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Abstract

Maritime transport and vessel activities on the ocean have a significant impact on marine
life, which consequently affects human life. Therefore analyzing and monitoring the fish-
ing activities using the vast amount of the data that Satellite-based Automatic Information
Systems (S-AIS) provides, using machine learning methods, has become more popular than
before. Most of the works on S-AIS data try to detect fishing activities using point-based
methods that require significant preprocessing steps to extract meaningful features for the
samples. In this work, we use a different perspective toward trajectory data. Human brain
cannot understand the type of activity by looking at the point-based data, while experts can
easily recognize fishing activity by looking at the movement of a ship on the map. In addi-
tion, the significant advances in the field of computer vision made us convert the problem
to an image classification task. Informative parts of the trajectories that can contain points
where the vessels have been doing an activity are extracted as sub-trajectories using DB-
SCAN. These sub-trajectories are depicted by drawing the lines between points and saved
as images. With the new created image dataset, different CNN models are trained. Our
method, unlike other methods, does not need prior information about the movement and
can be used for all types of fishing vessels. Our results on the images created from the tra-
jectories of different regions of the world show excellent performance that can be applied

for detecting fishing activity from trajectory data.
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Chapter 1

Introduction

The primary objective of this thesis is detecting fishing activities from the trajectory data
that is given for vessels in different regions of the world. In order to define our problem in
more detail, the importance of this task and an introduction to trajectory data related tasks

has been given.

1.1 Fishing Activity Detection

From the very beginning, one of the main sources of human food has been seafood. In
the last century, with the rapid growth of technology and the tools humans use, fishing has
become an easy and affordable way of providing food. In certain areas of the world, fishing
has grown so fast that certain species of the fish and have been either underpopulated or
depleted. Overfishing can cause serious problems to the ecosystem; hence, certain rules
have been put together to prevent it from happening.

Despite all the efforts that have been made to reduce overfishing, illegal fishing is one
of the major reasons for several fish species’ depletion. It has been estimated that 30% of
total fishing catches are done illegally [14]; therefore, detecting illegal fishing activities is
an important problem that needs to be solved.

Different ways of observing marine activities from tower-based approaches, to Satellite-
based Automatic Identification System (S-AILS) that monitor ships all around the world,
have been used during years to detect fishing activities. Experts can tell the difference
between fishing versus non-fishing activities by monitoring ship movements in the middle
of the oceans. While these monitoring systems can effectively address the issue of fishing
detection, their scalability can cause problems as the amount of data that AIS can provide
for the experts is enormous, and the process is done manually.

Furthermore, detecting fishing activities from AIS data is important from a scientific
perspective. This task is in high correlation with many other tasks that work with different

trajectory datasets; therefore, creating a method that can work on this type of data will help



to solve many more tasks.

Our work tackles the problem of fishing detection by the use of AIS trajectory data. Our
main contribution is automating fishing detection task using machine learning methods.
The uniqueness of our work is the data transformation idea, which converts spatiotemporal
data to an image dataset. Our model then solves the fishing detection problem as a image

classification task from the created dataset.

1.2 Problem Definition

The progress in technology in the last decade has enabled us to make tools to collect the data
of mobile objects, humans, and animals. The data that is collected is called Trajectory Data.
Trajectory data is spatiotemporal data that is made of a sequence of geolocations in time
that can make a trace of the movement of an object [1]. For example, cell phones store their
location whenever they are connected to the Global System for Mobile Communication
(GSM) network; therefore, a digital trace of the people can be made using their sequence
of locations in time. As a result, the data that is collected from cell phones is trajectory
data.

Based on the definition of trajectory data, we can create images of the movement of
an object. The points that an object traverses during time, which make the trajectory data,
can be depicted on a map to show the movement of the object. These image dataset can
be used to identify a special type of movement. The problem we try to solve in this thesis
is to train a model to be able to identify fishing activity movement of ships by depicting
the trajectory data that we have collected. Therefore a computer vision approach for a
trajectory classification task is our main goal.

From the beginning, different data mining tasks have been proposed for trajectory
datasets. These tasks range from classification and pattern mining to anomaly detection.
Trajectory datasets also need several preprocessing steps, including but not limited to noise
filtering and segmentation. Many applications need to extract features like speed and accel-
eration to analyze the data. Also, there are different categories of trajectory data based on
the type of tracked movement; for example movement of humans is different from animals
and ships. As a result, there are so many different works that have been done on trajectory

datasets, which can be summarized in Fig. 1.1 [1].
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Figure 1.1: Trajectory data related tasks have different steps and purposes that can be
summarized into different levels. [1].

Our method requires several of the data mining steps that are shown in Fig. 1.1. A com-
bination of Noise Filtering, Segmentation, Trajectory Pattern Mining, and Trajectory

Classification have been done in our work. These concepts are explained as follows [1]:

e Noise Filtering: Trajectory data is not always clean, and many points have inaccu-
rate recorded locations due to the sensor noise and other factors. There are several
different methods for dealing with noise in trajectory data, that can detect the noise

point and either remove it or correct its location.

e Segmentation: A trajectory trace contains different segments that can be separated
based on the value of information they contain. For example, in our method, points
that are recorded while the vessel is simply moving toward a destination are less
critical than the ones recorded while fishing. Therefore, different algorithms have

been applied to divide a trajectory trace to smaller segments, which are categorized



as segmentation methods.

e Trajectory Pattern Mining: Depending on the use case, different patterns can be
found in groups of trajectories. Patterns that can be extracted from trajectory data
range from a number of moving objects that go in the same patterns at the same time
like birds, or human parades to objects that have the same type of pattern while mov-
ing like different fishing vessels of a single type. Different clustering and mapping

methods have been proposed to extract these patterns that fall under pattern mining.

e Trajectory Classification: The task of giving labels to trajectories or smaller segments
of them is a classification task. This task usually contains segmentation tasks inside
of it, as giving labels to the whole trace of trajectories is not always meaningful.

Trajectory classification usually gives semantic meaning to the data.

How these steps have been combined to form our model is explained thoroughly later
in Chapter 4. Another aspect of our works that needs to be introduced is using Computer
Vision methods.

Computer vision has been one of the fields that has fascinated scientists for a long time
because of the human interest in building systems that can see and understand. Automating
the tasks that the human visual system can do is one of the main goals of computer vision,
and it aims to do so by processing and analyzing digital video and images [15, 16, 17]. Due
to the great progress in this field by the use of convolutions neural networks, most of the
image classification problems are solved with high accuracy. Hence, we decided to convert
our task to an image classification task to create a system to detect fishing activities the way
humans do.

This work tries to create a new model that can detect fishing activity from a series
of points of trajectory data. AIS can provide vast amounts of trajectory data of ships in
different regions of the world. The data contains some features of the movements as well
as the location of the vessels on the ocean. This dataset is used to create images from
the informative parts of the trajectories that ships are doing an activity. Separating the
informative parts of the trajectories that contain points of the vessel during activities is
done using clustering and regression algorithms. Subsequently, these images are fed into a
Convolutional Neural Network (ConvNet/CNN) for training. The trained CNN can be used

to classify new unseen images of raw trajectory data to detect fishing activities.



1.3 Questions and Contribution

During years, several different attempts have been made to detect fishing activities from
the AIS data, and different machine learning methods have been developed to address the
problem; however most of the methods only try to detect fishing activities of several spe-
cific vessel types and cannot be generalized. Besides, these methods depend on extracting
characteristics of the movements that can only be helpful for certain types of vessels.

On the other hand, all of the previous attempts to detect fishing activities from AIS data
automatically, use AIS trajectory data points as input for their method. Afterward, based
on the mathematical operations and features that are extracted from the data, the model is
trained, whereas, in our work, the model is trained on images. The way experts can tell
the difference between fishing, and non-fishing activities is by looking at the movement
of the ships. We have used this idea to build a system that can detect fishing activities by
looking at the images created from the ships’ movements. This approach is general and
does not require prior information about the type of ships and their fishing movements to
detect them. Using CNNs can help us make our system independent of the vessel type, and
achieve high accuracy like other image classification tasks.

