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ABSTRACT 

Interest in microbial life and the progress of DNA sequencing technology has led to 
thousands of sequenced bacterial genomes. In this thesis I develop approaches to 
identify Lateral Gene Transfer (LGT) in metagenomes, develop fast sequence clustering 
approaches to create clusters necessary in comparative genomics analyses, and apply 
them to large data sets.  
 
In chapter two, I identify LGT in two of three metagenomes of phosphorus-removing 
bacteria in sewage-treatment plants, none in a United States of America community, 
two in a Danish community and five in an Australian community. Analyses account for 
the limitations of metagenomic sequence data and focus on gene transfers in energy-
related metabolic pathways. These transfers impact pathways associated with the 
different input carbon feeds for each community, suggesting recent adaptation among 
community members. This is the first published analysis focusing on the role and 
direction of transferred genes in a community using metagenomes. In chapter three, I 
develop two methods to define and refine clusters of homologous sequences from 
sequenced genomes: ProPhylClust to identify large protein families, and PhyloSubClust 
to subcluster large protein families based on phylogeny to recover orthologous 
relationships. ProPhylClust uses a species phylogeny as a guide tree for runtimes with 
approximately linear scaling relative to the runtimes of all-versus-all homology-search 
methods that scale quadratically with increasing numbers of genomes. Two different 
sets of genomes were used, one spanning 24 bacterial phyla and the other sampled 
from the phylum Proteobacteria. While the sequence comparisons in ProPhylClust make 
it slower than competing approaches on small genome sets, the hierarchical approach 
of ProPhyClust yielded equal or faster runtimes on sets with 100 or more genomes. In 
chapter four, 558 incomplete and complete genomes from the class Clostridia were 
clustered using ProPhylClust and PhyloSubClust. Of 18 clusters containing toxin proteins 
and their regulators from Peptoclostridium difficile (toxins A/B), Clostridium botulinum 
(botulinum toxin) and Clostridium tetani (tetanus toxin), one botulinum-tetani toxin 
cluster and a toxin A/B cluster, revealed homologous sequences considered non-toxic. 
Hierarchical clustering of phylogenetic profiles identified potentially toxin-related 
protein families with unknown function located on the same sequence contig or 
chromosome, but not in toxin operons. 
 

The computational analysis of large genomic data sets to derive biologically relevant 
knowledge will continue to be a challenge for years to come. Here, I focused on 
computational methods relevant to identifying LGT in environmental sequence data, 
constructing clusters of homologous sequences from genomes, and obtaining 
functionally associated sequences based on phylogenetic distributions. Promising results 
were produced for each chapter, with gene transfer events found in phosphorus 
removing sewage treatment communities, runtimes for cluster construction that are 
more manageable than other methods with larger data sets, and sequences that 
possibly are functionally relevant to toxins in C. botulinum and P. difficile.  



  

 xiii 

LIST OF ABBREVIATIONS AND SYMBOLS USED 

 

ACLAME A CLAssification of Mobile genetic Elements 

AU  Australia 

BeT   Best hit 

BLAST  Basic Local Alignment Search Tool 

BLOSUM BLOcks SUbstitution Matrix 

BoNT  Botulinum Neurotoxin 

BM  Butanoate Metabolism 

CAC  Citric Acid Cycle 

CAP  Candidatus Accumulibacter phosphatis 

COG  Clusters of Orthologous Groups 

DIAMOND  Double Index Alignment of Next-Generation Sequencing Data 

DK  Denmark 

DNA  Deoxyribonucleic Acid 

EBPR   Enhanced Biological Phosphorous Removal 

EC  Enzyme Commission 

eggNOG evolutionary genealogy of genes: Non-supervised Orthologous Groups 

E-value Expectation Value 

GB  Gigabyte 

GG  Glycolysis/Gluconeogenesis 

GTA  Gene Transfer Agent 

HA  Hemagglutinin 

HMM  Hidden Markov Model 

KEGG  Kyoto Encyclopedia of Genes and Genomes 

LG  Le and Gascuel 

LGT  Lateral Gene Transfer 

MCL   Markov Cluster Algorithm 

MGE  Mobile Genetic Element 

MSV  Multiple Ungapped Segment Viterbi 

MUSCLE MUltiple Sequence Comparison by Log-Expectation 

MySQL  My Structured Query Language 

NCBI  National Center for Biotechnological Information 

NM  Nitrogen Metabolism 

ntnh   Non-toxic Non-haemagglutin 

ORF  Open Reading Frame 

OS  Operating System 

PHA  Poly-b-hydroxyalkanoates 

PaLoc  Pathogenicity Locus 

PAO  Polyphosphate Accumulating Organism 

Pfam  Protein Families (database) 

PHOGs Phylogenetic Orthologous Groups 

PM  Propanoate Metabolism 

PPP  Pentose Phosphate Pathway 

PSI-BLAST  Position-specific Iterative Basic Local Alignment Search Tool 



  

 xiv 

RAxML  Randomized Axelerated Maximum Likelihood 

RAM   Random Access Memory 

RAPsearch2  Reduced Alphabet Based Protein Similarity Search 

RefSeq GI Reference Sequence GenInfo Identifier 

RBH  Reciprocal Best Hit 

RDP  Ribosomal Database Project 

RITA  Rapid Identification of Taxonomic Assignments 

rRNA  Ribosomal Ribonucleic Acid 

RNA  Ribonucleic Acid 

SH  Shimodaira-Hasegawa 

STRING Search Tool for the Retrieval of Interacting Genes/Proteins 

USA  United States of America 

WAG  Whelan Goldman 

  P. difficile 630  

  P. difficile R20291 

  P. difficile BI1  

  P. difficile CD196  

    Node has a bootstrap node support of 65-90% 

     Node has a support value of 90-100% 

X   All-versus-all BLAST searche node for ProPhylClust 

   Sequence-versus-cluster (HMM and/or consensus) node for ProPhylClust 

  Cluster-versus-cluster searche (HMM and/or consensus) node for 

ProPhylClust 

 

 

  



  

 xv 

ACKNOWLEDGEMENTS 

 

I would like to thank the following people and institutions. My committee members: Dr. 

Joeseph Bielawski, Dr. Christian Blouin, Dr. Norbert Zeh for their guidance. My 

supervisor, Dr. Robert Beiko for his patience, guidance and support. Special thanks to my 

external Dr. Gabriel Moreno-Hagelsieb for his time. Dalhousie University for providing 

an academic environment. The Tula Foundation, Genome Canada, The Centre for 

Comparative Genomics and Evolutionary Bioinformatics, and the Natural Sciences and 

Engineering Research Council of Canada for funding. Members, both past and present, of 

the Beiko lab, Blouin lab and Zeh lab for their academic input and stimulating 

conversations. 

 



  

 1 

CHAPTER 1 INTRODUCTION 

 

1.1 DNA AND MICROBES 

It is not incorrect to say it is a microbial world. Microorganisms, such as single-celled 

eukaryotes, Bacteria, Archaea and viruses are found in a wide variety of environments, 

for example, in the air we breathe (e.g. Shaffer and Lighthart 1997), in and on our bodies 

(e.g. Costello et al. 2009), the ocean (e.g. DeLong and Karl 2005), and in what we 

consider to be inhospitable environments (e.g. Rothschild and Mancinelli 2001). 

Microbes exist in communities, where they differ by type and abundance and interact 

with each other and their environment. Microbial communities are extremely diverse and 

are often more diverse than communities of multicellular organisms by several orders of 

magnitude (Haegman et al. 2013). The term “microbes” typically refers to microscopic 

Bacteria, Eukaryotes and Archaea. From this point on in this thesis, I will focus on 

Bacteria, and when I refer to microbes, I am referring to Bacteria. We often focus our 

attention on individual species, or strains of species, since they may play an important 

role in anthropomorphically valuable enterprises, such as a positive or negative impact on 

human health or a metabolic function that can clean a pollutant from an environment. The 

progress and convergence of deoxyribonucleic acid (DNA) sequencing technology, 

computer science, and laboratory and molecular techniques have facilitated a massive 

expansion of our knowledge about the diversity of types and the roles played by 

microbial life in their environments.  

 

Biological information is encoded in genomes, the complete set of DNA in a living 

organism, where it is organised into chromosomes and inherited from ancestors to 

descendants. DNA is coded in a series of four different nucleotide bases: adenine (A) and 

guanine (G), thymine (T) and cytosine (C). A genome encodes the information needed to 

build and maintain an organism, and genes, sequences of DNA in the genome, have 

functional significance for an organism. The first genome of a free-living organism, the 
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bacterium Haemophilus influenzae was sequenced in the mid 1990’s (Fleischmann et al. 

1995). As of August 12th, 2017, there were 102,271 bacterial genome projects in the 

National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov), 

where the number of nucleotide bases, sequences, and genomes increased, and should 

continue to increase (Figure 1.1, see also e.g. Wetterstrand 2016). As more genomes have 

been sequenced, novel lineages of bacteria are being discovered, where some of those 

lineages have defined new phyla (e.g. Tamaki et al. 2011). This ever-expanding volume 

of data presents opportunities to enlighten our understanding of Bacteria, but also 

introduces substantial computational challenges that need to be addressed (e.g. Muir et al. 

2016, Schatz et al. 2010, Wall et al. 2010).  

 

 

 

Figure 1.1. Growth of the National Center for Biotechnology and Information's DNA 

sequence databases from 1982 to 2017, with data downloaded from NCBI. Bases is total 

number of nucleotides, and sequences is a contiguous string of sequence. Whole Genome 

Sequencing (WGS) refers to nucleotide bases or contiguous sequences from sequenced 

genomes. 
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In this thesis, I develop and apply methods to identify biologically relevant processes in 

bacterial communities and develop an algorithm to decrease the computational time to 

create clusters of homologous sequences, sequences which descend from a common 

ancestor. In chapter two of this thesis, I present techniques to identify how communities 

of Bacteria share genes in a specific environment. This is the first published study to 

identify the specific role of genes transferred between organisms in multiple 

environments using environmental shotgun sequence (i.e. metagenomic) data. In chapter 

three, I introduce an algorithm to cluster sequences from bacterial genomes, 

ProPhylClust, that can appreciably decrease runtimes for large data sets, and compare the 

results of the algorithm to other algorithms that are often used to cluster genomes. In 

chapter four, I use ProPhylClust to cluster sequences from a large number of Clostridia 

genomes, a diverse class of Bacteria with a wide range of roles in environments, perhaps 

best known as pathogens in humans. I explore the taxonomic and phylogenetic 

distribution of genes related to virulence and identify sequence clusters with hypothetical 

function associated to toxin sequences. 

 

 

1.2 MICROBES IN THEIR ENVIRONMENT 

The diversity of microbes is vast and difficult to determine, with estimates considered to 

be much higher than what can be currently measured (e.g. Haegeman, 2013, Quince et al. 

2008, Whitman et al. 1998). Microbes are important contributors to global 

biogeochemical cycles (e.g. Arrigo 2005, Rousk et al. 2014) and drive plant diversity and 

productivity (e.g. Heijden et al. 2007). Human enterprises such as healthcare, 

bioremediation, and waste treatment are also heavily influenced by microbes. The 

sequencing of genomes has revolutionized our understanding of bacteria, and with 

improved technologies making sequencing faster, more affordable, and accurate, interest 

in their roles will continue. 
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Specific bacterial species are known to have important impacts on human health. 

Peptoclostridium dfficile (also known as Clostridium difficile or Clostridioides difficile) 

is a bacterium often associated with antibiotic resistance, where an antibiotic-resistant P. 

difficile gastrointestinal tract infection causes various gastrointestinal symptoms. Bacteria 

are not just pathogens. As commensal organisms, they can also be beneficial for human 

health. Oral application of non-pathogenic strains of Escherichia coli to pre-mature 

infants has been shown to increase the number of generalized antibodies for bacteria, 

which would enhance immune response in the event of a bacterial infection (Conway and 

Cohen 2015, Cukrowska et al. 2002). In mutualistic relationships, the human body acts as 

a stable environment for microbes, and in return microbes provide nutrients for 

absorption by the host (e.g. Bäckhed et al. 2005). Bacteroides thetaiotaomicron can be 

found in the human gastrointestinal tract and is well known for its ability to degrade 

carbohydrates which can then be used by its host, and its adaptations that allow it to 

survive in the human gastrointestinal tract (Xu et al. 2003).  

 

More-recent studies of human-associated bacterial communities, the human microbiome, 

are starting to highlight the importance of communities rather than individual species of 

Bacteria in human health. For example, twin studies have shown that low-diversity 

gastrointestinal communities are associated with obesity (Turnbaugh et al. 2008). An 

increasing body of research is also starting to highlight the importance of the newborn 

and infant microbiome in relation to development (e.g. Tamburini et al. 2016). 

 

Microbial communities are also important for remediation of contaminated environments, 

where they can utilize pollutants in biochemical reactions (metabolism) for growth and 

reproduction. For example, sites that are contaminated with hydrocarbons (i.e. petroleum) 

are sometimes inhabited by a variety of strains and species of Bacteria that are capable of 

metabolizing toxic substances in polluted ground water (Dojka et al. 1998, Holmes et al. 

2006). These bacteria have been harnessed for use in bioremediation efforts at other 

polluted sites where they do not occur naturally (Hood et al. 2008). Microbial metabolism 

has also been harnessed in sewage treatment. Communities of various microbes are 
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assembled and maintained in engineered environments, known as bioreactors, to treat 

sewage (Seviour et al. 2003). Like all engineered systems, sewage-treatment systems can 

fail, and understanding them will make them more reliable. 

 

Furthering our knowledge about how microbes function in their environments (ecology), 

and how they change through time in the environments they inhabit (evolution) is a 

necessary step in utilizing them for human enterprises. DNA sequence information 

provides considerable biological data to study known and unknown members of bacterial 

communities. 

 

 

1.3 GENOMICS 

1.3.1 Genes, Genomes and Proteins 

A bacterial genome is comprised of protein-coding and non-protein-coding regions; gene 

sequences are continuous strings of nucleotides in coding regions that are basic units of 

heredity and encode proteins. The percentage of a genome that codes for protein content 

can vary from 40 to 97%, with an average of 88% (Land et al. 2015). Some genes are 

important for basic cellular function. For example, ribosomal genes encode components 

of the ribosome, a molecular complex that is used for the translation of RNA sequence to 

protein sequences. Ribosomal genes are highly conserved, with low rates of sequence 

change: if mutation of the ribosomal gene resulted in change of the structure of the 

ribosome, translation of RNA sequences to protein sequences would most likely fail and 

would be fatal to an organism. This high degree of conservation makes ribosomal gene 

sequences useful for taxonomic purposes, and the 16S ribosomal RNA is a gene often 

used for the classification of Bacteria (Woese et al. 1990). 

 

Translation of genes into proteins is a dynamic process, as not all genes are actively 

translated and transcribed at all times;in many cases, gene expression can depend on the 

microbe’s interaction with their environment. The differential translation and 
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transcription of genes to proteins result in characteristics and traits known as phenotype. 

For example, in sewage treatment plants, Candidatus “Accumilibacter phosphatis” (CAP) 

is typically a phosphate-metabolizing organism with some strains also being able to 

metabolize nitrogen (e.g. Carvalho et al. 2007, Oehman et al. 2010). The nitrogen-

metabolizing phenotype becomes more prevalent depending on the amount of nitrogen 

and phosphorous in the sewage-treatment environment, where genes associated with 

nitrogen metabolism are more actively expressed and then translated into proteins for 

nitrogen metabolism (He et al. 2010, Wilmes et a. 2008). Proteins therefore have 

considerable functional significance for an organism and their analysis can provide 

insights into the potential metabolism and function in an environment an organism may 

have.  

