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Abstract

The linear stability of localized spike solutions to the one-dimensional Gierer-Meinhardt

activator-inhibitor model with delayed nonlinear reaction kinetics is analyzed both

analytically and numerically. In the limit of slow activator diffusivity, we show that

delay destabilizes the equilibrium solution, and we find critical values at which a Hopf

bifurcation is observed in both the spike position and amplitude. For specific cases

of delayed reaction kinetics, we formulate the nonlocal eigenvalue problem and we

study the stability of both the small and large eigenvalues. For the small eigenvalues,

we show that in some cases the reduced system of ordinary differential equations, for

the motion of the slow evolving spikes, undergoes a Hopf bifurcation. Instabilities

in the spike profile are also considered, and we show that the equilibrium solution is

unstable as delay is increased beyond a critical Hopf bifurcation value. For one-spike

solutions, we find that instability in the profile is triggered before the positional

instability, except in the case where the degradation of activator is delayed where

stable positional oscillations are observed. The analytical results are validated using

numerical simulations.

In addition, we study an example of quorum sensing behaviour modelled by

a two-dimensional cell-bulk model coupled to delayed intracellular dynamics. In

this model, the essential process of cell-to-cell communication is achieved by the

diffusion of a signalling molecule in a well-mixed bulk medium between spatially

segregated active cells. Assuming a very large diffusion limit, we investigate the

onset of oscillatory instabilities due to coupling with delayed intracellular dynamics.

The cell-bulk model, for the case of a single active cell containing one intracellular

species, is reduced to a finite system of nonlinear delay ordinary differential equations

and studied both analytically and numerically. Using Hill function-type intracellular

kinetics with fixed delay, we show that delayed cell-bulk coupling triggers sustained

oscillations as delay increases beyond the critical Hopf bifurcation threshold.
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Chapter 1

Introduction

1.1 Background and Motivation

Developmental biology is the science of explaining the various processes involved

in the progressive development of identical cells into whole multicellular organisms.

There are many different mechanisms involved in the development of an organism,

such as gene regulation, cell proliferation, and cell-to-cell communication (see [23]).

In contemporary experimental biology, there has been renewed interest in exploring

some of the key processes involved in the generation and development of various het-

erogeneous organism structures from seemingly homogeneous embryonic components,

(see [48]), with an increased focus on the effect of genetic and chemical interactions

during development.

Many biological processes are regulated by biochemical reactions involving pro-

teins, known as enzymes, that act as activators or inhibitors. There have been

many attempts made in an effort to understand these complex processes; in par-

ticular, those involved in pattern formation and morphogenesis, where a group of

initially equivalent cells differentiate and develop into the various structures and or-

gans. Furthermore, it has been shown that the concept of feedback control plays a

fundamental role in many biological systems, where in a multi-step reaction, one of

the products resulting from one the steps may have the nonlinear effect of activating

or inhibiting the production of another reactant produced by other reaction steps,

(see [55, 63, 69]). In addition, some reactions may exhibit a form of autocatalysis,

which is the process by which a reactant is involved in its own production (see [55]).

In 1952, Alan Turing [68] proposed an activator-inhibitor type system, of two in-

teracting and diffusing chemical species (morphogens), as a possible model for mor-

phogenesis. He suggested that this type of reaction-diffusion (RD) system may have

a steady state where one of the two diffusing morphogens has locally elevated concen-

tration levels, causing neighbouring cells to develop differently from the surrounding

1
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cells, thereby forming a distinct organ. In addition, under certain constraints, these

localized spikes in the concentration of one of the reaction components could be re-

sponsible for the process of morphogenesis. In his landmark paper [68], Turing uses

linear analysis to examine the stability of a general two-component RD system near

a spatially homogeneous equilibrium solution. Turing shows that in the case of a

large diffusion ratio, the equilibrium solution may become unstable, and that this

instability results in the formation of stable spatially complex patterns. Thus, the

interaction of two diffusing morphogens may result in a diffusion-driven bifurcation,

which then leads to spontaneous pattern formation.

The Turing model of two chemical species in one-spatial dimension domain, as

considered in [54], has the general form

ut = Du uxx + F (u, v) , vt = Dv vxx +G(u, v) , (1.1)

where u and v are used to denote the activator and inhibitor concentrations, respec-

tively. Du and Dv denote the diffusion coefficients of u and v, respectively, such that

Du < Dv. Motivated by the pioneering work of Turing, many subsequent RD models

have been proposed and analyzed for diffusion-driven instability and its applications

in developmental biology and pattern formation [28, 50].

Incorporating time delays in reaction kinetics when modelling reaction-diffusion

patterns makes them more realistic and sophisticated. This is due to the fact that a

finite amount of time is required for the reactions to carry out the processes involved.

Many types of delay (ordinary) differential equation (DDE) systems have been pro-

posed for modelling different fields of life sciences, such as population biology, molec-

ular and cellular biology, engineering and control theory, as well as chemical and

biological pattern formation (see [1, 10, 16, 19, 29, 30, 42, 55, 81]). Moreover, the

mathematical theory of DDEs has been studied and documented in [13, 16, 40, 63].

The effect of time delay on the stability of steady state solutions plays a central role

in the analysis of delay differential equations. In the modelling of reaction-diffusion

systems, it has been shown that time delay often triggers oscillatory instabilities,

which may result in a significant destabilizing effect on the steady state solutions

of a given system (see for example [17, 20, 21, 42, 43]). To illustrate the effect of

delay on the stability of an equilibrium solution, we consider a simple initial value

problem (IVP) involving a first-order linear delay differential equation in contrast to
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an ordinary differential equation (ODE) model. In the absence of delay, the initial

value problem given by

dx

dt
= kx(t) , x(0) = 1 , (1.2)

has the exponential solution of the form

x(t) = ekt . (1.3)

With delay, the problem in (1.2) becomes a DDE of the form

dx

dt
= kx(t− T ) , x(t) = 1 , when − T ≤ t < 0 , (1.4)

for some fixed time delay parameter, T . The right hand side of (1.4) depends on

the history; that is the solution x at time t − T . Moreover, the initial condition

in (1.2) becomes an initial function, x(t), which requires the value of the solution at

the initial point as well as the values of x(t) looking back in time over the interval

[−T, 0). In contrast with the exponential solution (1.3), the DDE in (1.4) has an

oscillatory particular solution of the form

x = α sin (ωt) . (1.5)

Substituting (1.5) into the DDE in (1.4) gives

ωα cos (ωt) = kα [sin (ωt) cos (ωT )− cos (ωt) sin (ωT )] . (1.6)

Comparing coefficients on both sides of equation (1.6) yields two necessary conditions

for ω and T given by

cos (ωT ) = 0 , and ω = −k sin (ωT ) . (1.7)

The first condition gives that ωT = π/2 or 3π/2, and using the second condition we

obtain that

ωT =
π

2
, kT = −π

2
, or ωT =

3π

2
, kT =

3π

2
. (1.8)

Using the method of steps for the case where k = −1 and T = 1, equation (1.4)

yields the solution x = 1 − t over the interval [0, 1), and the solution x = −(t −
1) + 1

2
(t − 1)2 when solved over the interval [1, 2) using the previous solution as
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initial data at time t = 1, as shown in [16]. Continuing in the same manner, we can

obtain solutions for subsequent intervals. An interesting observation is the presence

of jump discontinuities at time t = 0 which propagates in time to solutions of higher

derivatives of the IVP, thereby suggesting that the presence of delay may induce

oscillations. This property of propagated discontinuities caused by time delay is

unique to delay differential equations, and is not observed in ordinary differential

equations [16, 63, 55].

In spite of the many advances in computational techniques and mathematical

tools, the study of delay differential equations remains a very difficult and challenging

task. Different types of DDEs have been studied, with fixed and time-dependent lag

functions, also known as neutral delays [2]. Several numerical and graphical tools

have been developed for analyzing DDEs [61, 62], in particular those with oscillatory

solutions. In general, it has been shown that delay can have a profound effect on the

stability of dynamical systems by inducing oscillatory behaviour. In recent research,

there have been extensive studies on the effect of both delay and diffusion in pattern

formation for population and chemical models [15, 21, 22, 60], as well as the theory of

Hopf bifurcation, Turing instability, and Turing-Hopf bifurcation. In [27], the authors

investigate the possible relation between Turing instabilities and Hopf bifurcations,

and they show that increasing delay or varying the diffusion parameters can result

in periodic oscillations.

Time delays in reaction kinetics are well-motivated biologically, due to time lags

needed for gene expression. As a result, there have been numerous interesting stud-

ies done on the possible effect of fixed time delays in reaction kinetics for various

RD models for pattern formation [20, 43, 44]. In particular, the effect of delayed

gene expression on the dynamics of a one-dimensional reaction-diffusion pattern for-

mation system is studied in [20], where it has been shown numerically that delay

causes a dramatic increase in the time needed for the induction of patterning in the

RD system, and in some cases delay resulted in a failure of the Turing instability

mechanism.

The incorporation of time delays undoubtedly results in more realistic models.

However the steady state stability analysis for a delay system is often quite difficult

mainly due to the complexity of the resulting transcendental characteristic equation,
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which often has infinitely many complex roots. In [4] and [5], the effect of time de-

lay in reaction kinetics has been rigorously studied. The authors provide a detailed

analysis of the equilibrium stability and the associated Hopf bifurcation problem,

using a systematic approach to solve for the pure imaginary roots of the correspond-

ing transcendental polynomial. In [9], Hopf bifurcation analysis is done for a model

where the characteristic equation is dependant on time delay.

One example of a feedback control system is the activator-inhibitor type model

proposed by Gierer and Meinhardt in [23]. In this two-species model, characterized

by a short-range activation and a long-range inhibition, it is assumed that one of the

reactants, referred to as the activator, diffuses much slower than the other reactant

referred to as the inhibitor. Furthermore, the activator molecule is auto-catalyzed,

while the production of the inhibitor is catalyzed by the activator and inhibits the

production of the activator. Analysis of the Gierer-Meinhardt (GM) model shows

that the limiting of the slow diffusing activator may result in pattern formation for

localized spikes in the activator concentration. In [42], the effect of gene expres-

sion time delays on a GM model is numerically analyzed, with the assumption that

signal transduction is induced by reversible ligand binding at the cell surface. The

study shows that, with increasing values of delay, spatial-temporal oscillations are

observed, and that a further increase in time delay causes an uncontrolled increase in

the amplitude of these oscillations. These results suggest the incorporation of only

relatively small values of delay in gene expression can have a substantial destabilizing

effect on the stability of the spatial patterning mechanism, and a significant temporal

influence on the system dynamics and pattern formation.

The GM equations are a system of nonlinear reaction-diffusion equations which

have been used as a model of organogenesis [23]. The nonlinear terms are used to

represent the complex process of protein production regulation. Since this process

evolves on a much slower time-scale than diffusion and decay, it is natural to consider

using DDEs when modelling the system. The nonlinear terms are a simplification of

a complex series of reactions which may proceed at different rates. In this thesis we

will consider the effects of delaying various terms in the equations. In each case, we

find a reduced system of DDEs which approximate the behaviour of the full system

of delay partial differential equations (PDE). In the absence of delay, the GM model,
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in dimensionless form, can be written as

at = ϵ2axx − a+
a2

h
, 0 < x < L , t > 0 , (1.9a)

σht = Dhxx − µh+
a2

ϵ
, 0 < x < L , t > 0 , (1.9b)

with boundary conditions ax(0, t) = ax(L, t) = hx(0, t) = hx(L, t) = 0. Here a and h

represent the activator concentration and the inhibitor concentration, respectively.

The parameter 0 < ϵ ≪ 1 represents the diffusivity of the activator component

a, while the diffusivity of the inhibitor component h is given by D > 0, and we

assume D = O(1). We assume ϵ ≪ 1 so that the activator diffuses more slowly

than the inhibitor. The parameters 0 ≤ σ << 1 and µ > 0 represent a time scaling

and decay constant for the inhibitor reaction. We have used subscripts to denote

partial derivatives. We will use the notation aT = a(x, t− T ) to represent a delayed

term. The exponents in the nonlinear terms correspond to the activator-inhibitor

model in the original paper [23]. We have chosen this system to simplify some of

the calculations. However the analysis may be applied to the more general system

with trivial modifications. A key feature of this system is the formation of solutions

with spatial structure (see [33, 34]). In particular, a(x, t) will be exponentially small

except in well defined regions where the value of a(x, t) = O(1). These localized

elevated levels of the activator are thought to cause the localized differentiation of

cells in organogenesis.

In the absence of delay, the stability and dynamics of spike-type solutions to the

GM model, in one and two dimensions, have been rigorously studied and analyzed

both asymptotically and numerically. Results for the existence of a Hopf bifurcation

have been derived for some critical threshold values of the parameter σ in (1.9), for

the one-dimensional shadow problem in the limitD → ∞ (see [7, 12, 32, 76]), the one-

dimensional infinite-line problem (see [14, 77]), and the two-dimensional multi-spot

problem (see [80]). In these studies, the models are linearized about a localized steady

state solution and the spectrum of the derived nonlocal eigenvalue problem (NLEP)

is analyzed. Results show that steady state solutions are destabilized through a

Hopf bifurcation as σ increases past a certain threshold, σH , (see also [6, 34, 71,

78], and the references therein). In addition, a one-dimensional GM model with

undelayed kinetics is analyzed in [56], where the exponents are such that p = 2m− 3
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and m > 2. The authors show that the NLEP in this case can be reduced to a

simple transcendental equation, and is explicitly solvable. The special case when

p = m = 3 is studied in [38], where the stability of steady state hot-spot patterns for

a reaction-diffusion model of urban crime is analyzed. For the case of a single spike

solution, in the regime where diffusion is at least logarithmically large as ϵ → 0, a

differential equation representing the dynamics for the center of the spike was derived

and analyzed in [74].

In [17], the linear stability of spike solutions is analyzed for the GM model with

delayed reaction kinetics. The authors show that incorporating delay in certain

reaction kinetics leads to unconditional instability of the equilibrium solution, and

a Hopf bifurcation occurs as delay increases beyond a critical threshold value [17].

Moreover, analysis of the NLEP for the singularly perturbed two-component GM

system with fixed time delay is considered in [18], where delay in only the activator

kinetics has been shown to have a stabilizing effect on the stability of localized spike

solutions.

In [4] and [42], the authors consider how delay can enter different terms of the

equation. The exact nature of how delay enters the equation can depend on which

steps in a complex sequence of reactions are rate limiting steps. We will consider

delaying the individual components of the nonlinear reaction terms alone and in

combination. We will use similar methods to those considered in [34] to construct a

system of delay differential equations approximating the behaviour of the localized

spike solutions. As well we will consider the stability of the slowly evolving spikes.

In particular we will consider instability due to Hopf bifurcations occurring as the

delay is increased. There are two classes of eigenvalues to consider, referred to as the

large and small eigenvalues. The large eigenvalues correspond to profile instabilities

and the small eigenvalues correspond to translation instabilities. A Hopf bifurcation

occurring in the former will result in spikes which oscillate up and down and in the

former spikes which move back and forth. A discussion on the nature and origin of

these eigenvalues can be found in [33] and [34].

The main goal of the first two chapters of this thesis is to provide detailed analyt-

ical and numerical stability analysis of spike-type solutions to the one-dimensional

GM model with delayed reaction kinetics. In particular, we show that in some cases
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delay destabilizes the equilibrium solution through a Hopf bifurcation, which is ob-

served as delay increases past a certain threshold TH .

The GM model offers an example of cell-to-cell communication through the dif-

fusion of chemicals. Another sophisticated mechanism of cell interaction through

diffusive signals is found in the study of quorum sensing (QS) behaviour used by

many intricate species to control the essential process of cell-to-cell communication.

Quorum sensing is defined as the regulation of gene expression in response to fluc-

tuations in cell-population density. QS behaviour has been observed and studied

for various organisms and populations (see for example [66, 67]). Recent studies of

bacterial populations show evidence of QS behaviour, whereby collective synchro-

nized behaviour driven by chemical signalling between cells is triggered only when

the number of cells in the population exceeds a certain threshold. See for example

the study of bacterial bioluminescence in [65] and the references therein.

A realistic modelling of quorum behaviour is provided by a class of coupled cell-

bulk models, where spatially segregated active cells communicate through a diffusing

signalling molecule in a bulk region that is well-mixed. Models for the coupling of

local compartments to bulk diffusion are studied in [8, 24, 41]. Analysis of Turing

patterns due to coupled bulk and surface diffusion is given in [45]. In [25] and [26], a

new class of two-dimensional quorum-sensing models is formulated and analyzed. In

these models, spatially localized signalling compartments consisting of dynamically

active small cells are coupled to nonlinear intracellular kinetics through a passive

bulk diffusion field. In the absence of delay, the analysis in [25] shows that when the

diffusion coefficient is large, the bulk region is well-mixed and the cell-bulk model

can be reduced to a finite-dimensional ODE system for the bulk concentration field

coupled to the intracellular dynamics, which is shown to have oscillatory instabilities

triggered by the cell-bulk coupling. Similar coupled cell-bulk models have been an-

alyzed in R3, for the study of quorum-sensing behaviour for yeast cells and bacteria

(see [11, 52, 53, 59]). In some of these studies, for the case where a single ODE

is used to model the intracellular dynamics, no triggered oscillations due to Hopf

bifurcations were observed.

In this thesis, we extend the analysis in [25] and [26] to explore the effect of delay

in the intracellular dynamics on the stability of the steady state solutions. We show
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that in the limit of large diffusion, delaying the intracellular dynamics can destabilize

the equilibrium solutions through a Hopf bifurcation. In a related class of models

with small signalling compartments, it has been shown recently that time delay can

lead to stable temporal oscillations (see [46, 47]).

1.2 Numerical Analysis of Delay Partial Differential Equations

Simulations of delay partial differential equations is a relatively new field and there

are no preexisting software packages. Converting the partial differential equation to

a system of ODEs by replacing the Laplacian by a second order centered difference

approximation and using dde23 in Matlab did not provide useful results. The system

proved too stiff. A first order IMEX scheme was used instead. The diffusive terms

where treated implicitly and the nonlinear terms explicitly. Some of the MatLab and

Maple [49] codes used are provided in Appendix A. For all simulations of ordinary

delay systems we use the MatLab code ddesd with default settings.

1.3 Thesis Outline

The outline of this thesis is as follows: In Chapter 2, we construct a one-dimensional

GM model with various cases of delayed reaction kinetics, and we analyze the effect

of delay on the stability and dynamics of the slow evolving one-spike solution. In

each case the delay partial differential equation system is reduced to a DDE for the

position of the spike. We then examine the possibility of oscillatory motion of a

spike, by finding Hopf bifurcations in the reduced equations for spike position. We

also examine Hopf bifurcations in the spike profile, and we find that in every case

where a Hopf bifurcation occurs in the reduced system, a Hopf bifurcation in the

profile has already made the partial differential equation spike solution unstable.

Furthermore, we show that oscillations in spike position are possible for this system

if the delay is in the activator degradation.

In Chapter 3, we extend our stability and dynamics analysis to the more general

case of a k-spike equilibrium solution. For various cases of delayed reaction kinetics,

we derive the corresponding NLEP associated with localized eigenfunctions near the

spike locations. The stability of the k-spike solution is analyzed using the resulting
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large eigenvalues. The corresponding eigenvalue problem, governing localized spike

profile instabilities, is studied as delay is introduced, using analytical techniques

which are verified numerically for each case.

Motivated by the work done in [25], we analyze in Chapter 4 a cell-bulk model cou-

pled to delayed intracellular dynamics through bulk diffusion, in a two-dimensional

bounded domain. In this model, a dynamically active signalling cell consisting of

multiple interacting species releases a signalling molecule into an exterior bulk re-

gion. This release is regulated by both the outer concentration of the molecule as

well as its intracellular density. We extend the analysis in [25] to allow for delayed

intracellular dynamics. In the limit of very fast diffusivity, where the bulk region is

well-mixed, we show that the model can be reduced to a nonlinear system of DDEs

with finite dimension, and we analyze the destabilizing effect of delay in the intra-

cellular dynamics on the steady state solutions. Numerical simulations are used to

confirm our results and the corresponding Hopf bifurcation thresholds are calculated.

In Chapter 5, we summarize and discuss the results of this thesis, as well as

suggest some future work and possible extensions to our studies.



Chapter 2

Stability and Dynamics of a One-Spike Solution to the

One-Dimensional Gierer-Meinhardt Model with Delayed

Reaction Kinetics

In this chapter, we analyze the linear stability and dynamics of the one-spike steady

state solution to the GM Model in (1.9), with σ = 0, in the limit ϵ → 0, and when

the nonlinear reaction terms have a time delay T . The goal of this chapter is to

show that for some cases of delayed reaction kinetics, time delay has a destabilizing

effect on the stability of the spike solution. Moreover, we show that, for certain cases

of delayed reaction kinetics, a Hopf bifurcation occurs in both the spike position

and amplitude as delay is increased past a critical threshold value TH . Furthermore,

we show numerically that these sustained oscillations due to a Hopf bifurcation are

observed first in the spike amplitude.

In §2.1, we derive the equation of motion for a single spike for various cases of

delayed nonlinear reaction terms. This is done by first introducing a slow time-scale

variable to the model and then using it to reduce the system of partial differential

equations to a system of ODEs. We then compare the reduced system to the full PDE

system using numerical methods. In §2.2, we find critical delay values for position

instabilities due to a Hopf bifurcation in the reduced spike location equation. We then

formulate and analyze, in §2.3, the NLEP for the various cases of delayed kinetics,

and we find conditions under which the corresponding large eigenvalues may undergo

a Hopf bifurcation. Finally, in §2.4, we show that delay in the degradation of the

activator is the only case in which sustained positional oscillation are observed.

2.1 Derivation of Differential Equation for Spike Position

We begin by considering the GM Model in (1.9) with fixed delay in some of the

nonlinear reaction terms. In each case, we will show that the PDE system can

11
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be reduced to a system of ODEs representing the motion for the corresponding

spike solution. Throughout this section we use the method of matched asymptotic

expansions and the Van Dyke matching condition in [72] to match the outer and

inner asymptotic approximations.

2.1.1 Delay in the Catalyzed Production of Inhibitor

In this section, we will consider the addition of delay to the nonlinear term in (1.9b).