The questions that this work tries to answer are:
1. How to detect illegal fishing from AIS data?
2. Can representing trajectories as images improve fishing detection?

3. How does the performance of our proposed method compare to the other individual

state-of-the-art classical approaches?

4. Can our method outperform other individual state-of-the-art classical approaches for

all types of vessels?
The research summary and contributions of this work can be listed as follows:

e We propose a method for solving fishing detection problem from AIS data by creating
images of ship activities and train a model on them. The performance of the model is
not dependent on the type of vessel or features that are extracted manually to improve

accuracy. The whole process is unsupervised and can be applied to similar tasks.
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e A new method for removing non-informative segments from DBSCAN results on
fishing trajectories has been implemented. This method will decrease the amount of
noise data in the created image dataset. Consequently, the performance of the model

will be improved.

e A different perspective for solving problems that humans deal with using their visual
system is proposed. These types of problems can be converted to different computer
vision tasks like image classification, segmentation, or object detection. This type of
data representation can improve the results due to the great progress in the field of

computer vision.

e Lastly, a new dataset of images from AIS trajectories for fishing and non-fishing
activities has been created, which can be used for further studies regarding the fishing

detection problem.

The rest of this thesis is organized as follows: Chapter 2 briefly goes over all of the
previous works that have been done. The preliminaries are explained in Chapter 3. Chapter
4 and Chapter 5 explain the proposed method and analyze the results. Lastly, conclusion

and future work are given in Chapter 6.



Chapter 2

Related Work

With the availability of big amounts of mobility data that have a better quality than before,
many researchers have tried to work with trajectory datasets and solve the raised tasks.
These tasks range from classification to pattern detection and clustering tasks. In this chap-
ter, we briefly go over the related research papers that have been proposed during the years
for both maritime and other types of trajectory data tasks. We divide these works into
three categories: Segmentation Methods, Non-maritime Trajectory Classification Research

Works, Maritime Trajectory Classification Research Works.

2.1 Segmentation Methods

In this section, previous works that have focused on the trajectory segmentation, are ex-
plained. One of the steps in our method is segmentation of the data; therefore, these works
are related to our work. One of the main uses of trajectory segmentation methods are is to
detect stay points in the motion of objects, but in our task, the segmentation methods are
used for activity detection.

Several different methods have been proposed for segmentation that are based on DB-
SCAN. These methods are unsupervised as a result of DBSCAN’s nature. T-DBSCAN is
a method that was introduced for this purpose [18], which is different from DBSCAN by
putting a limit on the number of points in the Eps neighborhood. Based on the definitions
they give for stop and move segments, they put certain time limits on the number of points
in the Eps neighborhood, so that all the points are not counted. Another method that uses
DBSCAN for segmentation was proposed in ”An improved DBSCAN algorithm to detect
stops in individual trajectories” [19]. This method uses DBSCAN on trajectory data with
a new definition for core points. A core point in their work is defined as a point that has a
density in its neighborhood higher than a threshold. For calculating their threshold, they use
’elbow point” concept from [20]. Although the improvement of these algorithms, increases

the accuracy of Stay point detection, they are not suitable for activity detection. Activity
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segments can have a larger spatial area than stay points. Therefore defining conditions on
density for a small area will lead to poor performance.

CB-SMOT is another method based on DBSCAN that gives an updated definition for
core point [21]. In their work, they take the speed of moving objects into consideration by
adding time to the conditions of being a core point. They calculate the distance of other
points on the trajectory from a point, and if less than Eps, they are considered neighbors.
They call this neighborhood the Eps-linear-neighborhood of points. Then they calculate
the duration of the neighborhood as the time difference between the first and last points of
it. A core point in their method is a point that the duration of its neighborhood is higher
than a minimal time.

Other methods mainly focus on characteristics like speed, distance, direction, and time
duration between points to address the issue. One of these methods is TRACLUS [22],
which tries to divide trajectories based on the distances between points. This method
method uses the minimum description length (MDL) principle to find the best points, which
they call characteristic points, for separating the different parts. The ideal case of their sep-
aration is to find the points where there is a significant change in the trajectory. This type
of segmentation is not suitable for our method since small changes in the trajectory should
not result in dividing it, and we are only interested in removing the parts where there is no
activity.

Another method that was proposed for trajectory segmentation is STC-SMo [23]. STC-
SMo was initially proposed for the stop and move segmentation of human trajectories. The
way it works is to find points that within their neighborhood, the duration of the longest
time between points is greater than a threshold. It then labels these points and goes to
the next point for the comparison. Although it can give satisfactory results for detecting
stay points, this method cannot be adapted for the activity segmentation due to the diverse
duration of different activities.

DB-SMoT is a segmentation method that is based on direction change in the trajectory
data [24]. This method calculates the direction change for each pair of points and clusters
the points based on that change. Each cluster starts with a sudden change and continues
until the direction change continues. Another direction based method is [25], which uses
direction for its first segmentation step. It calculates the angle between every two consecu-

tive points with the first two points of the trajectory, and based on maximum and minimum
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changes in direction, decides to divide the trajectory at that point or not. This step is their
position fusion step. They have another step for sub-trajectory fusion that separates move
and stops segments in them. Fishing vessels have many changes in their direction while
fishing and if divided based on it, the sub-trajectories will not be meaningful.

Piecewise linear segmentation is a segmentation method for dividing a trajectory to
smaller parts in a recursive way [26]. It starts with start and end points of a trajectory
and calculates an error for all the points between them. At any point, if this error gets
higher than a threshold, the trajectory is divided. The same procedure is done for the sub-
trajectories that have been produced. Also, they have used a generalized error function with
a weight parameter for time, which determines the effect of the time difference between

points.

2.2 Non-maritime Trajectory Classification Research Works

There have been many works on trajectory classification that are not related to marine life;
however, based on the high correlation that different trajectory datasets have with each
other, these works can be applied for maritime-related problems. In order to prepare the
reader’s mind for the possible approaches that can be taken toward this type of data, several
of these works have been briefly explained in this section.

Two of the main approaches that have been used in several works in this area are extract-
ing global and local features for the trajectory to improve classification accuracy. Zheng
[27] defines several global features like heading change rate, and stop rate that can help the
model to identify the type of transportation. They assign labels for the segments of human
trajectory based on these global features they extract for these segments. While global pa-
rameters can be useful for classifying the type of transportation, they cannot capture the
similarities of the patterns in the movements.

One of the methods that uses both global and local features for classifying the trajec-
tories is introduced in [28]. After preparing the trajectory data, they calculate the global
features. They use an algorithm to convert the trajectories to time series of point features.
These time series are made of the point features like speed and acceleration; then, they are
decomposed based on the deviation to extract local features.

Change in the direction has been used in Lee [29] for extracting sub-trajectories from a

trajectory. This work tries to group the sub-trajectories based on their movements. These
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sub-trajectories can be in several groups based on their similarity, but they wanted a set of
groups that have unique sub-trajectories. Different groups are made after this step, which
some need to be removed only to keep the relevant ones. The relevance of groups is esti-
mated based on the similarity of the groups. Therefore, they split the sub-trajectories again
until the condition is met. The same procedure for classifying trajectories with a difference
in using duration of the sub-trajectories has been used in [21]. They consider time and
location to calculate the duration for different sub-trajectories to group them. Both of these
methods make a feature vector for the trajectory instances based on how many of their
sub-trajectories are in different groups. Classification is done based on the vectors that are
extracted for the instances.

Movelets is another method that uses local features for sub-trajectories [30]. They do
not have predefined criteria or threshold; instead they use the shapelets concept [31], for
extracting the sub-trajectories and calculate their local features for classifying them.

There have been several research works around using Neural Networks for trajectory
data classification [32, 33, 34]. One of the first works in this area is [32]. In their work, they
have used features like horizontal dilution of precision (HDOP) of the data for each sample
to train their network with. Although their work can be useful for having a guideline
to use NNs in this area, based on their choice of extracted features, the results were not
satisfactory. The performance of NNs highly depends on the extracted features of the data,
and these types of features are not always available for trajectory datasets. In another
work, the features that have been used are general features like the average and maximum
speed that can be calculated from the raw point-based data [33]. Although their work
improved the previous model’s detection performance, the simple features alongside the
simple architecture they used, are not sufficient for the task. More sophisticated works that
use state-of-the-art models [34], are developed for trajectory related tasks. They have used
Semi-supervised Generative Adversarial Networks (GANs) with fixed size segments of the
trajectories.

