e l s e i f s t r c m p i ( MaxMin , ' Min ' ) % Opt ion t o s e a r c h f o r min ima .

987 Mat2= d i a g (X' *X) ;

988 VM= z e r o s ( cc * cc , r ) ; % T h i s i s used t o c a l c u l a t e ”Mat1a” l a t e r

989 f o r i =1 : r

990 tem=X( i , : ) ' *X( i , : ) ;

991 VM( : , i ) = r e s h a p e ( tem , cc * cc , 1 ) ;

992 end
993 e l s e
994 e r r o r ( ' P l e a s e c o r r e c t l y choose t o maximize o r min imize t h e k u r t o s i s . ' )

995 end
996 %% Loop f o r d i f f e r e n t i n i t i a l g u e s s e s o f w

997 f o r k =1: g u e s s

998 w= randn ( cc , 1 ) ; % Random i n i t i a l g u e s s o f w f o r r e a l numbers

999 w=w/ norm (w) ;

1000 oldw1=w;

1001 oldw2=oldw1 ;

1002 StSh=StSh0 ;

1003 c o u n t =0;

1004 whi le 1

1005 c o u n t = c o u n t +1;

1006 x=X*w;

1007 %% Maximum or minimum s e a r c h

1008 i f s t r c m p i ( MaxMin , ' Max ' ) % Opt ion t o s e a r c h f o r maxima.

1009 w= i n v M a t 2 . * (X ' * ( x . * x . *x ) ) ;

1010 e l s e i f s t r c m p i ( MaxMin , ' Min ' ) % Opt ion t o s e a r c h f o r min ima .

1011 Mat1=sum (VM*( x . *x ) , 2 ) ;

1012 Mat1= r e s h a p e ( Mat1 , cc , cc ) ;

1013 w=Mat1\( Mat2 . *w) ;

1014 end
1015 %% T e s t c o n v e r g e n c e

1016 w=w/ norm (w) ;

1017 L1 =(w' * oldw1 ) ̂2 ;

1018 i f ( 1 - L1 ) < c o n v l i m i t

1019 convFlag ( k , j ) ={ ' Converged ' } ;

1020 break % E x i t t h e ” w h i l e . . . end” loop i f c o n v e r g i n g

1021 e l s e i f count>maxcount

1022 convFlag ( k , j ) ={ ' Not conve rged ' } ;

1023 break % E x i t i f r e a c h i n g t h e maximum i t e r a t i o n number

1024 end
1025 %% C o n t i n u e t h e i n t e r a t i o n i f ” break ” c r i t e r i o n i s n o t reached

1026 i f s t r c m p i ( StSh , ' Sh ' ) % S h i f t e d method

1027 w=w+0 . 5 * oldw1 ;

1028 w=w/ norm (w) ;

1029 e l s e i f s t r c m p i ( MaxMin , ' Min ' ) % ” S t ” method & m i n i m i z a t i o n

1030 L2 =(w' * oldw2 ) ̂2 ; % I f ” S t ” method i s n o t s t a b l e ,

1031 i f L2>L1 && L2>0. 9 9 % change t o s h i f t e d method

1032 StSh= ' Sh ' ;

1033 d i s p l a y ( ' Warning : ” S t ” method i s n o t s t a b l e . Change t o s h i f t e d method . ' ) ;

1034 end
1035 oldw2=oldw1 ;

1036 end % ” S t ” method & m a x i m i z a t i o n : do n o t h i n g

1037 oldw1=w;

1038 end
1039 %% Save t h e p r o j e c t i o n v e c t o r s f o r d i f f e r e n t i n i t i a l g u e s s e s

1040 w a l l ( : , k ) =w;

1041 end
1042 %% Find t h e b e s t s o l u t i o n from d i f f e r e n t i n i t i a l g u e s s e s

1043 k u r t O b j ( : , j ) = k u r t o s i s (X* wal l , 1 , 1 ) ;
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1044 i f s t r c m p i ( MaxMin , ' Max ' ) % Find t h e b e s t p r o j e c t i o n v e c t o r f o r maximum s e a r c h .

1045 [ tem , i n d ]=max ( k u r t O b j ( : , j ) ) ;

1046 e l s e i f s t r c m p i ( MaxMin , ' Min ' ) % Find t h e b e s t p r o j e c t i o n v e c t o r f o r minimum s e a r c h .

1047 [ tem , i n d ]= min ( k u r t O b j ( : , j ) ) ;

1048 end
1049 Wj= w a l l ( : , i n d ) ; % Take t h e b e s t p r o j e c t i o n v e c t o r as t h e s o l u t i o n .

1050

1051 %% D e f l a t i o n o f m a t r i x

1052 i f s t r c m p i ( VSorth , 'VO ' ) % T h i s d e f l a t i o n method makes t h e

1053 t =X*Wj ; % p r o j e c t i o n v e c t o r s o r t h o g o n a l .

1054 T ( : , j ) = t ;

1055 W( : , j ) =Vj*Wj ;

1056 X=X0- X0*W*W' ;

1057 e l s e i f s t r c m p i ( VSorth , 'SO ' ) % T h i s d e f l a t i o n method makes t h e s c o r e s o r t h o g o n a l .