 

Determining protein function is a non-trivial task, and while biochemical experimentation 

is the gold standard, but given the overwhelming volume of available sequence 

information creates a need for automated functional annotation. Protein sequences can 

comprise one or more domains, which are functional units within a protein that contribute 

to the function of the whole protein. Alternatively, “moonlighting” proteins have mutilple 

functions in various parts of a cell (Henderson and Martin 2011, Jeffery 1999). Often, 

several different proteins are required to perform a function. An operon is a set of genes 

clustered together in a genome such that they are translated together under the control of 

single a promoter sequence. Function can be a difficult to describe, as it can be dependent 

upon the context in which it is used. A protein may participate in multiple metabolic 

reactions in different parts of a cell, with those reactions contributing to different cellular 

processes. Hierarchical classification schemes have been developed to allow for a more 

comprehensive functional description of a protein (e.g. Ashburner et al. 2000, Tatusov et 

al. 1997, Kanehisa and Goto 2000). For many classification schemes, the classification of 

a gene or protein sequence can belong to multiple parents in the hierarchy. One such 

hierarchical classification scheme is Clusters of Orthologous Groups (COG), one of the 

first databases that group and functionally classify protein sequences. COG is a dual-

tiered classification scheme with 23 functional categories constituting the top level, and 

the lower level is composed of clusters of sequences that are considered to be homologs, 
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each with a worded functional description (Tatusov et al. 1997). Some COG clusters 

belong to more than one of the 23 functional categories, which speaks to the difficulty in 

creating concise and simple functional classifications. 

 

1.3.2 Sequence Homology and its Relationship to Function 

Entities that share common ancestry are said to be homologous. At the DNA and protein 

level, sequence similarity is often used to infer homology. Despite the difficulties in 

establishing clear definitions of homology and the various types of homologous 

sequences, such as orthologs and paralogs (Fitch 2000), the identification of homologous 

sequences is a prerequisite to understanding the evolutionary relationships among genes 

and genomes, and can be used to infer function..  

 

Genes are orthologs if they diverge at speciation events (Fitch 1970). Paralogs result from 

a sequence duplication event (Fitch 1970), where the complete sequence of a gene is 

copied. Once a duplication event occurs the daughter and the original sequences continue 

to evolve on parallel paths, which allows the paralogous sequence the opportunity to 

diverge from the parent sequence. If both paralogs and orthologs of a gene are included in 

a phylogenetic analysis, the phylogeny will reflect the evolutionary history of the gene, 

but may not reflect the phylogeny of the organisms the genes belong to. Absent of 

artefacts of phylogenetic inference, the phylogeny of orthologous sequences should share 

the same phylogeny as the phylogeny of the species (Fitch 1970). However, paralogous 

sequences may not share the same branching structure as the phylogeny depending on the 

number and timing of duplication events. Defining orthology and paralogy is therefore an 

important distinction in understanding the evolutionary history of genes.  

 

Some have suggested expansion and refinement of the ortholog and paralog definitions 

(e.g. Gogarten 1994, Koonin 2005). Two definitions related to the timing of duplication 

events are useful for delineating types of paralogs. An inparalog refers to a duplication 

event that occurred within a lineage subsequent to any identified speciation events, 
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whereas an outparalog is a duplication event preceding a speciation event (Remm et al. 

2001, Sonnhammer and Koonin 2002). 

 

Although the functions of DNA and protein sequences are not part of the definition of 

homology,sequence similarity (and the corresponding implied homologous relationship) 

is often used to infer functional similarity. The ortholog conjecture states orthologs tend 

to exhibit more-strongly conserved functions than do paralogs (Koonin 2005), but he 

degree to which this is true is still a debated topic (e.g. Altenhoff et al. 2012, Chen and 

Zhang 2012, Dunn et al. 2018). Functional changes are often considered to be more likely 

with paralogs since the original gene (i.e. ortholog) retains its function and functional 

conservation of the paralog is no longer required. Research suggests orthologs generally 

have higher functional conservation than paralogs (e.g. Attenhoff et al. 2012, Fang et al. 

2010, Forslund et al. 2011). Due to timing of duplication, it is assumed that the resulting 

inparalogs have higher sequence conservation and both copies may still retain their 

original function (e.g. Forslund et al. 2011, Notebaart et al. 2005). Since the duplication 

event took place outside of the current lineage, outparalogs are assumed to have lower 

sequence conservation and more likely to have functionally diverged (e.g. Forslund et al. 

2011). 

 

1.3.3 Metagenomics 

Genome sequencing historically depended on the availability of single organisms in pure 

culture. However, pure culture is not an accurate representation of the lifestyle of 

Bacteria. Culturing bacteria is a labour-intensive process, and recent efforts have been 

made to sequence bacteria in their environments, without the need for pure culture. 

Metagenomics (Handelsman et al. 1998), is culture-independent sequencing of DNA 

from a population of microorganisms in an environmental sample. A metagenome is 

typically obtained by isolating microorganisms from an environmental sample followed 

by extraction and fragmentation of DNA from organisms into short strands, followed by 

DNA sequencing, a process known as shotgun sequencing. The result after sequencing is 

many sequence "reads", which can be ten to several hundred nucleotides long, depending 
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on the sequencing technology used. The number of times a nucleotide from a sequence is 

represented in a number of overlapping reads is known as coverage or depth, and when 

coverage is high, the assembly of reads into contiguous sequences produces contigs of 

high confidence. If coverage is low, reads may be left unassembled. 

 

From the processed sequence data, or from the sequenced reads, it is possible to do 

further analysis of metagenome sequences, such as the identification and annotation of 

genes or taxonomic assignment. Complete genes are predicted in contigs, while 

incomplete genes can be inferred from a start codon for an open reading frame (ORF). 

Genes can then be conceptually translated into a predicted protein using the genetic code 

table and assigned a functional annotation by searching reference databases for 

homologous (and potentially functionally related) protein sequences. From fully 

annotated sequence data, one can for example, estimate known and unknown microbial 

diversity and establish functional roles of taxa in their environment (e.g. Albertsen 2011, 

Biers et al. 2009, Brazelton and Baross 2009, Delmont et al. 2011, Jovel et al. 2016, 

Tyson et al. 2004, Zhang et al. 2016). 

 

Metagenomics has sampled uncultured microbes and have expanded our knowledge 

about the vast diversity of microbial life. Metagenome sequencing of seven samples from 

the Sargasso Sea identified 1800 species, of which 148 were new to science. 

Approximately 1.2 million genes (Venter et al. 2004) were sequenced, which at the time 

was greater than 1/40th the total number of genes in public databases at the time. High 

genetic variation within the same species has also been revealed by metagenome 

sequencing of communities such as acid mine drainage (Tyson et al. 2004), 

cyanobacterial algal blooms (Steffen et al. 2012), enhanced biological phosphorous 

removal (EBPR) communities (Albertsen et al. 2011, García Martín et al. 2006), and a 

dechlorinating microbial culture known as KB-1 (Hug et al. 2012). Fully sequenced or 

draft genomes can be obtained from metagenomes, usually with additional sequencing 

effort (e.g. García Martín et al. 2006, Kantor et al. 2013, Tyson et al. 2004). However, 

recent advances in assembly algorithms have dramatically increased the ability to 

reconstruct draft genomes from metagenomes (Brown 2015, Parks et al. 2017). These 
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studies suggest what can be discovered from sequenced metagenomes, but also illustrate 

the need for continued improvement of bioinformatic analysis of large metagenomic data 

sets due to increased computational requirements necessary to process such data sets, and 

the desire to obtain more biologically relevant information from metagenomes.  

 

1.3.4 Genome Evolution 

The genome of an organism is a dynamic entity, where nucleotide sequence, presence or 

absence of genes, and the order of genes in an organism is constantly changing through 

time as it is inherited from parent to child. Mutation is a change in the nucleotide 

sequence of an organism’s genome, and can be caused by a wide variety of mechanisms 

such as nucleotide substitution, gene recombination, gene duplication, gene insertion, 

gene deletion, gene fusion and fission, and movement of genes within and between 

genomes. Point mutations are single changes in the DNA sequence of a genome, change 

from one nucleotide base to another, or insertions or deletions of single nucleotides. Point 

mutations can be either synonymous or non-synonymous. Synonymous mutations do not 

change protein sequences, while non-synonymous mutations change protein sequences 

and can therefore change protein structure, which can be advantageous or 

disadvantageous to an organism.  

 

Duplication is a type of mutation in which a region of genomic sequence is copied more 

than once, resulting in two or more copies of the region in the descendant sequence. The 

region implicated in a duplication event can range in size from a few nucleotides to one 

or more genes, in some cases encompassing an entire genome (Wolf and Shields 1997). 

Duplicated sequences within a gene can modify the function of the encoded protein, 

while duplication resulting in multiple copies of a gene (ie. paralogs) could allow for 

additional copies of proteins to be produced (e.g. Kugelberg et al. 2006). Changes in 

genes can result in novel function, and paralogs are theorized to enable the development 

of genes with new functions, since the original copy still performs the original function, 

the paralog can proceed on an independent path (Zhang 2003).  
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Fusion is where genes join, while fission is the splitting of genes, and both contribute to 

the evolution of multidomain proteins (Pasek et al. 2006). Fusion events allow the 

physical coupling of proteins that are biologically coupled (Marcotte et al 1999). Fission 

events are speculated to be an advantage to thermophilic organisms, where shorter genes 

are less likely to gain errors during DNA replication, and the split proteins form 

complexes in the event where multiple proteins are required for a function (Snel et al. 

2000).  

 

Genetic material often moves within and between genomes. Mobile genetic elements 

(MGEs) are DNA segments that can move within or between genomes. Some types of 

MGEs include plasmids, viruses, transposable elements, and genomic islands (e.g. 

Dobrindt et al. 2004, Binnewies et al 2006). Plasmids are usually circular, self-replicating 

extra-chromosomal DNA molecules. Viruses are small infectious agents composed of 

genetic material (DNA or RNA) with a protein coat that can replicate inside other 

organisms. Transposable elements are DNA that can move locations within a genome. 

Genomic islands are large chromosomal regions that have flexible gene content usually 

related to adaptability and versatility of the bacterium. Genes found in genomic islands 

often contain genes that confer advantages in an environment, such as metabolism, 

antibiotic resistance, pathogenicity, and symbiosis (Dobrindt et al. 2004). Interestingly, 

genomic islands have inconsistent taxonomic distribution, often present in some strains of 

a species, and absent in other strains, suggesting they can be excised from a genome 

(Langille et al. 2010). When the recipient genome is not a child of the donor, the process 

is known as horizontal gene transfer (HGT) or lateral gene transfer (LGT). This is in 

contrast to vertical inheritance, where the recipient genome is a child of the donor. It is 

believed MGEs are major agents of LGT events (Frost et al. 2005). Both full genes and 

gene fragments can be transferred (Chan et al. 2009), and even sets of genes such as 

operons can be transferred (e.g. Mussmann et al. 2005, Pál et al. 2005). LGT has been 

shown to occur in situ (e.g. Graham and Istock 1978, Jiang and Paul 1998) and can 

confer a variety of new functions such as antibiotic resistance (Akiba et al. 1960, Ochiai 

et al. 1959), components for novel metabolism (Springael and Top 2004), and the ability 
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to move substances in or out of the cell through transmembrane transporters (Gefland and 

Rodionov 2008).  

 

Bacteria occupy a wide variety of environments, each with different community 

compositions and ecology, it should be expected that a wide variety of mechanisms of 

LGT exist. Transformation is the uptake of naked DNA from the environment and is 

known to occur in a wide variety of bacteria (Johnsborg et al. 2007). Bacteriophages are 

viruses that infect bacteria. They often have a specific host range, but they occasionally 

can shift hosts (Hyman et al. 2010). Transduction is where bacterial DNA is moved from 

bacteria to bacteria by a virus, and is known to occur frequently in a wide variety of 

environments (Miller 2001). Conjugation is the transfer of genetic material, such as a 

plasmid, through cell-to-cell contact and has been observed in only a limited set of 

organisms (Claverys et al. 2009), but conjugation genes are widespread in specific 

taxonomic groups (Weinert et al. 2009). Gene transfer agents (GTAs) are virus-like 

particles that contain random, short pieces of the genome of the producing cell and have 

been observed in marine habitats, but it is unclear what selective advantages are 

conferred by GTAs (Marrs 1974, Lang and Beatty 2007).  

 

It has been estimated that anywhere between 2% to 100% of all genes have been 

transferred at least once in their history (Dagan and Martin 2007). Evidence suggests 

LGT events between distantly related prokaryotic groups are infrequent, and unevenly 

distributed (e.g. Andam and Gogarten 2011, Beiko et al. 2005, Boucher et al. 2003, 

Tamminen et al. 2012), but specific taxonomic groups such as class Clostridia tend to be 

more promiscuous participants in LGT (Beiko et al. 2005, Meehan and Beiko 2014). 

Lateral gene transfers on shorter evolutionary time scales are more likely between close 

relatives (Andam and Gogarten, 2011) and the mechanism of LGT may also be 

taxonomically dependent. For example, GTAs have only been identified within the class 

Alphaproteobacteria (Lang and Beatty 2007) and several members of the phylum 

Spirochaetes (Hampson and Ahmed 2011). Lateral gene transfer could also be 

environment-dependent, and driven by the ecology of specific environments (e.g. Rhodes 

et al. 2011, Smillie et al. 2011, Wiedenbeck and Cohen 2011). Indeed, the possible 



  

 13 

combined scenarios for mechanisms of LGT with environment and taxonomy is 

potentially very high. However, for transferred DNA to persist after insertion into the 

recipient genome, the survival of the recipient organism must not be negatively impacted, 

or it will be outcompeted by the non-mutated members of the population. It may be the 

case that not all transfers are equal from the perspective of major evolutionary events. For 

example, genes related to carbohydrate metabolism have a higher tendency to be 

transferred than genes related to the processing and modification of RNA (Cohen et al. 

2011).  

 

 

1.4 COMPARATIVE GENOMICS OF BACTERIA 

Comparative genomics is the study of genomic features across multiple genomes. Due to 

the number of available sequenced genomes, comparative genomics studies are now 

commonplace, and have led to discoveries about the diversity, evolution, physiology, 

pathogenicity and ecology of Bacteria. For example, Heliobacter pylori is the causal 

agent of gastric ulcers, and is found in 20-50% of adults in industrialized nations 

(Suerbaum and Michetti 2002). It has been believed to have spread beyond east Africa 

58,000 years ago with genetic diversity decreasing as geographic distance from east 

Africa increases (Linz et al. 2007). Genome changes have been identified in H. pylori 

during early infection (Colbeck et al. 2006) and during the progression of mild disease 

symptoms to cancer, genes are gained, while other genes are lost (Oh et al. 2006).  

 

Discoveries in comparative genomics have also challenged our understanding of how we 

should classify Bacteria, since the diversity of genome content among closely related 

bacteria may not intuitively suggest they are close relatives. For example, Escherichia 

coli, a common mammalian intestinal bacterium, can be pathogen or mutualist in their 

human hosts (Savageau, 1983, van Elsas et al. 2011). An analysis of 61 E. coli genomes 

and the closely related, pathogenic genus Shigella reveals only 20% of genes are shared 

across all of their genomes, with the other 80% being variable (Lukjancenko et al. 2010). 