A high number of methods have been focused on extracting more and more complicated
features from the data points in order to improve the performance. For example, features
like mean velocity, expectation of velocity, top three velocities, and the top three acceler-
ations have been used in some works for trajectory classification [35]. Furthermore, the

same author has developed more complicated features like the heading change rate (HCR)
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and the stop rate (SR) for better understanding the trajectory of animals [27]. Though these
features can be helpful in some tasks, in many cases like fishing, these features do not cap-
ture the pattern and cannot give enough knowledge for the classifier to predict the label.
On the other hand, another set of methods have used additional data in combination with
trajectory data to increase the accuracy of their method [36, 37, 38, 39]. Datasets that have
been used range from sensor data for recording human body temperature to distinguish

between running and walking, to bus GPS data for transportation classification.

2.3 Maritime Trajectory Classification Research Works

The dataset that we have worked on, as explained later, is a trajectory dataset that monitors
the location of different types of vessels in the ocean. In this section, research works that
have been explicitly trying to work on marine-related trajectory problems are summarized.

One of the main approaches that was first used for detecting fishing activities is the
use of speed [40]. Based on the changes and frequency of the changes in speed, different
fishing segmentation methods for some specific gear types have been proposed. Authors
of [10], have tried to develop different models based on the vessel type. Their dataset is
labeled manually, and therefore, it is limited. The vessel types they try to develop a model
for are trawlers, longliners, and purse seiners. The first model they developed is a Hidden
Markow Model on the speed of the trajectories which was trained for detecting the fishing
activity of trawlers. For longliners, a pattern recognition method, and for purse seiners a
multi-layer filtering of speed and time has been used. Despite their great accuracy for all
the models, their data was highly preprocessd, so their methods are not capable of detecting
fishing activities from noisy unlabeled real-world datasets.

Several supervised learning methods have been introduced to solve the real-world prob-
lems associated with trajectory data. SVMs have been widely used for marine trajectory
classification. They make boundaries between clusters and map the unseen inputs to those
clusters based on the calculated features. Trajectory kernels for SVM have been used in
[41], which can improve the performance. However, their data was not big enough for the
right comparison.

Artificial Neural Networks (ANNs) have been used for marine trajectory data mining
related tasks too. In [42, 43] ANNs have been used with the Vessel Monitoring System
(VMS) data to detect fishing activities.
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Decision Trees (DTs) can be easily understood and implemented as a result of their
simple procedure of hierarchy condition structure for classification. DTs are not used alone
for trajectory classification because they heavily depend on the changes in the values, which
frequently occurs in trajectory datasets. However, they are combined with other methods
to remove useless features from the AIS data to distinguish between vessels [44]. Random
Forest is a type of DT that takes advantage of bootstrapping idea. RFs have been used in
[45, 46], for fishing activity detection and fishing gear classification.

A few marine trajectory clustering algorithms have been proposed that could give useful
information about different classes and simplify the process of classification. In [47], a dis-
tance feature based on the Frechet distance for capturing the similarity between trajectories
is calculated. Then by using Principal Component Analysis(PCA) on these distances, they
decide on the number of clusters. Finally, based on this similarity matrix and the number
of clusters, trajectories are clustered. Li et al. [48] Proposed a multi-step clustering algo-
rithm for ship trajectories. They first use Dynamic Time Warping (DTW) for calculating
the similarity between the trajectories, and by applying PCA, just like the previous work,
the number of clusters by an automatic algorithm is chosen. Then the cluster analysis based
on the similarities of the trajectories is done. Their experiments show satisfactory results
that can give prior knowledge of data before the classification task.

Although deep approaches that have been introduced for maritime trajectory classi-
fication tasks have satisfactory results, they significantly differ from our method in the
preprocessing steps and used architectures. The problem of fishing classification using
Autoencoders was proposed by Jiang [45]. In this work, a similar process to our method
has been used for extracting matrices of a sliding window. In their work, instead of using
images as input small extracted matrices for sub-trajectories have been used as the input.
Also, instead of a CNN, an Autoencoder has been used, and the global and local features
of the trajectories have not been used for matrices. Also, segmentation is done by a slid-
ing window of time. It is also worth mentioning that Autoencoders try to capture as much
information as possible, and this information is not necessarily the most useful one for
classification.

In another work, Jiang uses Recurrent Neural Networks(RNN) on partition-wise fea-
tures of the trajectory data, [49]. That work tries to divide each feature into distinct regions

and gives new features based on them. This process is done to use low-dimensional data
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like trajectory with an RNN that can work best with high-dimensional data. Also, different
architectures have been tested in their work that can reach satisfying performances; how-
ever, their method needs labeled data, and the amount of labeled data that is available is
limited.

All of the above methods are supervised and need manually labeled data. However,
labeled trajectory datasets are relatively small and limited, and the methods that have been
trained on them can not be used for the tasks that the big amount of data enables us to
solve. Therefore, only our method satisfies the need for an unsupervised method that can
detect fishing activities. Our method combines the deep learning methods with DBSCAN
segmentation method on the point-based representation of trajectories, to form the unique

approach of detecting fishing activities from an image representation of the trajectories.



Chapter 3

Preliminaries

In this thesis, we have used different methods for each step, of which some need more
explanation so that the reader can understand the method easier. This chapter defines and

summarizes some of the terms used during the curse of this thesis.

3.1 DBSCAN

Cluster analysis tries to map the data points into groups or objects that are similar. In other
words, a cluster is a group of points that have the most similarity with other points within
the cluster and are different from points of the other clusters. Cluster analysis result is
sometimes used as a preprocessing step for further classification and other tasks like our
method, while other times, it is used for for giving useful insight about the data.

DBSCAN is a cluster analysis algorithm that was introduced in [50]. This algorithm
separates the data points to different clusters based on the density in the neighborhood of
the points. DBSCAN is robust, hence noisy data can be well clustered using it. Time com-
plexity of DBSCAN is O(n?), so it is not suitable for real-time clustering of big datasets.
DBSCAN clusters the data based on the number of neighbor points each data point has.
The main procedure is to look to form a new cluster when it finds a new dense region in the
data. All of the following definitions are from [50].

MinPts and Eps are parameters of DBSCAN, and based on them, the data points are cat-

egorized, and clusters are formed consequently. The parameters are explained below[50]:

e MinPts: Minimum number of neighbor points that a core point should have.

e Eps: The points’ neighborhood radius size.

N(p) =Vq € Dlp # q Ndist(p,q) < Eps (3.1

14
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Figure 3.1: An example of categorizing data points in a dataset by DBSCAN. Red for
core points, yellow for border points, and blue for noise points have been used. The two
yellow border points are density reachable, and the arrows show directly density reachable
relations [2].

The first step is to choose the parameters for DBSCAN based on the information you
have about the data, which requires trial and error procedure. Next, based on the number
of the samples in the neighborhood of each point (3.1), it tries to categorize the points as
one of the core point, border point, or noise point. In this equation, D is our dataset, and
N(p) is the number of points in the Eps neighborhood of point p. Different categories are

explained as follows[50]:
e Core point: Any point with MinPts or a higher number of points in its neighborhood.

e Border point: All the points that are not core points but are in the Eps neighborhood

of a core point are border points.
e Noise point: Any point that does not belong to the previous categories.
Different relations that points can have are[50]:

e Directly Density Reachable: If a point is within a core point’s neighborhood, it is

directly density reachable from that core point.

e Density Reachable: Two points are density reachable if there are core points between
them to make a chain of directly density reachable core points that connect these two

points.
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e Density Connected: Two points that both of them are density reachable from another

point, are density connected.