1058 t =X*Wj ; % T h i s f o l l o w s t h e d e f l a t i o n method used i n t h e non - l i n e a r p a r t i a l

1059 T ( : , j ) = t ; % l e a s t s q u a r e s ( NIPALS ) , which i s we l l - known i n c h e m o m e t r i c s .

1060 W( : , j ) =Vj*Wj ;

1061 P j =X' * t / ( t ' * t ) ;

1062 P ( : , j ) =Vj* P j ;

1063 X=X0- T*P ' ; % T h i s u s e s t h e Gram - Schmid t p r o c e s s f o r complex - v a l u e d v e c t o r s

1064 end
1065 end
1066 %% Trans form back i n t o o r i g i n a l space

1067 W=Worig*W; % The p r o j e c t i o n v e c t o r ( s ) are t r a n f o r m e d i n t o o r i g i n a l s p a c e .

1068 i f s t r c m p i ( VSorth , 'VO ' )

1069 V=W;

1070 W= [ ] ;

1071 P = [ ] ;

1072 T=T+Morig *V; % A d j u s t t h e s c o r e s . Mean s c o r e s are a d d e d .

1073 e l s e
1074 P=Worig*P ; % V e c t o r s i n P are t r a n f o r m e d i n t o o r i g i n a l s p a c e .

1075 V=W* i n v ( P ' *W) ; % C a l c u l a t e t h e p r o j e c t i o n v e c t o r s by V=W* i n v ( P ' *W)

1076 T=T+Morig *V; % A d j u s t t h e s c o r e s . Mean s c o r e s are a d d e d .

1077 tem= s q r t ( sum ( abs (V) . ̂2 ) ) ;

1078 V=V. / ( ones ( s i z e (V, 1 ) , 1 ) * tem ) ; % Make t h e p r o j e c t i o n v e c t o r s be u n i t l e n g t h

1079 T= T. / ( ones ( s i z e ( T , 1 ) , 1 ) * tem ) ; % A d j u s t T w i t h r e s p e c t t o V

1080 P= P . * ( ones ( s i z e ( P , 1 ) , 1 ) * tem ) ; % A d j u s t P w i t h r e s p e c t t o V

1081 end
1082 end
1083 %% =================== End o f t h e f u n c t i o n =======================

1084 %%

1085

1086 %% O r i g i n a l M u l t i v a r i a t e K u r t o s i s P r o j e c t i o n P u r s u i t A l g o r i t h m

1087 f u n c t i o n [ T , V, Val l , ku r tOb j , convFlag ]= mulku r tpp (X, p , guess , MaxMin , StSh )

1088 %

1089 % Quasi - power method t o o p t i m i z e m u l t i v a r i a t e k u r t o s i s .

1090 %%

1091 % I n p u t :

1092 % X : The da ta m a t r i x .

1093 % p : The d i m e n s i o n o f t h e p l a n e or h e p e r p l a n e ( Normally , 2 or 3 ) .

1094 % g u e s s : The number o f i n i t i a l g u e s s e s f o r o p t i m i z a t i o n .

1095 % The more d imens ion , t h e b e t t e r t o have more i n i t i a l g u e s s e s .

1096 % MaxMin : A s t r i n g i n d i c a t i n g t o s e a r c h f o r maxima or minima o f k u r t o s i s .

1097 % The a v a i l a b l e c h o i c e s are ”Max” and ”Min” .

1098 % ”Max”: To s e a r c h f o r maxima o f k u r t o s i s

1099 % ”Min ”: To s e a r c h f o r minima o f k u r t o s i s

1100 % P r o j e c t i o n s r e v e a l i n g o u t l i e r s t e n d t o have a maximum

1101 % k u r t o s i s , w h i l e p r o j e c t i o n s r e v e a l i n g c l u s t e r s t e n d t o

1102 % have a minimum k u r t o s i s .

1103 % StSh : A s t r i n g i n d i c a t i n g i f t h e s t a n d a r d or t h e s h i f t e d a l g o r i t h m

1104 % i s u s e d . The a v a i l a b l e c h o i c e s are ” S t ” and ”Sh” .

1105 % ” S t ”: To use t h e s t a n d a r d quas i - power me t h od .

1106 % ”Sh ”: To use t h e s h i f t e d quas i - power me t h od .

1107 % Outpu t :

1108 % T : S c o r e s .

1109 % V : P r o j e c t i o n v e c t o r s .

1110 % V a l l : A l l t h e p r o j e c t i o n v e c t o r s found based on d i f f e r e n t i n i t i a l g u e s s e s . The
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1111 % b e s t p r o j e c t i o n v e c t o r s are chosen as t h e s o l u t i o n s and p u t i n V

1112 % k u r t O b j : K u r t o s i s v a l u e s f o r d i f f e r e n t p r o j e c t i o n v e c t o r s .

1113 % convFlag : Convergence s t a t u s f o r t h e i n i t i a l g u e s s e s . .

1114 %%

1115 % Mean c e n t e r t h e da ta and r ed uc e t h e d i m e n s i o n a l i t y o f t h e da ta i f t h e number

1116 % o f v a r i a b l e s i s l a r g e r than t h e number o f s a m p l e s .