These variable sections of E. coli and Shigella genomes tend to be associated with 
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genomic island. However, despite these apparent genomic differences, members of 

Shigella are not clearly delineated from E. coli based on 16S rRNA, or other genes that 

can be used to classify Bacteria (Lukjancenko et al. 2011). Genes are obviously important 

to the classification and understanding of the roles of Bacteria, and can be classified 

themselves, either through function or through evolutionary relationships with other 

genes. 

 

1.4.1 Homology-Search Algorithms 

Homology-search algorithms align meaningful regions of a query gene or protein 

sequence to subject sequences and calculate the statistical significance of those 

alignments. An alignment that falls within a threshold statistical value are assumed to be 

homologous to a query sequence. Sequence alignments can be either global (complete 

sequence) or local (subsequence). Substitution matrices describe the probability at which 

sequence character states change over time and are used to score the quality of sequence 

alignments. For a substitution matrix, each row and column represents a nucleotide or 

amino acid, and each cell in the matrix is a log-odds score that represents the probability 

of substitution between any two nucleotides or any two amino acids. Substitution 

matrices are obtained from high-quality sequence alignments from which log-odds are 

calculated (Henikoff & Henikoff 1992). Different matrices, based on reference 

alignments with different degrees of divergence, are used based on the degree of 

divergence between sequences in the alignment, for example the BLOcks SUbstitution 

Matrix (BLOSUM; Henikoff & Henikoff 1992) comes in several versions based on 

minimum percent amino acid identity of reference sequences: 45%, 62% and 80% are 

most commonly used. Using a given substitution matrix, homologous sequences are 

found by computing local alignments. Several algorithmic approaches are commonly 

used. Smith-Waterman (Pearson 1995, Shpaer et al. 1996) is a local alignment algorithm 

that will always find the optimal alignment given a particular soring scheme, but has 

runtimes that can be prohibitive for large data sets. To decrease runtimes of homology 

searches for large data sets, heuristics are often employed.  
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The BLAST algorithm (Altschul et al. 1990) is a frequently used local alignment 

heuristic in to identify homologous sequences. The BLAST algorithm finds initial 

matches between a query sequence and potential matches in a reference database by 

finding seeds, highly similar short matching words, to limit the number of possible 

alignments that need to be calculated. To become a seed, a threshold value for the quality 

of each initial word match between the query and subject sequences must be met before 

extension. After matches meet the threshold value, extension generates local alignments 

using dynamic programming until an alignment quality score no longer improves based 

on a number of allowed mismatches. The statistical significance of the alignment score 

for each sequence is then assessed and if the score is high enough, an e-value is 

calculated that indicates the number of times an unrelated sequence in the database would 

obtain a higher score than the subject sequence by chance. The best hit (BeT) is not 

always the nearest neighbour based on phylogeny, in rare cases 30% of the BeTs are not 

in the same domain of life (Koski and Golding 2001). For a given substitution matrix and 

gap penalty, BLAST can also miss distant homologs, find non-homologous proteins 

relative to Smith-Waterman (Pearson 1995, Shpaer et al. 1996). Smith-Waterman is more 

computationally expensive, being up to 50 times slower than BLAST. Since only seeds 

are used to create alignments and are terminated after a certain number of mismatches, 

BLAST does not always find the same solutions as Smith-Waterman. Although BLAST 

generally has lower sensitivity and lower specificity, it is seen as a reasonable trade-off in 

speed and accuracy and is often a close approximation (Korf 2003) 

 

Instead of a set of homologous protein sequences that can continue to grow in size as 

more homologs are discovered, it is often more desirable to represent such sets of 

homologs as a model. A profile (Figure 1.2) is a representation of the distribution of 

nucleotides or amino acids at each position in a sequence alignment of homologs 

(Grisbskov et al, 1987), and are an important component to some homology search 

algorithms such as Position-Specific Iterated BLAST (PSI-BLAST, Altschul et al. 1997). 

At each position, a score is calculated that reflects the degree of sequence conservation 

with penalties against sequence insertions and deletions. Profile-based methods are 
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capable of finding as many as three times more remote homologs than pairwise search 

methods (Park et al. 1998). 

 

 

 

Figure 1.2 Sample position specific scoring matrix of a simple nucleotide alignment. a) 

Nucleotides are counted for each site (i.e. column) in alignment. b) Proportion of each 

nucleotide at each site. c) Division of each site by background nucleotide frequency, in 

this case ¼ for each nucleotide. d) Log base 2 conversion for log-odds score 
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An extension of profiles, a Hidden Markov Model (HMM) profile captures not only the 

frequency of different nucleotides or amino acids at each position within an alignment, 

but also allows for deletion or insertion mutations at each site in a protein alignment. Like 

profile-based methods, HMM profiles are used to represent a group of aligned sequences. 

For each position in the alignment, a match state, a deletion state, and an insertion state 

are the possible states for each of the four nucleotides for a DNA sequence alignment, or 

20 amino acids for a protein sequence alignment. I will continue describing HMM 

profiles for amino acids only. The emission probability represents the probability of the 

three states (match state, deletion state, and insertion state) for each amino acid. For 

example, a highly conserved amino acid at a certain position would be represented by a 

high emission probability. The transition probability represents the probability of 

switching to a different state for a site, and unlike profile methods, is calculated from the 

frequency of amino acid residues from the alignment (Figure 1.3). For example, a 

transition probability exists for going from a match to an insertion. HMMs can be used to 

represent the distributions of amino acids, as well as the probabilities of different 

insertions and deletions within all sequences in a cluster. Relative to BLAST and other 

methods such as PSI-BLAST, HMM profile methods can find more distant, possibly 

functionally similar homologs at a lower error rates (Johnson et al. 2010; Krogh et al. 

1994; Park et al. 1998).  

 

HMMER is one of the most popular HMM profile software packages (Eddy 2009), which 

can search query sequences against a database of HMM profiles for alignments. For each 

column, there are three states, a match state M, a delete state D, and an insert state I. 

Sequences are aligned to the profile, and then local alignments are identified, but instead 

of using an alignment quality score, a probabilistic framework is used to calculate local 

alignments. This is possible since each position in an alignment is already represented by 

a state with a probability. The most recent version of HMMER, HMMER3, passes 

sequences through three filtering steps before full probabilistic analysis is performed with 

the Forward/Backward algorithms. The first filter is multiple ungapped segment Viterbi 

(MSV) algorithm), a heuristic of the dynamic-programming Viterbi algorithm (Viterbi 

1967), to identify ungapped high scoring alignments. The second filter is the Viterbi 
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filter, which is a dynamic-programming algorithm that calculates gapped optimal 

alignment scores. The third filter is the full Forward algorithm, which sums over all the 

possible alignments of the profile to the sequence. If the sequence passes all filters, the 

Forward/Backward algorithm calculates the the probability of the sequence alignment 

given the model by calculating the sum probabilities across all paths in the profile (Eddy 

2011). 

 

 

Figure 1.3. Sample HMM profiles. a) B is the start of the HMM, and E is the emitted 

sequence for the profile. For each column in the HMM, a probilitiy of insertion (I), 

deletion (D) and a match (M), with arrows representing transition probability and 

direction. b) An aligned HMM profile to the profile in a). For each column, the alignment 

type is specified, with “D-G” representing a deletion or gap. Alignment produced is four 

sequences, denoted as “x”, with a single gap “-”. 
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HMM profiles can also be searched against one another. HHSearch (Söding 2005) aligns 

each position in the HMM, where for each position in a pair of aligned HMMs, there are 

seven possible aligned pair states: match-match (M-M), match-insertion (M-I), insertion-

match (I-M), insertion-insertion (I-I), deletion-deletion (D-D), deletion-gap (D-G) and 

gap-deletion (G-D) (Figure 1.3). To simplify and speed up HHsearch, I-I and D-D states 

are not considered. For each pair state a dynamic-programming matrix calculates the best 

alignment, and a log-sum-of-odds score is calculated, which is a generalized version of 

the log-odds score for the emission of a sequence from sequence to HMM profile 

comparisons. 

 

1.4.2 Protein Function 

The function of a protein can be a contentious issue. Although the name of proteins can 

describe aspects of function, proteins often act in concert with others in an organism via 

metabolic pathways or as interaction networks, and they may be localized in different 

areas in a cell, all of which would play into the function of the protein. Bioinformatic 

approaches to assign some type of function to proteins have been developed, and 

classification schemes aim to describe protein function.  

 

There are various ways that gene and protein sequences are assigned a function. The 

simplest method is “guilt by association” where a function is assigned through 

association with proteins of known function (e.g. Avarind 2000), through, for example, 

homology searches against databases of complete sequences or domains. Alternatively, 

one can use phylogenetic information along with homology information. Phylogenetic 

profiling (Pellegrini et al. 1999) is a popular “genome context” method (e.g. Kensche et 

al. 2008), which uses the presence or absence information of all genes from a set of 

genomes of interest (Table 1.1). One of the principles underlying phylogenetic profiles is 

that functionally related genes are gained and lost together from genomes during 

evolution, which will be reflected in the profiles. Similar or identical profiles tend to be 

functionally linked, and can therefore be used to predict function of uncharacterized 
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proteins (e.g. Basu et al. 2011, Pellegrini et al. 1999, Wu et al. 2003), such as 

hypothetical proteins that could potentially be linked to pathogenicity (Lin et al. 2011). 

 

Table 1.1 Sample phylogenetic profile using binary representation of presence of 

homologs for each protein in each genome for a set of four proteins with GenInfo 

Identifier (gi or GI) numbers 226948035 226948032 226948031 and 226948030. 

Genome 226948035 226948032 226948031 226948030 

Clostridium_botulinum_A1_str_CFSAN002368 

 

1 0 0 0 

Clostridium_botulinum_A2_str_Kyoto 1 1 1 1 

Clostridium_botulinum_A3_str_Loch_Maree 1 1 1 1 

Clostridium_botulinum_A_str_ATCC_19397 1 0 0 0 

 

 

1.4.3 Approaches to Clustering Homologous Sequences 

Expectation-value cut-offs for the significance of alignments from any homology search 

algorithm can be used to define a homologous sequence set, and those sets are the starting 

point for many cluster construction approaches. The cut-off values can have an effect on 

the size of the clusters: too relaxed and the clusters are large, too strict and the clusters 

are small. Even with complete taxonomic sampling, clustering can lead to ORFans (i.e. 

singletons), proteins that do not cluster with other proteins (Siew and Fischer 2003). If 

taxon sampling is sparse, homologs may have sequence divergence so great that BLAST 

or similar algorithms that rely on word extension heuristics may not detect homology. If 

ORFans are due to distant homologies, HMM profile methods will more likely be able to 

detect homologous sequences due to their increased sensitivity. Cluster construction 

approaches can be grouped in three types: graph-based, distance-based, and hybrid 

(Kuzniar et al. 2008). Many do not have their run times formally characterized, and vary 

greatly in automation, and degree of manual curation of clusters and their annotations.  

 

The clustering of homologous sequences is an important step in comparative genomics. A 

variety of clustering algorithms exist, which draw on biological information in different 



  

 21 

ways. I describe categories of clustering algorithms used by Kuzinar et al. 2008: graph-

based, tree-based, and hybrid approaches.  

 

 

Figure 1.4 Graph-based approach to cluster sequences using homology search algorithm 

results, using the best hit for each query to the top hit in each other genome as criteria to 

draw directed edges. For example, for query “E”, the best hit in genome 1 is “R” and an 

edge is drawn, while no hit is drawn the second-best hit “G” in genome 1. Dotted lines 

are cut edges for strongly connected components, in which each nodes has a path to reach 

all other nodes. 

 

 

Graph-based approaches represent a set of objects and their inter-relationships by edges 

that connect nodes, where proteins are nodes and edges are statistically significant 

relationships between proteins (Figure 1.2) based on alignment statistic thresholds. Edges 

can be either undirected or directed, the direction of the search (query to hit) is reflected 
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in the direction of the edge if more criteria for drawing edges is desired. First, sequence-

homology searches must be performed between sets of sequences, and statistics, such as a 

maximum e-value or percent identity within specified thresholds, used to filter out 

spurious hits for a set of queries. If thresholds are too relaxed and spurious hits from 

chance or conserved and short high-scoring local alignments are included, those edges 

may join unrelated or distantly related sets of sequences. Therefore, graph-theoretic 

approaches or additional criteria for selection of homologs should be used to refine 

clusters. When selecting homologs, best hits (BeTs) for a query sequence are the top 

subject sequences from each of the other genomes in a sequence database. A reciprocal 

best hit (RBH) results when two proteins are the corresponding best hits from each 

other’s genomes. Different clustering approaches use either or both of the BeT and RBH 

criteria to describe homologous relationships. As a way to represent homology, an RBH 

is a stricter definition as opposed to a BeT and is often used to define orthologous 

relationships (Wolf and Koonin 2012). Some have noted that RBH may not be sufficient 

for orthology and further identification of paralogs is necessary (Fang et al. 2010). 

 

One of the first databases of homologous sequences, Clusters of Orthologous Groups 

(Tatusov et al. 1997) uses a more stringent definition of orthology that relies on the idea 

of BeTs. A list of BeTs can be created for a protein in a genome by identifying the most 

closely related homologous protein from all other genomes. The minimum graph 

relationship to form a COG is three proteins with BeT or RBH relationships such that 

they form a triangle; in Figure 1.4, sequences the triangle shaped subgraphs A-B-D and 

R-K-E form COGs. The relationship between three proteins, visualized by a triangle is 

the most basic representation of a COG (Figure 1.2). Clusters grow in size as more 

triangles are created and edges and nodes are shared between different triangles. 

Extensive manual curation of the resulting COGs is required to ensure that COGs are 

valid, and to separate clusters that are considered non-homologous or of divergent 

function. The Inparanoid algorithm (Remm et al. 2001) identifies orthologs using RBH, 

and then considers inparalogs as those sequences that are not the best hit, within a 

specified threshold. The homology search scores are then compared between each 

genome and an outgroup genome. The top scores for RBH are kept as orthologs. 
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Inparalogs that are nearly identical to the orthologs are included, but inparalogs that are 

dissimilar at a certain threshold are excluded. Although computationally efficient, 

Inparanoid is designed for eukaryote genomes and is not intended for Bacteria. 

 

The selection of thresholds for drawing edges in graphs is an important aspect to creating 

clusters of homologous sequences. If thresholds are too relaxed, clusters can grow to 

untenable sizes. Graph theory-based approaches to subcluster, or split up a larger graph 

into sub-graphs, can be applied instead of relying on manual curation. Graph connectivity 

concepts are one possible way to extract subgraphs from larger graphs (e.g. Lechner et al. 

2011, Wittkop et al. 2010), or in other words, extracting subclusters from a cluster. A 

strongly connected component is a portion of a directed graph where between all possible 

pairs of nodes, a directed path exists (nodes A, B, D and E, K in Figure 1.4). This 

criterion limits the possibility of distinct sets of very highly related proteins being joined 

by tenuous one-directional relationships. The main advantage of strongly connected 

graphs is algorithms that identify them are fast, with a linear run time. The Markov 

Clustering algorithm (MCL: Stijn van Dongen 2000) is also a fast approach to 

subclustering that scales well with the size of the graph. In MCL, simulated random 

walks across a graph are used determine the probability that any two nodes should be 

connected. The graph is partitioned based on the calculated probabilities calculated. The 

MCL algorithm is best known in OrthoMCL (Li et al. 2003), and has been implemented 

in several other clustering approaches (Enright et al. 2002, Harlow et al. 2004). In 

OrthoMCL, the input graph for MCL is constructed with edge weights applied to 

decrease the influence of paralogous sequences.  