The algorithm of DBSCAN is to choose a random point and count its neighbor points.
If that point is a core point a new cluster is formed, and that point and all of its neighbors are
added to that clusters. The same procedure will be done for the points in the new cluster,
so more points are added to the cluster in this process. When there is no more point to
be added to the cluster, it is formed, and another random unvisited point will be visited to
form more clusters. This recursive procedure is done until all of the points are visited. Any
point that does not belong to any cluster is considered noise.

In Figure 3.1, an example of how points are categorized in the processes of forming

clusters can be seen.

3.2 Linear Regression

Regression is a method that tries to find a relation between several variables, of which one is
dependent on the other independent variables. Regression is primarily used for forecasting
or predicting the dependent variable; Therefore, it is highly used in the machine learning
field [51].

20 -10 10 20 30 40 50 60

Figure 3.2: An example of finding the relation between variables with Linear Regression is
shown. The red line is the predicted linear function that fits the best to the data points [3].

Linear regression is a simple regression method that tries to model the relation between
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the variables as a linear function [52]. For two variables x and y, with y being the dependent
variable, linear regression tries to find av and 3 parameters which best satisfy the following

equation:

yi=axz;+pPi=1,....n (3.2)

In Figure 3.2, you can see that the linear model has been shown by a red line, which is
achieved by finding the parameters from the data.

For understanding how well the model can fit the data, R-squared is used. R-squared is
a measure that shows how well the predicted linear model is and it is mostly used for linear
regression models. Higher values of R-squared show smaller differences between actual

data points and the predicted line.

3.3 Deep Learning

Deep learning is the name given to a group of machine learning methods that are based
on Artificial Neural Networks and have a high number of layers for learning more features
from the data [53]. ANNs have been studied for many years [54, 55, 56, 57, 58], and deep
learning methods became more famous from those researches.

Neural Networks are made of artificial neurons that are inspired by the actual neurons in
a biological brain. There are connections between these neurons that based on the received
values, can be activated and sent the values to other neurons, Figure 3.3. These values are
real numbers and inside each neuron, some non-linear function produces an output. Con-
nections between the neurons have weights that are learned during the process of training.
In the process of learning, back propagation is used. Back propagating is a gradient descent
method to slowly change the value of weights based on the label of the inputs to find the

optimal values for them.

3.3.1 Convolutional Neural Network

Deep learning architectures are used in many fields, like Computer Vision, NLP, and
Speech Recognition. Convolutional Neural Networks are one of the sub-types of deep
learning methods that have great performance over two-dimensional data like images that

have spatial correlation [59].
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Figure 3.3: (a) Shows a neuron and its non-linear activation function that sends the pro-
duced output from applying that function to the weighted sum of input x, to other neurons.
(b) Shows an example of a simple Neural Network that has two hidden layers. This figure
is taken from [4].

CNN is a multi-layer neural network that has convolutional and pooling layers [60,
61, 62]. One of the main differences between CNNs and NNs is the use of convolution
operation for each node instead of the weighted sum that we had in NNs. In addition, CNNs
take advantage of parameter sharing by applying convolutional layers with several kernels
on all the receptive fields of the previous layer. The input of the network is connected to
a series of consecutive convolutional and pooling layers that try to extract features from
it, and finally, the output features are connected to the output layer, Figure 3.4. The input
of the networks is convolved with a series of kernels that are learned during the training
phase, and the extracted features in the form of feature maps are produced. Because of an
increase in the size of the feature map in comparison to the input, pooling layers are applied

to reduce the size and get rid of the unimportant features [60, 61, 62].
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Figure 3.4: A simple example of applying convolutional and pooling layers on an input
image, that shows how the size and number of values changes.

3.4 Trajectory Data

In this section, trajectory data is explained in more detail. Trajectory data, as defined in [1],
is a set of ordered points in time that contain the location of a moving object. These points
make a trace that is called a spatial trajectory. For example a set of consecutive points
like x4, zo, ..., z, Where each point x; represents a point that contains location and time, is

a trajectory [1]. Figure 3.5 shows an example of a spatial trajectory.

(ps,t3)

(P4,t4)
(p2:t2)

(p55t5) (p7,t7)

(pbtl) (pﬁatﬁ)

(Posto)

| trace pi location
i ©  sample point ti  timestamp

Figure 3.5: An example of a spatial trajectory made of consecutive points. Source: [5].

Four main categories of trajectory data are [1]:

e Mobility of people: Movement of humans has been gathered through different means.
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Figure 3.6: Examples of different categories of trajectoriy data:(a) Mobility of people [6],
(b) Mobility of birds [7], (c) Mobility of ships [8], (d) Mobility of hurricane [9].

Some people intentionally have recorded their location at different points while trav-
eling or other activities. On the other hand, GPS can record the location of people
holding a cell phone through cell towers without them knowing about it. Many tra-

jectory datasets have been collected from cell phone users.

e Mobility of transportation vehicles: different types of transportation vehicles on land,

air, and water are equipped with GPS tools, so large trajectory datasets of their move-

ment are recorded.

e Mobility of animals: Movement of animals for biological purposes have been recorded

during time. These movements are saved in trajectory datasets for animals that can

be analyzed.

e Mobility of natural phenomena: With the rise of concerns about climate change,

many scientists have gathered trajectory data for natural phenomena like hurricanes
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to capture their changes.

Our data is trajectory data of vessels on the ocean, which is categorized as the Mobility

of transportation vehicles. Examples of different categories of trajectory data are shown in
Figure 3.6.

3.4.1 Gear Type of Fishing Vessels

0 250 500m

Figure 3.7: Plotted raw trajectory data on (a) a global map, of (b) Trawler, (c) Longliner,
and (d) Purse Seiner gear type vessels. These plotted trajectories show the difference in

patterns of fishing activities for different gear types of fishing vessels. This Figure has been
taken from [10].

There are different types of fishing vessels that each one of them has its pattern and
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characteristic for fishing. Fishing detection methods can be dependent or independent on
the gear type of fishing vessels. Some of the methods that have been mentioned in the Re-
lated Work chapter, have different models for each type of fishing gear. The most common

fishing gear types, Trawler, Longliner, and Purse seiner, are explained in this section.

Trawler

Trawler is a type of fishing vessel that attempts to catch fish through dragging and pulling
a fishing net behind the vessel. This gear type has different categories itself, including but
not limited to, Freezer trawlers, Side trawlers, and Pair trawlers. These types may differ in
the number of vessels that fish together, the depth of fishing, or the type of fishing nets they
use. Duration of the fishing activity for the trawlers highly depends on its category and can
vary from minutes to hours; however, the speed of trawlers is slow and steady, almost for

all of the categories [63].

Longliner

Longliner is a type of fishing vessel that has a long line attached to the back of it. This line
can have hundreds to thousands of hooks attached to it so that when the vessel is moving,
and the line is deployed at the back, the fish will be caught by those hooks [64]. The
duration of this gear type activity depends on the length of the line and can be as long as a
day [65]. Also, the speed is slightly slower than the speed of the vessel when it normally
moves without doing any activity. Longliners have different categories, and the length of
the line and number of the hooks depends on it, which consequently can change the speed

and duration of fishing [65].

Purse Seiner

Purse seiner’s fishing activity is the process of deploying a vertical long hanging net around
an area to prevent fish from escaping from that area. In order to avoid the fish from escap-
ing, this process should be fast; therefore, the speed of purse seiners while fishing is usually
high. The duration of this process is based on the size of the area and net. so it varies from
one to a couple of hours [10].

You can see in Figure 3.7, each of these gear types have their specific patterns that

can help the experts to label the trajectories. As a result, we came up with the idea of
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converting the task of fishing detection to an image classification task that would be general
and independent of the gear type. Also, speed is one of the main differences between
different gear types and gives useful insights about each pattern; therefore, our method also

has used speed for creating the trajectory images.



Chapter 4

Proposed Method

In this chapter, the proposed method is explained step by step in full detail. From prepro-
cessing the raw trajectories to creating images and training a classifier on them, our method

is made of the following main steps:

(i) Extracting AIS trajectory data and separating it into fishing versus non-fishing tra-

jectories automatically based on ship type code.
(ii) Prepossessing and segmenting spatial trajectories.
(iii)) Converting sub-trajectories to images.
(iv) Training and testing a CNN on the created images.