1117 Morig= ones ( s i z e (X, 1 ) , 1 ) *mean (X) ;

1118 X=X- Morig ;

1119 rk = rank (X) ;

1120 [ Uorig , Sor ig , Vor ig ]= svd (X, ' econ ' ) ;

1121 X= Uor ig * S o r i g ;

1122 X=X ( : , 1 : rk ) ;

1123 Vor ig = Vor ig ( : , 1 : rk ) ;

1124 [ r , c ]= s i z e (X) ;

1125 %%

1126 % I n i t i a l s e t t i n g s

1127 maxcount =10000;

1128 c o n v l i m i t =1e - 1 0 ;

1129 V a l l = c e l l ( 1 , g u e s s ) ;

1130 k u r t O b j = z e r o s ( 1 , g u e s s ) ;

1131 convFlag = c e l l ( 1 , g u e s s ) ;

1132 %%

1133 f o r k =1: g u e s s

1134 V= randn ( c , p ) ; % Random i n i t i a l g u e s s o f V

1135 V= o r t h (V) ;

1136 oldV=V;

1137 c o u n t =0;

1138 whi le 1

1139 c o u n t = c o u n t +1;

1140 A=V' * X' *X*V;

1141 Ainv= i n v (A) ;

1142 %%

1143 % k u r t =0;

1144 % Mat=z e r o s ( c , c ) ;

1145 % f o r i =1: r

1146 % s c a l =(X ( i , : ) *V* Ainv *V ' * X ( i , : ) ' ) ;

1147 % k u r t=k u r t+s c a l ̂2 ;

1148 % Mat=Mat+s c a l *X ( i , : ) ' *X ( i , : ) ;

1149 % end

1150 s c a l = sq r tm ( Ainv ) *V' * X ' ;

1151 s c a l = s q r t ( sum ( s c a l . ̂2 , 1 ) ) ;

1152 Mat = ( ( ones ( c , 1 ) * s c a l ) . *X ' ) ;

1153 Mat=Mat*Mat ' ;

1154 % The f o u r l i n e s r e p l a c e t h e above loop t o i n c r e a s e t h e s p e e d .

1155

1156 %%

1157 i f s t r c m p i ( MaxMin , ' Max ' ) % Opt ion t o s e a r c h f o r maxima.

1158 M= i n v (X' *X) *Mat ;

1159 i f s t r c m p i ( StSh , ' S t ' )

1160 V=M*V;

1161 e l s e i f s t r c m p i ( StSh , ' sh ' )

1162 V=(M+eye ( c ) * t r a c e (M) / c ) *V;

1163 e l s e
1164 e r r o r ( ' P l e a s e c o r r e c t l y choose t o s t a n d a r d o r s h i f t e d method . ' )

1165 end
1166 e l s e i f s t r c m p i ( MaxMin , ' Min ' ) % Opt ion t o s e a r c h f o r min ima .

1167 M= i n v ( Mat ) * (X' *X) ;

1168 i f s t r c m p i ( StSh , ' S t ' )

1169 V=M*V;

1170 e l s e i f s t r c m p i ( StSh , ' sh ' )

1171 V=(M+eye ( c ) * t r a c e (M) / c ) *V;

1172 e l s e
1173 e r r o r ( ' P l e a s e c o r r e c t l y choose t o s t a n d a r d o r s h i f t e d method . ' )

1174 end
1175 e l s e
1176 e r r o r ( ' P l e a s e c o r r e c t l y choose t o maximize o r min imize t h e k u r t o s i s . ' )

1177 end
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1178 %%

1179 [V, TemS , TemV]= svd (V, ' econ ' ) ; % Apply SVD t o f i n d an o r t h o n o r m a l b a s i s .

1180 i f sum ( ( oldV -V) . ̂2 ) / ( c *p )<c o n v l i m i t % T e s t c o n v e r g e n c e .

1181 convFlag ( 1 , k ) ={ ' Converged ' } ;

1182 break
1183 e l s e i f count>maxcount

1184 convFlag ( 1 , k ) ={ ' Not conve rged ' } ;

1185 break
1186 end
1187 oldV=V;

1188 end
1189 k u r t O b j ( 1 , k ) = r * sum ( ( sum ( ( sq r tm ( Ainv ) *V' * X ' ) . ̂2 , 1 ) ) . ̂2 ) ; % C a l c u l a t e k u r t o s i s .

1190 %%

1191 [U, S ,V]= svd (X*V*V' , ' econ ' ) ;

1192 V a l l {1 , k}=Vor ig *V ( : , 1 : p ) ;

1193 end
1194 %%

1195 i f s t r c m p i ( MaxMin , ' Max ' ) % Find t h e b e s t p r o j e c t i o n v e c t o r f o r maximum s e a r c h .

1196 [ tem , i n d ]=max ( k u r t O b j ( 1 , : ) ) ;

1197 e l s e i f s t r c m p i ( MaxMin , ' Min ' ) % Find t h e b e s t p r o j e c t i o n v e c t o r f o r minimum s e a r c h .