 

If all possible homologous relationships within cut-off scores are used to construct 

graphs, the size of the graph could quickly consume significant system resources. For 

example, estimates of memory usage by the Perl graph package 

(http://search.cpan.org/~jhi/Graph-0.94/lib/Graph.pod) are 100 bytes for a node, and 400 

bytes for an edge, a cluster for 1000 genomes each with 3000 genes and two edges for 

each protein requires ~2.7GB of system memory. For a real data set, this would be a very 

conservative estimate, as many more edges would be expected since individual proteins 
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have many homologs. One cannot expect the amount of memory used to scale linearly 

with additional genomes: the number of nodes increases linearly with the number of 

sequences, but multiple homologous relationships can exist for each sequence.  

 

Tree-based methods typically require a collection of homologous sequences, and since 

clusters are typically not ab initio constructed, many tree-based methods are post-

processing methods. Unlike graph-based methods, tree-based methods use information 

about phylogeny, and when a reference species tree is first constructed, the topology of 

the reference tree is compared to the topology of the tree constructed from the cluster of 

interest. Agreement between the topologies of a reference species tree and a tree from a 

cluster of interest can inform about possible orthologs. Inparalogs are identified in tree-

based methods under the assumption that they are more closely related to the ortholog 

they were duplicated from. Therefore, in a phylogeny, they should be the sister to the 

orthologous sequence. Outparalogs would branch with more distant proteins. Tree-based 

methods are less common since alignment construction and phylogenetic reconstruction 

can be computationally restrictive, as such several pre-computed databases of orthologs 

and paralogs from tree-based methods are available (e.g. Altenhoff et al. 2017, Huerta-

Cepas et al. 2014, Pryszcz et al. 2011, Waterhouse et al. 2013). 

 

Hybrid methods use both tree-based and graph-based methods to construct clusters of 

homologs and filter out orthologs. Hybrid methods typically use a species tree to guide 

the clustering process. As the tree is traversed from leaves to root, clustering of sequences 

is performed at internal nodes. The Phylogenetic orthologous groups (PHOGs) is an 

example of a hybrid approach (Figure 1.5), with the intention of obtaining clusters of 

orthologs (Merkeev and Mironov 2006). Starting from an internal node where all children 

are leaves, BLAST searches are performed, RBHs are identified, clusters aligned, and a 

consensus sequence then represents the orthologous cluster. Sequences that are not an 

RBH, but within a threshold value for a significant BLAST alignment score are then 

considered to be paralogs. The consensus sequences, paralogs and sequences without any 

significant alignments then traverse up the tree to the internal node that is ancestral to the 

current one, to form what is coined a “supergenome”. This supergenome is then treated as 
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a genome, and clustering continues against other supergenomes or genomes from leaf 

nodes that descend from the ancestral node. When the root is reached, clustering is 

complete. Although this method is fast, methods that rely strictly on BLAST may not be 

able to detect remote homologs, and the top BLAST hit may not be the best hit according 

to phylogeny (Koski and Golding 2001). 
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Figure 1.5. Overview of Phylogenetic orthologous groups (PHOGs), an example of a 

hybrid approach to clustering. Clustering of genomes takes place at internal nodes as the 

guide tree is progressed from leaves A, B, C, D, E, F and G to root. a) Clustering of 

leaves is first performed for internal nodes with only leaf nodes (A-B, E-F) as 

descendants, and clustered sequences form “supergenomes”. b) Leaf node sequences are 

clustered with “supergenomes” (AB-C, EF-D) that descend from internal nodes. c) 

Supergenome vs supergenome search (ABC-EFD). d) Leaf node vs supergenome search 

(G-ABCDEF). 

 

Hieranoid is a clustering algorithm to construct clusters of orthologous sequences for 

Eukaryotes (Schreiber and Sonnhammer 2013). Hieranoid uses a guide tree for clustering 
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like PHOG, but uses the Inparanoid algorithm at internal nodes to identifiy orthologs, and 

then uses HMM profile searches to amalgamate clusters at internal nodes where at least 

one child of the node is an internal node. Hidden Markov Model profile searches are 

more sensitive, and would be more able to detect remote homologs, but the trade-off is 

slower speed of searches for large data sets. To compensate for the decreased speed due 

to HMM profile searches, Hieranoid uses BLAST searches on consensus sequences to 

filter out candidate clusters for HMM profile-HMM profile searches.  

 

Various approaches to benchmark clustering algorithms have been developed (e.g. 

Bernandes et al. 2015, Chan et al. 2013, Altenhoff et al. 2016). To determine the 

accuracy of a clustering algorithm, a benchmark data set would have to be established as 

ground truth. Although one data set is used for orthologs of mainly eukaryotic genomes 

(Altenoff et al. 2016), the accuracy of clustering algorithms for Bacteria may not be 

applicable to a ground truth based on eukaryotic sequence clusters. Other approaches to 

benchmarking compare the similarity of clusters from different methods (e.g. Chan et al. 

2013) which compares methods to each other. Comparing methods to each other would 

be ideal in the event a ground truth cannot be established, or if the idea of establishing a 

ground truth set of sequence clusters, such as orthologous clusters, is impossible due to 

the difficulty in defining practical and clearly definitions of homology (Fitch 2000). 

 

1.4.4 Choosing a Clustering Strategy 

There is no shortage of approaches, algorithms and databases to obtain clusters of 

homologous sequence, but clusters should be chosen based on the method that is ideal for 

the taxonomic affiliation of the organisms of interest and for the type of analysis that is 

performed. Homologous protein clusters can be composed of orthologs, paralogs and 

transferred genes along with sequences that share domains as a result of gene fission and 

fusion. Orthologous clusters are often chosen for functional analysis due to the 

assumption that orthologs have a conserved function. However, paralogous sequences 

may still retain similar or identical function, and in the case of inparalogs, it may be 

difficult to determine which sequence is the ortholog and which is the inparalog. The 
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choice of clusters should also be informed by the type of algorithm used for cluster 

construction, and whether it is appropriate for the type of data (e.g. Bacteria, eukaryote, 

complete genomes, draft genomes). It would also be important to choose clusters based 

on the number of homologs present and taxonomic diversity. The NCBI protein clusters 

database (Klimke et al. 2009) contains smaller clusters that tend to have limited 

taxonomic diversity, while other methods vary in their ability to detect remote homologs 

(Bernardes et al. 2015). Many methods also have difficulty distinguishing LGT and 

orthologs (Dalquen et al. 2013), so methods that explicitly cluster orthologs in organisms 

where LGT is common, such as Bacteria, may not produce clusters that are strictly 

composed of orthologs. It should be expected that clusters composed of bacterial 

sequences may contain laterally transferred genes, unless the clustering algorithm 

attempts to detect and filter them out. Due to the ubiquity of gene transfer events in 

bacterial genomes, it may be more appropriate to avoid filtration of paralogs, since they 

may also remove LGT events. 

 

1.5 PURPOSE AND SCOPE OF THESIS 

Genome sequences of both individual organisms and communities in environments are 

common and increasingly important sources of data to understand microorganisms and 

their roles in human health and the environment. The purpose of this thesis is to develop 

approaches to identify LGT in metagenomes, to develop fast sequence clustering 

approaches to create clusters necessary in comparative genomics analyses such as those 

required for LGT, and to apply them to large data sets.  

 

1.5.1 Chapter 2: Metagenomics and LGT 

Lateral gene transfer is an important mode in the evolution of organisms, especially 

bacteria. Often metabolic capabilities are gained through transfer of genes from one 

organism to another. Metagenomic data provides a snapshot of the genomic content of a 

community. Enhanced biological phosphorus removal communities are often composed 



  

 29 

of microorganisms present in local environments, from which, metabolic capability is 

engineered. Due to their nature as engineered communities with specific metabolic 

capabilities, EBPR communities are likely candidate communities to identify gene 

transfer events between organisms that have developed the phosphorous removal 

phenotype. I develop methods to classify different organisms in three EBPR 

communities: Maddison, Wisconsin, United States of America; Brisbane, Queensland, 

Australia; and Aalborg, Denmark. Reference genomes are used, along with databases to 

identify potentially transferred genes. These methods account for the limitations 

presented by metagenomics data, specifically uncertainty in taxonomic identification, and 

uncertainty in the direction of lateral gene transfer.  

 

1.5.2 Chapter 3: ProPhylClust & PhyloSubClust 

Obtaining clusters of homologous sequences that were used in Chapter 2 analyses were 

one of the main challenges that did not present an easy solution. Some cluster databases 

did not include recent genomes, or did not provide clusters with remote homologs. In this 

chapter I present two algorithms “ProPhylClust” and “PhyloSubClust” to cluster protein 

sequences from bacterial genomes, which rely on phylogenies to cluster sequences. Both 

algorithms can cluster sequences regardless of the presence of LGT events. ProPhylClust 

is a hybrid method to create large clusters of homologs. PhyloSubClust extracts subtrees 

from phylogenies constructed from clusters based on the taxonomic content of the subtree 

relative to the complete tree. I characterize ProPhylClust and PhyloSubClust’s runtimes 

and compare them against other clustering methods, without relying upon benchmark 

data sets. The intention is to create clusters of homologous sequences that contain 

orthologous sequences, however clusters may contain paralogs since no attempt is made 

to filter out paralogous sequences. 
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1.5.3 Chapter 4: Clustering and Identification of Potential Virulence 

Factors in Pathogenic Clostridia 

Clostridia are a class of Bacteria with members that are known to have important 

functional roles in their environmental and as pathogens, especially several human related 

pathogens. Clostridia are known to widely share genes within their own class, and with 

other classes of Bacteria (e.g Beiko et al. 2005, Doxey et al. 2008, Meehan and Beiko 

2014, Skarin and Segerman 2014). Three members of this class, Clostridium botulinum 

and Clostridium tetani and Peptoclostridium difficile (also referred to in the literature as 

Clostridium difficile or Clostridioides difficile) are notable human pathogens known for 

being highly virulent, affecting the nervous system (C. botulinum and C. tetani) or the 

intestinal tract (P. difficile), and all are known to have LGT as a major contributor to the 

evolution of virulence (e.g. Doxey et al. 2008, Monot et al. 2015, Popoff and Bouvet 

2013, Skarin and Segerman 2014). Approximately 25% of protein families in the genus 

Clostridium (including P. diffiicile) are of hypothetical function, which ranks 10th out of 

22 other pathogenic bacterial genera in the PATRIC database (Wattam et al. 2017), 

which range from 15% (Bacillus) and 40% (Brucella). Only 10% of Clostridium 

genomes share conserved protein families, which, along with Bacillus, is the lowest in the 

PATRIC database. Due to the importance of Clostridium as pathogens, the lack of 

conserved protein families across the genus, and the presence of hypothetical sequences, 

clustering of sequences can help enlighten function and evolutionary relationships of 

proteins. I use ProPhylClust and PhyloSubClust to cluster protein sequences from 558 

draft and fully sequenced genomes of Clostridia. From the clusters with toxin related 

sequences for P. difficile, C. tetani, and C. botulinum I construct phylogenies to gain 

insight into the evolution of their toxin sequences. To identify hypothetical sequences 

that are potentially associated with toxins, genome context methods such as phylogentic 

profiles are implemented for this large data set. 
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CHAPTER 2 TRANSFER OF ENERGY PATHWAY GENES 

IN MICROBIAL ENHANCED BIOLOGICAL 

PHOSPHORUS REMOVAL COMMUNITIES  

 

Published as: Wong, DHJ and Beiko RG. 2015. Transfer of Energy Pathway Genes in 

Microbial Enhanced Biological Phosphorus Removal Communities. BMC Genomics 16. 

BMC Genomics: 1–13. 

 

2.1 ABSTRACT 

Lateral gene transfer (LGT) is an important evolutionary process in microbial evolution. 

In sewage treatment plants, LGT of antibiotic resistance and xenobiotic degradation-

related proteins has been suggested, but the role of LGT outside these processes is 

unknown. Microbial communities involved in Enhanced Biological Phosphorus Removal 

(EBPR) have been used to treat wastewater in the last 50 years and may provide insights 

into adaptation to an engineered environment. We introduce two different types of 

analysis to identify LGT in EBPR sewage communities, based on identifying assembled 

sequences with more than one strong taxonomic match, and on unusual phylogenetic 

patterns. We applied these methods to investigate the role of LGT in six energy-related 

metabolic pathways.  

 

The analyses identified overlapping but non-identical sets of transferred enzymes. All of 

these were homologous with sequences from known mobile genetic elements, and many 

were also in close proximity to transposases and integrases in the EBPR data set. The 

taxonomic method had higher sensitivity than the phylogenetic method, identifying more 

potential LGTs. Both analyses identified the putative transfer of five enzymes within an 

Australian community, two in a Danish community, and none in a US-derived culture.  
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Our methods were able to identify sequences with unusual phylogenetic or compositional 

properties as candidate LGT events. The association of these candidates with known 

mobile elements supports the hypothesis of transfer. The results of our analysis strongly 

suggest that LGT has influenced the development of functionally important energy-

related pathways in EBPR systems, but transfers may be unique to each community due 

to different operating conditions or taxonomic composition. 

 

 

2.2 BACKGROUND 

Enhanced biological phosphorus removal (EBPR) communities are a common form of 

microbial treatment developed by Banard (1976) that removes phosphorus and 

occasionally nitrogen from sewage. EBPR is environmentally sustainable and affordable 

(Oehmen et al. 2007), with microbial communities typically seeded from the local 

environment or from a seed stock. Considerable effort has been put into understanding 

EBPR, from community diversity (e.g. He et al. 2006, Mielczarek et al. 2013, Nielsen et 

al. 2012), to metabolic function (e.g. Oehman et al. 2007, Yuan et al. 2012) and 

engineering (e.g. Tu and Schuler 2013, Zhang et al. 2005), with the objective of 

improving efficiency and stability. A substantial amount of work has gone into 

understanding what organisms are present in EBPR plants (Mielczarek et al. 2013, 

Nielsen et al. 2012, He and McMahon 2011, Kong et al. 2002, Wong et al. 2005), which 

organisms tend to be associated with each other (e.g. Mielczarek et al. 2013, Nielsen et 

al. 2012), their ecology (e.g. Kong et al. 2002, Gonzalez-Gil et al. 2011, He et al. 2008), 

and how to engineer the EBPR process (e.g. Gonzalez-Gil et al. 2011; Zhang et al. 

2011b). Recently, a conceptual ecosystem model (Nielsen et al. 2010) and a core 

microbiome Nielsen et al. 2012) have been proposed, based mainly on 25 plants in 

Denmark, revealing a taxonomically broad group of characterized and uncharacterized 

organisms. However, the majority of EBPR-associated organisms are not found in all 

EBPR samples.  
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To develop the EBPR process, a carbon source, typically acetate or propionate, is input to 

the system, and anaerobic and aerobic conditions are cycled in a bioreactor to select for 

phosphate accumulating organisms (PAOs). Other organisms perform functions such as 

fermentation and hydrolysis, and are often referred to as the “flanking community” (e.g. 

Nielsen et al. 2012, García Martín et al. 2006). Phosphorus uptake occurs during the 

anaerobic cycle, and carbon and energy-providing polymers are stored as 

polyhydroxyalkanoates (PHAs). During the aerobic phase, energy stored in the PHAs is 

used for growth and reproduction. The type of input carbon source is taken up at different 

rates for different organisms in EBPR, which could affect treatment plant operation 

(Oehmen et al. 2005). Because anaerobic and aerobic cycling is so important for EBPR 

community function, emphasis has been placed on metabolic pathways related to PHA 

metabolism (e.g. Oehmen et al. 2005, Seviour et al. 2003), glycolysis and 

gluconeogenesis (e.g. García Martín et al. 2006, Oehmen et al. 2005, Lanham et al. 