The model equations are:

at = ϵ2axx − a+
a2

h
, 0 < x < L , t > 0 , (2.1a)

0 = Dhxx − µh+
a2T
ϵ
, 0 < x < L , t > 0 , (2.1b)

ax(0, t) = ax(L, t) = hx(0, t) = hx(L, t) = 0 , (2.1c)

where aT (x, t) = a(x, t − T ). We assume 0 < ϵ ≪ 1, and D = O(1). We note that

when σ ̸= 0 and T = 0, the eigenvalue problem associated with linearizing the model

in (1.9) around the equilibrium solution becomes a NLEP and a Hopf bifurcation

can occur. To simplify the analysis and isolate the effect of time delay T , we have

assumed σ = 0. The Neumann boundary conditions (2.1c) and assumptions for (2.1)

will be used throughout this thesis.

In this case the limiting reaction rate step would be in the enhanced production

of h by a, and therefore we have that the catalyzed production of h is slow. This

is the simplest case we will consider. The methods used in [34] carry over with few

changes and the system of differential equations in [34] becomes a system of delay

differential equations here.

We consider a single spike equilibrium solution localized about x = x0. We expect

the motion of the spike to be on an O(ϵ2) time-scale, and therefore we consider the

scaling τ = ϵ2t. Moreover, we define

y =
x− x0(τ)

ϵ
, τ = ϵ2t , (2.2)

as an inner coordinate. With y as the dependant variable, we use the method of

matched asymptotic expansions to construct the equilibrium solution. In the inner

region, defined near x0, the value of h is constant to leading order, and the activator
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concentration is localized. This will allow us to solve for the leading order behaviour

of a in the inner region. In the outer region, away from the spike location x0, the

activator concentration is exponentially small, and therefore a will act like a multiple

of a Dirac delta function, δ(x). By matching the inner and outer regions, we will

construct the leading order solution to h in the outer region. The second order

equations will then result in a solvability condition which results in an equation

governing the motion of the spike.

In the inner region, we introduce the new variables

A(y) = a(x0 + ϵy) , H(y) = h(x0 + ϵy) . (2.3)

Thus the model in (2.1) becomes

−ϵA′ ẋ0 = A′′ − A+
A2

H
, −∞ < y <∞ , (2.4a)

0 =
D

ϵ2
H ′′ − µH +

A2
T

ϵ
, −∞ < y <∞ , (2.4b)

where AT = A(y, τ − T ), and ẋ0 = dx0/dτ . Here the primes indicate differentiation

with respect to y. Using the expansion

A(y) = A0(y) + ϵA1(y) + · · · , H(y) = H0(y) + ϵH1(y) + · · · , (2.5)

we get, to leading order in ϵ,

0 = A′′
0 − A0 +

A2
0

H0

, −∞ < y <∞ , (2.6a)

0 = DH ′′
0 , −∞ < y <∞ . (2.6b)

Matching to the outer solution requires that H0 be bounded and that A0 → 0 as

|y| → ∞. It follows from (2.6b) that H0(y) ≈ ˜︁H0, for some constant ˜︁H0 to be

determined by matching to the outer solution. Thus, in the limit ϵ→ 0, the solution

to (2.6a) is given by

A0 = ˜︁H0 w(y) , (2.7)

where w(y) is the unique positive homoclinic curve solution to the system

w′′ − w + w2 = 0 , −∞ < y <∞ ,

w(y) → 0 as |y| → ∞ , w′(0) = 0 , w(0) > 0 ,
(2.8a)
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given by

w(y) =
3

2
sech2

(︂y
2

)︂
. (2.8b)

Substituting the inner expansion in (2.5) into (2.4) gives the O(ϵ) equations

A′′
1 − A1 + 2

A0

H0

A1 = −ẋ0A′
0 +

A2
0

H2
0

H1 , (2.9a)

DH ′′
1 = −A2

0T . (2.9b)

Substituting (2.7) into (2.9) yields

A′′
1 − A1 + 2wA1 = −ẋ0 ˜︁H0w

′ + w2H1 , (2.10a)

DH ′′
1 = − ˜︁H2

0T w2 . (2.10b)

Since w(y) → 0 as |y| → ∞, the right hand side of (2.10a) must be orthogonal to

the solution w′(y). Using this solvability condition, it follows that

ẋ0

∫︂ ∞

−∞
(w′)

2
dy =

1˜︁H0

∫︂ ∞

−∞
w2w′H1 dy . (2.11)

Integrating (2.11) by parts twice gives

ẋ0

∫︂ ∞

−∞
(w′)

2
dy = − 1

6 ˜︁H0

(︃∫︂ ∞

−∞
w3 dy

)︃[︃
H ′

1(∞) +H ′
1(−∞)

]︃
, (2.12)

where we use that H ′′
1 and w(y) are even functions. Integrating (2.10b) from y = −∞

to y = ∞ gives

H ′
1(∞)−H ′

1(−∞) = −
˜︁H2
0T

D

∫︂ ∞

−∞
w2 dy , (2.13)

which results in a jump condition for the outer solution.

In the outer region, defined away from an O(ϵ) neighbourhood of x = x0, we have

that a→ 0 for |x− x0| ≫ ϵ, since a is exponentially localized to an O(ϵ) region about

x0. Thus, in the outer region, the term ϵ−1a2T in (2.1) behaves like a multiple of the

Dirac delta function, δ(x). Also, for ϵ ≪ 1, we get that h satisfies Dhxx − µh = 0

on the interval [0, L], subject to a jump condition at x = x0. Matching to the inner

variables, and using the expansion h = h0 +O(ϵ), as ϵ→ 0, gives that h0 satisfies

Dh0xx − µh0 = −β δ(x− x0(τ − T )) , 0 < x < L ,

h0x(0) = h0x(L) = 0 ,
(2.14a)
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where

β =

∫︂ ∞

−∞
A2

0(y) dy . (2.14b)

The solution to (2.14) is given by

h0 = βG(x;x0T ) , (2.15)

where G(x;x0) is the Green’s function satisfying

DGxx − µG = −δ(x− x0T ) , 0 < x < L ,

Gx(0;x0) = Gx(L;x0) = 0 .
(2.16a)

To simplify the notation, we assume µ = 1 and D = 1 and we vary the length of the

domain L. This yields the solution

G(x;x0T ) =
1

sinh (L)

⎧⎪⎨⎪⎩
cosh (x) cosh (x0T − L) , 0 < x < x0T ,

cosh (x0T ) cosh (x− L) , x0T < x < L ,

(2.16b)

where G(x;x0T ) = G(x;x0(τ − T )).

Moreover, since A0 = ˜︁H0 w(y) where ˜︁H0 is the value of h0 in the inner region,

therefore ˜︁H0 can be determined by matching the inner and outer regions. This gives

that

˜︁H0 = h0(x0) = βG(x0;x0T ) = ˜︁H2
0

(︃∫︂ ∞

−∞
w2(y) dy

)︃
G(x0;x0T ) . (2.17)

Solving for ˜︁H0 in (2.17) gives

˜︁H0 =
1

6 G(x0;x0T )
, (2.18)

where we use that

∫︂ ∞

−∞
w2(y) dy = 6 . Substituting (2.18) into (2.12) and solving for

ẋ0 yields the DDE

ẋ0 = − G−
x +G+

x

G(x0;x0T )
. (2.19)

From (2.16b), we get that

G−
x = Gx(x

−
0 ;x0T ) =

sinh (x0) cosh (x0T − L)

sinh (L)
,

G+
x = Gx(x

+
0 ;x0T ) =

cosh (x0T ) sinh (x0 − L)

sinh (L)
.

(2.20)
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Figure 2.1: Left: Plot of a one-spike equilibrium solution to (2.1), with delay in the
nonlinear term of the inhibitor equation. The solid curve is the activator concentra-
tion and the dotted curve is the inhibitor concentration. Right: Plot of the trajectory
x0(t) versus time t. The dotted curve shows the full numerical simulation of (2.1),
and the solid curve is the asymptotic result computed from (2.21). Parameter values
are T = 0.1, ϵ = 0.06, L = 1, µ = 1, and D = 1.

Reverting back to the initial time-scale and substituting (2.16b) and (2.20) into (2.19)

yields the DDE for the motion of the spike described by

dx0
dt

= −ϵ2
(︃
sinh (x0) cosh (x0T − L) + cosh (x0T ) sinh (x0 − L)

cosh (x0T ) cosh (x0 − L)

)︃
. (2.21)

We remark that for T = 0 the equilibrium equation in (2.21) has similar terms to the

one derived in [34] for the model without delay. In Figure 2.1, we plot an equilibrium

solution to (2.1), and we compare the asymptotic result obtained from (2.21), for

x0 = 0.5 and L = 1, with full numerical results computed from (2.1). We find a

close agreement between the two results. In §2.2, we analyze the stability of the

quasi-equilibrium solution, as T increases, and we find that it is not possible to get a

Hopf bifurcation in this case. In fact, using increasing values of the delay T , we show

that the trajectories of the quasi-equilibrium solution obtained from (2.21) slowly

converge to the stable equilibrium x0 = L/2, and therefore the spike slowly moves

on an O(ϵ2) time-scale towards this stable position.

We remark that numerical simulations for the case when T = 0 yields almost an

identical plot to Figure 2.1(b).
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2.1.2 Delay in the Regulation of Activator Production

In this section we analyze the model in (1.9) with delay in the nonlinear term of the

activator equation, and the rate limiting step is in the negative feedback process.

In §2.1.4 we consider delaying the entire term, but this analysis is more involved.

The PDEs for the model are

at = ϵ2axx − a+
a2

hT
, 0 < x < L , t > 0 (2.22a)

0 = Dhxx − µh+
a2

ϵ
, 0 < x < L , t > 0 , (2.22b)

with the same assumptions and boundary conditions as in §2.1.1. The analysis here

is similar to the one in §2.1.1. However we note that in this case even a small delay

will result in significant changes in the behaviour of the system. Using the dependant

variable y, as defined in (2.2), we use the method of matched asymptotic expansions

to construct the equilibrium solution. As before, the value of h is constant to leading

order in the inner region, and we solve for the leading order behaviour of a. In the

outer region, we again treat a as a multiple of a Dirac delta function, δ(x), and we

construct the leading order solution to h in the outer region, and use it to find an

equation governing the motion of the spike.

In the inner region, the model in (2.22) written in terms of the inner variables

becomes

−ϵA′ẋ0 = A′′ − A+
A2

HT

, −∞ < y <∞ , (2.23a)

0 =
D

ϵ2
H ′′ − µH +

A2

ϵ
, −∞ < y <∞ , (2.23b)

where HT = H(y, τ−T ), x0 = x0(τ), and τ = ϵ2t. Using the inner expansion in (2.5)

for A(y) and H(y), we get to leading order in ϵ

0 = A′′
0 − A0 +

A2
0

H0T

, −∞ < y <∞ , (2.24a)

0 = DH ′′
0 , −∞ < y <∞ . (2.24b)

As before, it follows from (2.24b) that H0(y) ≈ ˜︁H0, for some constant ˜︁H0 to be

determined by matching to the outer solution. Thus, in the limit ϵ→ 0, the solution
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to (2.24a) is given by

A0 = ˜︁H0T w(y) , (2.25)

where w(y) satisfies (2.8). The O(ϵ) equations obtained from substituting (2.5)

and (2.25) into (2.23) are given by

A′′
1 − A1 + 2wA1 = −ẋ0 ˜︁H0T w′ + w2H1T , (2.26a)

DH ′′
1 = − ˜︁H2

0T w2 . (2.26b)

The solvability condition for (2.26a) gives that

ẋ0

∫︂ ∞

−∞
(w′)

2
dy =

1˜︁H0T

∫︂ ∞

−∞
w2w′H1T dy . (2.27)

Integrating (2.27) by parts twice gives

ẋ0

∫︂ ∞

−∞
(w′)

2
dy = − 1

6 ˜︁H0T

(︃∫︂ ∞

−∞
w3 dy

)︃[︃
H ′

1T (∞) +H ′
1T (−∞)

]︃
. (2.28)

In the outer region, a decays exponentially and h satisfies Dhxx − µh = 0 on

the interval [0, L], subject to a jump condition at x = x0. Using the expansion

h = h0 + O(ϵ), as ϵ → 0, while treating a as a multiple of the Dirac delta function,

and matching to the inner solution gives

Dh0xx − µh0 = −βδ(x− x0(τ)) , 0 < x < L ,

h0x(0) = h0x(L) = 0 ,
(2.29)

where β is as defined in (2.14b). In terms of the Green’s function given in (2.16b),

with µ = 1 and D = 1, the solution h0 for the system in (2.29) is given by

h0 = βG(x;x0) , (2.30)

which yields the solution

˜︁H0T = h0T = βG(x0T ;x0T ) . (2.31)

Substituting (2.31) into (2.28) and simplifying gives

ẋ0 = −
G−

xT
+G+

xT

G(x0T ;x0T )
, (2.32a)
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where

G−
xT

= Gx(x
−
0T ;x0T ) =

cosh (x0T − L) sinh (x0T )

sinh (L)
,

G+
xT

= Gx(x
+
0T ;x0T ) =

cosh (x0T ) sinh (x0T − L)

sinh (L)
.

(2.32b)

Thus, in terms of the initial time-scale we get

dx0
dt

= −ϵ2
(︃

sinh (2x0T − L)

cosh (x0T ) cosh (x0T − L)

)︃
. (2.33)

We observe that delay appears in every term of (2.33), which results in considerably

different dynamics than the one derived in §2.1.1. Numerical simulations of this

system are illustrated in Figure 2.2. In §2.2, we find that even a small delay will

have a significant effect on the dynamics, and we also show that a Hopf bifurcation

occurs at some critical values of the delay T .
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Figure 2.2: Left: Plot of a one-spike equilibrium solution to (2.22), with delay in the
h term of the activator equation. The solid curve is the activator concentration and
the dotted curve is the inhibitor concentration. Right: Plot of the trajectory x0(t)
versus time t. The dotted curve shows the full numerical simulation of (2.22), and
the solid curve is the asymptotic result as obtained from (2.33). Parameter values
are as in the caption of Figure 2.1.
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2.1.3 Delay in Activator Regulation and Inhibitor Production

Next, we consider the following model with delay in the nonlinear terms of both

equations:

at = ϵ2axx − a+
a2

hT
, 0 < x < L , t > 0 , (2.34a)

0 = Dhxx − µh+
a2T
ϵ
, 0 < x < L , t > 0 , (2.34b)

with the same boundary conditions and assumptions as before.

In the inner region, substituting the new variables in (2.2) and (2.3) into (2.34)

gives

−ϵA′ẋ0 = A′′ − A+
A2

HT

, −∞ < y <∞ , (2.35a)

0 =
D

ϵ2
H ′′ − µH +

A2
T

ϵ
, −∞ < y <∞ . (2.35b)

Using the inner expansion for A(y) and H(y) given in (2.5), yields the solution

A0 = ˜︁H0T w(y), for w(y) as defined in (2.8), as well as the motion equation in (2.28).

In the outer region, since w → 0 as y → ±∞, in terms of the Green’s function

in (2.16b) together with the solution h0 in (2.15), and the expression (2.18) for ˜︁H0,

we get that

˜︁H0T = h0(x0T ) = βG(x0T1 ;x0T2) , (2.36)

where x0T1 = x0(τ −T ), and x0T2 = x0(τ − 2T ). Substituting (2.36) into (2.28) gives

ẋ0 = −G
−
x (x0T1 ;x0T2) +G+

x (x0T1 ;x0T2)

G(x0T1 ;x0T2)
. (2.37)

Therefore, for 0 < x < L, using the initial time-scale gives the following asymptotic

DDE for the motion of the spike:

dx0
dt

= −ϵ2
(︃

sinh (x0T1 + x0T2 − L)

cosh (x0T1 − L) cosh (x0T2)

)︃
. (2.38)

Similar to the previous result given in (2.33), we have delay appearing in every term

of the quasi-equilibrium equation (2.38), but with two different values. In Figure 2.3

we compare this asymptotic result with the full numerical simulation of the system

in (2.34). In §2.2, we numerically analyze the stability of the equilibrium solution
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for the spike position obtained from (2.38) and we compare these results to the

full numerical simulation of the corresponding PDE system in (2.34). We find that

a Hopf bifurcation occurs for some values of the delay T and we illustrate in the

section Figures the effect of increasing delay, beyond the critical Hopf value, on the

stability of the equilibrium solution.
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Figure 2.3: Left: Plot of a one-spike equilibrium solution to (2.34), with delay in
both the activator regulation and inhibitor production. The solid curve is the acti-
vator concentration and the dotted curve is the inhibitor concentration. Right: Plot
of the trajectory x0(t) versus time t. The dotted curve shows the full numerical sim-
ulation of (2.34), and the solid curve is the asymptotic result computed from (2.38).
Parameter values are as in the caption of Figure 2.1.

2.1.4 Delay in the Activator Regulation and Catalyzation

In this subsection, we analyze the more difficult problem where the nonlinear term

of the activator equation is delayed. The PDEs for this model are given by

at = ϵ2axx − a+
a2T
hT

, 0 < x < L , t > 0 , (2.39a)

0 = Dhxx − µh+
a2

ϵ
, 0 < x < L , t > 0 , (2.39b)

with the same boundary conditions and assumptions used for the model in (2.1).

Placing the delay in the nonlinear term of the activator equation changes the

dynamics of the system and makes it quite difficult to analyze. To simplify the

analysis, we assume localized activator concentrations.
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In the inner region, we let x0(τ) be the center of the spike, where τ = ϵ2t. In

terms of the inner coordinate y and the inner variables A(y) and H(y), as defined

in (2.2) and (2.3), respectively, we can rewrite (2.39) as

−ϵA′ẋ0 = A′′ − A+
A2

T

HT

, −∞ < y <∞ , (2.40a)

0 =
D

ϵ2
H ′′ − µH +

A2

ϵ
, −∞ < y <∞ . (2.40b)

By definition, we have that

AT = A

(︃
x− x0(τ − T )

ϵ

)︃
= A

(︃
x− x0(ϵ

2t− ϵ2T )

ϵ

)︃
. (2.41)

Using the expansion

x0(ϵ
2t− ϵ2T ) ≈ x0(ϵ

2t)− ϵ2T ẋ0 + . . . = x0(τ)− ϵ2T ẋ0 + . . . , (2.42)

we rewrite (2.41) as

AT ≈ A

(︃
x− x0(τ) + ϵ2T ẋ0

ϵ

)︃
= A (y + ϵT ẋ0) . (2.43)

Expanding the right hand side of (2.43) gives

AT ≈ A(y) + ϵ T ẋ0A
′ . (2.44)

Using the inner variable expansion in (2.5), and the approximation

A0T ≈ A0 + ϵ T ẋ0A
′
0 , A1T ≈ A1 + ϵ T ẋ0A

′
1 , (2.45)

equation (2.40a), to leading order, becomes

−ϵA′
0ẋ0 =A

′′
0 − A0 +

A2
0

H0T

+ ϵ

[︃
A′′

1 − A1 + 2
A0

H0T

A1 −
A2

0

H2
0T

H1T + 2T
A0

H0T

A′
0ẋ0

]︃
+O(ϵ2) .

(2.46)

It follows that

0 = A′′
0 − A0 +

A2
0

H0T

, (2.47a)

A′′
1 − A1 + 2

A0

H0T

A1 = −A′
0ẋ0

[︃
1 + 2T

A0

H0T

]︃
+

(︃
A0

H0T

)︃2

H1T . (2.47b)
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The O(1) equations for the model in (2.39) are

0 = A′′
0 − A0 +

A2
0

H0T

, −∞ < y <∞ , (2.48a)

0 = DH ′′
0 , −∞ < y <∞ , (2.48b)

and thus we get that H0(y) ≈ ˜︁H0, for some constant ˜︁H0 to be determined. The

solution A0 to (2.48a) is given by A0 = ˜︁H0T w(y), where w(y) satisfies (2.8). For the

next order expansion given in (2.47b), we introduce the operator L(A1) such that

L(A1) ≡ A′′
1 − A1 + 2

A0

H0T

A1 = −A′
0ẋ0

[︃
1 + 2T

A0

H0T

]︃
+

(︃
A0

H0T

)︃2

H1T . (2.49)

Since A0 = ˜︁H0T w(y), we can rewrite equation (2.49) as

L(A1) ≡ A′′
1 − A1 + 2wA1 = −ẋ0

[︃
A′

0 + 2 T A′
0w

]︃
+

(︃
A0˜︁H0T

)︃2

H1T . (2.50)

As before, we have that the right hand side of (2.50) must be orthogonal to w′. Using

this solvability condition and integrating by parts twice gives

ẋ0

[︃∫︂ ∞

−∞
(w′)

2
dy + 2T

∫︂ ∞

−∞
w (w′)

2
dy

]︃
= − 1

6 ˜︁H0T

(︃∫︂ ∞

−∞
w3 dy

)︃[︃
H ′

1T (∞) +H ′
1T (−∞)

]︃
,

(2.51)

where we again use the even property of H ′′
1 and w(y).

In the outer region, in terms of the Green’s function (2.16b), we have that ˜︁H0T

satisfies (2.31). Substituting this solution into (2.51) and simplifying gives

ẋ0 = −
(︃

7

7 + 12T

)︃
G−

xT
+G+

xT

G(x0T ;x0T )
, (2.52)

where G−
xT

and G+
xT

are as defined in (2.32b). In terms of the initial time-scale, we

get the following asymptotic DDE for the motion of the spike:

dx0
dt

= −ϵ2
(︃

7

7 + 12T

)︃(︃
sinh (2x0T − L)

cosh (x0T − L) cosh (x0T )

)︃
. (2.53)

In Figure 2.4, we compare this asymptotic result with the one obtained numerically

for the full system in (2.39). We also give numerical examples in §2.2 to show that

the equilibrium solution is stable for all values of the delay T , and therefore no Hopf

bifurcation is observed in the position of the spike.
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Figure 2.4: Left: Plot of a one-spike equilibrium solution to (2.39), with delay in the
activator regulation and catalyzation. The solid curve is the activator concentration
and the dotted curve is the inhibitor concentration. Right: Plot of the trajectory
x0(t) versus time t. The dotted curve shows the full numerical simulation of (2.39),
and the solid curve is the asymptotic result computed from (2.53). Parameter values
are as in the caption of Figure 2.1.