1198 [ tem , i n d ]= min ( k u r t O b j ( 1 , : ) ) ;

1199 end
1200

1201 V= V a l l {1 , i n d } ; % S t o r e t h e p r o j e c t i o n v e c t o r s

1202 T=X* Vorig ' *V+Morig *V; % C a l c u l a t e t h e s c o r e s .

1203 end
1204 %% =================== End o f t h e f u n c t i o n =======================

1205 %%

1206

1207 %% R e c e n t e r e d U n i v a r i a t e K u r t o s i s P r o j e c t i o n P u r s u i t A l g o r i t h m

1208 f u n c t i o n [ T , V, R ,W, P , ku r tOb j , convFlag ]= r c k u r t p p (X, p , guess , VSorth )

1209 %

1210 % A l g o r i t h m s f o r m i n i m i z a t i o n o f r e c e n t e r e d k u r t o s i s . r e c e n t e r e d k u r t o s i s

1211 % i s proposed as a p r o j e c t i o n p u r s u i t i n d e x i n t h i s work , a iming t o d e a l w i t h

1212 % unba lanced c l u s t e r s .

1213 %

1214 %%

1215 % I n p u t :

1216 % X : The da ta m a t r i x .

1217 % p : The number o f p r o j e c t i o n v e c t o r s t o be e x t r a c t e d .

1218 % g u e s s : The number o f i n i t i a l g u e s s e s f o r o p t i m i z a t i o n .

1219 % The more d imens ions , t h e b e t t e r t o have more i n i t i a l g u e s s e s .

1220 % VSor th : A s t r i n g i n d i c a t i n g whe ther t h e s c o r e s or p r o j e c t i o n

1221 % v e c t o r s are o r t h o g o n a l . The a v a i l a b l e c h o i c e s are

1222 % ”VO”: The p r o j e c t i o n v e c t o r s are o r t h o g o n a l , b u t

1223 % s c o r e s are not , i n g e n e r a l .

1224 % ”SO”: The s c o r e s are o r t h o g o n a l , b u t t h e p r o j e c t i o n

1225 % v e c t o r s are not , i n g e n e r a l .

1226 % I f n o t s p e c i f i e d ( empty ) , t h e s c o r e s are made o r t h o g o n a l .

1227 % Outpu t :

1228 % T : S c o r e s .

1229 % V : P r o j e c t i o n v e c t o r s .

1230 % R : The e s t i m a t e d row v e c t o r s u b t r a c t e d from t h e da ta s e t X .

1231 % W & P : I f u s e r s choose s c o r e s are o r t h o g o n a l , t h e y appear i n t h e

1232 % d e f l a t i o n s t e p s . They can be used t o c a l c u l a t e t h e f i n a l

1233 % p r o j e c t i o n v e c t o r s w i t h r e s p e c t t o t h e o r i g i n a l m a t r i x X .

1234 % I f t h e p r o j e c t i o n v e c t o r s are s e t t o be o r t h o g o n a l , t h e y

1235 % are n o t n e e d e d .

1236 % k u r t O b j : K u r t o s i s v a l u e s f o r d i f f e r e n t i n i t i a l g u e s s e s .

1237 % convFlag : Convergence s t a t u s f o r d i f f e r e n t i n i t i a l g u e s s e s .

1238

1239 %% Note :

1240 % Users have t h e o p t i o n t o make t h e p r o j e c t i o n v e c t o r s or s c o r e s o r t h o g o n a l .

1241 % The s c o r e s o r t h o g o n a l i t y i s based on mean - c e n t e r e d d a t a . I f t h e da ta

1242 % are n o t mean - c e n t e r e d , t h e mean s c o r e s are added t o t h e f i n a l s c o r e s and

1243 % t h e r e f o r e t h e f i n a l s c o r e s may n o t be n o t o r t h o g o n a l .

1244 %% Author :
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1245 % S . Hou , U n i v e r s i t y o f P r i n c e Edward I s l a n d , C h a r l o t t e t o w n , PEI , Canada , 2012 .

1246 %

1247 % T h i s a l g o r i t h m i s based on t h e Quasi - Power m e t h o d s . The Quasi - power

1248 % methods were r e p o r t e d i n t h e l i t e r a t u r e : S . Hou , and P. D. W e n t z e l l ,

1249 % Fas t and S i mp le Methods f o r t h e O p t i m i z a t i o n o f K u r t o s i s Used as a

1250 % P r o j e c t i o n P u r s u i t Index , A n a l y t i c a Chimica Acta , 704 ( 2 0 1 1 ) 1 -15 .

1251 %

1252 %%

1253 i f e x i s t ( ' VSorth ' , ' v a r ' )

1254 i f ( s t r c m p i ( VSorth , 'VO ' ) | | s t r c m p i ( VSorth , 'SO ' ) )

1255 % Pass

1256 e l s e
1257 e r r o r ( ' P l e a s e c o r r e c t l y choose t h e o r t h o g o n a l i t y o f s c o r e s o r p r o j e c t i o n v e c t o r s . ' )

1258 end
1259 e l s e
1260 VSorth= 'SO ' ;

1261 end
1262 %

1263 %% Mean c e n t e r t h e da ta and r ed uc e t h e d i m e n s i o n a l i t y o f t h e da ta

1264 % i f t h e number o f v a r i a b l e s i s l a r g e r than t h e number o f s a m p l e s .