2013), the pentose phosphate pathway (e.g. Oehmen et al. 2007, McIlroy et al. 2013), and 

the citric acid cycle (e.g. Oehmen et al. 2007, García Martín et al. 2006, Lanham et al. 

2013, McIlroy et al. 2013) as a means to understand how EBPR functions, and through 

usage of a particular metabolic pathway, a way to make EBPR more efficient at removing 

phosphate (e.g. McIlroy et al. 2013).  

 

Metagenomic sequencing of two lab-scale EBPR enrichment reactors allowed the 

elucidation of EBPR-relevant metabolism of a major PAO, the Betaproteobacterium 

Candidatus Accumulibacter phosphatis (CAP) Clade IIA strain UW-1 (García Martín et 

al. 2006), including phosphate uptake and PHA degradation during the aerobic phase, and 

PHA storage and polyphosphate degradation during the anaerobic stage. The amount of 

sequence generated, and the technology used (Sanger sequencing, which generates 

relatively long reads) allowed the eventual assembly of the first complete genome of 

CAP Clade IIA strain UW-1. Recently, draft genomes of other CAP have been sequenced 

(Flowers et al. 2013, Mao et al. 2014). Sequencing of a full-scale reactor metagenome 

from Denmark highlighted an enrichment of genes associated with biofilm and phosphate 

metabolism, and the taxonomic diversity of full-scale reactor communities (Albertsen et 

al. 2011). Despite a group of organisms considered to be common in EBPR communities, 
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exact strains and membership can vary considerably between treatment plants 

(Mielczarek et al. 2013). 

 

Lateral gene transfer (LGT) is a well-established mode of evolution in bacteria that can 

be studied through a variety of approaches using genome sequences (e.g. Beiko et al. 

2005, Koonin and Galperin 1997, Lawrence and Ochman 1997, Ragan 2001a, Ragan 

2001b). LGT plays an important role in adaptation, for example, in heavy-metal 

metabolism (e.g. Sentchilo et al. 2013, Sobecky and Coombs 2009), and in antibiotic 

resistance (e.g. Sentchilo et al. 2013, Barlow 2009). Transfers tend to take place between 

close relatives, but many examples of transfer between more distant relatives have been 

reported as well (e.g. Beiko et al. 2005, Popa et al. 2011). LGT is known to have 

occurred in sewage treatment plants, impacting antibiotic resistance genes (e.g. Sentchilo 

et al. 2013, Hong et al. 2014, Ma et al. 2013, Szczepanowski et al. 2008, Zhang et al. 

2011a), and xenobiotic degradation (e.g. Schlüter et al. 2007, Top et al. 2002). Many of 

these transfers are mediated by mobile genetic elements (MGEs) such as plasmids and 

transposons (e.g. Schlüter et al. 2007, Top et al. 2002). Engineering of treatment plants 

have used plasmids to bioaugment communities to allow metabolism of xenobiotics 

(Bathe et al. 2005). Other mechanisms of LGT exist, such as gene transfer agents (e.g. 

Lang et al. 2012) and transformation (e.g Thomas et al. 2005), but their role in sewage 

treatment communities is not known.  

 

The metagenomes of two non-EBPR sludge community plasmids were sequenced 

(Sentchilo et al. 2013), revealing substantial differences in genes from a plant with 

primarily industrial waste and a plant with primarily household waste. The differences 

suggested that the prominence of carbohydrate metabolism genes from the industrial 

waste plant, and the genes related to defense factors in the household waste plant, were 

the result of selection in each of those communities. Others have noted that transferred 

plasmids in non-EBPR sludge can have a mosaic of functional genes (Hong et al. 2014). 

Some evidence of LGT has been identified in PAO genomes (Flowers et al. 2013) but no 

such events have been proposed from metagenome data thus far.   
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There are many different bioinformatic approaches for the identification of LGT events 

(reviewed in Ragan 2001a, Zhaxybayeva 2009), but most rely on whole-genome 

sequences. Different methods can identify very different sets of genes as putatively 

acquired via LGT (e,g. Lawrence and Ochman 2002; Ragan 2001a; Ragan et al. 2006). 

Metagenomic data introduce several challenges that make identification of LGT difficult, 

in particular, metagenome sequence fragments are short (typically < 1000 nucleotides in 

length) and of uncertain provenance in the community. Incorrectly assembled chimeric 

contigs often combine sequences from multiple members of the same genus, species or 

strain (Charuvaka and Rangwala 2011, Mavromatis et al. 2007, Pignatelli and Moya 

2011). Chimeric contigs are more common in more diverse communities (e.g. 

Mavromatis et al. 2007), and when using short-read sequencing technology with closely 

related strains (Charuvaka and Rangwala 2011), and can often lead to incorrect 

classification of contigs.  

 

Despite these challenges, it would be an important step to develop sequence-based 

approaches to identify LGT within an environment to further our understanding of 

microbial adaptation. Approaches such as genetic exchange networks (Skippington and 

Ragan 2011) could identify transfers between multiple taxonomic groups. Here we 

develop and apply two different analyses to identify candidate LGT events in EBPR 

metagenomic data for six relevant metabolic pathways. We focus on class-level gene 

transfers to avoid any errors in assembly at lower taxonomic levels that can affect the 

accuracy of classification. Our first method, classification discordance, exploits 

disagreement between taxonomic classifications of genes and longer assemblies. Our 

second method relies on phylogenetic incongruence. Both are then filtered by homology 

with known MGEs to identify putative cases of LGT that have been putatively transferred 

through MGEs.  
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2.3 METHODS 

2.3.1 Sequence Data 

The EBPR enrichment culture metagenomes for lab-scale bioreactors in Madison, 

Wisconsin, United States of America (USA) and Brisbane, Australia (OZ) that comprised 

the first EBPR metagenome study (García Martín et al. 2006), both sequenced using 

Sanger sequencing, were downloaded on April 21st 2009 from the Joint Genome Institute 

(Macdonald et al. 2012). The USA community is composed of 15,866 contigs and 

assemblies, 25,312,906 nucleotides, with reads an average of 986 nucleotides in length, 

and the OZ community 11,188 contigs and 24,385,629 nucleotides, with reads an average 

of 1038 nucleotides in length. The EBPR metagenome for a full-scale bioreactor in 

Aalborg, Denmark (DK) that performs nitrogen removal in addition to phosphate removal 

(Albertsen et al. 2011), sequenced using Illumina GAII (2 x 72 paired end), was 

downloaded from the SEED (http://metagenomics.anl.gov/ 

metagenomics.cgi?page=MetagenomeOverview& metagen-ome=4463936.3), is 

composed of 269,385 contigs and 145,725,513 nucleotides of sequence data. We used the 

assemblies and predicted genes and putative proteins as generated by the original 

sequencing projects.  

 

Mobile genetic element sequence data consisted of MGEs from the Phast (Zhou et al. 

2011) and the ACLAME databases (Leplae et al. 2010). The Phast database is composed 

primarily of viral sequences and the ACLAME database is composed of plasmids, phage 

genomes and transposons. We also included the complete NCBI plasmid database, and 

added other plasmids from NCBI that were not in the plasmid database, but matched the 

search terms “sewage treatment”, “waste-water” and “wastewater”. In total, this 

amalgamated database contained 7,584,934 sequences.  

 

2.3.2 Taxonomic and Functional Annotation of Metagenomic Contigs 

Class-level taxonomic classification of contigs was done using RITA (Macdonald et al. 

2012). RITA uses a reference database to assign a taxonomic classification to sequence 
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data using both homology and nucleotide composition. We used RITA v1.0.1 with a 

reference data set of over 2986 genomes representing 65 different taxonomic classes 

(Appendix 1), using USEARCH v4.1.93 (Edgar 2010) for homology searches and FCP 

v1.0.3 (Parks et al. 2011) for nucleotide composition matching. RITA performs 

taxonomic classification and assigns sequences to one of four confidence groups based on 

the strength of evidence in favor of that classification. Sequences with identical 

taxonomic predictions from both homology and composition were assigned to Group I. 

Group II comprised sequences where the expectation value for the best-matching genome 

was at least 10 orders of magnitude smaller than the best-matching genome from a 

different class. Group III assignments are made when the NB likelihood score for the 

best-matching genome is at least 1.5 times greater than the NB likelihood for the best-

matching genome from another class. Group IV assignments are based only on the best 

NB likelihood value. Accuracy of classifications increases with longer contigs 

Macdonald et al. 2012), so only contigs at least 1000 nucleotides in length were used. 

 

Sequences were functionally annotated through a BLAST (version 2.2.23) (Altschul et al. 

1990) homology search. Annotations were based on the top hit to a reference data set of 

microbial proteins from the NCBI Protein Clusters database (Klimke et al. 2009) with a 

60% alignment length of the predicted protein with the reference sequence, an 

expectation value of 1e-5 or smaller, and neither the predicted protein or reference 

sequence greater than 1.2 times the length of the other. Additional annotations for 

enzymes were assigned using a publicly available version (58.1) of the KEGG database 

(Kanehisa and Goto 2000). A subset of KEGG pathways and their enzymes (see Table 

2.1 and Appendix2) related to EBPR metabolism during anaerobic and aerobic cycling, 

carbon feed source, and nitrogen metabolism were subjected to detailed analysis and 

were annotated with a more recent version (67.1) of KEGG: butanoate metabolism (BM) 

for EBPR PHA metabolism, citric acid cycle (CAC), glycolysis/gluconeogenesis (GG), 

pentose phosphate pathway (PPP), propanoate metabolism (PM) for EBPR propionate 

metabolism (propionate is the propanoate ion), and nitrogen metabolism (NM). 
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Table 2.1 List of enzymes by Enzyme Commission (EC) number, and common name in 

text. 

EC Number Name 

1.1.1.1 alcohol dehydrogenase 

1.2.1.12 glyceraldehyde-3-phosphate dehydrogenase 

1.6.5.3 NADH:ubiquinone reductase 

1.9.3.1 cytochrome-c oxidase 

2.3.1.9 acetyl-CoA C-acetyltransferase 

2.7.1.11 6-phosphofructokinase 

2.7.1.2 glucokinase 

2.7.1.63 polyphosphate-glucose phosphotransferase 

2.7.2.3 phosphoglycerate kinase 

4.2.1.11  phosphopyruvate hydratase 

4.2.1.17 enoyl-CoA hydratase 

5.4.2.1 phosphoglycerate mutase 

6.3.5.4 asparagine synthase 

 

2.3.3 Identification of Putative LGT Events 

Sequenced reference genomes are typically used for the identification of LGT, since 

obtaining complete genomes from metagenomes may not be possible without an 

appropriate amount of sequencing effort. However, the complete genome of CAP Clade 

IIA strain UW-1 was reconstructed from the USA EBPR metagenome after additional 

sequencing effort was applied. We used this genome to look for initial evidence of LGT 

in this EBPR community. We performed homology searches, using BLAST, of its 

genome against itself and 2773 reference genomes, and MGEs used in the EBPR-MGE 

homology searches. The top hits with a minimum of 60% shared alignment were used as 

evidence of potential LGT. 

 

We used two complementary approaches to identify putative LGT events in the EBPR 

metagenomes. The first approach identified strong disagreement between taxonomic 

classifications (“classification discordance”) of entire contigs and individual genes within 

those contigs. The second approach considered incongruence in phylogenetic trees as 

evidence of LGT. LGT identified by the two approaches were then filtered by homology 

with known MGEs. 
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2.3.4 Classification Discordance 

The taxonomic classification of a whole contig suggests the lineage of the organism from 

which it was sequenced, but individual protein-coding open reading frames (ORFs) from 

the contig may differ in their taxonomic assignments. Such disagreements can suggest 

LGT events with an implied direction of transfer; the donor is the classification of the 

ORF, and the recipient is the classification of the entire contig. Each predicted ORF was 

classified at the class level using RITA with the same command-line parameters used 

above for the contig classifications, with ORFs from group I and group II RITA 

classifications considered as accurate.  

 

Spuriously classified ORFs originating from classified contigs meeting our length 

requirements would lead to a questionable inference of LGT. To prevent this, we filtered 

out candidate transferred ORFs whose best composition-based prediction (i.e., the Naïve 

Bayes likelihood score) was not at least 15% better than the contig prediction. If this 

criterion was satisfied, then the contig was considered a transfer recipient of the 

implicated ORF. 

 

2.3.5 Phylogenetic Incongruence 

Phylogenetic methods incorporate models of the evolutionary process, providing a more 

accurate representation of evolutionary relationships amongst homologous sequences. 

We first performed all-versus-all BLAST (version 2.2.23) searches within each 

community to identify clusters of putative homologous proteins. These sets were then 

compared with 1642 reference prokaryotic genomes to expand and join clusters. Clusters 

were represented as an undirected graph using the “networkx” python package (1.8.1). In 

the network, a node represents each sequence, and an undirected edge represents a 

homologous relationship between two sequences. For an edge to be drawn between two 

EBPR proteins, they must have 70% sequence identity, and share 60% alignment length 

with an e-value of 10-5 or smaller. This network was expanded by drawing edges between 
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the nodes, the reference genome sequences and EBPR homologs meeting the BLAST 

similarity requirements. The network was then split into connected components, or a set 

of nodes that are connected to each other by a path of edges, where each connected 

component is considered a cluster. 

 

The resulting clusters were often very large (≥1000 sequences), and included distantly 

related proteins of little use to LGT inference. To obtain sub-clusters, we constructed 

phylogenies and extracted subtrees. Sequence alignments were constructed from large 

clusters using MUSCLE (version 3.8.31) (Edgar 2004) with default settings, and trees 

were constructed using FastTree (version 2.1.4) (Price et al. 2009) with the WAG model 

of amino acid evolution (Goldman and Whelan 2000). We then manually extracted 

subtrees where FastTree Shimodaira-Hasegawa (SH)-test-based (Shimodaira and 

Hasegawa 1999, Goldman et al. 2000) branch support values of at least 70 % denoted 

clusters of closely related sequences. Subtree extraction, alignment and phylogeny 

construction was repeated until subtrees comprised a maximum of approximately 200 

sequences. 

 

For detecting LGT, phylogenies are typically compared against a reference species tree 

(e.g. (Beiko et al. 2005)). However, because EBPR community structure can vary over 

time (e.g. (Slater et al. 2010)) and metagenomes can represent incomplete samples of the 

total genetic material (Ni et al. 2013), crucial taxa including donors of genetic material 

may not be present in the sample. We used the DendroPy library (Sukumaran et al. 2010) 

to calculate the patristic (branch-length) distances between sequences in the same 

phylogenetic tree, finding for each EBPR sequence the closest EBPR sequence from the 

same community and the closest reference sequence with an absolute branch length of 0.3 

substitutions per site. Sequences with shorter branch lengths should be closest relatives. 

 

2.3.6 Identifying Candidate Mobile Genetic Elements 

Potential LGTs from each of the phylogenetic incongruence and classification 

discordance methods were then filtered by sequences that have homologs, as identified 
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using BLAST with a maximum e-value of 1e-30 against our custom database of MGEs. 

We included EBPR sequences with hits to MGE sequences of a different taxonomic class 

from the EBPR sequence, and had an alignment length of at least 60 % of the query 

EBPR sequence and 60 % of the subject MGE sequence. 