2.1.5 Delay in All Nonlinear Terms in Both Equations

We now use the analysis and results in §2.1.3 and §2.1.4 to derive the DDE corre-

sponding to the following model where the nonlinear terms of both equations are

delayed:

at = ϵ2axx − a+
a2T
hT

, 0 < x < L , t > 0 , (2.54a)

0 = Dhxx − µh+
a2T
ϵ
, 0 < x < L , t > 0 , (2.54b)

ax(0, t) = ax(L, t) = hx(0, t) = hx(L, t) = 0 . (2.54c)

In the original time-scale, the DDE for the motion of the spike corresponding to the

system in (2.54) is given by

dx0
dt

= −ϵ2
(︃

7

7 + 12T1

)︃(︃
sinh (x0T1 + x0T2 − L)

cosh (x0T1 − L) cosh (x0T2)

)︃
, where T2 = 2 T1 . (2.55)

Numerical analysis for this model is provided in §2.2. We again find a close agree-

ment between the asymptotic and the full numerical results obtained from (2.55)

and (2.54), respectively, as shown in Figure 2.5. Numerical verification again sup-

ports the stability of the equilibrium solution for all values of the delay T , and no
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Hopf bifurcation is observed in the position of the spike.
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Figure 2.5: Left: Plot of a one-spike equilibrium solution to (2.54), with delay in all
the nonlinear terms of both equations. The solid curve is the activator concentration
and the dotted curve is the inhibitor concentration. Right: Plot of the trajectory
x0(t) versus time t. The dotted curve shows the full numerical simulation of (2.54),
and the solid curve is the asymptotic result as obtained from (2.55). Parameter
values are as in the caption of Figure 2.1.

We remark that the one-spike plots in Figures 2.1-2.5 are almost the same for all

the cases considered.

2.2 Hopf Bifurcation in the Reduced Equation for Spike Position

In this section, we consider how increasing the delay can bring about oscillations in

the spike position for the reduced system. It is also possible for the large eigenvalues

to undergo a Hopf bifurcation resulting in oscillation of the spike amplitudes. This

will be considered in §2.3. For the delay models in §2.1, the spikes evolve on a slow

O(ϵ2) time-scale. We consider here the slowly moving spike as a quasi-equilibrium

solution and analyze its stability by determining critical delay values at which a Hopf

bifurcation occurs. The scaling of the critical delay for this Hopf bifurcation will thus

be O(ϵ−2). The critical delay for Hopf bifurcation considered in §2.3 will be scaled

as O(1) in ϵ, so in general a Hopf bifurcation of the large eigenvalues will occur for

smaller critical delay then that of the small eigenvalue.
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In §2.1, we derived asymptotic DDEs of the form

dx0
dt

= f(x0, x0T ) , 0 < x < L . (2.56)

We introduce a small perturbation to the equilibrium position

x0(t) = x0 + eλtη , where |η| << |x0| , (2.57)

and we substitute (2.57) into (2.56) to get the following nonlinear transcendental

eigenvalue equation for λ:

dx0
dt

+ λeλtη = f(x0, x0T ) + fx0(x0, x0T )e
λtη + fx0T

(x0, x0T )e
λ(t−T )η . (2.58)

Since x0 is a solution to (2.56), therefore (2.58) simplifies to

λ = fx0(x0, x0T ) + fx0T
(x0, x0T )e

−λT . (2.59)

Our goal is to solve (2.59) for critical values of the delay T which give rise to pure

imaginary eigenvalues. Setting λ = iω, for some positive ω ∈ R, in (2.59) and

rearranging gives

cos (ωT )− i sin (ωT ) = − fx0

fx0T

+ i
ω

fx0T

. (2.60)

Comparing the real and imaginary parts on both sides of equation (2.60), gives that

ω and the time delay T parameters must satisfy the following system of equations:

fx0 + fx0T
cos (ωT ) = 0 , fx0T

sin (ωT ) = −ω . (2.61)

Without loss of generality, we now look for a positive solution (ωH , TH) satisfying

the equations in (2.61).

First, we consider the right hand side of (2.21). In terms of the initial time-scale,

we have that

f(x0, x0T ) = −ϵ2
(︃
sinh (x0) cosh (x0T − L) + cosh (x0T ) sinh (x0 − L)

cosh (x0T ) cosh (x0 − L)

)︃
, (2.62)

with partial derivatives

fx0T
= −ϵ2

(︃
sinh (x0) sinh (L)

cosh2 (x0T ) cosh
2 (x0 − L)

)︃
, (2.63)

fx0 = −2ϵ2
(︃

3 cosh (x0T ) + cosh (x0T − 2L)

cosh (2x0 − x0T − 2L) + cosh (2x0 + x0T − 2L) + 2 cosh (x0T )

)︃
.
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At the equilibrium position x0 = x0T = L/2, substituting (2.63) into (2.61) yields

cos (ωT ) = − fx0

fx0T

= −cosh (L) + 1

cosh (L)− 1
= coth2(L/2) > 1 . (2.64)

This is a contradiction to the property of the cosine function which requires that

|cos (ωT )| ≤ 1. It follows that no positive real solution (ωH , TH) exists, and no Hopf

bifurcation is observed in this case. This result is verified by numerical simulations

of the full PDE model in (2.1) and the asymptotic result obtained from (2.21) for

the position of the spike. In Figure 2.1(a), we plot the equilibrium solution to (2.1).

Spike position x0 = L/2 is stable, and the slow moving spike tends towards this

stable equilibrium for any choice of T , as shown in Figure 2.6.
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Figure 2.6: Plot of trajectories x0(t) computed from the asymptotic DDE (2.21) for
the motion of the spike versus time t, for various values of delay in the nonlinear
term of the inhibitor equation. Initial condition as indicated. No oscillations are
observed in this case, and all trajectories approach the stable equilibrium position
x0 = 0.5. Parameter values are ϵ = 0.06, L = 1, µ = 1, and D = 1.

For the result in (2.33), where delay appears in every term of the DDE, the asymp-

totic result is validated when compared to the full numerical simulation of (2.22).

Moreover, we have that

f(x0, x0T ) = −ϵ2
(︃

sinh (2x0T − L)

cosh (x0T ) cosh (x0T − L)

)︃
, (2.65)

fx0T
= −ϵ2

(︃
2 cosh (2x0T − L) cosh (x0T − L) cosh (x0T )− sinh2 (2x0T − L)

cosh2 (x0T ) cosh
2 (x0T − L)

)︃
.
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From (2.59), we get that

λ = fx0T
(x0, x0T )e

−λT . (2.66)

Substituting λ = iω into (2.66), and comparing the real and imaginary parts on both

sides of the equation gives

iω =
∂f

∂x0T
e−iωT ⇐⇒

⎧⎪⎨⎪⎩
fx0T

cos (ωT ) = 0 ,

fx0T
sin (ωT ) = −ω .

(2.67)

A solution to (2.67) can be calculated explicitly. At equilibrium position x0T = L/2,

(2.67) becomes

2ϵ2 sech2 (L/2) cos (ωT ) = 0 , 2ϵ2 sech2 (L/2) sin (ωT ) = ω . (2.68)

The first equation yields

cos (ωT ) = 0 , which is satisfied when ωT = π/2 . (2.69)

Substituting ωT = π/2 into the second equation gives the solution

ωH = 2ϵ2 sech2 (L/2) , TH =
π

4
ϵ−2 cosh2 (L/2) . (2.70)

The results are given in Figure 2.7, where we plot the solutions TH and ωH for various

values of L. For L = 2, using ϵ = 1 to account for the slow time-scale of the spike

motion, we compute TH = 1.870 and ωH = 0.8399.

(a) TH versus L (b) ωH versus L

Figure 2.7: Solutions to (2.67) for various values of L, using ϵ = 1 to account for the
slow time-scale of the spike motion.
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These results are verified numerically, as illustrated in Figure 2.8. We find that

for delay T < TH the real part of λ is negative which gives rise to decaying oscil-

lations that approach the stable equilibrium x0 = L/2. However, for T > TH , the

equilibrium solution is destabilized as the eigenvalue crosses the imaginary axis and

the real part of λ becomes positive giving rise to sustained oscillations.
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(a) T = 1.7 < TH
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(b) T = 1.9 > TH

Figure 2.8: Plot of trajectories x0(τ) versus τ , as computed from the asymptotic
DDE (2.33) for the motion of the spike, with delay in the h term of the activator
equation. Numerical simulations show decaying oscillations when T = 1.7 < TH (left
figure) and sustained oscillations when T = 1.9 > TH (right figure). Parameters used
are ϵ = 1 (slow time-scale of motion), L = 2, µ = 1, and D = 1.

Next, we consider the asymptotic result in (2.38), where

dx0
dt

= f(x0T1 , x0T2) = −ϵ2
(︃

sinh (x0T1 + x0T2 − L)

cosh (x0T1 − L) cosh (x0T2)

)︃
, (2.71)

where T2 = 2 T1.

fx0T1
= −ϵ2 sech2 (x0T1 − L) , fx0T2

= −ϵ2 sech2 (x0T2) . (2.72)

Substituting the small perturbation (2.57) into (2.71) gives the transcendental eigen-

value equation

λ = fx0T1
e−λT1 + fx0T2

e−λT2 , where T2 = 2 T1 . (2.73)

Setting λ = iω in (2.73), and comparing the real and imaginary parts on both sides

of the equation, gives that ω and delays T1 and T2 must satisfy the following system
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of equations:

fx0T1
cos (ωT1) + fx0T2

cos (ωT2) = 0 ,

fx0T1
sin (ωT1) + fx0T2

sin (ωT2) = −ω .
(2.74)

Using T2 = 2T1 = 2T and x0T = L/2, the system in (2.74) becomes

ϵ2
cos (ωT ) + cos (2ωT )

cosh2 (L/2)
= 0 , ϵ2

sin (ωT ) + sin (2ωT )

cosh2 (L/2)
= ω . (2.75)

The first equation is satisfied when

ωT =
π

3
or ωT = π . (2.76)

Since ω > 0 by assumption, the equations in (2.75) hold simultaneously only when

ωT = π/3. This yields the solution

ωH =
√
3 ϵ2 sech2 (L/2) , TH =

π

3
√
3
ϵ−2 cosh2 (L/2) (2.77)

In Figure 2.9, we plot critical values of T and ω for various values of L. For L = 2,

using ϵ = 1 (slow time-scale of motion), we find TH ∼ 1.44 and ωH ∼ 0.727.

(a) TH versus L (b) ωH versus L

Figure 2.9: Solutions to (2.74) for a range of L, using ϵ = 1 (slow time-scale of
motion).

The asymptotic DDE for this case is validated when compared to the full numer-

ical simulation, as shown in Figure 2.3. Moreover, as illustrated in Figure 2.10, for
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delay less than the critical value we have that the real part of the eigenvalue is nega-

tive and the decaying oscillations approach the stable equilibrium position x0 = L/2.

However, as we increase the delay beyond the Hopf value, the equilibrium solution

is destabilized as the eigenvalue crosses the imaginary axis resulting in sustained

oscillations.
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(a) T = 1.3 < TH
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(b) T = 1.45 > TH

Figure 2.10: Plot of trajectories x0(τ) versus τ , as computed from the asymptotic
DDE (2.38) for the motion of the spike, with delay in both the activator regulation
and inhibitor production. Numerical simulations show decaying oscillations when
T = 1.3 < TH (left figure) and sustained oscillations when T = 1.45 > TH (right
figure). Parameters values are as in the caption of Figure 2.8.

Similarly, for the result in (2.53) we have that

f(x0T , x0) = −ϵ2
(︃

7

7 + 12T

)︃(︃
sinh (2x0T − L)

cosh (x0T − L) cosh (x0T )

)︃
, (2.78)

fx0T
= −ϵ2

(︃
7

7 + 12T

)︃(︃
2 cosh (2x0T − L) cosh (x0T − L) cosh (x0T )− sinh2 (2x0T − L)

cosh2 (x0T − L) cosh2 (x0T )

)︃
,

with the same eigenvalue problem as in (2.67). With x0T = L/2, we get that the

derivative fx0T
= −ϵ2

(︃
14

7 + 12T

)︃
sech2 (L/2), and thus ω and T must satisfy the

two equations

ϵ2
(︃
14 sech2 (L/2)

7 + 12T

)︃
cos (ωT ) = 0 , ϵ2

(︃
14 sech2 (L/2)

7 + 12T

)︃
sin (ωT ) = ω . (2.79)

From the first equation, we get that ωT = π/2. Thus, the second equation is satisfied

only when

ω = 2ϵ2 sech2 (L/2)− 6

7
π . (2.80)
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However, since sech (L/2) < 1 and ϵ is very small by assumption, (2.80) implies

that ω < 0, which is a contradiction to our assumption that ω > 0. It follows

that no positive solution (ωH , TH) exists in this case, and the spike solution is stable

for all values of delay T . In Figure 2.4, we compare the asymptotic DDE with the

full numerical simulation, and in Figure 2.11 the results above are validated with

numerical simulations, where we plot various trajectories of the asymptotic solution

x0(t) for increasing values of delay as they approach the stable equilibrium position

x0 = L/2.
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Figure 2.11: Plot of trajectories x0(t) computed from the asymptotic DDE (2.53)
for the motion of the spike versus time t, for various values of delay in the nonlinear
term of the activator equation. Initial condition as indicated. No oscillations are
observed in this case, and all trajectories approach the stable equilibrium position
x0 = 0.5. Parameter values are ϵ = 0.6, L = 1, µ = 1, and D = 1.

A similar outcome to the one illustrated in Figure 2.11 is obtained when the full

PDE model (2.54) and the asymptotic DDE (2.55) are numerically analyzed. As in

the previous case, for ϵ < 1, there is no positive solution (ω, T ) such that (2.67) is

satisfied, and all trajectories x0(t) approach the stable equilibrium x0 = L/2 for all

values of the time delay parameter T .
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2.3 Stability Analysis for the Spike Profile: Formulation of Nonlocal

Eigenvalue Problem

In this section, we consider various cases of the GM model with fixed time delay,

analyzed in §2.1, and we study oscillatory-type instabilities in the height of the

one-spike solution for each model. This analysis is an extension of the work done

in [77] with no delay. We begin by formulating the NLEP in each case, and we find

conditions for the onset of a Hopf bifurcation. The results are then compared with

the full numerical simulation of the system.

For the model in (2.1), with delay in the inhibitor equation, we assume 0 < σ ≪ 1

and D = O(1). By symmetry, the spike location is x0 = L/2. Using the notation

in [77], as ϵ→ 0, the one-spike equilibrium solution to (2.1) is given by

ae(x) ∼ ˜︁H0 w

(︃
x− x0
ϵ

)︃
, he(x) ∼

˜︁H0

ag
G(x;x0) , 0 < x < L , (2.81)

where w(y) is the unique positive solution given in (2.8), G(x;x0) is the Green’s

function in (2.16), and

˜︁H0 =
1

bw ag
, bw =

∫︂ ∞

−∞
w2 dy = 6 , ag = G(x0;x0) . (2.82)

To analyze the stability of the equilibrium solution (2.81), we introduce the small

perturbations

a = ae + eλtϕ , h = he + eλtη , where ϕ≪ ae , η ≪ he . (2.83)

Substituting (2.83) into the original PDE model (2.1) gives the following eigenvalue

problem:

λϕ = ϵ2ϕxx − ϕ+ 2
ae
he

ϕ− a2e
h2e

η , 0 < x < L , (2.84a)

Dηxx − µη = −2
ae
ϵ
e−λTϕ , 0 < x < L , (2.84b)

with the Neumann boundary conditions

ϕx(0) = ϕx(L) = ηx(0) = ηx(L) = 0 . (2.84c)

We introduce the new variables

ϕ = ˜︁H0 ϕ̄ , he = ˜︁H0 v , η = ˜︁H0 η̄ . (2.85)
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Substituting (2.81) and (2.85) into (2.84), and dropping the bar notation, yields the

eigenvalue problem

λϕ = ϵ2ϕxx − ϕ+ 2
w

v
ϕ− w2

v2
η , 0 < x < L , (2.86a)

Dηxx − µη = −2 e−λT w

ϵ bw ag
ϕ , 0 < x < L , (2.86b)

with boundary conditions (2.84c). The constants bw and ag are as defined in (2.82).

As shown in [34] and [77], using the symmetry of the equilibrium solution and

the localization of the coefficients in (2.86), we seek a localized eigenfunction ϕ(x) of

the form

ϕ(x) ∼ C0 Φ

(︃
x− x0
ϵ

)︃
, where Φ(y) → 0 as |y| → ∞ , (2.87)

for some C0. Since the eigenfunction ϕ(x) is localized near x0, therefore we can treat

the right-hand side of (2.86b) as a multiple of the Dirac delta function as ϵ → 0.

Thus, for ϵ≪ 1, we get that η satisfies

Dηxx − µη = −2e−λT

bwag

(︃∫︂ ∞

−∞
wΦ(y)dy

)︃
C0 δ(x− x0) , 0 < x < L ,

ηx(0) = ηx(L) = 0 .

(2.88)

Using the results and conditions in [75], [77] and [78], while accounting for the effect

of delay, we get that the NLEP for Φ(y) is of the form

L0Φ−χ e−λT w2

(︄∫︁∞
−∞wΦ(y) dy∫︁∞

−∞w2 dy

)︄
= λΦ, −∞ < y <∞ ,

Φ(y) → 0 as |y| → ∞ ,

(2.89a)

where the local operator L0 and χ are defined by

L0Φ ≡ Φ′′ − Φ + 2wΦ , χ =
2

ag
√
D
. (2.89b)

Let λ0 ̸= 0 be the eigenvalue of (2.89) with the largest real part, then Re(λ0) < 0 if

χ > 1 (see [75] and [78]).

As shown in [17] and [77], any unstable eigenvalue of (2.89) must be a root of

g(λ) = 0, where

g(λ) = C(λ)− f(λ) , C(λ) =
1

e−λTχ
, f(λ) =

∫︁∞
−∞w [L0 − λ]−1w2 dy∫︁∞

−∞w2 dy
. (2.90)
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To determine the smallest positive delay value at which a Hopf bifurcation occurs, we

seek pure imaginary eigenvalues along the positive imaginary axis, that satisfy (2.90).

Setting λ = iλI in (2.90) and separating the real and imaginary components give the

coupled system

gR(λI) = gI(λI) = 0 , (2.91)

where,

gR(λI) = CR(λI)− fR(λI) , gI(λI) = CI(λI)− fI(λI) ,

CR(λI) = Re [C(iλI)] , CI(λI) = Im [C(iλI)] ,

fR(λI) =

∫︁∞
−∞wL0[L

2
0 + λ2I ]

−1w2dy∫︁∞
−∞w2dy

, fI(λI) =
λI
∫︁∞
−∞w[L2

0 + λ2I ]
−1w2dy∫︁∞

−∞w2dy
.

(2.92a)

To simplify the notation, we let D = 1 and µ = 1. Thus, for x0 = L/2 we get

ag = cosh2 (L/2)/ sinh (L), which gives

CR(λI) =
cosh2(L/2)

2 sinh(L)
cos(λIT ) , CI(λI) =

cosh2(L/2)

2 sinh(L)
sin(λIT ) . (2.92b)

We use an iterative method to approximate the solution to (2.91), and we plot

the critical values of the delay T and λI for various interval length values, L, in

Figure 2.12.

(a) TH versus L (b) λIH versus L

Figure 2.12: Solution to (2.91) for various values of L
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For L = 1, we find that a Hopf bifurcation occurs at the critical parameter values

(λIH , TH) ≈ (1.829, 0.49) . (2.93)

To confirm our results, we compute full numerical solutions to the system in (2.1)

for delay values above and below the critical value TH . For L = 1, we show that

delay values higher than TH trigger an oscillatory instability in the spike amplitude.

This is shown in Figure 2.13, where we plot the amplitude of the spike a(x0) as a

function of time, for T above and below TH . The amplitude a(x0) is defined as the

value of the activator concentration at the center of the spike.

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) T = 0.45 < TH
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(b) T = 0.5 > TH

Figure 2.13: Plot of the spike amplitude a(x0) versus time, for (2.1). Numerical
simulations show decaying(left figure) and sustained (right figure) oscillations for
delay values below and above the bifurcation threshold value TH ≈ 0.49, respectively.
Here ϵ = 0.06, L = 1, µ = 1, and D = 1 .

The model in (2.22), with delay in the h term of the activator equation, yields

the NLEP in (2.89), where χ is defined by (2.89b). Thus, the results for this case

are identical to the one delay case considered above.

Next we consider the model in (2.34), where delay is in the nonlinear reaction

terms of both equations. The eigenvalue problem for this case is given by

λϕ = ϵ2ϕxx − ϕ+ 2
ae
he

ϕ− a2e
h2e

e−λT η , 0 < x < L , (2.94a)

Dηxx − µη = −2
ae
ϵ
e−λTϕ , 0 < x < L , (2.94b)

ϕx(0) = ϕx(L) = ηx(0) = ηx(L) = 0 . (2.94c)
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The corresponding NLEP is given by

L0Φ−χ e−2λT w2

(︄∫︁∞
−∞wΦ(y) dy∫︁∞

−∞w2 dy

)︄
= λΦ , −∞ < y <∞ ,

Φ(y) → 0 as |y| → ∞ ,

(2.95)

where χ is given in (2.89b). The only difference here is that the delay is multiplied

by a factor of 2. Thus the critical value of delay should be half of that in the cases

previously considered. In Figure 2.14, we simulate system (2.34) above and below

the critical delay values.
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(a) T = 0.2 < TH
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(b) T = 0.25 > TH

Figure 2.14: Plot of the spike amplitude a(x0) versus time, for (2.34). Numerical
simulations show decaying(left figure) and sustained (right figure) oscillations for de-
lay values below and above the bifurcation threshold value TH ≈ 0.245, respectively.
Here ϵ = 0.06, L = 1, µ = 1, and D = 1 .

We now consider the more difficult case in (2.39), where the nonlinear reaction

term of the activator equation is delayed. The corresponding NLEP for Φ(y) is given

by

Φ′′ − Φ+2we−λTΦ− χe−λTw2

(︄∫︁∞
−∞wΦ(y) dy∫︁∞

−∞w2 dy

)︄
= λΦ , −∞ < y <∞ ,

Φ(y) → 0 as |y| → ∞ ,

(2.96)

where χ is defined in (2.89b). Due to the presence of the right hand side term

2we−λTΦ, we are not able to utilize the methods used earlier. Instead, a numerical

method is used to approximate and analyze the corresponding large eigenvalues.
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Assuming ϵ≪ 1, we split the right hand side of (2.96) into two parts,

A(Φ) ≡ Φ′′ − Φ + 2we−λTΦ , and B(Φ) ≡ χe−λTw2

(︄∫︁∞
−∞wΦ(y) dy∫︁∞

−∞w2 dy

)︄
, (2.97)

and we introduce a new operator LδΦ defined by

LδΦ ≡ A(Φ)− δB(Φ) , −∞ < y <∞ . (2.98)

We note that for δ = 0 we get a Sturm-Liouville equation similar to the ones analyzed

above.