1265 Morig=mean (X) ;

1266 X=X- ones ( s i z e (X, 1 ) , 1 ) * Morig ;

1267 rk = rank (X) ;

1268 i f p>rk

1269 p= rk ;

1270 d i s p l a y ( ' The component number l a r g e r t h a n t h e d a t a r ank i s i g n o r e d . ' ) ;

1271 end
1272 %

1273 [ Uorig , Sor ig , Worig ]= svd (X, ' econ ' ) ;

1274 X= Uor ig * S o r i g ;

1275 X=X ( : , 1 : rk ) ;

1276 Worig=Worig ( : , 1 : rk ) ;

1277 X0=X;

1278 %% I n i t i a l s e t t i n g s

1279 [ r , c ]= s i z e (X) ;

1280 maxcount =10000;

1281 convFlag = c e l l ( guess , p ) ;

1282 k u r t O b j = z e r o s ( guess , p ) ;

1283 T= z e r o s ( r , p ) ;

1284 W= z e r o s ( c , p ) ;

1285 P= z e r o s ( c , p ) ;

1286 ALPH= z e r o s ( 1 , p ) ;

1287 %%

1288 f o r j =1 : p

1289 cc=c +1 - j ;

1290 c o n v l i m i t =(1 e - 1 0 ) * cc ; % S e t c o n v e r g e n c e l i m i t

1291 w a l l = z e r o s ( cc , g u e s s ) ;

1292 a l p h a l l = z e r o s ( 1 , g u e s s ) ;

1293 [U, S , Vj ]= svd (X, ' econ ' ) ;

1294 Vj=Vj ( : , 1 : cc ) ; % T h i s r e d u c e s t h e d i m e n s i o n a l i t y o f t h e da ta

1295 X=X*Vj ; % when d e f l a t i o n i s p e r f o r m e d .

1296 f o r k =1: g u e s s

1297 w= randn ( cc , 1 ) ; % Random i n i t i a l g u e s s o f w f o r r e a l numbers

1298 w=w/ norm (w) ;

1299 a l p h =mean (X*w) ;

1300 oldw1=w;

1301 oldw2=oldw1 ;

1302 c o u n t =0;

1303 whi le 1

1304 c o u n t = c o u n t +1;

1305 x=X*w;

1306 x a l p h =( x - a l p h ) ;

1307 a l p h = a l p h + sum ( x a l p h . ̂3 ) / (3* sum ( x a l p h . ̂2 ) ) ; % Update a lpha ( a lph ) v a l u e

1308 mu= a l p h *w ' ; % Updata mu , g i v e n w and a lpha ( a lph )

1309 tem =( x - a l p h ) . ̂2 ;

1310 d a l p h d v =(X' * tem ) / sum ( tem ) ; % C a l c u l a t e da lpha / dv

1311 tem1=X' - d a l p h d v * ones ( 1 , r ) ;
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1312 tem2=X- ones ( r , 1 ) *mu ;

1313 Mat1 = ( ( ones ( cc , 1 ) * tem ' ) . * ( tem1 ) ) * ( tem2 ) ;

1314 Mat2=tem1 * tem2 ;

1315 w=Mat1\( Mat2*w) ; % updata w

1316 %% T e s t c o n v e r g e n c e

1317 w=w/ norm (w) ;

1318 L1 =(w' * oldw1 ) ̂2 ;

1319 i f ( 1 - L1 ) < c o n v l i m i t

1320 convFlag ( k , j ) ={ ' Converged ' } ;

1321 break % E x i t t h e ” w h i l e . . . end” loop i f c o n v e r g i n g

1322 e l s e i f count>maxcount

1323 convFlag ( k , j ) ={ ' Not conve rged ' } ;

1324 break % E x i t i f r e a c h i n g t h e maximum i t e r a t i o n number

1325 end
1326 %% C o n t i n u e t h e i n t e r a t i o n i f ” break ” c r i t e r i o n i s n o t reached

1327 L2 =(w' * oldw2 ) ̂2 ;

1328 i f L2>L1 && L2>0. 9 5

1329 w=w+( rand /5+0 . 8 ) * oldw1 ;

1330 w=w/ norm (w) ;

1331 end
1332 oldw2=oldw1 ;

1333 oldw1=w;

1334 end
1335 %% Save t h e p r o j e c t i o n v e c t o r s f o r d i f f e r e n t i n i t i a l g u e s s e s

1336 w a l l ( : , k ) =w;

1337 a l p h a l l ( 1 , k ) = a l p h ;

1338 end
1339 %% Take t h e b e s t p r o j e c t i o n v e c t o r as t h e s o l u t i o n

1340 k u r t O b j ( : , j ) =( r *sum ( (X* wal l - ones ( r , 1 ) * a l p h a l l ) . ̂4 ) . / ( ( sum ( (X* wal l - ones ( r , 1 ) * a l p h a l l ) . ̂2 ) ) . ̂2 ) ) ' ;

1341 [ tem , i n d ]= min ( k u r t O b j ( : , j ) ) ;

1342 Wj= w a l l ( : , i n d ) ; % Take t h e b e s t p r o j e c t i o n v e c t o r as t h e s o l u t i o n .

1343 f o r i =1 : cc

1344 i f Wj ( i )̸=0 ;

1345 signum= s i g n ( Wj ( i ) ) ; % Change t h e s i g n o f w t o make i t u n iq ue

1346 break
1347 end
1348 end
1349 Wj=Wj* signum ;

1350 ALPH( 1 , j ) = a l p h a l l ( 1 , i n d ) * signum ;

1351 %% D e f l a t i o n o f m a t r i x

1352 i f s t r c m p i ( VSorth , 'VO ' ) % T h i s d e f l a t i o n method makes t h e

1353 t =X*Wj ; % p r o j e c t i o n v e c t o r s o r t h o g o n a l .