The flowchart presenting how these steps are connected is shown in Figure 4.1. The
first step is to extract the trajectories from the regions in which fishing rates are high. Then
preprocessing and segmentation steps are done for each region, and images are created.
Next, when the image dataset is complete, a CNN is trained and tested using that dataset,

and finally, the results are shown.

4.1 AIS Dataset

The data that we have used is mainly AIS data that has been extracted for the regions
containing high fishing activity. The exact location of the regions and the time periods of
the extracted data will be explained later in Experiments Chapter.

AIS is a system for monitoring the ships on the ocean. AIS records the location of
the vessels using transponders, which are mounted on the ships. The data is used to avoid
unwanted incidents on the ocean [66]. AIS uses a combination of several types of receivers
and sensors like GPS and very high frequency transceiver, to record the exact location of
the ships along with some other features like speed. This data is usually used by the vessels

to monitor the traffic in their area, and allow other vessels to know about their presence.

24



Detect regions with high
fishing rates

l

Extract the AIS data for
all these regions

Yes

Are all regions'

re all trajectories

ataset pr?

Yes

A,

Train and test the CNN
with the created image
dataset

A

Show results

Yes

in the dataset
processed?

No

Preprocess and extract
sub-trajectories

Are all the
sub-trajectories' image
extracted?

Extract the image for the
sub-trajectory

L

Figure 4.1: Flow chart of the proposed method.
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Satellite-AIS (S-AIS) is the term used when satellites are used to record the AIS data

where the vessels are out of the range. There have been several different methods to ad-

dress the issue of receiving large amounts of AIS messages, for different classes of AIS,

simultaneously through satellites. These methods help to extend the ranges that AIS could

cover [66]. Our data has been extracted from both traditional AIS and S-AIS sources.

Another essential concept to be mentioned about AIS data is different classes of AIS

data, which differ in the type of device they use for communication. Type of the device and

consequently, the AIS class of a vessel, is determined based on the mandate of it [66]. Out

of all the classes, class A and class B have been briefly explained here, as our data only

includes messages from these two classes.
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Class A:

This class requires devices that meet the International Maritime Organization (IMO) car-
riage requirements, and these devices are found on board vessels [66, 67]. These devices
report the position every 2-10 seconds while their statistic information is reported every 6
minutes. Class A is also capable of communicating through text messages for safety-related

situations [67].

Class B:

Class B devices are mainly found on vessels that voluntarily carry AIS; they are generally
less expensive, and they do not meet all IMO requirements. Although they report their
position at anchor or moored as often as Class A, less power is used for reporting their
position. In addition, they are not able to transmit text messages and can only receive them
[66, 67].

The data containing position and statistic information of both classes have some com-
mon fields which are used in our method. These fields are explained for both position
reports and static and voyage related data.

Common fields of position report for both classes are [11]:

e Message ID: There are different message types for different classes. This ID tells

what type of message has been used.
e User ID: MMSI number which is a unique identification number for ships.
e SOG: Speed over ground is used for each point.
e Time stamp: The time when the message was generated by the device.
e Longitude: Longitude of the vessel when the message was generated.
e Latitude: Latitude of the vessel when the message was generated.

The only field of static data that has been used is the type of ship and cargo type.
This identifier helps us to distinguish fishing vessels from non-fishing vessels. The vessels

should report their type based on the table shown in Figure 4.2, [11].



Identifiers to be used by ships to report their type

hazard or pollutant category Y

Other ships
First digit(1) Second digit(1) First digit(1) Second digit(1)
1 - Reserved for future use 0 - All ships of this type - 0 - Fishing
2 - WIG 1- Carrying DG, HS, or MP, IMO - 1 - Towing
hazard or pollutant category X
3 - See right column 2 - Carrying DG, HS, or MP, IMO 3 - Vessel 2 - Towing and length of the tow

exceeds 200 m or breadth exceeds
25 m

4 -HSC

3 - Carrying DG, HS, or MP, IMO
hazard or pollutant category Z

3 - Engaged in dredging or
underwater operations

5 - See abave

4 - Carrying DG, HS, or MP, IMO

4 - Engaged in diving operations

hazard or pollutant category O3

5 - Reserved for future use -
6 - Reserved for future use -
7 - Reserved for future use -
8 - Reserved for future use -
9 - No additicnal information -

5 - Engaged in military operations
B - Sailing

7 - Pleasure craft

8 - Reserved for future use

9 - Reserved for future use

- Passenger ships

- Cargo ships

- Tanker(s)

- Other types of ship

Wit~

Figure 4.2: This table from [11] shows how to interpret the ship type code to distinguish
between fishing vs non-fishing vessels.

As you can see in Figure 4.2, the code for fishing vessels is 30. Therefore after down-
loading the data, one of the first steps is to separate the trajectories that have a ship type
code 30 as our fishing data and all the other samples are labeled as non-fishing data.

Furthermore, before moving further to the segmentation part, the noise and outliers
from the data such as points that have an MMSI code of 0, or other non-values, are removed.
As we are only interested in sub-trajectories that contain fishing activity for the fishing data,

the points that have a SOG equal to 0 are removed from the data.

4.2 Segmentation

After the separation of fishing versus non-fishing trajectories and other preprocessing steps
of the data, we extract sub-trajectories. These sub-trajectories are made of important parts
of the bigger trajectories where the vessel has been doing any type of activity; for this
purpose, segmentation methods have been used.

A segment is defined as a part of a trajectory in which the vessel’s movement has a
particular pattern. For example, a fishing vessel starts moving toward a destination for
fishing; then, for hours, the vessel is engaged in the activity. When the fishing is done, the
vessel comes back to where it left. In the given example, a segment consists of the points
where the vessel starts fishing until the process is completed. The recorded points of the
vessel on the way and back are not of interest in our method. therefore, a contiguous part

of a trajectory so that all points in it share the same pattern.
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The first step for the segmentation part is to detect the points that belong to the same
trajectory and group them together. For this purpose, we assign an id to the points that
have the same MMSI, which indicates the trajectory number of that particular vessel. For
example, a vessel with MMSI number m has recorded his movement in three different days
during a year; therefore, three different trajectories with the same MMSI number exist that
we need to separate. This step is needed to avoid having trajectories with the same MMSI
but at different times to be grouped together. Time is not considered for clustering the
points, so this step is essential.

The next step is to take a trajectory and convert the latitude and longitude of all its points
to radian. Radian is a unit for measuring angles and is used in many problems in which the
data consists of latitudes and longitudes. The range of the data will be in [0, 27| after the
conversion. DBSCAN’s performance on the longitude and latitude that are not converted
to radian is not satisfactory. In addition, as we define our Eps parameter of DBSCAN in
radian, this step is necessary. After having a suitable scale for our input, the points of
a single trajectory are fed into the DBSCAN. Parts of the trajectories, if any, where that
specific vessel has been doing an activity, are returned as clusters.

As mentioned earlier, there are several other segmentation methods [23, 25, 22, 23, 24],
but they are not suitable for our segmentation steps because of several reasons. The first
reason is that many of these algorithms have very high time complexities. As we need to
run our segmentation method on every single trajectory for a huge dataset, the time and
memory they need are not reasonable.

The next reason is that these methods usually try to extract sub-trajectories that are
considerably smaller than what we need. For example, the methods that separate a sub-
trajectory based on the rotation would break a sub-trajectory, made of fishing activity of a
longliner to several smaller parts which are not useful for learning the pattern of longliner
fishing. As it can be seen in Figure 4.3, the pattern of a longliner’s fishing activity has been
broken into several single lines if separated by rotation.

Some segmentation methods that are presented for stay point detection are not useful
in our case, as they usually limit the radius of the sub-trajectory. On the other hand, fishing
vessels have different patterns and can travel small to large areas while fishing. As a result,
these types of segmentation methods can not be used for our model.