Next, we discretize the finite domain problem for ϵ ≪ 1. The operator Lδ can

be approximated using a discrete linear operator, denoted by M, using the centered

difference approximation of the second derivative for the operator A(Φ), and the

Trapezoidal rule approximation for B(Φ). Thus the corresponding eigenvalues can

be approximated by the eigenvalues of the matrix M, denoted by λi(δ).

In the absence of delay, we set T = 0 and we use a continuation method where we

start with an initial guess for δ = 0, and we continue to track the principal eigenvalue

of the matrix as δ increases. As expected, we find that λ0 → 5/4 as δ → 0, which

is the eigenvalue corresponding to the eigenfunction Φ0 = sech2(y/2). Furthermore,

as the value of δ is increased, we find that λ0 ≈ 0 for δ = 1/2. Shortly after this

point, the eigenvalues collide and eventually become complex with the real part of

λ0 remaining negative as δ → 1.

Next, we introduce delay, and we use the method of successive substitution to

track the eigenvalues. We continue with this iterative method until the difference

between successive iterates is less than 10−11. This is repeated as the delay value

T increases from 0.005 to 2.2. The results are illustrated in Figure 2.15, which

shows that the real part of λ0 remains negative as T increases. Thus, in this case

the solution is stable and no oscillations are observed. We repeated the process for

different values of L and similar results are found in each case. In [18] it is found that

this form of delay can actually aid in the stabilization of spike solutions. Simulations

of (2.39) with delay values of up to 50 resulted in stable solutions with no oscillations.
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(a) Re(λ0) vs Im(λ0) (b) Re(λ0) vs T (c) Im(λ0) vs T

Figure 2.15: Plot of Re(λ0) and Im(λ0), for the eigenvalue of matrix M, as T
increases.

Finally, for the case in (2.54), where all nonlinear reaction terms are delayed, the

corresponding NLEP is

Φ′′ − Φ+2we−λTΦ− χe−2λTw2

(︄∫︁∞
−∞wΦ(y) dy∫︁∞

−∞w2 dy

)︄
= λΦ , −∞ < y <∞ ,

Φ(y) → 0 as |y| → ∞ ,

(2.99)

where χ is defined in (2.89b). The resulting system is very similar to the previous

case. Again we find that no Hopf bifurcations occur as the delay is increased and

simulations of the system with delay values up to fifty show no signs of oscillation.

2.4 Oscillations in Spike Position with Delayed Activator Degradation

The critical value of delay causing oscillations in the spike position scales as O(ϵ−2)

as compared to O(1) in ϵ for amplitude oscillations. For all the cases we have

considered, amplitude oscillations are triggered well before the onset of oscillations

in spike position. In this section, we will consider what can happen if we have delay

in the degradation of the activator. The model equations are given by

at = ϵ2axx − aT +
a2

h
, 0 < x < L , t > 0 , (2.100a)

σht = Dhxx − µh+
a2

ϵ
, 0 < x < L , t > 0 . (2.100b)

We cannot justify this case biologically. However this is the only case we have found

in which spike positional oscillations for the GM system can occur and the behaviour
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is worthy of study. It is fairly simple to see how oscillations arise in this case. If we

derive the eigenvalue problem in the usual way, we find

λϕ = ϵ2ϕxx − e−λTϕ+ 2
ae
he

ϕ− a2e
h2e

η , 0 < x < L , (2.101a)

Dηxx − (1 + σλ)η = −2
ae
ϵ
ϕ , 0 < x < L , (2.101b)

with the Neumann boundary conditions

ϕx(0) = ϕx(L) = ηx(0) = ηx(L) = 0 . (2.101c)

Since the eigenvalues associated with the translation eigenfunctions are small, we

set λ = ϵ2λ0 + · · · , plug into our system and expand in a Taylor Series. The first

equation in (2.101) then becomes

(ϵ2λ0 + · · · )ϕ = ϵ2ϕxx − (1− ϵ2λ0T + . . . )ϕ+ 2
ae
he

ϕ− a2e
h2e

η , (2.102)

which can be written as

(ϵ2λ0(1− T ) + · · · )ϕ = ϵ2ϕxx − (1 + . . . )ϕ+ 2
ae
he

ϕ− a2e
h2e

η . (2.103)

The leading order term or the small eigenvalue is simply multiplied by (1 − T ).

So, as T crosses 1, the small eigenvalue changes sign. In the numerical simulations

below, we find clear evidence of a Hopf bifurcation in the spike location as T increases

past 1.
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(b) T = 1.04

Figure 2.16: Numerical simulation of (2.100) with ϵ = 0.06, L = 2, µ = 1, and
D = 1, for delay T = 0.9 (left figure) and T = 1.04 (right figure).
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To be complete, we would need to show that at T = 1, the eigenvalue asso-

ciated with the spike amplitude is negative. However such a calculation would re-

quire converting to a discrete operator and approximating the eigenvalue numerically.

However a numerical simulation of the partial differential equations such as that il-

lustrated in Figure 2.16(b) suggests such an eigenvalue is negative, at least in that

particular case.



Chapter 3

Stability and Dynamics of k-Spike Solution to the

One-Dimensional Gierer-Meinhardt Model with Delayed

Reaction Kinetics

In this chapter, we construct a k-spike equilibrium solution to the GM system in (1.9),

and we analyze the effect of various cases of delayed reaction kinetics on the dynamics

and stability of the k-spike solution, similar to what has been done in Chapter 2.

To simplify the analysis, we let µ = 1, D = 1, and σ = 0. For the limit ϵ → 0,

a k-spike equilibrium solution to (1.9), denoted by (ae,k, he,k), satisfies the following

model equations:

at = ϵ2axx − a+
a2

h
, 0 < x < L , t > 0 , (3.1a)

0 = hxx − h+
a2

ϵ
, 0 < x < L , t > 0 , (3.1b)

ax(0, t) = ax(L, t) = hx(0, t) = hx(L, t) = 0 , (3.1c)

where ae,k ∼ 0 except in O(ϵ) regions about each spike location.

Many recent studies have considered and analyzed the k-spike equilibrium prob-

lem for various forms of the GM model. Construction and stability dynamics of both

symmetric and asymmetric k-spike equilibrium solutions to the GM system with

no delay have been thoroughly studied and analyzed, (see [33, 34, 38, 75, 77, 79]

and the references therein). The existence of a k-spike equilibrium solution to the

one-dimensional GM system in (3.1) has been proved in [64], and a formal stabil-

ity analysis is given in [79]. In [34] and [77], the authors construct asymptotically a

symmetric k-spike equilibrium solution to (3.1), in the limit ϵ→ 0, using the method

of matched asymptotic expansions. The authors also provide a formal asymptotic

analysis for studying the stability and dynamics of the solution. In our analysis, we

will follow a similar approach to the one used in [34] and [77] for the construction and

analysis of the equilibrium solution and the corresponding eigenvalue problem. In

42
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addition, we will use a Floquet-based approach, as used in [37, 58, 71], to study the

stability of the k-spike equilibrium solution and the associated eigenvalue problem

subject to Floquet-type boundary conditions over the length of the domain.

In §3.1, we construct a k-spike equilibrium solution to (3.1) using the method of

matched asymptotic expansion [34]. For a k-spike solution, the eigenvalue problem

admits two types of eigenvalues: k eigenvalues of O(ϵ2) that approach zero as ϵ→ 0,

referred to as small eigenvalues, and k eigenvalues of O(1) that are bounded away

from zero as ϵ → 0, and these are referred to as large eigenvalues. In §3.2, we

analyze the stability of the small eigenvalues, through studying the derived delay

differential-algebraic system of equations (DDAE) describing the dynamics of the k-

spike locations for various cases of delayed kinetics. In §3.3, we find critical parameter

values for position instabilities due to Hopf bifurcations. In §3.4, we study the

stability of the equilibrium solution constructed in §3.1 with respect to the large

eigenvalues of order λ = O(1) for the GM model with delayed reaction kinetics.

In §3.4.1, we describe the formulation of the NLEP for the case with no delay. Two

cases of delayed reaction kinetics are analyzed in §3.4.2 and §3.4.3. For these cases,

we show numerically that delay destabilizes the system via a Hopf bifurcation, so

that oscillations in the spike amplitudes are observed as delay exceeds some threshold

value.

3.1 Asymptotic Construction of k-Spike Solution

In this section, we use the method of matched asymptotic expansion, used in [34]

and [77], to construct a k-spike equilibrium solution to (3.1), in the limit ϵ→ 0, with

equal amplitudes. In a one dimensional domain, true equilibrium solutions have

equally spaced spikes. Thus, for a k-spike steady state solution, with k ≥ 1 evenly

spaced interior spikes, over the interval [0, L], the spike locations satisfies

xj =
L

2k
+ j

L

k
, for j = 0, 1, . . . , k − 1 . (3.2)

In Chapter 2, for a single spike solution, the activator concentration is localized in

the inner region near the center of the spike, and is exponentially small in the outer

region away from the spike location. This is also true for the k-spike equilibrium

solution to (3.1) (see [34]).
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In the inner region near the jth spike, we define the variables

y =
x− xj
ϵ

, Aj(y) = a(xj + ϵy) , Hj(y) = h(xj + ϵy) . (3.3)

Using (3.3), the equilibrium problem for (3.1) becomes

0 = A′′
j − Aj +

A2
j

Hj

, −∞ < y <∞ , (3.4a)

0 = H ′′
j + ϵA2

j +O(ϵ2) , −∞ < y <∞ , (3.4b)

where the primes indicate differentiation with respect to y. Substituting the inner

variable expansion

Aj(y) = Aj0(y) + ϵAj1(y) + . . . , Hj(y) = Hj0(y) + ϵHj1(y) + . . . , (3.5)

into (3.4) gives, to leading order in ϵ,

0 = A′′
j0 − Aj0 +

A2
j0

Hj0

, −∞ < y <∞ , (3.6a)

0 = H ′′
j0 , −∞ < y <∞ . (3.6b)

Matching to the outer solution requires that Hj0 be bounded and Aj0 → 0 as y →
±∞. Thus, it follows from (3.6b) that Hj0 = H, where H is a constant, independent

of y, to be determined by matching to the outer solution. In the limit ϵ → 0, the

solution to (3.6a) is

Aj0(y) = Hj0 w(y) , j = 0, . . . , k − 1 , (3.7)

where w(y) satisfies

w′′ − w + w2 = 0 , −∞ < y <∞ ,

w(y) → 0 as |y| → ∞ , w′(0) = 0 , w(0) > 0 ,
(3.8a)

whose solution is the unique positive homoclinic curve given by

w(y) =
3

2
sech2

(︂y
2

)︂
. (3.8b)

Substituting the inner expansion in (3.5) into (3.4) gives the O(ϵ) equations

A′′
j1 − Aj1 + 2

Aj0

Hj0

Aj1 =
A2

j0

H2
j0

Hj1 , (3.9a)

H ′′
j1 = −A2

j0 . (3.9b)
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From (3.9b), we have that H ′′
j1 is an even function. Integrating (3.9b) from y = −∞

to y = ∞, gives

lim
y→∞

H ′
j1 − lim

y→−∞
H ′

j1 = −
∫︂ ∞

−∞
A2

j0 dy , (3.10)

which results in a jump condition for the outer solution.

In the outer region, we have that a → 0 for |x − xj| ≫ O(ϵ), thereby reducing

the model equations in (3.1) to

a ≡ 0 , and

⎧⎪⎨⎪⎩
hxx − h = −a

2

ϵ
, 0 < x < L ,

hx(0) = hx(L) = 0 ,

(3.11)

where hx is discontinuous at each x = xj. Thus, in the outer region, the term ϵ−1a2

in (3.1) behaves like a linear combination of Dirac delta functions, δ(x), centered at

xj, for j = 0, 1, . . . , k − 1. Substituting the expansion h = h0 + O(ϵ), as ϵ → 0,

into (3.11) gives that h0 satisfies

h0xx − h0 = −β
k−1∑︂
i=0

δ(x− xi) , 0 < x < L ,

h0x(0) = h0x(L) = 0 ,

(3.12a)

where

β =

∫︂ ∞

−∞
A2

j0(y) dy , j = 0, . . . , k − 1 . (3.12b)

The solution h0 to (3.12) is

h0(x) = β

k−1∑︂
i=0

G(x;xi) , (3.13)

where the Green’s function, G(x;xi), satisfies

Gxx −G = −δ(x− xi) , 0 < x < L ,

Gx(0;xi) = Gx(L;xi) = 0 ,
(3.14a)

whose solution is given by

G(x;xi) =
1

sinh (L)

⎧⎪⎨⎪⎩
cosh (x) cosh (xi − L) , 0 < x < xi ,

cosh (xi) cosh (x− L) , xi < x < L .

(3.14b)
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Next, we determine the constant H by matching the inner and outer solutions

near each xj, using that
k−1∑︂
i=0

G(xj;xi) is independent of j at the spike locations in (3.2)

(see [34]). This requires that

H = h0(xj) = β

k−1∑︂
i=0

G(xj;xi) , for j = 0, 1, . . . , k − 1 , (3.15a)

where β is defined in (3.12b). Using (3.7), the equation in (3.15a) yields

H =

(︄
6

k−1∑︂
i=0

G(xj;xi)

)︄−1

, j = 0, 1, . . . , k − 1 , (3.15b)

where we have used that

∫︂ ∞

−∞
w2(y) dy = 6.

A k-spike equilibrium solution to the GM model in (3.1) is constructed in [34],

in the limit ϵ→ 0, using the method of matched asymptotic expansions. The result

is summarized in the following Proposition.

Proposition 3.1. (From [34]): Using the method of matched asymptotic expansion,

in the limit ϵ→ 0, a k-spike equilibrium solution to (3.1), denoted by (ae,k(x), he,k(x)),

is given asymptotically by

ae,k(x) ∼ H
k−1∑︂
i=0

w

(︃
x− xi
ϵ

)︃
, he,k(x) ∼ H

k−1∑︁
i=0

G(x;xi)

k−1∑︁
i=0

G(xj;xi)

, (3.16)

where H is given in (3.15). Here xi satisfies (3.2), w(y) is the positive solution

in (3.8b), and G is the Green’s function in (3.14b).

A two-spike equilibrium solution, obtained from (3.16), is plotted in Figure 3.1.
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Figure 3.1: Plot of a two-spike equilibrium solution to (3.1) with equal amplitudes, for
the case with no delay. The solid curve is the activator concentration and the dotted
curve is the inhibitor concentration. Parameter values are ϵ = 0.1, L = 2/

√
0.2,

µ = 1, and D = 1.

3.2 Dynamics of k-Spike Solution

In this section, we consider the dynamics of the spike locations for multi-spike type

solution to the one-dimensional GM model with delayed reaction kinetics. In Chap-

ter 2, we use asymptotic analysis and we derive a system of ODEs describing the

location of the one-spike equilibrium solution. In this section, we show that the

PDE system can be reduced to a delay differential-algebraic system of equations. To

simplify the analysis, we assume 0 < ϵ ≪ 1, and we let D = 1, µ = 1, and σ = 0.

As before, we expect that the spikes evolve on a slow time-scale t = O(ϵ−2), and

therefore we have that xj = xj(τ), where τ = ϵ2t. In all the examples considered,

we find that the numerical solutions of the DDAE systems agree well with the full

numerical solutions of the PDE models.

3.2.1 Delay in the Catalyzed Production of Inhibitor

We now analyze the dynamics of the k-spike equilibrium solution to the GM model

with delay in the nonlinear term of the inhibitor equation. The model PDEs are
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given by

at = ϵ2axx − a+
a2

h
, 0 < x < L , t > 0 , (3.17a)

0 = hxx − h+
a2T
ϵ
, 0 < x < L , t > 0 , (3.17b)

subject to the Neumann boundary conditions in (3.1c).

In the inner region, near each xj in (3.2), we rewrite the system in (3.17) in terms

of the inner variables defined in (3.3), where xj = xj(ϵ
2 t) = xj(τ), for j = 0, . . . , k−1.

This yields the equations

−ϵ A′
j ẋj = A′′

j − Aj +
A2

j

Hj

, −∞ < y <∞ , (3.18a)

0 = H ′′
j + ϵA2

jT +O(ϵ2) , −∞ < y <∞ , (3.18b)

where primes are used to indicate derivatives with respect to the inner variable y.

Moreover, substituting the inner variable expansion in (3.5) into the system in (3.18)

yields the O(1) equations in (3.6), as well as the leading order inner solution given

in (3.7) and (3.8).

Since matching to the outer solution requires that Hj0 be bounded and Aj0 → 0

as |y| → ∞, therefore it follows that Hj0(y) = Hj0(τ), where Hj0 is to be deter-

mined by matching to the outer solution. In addition, substituting the inner variable

expansion (3.5) into (3.18) yields the O(ϵ) equations

A′′
j1 − Aj1 + 2

Aj0

Hj0

Aj1 = −ẋjA′
j0 +

(︃
Aj0

Hj0

)︃2

Hj1 , (3.19a)

H ′′
j1 = −A2

j0T , (3.19b)

where ẋj = dxj/dτ , for j = 0, . . . , k− 1. Integrating (3.19b) from y = −∞ to y = ∞
gives

H ′
j1(∞)−H ′

j1(−∞) = −
∫︂ ∞

−∞
A2

j0T dy , (3.20)

which results in a jump condition for the outer solution. The right hand side

of (3.19a) must satisfy the solvability condition that it be orthogonal to A′
j0 =

d

dτ
(Hj0w(y)). Integrating by parts twice, and using the even property of H ′′

j1 and
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w(y), yields

−ẋj =
∫︁∞
−∞w3 dy

6 Hj0

∫︁∞
−∞ (w′)2 dy

(︁
H ′

j1(∞) +H ′
j1(−∞)

)︁
, (3.21)

where we have used

d

dτ
(Hj0w(y)) = Hj0

d

dτ
(w(y)) + w(y)

d

dτ
(Hj0)

≈ Hj0
d

dτ
(w(y)) .

(3.22)

We note that the second term of the sum in (3.22) above need not be retained since

the spikes are moving on a slow time-scale by assumption, and therefore the change

in their corresponding heights are also assumed to occur at a very slow rate. Using∫︁∞
−∞w3 dy

3
∫︁∞
−∞ (w′)2 dy

= 2, the equation in (3.21) simplifies to

ẋj = − 1

Hj0

(︃
lim
y→∞

H ′
j1 + lim

y→−∞
H ′

j1

)︃
, j = 0, . . . , k − 1 . (3.23)

In the outer region, defined away from an O(ϵ) neighbourhood of each xj, we

have that a → 0 for |x− xj| ≫ ϵ, for j = 0, . . . , k − 1, since a is exponentially

localized to an O(ϵ) region about each xj. Thus, in the outer region, the term ϵ−1a2T

in (3.17) behaves as a linear combination of the Dirac delta function centered at

each xj. Also, for ϵ ≪ 1, we get that h satisfies hxx − h = 0 on the interval [0, L],

subject to a jump condition at x = xj. Matching to the inner variables, and using

the expansion h = h0 +O(ϵ), as ϵ→ 0, gives that h0 satisfies

h0xx − h0 = −β
k−1∑︂
i=0

δ(x− xiT ) , 0 < x < L ,

h0x(0) = h0x(L) = 0 .

(3.24)

Here xiT = xi(τ − T ) and β is as defined in (3.12b). The solution to (3.24) is

h0(x) = β

k−1∑︂
i=0

G(x;xiT ) , (3.25)

where G(x;xiT ) = G(x;xi(τ − T )) is the Green’s function satisfying

Gxx −G = −δ(x− xiT ) , 0 < x < L ,

Gx(0;xi) = Gx(L;xi) = 0 ,
(3.26a)
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whose solution is given by

G(x;xiT ) =
1

sinh (L)

⎧⎪⎨⎪⎩
cosh (x) cosh (xiT − L) , 0 < x < xiT ,

cosh (xiT ) cosh (x− L) , xiT < x < L .

(3.26b)

Since the spikes in this case are not in equilibrium positions, therefore the spike

heights are not equal, and thus the value of Hj0 will be different for each spike.

Matching of the inner and outer solutions near each xj, and using (3.7), gives the

following nonlinear algebraic system of equations for the heights of the spikes, Hj0:

Hj0 = h0(xj) = 6
k−1∑︂
i=0

H2
i0 G(xj;xiT ) , j = 0, . . . , k − 1 , (3.27)

where we have used that

∫︂ ∞

−∞
w2 dy = 6. Using (3.27), the limit in (3.23) evaluates

to

lim
y→∞

H ′
j1 + lim

y→−∞
H ′

j1 = lim
x→x+

j

h0x + lim
x→x−

j

h0x (3.28a)

= 12

⎡⎢⎣H2
j0

(︄
Gx(x

+
j ;xjT ) +Gx(x

−
j ;xjT )

2

)︄
+

k−1∑︂
i=0
i ̸=j

H2
i0Gx(xj;xiT )

⎤⎥⎦ ,

where

Gx(x
−
j ;xiT ) =

sinh (xj) cosh (xiT − L)

sinh (L)
,

Gx(x
+
j ;xiT ) =

cosh (xiT ) sinh (xj − L)

sinh (L)
,

(3.28b)

for j = 0, . . . , k − 1. Substituting (3.27) and (3.28) into (3.23), yields the coupled

delay differential-algebraic system for xj and Hj given by

ẋj = − 12

Hj

⎛⎜⎝H2
j ⟨Gx(xj;xjT )⟩+

k−1∑︂
i=0
i ̸=j

H2
i Gx(xj;xiT )

⎞⎟⎠ , (3.29a)

Hj = 6
k−1∑︂
i=0

H2
i G(xj;xiT ) . (3.29b)

Here Hj = Hj(τ), ⟨Gx(xj;xjT )⟩ =
Gx(x

+
j ;xjT ) +Gx(x

−
j ;xjT )

2
, and xjT = xj(τ − T ),

for j = 0, . . . , k − 1.
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Using matrices, the system in (3.29) becomes

ẋ = −12 H−1 P H2 , H = 6 G H2 , (3.30a)

where

ẋ ≡

⎡⎢⎢⎢⎢⎢⎣
ẋ0(τ)

ẋ1(τ)
...