1354 T ( : , j ) = t ;

1355 W( : , j ) =Vj*Wj ;

1356 X=X0- X0*W*W' ;

1357 e l s e i f s t r c m p i ( VSorth , 'SO ' ) % T h i s d e f l a t i o n method makes t h e s c o r e s o r t h o g o n a l .

1358 t =X*Wj ; % T h i s f o l l o w s t h e d e f l a t i o n method used i n t h e non - l i n e a r p a r t i a l

1359 T ( : , j ) = t ; % l e a s t s q u a r e s ( NIPALS ) , which i s we l l - known i n c h e m o m e t r i c s .

1360 W( : , j ) =Vj*Wj ;

1361 P j =X' * t / ( t ' * t ) ;

1362 P ( : , j ) =Vj* P j ;

1363 X=X0- T*P ' ;

1364 end
1365 end
1366 %% Trans form back i n t o o r i g i n a l space

1367 W=Worig*W; % The p r o j e c t i o n v e c t o r ( s ) are t r a n f o r m e d i n t o o r i g i n a l s p a c e .

1368 i f s t r c m p i ( VSorth , 'VO ' )

1369 V=W;

1370 W= [ ] ;

1371 P = [ ] ;

1372 T=T+ ones ( r , 1 ) * Morig *V; % A d j u s t t h e s c o r e s . Mean s c o r e s are a d d e d .

1373 R=ALPH*V' + Morig ;

1374 e l s e
1375 P=Worig*P ; % V e c t o r s i n P are t r a n f o r m e d i n t o o r i g i n a l s p a c e .

1376 V=W* i n v ( P ' *W) ; % C a l c u l a t e t h e p r o j e c t i o n v e c t o r s by V=W* i n v ( P ' *W)

1377 T=T+ ones ( r , 1 ) * Morig *V; % A d j u s t t h e s c o r e s . Mean s c o r e s are a d d e d .

1378 R=ALPH*( P ' *W) *W' + Morig ;
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1379 tem= s q r t ( sum ( abs (V) . ̂2 ) ) ;

1380 V=V. / ( ones ( s i z e (V, 1 ) , 1 ) * tem ) ; % Make t h e p r o j e c t i o n v e c t o r s be u n i t l e n g t h

1381 T= T. / ( ones ( s i z e ( T , 1 ) , 1 ) * tem ) ; % A d j u s t T w i t h r e s p e c t t o V

1382 P= P . * ( ones ( s i z e ( P , 1 ) , 1 ) * tem ) ; % A d j u s t P w i t h r e s p e c t t o V

1383 end
1384 end
1385 %% =========================== End o f t h e f u n c t i o n ============================

1386 %%

1387

1388 %% R e c e n t e r e d M u l t i v a r i a t e K u r t o s i s P r o j e c t i o n P u r s u i t A l g o r i t h m

1389 f u n c t i o n [ T , V, R , K, Val l , ku r tOb j , convFlag ]= r c m u l k u r t p p (X, p , g u e s s )

1390 %

1391 % A l g o r i t h m s f o r m i n i m i z a t i o n o f re - c e n t e r e d m u l t i v a r i a t e k u r t o s i s t h a t i s

1392 % used as a p r o j e c t p u r s u i t i n d e x . T h i s a l g o r i t h m aims t o d e a l w i t h

1393 % unba lanced c l u s t e r s ( m u l t i v a r i a t e v e r s i o n ) . The e f f e c t o f d i m e n s i o n i s

1394 % t a k e n i n t o a c c o u n t by i n t r o d u c i n g a d i m e n s i o n term i n t h e c o n s t r a i n t .

1395 %%

1396 % I n p u t :

1397 % X : The da ta m a t r i x . X ca nn o t be s i n g u l a r .

1398 % p : The d i m e n s i o n a l i t y o f t h e p l a n e or h e p e r p l a n e ( Normally , 2 or 3 ) .

1399 % g u e s s : The number o f i n i t i a l g u e s s e s f o r o p t i m i z a t i o n .

1400 % Outpu t :

1401 % T : S c o r e s o f t h e chosen s u b s p a c e ( w i t h t h e l o w e s t m u l t i v a r i a t e

1402 % k u r t o s i s v a l u e ) .

1403 % V : P r o j e c t i o n v e c t o r s f o r t h e chosen s u b s p a c e .

1404 % R : The e s t i m a t e d row v e c t o r s u b t r a c t e d from t h e da ta s e t X .

1405 % K: M u l t i v a r i a t e k u r t o s i s v a l u e f o r t h e chosen s u b s p a c e .