 

 

2.4 RESULTS  

The published CAP genome was used to find evidence of recent LGT, possibly in the 

context of the EBPR community. Of the 4562 sequences in the CAP genome, 1438 

sequences had hits to genomes outside the Betaproteobacteria with the same e-value as 

the top CAP hit, suggesting the acquisition of many genes by CAP. The high degree of 

similarity indicates the possibility that many of these transfers occurred very recently. 

The observation of these recent transfers led us to search for LGT events in all sampled 

EBPR community members. 

 

 

Table 2.2 Summary of sequences used in analyses from all communities. Number of 

retained contigs, open reading frames from retained contigs, and energy pathway related 

enzymes (butanoate metabolism, citric acid cycle, glycolysis and gluconeogenesis, 

nitrogen metabolism, pentose phosphate pathway, and propanoate metabolism) from 

open reading frames annotated as enzymes. Contigs at least 1000 nucleotides in length 

were retained. 

 USA AU DK 

# (%) of contigs 

retained 

 

7,610 (47.96%) 7,331 (65.52%) 18,024 (6.69%) 

# (%) of ORFs 

retained 

 

22,894 (66.06%) 25,003 (81.15%) 30,516 (10.14%) 

# enzymes in energy 

pathways (%) of 

annotated enzymes 

645 (22.13%) 714 (22.60%) 524 (22.40%) 
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Filtering out contigs that were less than 1000 nucleotides in length reduced the size of the 

Sanger-sequenced datasets to ~48 % (USA) and ~65 % (AU) of their original sizes, while 

the Illumina-sequenced DK reactor metagenome was reduced to only ~6 % (Table 2.2). 

This result should be expected given the differences in read length and the expected 

differences in diversity between lab-scale reactors and full-scale reactors (Wong et al. 

2005, Lanham et al. 2013). The DK community had the largest number of taxonomic 

classes represented in the filtered contigs (63), followed by AU (53) and USA (39; see 

Appendix3). For all communities, RITA classification Groups I-III accounted for the vast 

majority of classifications, although the relative proportion of contigs assigned to these 

groups varied (see Appendix 4). The number of potentially transferred ORFs from the 

retained contigs also varied by community, analysis type, and the six energy-related 

pathways. 

 

2.4.1 Classification Discordance 

Our first approach to identify putative LGT compared the taxonomic classification of an 

entire contig with the classification of its predicted ORFs. Of the ORFs that had hits to 

the metabolic pathways of interest, at least 50% from each community (US: 20 ORFs, 

68.9%, OZ: 88 ORFs, 55.7%, and DK: 58 ORFs, 54.2%) satisfied the criteria for 

discordance. All LGTs suggested by this method had hits to annotated MGEs from our 

database. The number of inferred transfers, the implicated enzymes and the participating 

taxonomic groups vary among metabolic pathways and communities (Appendix5). 

However, some members appear to be more common recipients or donors of gene 

transfer in all communities and metabolic pathways, with Betaproteobacteria to 

Gammaproteobacteria (21 transfers) in AU the most common direction of transfer 

(Appendix6). LGT events with Alphaproteobacteria as donor and Betaproteobacteria as 

recipient were the only pattern identified in all three communities.  

 

Of the six pathways, the pentose phosphate pathway is the only pathway to not have any 

detected transfers in the DK community (Appendix5), most likely due to lack of 

annotated enzymes. Certain pathways have enzymes that appear to have been transferred 
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in all three communities: butanoate metabolism (enoyl-CoA hydratase: EC 4.2.1.17), 

glycolysis and gluconeogenesis (glucokinase: EC 2.7.1.2), nitrogen metabolism 

(asparagine synthase: EC 6.3.5.4, cytochrome-c oxidase: EC 1.9.3.1) and propanoate 

metabolism (EC 4.2.1.17). For example, for butanoate metabolism and propanoate 

metabolism, enzyme 4.2.1.17 is commonly transferred across all three communities, with 

directed networks suggesting transfers from Alphaproteobacteria and Betaproteobacteria 

to Gammaproteobacteria in the AU community, from Betaproteobacteria to 

Alphaproteobacteria in the USA community, and from Acidobacteria to 

Deltaproteobacteria (Figure 2.1). These genetic exchange networks suggest that PAOs 

(e.g. Betaproteobacteria) and competing glycogen accumulating organisms (GAOs) (e.g., 

from Gammaproteobacteria and Alphaproteobacteria) may be involved in transfers of 

core metabolic enzymes. There also appears to be parallel transfer of genes between 

taxonomic groups across communities. For example, in glycolysis and gluconeogenesis, 

6-phosphofructokinase (EC 2.7.1.11) shows evidence of transfer from Chloroflexi to the 

Betaproteobacteria in the USA and AU, but not in DK.  
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Figure 2.1. Directed transfer of enzymes involved in KEGG a) Butanoate metabolism and 

b) Propanoate metabolism for the Denmark (DK), Australia (AU) and United States 

(USA) EBPR communities. Taxonomic groups are nodes, and direction of transfer from 

donor to recipient is indicated by arrows. See Appendix 18 for taxonomic abbreviation 

guide. 
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Figure 2.2. KEGG Glycolysis/Gluconeogenesis metabolic pathway and directed LGT for 

the Denmark (DK), Australia (AU) and United States (USA) EBPR communities. Dashed 

boxes indicate LGT, with solid symbols indicating LGT predicted within a community, 

and hollow symbols indicating enzymes not inferred to be present in a community. EC 

numbers in gray correspond to enzymes not found in any community. See Appendix 18 

for taxonomic abbreviation guide. 

 

 

Transfers may be localized at key locations in some pathways, for example, where 

alternative paths between certain metabolites are not present, suggesting an important 

role for the transfer in the metabolism of the recipients. For example, in glycolysis and 

gluconeogenesis, glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) and 

phosphoglycerate mutase (EC 5.4.2.1) are transferred in the DK community, and 

phosphoglycerate kinase (EC 2.7.2.3), phosphoglycerate mutase (EC 5.4.2.1) and 

phosphopyruvate hydratase (EC 4.2.1.11) are transferred in the AU community (Fig. 2.2). 

These enzymes are involved in a single path for reactions leading from glyceraldehyde-3-

phosphate to phosphoenolpyruvate. Missing enzymes in pathways would increase the 

need for other enzymes to catalyze key reactions. LGT is one way that genes can be 

acquired by organisms that need specific enzymes for reactions in pathways. In 

gluconeogenesis and glycolysis, for example, polyphosphate glucokinase (EC 2.7.1.63) is 



  

 46 

missing in the AU and USA communities, but glucokinase (2.7.1.2) also catalyzes the 

reaction ß-D-Glucose to ß-D-Fructose-6-phosphate and shows evidence of LGT in all 

three communities (Fig. 2.2). Figures for the other five pathways, indicating gene 

transfers and the direction of transfer can be found in Appendices 7, 8, 9, 10, 11, 12, 13, 

14 and 15. 

 

 

Figure 2.3 Sample contigs from classification discordance. AU contigs classified as 

having gammaproteobacterial origin but with an inferred transfer of Enoyl-CoA 

hydratase (EC 4.2.1.17), an enzyme involved in butanoate metabolism and propanoate 

metabolism, originating from the Betaproteobacteria or Alphaproteobacteria. 

Transposases are present on two contigs. Colours represent the taxonomic origin of 

different genes on each contig according to RITA’s naïve Bayes compositional classifier. 

 

 

Closer scrutiny of the transfers in the directed networks suggests multiple class-level 

transfers of the same enzyme between specific taxonomic groups. For example, on long 

contigs, for transfers to the Gammaproteobacteria in the AU community, enoyl-CoA 

hydratase (EC 4.2.1.17) has been identified as transferred once from the 

Alphaprotebacteria to the Gammaproteobacteria, and three times from the 

Betaproteobacteria to three different Gammaproteobacterial contigs. Inspecting the genes 

on the contig reveals two transposases on one contig and a single transposase on the other 
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(Fig. 2.3). Classification of sequences in each contig indicates a mixed taxonomic history, 

suggesting that the present distribution of genes has arisen from a series of independent 

LGT events. 

 

2.4.2 Phylogenetic Incongruence 

A set of 987 trees covering 46,031 proteins from 1622 reference organisms were 

extracted from an initial set of 981 trees covering 243,031 proteins from 1642 reference 

organisms. The direction of transfer is difficult to infer as metagenomic sequencing and 

quality-filtering approaches remove possible within-community donor and recipient 

lineages, and tree topologies often cannot distinguish which of two implicated lineages is 

the most likely donor. A total of 14, 27, and 1 (DK, AU, and USA communities, 

respectively) predicted EBPR proteins differed from a reference sequence or an EBPR 

protein of a different taxonomic class by less than 0.3 substitutions per site 

(Appendix16). This represented 4.71 %, 8.84 %, and 0.65 % (DK, AU, USA 

communities, respectively) of all sequences whose closest relative was a member of a 

different taxonomic class, but did not meet the 0.3 substitutions per site branch length 

cutoff. 

 

The recipient of the single proposed transfer within the USA community is classified as 

Gammaproteobacteria, with predicted function associated with glycolysis and 

gluconeogenesis (EC 1.1.1.1). The AU community accounted for the majority of 

transfers, with some transfers identified on the same contig, but not evenly distributed 

across each metabolic pathway. The DK community had the largest number of inferred 

transfers in the citric acid cycle and nitrogen metabolism pathway. In the AU community, 

transfers consistently involved sequences belonging to contigs classified as 

Gammaproteobacteria and Betaproteobacteria, with Alphaproteobacteria, Bacilli and 

Chlorobia also implicated in transfer of some of the metabolic pathways. 

 

For the DK community, no common taxonomic groups were shared across metabolic 

pathways, and no sequences identified as transferred were classified as 
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Betaproteobacteria. The Cytophagia were implicated in three pathways (butanoate 

metabolism, citric acid cycle and nitrogen metabolism), while a mixture of the 

Alphaproteobacteria, Bacteroidia, Flavobacteriia, Gammaproteobacteria, 

Methanomicrobia, Sphingobacteria are other classes present in the other three pathways 

(gluconeogenesis and glycolysis, pentose phosphate pathway, propanoate metabolism).  

 

2.4.3 MGE Homology and a Merged Prediction Set 

Each method of LGT detection differs in its ability to identify different types of LGT 

events. All high-confidence LGT events have homology with sequences in known MGEs. 

A substantial number of sequences from each community had hits to known MGEs: 

11,718 of 30,516 sequences from the DK community, 16,156 of 24,956 sequences from 

the AU community, and 15,530 of 22,662 sequences from the USA community. Of those 

MGE homologs, 2097 DK, 824 AU, and 875 USA community sequences are enzymes in 

KEGG pathways (Appendix17). 

 

Given the very high proportion of metagenomic sequences matching to MGEs, we used 

additional criteria to support inferences of LGT. To obtain a high-confidence set of 

transfers, we examined the intersection of the two analyses for each of the six pathways 

(Fig. 4). Pathways differed by the percent of shared transfers, with each detection method 

sharing a different percentage of transfers. Up to 55 % of LGT events predicted by the 

classification discordance approach were shared with the phylogenetic approach. This 

wide variation in shared LGT events is not correlated to the number of detected LGT 

events, and illustrates the tendency of each approach to find different types of transfers. 
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Figure 2.4. Three-way Venn diagram between classification discordance, phylogenetic 

incongruence and MGE homology filtering for all sequences from all KEGG pathways. 

Intersections for circles are the number of transferred genes shared between analyses. 

Remaining genes not in intersections are unique potential LGT events identified by each 

analysis. All sequences have homologs with known MGEs. Venn diagrams were 

generated using VENNY (Oliveros 2007). 

 

 

A total of ten sequences, representing five enzymes, were identified as putatively 

transferred by the two approaches: enoyl-CoA hydratase (EC 4.2.1.17), acetyl-CoA C-

acetyltransferase (EC 2.3.1.9), cytochrome-c oxidase (EC 1.9.3.1), phosphoglycerate 

kinase (EC 2.7.2.3), and 6-phosphofructokinase (EC 2.7.1.11). Of those ten sequences, 

eight were identified in the AU community, two in the DK community, and none in the 

USA community. All of the identified enzymes were present on plasmids in the 

ACLAME database, suggesting a possible mode of transfer. Both analyses almost always 
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identified the same taxonomic classes as donors or as the top hit. The only transfer in DK, 

enzyme 1.9.1.3, was associated with nitrogen metabolism. Enzyme 2.7.2.3 was unique to 

GM. Two enzymes, 4.2.1.17 and 2.3.1.9, are common to BM and PM while 2.7.1.11 is 

common to glycolysis and gluconeogenesis and the pentose phosphate pathway. No 

common transfers were found that belonged to the CAC. For AU, six of the eight 

recipient contigs were classified as Gammaproteobacteria, with the remainder 

Betaproteobacteria and Chlorobia. For DK, the recipient contigs were classified as Bacilli 

and Cytophagia. 

 

 

Table 2.3 Length statistics for contigs with putative LGT events. Predicted gene counts 

and length for each contig from each community that are at least 1000 nucleotides in 

length, that have a detected LGT event, and those that have an annotated transposase and 

integrase. 

Community Average Contig Length Average Number of 

Genes 

DK all 1808.84 1.26 

DK LGT six pathways 2885.32 1.91 

DK LGT transposases & 

  integrases 6 pathways 

 

__ __ 

AU all 2883.52 2.70 

AU LGT six pathways 11793.48 9.80 

AU LGT transposases & 

  integrases 6 pathways 

 

25755.10 23.20 

USA all 2477.62 2.37 

USA LGT six pathways 23000.37 17.21 

USA LGT transposases & 

  integrases 6 pathways 

68048.67 53.0 

 

 

Closer inspection of the contigs that contained the transfers from each analysis provides 

further support for these putative LGT events. In total, ten of 88 contigs from the AU 

community, none of the 55 from the DK community, and three of the 19 from the USA 

community had integrases or transposases on contigs that contained transferred genes 

from both the classification discordance and phylogenetic incongruence methods. This 
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subset of contigs with integrases and transposases are about two times (AU) or three 

times (USA) longer, and contain more genes: two to three (AU) or three (USA) more 

than all contigs with LGTs (Table 2.3). The relationship between LGT detection and 

contig length does indicate that longer contigs are more suitable for identification of 

LGT, and aid the identification of transposases and integrases. This could explain why 

the DK community did not have any identified transposases and integrases on contigs 

with an LGT: the majority of contigs were likely too short. 

 

Since DK reads were not available and USA LGTs were not part of the shared set of 

transfers from both analyses, we were only able to assess coverage of AU LGTs. Only 

seven of the eight AU LGTs had matching reads, but all homologous reads had an 

expectation value of 0.0. Of the 57 reads with at least partial homology to the putatively 

transferred ORFs, 50 had alignments that extended into adjacent ORFs, suggesting that 

the inferred events were not due to misassembly. Two putatively transferred ORFs each 

had an aligned read that spanned the full length of the ORF (Appendix18). One LGT had 

two reads that did not extend into neighbouring ORFs, and started or ended in intergenic 

regions. Alignments for the remaining five reads partially covered the putatively 

transferred ORFs. 

 

 

2.5 DISCUSSION 

Using a series of approaches that are applicable to metagenomic data, we found strong 

evidence that LGT has impacted six energy metabolism pathways in EBPR communities. 

Some genes appear to have been independently transferred in more than one community. 

Although some groups are associated with multiple LGT events, no clear patterns of 

donor/recipient partners emerged for all three communities. The common set of transfers 

between the two analyses, and MGE homology filtering, provide the strongest evidence 

for LGT. The majority of transfers shared by both analyses were identified in the AU 

community, none in the USA community, and only two genes transferred in the DK 

community, which were the only shared transfers identified in nitrogen metabolism. 