ẋj(τ)

⎤⎥⎥⎥⎥⎥⎦ , H ≡

⎡⎢⎢⎢⎢⎢⎣
H0

H1

...

Hj

⎤⎥⎥⎥⎥⎥⎦ , H2 ≡

⎡⎢⎢⎢⎢⎢⎣
H2

0

H2
1

...

H2
j

⎤⎥⎥⎥⎥⎥⎦ , H ≡

⎡⎢⎢⎢⎢⎢⎣
H0 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · Hj

⎤⎥⎥⎥⎥⎥⎦ ,

P ≡

⎡⎢⎢⎣
⟨Gx(x0;x0T )⟩ · · · Gx(x0;xjT )

...
. . .

...

Gx(xj;x0T ) · · · ⟨Gx(xj;xjT )⟩

⎤⎥⎥⎦ , G ≡

⎡⎢⎢⎣
G(x0;x0T ) · · · G(x0;xjT )

...
. . .

...

G(xj;x0T ) · · · G(xj;xjT )

⎤⎥⎥⎦ .
(3.30b)

Here we have that

G(xj;xiT ) =
cosh (xiT ) cosh (xj − L)

sinh (L)
,

Gx(xj;xiT ) =
cosh (xiT ) sinh (xj − L)

sinh (L)
,

⟨Gx(xj;xiT )⟩ =
cosh (xiT ) sinh (xj − L) + sinh (xj) cosh (xiT − L)

2 sinh (L)
.

(3.30c)

In Figure 3.2, we compare the trajectories xj, for j = 0, 1, computed numerically

from the DDAE system (3.29) with the full numerical results for (3.17), for the case

of two spikes. The agreement is found to be close.
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Figure 3.2: Left: Plot of a two-spike equilibrium solution to (3.17) with delay in
the nonlinear term of the inhibitor equation. The solid curve is the activator con-
centration and the dotted curve is the inhibitor concentration. Right: Plot of the
trajectories xj(t) (solid curves) versus time t, for j = 0, 1, as computed from (3.29)
in the original time-scale. The dotted curves correspond to the full numerical sim-
ulation of (3.17). Parameter values are T = 0.1, ϵ = 0.1, L = 2/

√
0.2, µ = 1, and

D = 1.

3.2.2 Delay in the Regulation of Activator Production

We now analyze the dynamics of the k-spike equilibrium to the one-dimensional GM

model, where delay is in the nonlinear term of the activator equation. The model

PDEs are given by

at = ϵ2axx − a+
a2

hT
, 0 < x < L , t > 0 , (3.31a)

0 = hxx − h+
a2

ϵ
, 0 < x < L , t > 0 , (3.31b)

subject to the Neumann boundary conditions (3.1c).

In the inner region near each xj, rewriting the system in (3.31) in terms of the

new variables defined in (3.3) yields the equations

−ϵ A′
j ẋj = A′′

j − Aj +
A2

j

HjT

, (3.32a)

0 = H ′′
j + ϵA2

j +O(ϵ2) , (3.32b)

where primes are used to indicate derivatives with respect to the inner variable y.

Moreover, substituting the inner variable expansion in (3.5) into the system in (3.32)
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yields the O(1) equations

0 = A′′
j0 − Aj0 +

A2
j0

Hj0T

, −∞ < y <∞ , (3.33a)

0 = H ′′
j0 , −∞ < y <∞ . (3.33b)

This yields the solution

Aj0(y) = Hj0T w(y) , j = 0, . . . , k − 1 , (3.34)

where w(y) satisfies (3.8). Substituting the inner variable expansion (3.5) into (3.32)

yields the O(ϵ) equations

A′′
j1 − Aj1 + 2

Aj0

Hj0T

Aj1 = −ẋjA′
j0 +

(︃
Aj0

Hj0T

)︃2

Hj1T , (3.35a)

H ′′
j1 = −A2

j0 , (3.35b)

where ẋj = dxj/dτ , for j = 0, . . . , k − 1. Using the same solvability condition as

before, we get

ẋj

∫︂ ∞

−∞
(w′)

2
dy =

1

Hj0T

∫︂ ∞

−∞
w2w′Hj1T dy , j = 0, . . . , k − 1 , (3.36)

where we use the solution (3.34) and the result in (3.22). Integrating by parts twice

and using the even property of H ′′
j1 and w(y) gives

ẋj = − 1

6 Hj0T

(︄ ∫︁∞
−∞w3 dy∫︁∞

−∞ (w′)2 dy

)︄(︁
H ′

j1T (∞) +H ′
j1T (−∞)

)︁
. (3.37)

Using

∫︁∞
−∞w3 dy

3
∫︁∞
−∞ (w′)2 dy

= 2, the equation in (3.37) simplifies to

ẋj = − 1

Hj0T

(︃
lim
y→∞

H ′
j1T + lim

y→−∞
H ′

j1T

)︃
, j = 0, . . . , k − 1 . (3.38)

In the outer region, we again treat a as a multiple of the Dirac delta function

centered at xj, in the limit ϵ → 0. This gives the system in (3.12) and the so-

lution (3.13). Upon matching of the inner and outer solutions near each xj, and

using (3.34), we obtain the following nonlinear algebraic system of equations for the

heights of the spikes Hj0:

Hj0 = h0(xj) = 6
k−1∑︂
i=0

H2
i0 G(xj;xi) , j = 0, . . . , k − 1 , (3.39)
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where we have used that

∫︂ ∞

−∞
w2 dy = 6. Using (3.39), the limit in (3.38) evaluates

to

lim
y→∞

H ′
j1T + lim

y→−∞
H ′

j1T = lim
x→x+

j

h0xT + lim
x→x−

j

h0xT (3.40a)

= 12

⎡⎢⎣H2
j0T

(︄
Gx(x

+
jT ;xjT ) +Gx(x

−
jT ;xjT )

2

)︄
+

k−1∑︂
i=0
i ̸=j

H2
i0TGx(xjT ;xiT )

⎤⎥⎦ ,

where

Gx(x
−
jT ;xiT ) =

sinh (xjT ) cosh (xiT − L)

sinh (L)
,

Gx(x
+
jT ;xiT ) =

cosh (xiT ) sinh (xjT − L)

sinh (L)
.

(3.40b)

Substituting (3.39) and (3.40) into (3.38), and relabelling Hj0T by HjT , yields the

coupled delay differential-algebraic system for xj(τ) and HjT given by

ẋj = − 12

HjT

⎛⎜⎝H2
jT ⟨Gx(xjT ;xjT )⟩+

k−1∑︂
i=0
i ̸=j

H2
iTGx(xjT ;xiT )

⎞⎟⎠ , (3.41a)

HjT = 6
k−1∑︂
i=0

H2
iT G(xjT ;xiT ) . (3.41b)

Here HjT = Hj(τ − T ), ⟨Gx(xjT ;xjT )⟩ =
Gx(x

+
jT ;xjT ) +Gx(x

−
jT ;xjT )

2
, and xjT =

xj(τ − T ), for j = 0, . . . , k − 1.

Using matrices, the system in (3.41) becomes

ẋ = −12 HT
−1 PT H2

T , HT = 6 GT H2
T , (3.42a)
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where

ẋ ≡

⎡⎢⎢⎢⎢⎢⎣
ẋ0(τ)

ẋ1(τ)
...

ẋj(τ)

⎤⎥⎥⎥⎥⎥⎦ , HT ≡

⎡⎢⎢⎢⎢⎢⎣
H0T

H1T

...

HjT

⎤⎥⎥⎥⎥⎥⎦ , H2
T ≡

⎡⎢⎢⎢⎢⎢⎣
H2

0T

H2
1T

...

H2
jT

⎤⎥⎥⎥⎥⎥⎦ , HT ≡

⎡⎢⎢⎢⎢⎢⎣
H0T 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · HjT

⎤⎥⎥⎥⎥⎥⎦ ,

PT ≡

⎡⎢⎢⎣
⟨Gx(x0T ;x0T )⟩ · · · Gx(x0T ;xjT )

...
. . .

...

Gx(xjT ;x0T ) · · · ⟨Gx(xjT ;xjT )⟩

⎤⎥⎥⎦ , GT ≡

⎡⎢⎢⎣
G(x0T ;x0T ) · · · G(x0T ;xjT )

...
. . .

...

G(xjT ;x0T ) · · · G(xjT ;xjT )

⎤⎥⎥⎦ .
(3.42b)

Here we have that

G(xjT ;xiT ) =
cosh (xiT ) cosh (xjT − L)

sinh (L)
,

Gx(xjT ;xiT ) =
cosh (xiT ) sinh (xjT − L)

sinh (L)
, and

⟨Gx(xjT ;xiT )⟩ =
cosh (xiT ) sinh (xjT − L) + sinh (xjT ) cosh (xiT − L)

2 sinh (L)
.

(3.42c)

In Figure 3.3, we compare the trajectories xj(t), for j = 0, 1, computed numerically

from the DDAE system (3.41), with the full numerical results for (3.31), for the case

of two spikes. The agreement is found to be close.
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Figure 3.3: Left: Plot of a two-spike equilibrium solution to (3.31), with delay in the
h term of the activator equation. The solid curve is the activator concentration and
the dotted curve is the inhibitor concentration. Right: Plot of the trajectories xj(t)
(solid curves) versus time t, for j = 0, 1, as computed from (3.41) in the original
time-scale. The dotted curves correspond to the full numerical simulation of (3.31).
Parameter values are as in the caption of Figure 3.2.

3.2.3 Delay in Activator Regulation and Inhibitor Production

Next, we consider the following GM model, where the nonlinear terms in both equa-

tions are delayed:

at = ϵ2axx − a+
a2

hT
, 0 < x < L , t > 0 , (3.43a)

0 = hxx − h+
a2T
ϵ
, 0 < x < L , t > 0 , (3.43b)

subject to the same Neumann boundary conditions and assumptions as before. We

again use the slow time-scaling τ = ϵ2t.

In the inner region near each xj, in terms of the inner variables defined in (3.3),

the system in (3.43) becomes

−ϵ A′
j ẋj = A′′

j − Aj +
A2

j

HjT

, (3.44a)

0 = H ′′
j + ϵA2

jT +O(ϵ2) , (3.44b)

where ẋj = dxj/dτ , for j = 0, . . . , k−1, and primes indicate derivatives with respect

to the inner variable y. Substituting the inner variable expansion (3.5) into (3.44)
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yields the O(1) equations in (3.33), and the inner solution (3.34). The O(ϵ) equations

corresponding to (3.44) are given by

A′′
j1 − Aj1 + 2

Aj0

Hj0T

Aj1 = −ẋjA′
j0 +

(︃
Aj0

Hj0T

)︃2

Hj1T , (3.45a)

H ′′
j1 = −A2

j0T , (3.45b)

which yields the equation in (3.36). Thus, we get

ẋj = − 1

Hj0T

(︃
lim
y→∞

H ′
j1T + lim

y→−∞
H ′

j1T

)︃
, j = 0, . . . , k − 1 . (3.46)

In the outer region, as ϵ → 0, we treat a as a weighted sum of Dirac delta

functions centred at xj, which yields the system in (3.24) and the solution in (3.25).

Matching to the inner solution near each xj yields the nonlinear algebraic system of

equations for Hj0T given by

Hj0T = h0(xjT ) = 6
k−1∑︂
i=0

H2
i0T G(xjT1 ;xiT2) , (3.47)

where xjT1 = xj(τ − T ) and xjT2 = xj(τ − 2T ), for j = 0, . . . , k − 1. Using (3.47),

the right hand side of (3.46) evaluates to

12

[︄
H2

j0T

(︄
Gx(x

+
jT1

;xjT2) +Gx(x
−
jT1

;xjT2)

2

)︄
+

k−1∑︂
i=0
i ̸=j

H2
i0TGx(xjT1 ;xiT2)

]︄
, (3.48a)

where

Gx(x
−
jT1

;xiT2) =
sinh (xjT1) cosh (xiT2 − L)

sinh (L)
,

Gx(x
+
jT1

;xiT2) =
cosh (xiT2) sinh (xjT1 − L)

sinh (L)
,

(3.48b)

for j = 0, . . . , k − 1. Substituting (3.47) and (3.48) into (3.46) yields the coupled

delay differential-algebraic system of equations for xj and Hj given by

ẋj = − 12

HjT

⎛⎜⎝H2
jT ⟨Gx(xjT1 ;xjT2)⟩+

k−1∑︂
i=0
i ̸=j

H2
iTGx(xjT1 ;xiT2)

⎞⎟⎠ , (3.49a)

HjT = 6
k−1∑︂
i=0

H2
iT G(xjT1 ;xiT2) , j = 0, . . . , k − 1 . (3.49b)
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Here HjT = Hj(τ − T ), and ⟨Gx(xjT1 ;xjT2)⟩ =
Gx(x

+
jT1

;xjT2) +Gx(x
−
jT1

;xjT2)

2
.

Using matrix notation, the system in (3.49) can be written as

ẋ = −12 H−1
T PT H2

T , HT = 6 GT H2
T , (3.50a)

where

ẋ ≡

⎡⎢⎢⎢⎢⎢⎣
ẋ0(τ)

ẋ1(τ)
...

ẋj(τ)

⎤⎥⎥⎥⎥⎥⎦ , HT ≡

⎡⎢⎢⎢⎢⎢⎣
H0T

H1T

...

HjT

⎤⎥⎥⎥⎥⎥⎦ , H2
T ≡

⎡⎢⎢⎢⎢⎢⎣
H2

0T

H2
1T

...

H2
jT

⎤⎥⎥⎥⎥⎥⎦ , HT ≡

⎡⎢⎢⎢⎢⎢⎣
H0T 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · HjT

⎤⎥⎥⎥⎥⎥⎦ ,

PT ≡

⎡⎢⎢⎣
⟨Gx(x0T1 ;x0T2)⟩ · · · Gx(x0T1 ;xjT2)

...
. . .

...

Gx(xjT1 ;x0T2) · · · ⟨Gx(xjT1 ;xjT2)⟩

⎤⎥⎥⎦ , GT ≡

⎡⎢⎢⎣
G(x0T1 ;x0T2) · · · G(x0T1 ;xjT2)

...
. . .

...

G(xjT1 ;x0T2) · · · G(xjT1 ;xjT2)

⎤⎥⎥⎦ .
(3.50b)

Here we have that

G(xjT1 ;xiT2) =
cosh (xiT2) cosh (xjT1 − L)

sinh (L)
,

Gx(xjT1 ;xiT2) =
cosh (xiT2) sinh (xjT1 − L)

sinh (L)
,

⟨Gx(xjT1 ;xiT2)⟩ =
cosh (xiT2) sinh (xjT1 − L) + sinh (xjT1) cosh (xiT2 − L)

2 sinh (L)
.

(3.50c)

In Figure 3.4, we compare the trajectories xj, for j = 0, 1, computed numerically

from the DDAE system (3.49), with the full numerical results for (3.43), for the case

of two spikes. The agreement is found to be close.
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Figure 3.4: Left: Plot of a two-spike equilibrium solution to (3.43), with delay in both
the activator regulation and inhibitor production. The solid curve is the activator
concentration and the dotted curve is the inhibitor concentration. Right: Plot of the
trajectories xj(t) (solid curves) versus time t, for j = 0, 1, as computed from (3.49) in
the original time-scale. The dotted curves correspond to the full numerical simulation
of (3.43). Parameter values are as in the caption of Figure 3.2.

3.3 Hopf Bifurcation in the Reduced System of Delay

Differential-Algebraic Equations for the Spike Locations

In §2.2, we studied the dynamics and stability of one-spike solution to the GM

model, and we showed that for some cases of delayed reaction kinetics, increasing

time delay results in sustained oscillations, due to a Hopf bifurcation, in the positions

of the spikes for the corresponding reduced delay differential-algebraic system. In this

section, we extend our analysis to the more general case of k-spike solution, and we

analyze its stability by computing critical values of delay at which a Hopf bifurcation

occurs. As before, for the models considered in §3.2, the spikes evolve on a slow time-

scale t = O(ϵ−2). The stability of the large eigenvalues is studied in §3.4.2, where we
show that the Hopf bifurcation is observed in the spikes amplitude for some cases of

the GM model with delayed kinetics.

In §3.2.1, we derived the DDAEs in (3.29) corresponding to the GM model

in (3.17). For k = 2, the system in (3.30) becomes

ẋ = −12 H−1 P H2 , H = 6 G H2 , (3.51a)
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where we have defined

ẋ ≡

[︄
ẋ0(τ)

ẋ1(τ)

]︄
, H ≡

[︄
H0

H1

]︄
, H2 ≡

[︄
H2

0

H2
1

]︄
, H ≡

[︄
H0 0

0 H1

]︄
,

P ≡

[︄
⟨Gx(x0;x0T )⟩ Gx(x0;x1T )

Gx(x1;x0T ) ⟨Gx(x1;x1T )⟩

]︄
, G ≡

[︄
G(x0;x0T ) G(x0;x1T )

G(x1;x0T ) G(x1;x1T )

]︄
.

(3.51b)

Thus, using the original time-scale, we get that⎡⎢⎣
dx0
dt
dx1
dt

⎤⎥⎦ = −ϵ2 12

H0H1

⎡⎣H2
0 H1 ⟨Gx(x0;x0T )⟩+H3

1 Gx(x0;x1T )

H3
0 Gx(x1;x0T ) +H0H

2
1 ⟨Gx(x1;x1T )⟩

⎤⎦ ,

[︄
H0

H1

]︄
= 6

[︄
H2

0 G(x0;x0T ) +H2
1 G(x0;x1T )

H2
0 G(x1;x0T ) +H2

1 G(x1;x1T )

]︄
.

(3.52)

Substituting the expressions given in (3.30c) into (3.52) gives

dx0
dt

= −ϵ2 6H0

sinh (L)

[︄
cosh (x0T ) sinh (x0 − L) + sinh (x0) cosh (x0T − L)

+ 2

(︃
H1

H0

)︃2

cosh (x1T ) sinh (x0 − L)

]︄
,

dx1
dt

= −ϵ2 6H1

sinh (L)

[︄
cosh (x1T ) sinh (x1 − L) + sinh (x1) cosh (x1T − L)

+ 2

(︃
H0

H1

)︃2

cosh (x0T ) sinh (x1 − L)

]︄
,

(3.53a)

coupled to the algebraic system of equations

H0 =
6

sinh (L)

[︄
H2

0 cosh (x0T ) cosh (x0 − L) +H2
1 cosh (x1T ) cosh (x0 − L)

]︄
;

H1 =
6

sinh (L)

[︄
H2

0 cosh (x0T ) cosh (x1 − L) +H2
1 cosh (x1T ) cosh (x1 − L)

]︄
.

(3.53b)

Next, we rewrite the equations in (3.53a) as

dx0
dt

= F (x0, x0T , x1, x1T ) , and
dx1
dt

=M(x0, x0T , x1, x1T ) , (3.54)

and we introduce the following small perturbations to the equilibrium position of the

jth spike:

xj(t) = xj + eλtηj , where |ηj| << |xj| , for j = 0, 1 . (3.55)



61

Substituting (3.55) into (3.54) gives

dx0
dt

+ λeλtη0 = F + Fx0T
eλ(t−T )η0 + Fx0e

λtη0 + Fx1T
eλ(t−T )η0 + Fx1e

λtη0 ,

dx1
dt

+ λeλtη1 =M +Mx0T
eλ(t−T )η1 +Mx0e

λtη1 +Mx1T
eλ(t−T )η1 +Mx1e

λtη1,

(3.56)

where the partial derivatives of F (and similarly for M) are calculated using the

chain rule:

Fxi
=

1∑︂
j=0

∂F

∂Hj

∂Hj

∂xi
, FxiT

=
1∑︂

j=0

∂F

∂Hj

∂Hj

∂xiT
, for i = 0, 1 . (3.57)

Since x0 and x1 are solutions to (3.54), the equations in (3.56) can be reduced to

λ = Fx0 + Fx1 + (Fx0T
+ Fx1T

) e−λT ,

λ =Mx0 +Mx1 + (Mx0T
+Mx1T

) e−λT .
(3.58)

We now seek critical Hopf bifurcation parameters that result in pure imaginary eigen-

values. Substituting λ = iω, for some positive ω ∈ R, into (3.58) yields the following

system of equations:

iω = Fx0 + Fx1 + (Fx0T
+ Fx1T

) [cos (ωT )− i sin (ωT )] ,

iω =Mx0 +Mx1 + (Mx0T
+Mx1T

) [cos (ωT )− i sin (ωT )] .
(3.59)

Upon comparing the real and imaginary terms on both sides of each equation in (3.59),

we get

Fx0 + Fx1 + (Fx0T
+ Fx1T

) cos (ωT ) = 0, (Fx0T
+ Fx1T

) sin (ωT ) = −ω,

Mx0 +Mx1 + (Mx0T
+Mx1T

) cos (ωT ) = 0, (Mx0T
+Mx1T

) sin (ωT ) = −ω.
(3.60)

Numerical evaluation of the equations in (3.60) for two spikes, with ϵ = 0.4 and

L = 0.5/
√
0.2, gives that ω and T satisfy (3.60) only if |cos (ωT )| > 1, which is a

contradiction to the cosine function properties. Thus, we conclude that the equi-

librium solution in this case is stable for all positive values of delay T . Numerical

simulations are shown in Figure 3.5, where we plot various trajectories of xj(t),

j = 0, 1, for various values of delay. In this case, no instabilities are triggered and

the spikes tend to their equilibrium locations.
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Figure 3.5: Plot of trajectories corresponding to the spike locations versus time, as
obtained from the DDAE system in (3.52), for increasing values of delay in the non-
linear term of the inhibitor equation. Initial condition as indicated. No oscillations
are observed and all trajectories approach the stable equilibrium positions x0 = L/4
and x1 = 3L/4. Parameters used are k = 2, ϵ = 0.4, L = 0.5/

√
0.2, µ = 1, and

D = 1.