1406 % V a l l : A l l t h e p r o j e c t i o n v e c t o r s found based on d i f f e r e n t i n i t i a l g u e s s e s . The

1407 % b e s t p r o j e c t i o n v e c t o r s are chosen as t h e s o l u t i o n s and p u t i n V.

1408 % k u r t O b j : K u r t o s i s v a l u e s f o r t h e p r o j e c t i o n v e c t o r s o f d i f f e r e n t i n i t i a l g u e s s e s .

1409 % convFlag : Convergence s t a t u s f o r t h e d i f f e r e n t i n i t i a l g u e s s e s .

1410 %

1411 %%

1412 % T h i s a l g o r i t h m e x t e n d s t h e Quasi - Power methods r e p o r t e d i n two p ap er s :

1413 % ( 1 ) S . Hou , and P. D. W e n t z e l l , Fas t and S imp le Methods f o r t h e O p t i m i z a t i o n

1414 % o f K u r t o s i s Used as a P r o j e c t i o n P u r s u i t Index , A n a l y t i c a Chimica Acta ,

1415 % 704 ( 2 0 1 1 ) 1 -15 . ( f e a t u r e d a r t i c l e )

1416 % ( 2 ) S . Hou , and P. D. W e n t z e l l , Re - c e n t e r e d K u r t o s i s as a P r o j e c t i o n P u r s u i t

1417 % I n d e x f o r M u l t i v a r i a t e Data A n a l y s i s , J o u r n a l o f Chemometrics , 28

1418 % ( 2 0 1 4 ) 370 -384 . ( S p e c i a l i s s u e a r t i c l e )

1419 %

1420 % Author :

1421 % S . Hou , U n i v e r s i t y o f P r i n c e Edward I s l a n d , C h a r l o t t e t o w n , PEI , Canada , 2014 .

1422 %

1423 %% Mean - c e n t e r t h e da ta

1424 [ n ,m]= s i z e (X) ;

1425 Morig=mean (X) ;

1426 X=X- ones ( n , 1 ) * Morig ;

1427

1428 %% I n i t i a l s e t t i n g s

1429 maxcount =10000;

1430 c o n v l i m i t =1e - 1 0 ;

1431 V a l l = c e l l ( 1 , g u e s s ) ;

1432 r a l l = c e l l ( 1 , g u e s s ) ;

1433 k u r t O b j = z e r o s ( 1 , g u e s s ) ;

1434 convFlag = c e l l ( 1 , g u e s s ) ;

1435

1436 %% Loop

1437 f o r i =1 : g u e s s

1438 c o u n t =0;

1439 V= randn (m, p ) ; % Random i n i t i a l g u e s s o f V

1440 V= o r t h b a s i s (V) ;

1441 oldV1=V;

1442 R=mean (X) ' ;

1443 whi le 1

1444 c o u n t = c o u n t +1;

1445
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1446 %% Update r

1447 Y=(X- ones ( n , 1 ) *R ' / p ) *V; % Note p i s i n t h e denomina to r

1448 i n v P s i = i n v (Y' *Y) ;

1449 g j = d i a g (Y* i n v P s i *Y ' ) ;

1450 Yj=Y* i n v P s i * ( sum (Y) ) ' ;

1451 J =(2* Y' * ( ( Yj* ones ( 1 , p ) ) . *Y) * i n v P s i - eye ( p ) * ( sum ( g j ) +2) ) / p ; % J a c o b i a n m a t r i x

1452 f =sum (Y ' . * ( ones ( p , 1 ) * gj ' ) , 2 ) ;

1453 R=R-V*( J\ f ) ; % Newton ' method

1454

1455 %% Update V

1456 % C a l c u l a t e b1 and b2

1457 XX=X- ones ( n , 1 ) *R ' ; % Note p i s n o t i n t h e denomina to r

1458 Z=XX*V;

1459 S=Z ' * Z ;

1460 invS = i n v ( S ) ;

1461 a i = d i a g ( Z* invS *Z ' ) ;

1462 Z a i =( a i * ones ( 1 , p ) ) . *Z ;

1463 S i a i =Z ' * Z a i ;

1464

1465 b1 = - J '\ ( invS * S i a i * invS * ( sum ( Z ) ) ' ) ;

1466 b2 = - J '\ ( invS *( sum ( Z a i ) ) ' ) ;