Finally, some methods that try to break a trajectory into sub-trajectories focus on the
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Figure 4.3: The sub-trajectory that shows the fishing activity of a vessel, will break into
smaller sub-trajectories if an inadequate method is used.

change of speed. The problem that was mentioned above for segmenting with rotation will
also happen when segmentation is done using speed; because speed of vessels is subject to
change during fishing activity based on the patterns. As a result of the mentioned problems,
we have used DBSCAN for our segmentation step.

DBSCAN is applied on the latitude and longitude of each point in the trajectory, and

we do not consider any other feature of the data for this. Therefore, the input of DBSCAN

is a set of two dimensional data points. After getting the results of DBSCAN for each
trajectory, for all the output sub-trajectories that DBSCAN gives as clusters, several condi-

tions and filters are applied. If a sub-trajectory meets all the requirements, it will be given

to the image creation algorithm to convert the sub-trajectory to an image. The filters and
conditions that need to be met are:
Time Limit

The duration of fishing activity, as well as other activities that we want to create the image
of, can vary and is not stable. However, we are not interested in sub-trajectories that are
as short as 2 hours, as they are a result of sudden sparse regions in the middle of activities

an activity.

that DBSCAN will break into smaller clusters. This type of sub-trajectories that have been
separated by mistake using DBSCAN, are removed using a time limit for the duration of
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Average Speed Limit

One of the cases that can be easily mistaken for an activity sub-trajectory using DBSCAN
is where the vessel is not moving. Stay points can easily make a cluster, so some patterns
can be extracted if the lines between these points are drawn. Therefore we use another
threshold for the mean speed in each sub-trajectory, and if it is close to O, the sub-trajectory

is removed.

Number of Points

Another factor when considering a sub-trajectory as an activity is the number of its points.
A small number of points in a sub-trajectory can be a result of single small regions with
high density that cannot show the whole activity as a sub-trajectory. Therefore these small
dense regions that do not contain enough points for pattern learning are removed with a

threshold for the minimum number of points in a sub-trajectory.

Removing Dense Non-activity Sub-trajectories

Use of DBSCAN for our application has some limitations because of the global parameters
it uses. Some points in the data that have been recorded while a vessel is moving toward
a destination can be detected as a cluster with DBSCAN. The density around these points
can satisfy the DBSCAN parameters if the vessel is transmitting its location more frequent.
Therefore, some of the clusters that DBSCAN returns need to be removed as they do not
capture any activity pattern. A few examples of these clusters are shown in Figure 4.4.

We use Linear Regression to identify the non-informative sub-trajectories that need to
be removed. Linear regression tries to map points of a sub-trajectory to a linear model.
Then, the R-Squared of the model, which is a metric for the performance of the model is
calculated. A sub-trajectory is removed if the model can fit the points of the sub-trajectory
well. In other words, if the R-Squared is higher than a threshold, the sub-trajectory is not
informative and will be removed. Several examples of where the linear regression model
can remove the dense non-activity sub-trajectories that are noise samples for our CNN
model is shown in Figure 4.4.

Once all of these conditions are met, and the sub-trajectory is not removed, image

creation method will draw it and save it as an image in the new dataset.
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Figure 4.4: All of the above examples of sub-trajectories that are produced by DBSCAN
are removed using linear regression filter.

4.3 Image Creation

Image creation is the part where sub-trajectories which have passed all the filter, are con-
verted to an image. The process of drawing the sub-trajectories and saving them as images
is explained in detail.

For drawing the lines between the points, we have converted the points to the radian
system and sorted them based on time. Then we start by the first point, and up to the last
point in the sub-trajectory, the lines between them, which make the pattern, are drawn.

One of the critical features that can help the model to detect fishing activities, as dis-
cussed before, is speed. Different vessels with different patterns can be detected easier by
considering the change of speed. For example, one of the methods that have been proposed
to detect fishing activities of trawlers only uses speed as their feature to train a model with
[10], which gains satisfactory accuracy.

As the importance of speed, we decided to make use of speed as the color of lines that
connects the points. Therefore, the change in speed can be shown as a part of the pattern
of fishing. The repetitive pattern in the speed can be seen in Figure 4.3, which can help
the model to understand the patterns better. The color of the lines in that pattern shows the
difference in the speed of the vessel in the parts where it is turning, in comparison to the
parts it is moving in a straight line. As a results of using speed in the process of creating
images, the created dataset contains colored images.

After creating all the images and forming our dataset, a final step of removing images
based on size is done. The images that are made of sub-trajectories, despite all of the filters

that have been put there to delete non-informative sub-trajectories, still contain a large
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Figure 4.5: These images are created from non-informative sub-trajectories, which will be
removed by our size filter.

number of useless patterns like the ones that are shown in Figure 4.5. These images are not
detected by the linear regression, as they cannot be mapped into a simple line.

After deleting the non-informative images from the data, the new dataset is ready to be
used for training our CNN models.

Our dataset is not labeled by experts, but we have used fishing versus non-fishing labels
for our images. These labels are extracted using the ship type code. As explained earlier,
the type of the ships in trajectory datasets is reported using a code. This code can be
used for separating the fishing ships from others. The ship type code is simply used for
evaluation and training purposes as label of images. The model can detect fishing activities
form unseen trajectories without knowing this code. This code is not used as a feature of
the input for the model, Figure 4.6.

We have assumed that the created images from the activity of the fishing ships in the
middle of the ocean are fishing activities, as they do not perform other types of activities.
For non-fishing data, any other image that is created from other ship types is considered

non-fishing. The non-informative parts of fishing trajectories can be labeled as non-fishing
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Figure 4.6: Usage of ship type code for our model.

data as well. However, as these parts do not contain any pattern and identifying them is

easy, we decided to remove these parts.

4.4 CNNs for Trajectory Classification

The last part of our method is training a chosen CNN on our image dataset that has been
created. Different CNN architectures have been proposed in the last decade, that each one
of them has its characteristics. We have chosen ResNet [13] and Inception [12] for our
case, and the results have been shown on both of these networks. In this chapter, we go
over the networks that we have chosen and cover the detail about them. Finally, the reasons

for choosing ResNet and Inception have been explained.

4.4.1 Inception

The first network that we have used is version three of the Inception Network. Inception
is a network architecture that was first introduced in ”Going Deeper with Convolutions”
[12]. There were several reasons for which this architecture was developed that improved

the accuracy significantly. The main reasons were:

e Choosing the right kernel size is strenuous.

e Deeper networks can lead to overfitting the network.
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e Adding more layers without rational reasoning makes the network computationally

expensive.
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Figure 4.7: The basic idea of an Inception module. (b) is a version of (a) that has dimension
reduction with the use of 1X1 convolutions. Source: [12].

With all the works focusing on creating deeper networks, different problems in the field
arose. Deeper networks had different problems like vanishing gradient and overfitting,
which Inception solved using the Inception module Figure 4.7.

The salient part of the images occupied by the patterns that needs to be classified have
different sizes. This difference in the size of the useful part of the image arises the need
for using different kernel sizes. As deciding on the right kernel size can be complicated

and problem-dependent, Inception module was designed with different kernel sizes in each
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module that leads to a wider network Figure 4.7(a). This module shows how the architec-
ture takes advantage of several different kernel sizes in each layer.

How 1X1 kernels have been used for dimension reduction is shown in Figure 4.7(b).
1X1 kernels cannot capture any feature as they are applied on one pixel at a time. However,
they are used to reduce the number of the input channels. As seen in Figure 4.7(b), they are
applied before other kernels, so that the output of the module has a rational size. Finally,
the outputs are concatenated and passed to the next layer.

In our task, the created images from the trajectories have different pattern sizes. Based
on how the points of a segment for a specific activity are spread in the space and how they
have been clustered, images will have different salient part sizes. For example, as it is
depicted in Figure 3.7, different gear types have different salient part sizes in the images
and subsequently different kernel sizes are needed. As a result, Inception has been used to

satisfy this need of our dataset.

4.4.2 ResNet

xX ]
4
weight layer
F(x) ! relu x
weight layer identity

Figure 4.8: Main innovation of ResNet architecture was the use of shown residual block.
Source: [13].

ResNet is the other architecture that we have used to train it with our dataset. A residual
learning framework was first introduced in [13] to solve the issues that other deep neural
networks had.