Similarly, using k = 2, the system in (3.42) can be written as

ẋ = −12 HT
−1 PT H2

T , HT = 6 GT H2
T , (3.61a)

where

ẋ ≡

[︄
ẋ0(τ)

ẋ1(τ)

]︄
, HT ≡

[︄
H0T

H1T

]︄
, H2

T ≡

[︄
H2

0T

H2
1T

]︄
, HT ≡

[︄
H0T 0

0 H1T

]︄
,

PT ≡

[︄
⟨Gx(x0T ;x0T )⟩ Gx(x0T ;x1T )

Gx(x1T ;x0T ) ⟨Gx(x1T ;x1T )⟩

]︄
, GT ≡

[︄
G(x0T ;x0T ) G(x0T ;x1T )

G(x1T ;x0T ) G(x1T ;x1T )

]︄
.

(3.61b)

Using the original time-scale we get⎡⎢⎣
dx0
dt
dx1
dt

⎤⎥⎦ = −ϵ2 12

H0TH1T

⎡⎣H2
0T H1T ⟨Gx(x0T ;x0T )⟩+H3

1T Gx(x0T ;x1T )

H3
0T Gx(x1T ;x0T ) +H0TH

2
1T ⟨Gx(x1T ;x1T )⟩

⎤⎦ ,

[︄
H0T

H1T

]︄
= 6

[︄
H2

0T G(x0T ;x0T ) +H2
1T G(x0T ;x1T )

H2
0T G(x1T ;x0T ) +H2

1T G(x1T ;x1T )

]︄
.

(3.62)
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Substituting the expressions given in (3.42c) into (3.62) gives

dx0
dt

= −ϵ2 6H0T

sinh (L)

[︄
sinh (2x0T − L) + 2

(︃
H1T

H0T

)︃2

cosh (x1T ) sinh (x0T − L)

]︄
;

dx1
dt

= −ϵ2 6H1T

sinh (L)

[︄
2

(︃
H0T

H1T

)︃2

cosh (x0T ) sinh (x1T − L) + sinh (2x1T − L)

]︄
,

(3.63a)

coupled to the algebraic system of equations given by

H0T =
6

sinh (L)

[︄
H2

0T cosh (x0T ) cosh (x0T − L) +H2
1T cosh (x1T ) cosh (x0T − L)

]︄
,

H1T =
6

sinh (L)

[︄
H2

0T cosh (x0T ) cosh (x1T − L) +H2
1T cosh (x1T ) cosh (x1T − L)

]︄
.

(3.63b)

As before, we let

dx0
dt

= F (x0, x0T , x1, x1T ) , and
dx1
dt

=M(x0, x0T , x1, x1T ) . (3.64)

Here we have that Fx0 = Fx1 = 0 and Mx0 = Mx1 = 0. Substituting the small

perturbations in (3.55) into (3.64) gives the equations in (3.56), which in turn reduce

to (3.58). We seek critical Hopf bifurcation parameter values that result in pure

imaginary eigenvalues of the form λ = iω, for some ω > 0, which gives that

iω = (Fx0T
+ Fx1T

) [cos (ωT )− i sin (ωT )] ,

iω = (Mx0T
+Mx1T

) [cos (ωT )− i sin (ωT )] .
(3.65)

Comparing the real and imaginary terms in (3.65) gives

(Fx0T
+ Fx1T

) cos (ωT ) = 0 , (Fx0T
+ Fx1T

) sin (ωT ) = −ω ,

(Mx0T
+Mx1T

) cos (ωT ) = 0 , (Mx0T
+Mx1T

) sin (ωT ) = −ω .
(3.66)

Numerical computations of the solution to (3.66), using ϵ = 1 to account for the slow

time-scale of the spike motion, with k = 2 and L = 0.5/
√
0.2, yields the critical Hopf

bifurcation parameter values

(ωH , TH) ≈ (1.97, 0.80) . (3.67)
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The results are illustrated in Figure 3.6.
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0 20 40 60 80 100 120 140 160 180 200

-1

-0.5

0

0.5

1

1.5

2

(b) T = 0.9 > TH

Figure 3.6: Plot of trajectories xj corresponding to spike locations versus τ , as
obtained from the DDAE system (3.62), with delay in the nonlinear term of the
activator equation. Numerical simulations show decaying oscillations when T =
0.7 < TH (left figure), and sustained oscillations when T = 0.9 > TH (right figure).
Parameters used are ϵ = 1 (slow time-scale of motion), k = 2, L = 0.5/

√
0.2, µ = 1,

and D = 1.

Finally, we consider the system in (3.50). For k = 2, we get

ẋ = −12 H−1
T PT H2

T , HT = 6 GT H2
T , (3.68a)

where

ẋ ≡

[︄
ẋ0(τ)

ẋ1(τ)

]︄
, HT ≡

[︄
H0T

H1T

]︄
, H2

T ≡

[︄
H2

0T

H2
1T

]︄
, HT ≡

[︄
H0T 0

0 H1T

]︄
,

PT ≡

[︄
⟨Gx(x0T1 ;x0T2)⟩ Gx(x0T1 ;x1T2)

Gx(x1T1 ;x0T2) ⟨Gx(x1T1 ;x1T2)⟩

]︄
, GT ≡

[︄
G(x0T1 ;x0T2) G(x0T1 ;x1T2)

G(x1T1 ;x0T2) G(x1T1 ;x1T2)

]︄
.

(3.68b)

In terms of the original times scale, we have that⎡⎢⎣
dx0
dt
dx1
dt

⎤⎥⎦ = −ϵ2 12

H0TH1T

⎡⎣H2
0T H1T ⟨Gx(x0T1 ;x0T2)⟩+H3

1T Gx(x0T1 ;x1T2)

H3
0T Gx(x1T1 ;x0T2) +H0TH

2
1T ⟨Gx(x1T1 ;x1T2)⟩

⎤⎦ ,

[︄
H0T

H1T

]︄
= 6

[︄
H2

0T G(x0T1 ;x0T2) +H2
1T G(x0T1 ;x1T2)

H2
0T G(x1T1 ;x0T2) +H2

1T G(x1T1 ;x1T2)

]︄
.

(3.69)
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Substituting the expressions given in (3.50c) into (3.69) gives

dx0
dt

= −ϵ2 6 H0T

sinh (L)

[︄
cosh (x0T2) sinh (x0T1 − L) + sinh (x0T1) cosh (x0T2 − L)

+ 2

(︃
H1T

H0T

)︃2

cosh (x1T2) sinh (x0T1 − L)

]︄
,

dx1
dt

= −ϵ2 6 H1T

sinh (L)

[︄
cosh (x1T2) sinh (x1T1 − L) + sinh (x1T1) cosh (x1T2 − L)

+ 2

(︃
H0T

H1T

)︃2

cosh (x0T2) sinh (x1T1 − L)

]︄
,

(3.70a)

coupled to the algebraic system of equations given by

H0T =
6

sinh (L)

[︄
H2

0T cosh (x0T2) cosh (x0T1 − L) +H2
1T cosh (x1T2) cosh (x0T1 − L)

]︄
,

H1T =
6

sinh (L)

[︄
H2

0T cosh (x0T2) cosh (x1T1 − L) +H2
1T cosh (x1T2) cosh (x1T1 − L)

]︄
.

(3.70b)

Next, we let

dx0
dt

= F (x0T1 , x0T2 , x1T1 , x1T2) , and
dx1
dt

=M(x0T1 , x0T2 , x1T1 , x1T2) . (3.71)

Substituting the small perturbations in (3.55) into (3.71) and simplifying yields the

following transcendental eigenvalue equations:

λ =
(︁
Fx0T1

+ Fx1T1

)︁
e−λT1 +

(︁
Fx0T2

+ Fx1T2

)︁
e−λT2 , and

λ =
(︁
Mx0T1

+Mx1T1

)︁
e−λT1 +

(︁
Mx0T2

+Mx1T2

)︁
e−λT2 ,

(3.72)

where T2 = 2T1. Next, we seek critical Hopf bifurcation parameter values that result

in pure imaginary eigenvalues of the form λ = iω, for some ω > 0, which yields

iω =
(︁
Fx0T1

+ Fx1T1

)︁
[cos (ωT1)− i sin (ωT1)] +

(︁
Fx0T2

+ Fx1T2

)︁
[cos (ωT2)− i sin (ωT2)] ,

iω =
(︁
Mx0T1

+Mx1T1

)︁
[cos (ωT1)− i sin (ωT1)] +

(︁
Mx0T2

+Mx1T2

)︁
[cos (ωT2)− i sin (ωT2)] .

(3.73)
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Comparing the real and imaginary terms in (3.73) gives(︁
Fx0T1

+ Fx1T1

)︁
cos (ωT1) +

(︁
Fx0T2

+ Fx1T2

)︁
cos (ωT2) = 0 ,(︁

Fx0T1
+ Fx1T1

)︁
sin (ωT1) +

(︁
Fx0T2

+ Fx1T2

)︁
sin (ωT2) = −ω ,(︁

Mx0T1
+Mx1T1

)︁
cos (ωT1) +

(︁
Mx0T2

+Mx1T2

)︁
cos (ωT2) = 0 ,(︁

Mx0T1
+Mx1T1

)︁
sin (ωT1) +

(︁
Mx0T2

+Mx1T2

)︁
sin (ωT2) = −ω .

(3.74)

Numerical computations of the solution to (3.74), using ϵ = 1 to account for the slow

time-scale of the spike motion, with k = 2 and L = 0.5/
√
0.2, yields the critical Hopf

bifurcation values

(ωH , TH) ≈ (2.18, 0.76) . (3.75)

The results are illustrated in Figure 3.7.
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Figure 3.7: Plot of trajectories xj corresponding to spike locations versus τ , as
obtained from the DDAE system (3.69), with delay in both the activator regulation
and inhibitor production. Numerical simulations show decaying oscillations when
T1 = 0.7 < TH (left figure), and sustained oscillations when T1 = 0.8 > TH (right
figure). Parameters values are as in the caption of Figure 3.6.

3.4 Hopf Bifurcation in the Large Eigenvalues

We now examine the stability of the k-spike solution constructed in §3.1 to the GM

model for two cases of delayed reaction kinetics. We note that a k-spike solution over

the interval [0, L] can be constructed from a one-spike solution over the small interval
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[−l, l], where l = L/2k is the base length of the spike, using appropriate reflections

and translations. In particular, a k-spike solution is constructed over the interval

[−l, (2k−1)l] by glueing together k copies of a single spike (see [33, 34, 37, 38, 39, 71]).

However, the stability analysis of the k-spike solution is quite different from that of a

single spike, as studied in §2.3, since each eigenvalue from a single spike solution now

corresponds to k distinct eigenvalues in the k-spike case. To find these eigenvalues, we

first consider in §3.4.1 the linearized eigenvalue problem corresponding to the k-spike

solution over the interval [−l, (2k − 1)l], subject to periodic boundary conditions.

We then use a Floquet-type approach (see [37, 38, 58, 71]), where we derive complex

boundary conditions and use them to construct a global eigenfunction by piecing

together k eigenfunctions, each corresponding to a single spike. Using these Floquet-

type boundary conditions, we can then construct the k eigenfunctions. Finally, we

show that the stability of the k-spike solution with Neumann boundary conditions can

be derived from the stability of 2k-spike solution with periodic boundary conditions.

For clarity, in §3.4.1 we use the case with no delay to describe the derivation of the

corresponding NLEP using a singular perturbation approach. In §3.4.2 and §3.4.3,
we analyze the GM model with delayed inhibitor catalyzed production, as well as

when delay is in both the activator regulation and inhibitor production. In each

case, we find that oscillatory instabilities in the spike amplitudes are triggered as

time delay T is increased past a Hopf bifurcation threshold, which we numerically

calculate.

3.4.1 Formulation of Eigenvalue Problem: No Delay Case

In this section, we derive the eigenvalue problem associated with linearizing the

one-dimensional GM model with no delay given by

at = ϵ2axx − a+
a2

h
, 0 < x < L , t > 0 , (3.76a)

0 = hxx − h+
a2

ϵ
, 0 < x < L , t > 0 , (3.76b)

ax(0, t) = ax(L, t) = hx(0, t) = hx(L, t) = 0 , (3.76c)

around the k-spike equilibrium solution (3.16). In studying the stability of this

k-spike equilibrium, we first consider a one-spike solution to (3.76) over the small
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interval [−l, l], such that the base length of the spike is given by 2 l = L/k. Glueing

together k copies of the single spike results in a k-spike solution over the interval

[−l, (2k− 1)l]. This approach has been previously used for various RD systems with

k hot-spots and spike-type patterns (see [33, 34, 37, 38, 39, 71]).

Using (ae, he) to denote a 1-spike equilibrium solution to (3.76) over the domain

|x| ≤ l, we introduce the small perturbation

a(x, t) = ae(x) + eλtϕ(x) , h(x, t) = he(x) + eλtψ(x) , (3.77)

where ϕ ≪ ae and ψ ≪ he. Substituting (3.77) into the model equations in (3.76)

yields the eigenvalue problem

λϕ = ϵ2ϕxx − ϕ+ 2
ae
he

ϕ− a2e
h2e

ψ , (3.78a)

ψxx − ψ = −2
ae
ϵ
ϕ . (3.78b)

Following the approach used in [37, 38, 58, 71], we consider the eigenvalue problem

in (3.78) on the interval [−l, l], and we impose the Floquet-type boundary conditions

ϕ(l) = zϕ(−l) , ϕ′(l) = zϕ′(−l) ,

ψ(l) = zψ(−l) , ψ′(l) = zψ′(−l) ,
(3.79)

where z is a complex parameter to be determined such that (3.78) is an eigenvalue

problem corresponding to a k-spike solution on the interval [−l, (2k− 1)l] with peri-

odic boundary conditions. This can be achieved by translating the eigenfunctions ϕ

and ψ from the interval [−l, l] to the extended interval [−l, (2k − 1)l], such that the

extended eigenfunctions are continuous and have continuous first derivatives at the

points x = l, 3 l, 5 l, . . . , (2k− 3) l . As a result, we get that ϕ((2k− 1)l) = zkϕ(−l).
Therefore, in order to get periodic boundary conditions on the interval [−l, (2k−1)l],

we require that the complex parameter z must also satisfy zk = 1, and we get that

z = eiθ , where θ =
2πj

k
, j = 0, . . . , k − 1 . (3.80)

It follows that the eigenvalue problem in (3.78), using the values of z as defined

in (3.80), can be used to analyze the stability of a k-spike equilibrium solution on

the domain [−l, (2k − 1)l] with periodic boundary conditions.
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It remains to show that the stability analysis of a 2k-spike problem with periodic

boundary conditions can be used to derive the stability of a k-spike problem with

Neumann boundary conditions. This method has been used in [37] and [38], and we

summarize the result in the following Proposition.

Proposition 3.2. The spectrum of the k-spike eigenvalue problem in (3.78) corre-

sponding to the one-dimensional Gierer-Meinhardt model given in (3.76), over the

interval [0, L] and subject to Neumann boundary conditions (3.76c), is a subset of the

spectrum corresponding to the 2k-spike problem with periodic boundary conditions,

over the interval [−l, (2k − 1)l] where l = L/2k.

Proof. Suppose (λ, ϕ(x)) is an eigenpair with Neumann BC on [0, ζ]. Using even

reflection, ϕ can be extended to an eigenfunction over the domain [−ζ, ζ], which now

satisfies periodic boundary conditions over the interval [−ζ, ζ]. Thus, the eigenvalues
of k spikes with Neumann boundary conditions form a subset of ones corresponding to

2k spikes with periodic boundary conditions, since every eigenvalue of the Neumann

system is also an eigenvalue of the periodic system.

Moreover, If ϕ(x) is an eigenfunction with periodic boundary conditions over the

interval [−ζ, ζ], then ϕ(x) satisfies

ϕ(−ζ) = ϕ(ζ) , and ϕ′(−ζ) = ϕ′(ζ) . (3.81)

Next, we define ϕ̂(x) such that

ϕ̂(x) = ϕ(x) + ϕ(−x) . (3.82)

Thus, if ϕ(x) is odd, we get that ϕ̂(x) ≡ 0. Using the boundary conditions in (3.81),

we get that if ϕ̂(x) ̸≡ 0, and

ϕ̂
′
(0) = 0 , (3.83a)

ϕ̂
′
(ζ) = ϕ′(ζ)− ϕ′(−ζ) = 0 . (3.83b)

It follows that the even nonzero eigenfunctions of the periodic system correspond

to the eigenfunctions in the Neumann system. Thus, ϕ̂(x) ̸= 0 is an eigenfunction

with Neumann boundary conditions on [0, ζ]. In addition, since ϕ̂(x) satisfies the

linear ODE in (3.82) and the condition in (3.83b), therefore ϕ̂(x) ̸≡ 0 if and only if

ϕ̂(ζ) ̸≡ 0, which is true if and only if ϕ(ζ) ̸≡ 0.
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We now implement the results of Proposition 3.2 in studying the stability of the

k-spike solution (3.16) using the spectrum of the associated eigenvalue problem for

different cases of delayed reaction kinetics.

3.4.2 Delay in the Catalyzed Production of Inhibitor

In this section, we extend the notation in §3.4.1 to the case of a k-spike solution

to the GM model in (3.17) with delayed inhibitor kinetics, defined over the interval

[0, L], with µ = 1 and D = 1. Using the k-spike equilibrium in (3.16), the eigenvalue

problem (3.78) then becomes

λϕ = ϵ2ϕxx − ϕ+ 2
ae,k
he,k

ϕ−
a2e,k
h2e,k

ψ , 0 < x < L , (3.84a)

0 = ψxx − ψ + 2
ae,k
ϵ

e−λTϕ , 0 < x < L . (3.84b)

Using Proposition 3.2, the effect of delay on the stability of the k-spike solution (3.16)

can be studied by analyzing the k-large eigenvalues of O(1) admitted by the eigen-

value problem in (3.84).

For boundary conditions, we consider the k-spike configuration over the interval

[−l, (2k − 1)l]. As an example, we consider the case of three spikes. In this case,

with k = 3, the periodic boundary conditions are given by

ϕ(−l) = ϕ(5l) , ϕ′(−l) = ϕ′(5l) ,

ψ(−l) = ψ(5l) , ψ′(−l) = ψ′(5l) .
(3.85)

The boundary conditions in (3.85) can be written in the form

P (−l) = P ((2k − 1)l) , where P =

⎡⎢⎢⎢⎢⎢⎣
ϕ

ϕ′

ψ

ψ′

⎤⎥⎥⎥⎥⎥⎦ . (3.86)

For the general case of k-spikes over the interval [−l, (2k−1)l], (3.86) then becomes

P (−l) = zP (l) , (3.87a)

where

z = e2πij/k , for j = 0, . . . , k − 1 . (3.87b)
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Using the Floquet theory approach, we formulate the corresponding NLEP in terms

of the Green’s function in (3.14) over the interval [−l, l], subject to the Floquet

boundary conditions

G(l) = zG(−l) , G′(l) = zG′(−l) , (3.88)

where z is as defined in (3.87b). This yields the solution

G(x) =

⎧⎪⎨⎪⎩
A cosh (x+ l) +B sinh (x+ l) , −l < x < 0 ,

z A cosh (x− l) + z B sinh (x− l) , 0 < x < l ,

(3.89a)

such that G(0+) = G(0−), and G′(0+) − G′(0−) = −1. Rewriting the solution

in (3.89a) as ⎡⎣(1− z) cosh l (1 + z) sinh l

(1 + z) sinh l (1− z) cosh l

⎤⎦⎡⎣A
B

⎤⎦ =

⎡⎣0
1

⎤⎦ ,

and solving for A and B gives

A =
(1 + z) sinh (l)

4 z cosh2 (l)− (1 + z)2
, B =

(z − 1) cosh (l)

4 z cosh2 (l)− (1 + z)2
. (3.89b)

It follows that

G(0) =
sinh (l) cosh (l)

cosh2 (l) + sinh2 (l)− cos (θ)
, where θ = 2πj/k, j = 0, . . . , k − 1. (3.90)

Therefore, for a k-spike solution, using (3.90), we get the NLEP

λϕ = ϕyy − ϕ+ 2 w ϕ− e−λT χ w2

(︄∫︁∞
−∞w ϕ dy∫︁∞
−∞w2 dy

)︄
, (3.91a)

where ϕ(y) → 0 as y → ±∞, and χ is given by

χ =
4 sinh2 (l)

cosh2 (l) + sinh2 (l)− cos (θ)
, θ = 2πj/k, j = 0, . . . , k − 1. (3.91b)

Proceeding in the same manner for increasing values of l, we determine the smallest

positive value of delay T at which a Hopf bifurcation occurs by seeking pure imaginary

eigenvalues satisfying (3.91). Using the notation in §2.3, any unstable eigenvalue

of (3.91) must be a root of g(λ) = 0, as defined in (2.90). Substituting λ = iλI

into (2.90) and separating the real and imaginary components gives the coupled
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system in (2.91), which satisfies the equations given in (2.92), where χ is as defined

in (3.91b).

Numerically, with k = 2 and L = 2/
√
0.2, the smallest value of χ is found to be

0.231, and we obtain the critical Hopf bifurcation values given by

(λIH , TH) = (8.68, 0.451) . (3.92)

To confirm our results, we compute full numerical solutions to (3.17) for delay values

below and above the critical Hopf threshold TH . For L = 2/
√
0.2, delay values

greater than TH trigger an oscillatory instability in the spike amplitudes, as shown

in Figure 3.8, where we plot the spike amplitudes a(xj) versus time t, for delay below

and above TH .
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Figure 3.8: Plot of amplitude a(xj) for a two-spike solution to (3.17) versus time
t, for delay below and above the critical value of TH ∼ 0.451. Parameters used are
k = 2, ϵ = 0.06, L = 2/

√
0.2, µ = 1, and D = 1.

3.4.3 Delay in Activator Regulation and Inhibitor Production

In this section, we consider the stability of the k-spike equilibrium solution to the GM

model (3.43), with delay in both the activator regulation and inhibitor production.

The corresponding NLEP for this model is given by

λϕ = ϕyy − ϕ+ 2 w ϕ− e−2λT χ w2

(︄∫︁∞
−∞w ϕ dy∫︁∞
−∞w2 dy

)︄
, (3.93)
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where ϕ(y) → 0 as y → ±∞, and χ is as defined in (3.91b). Proceeding in the same

manner as in §3.4.2, we get the coupled system

gR(λI) = gI(λI) = 0 , (3.94a)

where,

gR(λI) = CR(λI)− fR(λI) , gI(λI) = CI(λI)− fI(λI) ,

CR(λI) = Re [C(iλI)] , CI(λI) = Im [C(iλI)] ,

fR(λI) =

∫︁∞
−∞wL0[L

2
0 + λ2I ]

−1w2dy∫︁∞
−∞w2dy

, fI(λI) =
λI
∫︁∞
−∞w[L2

0 + λ2I ]
−1w2dy∫︁∞

−∞w2dy
,

CR(λI) =
1

χ
cos(2λIT ) , CI(λI) =

1

χ
sin(2λIT ) .