1467

1468 % C a l c u l a t e t h e 8 m a t r i c e s

1469 Yj b1 Yj =(Y*b1* ones ( 1 , p ) ) . *Y;

1470 Yj b2 Yj =(Y*b2* ones ( 1 , p ) ) . *Y;

1471 X j g j =sum ( ( g j * ones ( 1 ,m) ) . *X) ;

1472

1473 M1=X' * Z* invS * S i a i ;

1474 M2= - Xj g j ' * b1 ' * S ;

1475 M3=2*X' *Y*( i n v P s i *Y' * Yj b1 Yj * i n v P s i *S ) ; % P a r e n t h e s e s added t o speed up

1476 M4= -2*X' * Yj b1 Yj * i n v P s i *S ;

1477

1478 M5=(X ' . * ( ones (m, 1 ) * a i ' ) ) *XX; % F u l l rank

1479 M6= - Xj g j ' * b2 ' * Z ' *XX; % Not f u l l rank

1480 M7=2*X' *Y*( i n v P s i *Y' * Yj b2 Yj * i n v P s i *Z ' *XX) ; % P a r e n t h e s e s added t o speed up

1481 M8= -2*X' * Yj b2 Yj * i n v P s i *Z ' *XX;

1482

1483 % C a l c u l a t e new V

1484 V=(M5+M6+M7+M8) \(M1+M2+M3+M4) ;

1485 V= o r t h b a s i s (V) ;

1486

1487 % T e s t c o n v e r g e n c e

1488 L= abs (V) - abs ( oldV1 ) ;

1489 L= t r a c e ( L ' * L ) ;

1490 i f L<c o n v l i m i t *p

1491 convFlag ( 1 , i ) ={ ' Converged ' } ;

1492 break
1493 e l s e i f count>maxcount

1494 convFlag ( 1 , i ) ={ ' Not conve rged ' } ;

1495 break
1496 end
1497 oldV1=V;

1498 end
1499

1500 % Save t h e s u b s p a c e s f o r d i f f e r e n t i n i t i a l g u e s s e s . Note t h e b a s i s o f t h e

1501 % s u b s p a c e has been changed i n accordance w i t h PCA ( mean - c e n t e r e d ) c r i t e r i o n .

1502 k u r t O b j ( 1 , i ) =n*sum ( d i a g ( Z* i n v ( Z ' * Z ) *Z ' ) . ̂2 ) ;

1503 [ Utem , Stem , Vtem ]= svd (X*V, ' econ ' ) ; % X has been mean - c e n t e r e d .

1504 Vtem=V*Vtem ;

1505 V a l l ( 1 , i ) ={Vtem} ;

1506 r a l l ( 1 , i ) ={(R ' * Vtem*Vtem ' ) } ; % r i s saved as a row v e c t o r now.

1507 end
1508

1509 %% Take t h e b e s t p r o j e c t i o n v e c t o r as t h e s o l u t i o n

1510 [ tem , i n d ]= min ( k u r t O b j ) ;

1511 V= V a l l{ i n d } ;

1512 R= r a l l { i n d } ;
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1513 T=X*V;

1514 K= k u r t O b j ( i n d ) ;

1515

1516 %% Add mean v a l u e

1517 T=T+ ones ( n , 1 ) * Morig *V; % A d j u s t t h e s c o r e s ( The s c o r e s o f mean v e c t o r are added ) .

1518 R=R+Morig ; % A d j u s t r ( mean v e c t o r i s added ) .

1519 end
1520 %% ============== End o f t h e f u n c t i o n =====================

1521

1522 f u n c t i o n [V]= o r t h b a s i s (A)

1523 % C a l c u l a t e an o r t h o n o r m a l b a s i s f o r m a t i x A u s i n g Gram - Sch imd t p r o c e s s

1524 % R e f e r e n c e : David Poole , L i n e a r A lgebra - A Modern I n t r o d u c t i o n ,

1525 % Brooks / Cole , 2003 . p p . 3 7 6 .

1526 %

1527 % I n p u t :

1528 % A : a m a t r i x

1529 % Outpu t :

1530 % V : an o r t h o n o r m a l m a t r i x

1531

1532 %%

1533 c= s i z e (A, 2 ) ;

1534 V( : , 1 ) =A( : , 1 ) / norm (A( : , 1 ) ) ;

1535 f o r i =2 : c

1536 tem=A ( : , i ) -V*V' *A ( : , i ) ;

1537 V ( : , i ) =tem / norm ( tem ) ;

1538 end
1539 end
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APPENDIX D

MATLAB CODE FOR IMPLEMENTING
AUGPPA

1 f u n c t i o n [ T , i x ] = augPPA (X, sub )

2 % I n p u t s :

3 % X - samples by r e s p o n s e v a r i a b l e s da ta m a t r i x

4 % sub - s i z e o f t h e c l a s s t o p u l l o u t

5 %

6 %O u t p u t s :

7 % T - s c o r e s o f o r i g i n a l da ta

8 % i x - i n d e x o f t h e sample used t o augment

9 %

10 % S t e v e D r i s c o l l 2019

11 [m,¬]= s i z e (X) ;

12 k u r t s = z e r o s ( 1 ,m) ;

13 sub=m-2* sub ;

14 f o r i =1 :m

15 Xaug =[X; repmat (X( i , : ) , [ sub 1 ] ) ] ;

16 [¬ ,¬ ,¬ ,¬ , f ]=PPA( Xaug , 1 , 1 , ' Min ' , ' Sh ' , 'SO ' ) ;

17 k u r t s ( i ) =min ( f ) ;

18 d i s p ( [ ' Augementing wi th sample ' num2s t r ( i ) ] )

19 end
20 [¬ , i x ]= min ( k u r t s ) ;

21 Xaug =[X; repmat (X( ix , : ) , [ sub 1 ] ) ] ;

22 [ T]=PPA( Xaug , 1 , 1 0 0 , ' Min ' , ' Sh ' , 'SO ' ) ;

23 T=T ( 1 :m, : ) ;

24 end
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