Researches showed that deeper networks had better performances on different tasks,
while after a certain depth, the performance would start to deteriorate. Issues like gener-

alization incapability and vanishing gradient were the main reasons for creating residual



36

blocks.

The main idea of a residual block, as shown in Figure 4.8, is to add the input to the
output of the layer. Logically speaking, neural networks can easily approximate f(z) = x;
therefore, adding the input to the output of a layer should not affect the capability of the
networks to find h(z) = g(x) + x, which is the function it was learning plus the input [13].

The shortcut connection in the residual block enables the gradient to flow directly
through them. As a result, the vanishing gradient problem can be solved, and deeper
networks will have the desired performance. The residual block, including the shortcut
connection, is used many times based on the number of layers that the network has.

As an experiment on how the depth of the CNN can affect the results of the method,

ResNet architecture has been used for the fishing activity classification.



Chapter 5

Experiments

In this chapter, empirical results have been presented on the trajectory datasets from differ-

ent areas of the world to show the performance of our presented method.

5.1 Dataset

As explained before, the dataset that we have used is a trajectory dataset that has been
recorded using AIS and S-AIS technology. Our dataset contains different time periods
from different regions, which is shown in more detail in Table 5.1.

The collected data was chosen from the specified regions based on the fishing activity
rate. With the use of online tools and getting advice from experts, regions with high fishing
activity rates were chosen, and the data of those regions were collected. On the other hand,
there were no specific time periods of interest, and we added any available time period of
those regions to our data.

In addition to all of the data that is extracted from various regions, another trajectory
dataset, which was made specifically for a fishing detection competition, has been used to
create the images of fishing activities [68]. The dataset is from a competition to detect the
type of the fishing vessel for a given MMSI number. Many of the fields of this dataset are
the same as the datasets that we have used. However, in our dataset, without considering

the vessel type, we have simply used the competition trajectories as fishing activity samples

Class Region Time Period Number of Vessels
A Barents 2011-2019 4488

A Brazil 2011-2019 23001

A Kiribati 2011-2019 6305

A Galapagos 2011-2019 9713

B Galapagos 2011-2019 2532

Table 5.1: Regions and time periods of the extracted trajectory data that make our final

dataset.
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Dataset Total number of | Fishing Activity | Non-fishing Activ-
Images Images ity Images

A-Barents 1911 757 1154

A-Brazil 7616 1317 6299

A-Kiribati 14258 4988 9270

A-Galapagos 2096 147 1949

B-Galapagos 1206 23 1183

Competition 1035 1035 -

Dataset

Total 28122 8267 19855

Table 5.2: Number of the created images for each dataset we have, which are combined to
make our final image dataset.

to create images from them. This dataset is relatively small, and only trajectories of 1025
vessels for short periods of time are included.

After all the preprocessing steps for creating images from the datasets that we had, a
total of 28,122 images were created, of which 29% were fishing activity images and the
rest were non-fishing activity images. The exact number of images created for each of the
smaller datasets that we have used is shown in Table 5.2. It is also worth mentioning that
the size of the images is 224 x 224 pixels.

As seen from Table 5.2, the number of images that are created is lower than expected.
This phenomenon is due to the difference in transmitting rates of ships. As explained
previously, DBSCAN, with a set of global parameters, is used for extracting sub-trajectories
that we apply filters on. These global parameters do not satisfy all different densities, so
they can eliminate some of the useful sub-trajectories due to their lower densities. We
could have set the parameters that are suitable for lower densities to create more images
from the trajectories, but this would result in having a large amount of noise in our final
image dataset.

Another problem with parameters suitable for lower densities is the connection of the
activity part of the trajectory with the non-informative part of it. If the parameters satisfy
the density around the path before and after the activity, the details of the activities will be
unclear as a result of zoomed out images.

Setting the right Parameters for the DBSCAN can be a challenging task. We used trial
and error to decide on the most suitable parameters for our case. These parameters can give

an image dataset with a low number of non-informative segments, which can be omitted.
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The parameters we have used are 8 and 80 for Eps and MinPts, respectively. With these
parameters, an image dataset of the mentioned sizes in Table 5.2, has been created. Also
it should be mentioned that in the trial and error process only a small part of the data has
been used, and we have made sure that no test images have been created from that part.
All of the datasets have been combined to make our final trajectory image dataset. For
training and evaluation purposes, we have split the data into train, validation, and test sets

according to the 0.6 — 0.2 — 0.2 proportions, respectively.

5.2 Results

In this section, the setting and parameters of the CNN models, along with the results,
have been presented and analyzed. We will argue that our results show the significance
usefulness of our model on real-world data.

The results of our method have been reported for Inception [12] and ResNet [13] models
that we have used. However from different metrics, we have decided that Inception model
has a better performance on this task and this model has been analyzed in more detail. We
did not use cross-validation for our experiments because the available systems were not
sufficient for it.

One of the parameters that is highly important in the training process is the Learning
Rate (LR). LR is hyper-parameter that we set for our step size when updating our wights
of the network [69]. Smaller LRs will lead to a need for a higher number of epochs, while
bigger ones might result in undesirable performance. Therefore, we trained our models for
only 10 epochs with different LRs and based on results, the LR value of 0.003 was used.
Figure 5.1, shows the learning curve for our Inception model trained on the train data and
evaluated on validation data for each epoch.

In terms of time complexity, our method can be used in real-time for predicting new
samples. Our method has two main parts that need to be analyzed for the time complexity
of it, image creation and training a CNN. The image creation part has a time complexity
of O(n), with n being the number of trajectories. The process of creating images from
trajectories, includes DBSCAN, applying filters, and drawing the pattern. All of these
steps need a small time that is either constant or depends on the number of the points in
a trajectory, which is limited. Therefore the time complexity of the image creation part is

linear and can be done in real-time. The next part is training a CNN, which only will be
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Model Accuracy Sensitivity Specificity
Inception  Image- | 0.83 0.87 0.71

based Model

ResNet Image- | 0.82 0.87 0.68

based Model

Table 5.3: The results of our model on the created image dataset.

done once. Once the trained model is saved, it can be used for prediction. Therefore our

model can predict fishing activities from unseen data as they are received.

Also, it is worth mentioning that the whole process of this work has been done in two

parts on two different systems. The creation process of our image dataset on the Big Data
institute’s server with 40 CPUs of type Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz,

took a total of 6 hours and 10 minutes for all datasets. The learning process of the CNN

Inception model has been done on Dalhousie DeepSense’s systems. Two GPUs of type

Mellanox SN 2700, have been used to train our model in 6 hours.

Loss

0.4%

0.44 -

—— validation loss
— frain loss

60
Epochs

T
80 100

Figure 5.1: Learning Curve of the Inception model.

Thereafter the training process, we test our model on the test data. The performance of

a model cannot be truly captured if a test set is not used, as the validation data has been

used for parameter tuning. Our model on the test data has satisfactory results, which have

been shown in Table 5.3.
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Model Accuracy Sensitivity Specificity
Souza  [10](purse | 0.97 0.99 0.71
seiner)

Souza 0.83 0.57 0.93
[10](longliner)

Souza [10](trawler) | 0.83 0.93 0.68

Table 5.4: The results of Souza’s model on their expert labeled dataset for different fishing
gear types.

The metrics that we have used are Accuracy, Sensitivity, and Specificity. The equations
of these metrics are given in Equation 5.1. Sensitivity is related to non-fishing results, and
specificity is related to the fishing detection results. The two later metrics are required to

show that the model was not imbalanced, and results are interpreted correctly.

1 TP+TN
ceuracy =
YSTPYFP+TN+FN
TP
tivity = ———— 5.1
Sensitivity TP L FN 5.
TN
Speci ficity —
peci ficity TN+ FP

These parameters can show that the performance of our Inception model is satisfactory,
Table 5.3. Some other models that have been trained for fishing detection of a specific
gear type in [10] have slightly better results, Table 5.4. For example, Souza’s method for
fishing detection of purse seiners has excellent performance. However, these results are
on a different small dataset that has been cleaned and labeled by experts. Therefore these
higher numbers do not necessarily show better results for those methods in comparison to
our method. The performance of our method is proved to be good enough on the noisy
real-world data that has not been labeled manually.