(3.94b)

Numerical computations, with k = 2 and L = 2/
√
0.2, yield that χmin = 0.231, and

predict that a Hopf bifurcation occurs when

(λIH , TH) = (8.68, 0.226) . (3.95)

To confirm our predictions, we compute full numerical solutions to (3.43) for delay

values below and above the critical Hopf threshold TH . In Figure 3.8, we plot spike

amplitudes a(xj) as a function of time t, for two spikes with L = 2/
√
0.2. From this

figure we observe that sustained oscillations occur as delay increases past the critical

value TH .
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Figure 3.9: Plot of amplitudes a(xj) for a two-spike solution to (3.43) versus time
t, for delay below and above the critical value of TH ∼ 0.226. Parameters used are
k = 2, ϵ = 0.05, µ = 1, L = 2/

√
0.2, and D = 1.



74

We have now formulated a framework for analyzing the stability of spike-type

solutions to the one-dimensional GM model with delayed reaction kinetics, using a

combination of asymptotic and numerical methods. In the next chapter, we analyze

the stability of a coupled cell-bulk model with delayed intracellular dynamics.



Chapter 4

A Coupled Cell-Bulk Model with Delayed Intracellular

Dynamics in Two-Dimensional Bounded Domain

In Chapters §2 and §3, we analyzed the stability of spike-type solutions to the GM

model in a one-dimensional domain, with delayed reaction kinetics. In this chap-

ter, we consider the coupled cell-bulk PDE model constructed and analyzed in [25]

and [26], in a two-dimensional bounded domain. In this model, dynamically active

signalling cells, with n-interacting species, release a signalling molecule into an exte-

rior bulk region and the release is regulated by the external bulk concentration at the

corresponding cell membrane as well as its density inside the cell. In [25], the authors

show that in the case of fast bulk diffusion (D >> 1), the bulk region is well-mixed

and the PDE-ODE cell-bulk model can be reduced to a nonlinear finite-dimensional

ODE system for the bulk concentration field coupled to the intracellular dynamics.

In this limiting regime, analysis of the ODE system shows that oscillatory instabili-

ties may arise due to the cell-bulk coupling. In particular, communication between

the multiple small spatially segregated signalling cells in the well-mixed system, with

multi-component intracellular dynamics, has been shown to lead to quorum sensing

behaviour whereby collective oscillations are triggered as the number of cells exceeds

a certain threshold, (see for example [3] and the references therein). Other regimes for

the diffusion parameter D have also been analyzed (see [25] and [26]), where cell-bulk

coupling has been shown to trigger oscillatory instabilities, due to a Hopf bifurcation,

which were not present otherwise. In addition, diffusion-sensing behaviour has been

observed for the case where D = O(1). In this case, the spatial configuration of

the cells in the domain plays an important role in triggering collective synchronous

oscillations.

In this chapter, we extend the analysis in [25] to allow for delayed intracellular

dynamics and we analyze the effect of this delay on the stability of the steady state

solutions in the limit of very large diffusion. The notation and methods used in [25]

75
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carry over with a few changes, and we show that the reduced system of ordinary

differential equations becomes a system of delay differential equations.

In §4.1, we consider the coupled cell-bulk model, in a two-dimensional bounded

domain, consisting of one signalling cell and n-intracellular interacting species with

delayed dynamics. In the limit of very large diffusion, we reduce the dynamics of the

coupled cell-bulk model to a system of nonlinear DDEs. In §4.2, for the case of one

intracellular component in a small circular cell, we find conditions for the existence

of the steady state solutions and we derive the corresponding eigenvalue problem

whose spectrum characterizes the stability properties of the steady states. In §4.3,
we consider the case where the delayed intracellular dynamics are governed by Hill

function-type kinetics and we find the equilibrium solutions to the model. In §4.4,
numerical simulations are used to illustrate the destabilizing effect of delay on the

steady state solutions to the model, and the corresponding critical Hopf bifurcation

delay values are determined. This is in contrast to the results obtained in [25],

where it has been shown that in the absence of delay no triggered oscillations can

occur for the case with only one cell containing one dynamically active intracellular

component.

4.1 Model Formulation: One Signalling Cell with Multiple Interacting

Species

We begin by formulating the coupled cell-bulk model in a two-dimensional bounded

domain Ω, consisting of a single small circular signalling cell of radius ϵ, denoted by

Ωϵ ∈ Ω, centered at some point X ∈ Ω. We assume that there are n interacting

species, denoted by µ = (µ1, . . . , µn), inside the cell such that only one of these

intracellular species, µ1, is capable of leaving the cell into the bulk. The partial

differential equations for the model are given by

UT = DB ∆XU − kB U , X ∈ Ω \ Ωϵ , (4.1a)

∂nX
U = 0 , X ∈ ∂Ω , (4.1b)

DB ∂nX
U = β1 U − β2 µ

1 , X ∈ ∂Ωϵ , (4.1c)
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coupled to delayed intracellular dynamics of n interacting species given by the ODE

system

dµ

dT
= kR µc F (µT/µc) + e1

∫︂
∂Ωϵ

(β1U − β2µ
1)dSX , (4.1d)

where e1 = (1, 0, . . . , 0)T . Here, U(X,T) denotes the external concentration of the

signalling molecule in the bulk region, Ω \ Ωϵ, at time T; DB > 0 is the diffusion

coefficient for the bulk process, and ∂nX
represents the outer normal derivative of the

domain Ω or the outer normal to Ωϵ. The permeability of the cell wall is represented

by the positive dimensionless constants β1 and β2.

In (4.1d), kR > 0 is the intracellular dynamics reaction rate, and F (µT/µc) is a

dimensionless function used to model the delayed intracellular reaction dynamics, for

some fixed time delay T . The constant µc > 0 is a nondimensional scaling constant

used to measure a typical value of µ inside the signalling compartment (see [25]).

The flux term β1 U − β2 µ
1, integrated over the cell boundary dSX , represents the

influx of the signalling molecule into the bulk region, which depends on U(X,T) at

the cell membrane ∂Ωϵ and the concentration of µ1 inside the cell.

Next, we introduce the dimensionless variables and parameters given by

U =
L2

µc

U , u =
µ

µc

, t =
T

tR
, x =

X

L
,

τ =
kR
kB

, β1 = (kBL)
d1
ϵ
, β2 =

(︃
kB
L

)︃
d2
ϵ
,

(4.2)

where L represents the radius of Ω. With respect to the slow time variable, in the

limit τ ≪ 1, the intracellular dynamics are much slower than the rate of degradation

of the signalling molecule in the bulk region. In addition, we choose tR depending on

the time-scale of the reaction dynamics, and we define a new dimensionless diffusivity

parameter D given by

tR =
1

kR
, D =

DB

kB L2
. (4.3)

Using the nondimensionalization process in [25], we get the following nondimen-

sional system for the model in (4.1):

τUt = D∆U − U , x ∈ Ω \ Ωϵ , (4.4a)

∂nU = 0 , x ∈ ∂Ω , (4.4b)

ϵD∂nU = d1U − d2u1 , x ∈ ∂Ωϵ , (4.4c)
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coupled to the delayed intracellular dynamics given by

du

dt
= F (uT ) +

1

ϵτ

∫︂
∂Ωϵ

(d1U − d2u1)ds e1 . (4.4d)

We assume fast diffusion of the signalling molecule into a well-mixed bulk region,

such that the diffusion coefficient D satisfies D ≫ O(ν−1), for ν = −1/ log ϵ. As

shown in [25], in this case the coupled PDE model in (4.4) can be reduced to the

(n+ 1)-dimensional system of delay differential equations given by

U ′
0 = −1

τ

(︃
1 +

2πd1
|Ω|

)︃
U0 +

2πd2
τ |Ω|

u1 , (4.5a)

u′ = F (uT ) +
2π

τ
(d1U0 − d2u1) e1 , (4.5b)

where U0(t) and u denote the leading-order average bulk concentration and the cell

dynamics, respectively.

4.2 Stability Analysis: One Cell and One Local Component

In this section, we analyze the coupled cell-bulk model in (4.5), with one small

circular cell µ centered at the point x0 ∈ Ω, and containing one intracellular species

(n = 1). We again assume a small disk radius, such that ϵ << 1. Thus, for some

delay T > 0, the corresponding ODE system is given by

U ′
0 = −1

τ

(︃
1 +

2πd1
|Ω|

)︃
U0 +

2πd2
τ |Ω|

u , (4.6a)

u′ = F (uT ) +
2π

τ
(d1U0 − d2u) . (4.6b)

Thus the equilibrium solutions U0e and ue must satisfy

0 = F (ue) +
2π

τ
(d1 U0e − d2 ue) , U0e =

(︃
2πd2
|Ω|

)︃(︃
1 +

2πd1
|Ω|

)︃−1

ue . (4.7)

We introduce the small perturbation to the equilibrium solution

u = ue + eλtϕ , U0 = U0e + eλtη , (4.8)

where |ϕ| ≪ |ue| and |η| ≪ |U0e|. Substituting (4.8) into (4.6) and linearizing gives

λϕ = e−λTϕ F e
u +

2π

τ
(d1η − d2ϕ) , (4.9a)

η =
s

τλ+ r
ϕ , (4.9b)
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where r = 1 +
2πd1
|Ω|

, and s =
2πd2
|Ω|

.

Thus, λ must be a root of the equation Q(λ) = 0, where Q(λ) is the quasi-

polynomial given by

Q(λ) ≡ − τ(r + τλ)

2πd2(1 + τλ)
− 1

det(λI − Je−λT )
. (4.10)

Here J is the Jacobian of F evaluated at the steady state u = ue. It follows that

det(λI − Je−λT ) = λ− F e
u e

−λT , where F e
u =

dF

du

⃓⃓⃓
u=ue

. (4.11)

Stability is then determined by the roots of the quasi-polynomial

λ2 + λ p1(λ) + p2(λ) = 0 (4.12a)

where

p1(λ) =
1

τ

(︃
1 +

2πd1
|Ω|

)︃
− e−λT F e

u +
2πd2
τ

,

p2(λ) = −e
−λTF e

u

τ

(︃
1 +

2πd1
|Ω|

)︃
+

2πd2
τ 2

.

(4.12b)

For the case with no delay, we get the following result (from [25]) for (4.12).

Principal Result 4.1. (From [25]): Let T = 0 and n = 1. Then, no Hopf bifurca-

tion can occur for the steady state solution to (4.5). Moreover, if

F e
u < Fth ≡

2πd2
τ

[︃
1 +

2πd1
|Ω|

]︃−1

(4.13)

then Re(λ) < 0, and the steady state is linearly stable. On the other hand, if F e
u >

Fth, the linearization has exactly one positive eigenvalue.

The result above shows that, for the case with no delay, cell-bulk coupling can

result in a linearly stable steady state solution to (4.5), even for F e
u > 0 when

the reaction kinetics are self-activating. In addition, from (4.13) we have that the

stability threshold Fth decreases as τ increases. Thus, in the absence of delay, fast

cell dynamics result in a decreased threshold for the self-activating reaction kinetics,

while the stability of the steady state solution to the coupled system is maintained.
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To analyze the effect of delay, we solve (4.12) for the smallest positive critical

value of T which gives rise to pure imaginary eigenvalues. Substituting λ = iω, for

some positive ω ∈ R, into (4.12) and rearranging gives

−ω2 + iω p1(ω) + p2(ω) = 0 , (4.14a)

where

p1(ω) =
1

τ

(︃
1 +

2πd1
|Ω|

)︃
− e−iωT F e

u +
2πd2
τ

,

p2(ω) = −e
−iωTF e

u

τ

(︃
1 +

2πd1
|Ω|

)︃
+

2πd2
τ 2

.

(4.14b)

To simplify the analysis, we introduce the parameters a and b defined by

a =
r

τ
=

1

τ

(︃
1 +

2πd1
|Ω|

)︃
, b =

2πd2
τ 2

. (4.15)

Using (4.15) as well as the Euler formula expansion e−iωT = cos(ωT ) − i sin(ωT ),

equation (4.14) simplifies to

cos(ωT )− i sin(ωT ) = P (ω)− iQ(ω) , (4.16a)

where P (ω) and Q(ω) are given by

P (ω) =
ω2 τb+ ab

F e
u (a

2 + ω2)
, Q(ω) =

ω (b− a2 − τab)− ω3

F e
u (a

2 + ω2)
, (4.16b)

whenever F e
u ̸= 0. From (4.16), we get that P (ω) and Q(ω) must satisfy the equations

P 2(ω) +Q2(ω) = 1 , (4.17a)

tan(ωT ) =
Q(ω)

P (ω)
. (4.17b)

Equation (4.17a) gives that(︁
ω2 τb+ ab

)︁2
+ ω2

(︁
−ω2 + b− a2 − τab

)︁2
= (F e

u)
2 (︁a2 + ω2

)︁2
. (4.18)

Using the scaling Z = ω2, we obtain from (4.18) that Z > 0 must be a root of the

cubic equation

Z3 + a1 Z
2 + a2 Z + a3 = 0 , (4.19a)
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where

a1 = τ 2b2 − 2b+ 2 a2 + 2τab− (F e
u)

2 ,

a2 = 2τab2 + (b− a2 − τab)2 − 2 a2 (F e
u)

2 ,

a3 = a2b2 − a4 (F e
u)

2 = a2(b2 − a2 (F e
u)

2) = a2(b+ aF e
u)(b− aF e

u) .

(4.19b)

Moreover, since τa > 1, therefore we get from (4.17b) that

tan(ωT ) =
−ω (b(τa− 1) + a2 + ω2)

ω2 τb+ ab
< 0 . (4.20)

Next, we consider a specific form for the local kinetics and we determine condi-

tions for which oscillatory instabilities occur.

4.3 Stability Analysis: Hill Function Dynamics

In this section, we analyze (4.6), with intracellular reaction dynamics governed by a

delayed Hill function of the form

F (uT ) :=
u2T

1 + u2T
− γ uT , (4.21)

for some positive real parameter γ. At the steady state solution, the partial derivative

of F is given by

F e
u =

2ue

(1 + u2e)
2 − γ . (4.22)

Substituting (4.21) and (4.22) into (4.7) yields

U0e =

(︃
2πd2

|Ω|+ 2πd1

)︃
ue , 0 = − u2e

1 + u2e
+

(︃
γ +

2πd2
τ

)︃
ue −

2πd1
τ

U0e . (4.23)

We are interested in the equilibrium solution ue at the intersection point of the

two nullclines in (4.23). Thus, we seek a solution ue which satisfies

u2e
1 + u2e

= κ ue , where κ = γ +
b

a
, (4.24)

and the parameters a and b are as defined in (4.15). Solving (4.24) for ue yields the

solutions

ue = 0 , u∗e =
1±

√
1− 4κ2

2κ
. (4.25)
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We note that for the nontrivial steady state solutions u∗e to exist, we require that

1− 4κ2 ≥ 0, or 0 ≤ κ ≤ 1
2
. It follows that γ, a, and b must satisfy

0 ≤ γ +
b

a
≤ 1

2
. (4.26)

In terms of the original parameters of the model, we fix γ < 0.5 and we get the

condition

τ >
4π|Ω|d2

(1− 2γ) (|Ω|+ 2πd1)
, for some fixed γ <

1

2
. (4.27)

The two nontrivial solutions u∗e in (4.25) coalesce when γ +
b

a
= 0.5, or when

τ =
4π|Ω|d2

(1− 2γ) (|Ω|+ 2πd1)
, for some fixed γ <

1

2
. (4.28)

The condition in (4.28) is satisfied exactly when the line κ ue in (4.24) intersects the

sigmoidal curve
u2e

1 + u2e
tangentially at the bifurcation point u∗e = 1.

The Jacobian matrix J for (4.6) evaluated at the nontrivial steady state solution

(U∗
0e, u

∗
e) is given by

J =

⎡⎢⎢⎢⎢⎢⎣
−1

τ

(︃
1 +

2πd1
|Ω|

)︃
2πd2
τ |Ω|

2πd1
τ

2ue

(1 + u2e)
2 − γ − 2πd2

τ

⎤⎥⎥⎥⎥⎥⎦ , (4.29)

where the trace and determinant of J are given by

Tr(J) = F e
u − (a+ τb) , det(J) = b− aF e

u . (4.30)

At the trivial steady state (0, 0), (4.30) yields

Tr(J) = −(γ + a+ τ b) < 0 , det(J) = b+ aγ > 0 , (4.31)

which implies that the origin is a stable spiral. We note that in the absence of delay

the trivial steady state is a stable node, since (Tr(J))2 − 4 det(J) > 0.

For the nontrivial steady state solutions in (4.25), we get that

det(J) = (b+ aγ)

(︃
u2e − 1

1 + u2e

)︃
, (4.32)

which is negative when 0 < u∗e < 1, and positive when u∗e > 1.
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4.4 Numerical Simulations

We now consider how increasing delay can bring about oscillations, thereby desta-

bilizing the steady state solutions to (4.6). We again assume Hill function-type

dynamics for F (uT ), as defined in (4.21), and we choose parameter values such that

the condition in (4.27) is satisfied.

Using the MatLab package dde23, we analyze numerically the effect of delay using

the following set of parameter values:

τ = 8 , d1 = 1.5 , d2 = 0.2 , |Ω| = 10 , γ = 0.3 . (4.33)

With (4.33), we plot equilibrium curves for the steady state solution ue as a func-

tion of the parameters τ , d1, and γ, as shown in Figures 4.1(a), 4.1(b), and 4.2,

respectively.
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Figure 4.1: Bifurcation diagram of u versus τ for d1 = 1.5 (left), and u versus d1 for
τ = 8 (right). Parameter used are d2 = 0.2, |Ω| = 10, and γ = 0.3.
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Figure 4.2: Bifurcation diagram of u versus γ. Parameter values are τ = 8, d1 = 1.5,
d2 = 0.2, |Ω| = 10.

A plot of the intersection of the sigmoidal curve and the line κue in (4.24) is

shown in Figure 4.3. As seen, there are three steady state solutions for the set of

parameter values used: a trivial solution located at the origin, as well as two positive

solutions given by

(Ũ
∗
0e, ũ

∗
e) = (0.03, 0.46) , and (U∗

0e, u
∗
e) = (0.14, 2.16) . (4.34)

In this case, we find that the trivial steady state and the nontrivial solution (U∗
0e, u

∗
e) =

(0.14, 2.16) are both stable.
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Figure 4.3: Plot of the sigmoidal curve
u2

1 + u2
and κ u, with parameter values τ = 8,

d1 = 1.5, d2 = 0.2, |Ω| = 10, and γ = 0.3.

Numerical computations give that F e
u = −0.3 for the trivial solution. For the

steady states in (4.34), we get F e
u = 0.32763 and −0.16589, respectively. The corre-

sponding critical Hopf bifurcation values are calculated to be

(ωH , TH) = { (0.24, 8.31), (0.27, 7.35), (0.11, 19.98) } . (4.35)

Numerical simulations are used to validate these results, and we find that as delay

T is increased past the critical Hopf bifurcation values, the trivial and the highest

positive steady states become unstable giving rise to sustained oscillations. These

results are illustrated in Figures 4.4-4.7.



86

0 100 200 300 400 500 600 700 800 900 1000

t

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

U0, u

 T = 8  <  T
H

U
0

u

0 100 200 300 400 500 600 700 800 900 1000

t

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

U0, u

 T = 10  >  T
H

U
0

u

Figure 4.4: Plot of U0 and u versus time t, illustrating the stability of the trivial
steady state to the model in (4.6) with delayed Hill function dynamics. Initial con-
dition used is (U0, u) = (0.1, 0.1). Top: Decaying oscillations are observed for delay
below the Hopf bifurcation value. Bottom: Sustained oscillations for delay above
the critical Hopf bifurcation value. Parameter values are τ = 8, d1 = 1.5, d2 = 0.2,
|Ω| = 10, and γ = 0.3.
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Figure 4.5: Plots of U0 versus u showing sustained oscillations as delay increases past
the critical Hopf bifurcation value for the trivial steady state. Initial condition used
is (u, U0) = (0.02, 0.02). Parameter values are as in the caption of Figure 4.4.
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Figure 4.6: Plot of U0 and u versus time t illustrating the stability of the highest
positive steady state solution (U∗

0e, u
∗
e) = (0.14, 2.16) to the model in (4.6) with

delayed Hill function dynamics. Initial condition used is (U0, u) = (0.5, 1). Top:
Decaying oscillations towards the stable steady state are observed for delay below
the Hopf bifurcation value. Bottom: Sustained oscillations for delay above the critical
Hopf bifurcation value. Parameter values are as in the caption of Figure 4.4.
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Figure 4.7: Plots of U0 versus u, for the highest positive steady state (U∗
0e, u

∗
e) =

(0.14, 2.16), showing sustained oscillations as delay increases past the critical Hopf
bifurcation value. Initial condition used is (u, U0) = (1.5, 0.3). Parameter values are
as in the caption of Figure 4.4



Chapter 5

Discussion

In this thesis, we have analyzed two types of reaction-diffusion models with delayed

kinetics. Steady state solutions have been obtained using asymptotic analysis meth-

ods, and the effect of delay on the dynamics and stability has been analyzed both

analytically and numerically.

In Chapters 2 and 3, we have analyzed the stability of slow evolving spike-type

equilibrium solutions to the one-dimensional GM model with delayed reaction ki-

netics, subject to Neumann boundary conditions. Delay is a natural extension of

the GM model and is well motivated biologically due to the fact that time delays

are needed for protein synthesis and gene expression. As a result, we have delayed

various nonlinear terms in the model in order to mimic all the possible ways delay

could show up in the reaction, with the assumption that 0 < ϵ << 1 and D = O(1).

The analysis and results given have been derived using asymptotic methods which

have been numerically verified.

In §2.1, we show that the system of delay partial differential equations can be

reduced to a system of DDEs representing the motion for the corresponding spike

solution. In §2.1.1, the model with delay in the inhibitor equation is analyzed. In

this case, the slow moving spike tends towards a stable equilibrium. In §2.1.2, delay
in the activator equation results in sustained oscillations due to a Hopf bifurcation.