  

 52 

Differences in predicted events across the three communities may represent independent 

evolutionary trajectories, differences in local community composition, or biases in 

observation due to incomplete sampling of the metagenome. 

 

Our contig length and ORF taxonomic quality-filtering approaches favored the detection 

of a relatively small set of high-confidence LGT predictions. Although choosing the class 

level decreases the number of potential LGTs found and precludes detection of LGT 

between members of the same class, the long-range transfers we have identified show the 

strongest evidence for discordance. Our use of contigs in excess of 1000 nucleotides long 

considerably reduced the proportion of sequences being retained, especially for the DK 

community, where the average contig length was 504 nucleotides. However, longer 

contigs are better for detecting LGT (Table 2.3). This could be due to a higher probability 

that genes from a different source are found on longer contigs, or inaccurate classification 

due to short contigs. Additionally, longer contigs were needed to identify transposases 

and integrases in tandem with our genes of interest. 

 

Mapping of metagenomic reads to contigs validated most of our LGT inferences; 

however, one putatively transferred ORF in our high-confidence set did not have any 

matching reads. Accuracy of assemblies, including metagenomic assemblies, depends on 

sequencing technology and the complexity of communities (Sims et al 2014, Mende et al 

2012). Less-complex communities (~10 genomes) have the most accurate assemblies 

with Sanger sequencing, and complex communities (100+ genomes) have the most 

accurate assemblies with Illumina sequencing (Mende et al 2012). Regardless of 

assembly accuracy, it is unclear why this ORF should be present in the assembled 

contigs, while having no corresponding match in the reads used to generate those contigs. 

 

Different methods of detecting LGT are often biased towards finding certain types of 

transfer events (Lawrence and Ochman 2002, Ragan et al. 2006). Our approaches do not 

identify transfers at lower taxonomic levels and are biased towards detection of complete 

genes. Naïve Bayes likelihood ORF filtering should eliminate many dubious 

classifications, but does not provide any information about the age of the transfer event. 
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The phylogenetic approach provides information about age of transfers, but identified the 

fewest candidate LGT events. This is because it requires that the donor lineage in the 

community or a close relative be sampled, and LGT events that do not appreciably distort 

the tree will not be detected by this approach. 

 

Different EBPR plants have distinct population characteristics (Mielczarek et al. 2013, 

He et al. 2011), with different operational parameters between the sampled EBPR 

communities, and full-scale plants being more complex and dynamic than lab-scale 

reactors (Kong et al. 2002, Wong et al. 2005, Lanham et al. 2013). All three communities 

use different carbon feeds: molasses in DK (Albertsen et al. 2011), propionate in AU and 

acetate in USA (García Martín et al. 2006). Propionate has been shown to be a more 

desirable carbon source relative to acetate, providing PAOs a selective advantage over 

competitors, and resulting in a more stable community over time (Gonzalez-Gil and 

Holliger 2011, Oehmen et al. 2005, Chen et al. 2004, Thomas et al. 2003). The 

propanoate metabolic pathway, which shows different amounts of evidence for LGT 

between the three communities, with very few transfers in the acetate-fed USA 

community, and a large number of transfers in the propionate-fed AU community, 

especially between the Betaproteobacteria and Gammaproteobacteria. The DK 

community has an intermediate number of transfers, but with more taxonomic groups 

implicated than the AU community. The taxonomic composition of EBPR communities 

is known to change over time (Slater et al. 2010), and with changing carbon sources 

(Gonzalez-Gil and Holliger 2011); this variability may also manifest through gene 

exchange between constituents of the community. 

 

Focusing on LGT in energy-related metabolic pathways considered relevant to EBPR 

function provides context to the role of LGT in EBPR communities. LGT events not in 

the six energy pathways are also likely to be important in EBPR communities, such as 

phosphate metabolism, bacteriophage resistance, and flocculation/ biofilm formation. 

Future analyses should also focus on other metabolic pathways for insights into 

alternative metabolism, and in broad functional categories for overall community 



  

 54 

functional aspects of LGT. Additional sequencing of EBPR communities would provide 

further insight into whether there are common LGT events. 
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CHAPTER 3 PROPHYLCLUST AND PHYLOSUBCLUST: 

FAST PROTEIN CLUSTERING AND SUBCLUSTERING 

USING PHYLOGENY 

 

3.1 ABSTRACT 

As the number of sequenced bacterial genomes available continues to increase, the need 

for tools of homology inference that scale favourably with larger sets of genomes. 

Methods that can define clusters of sequences composed of or contain orthologs continue 

to be a goal of developers. Two methods are introduced here, ProPhylClust, which 

clusters protein sequences using the topology of a phylogeny as guide, and 

PhyloSubClust, a method to extract subclusters by pruning subtrees from the phylogeny 

of a cluster. ProPhylClust is compared to all-versus-all BLAST-based graph methods 

(undirected graphs, directed graphs) to create homologous clusters, while PhyloSubClust 

is compared to methods typically promoted to subcluster resulting in orthologs 

(Reciprocal Best Hits, OrthoMCL). Runtimes, cluster size distributions, cluster 

compositions, and the stability of clusters as genome sets increase in size, were compared 

between methods. ProPhylClust clustered the most sequences and achieved shorter 

runtimes with 200 sequenced genomes, than undirected and directed graph methods, 

while PhyloSubClust was slower than RBH, but had considerably shorter runtimes than 

OrthoMCL. ProPhylClust can also be run without HMM searches, instead relying on 

consensus-sequence searches, resulting in the shortest runtimes of all methods,.  
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3.2 INTRODUCTION 

Inference of homology is of central importance to many tasks in bioinformatics, 

including phylogenetic analysis of genes and genomes, identification of critical sequence 

variants, and functional prediction of novel genes. While pairwise homology search 

between a query sequence and a reference database is relatively straightforward, the 

inference of homologous or orthologous groups of genes, or clusters, from multiple 

genomes is considerably more difficult. A common approach to identification of these 

sets of genes is to first perform pairwise comparisons, then refine the resulting set of 

relationships to produce a robust set of genes that share defined common ancestry 

properties. However, processing these relationships in a consistent and appropriate way is 

non-trivial, as clusters can be composed of genes with different evolutionary histories, 

and their sequences may be only partially homologous, for example due to transferred 

domains, or gene fusions. It is therefore relevant to have methods that can identify genes 

in clusters based on evolutionary relationships. Coupled with the problem of definitions 

is the computational time required to identify homologous sequence clusters. Clustering 

methods such as hierarchical clustering or all-versus-all methods often have time 

complexities that are quadratic or worse as data sets increase in size (Lechner et al. 2011, 

Li et al. 2003, Matias Rodrigues and Von Mering 2014).  Clusters are often too large to 

be of use, requiring additional subclustering (Lechner et al. 2011, Li et al. 2003). New 

clustering methods need to be introduced to address increasing computational times due 

to ever-increasing volumes of bacterial genomic data. Here we introduce two algorithms 

that decrease the runtimes needed to create clusters of homologous sequences. 

 

Sequence-clustering algorithms can make use of graphs, trees, or both (Kuzinar et al. 

2008). Graph-based approaches typically use all-versus-all sequence homology search 

results from algorithms such as BLAST (Altschul et al. 1990) to construct a graph, where 

proteins are nodes, and connections between nodes (i.e., edges) correspond to putatively 

homologous relationships between the two connected nodes. The choice of homology-

search algorithm is important as it can influence the speed, sensitivity and specificity of 

the analysis (Johnson et al. 2010, Sonhammer et al. 2014, Ward et al. 2014,). Naïve 
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approaches that compare all members of a set of n genomes against one another have 

runtimes and memory use that increases quadratically (Sonhammer et al. 2014). As n 

increases into the thousands of genomes, many algorithms become infeasible on even the 

most powerful computers, and the majority of proteins can converge into a single “blob” 

(Harlow and Gogarten 2004). Graph-based methods can also construct large clusters that 

contain remote or non-homologous sequences due to transitivity, (Bino and Sali 2004, 

Bolten et al. 2001, Park et al. 1997). Directed graphs have asymmetric relationships and 

have been used in the past to construct clusters of homologs (e.g. Meyerguz et al. 2007), 

and can be less affected by spurious edges if the graph is purged of connections between 

nodes that are not bidirectional. Markov clustering (MCL, van Dongen 2000, Enright et 

al. 2002) is a popular approach to subdividing overly large clusters. OrthoMCL (Li et al. 

2003) implements the MCL algorithm and uses a relational database to store information 

about the graph. Network edges in OrthoMCL are typically based on BLAST matches 

with a default threshold for drawing edges between nodes at a relaxed e-value of 1e-5, 

without any consideration of edge direction. Reciprocal best hits (RBH) limits edges to 

those that connect genes or proteins to one another, requiring each protein to be the best 

match to the other in its genome. RBHs are frequently used to identify orthologs in 

Bacteria (e.g. Wolf and Koonin 2012), but may miss orthologs in genomes with high 

rates gene duplication (Dalquen et al. 2013). Graph-based methods, due to their reliance 

on all-versus-all homology searches, scale quadratically with the number of sequences 

(e.g. Sonnhammer et al. 2014), and do not include any information about vertical 

inheritance of sequences during searches. 

 

In tree-based methods, the topology of a guide tree can be used to identify orthologs in 

the phylogeny of a cluster. A “species”-level phylogeny can also be used to constrain the 

homology searches performed between genomes, and therefore limit the total number of 

homology searches that need to be performed. However, the topology of the guide tree 

would restrict the order of searches as the guide tree is traversed from leaves to root. This 

could result in homologs in different lineages failing to cluster if opportunities are not 

available for clusters to amalgamate with other clusters, or single sequences to join pre-

existing clusters. The scaling of this heuristic approach is linear with n-1 nodes 
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(Schreiber and Sonnhammer 2013) where sequence clustering is performed during node 

traversal. Beiko (2011) developed an approach that identified representative homologs 

from different taxonomic groups to speed up the orthology reconstruction process for a 

set of 1080 genomes, but this approach had an unacceptably high rate of false negatives. 

Hieranoid (Schreiber and Sonnhammer 2013) is an extension of a tree-based method, 

inParanoid, and uses phylogeny and hidden Markov model (HMM) profiles for cluster 

construction. As internal nodes of a guide tree are traversed, homology searches between 

child-node clusters can occur, and homologous clusters are amalgamated using sequence 

profile searches. However, due to the cluster amalgamation process, the potential exists 

for clusters to grow to undesirable sizes. 

 

Clustering approaches that incorporate phylogenies connect more directly with the 

phylogenetic principles of homology, and, as such, may be expected to produce more 

reliable sets of orthologs and paralogs, where paralogs can be identified in clades in a 

phylogeny where multiple sequences from one species are present (Kristensen et al. 

2011). Given that properties such as homology and orthology have evolutionary 

definitions, our view is that a phylogenetic method is necessary to obtain correctly 

defined clusters. Since phylogenetic analysis of “blob” clusters containing hundreds of 

sequences is infeasible, here we propose a two-step clustering approach that uses 

phylogenetic information in two distinct ways. In the first step we use the ProPhylClust 

program to build large homologous sets of proteins, represented as an undirected graph, 

based on a guide tree of genomes. Methods that create large homologous sets, such as 

ProPhylClust, without explicit methods to identify othologs will often be referred to as 

creating “inclusive clusters.” ProPhylClust constructs clusters that comprise one or more 

orthologous sets of proteins. The second step uses the PhyloSubClust program, which 

uses phylogenetic analysis and tree cutting to extract clusters with putative orthologs 

from the output generated by ProPhylClust. We compare ProPhylClust to two other 

clustering methods to create inclusive clusters that rely on all-versus-all sequence 

homology searches to construct undirected and directed graphs. We compare 

PhyloSubClust to three methods that create clusters of orthologs, two that partition 

graphs of homologs, RBH and OrthoMCL, and one hybrid method, Hieranoid. The 
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taxonomic origin of genomes appears to affect clustering with RBH (Dalquen et al. 2013, 

Wolf and Koonin 2012). To gain some insights into the effect of taxonomic composition 

on runtimes and clustering with ProPhylClust and PhyloSubClust, we use two different 

genome sets, one diverse, composed of membership across several phyla, and a less 

diverse set of genomes from the phylum Proteobacteria. To reveal how runtimes and 

clusters change as genomes are added, serial subsampling of each of those taxonomic sets 

to create genome sets of increasing size. 

 

 

3.3 METHODS 

ProPhylClust is written in Python version 2.7 (www.python.org), and requires the 

DendroPy (version 4.2.0) phylogenetic computing library (Sukumaran and Holder 2010) 

and the network “NetworkX” (version 1.11, Hagber et al. 2008) modules. Sequence data 

are amino acid sequences in fasta file format. Optionally, Genbank “.gbk” files can be 

included for annotations. Sequences and optional sequence annotations are stored in an 

SQLite database (https://www.sqlite.org) for access during ProPhylClust clustering. 

Descriptions for ProPhylClust and PhyloSubClust are in the following two sections: 3.3.1 

and 3.3.2. 

 

3.3.1 ProPhylClust  

ProPhylClust uses the topology of a rooted phylogenetic tree to guide clustering of 

sequences. A rooted, possibly multifurcating phylogeny is required for post-order node 

traversal. Figure 3.1 shows a rooted species tree of 20 proteobacterial genomes with the 

order of node traversal numbered and the type of clustering strategy for each topology. A 

pseudocode version of the ProPhylClust algorithm can be found in Appendix 22. 

Clustering proceeds progressively as internal nodes of the guide tree are traversed in post 

order, from the tips to the root, where all children of a node are visited before the node 

itself. As internal nodes are traversed, the sequences or clusters that descend from the 

branches of that node are clustered based on homology searches of the two or more 
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descendant branches. Clusters propagate up the tree in this fashion until the root is 

reached. Unclustered singleton sequences progress up the tree for possible clustering at 

higher nodes. Clusters are represented as undirected networks with no RBH requirement, 

where nodes represent sequences and edges indicate homology between the two incident 

nodes.  

 

Prior to progressive clustering, a first pass is performed to simplify individual genomes. 

To decrease the number of identical and highly similar sequences in genomes at internal 

nodes with a leaf as a descendant, sequences with high similarity are grouped together 

and represented by a single sequence. A directed graph is constructed based on strict 

thresholds, and strongly connected components are identified. Threshold values to define 

similar or identical sequences are user specified, with four variables considered: sequence 

length, alignment length, e-value and percent identity. Directed edges are be drawn 

between a candidate query to subject if sequence length is within three percent, alignment 

length is 97%, e-value is less than 1e-90, and percent identify is 97%. After all clustering 

is complete, these duplicate sequences are entered back into the clusters. 

 

Depending upon the different types of topology at an internal node, three clustering 

scenarios are applied. The first scenario is applied when only leaves subtend an internal 

node (Figure 3.1). In that case, all-versus-all homology searches are performed using 

BLAST and based on the BLAST results, graphs are created to represent clusters. The 

second scenario is applied if an internal node has exactly one internal node and one or 

more leaf nodes as children. In this scenario, sequences from the leaf (or leaves) are first 

added to pre-existing clusters from the sister internal node using either HMMER 

(Johnson et al. 2010) or BLAST. Remaining leaf-node sequences are then clustered 

against themselves and singletons from the sister internal node using BLAST. The third 

scenario is applied when an internal node has at least two internal nodes as children. If 

any leaf-node children are also present, attempts at clustering them are first made as in 

the second clustering scheme. At an internal node, if singletons are present, sequence-to-

cluster homology searches associate the singleton to pre-existing clusters that were 

clustered in nodes that descend from the internal node using HMMER, and failing that, 
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attempts to cluster them with singletons in all-versus-all BLAST searches. The clusters 

from each internal node are then searched against each other using HHsearch (Söding et 

al. 2005), and clusters are then amalgamated into a single cluster.  