We were not able to compare our method to Souza’s method [10] on the same dataset.
Our data is a big noisy dataset that has not been labeled by experts, and the gear type of
fishing activities is not clear. Therefore Souza’s method cannot be tested on our data. On the
other hand, the data that they have used is a small dataset, and their results are calculated
based on the number of points that are correctly classified. However, our method works
with the number of correctly classified images, and as the dataset is small, this cannot be a
useful metric for the experiment.

One of the main discussion in many research papers that train a CNN model is size of
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Figure 5.2: Confusion Matrix of the Inception model.

the kernels that are used. As explained in Chapter 4, the Inception model uses different
kernel sizes in each layer of the network. Therefore, there is no need to manually try
different kernel sizes because the model contains several of them.

In addition to the reported results with the defined metrics, the confusion matrix of our
method has been shown in Figure 5.2. As can be seen from the number of False Nega-
tives and False Positives, Our method has an excellent performance in terms of detecting
fishing activities. There is a significant gap between the True and False predictions for our
classification, which shows the strength of the method on unseen data.

We took a further step to look into the false predictions of our model, in order to ana-
lyze the weaknesses of our model. Different samples with false predictions of our Inception
model have been depicted in Figure 5.3. As it can be inferred from these examples, most
of the samples that the model could not predict correctly, were images of non-informative
segments that have been slipped through our filters. The model is uncertain about the pre-
diction of this type of images as both fishing and non-fishing data contain these images to
some extent. Therefore the predictions are not correct and these samples are misclassified.
However, the number of these images is low, and they can barely affect the performance of
the model.

Overall the results indicate that our model can be used on AIS trajectory data for the
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task of fishing detection of unseen data. The trained model can predict if the movement of

a ship has a similar pattern of the learnt fishing patterns.

Predicted: Fishing
Actual: Non-fishing

Predicted: Fishing
Actual: Non-fishing

Predicted: Non-fishing
Actual: Fishing

Predicted: Non-fishing
Actual: Fishing

Predicted: Non-fishing
Actual: Fishing

Predicted: Fishing
Actual: Non-fishing

Figure 5.3: Samples that our trained model was unable to classify correctly have been
depicted here. The weakness of the model, as it can be seen from these samples, is due
to the noise data. These noise samples slip through the filters that have been put in the
segmentation part to prevent depicting non-informative segments.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In general, there has been interest in fishing activity detection from trajectory data since
the beginning. Patterns of fishing activities have various sizes and forms. Besides, the data
that is collected is noisy, and the locations have small errors. Therefore, fishing detection
has been a challenge for a long time, and the methods that have been proposed are highly
dependent on human aid in the process.

In this thesis, we went over our proposed method for fishing activity detection that
eliminates the dependency of the problem on humans. Our proposed method that tackles the
fishing detection problem from AIS trajectory dataset, is a new image approach. An image
dataset is created from the trajectory data and the model is trained on it. The trajectory
dataset that we have is a set of points in time that represent the location of a vessel. With
the use of DBSCAN, we separate small informative parts of these trajectories and draw the
lines in which the vessel has moved. Thereafter, images are created out of those lines and
fed into a CNN. The CNN model is trained to detect fishing patterns from non-fishing ones.
The uniqueness of our method is the data transformation part, because we do not feed the
raw trajectories into the model.

The trained model is tested on AIS trajectory data from different regions of the world.
We show that our results are adequate for a generalized method without having any expert
labeled data. In addition, the results show that weak predictions of the model are due to
the noisy data, and if the data is cleaned better, the accuracy will improve significantly.
Our work opens up a new approach for trajectory related tasks or other data transformation

techniques to help solve the problems.
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6.2 Discussion

In this section, the research questions that were asked in the Introduction chapter are an-

swered.

1. How to detect illegal fishing from AIS data? We tackle this problem by representing
the activity segments of the trajectory data as images to classifier. Our method gives
satisfactory results for the task that indicates illegal fishing can be detected using our

trained model.

2. Can representing trajectories as images improve fishing detection? As it is shown in
the Results chapter, the performance of our model gives a good generalized accuracy

for the task, which shows the usefulness of this unique approach.

3. How does the performance of our proposed method compare to the other individ-
ual state-of-the-art classical approaches? Our approach has a better performance in
some metrics than the other models, while for some other, the performance is slightly
less satisfying. Although our method gives a better generalized error than training

different models for different vessel types.

4. Can our method outperform other individual state-of-the-art classical approaches for
all types of vessels? Our method gives satisfactory results in comparison to most of
the models. It is worth mentioning that our model is the only method that does not
need a labeled cleaned dataset, and all of the steps for the dataset are done automati-

cally without the help of experts.

6.3 Limitations

Despite the adequate performance of our model, there are certain limitations to it. These

limitations include:

e One of the main limitations of our method, as mentioned in the Results chapter, is
the noise images that have been created as fishing images in our dataset. As the
number of these images is small, the effect of them on the accuracy of the model is

not discouraging. One of the ways that this limitation can be eliminated is by experts.
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As a visual analytic task, a human expert can monitor the created images and remove

the ones that can affect the learning of the model.

e DBSCAN has its own limitations, and as our method uses it for the segmentation step,
these limitations are also present in our model. The main problem with DBSCAN
for our model is the elimination of informative images due to the global parameters

that do not satisfy all segments.

e As mentioned earlier, the labels for our image dataset come from the ship type code.
We assume that if a ship type code does not indicate a fishing vessel, all of the images
created from that ship’s trajectory are labeled as non-fishing. Therefore the images

created from illegal fishing activities of non-fishing vessels are labeled as non-fishing.

6.4 Future Work

To the best of our knowledge, our method is the first image approach to solve a trajectory
related problem. Therefore, there are many aspects of this approach that can be explored in
the future or implemented for similar tasks. Other than that the specific improvements that

can be done in future works for our method are as follows:

e By looking at the limitations of our method, it can be understood that the segmen-
tation method and filters need to be improved in the future. The need for global
parameters of the segmentation algorithm that produce noise samples or remove use-

ful data should be eliminated.

e One of the ways that the segmentation method can be improved is the automation of
finding the parameters based on the time frequency of the ship transmitting points in

a trajectory.

e Another future work that can improve our model is using more customized architec-
tures for our CNN. Based on the task and type of data, architectures can be modified

to improve the overall performance.

e Exploring active learning algorithms for the task with a visual analytic approach is

an interesting future work. The user can help the model while learning to improve
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the performance of the model in the segmentation part. Exact borders of the segment

can be identified by the user in the procedure to avoid creating noise images.

e The image dataset can be created by depicting the sub-trajectories as time-series.
Spatiotemporal data can be converted to time-series in different ways, and images of

these series can be saved for classification part in the future.

e Other classical algorithms rather than deep learning models can be tested for the

classification of the images dataset in the future.
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Appendix A

Programming details

All of the code has been written in Python 3.7.0, and the following libraries have been used:

1. Anaconda Python: We have used Anaconda version 2019.03 for the installation and
easy setting of our environment. Anaconda is an open-source distribution that man-
ages the dependencies and prepares most used Data Science and Machine Learning
libraries. Many libraries that we have used, including Matplotlib, are installed using

Anaconda.

2. Scikit-learn: For the segmentation part of our model, the DBSCAN algorithm from
scikit-learn library version 0.21.2, have been used. This library also provides differ-

ent classification and evaluation functions.

3. Matplotlib: One of the main parts of our method is the image creation part that has
been done using Matplotlib version 3.1.0. This library is a plotting library that can

draw the wanted patterns and save them as images.

4. PyTorch: PyTorch version 1.1.1 developed by Facebook’s artificial intelligence re-
search group, is a machine learning library. PyTorch is used in our code for imple-

menting the CNN architectures, and all of the training and testing steps of them.

5. SciPy: For our scientific computing purposes, we have used SciPy version 1.2.0.
This library provides us with a fast implementation of linear regression for our filter-

ing steps.

54