In §2.1.3, although the original PDE system has only one delay, the resulting reduced

asymptotic ODE has two different delays. In §2.1.4 and §2.1.5, the presence of delay
in the activator catalysis term introduces some complications to the analysis. In all

cases, we have shown that simulations of the reduced system agree with simulations

of the full PDE system.

In §2.2, we Hopf bifurcation in the reduced system. Such a bifurcation would

cause oscillation in the spike positions. In all cases where such a bifurcation is

possible, the critical value of the delay is O(ϵ−2), and a Hopf bifurcation causing a

88
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profile instability will have already occurred. Thus, as delay increases beyond the

critical Hopf bifurcation value, sustained oscillations due to a Hopf bifurcation are

observed first in the spike amplitude.

In §2.3, we analyze instabilities due to a Hopf bifurcation of the large eigenvalues.

Such a bifurcation results in oscillations of the spike amplitude. In this case the

critical delay value is of O(1). We find that increasing delay causes a Hopf bifurcation

in all cases except for the systems in (2.39) and (2.54). In these cases increasing delay

does not cause a Hopf bifurcation in neither the small nor the large eigenvalues.

Simulations of the system of partial differential equations with large delay values

verify the absence of a Hopf bifurcation. Simulations of the full system suggest that

the Hopf bifurcation of the large eigenvalue are all sub-critical and the resulting

oscillations are unstable.

Finally in §2.4, we have analyzed the GM model with delay in the activator

degradation. Such a system is not biologically relevant. However, this is the only

example of a Hopf bifurcation of the small eigenvalues for the GM system, contrary to

the previously considered cases where oscillations in the spike amplitude are observed

well before those in the spike position. Simulations of the system suggest that this

bifurcation is super-critical and the oscillations are sustained.

The GM models in this thesis are for the exponent set (p, q,m, s) = (2, 1, 2, 0).

An interesting special case is analyzed in [56], where the exponents of the general

GM model equations satisfy p = 2m− 3 and m > 2. Extending the analysis in [56]

to the case where the activator kinetics are delayed, and upon analyzing the corre-

sponding transcendental equation for the large eigenvalue parameter, we get that a

Hopf bifurcation in the spike profile occurs as delay increases beyond a critical value,

thereby destabilizing the steady state solution.

In Chapter 3, we have studied the stability and dynamics of a k-spike equilibrium

solution to the GM model with various cases of delayed reaction kinetics, similar to

the analysis in Chapter 2. In §3.1, a k-spike equilibrium solution is constructed using

the method of matched asymptotics, in the limit ϵ → 0. In §3.2, we have reduced

the delay PDE system to a system of delay differential-algebraic equations represent-

ing the location of the spikes. In §3.2.2 and §3.2.3, the reduced DDAE systems are

derived for the case where delay is in the activator production, as well as the case
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where delay is in both the activator regulation and the inhibitor production, respec-

tively. In §3.3, numerical simulations of the reduced DDAE systems in §3.2 show the

possibility of oscillatory dynamics due to a Hopf bifurcation as delay increases past

a threshold value, TH . In §3.4, instabilities in the large eigenvalues of order O(1)

for the GM model with delayed reaction kinetics are analyzed. In §3.4.1, we have

formulated the NLEP for the GM with no delay. In §3.4.2, we have analyzed the

stability of the large eigenvalues for the model with delayed inhibitor kinetics. Nu-

merical computations show that a Hopf bifurcation occurs as delay is increased past

the critical bifurcation threshold, which in turn results in sustained oscillations in the

spike amplitudes. Similarly, for the case where the activator regulation and inhibitor

production are both delayed, the stability of the large eigenvalues has been analyzed

in §3.4.3, and the corresponding Hopf bifurcation threshold has been determined.

Similar results are obtained in [17], where it is shown that the one-spike equilibrium

solution can become highly unstable when inhibitor delay effects are included.

The results obtained in §3.4 are in direct contrast to the results found in [18],

where the authors show that delay in only the nonlinear autocatalytic activator

kinetics enhances the stability of the localized spike solution to the GM model. Thus

delay in only the activator kinetics is stabilizing in the sense that there exists a wider

region in parameter space where the one-spike solution is linearly stable than when

there is no delay in the reaction kinetics.

In Chapter 4, we have studied a two-dimensional coupled cell-bulk model and we

have shown that delaying the intracellular dynamics leads to oscillatory instabilities

thereby destabilizing the steady state solutions to the model. In §4.1, we formulate a

model with one small circular signalling cell, in a two-dimensional bounded domain,

coupled to delayed intracellular dynamics of n-interacting intracellular species. Using

the assumption that the signalling molecule has fast diffusion, such that the diffusion

coefficientD satisfiesD ≫ O(ν−1), for ν = −1/ log ϵ and ϵ << 1, we get a well-mixed

bulk region, and we reduce the cell-bulk PDE system to a finite (n+ 1)-dimensional

system of DDEs for the spatially constant bulk concentration field coupled to delayed

intracellular dynamics. In §4.2 and §4.3, we use a singular perturbation approach to

formulate the eigenvalue problem associated with linearizing around the steady state

solution for the case where there is one circular cell with one intracellular species
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governed by a delayed Hill function-type dynamics. Numerical simulations in §4.4
confirm that as the delay parameter T is increased past the critical Hopf bifurcation

thresholds, the trivial and the highest positive steady state solutions become unstable

giving rise to sustained oscillations.

5.1 Future Work

The study of delay partial differential equations is a relatively new field and there are

very few analytical results. The behaviour of systems with highly localized solutions

can be analyzed by considering a much simpler system of ODEs. This reduction

allows us to study the effect of delay on a system of partial differential equations.

The methods considered in this thesis can be applied to any RD system which sup-

ports highly localized solutions. We have only considered models with spike-type

solutions. Investigation into systems which support front type solutions could yield

more interesting results. In addition, there is a great deal of work to be done in the

area of numerical simulations of partial differential equations with delay.

A possible extension to our analysis in Chapters 2 and 3 is to study the dynamics

of spike solutions to the GM model with delayed reaction kinetics in the limiting

case of exponentially large diffusivity coefficient D. It would also be interesting to

analyze the GM model with delayed kinetics for different exponent sets (p, q,m, s).

Moreover, it is still an open problem to derive and analyze the reduced asymptotic

ODE representing the slow dynamics of a spike solution to the GM model with de-

layed kinetics on multi-dimensional domains, or on an unbounded domain. Another

possible extension to our analysis of the GM model with delayed reaction kinetics is

to determine stability properties for spikes at arbitrary positions.

A possible extension to the work done in Chapter 4 is the study of quorum

sensing behaviour through analyzing the effect of delayed intracellular dynamics on

the stability of steady state solutions to models with multiple signalling cells. It

would also be interesting to consider other forms of delayed intracellular kinetics, as

well as other diffusion rate regimes such as D = O(1) and D = O(ν−1). Another

interesting direction is to study the effect of delayed intracellular kinetics for the

class of models in [57], where there is more than one bulk diffusing species.
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Appendix A

Numerical Source Code

A.1 MatLab Code for Solving Asymptotic DDEs in Chapter 2 for the

Motion of a Spike

function sol=gmdde

sol = ddesd(@x0dderhs,[1.9],@x0hist,[0, 200]);

figure;

plot(sol.x,sol.y)

xlabel({’$\tau$’}, ’FontSize’, 16, ’Interpreter’, ’latex’);

ylabel({’$x_0$’}, ’FontSize’, 16, ’Interpreter’, ’latex’,...

’Rotation’, -360, ’Position’, [-20 1.2]);

function s = x0hist(t)

s=0.3694;

function dydt = x0dderhs(t,y,Z)

ylag = Z(:,1);

L=2;

dydt = -sinh(2*ylag(1)-L)/(cosh(ylag(1)-L)*cosh(ylag(1)));

A.2 MatLab Code for Solving GM PDE Model in (2.100) with Delayed

Activator Degradation

clf; hold off;

tlag=1.04;

L=2;

eps=0.06;

dt=0.025; Tmax=1500;

N=100;
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maxht=zeros(1,2);

maxloc=zeros(1,2);

x=linspace(0,L, N)’;

a_init=sech((x-.9)/2/eps).^2;

h_init=1+x*0;

I=eye(N);

dx=x(2)-x(1);

Lap=-2*diag(ones(1,N))+diag(ones(1,N-1),1)+diag(ones(1,N-1),-1);

Lap(1,2)=2;Lap(N,N-1)=2;

Lap=Lap/dx.^2;

tout=0;

storelen=max(3,ceil(tlag/dt+2));

th=zeros(1,storelen);

hh=zeros(N,storelen);

ah=zeros(N,storelen);

h=h_init; a=a_init;

idx=0;

for t=0:dt:Tmax

idx=idx+1;

th=circshift(th, -1);

hh=circshift(hh’, -1)’;

ah=circshift(ah’, -1)’;

th(end)=t;

hh(:,end)=h;

ah(:,end)=a;

tprev=t-tlag;

if idx<storelen

hT=h;

aT=a;
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else

hT=interp1(th, hh’, tprev)’;

aT=interp1(th, ah’, tprev)’;

end;

hp = (I-Lap)\(a.^2/eps);

oo=a.^2./h-aT;

ap=(I/dt-eps^2*Lap)\(oo+a/dt);

h=hp;

a=ap;

if isnan(max(a))

stop;

end;

if t>tout

tout=tout+10;

[t1,t2]=max(a);

x1=a(t2-1);

x2=a(t2);

x3=a(t2+1);

tt1=dx*(t2-2);

tt2=dx*(t2-1);

tt3=dx*(t2);

a1=(4*x2-x3-3*x1)/(2*dx);

a2=-(2*x2-x3-x1)/(2*(dx)^2);

tmax=-a1/(2*a2)+tt1;

maxht(end+1,:)=[t,t1];

maxloc(end+1,:)=[t,tmax];

subplot(3,1,1); plot(x,a, ’b’); hold on;plot(x,h, ’r’);hold off;

subplot(3,1,2); plot(maxloc(:,1),maxloc(:,2));

subplot(3,1,3); plot(maxht(:,1),maxht(:,2));

title(sprintf(’t=%g’,t));

xlabel({’$t$’}, ’FontSize’, 16, ’Interpreter’, ’latex’);

ylabel({’$x_0$’}, ’FontSize’, 16, ’Interpreter’, ’latex’,...
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’Rotation’, -360, ’Position’, [-120 1.05]);

ylim([0.4 1.5]);

drawnow;

end;

end;

A.3 Maple Code for Large Eigenvalues of GM Model (2.39) with Delay

in Activator Regulation and Catalyzation

restart; with(LinearAlgebra): with(plots):

Mat:=proc(lam,n,T,delta)

local w,chi,A,i,j,w1,f,eps,h,xi,xj;

h:=1/(n-1):

eps:=0.1;

with(LinearAlgebra):

w:=3/2*sech((x-.5)/2/eps)^2:

w1:=unapply(w, x):

chi:=2:

f:= Matrix(n): #, datatype=complex):

for i from 1 to n do

for j from 1 to n do

f(i,j):=0.0:

end do:

end do:

f(1,1):=-2.0*eps^2/h^2-1+2*w1(0)*exp(-lam*T):

f(1,2):=2.0*eps^2/h^2:

f(n,n):=-2.0*eps^2/h^2-1+2*w1(1)*exp(-lam*T):

f(n,n-1):=2.0*eps^2/h^2:

for i from 2 to n-1 do

xi:=(i-1)*h;

f(i,i):=-2.0*eps^2/h^2:
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f(i,i-1):=eps^2/h^2:

f(i,i+1):=eps^2/h^2:

f(i,i):=evalf(f(i,i)-1+2*w1(xi)*exp(-lam*T)):

end do:

for i from 1 to n do

for j from 1 to n do

xi:=(i-1)*h:

xj:=(j-1)*h:

f(i,j):=evalf(f(i,j)-delta/eps*(1/n*chi*exp(-lam*T)*w1(xi)^2/6*w1(xj))):

end do:

end do:

f;

end proc:

counter:=1:

N:=100:

T:=0:

lam[1]:=2:

with(ListTools):

M:=Mat(lam[1],N,T,0):

E:=Eigenvalues(evalf(M)):

(v,e):=Eigenvectors(M):

convert(E,list):

pos:=FindMaximalElement((convert(Re(E),list)),position)[2];

pos2:=FindMaximalElement((convert(Re(v),list)),position)[2];

E[pos];

listplot([seq(Re(e[i][pos]),i=1..N)]);

ll[1]:=E[pos];

for i from 1 to 25 do

delta:=i/50:

M1:=Mat(lam[1],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:
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pos:=FindMinimalElement(v2,position)[2]:

v:=v1:

print(delta,v[pos]):

counter:=counter+1:

ll[counter]:=v[pos]:

TT[counter]:=T;

end do:

convert(v,list):

pos;

v(pos);

delta:=26/50:

M1:=Mat(lam[1],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v(pos),2),i=1..N)]:

v:=v1:

counter:=counter+1;

pos:=FindMinimalElement(v2,position)[2];

convert(v,list):

pos;

v(97);

ll[counter]:=v[97];TT[counter]:=T;

delta:=27/50:

M1:=Mat(lam[1],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v(97),2),i=1..N)]:

v:=v1:

pos:=FindMinimalElement(v2,position)[2];

convert(v,list):

v(91);

counter:=counter+1;

ll[counter]:=v(91);TT[counter]:=T;

delta:=28/50:
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M1:=Mat(lam[1],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v(91),2),i=1..N)]:

v:=v1:

pos:=FindMinimalElement(v2,position)[2];

for i from 29 to 50 do

delta:=i/50:

M1:=Mat(lam[1],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:

pos:=FindMinimalElement(v2,position)[2]:

v:=v1:

print(delta,v[pos]):

counter:=counter+1:

ll[counter]:=v[pos]:

TT[counter]:=T:

end do:

listplot({seq([Re(ll[i]),Im(ll[i])],i=1..counter)});

T:=0.01:

M1:=Mat(v[pos],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:

pos1:=FindMinimalElement(v2,position)[2]:

pos;

pos1;

while (norm(v1[pos1]-v[pos],2))>0.00000000001 do

v:=v1:

pos:=pos1:

M1:=Mat(v[pos],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:

pos1:=FindMinimalElement(v2,position)[2]:
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print(v[pos]):

end do:

counter;

ll[50];

counter:=counter+1:

ll[counter]:=v[pos];TT[counter]:=T;

for i from 1 to 79 do

T:=0.001*i:

M1:=Mat(v[pos],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:

pos1:=FindMinimalElement(v2,position)[2]:

while (norm(v1[pos1]-v[pos],2))>0.000000001 do

v:=v1:

pos:=pos1:

M1:=Mat(v[pos],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:

pos1:=FindMinimalElement(v2,position)[2]:

print(T,v[pos]):

end do:

counter:=counter+1:

ll[counter]:=v[pos]:

TT[counter]:=T;

end do:

p1:=listplot({seq([Re(ll[i]),Im(ll[i])],i=50..130)},color=red);

for i from 1 to 100 do

T:=0.001*79+.0001*i:

M1:=Mat(v[pos],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:

pos1:=FindMinimalElement(v2,position)[2]:
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while (norm(v1[pos1]-v[pos],2))>0.000000001 do

v:=v1:

pos:=pos1:

M1:=Mat(v[pos],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:

pos1:=FindMinimalElement(v2,position)[2]:

#print(T,v[pos]):

end do:

print(T,v[pos]):

counter:=counter+1:

ll[counter]:=v[pos]:

TT[counter]:=T:

end do:

p1:=listplot({seq([Re(ll[i]),Im(ll[i])],i=50..138)},color=red);

pc1:=listplot({seq([Re(ll[i]),-Im(ll[i])],i=50..138)},color=red);

p2:=listplot({seq([Re(ll[i]),Im(ll[i])],i=139..counter)},color=red);

display({p1,p2});

T;

counter;

for i from 1 to 150 do

T:=0.089+.01*i:

M1:=Mat(v[pos],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:

pos1:=FindMinimalElement(v2,position)[2]:

while (norm(v1[pos1]-v[pos],2))>0.000000001 do

v:=v1:

pos:=pos1:

M1:=Mat(v[pos],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:
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pos1:=FindMinimalElement(v2,position)[2]:

print(T,v[pos]):

end do:

counter:=counter+1:

ll[counter]:=v[pos]:

TT[counter]:=T:

end do:

counter;

p3:=listplot({seq([Re(ll[i]),Im(ll[i])],i=232..250)},color=red);

display({p1,p2,p3});

p4:=listplot({seq([Re(ll[i]),Im(ll[i])],i=251..275)},color=red);

p5:=listplot({seq([Re(ll[i]),Im(ll[i])],i=275..283)},color=red);

p6:=listplot({seq([Re(ll[i]),Im(ll[i])],i=283..305)},color=red);

pc6:=listplot({seq([Re(ll[i]),-Im(ll[i])],i=283..305)},color=red);

p7:=listplot({seq([Re(ll[i]),abs(Im(ll[i]))],i=306..350)},color=red);

p8:=listplot({seq([Re(ll[i]),abs(Im(ll[i]))],i=351..368)},color=red);

p9:=listplot({seq([Re(ll[i]),abs(Im(ll[i]))],i=369..380)},color=red);

pc9:=listplot({seq([Re(ll[i]),-abs(Im(ll[i]))],i=369..380)},color=red);

display({p1,pc1,p2,p3,p4,p6,pc6,p7,p8,p9,pc9});

counter;

T;

for i from 1 to 150 do

T:=1.589+0.005*i:

M1:=Mat(v[pos],N,T,delta):

(v1,e1):=Eigenvectors(M1):

v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:

pos1:=FindMinimalElement(v2,position)[2]:

while (norm(v1[pos1]-v[pos],2))>0.000000001 do

v:=v1:

pos:=pos1:

M1:=Mat(v[pos],N,T,delta):

(v1,e1):=Eigenvectors(M1):
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v2:=[seq(norm(convert(v1,list)[i]-v[pos],2),i=1..N)]:

pos1:=FindMinimalElement(v2,position)[2]:

print(T,v[pos]):

end do:

counter:=counter+1:

ll[counter]:=v[pos]:

TT[counter]:=T:

end do:

counter;

p10:=listplot({seq([Re(ll[i]),abs(Im(ll[i]))],i=381..394)},color=red);

pc10:=listplot({seq([Re(ll[i]),-abs(Im(ll[i]))],i=381..394)},color=red);

p11:=listplot({seq([Re(ll[i]),abs(Im(ll[i]))],i=395..counter)},color=red);

display({p1,pc1,p2,p3,p4,p6,pc6,p7,p8,p9,pc9,p10,pc10,p11});

listplot({seq([TT[i],abs(Im(ll[i]))],i=50..counter)},color=red);

listplot({seq([TT[i],Re(ll[i])],i=50..counter)},color=red);

A.4 MatLab Code for Solving GM PDE Model in Chapter 3, for Two

Spikes, with Delayed Reaction Kinetics

clf;

hold off;

tlag=0.1;

L=2/sqrt(.2);

eps=0.1;

Dh=1;

dt=0.0125; Tmax=500;

N=201;

maxht1=zeros(1,2);

maxloc1=zeros(1,2);

maxht2=zeros(1,2);

maxloc2=zeros(1,2);
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x=linspace(0,L,N)’;

dx=x(2)-x(1);

x00=.3/sqrt(.2);

x01=1.7/sqrt(.2);

x00i=floor(x00/dx)+1;

x01i=floor(x01/dx)+1;

h=nonlin([x00 x01],[x00,x01]);

a_init=1.5*(h(1)*sech((x-x00)/2/eps).^2+h(2)*sech((x-x01)/2/eps).^2);

h_init=1+x*0;

I=eye(N);

dx=x(2)-x(1);

Lap=-2*diag(ones(1,N))+diag(ones(1,N-1),1)+diag(ones(1,N-1),-1);

Lap(1,2)=2;Lap(N,N-1)=2;

Lap=Lap/dx.^2;

tout=0;

storelen=max(3,ceil(tlag/dt+2));

th=zeros(1,storelen);

hh=zeros(N,storelen);

ah=zeros(N,storelen);

h=h_init; a=a_init;

idx=0;

for t=0:dt:Tmax

idx=idx+1;

th=circshift(th, -1);

hh=circshift(hh’, -1)’;

ah=circshift(ah’, -1)’;

th(end)=t;

hh(:,end)=h;

ah(:,end)=a;

tprev=t-tlag;

if idx<storelen

hT=h;
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aT=a;

else

hT=interp1(th, hh’, tprev)’;

aT=interp1(th, ah’, tprev)’;

end;

hp = (I-Dh*Lap)\(a.^2/eps);

oo=a.^2./hT-a;

ap=(I/dt-eps^2*Lap)\(oo+a/dt);

h=hp;

a=ap;

if isnan(max(a))

stop;

end;

if t>tout

tout=tout+1;

[t11,t211]=max(a(x00i-10:x00i+10));

t211=t211+x00i-11;

x11=a(t211-1);

x21=a(t211);

x31=a(t211+1);

tt1=dx*(t211-2);

tt2=dx*(t211-1);

tt3=dx*(t211);

a1=(4*x21-x31-3*x11)/(2*dx);

a2=-(2*x21-x31-x11)/(2*(dx)^2);

tmax=-a1/(2*a2)+tt1;

maxht1(end+1,:)=[t,t11];

maxloc1(end+1,:)=[t,tmax];

x00i=floor(tmax/dx)+1;

[t12,t22]=max(a(x01i-10:x01i+10));

t22=t22+x01i-11;

x12=a(t22-1);
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x22=a(t22);

x32=a(t22+1);

tt1=dx*(t22-2);

tt2=dx*(t22-1);

tt3=dx*(t22);

a1=(4*x22-x32-3*x12)/(2*dx);

a2=-(2*x22-x32-x12)/(2*(dx)^2);

tmax=-a1/(2*a2)+tt1;

maxht2(end+1,:)=[t,t12];

maxloc2(end+1,:)=[t,tmax];

x01i=floor(tmax/dx)+1;

subplot(3,1,1); plot(x,a, ’b’); hold on;plot(x,h, ’r--’);hold off;

subplot(3,1,2); plot(maxloc1(:,1),maxloc1(:,2),’r’);hold on;

plot(maxloc2(:,1),maxloc2(:,2),’g’);hold off;

subplot(3,1,3); plot(maxht1(:,1),maxht1(:,2),’r’);hold on;

plot(maxht2(:,1),maxht2(:,2),’g’);hold off;

drawnow;

end;

end;
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