 

 

 

Figure 3.1 Sample ProPhylClust guide tree. Sample post-order node traversal is 

numbered 1 through 6. At each internal node, symbols X denote all-versus-all BLAST 

searches,  denotes sequence-versus-cluster (HMM and/or consensus) and a  denotes 

cluster-versus-cluster searches (HMM and/or consensus). 
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3.3.2 PhyloSubClust 

Many of the clusters constructed by ProPhylClust are likely to contain sequences that are 

too distantly related for use in orthology reconstruction, functional prediction, or 

phylogenetics. In such cases the cluster must be subdivided. Approaches such as RBH 

and OrthoMCL use graph-clustering techniques to perform this refinement; although 

effective, these approaches are not based on phylogeny. By contrast, PhyloSubClust starts 

with clusters that are typically smaller and tractable for phylogenetic tree reconstruction. 

From constructed phylogenies, PhyloSubClust recursively extracts sub-trees of putatively 

orthologous protein sequences from this tree. If needed, PhyloSubClust can create both 

alignments using MUSCLE (Edgar 2004) and phylogenies using FastTree (Price et al. 

2009) from clusters. PhyloSubClust is written in Python 2.7 and uses the DendroPy 

(version 4.2.0) phylogenetic computing library. Pseudocode for PhyloSubClust can be 

found in Appendix 23.  

 

PhyloSubClust is a stand-alone sub-clustering algorithm that adapts BranchClust 

(Poptsova and Gogarten 2007), an algorithm that uses the genome composition of a 

subtree to select subtrees within phylogenies as the phylogeny is traversed. Figure 3.2 is a 

sample PhyloSubClust extraction of subtrees from a phylogeny of 29 leaves from nine 

genomes. Given an input tree covering n genomes, PhyloSubClust first attempts to 

extract complete clusters, clusters where at least one sequence from all n genomes are 

present, and then incomplete clusters with a number of genomes  < n. Incomplete 

subclusters can be extracted based on two criteria, first is a sister subtree also contains a 

threshold number of representative genomes, known as the “MANY”/”FEW” threshold, 

or if an extracted subtree is reached during node traversal. PhyloSubClust starts cluster 

selection at leaves that connect directly to the same internal node and have the shortest 

average leaf-to-leaf branch lengths (the patristic distance), which guarantees cluster 

membership for closest relatives (blue dot, Figure 3.2a). Phylogenies must be rooted for 

internal nodes to be traversed from the starting node. PhyloSubClust chooses the furthest 

node, by number of internal nodes, from the starting node for subcluster extraction as a 

root node (red dot, Figure 3.2a). Internal nodes are then traversed from the starting node, 
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and at each node the number of genomes represented at the internal node is evaluated and 

classified as either “incomplete”, or “complete”. Incomplete subtrees are classified as 

either “MANY” or “FEW”, where a user-defined percentage, p, of the total number of 

genomes in a cluster serves as the boundary, b: “MANY” >= b > “FEW”. For the 

example in Figure 3.2, nine genomes are present with p = 80%, and b = seven (rounded 

to the nearest integer). For each incomplete subtree, the number of genomes represented 

in the sister subtree is determined to establish whether an incomplete subtree is extracted. 

When the cluster from the subtree of interest is “MANY” and the cluster from the sister 

subtree subtending the same parent node is “MANY”, the subtree of interest is pruned for 

an incomplete cluster (pink dotted box, Figure 3.2b). A stopper node then replaces and 

represents the location of an extracted subtree (pink leaf, Figure 3.2c), and then the tree is 

rerooted on the new stopper node (Figure 3.2d). Subclustering then restarts by finding the 

most distant internal node, by internal node count, from the newly rooted stopper node 

(blue dot, Figure 3.2d). If a subtree represents sequences from all n genomes, it is a 

complete cluster (orange box, Figure 3.2d), and the subtree is then pruned and replaced 

by a stopper node (orange leaf, Figure 3.2e). Subclustering then continues with the tree 

rerooted on the new stopper (Figure 3.2f) If a stopper node is reached during node 

traversal, the subtree is pruned as a cluster regardless if incomplete or complete (green 

dotted box, Figure 3.2f), and as with other pruned subtrees, is replaced by a stopper node 

(green highlighted leaf, Figure 3.2g) and rerooted on the new stopper node (3.2h). In the 

example in Figure 3.2, a single leaf node remains, and is pruned as a singleton. In the rare 

event of ties for the starting node, full sub-cluster extraction is performed for each 

possible start node, choosing the run of extractions that produces the single largest 

cluster. 
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Figure 3.2 PhyloSubClust extraction of a cluster generated using ProPhylClust. 

Phylogeny has 29 leaves from nine genomes with a “FEW” to “MANY” threshold of p = 

80% of nine genomes where b = seven genomes. a) A root and starting point are chosen 

based on the shortest leaves and the internal node most distant from those leaves. b) 

Internal nodes are traversed and for each node the number of genomes present are 

determined for the current lineage and the sister lineage. An incomplete subcluster 

composed of seven genomes and sequnces leaves (dotted pink box) is extracted due to 

“MANY” criteria for both current and sister lineages (dotted light blue box) from the 

internal node. c) Extracted incomplete cluster is replaced with a stopper node 

“Rstopper_intNode16” (pink), and sister cluster (light blue) continues on for future 

clustering. d) Tree is re-rooted at stopper node, and the most distant internal node (by 

number of internal nodes) from the root is chosen as starting point for subclustering. A 

complete cluster is extracted. e) “Rstopper_intNode27” (orange) stopper node is placed in 

to mark extracted complete cluster. f) Tree is re-rooted on new stopper node and 

clustering begins from most distant internal node. An incomplete cluster is extracted once 

a stopper node is reached. g) Cluster is replaced by stopper node “Rstopper_intNode16” 

(green). h) Tree is re-rooted on new stopper node, with only one sequence remaining. 

 

3.3.3 Genome Sequence Data and Guide Tree Construction 

Our tests were based on two sets of 100 finished genomes, one drawn from across 24 

different bacterial phyla (Appendix 19 for a list of genomes) which we term the 

“PanPhyla” data set), and the other a less-diverse set drawn from phylum Proteobacteria 

(Appendix 20 for list of genomes). Genomes were retrieved from the NCBI. For each 

genome set, we created subsamples of size 20, 40, 60, and 80, in addition to using the 

whole 100-genome dataset. We also combined both sets into a set of 191 genomes (due to 

redundancy of some genomes between the two data sets), and added nine additional 

genomes from class Clostridia to bring the total count to 200 (Appendix 21). 

 

Guide trees for each bacterial data set and the subsampled data sets were constructed 

using 16S rRNA gene sequence data from the downloaded genomes. The 16S ribosomal 

sequences were aligned against the Ribosomal Database Project’s (Cole et al. 2014) 

curated 16S alignments using the “Aligner” tool. Phylogenies were then constructed 

using RAxML version 8.2.4 (Stamatakis 2014), using the general time reversible model 

of nucleotide substitution with gamma-distributed rate variation among sites. We use the 
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best tree as the guide tree. Taxa used to root each guide were selected according to the 

tree in Hug et al. (2016). 

 

3.3.4 Homology Search, Sequence Alignment and Phylogeny 

Construction 

Homology searches are parallelized using the “multiprocessing” and “subprocessing” 

modules in Python. To optimize processor usage so that all available processor cores are 

being used, query sequences are split into separate files, and the number of searches is 

equivalent to the number of available processor cores. The type of homology search 

performed depends on the type of comparison. Comparisons between pairs of unclustered 

protein sequences are performed using BLAST version 2.2.31+ (Camacho et al. 2009), 

although alternative search programs such as rapsearch2 (Zhao et al. 2012) or 

DIAMOND (Buchfink et al. 2015) could also be used. It would be inefficient to compare 

all sequences in a cluster to the target sequence or cluster, and we represent the sequences 

within a cluster using either a consensus sequence or an HMM. HMMs can effectively 

represent the variation in many protein sequences, and increase sensitivity in homology 

searches (Johnson et al. 2010, Söding et al. 2005). Due to their complexity the 

computational cost of using HMMs can be high. Sequence-vs-cluster searches are 

performed using HMMER version 3.1b (Johnson et al. 2010), while for cluster-versus-

cluster searches we use HMM profile vs HMM profile searches implemented in 

HHsearch version 2.0.15 (Söding et al. 2005). HMMs are constructed from sequence 

alignments built using MUSCLE version 3.8.1 (Edgar 2004). Consensus-sequence 

searches offer a faster but less-sensitive alternative to HMMs. Consensus sequences are 

also created from MUSCLE alignments, where for each column, the majority rules assign 

the consensus amino acid, and if more than 50% of entries in a column are gaps, a gap is 

assigned. In the rare case where no amino acid is the majority, a random amino acid is 

chosen from those that are observed at the corresponding position in the alignment. In our 

test runs below, we consider two alternative approaches. In the first approach, we use 

consensus sequence searches followed by HMMs; if a match is found using consensus 

sequences, no HMM search is required. The second approach eliminates the use of 
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HMMs entirely, which is expected to accelerate the runtime at the cost of diminished 

sensitivity. 

 

To ensure e-values were comparable between BLAST runs with different database sizes, 

all BLAST searches used a database size “–dbsize” set to 1e9. For graph-based methods, 

a maximum e-value was set at 1e-5 for homology searches, graphs were then constructed 

by filtering results of BLAST searches (see section 3.3.5 for e-value and alignment length 

thresholds for graph construction). For ProPhylClust, most parameters for BLAST 

searches, HMMER and HHsearch searches are specified in a configuration file, with e-

value being the primary parameter value to restrict search results. For BLAST and 

HHsearch, in addition to e-values, sequence alignment length is provided in tab-

delimited/abbreviated results, while for HMMER searches we use full sequence e-values. 

We also use the sequence lengths/alignment lengths as parameters in clustering, where 

the relative lengths of a query sequence/alignment to a subject sequence/alignment must 

fall within a range of user-specified values. 

 

When comparing sequences against sequences and clusters against clusters, we required 

all sequence pairs to differ by no greater than 40%, be within 0.6 and 1.4 times the length 

of each other, have a minimum e-value of 1e-10, and have a minimum alignment length 

that is at least 50% of the length of the sequence, consensus sequence or profile. Since 

HMMER does not provide alignment length in search results, we did not apply these 

criteria when mapping individual sequences to HMM clusters. 

 

Sequence alignments for HMM-construction purposes in ProPhylClust and for 

phylogenetic reconstruction in PhyloSubClust were created using MUSCLE version 

3.8.1, with the parameter “-maxiters 2” to optimize alignments with thousands of 

sequences. When amalgamating a sequence to a homologous cluster or a cluster to a 

homologous cluster, MUSCLE’s profile alignment option was used. During HMMER 

searches, multiple query sequences may find a single subject HMM profile as the best hit. 

Those query sequences were used to created and alignment using MUSCLE, and then 

aligned to the alignment from the best hit HMM profile using MUSCLE’s profile 
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alignment option. FastTree version 2.1.10 (Price et al. 2009) is used for phylogenetic 

construction for PhyloSubClust using the LG model of protein evolution (Le and Gascuel 

2008). 

 

3.3.5 Graph Construction 

We aimed to compare the performance of PhyloSubClust to graph-based (OrthoMCL 

version 2.0, RBH) and hybrid (Hieranoid version 1.0) approaches. Network 

representations and RBH were implemented in Python using the NetworkX package 

version 1.11. Undirected and RBH graph-based methods define a cluster as a set of nodes 

that are connected either directly or indirectly via other nodes. The directed graph-based 

method defines clusters by strongly connected components where a path of edges must 

exist between any two nodes in both directions. We used e-value thresholds of 1e-30 with 

a minimum of 50% alignment length for undirected, directed edge and RBH graph 

methods, which prevented clusters from being composed of sequences of spurious 

homology. Only e-values can be used as criteria for drawing edges in OrthoMCL, and we 

used OrthoMCL’s default of 1e-5 and 1e-30 to match the other graph-based methods. The 

last clustering method we attempted, Hieranoid, failed to complete for any of our genome 

sets and are not included in the results. OrthoMCL often crashed while running the 

“orthomclPairs” script with the 80 and 100 size Proteobacteria, and 200 size genome sets 

and had to be re-started using the “=startAfter” option. 

 

3.3.6 Cluster Assessment and Comparisons 

All methods were run on a 2 x 2.8 GHz Quad Core Intel Xeon Mac Pro with 12 GB of 

RAM running Mac OS X version 10.11.6, with usage of all cores for ProPhylClust and 

BLAST searches. Clock times are reported, as CPU time could not be recorded for 

ProPhylClust. Undirected graph connected components, directed graph strongly 

connected components, RBH connected components, OrthoMCL, and PhyloSubClust 

were run on single processors. It is expected that users supply a guide tree. The runtimes 

for creation of guide trees are therefore excluded, as methods and sequences to create a 
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guide trees vary between users of ProPhylClust, and is also the case for Hieranoid and its 

original publication. We also excluded runtimes for creation and population of the 

SQLite databases for ProPhylClust, and MySQL databases for OrthoMCL, since 

population of databases is prerequisite step to running ProPhylClust and OrthoMCL. For 

the three network-based approaches we implemented, and for OrthoMCL, all-versus-all 

BLAST searches are included in runtimes. 

 

It is difficult to establish non-trivial “ground-truth” data sets to evaluate the accuracy of 

clustering (Apatoff et al. 2006, Bolten et al. 2001, Dessimoz et al. 2012, Emms and Kelly 

2015, Enright et al. 2002, Wiwi et al. 2015). We instead adopted a set of principles and 

approaches for cluster evaluation and comparison. The simplest measure is the 

percentage of sequences that were clustered. Sequences that are unclustered are 

considered to be singletons. We also examine the distribution of cluster sizes for each 

method to observe average and median cluster sizes, but also maximum cluster sizes, and 

whether subclustering can reduce the frequency of the largest clusters.  

 

A desirable property of orthology reconstruction is stability of clusters as more sequences 

are added. Although in some cases the addition of sequences may correctly split up a 

cluster that was previously thought to be orthologous, in general adding new genomes to 

a data set should grow existing clusters. We examine the stability of clusters for each 

clustering method, where we determine the percentage of sequences in clusters that 

remain identical, become subsets, supersets or are unique when more sequences are 

added. Three-way proportional Venn diagrams across methods were used to quantify 

clusters that remain identical between methods. Methods are more similar to each other 

should share more identical sequence clusters.
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3.4 RESULTS AND DISCUSSION 

3.4.1 Runtimes 

Overall, runtimes were dependant on genome set size, genome set type (Proteobacteria 

or PanPhyla), and whether ProPhylClust HMM profile searches were implemented. All 

runtimes are listed in table 3.1. Although all-versus-all BLAST in itself is not a clustering 

approach, we include runtimes to contrast methods that require all-versus-all BLAST: 

directed and undirected graphs, RBH and OrthoMCL. I describe runtimes for PanPhyla 

and then for the Proteobacteria genome sets. Figure 3.3 shows the increases in runtimes 

for all methods as more genomes are added, and for each genome set type, runtimes for 

the 200 genome set are included. 

 

For the PanPhyla set (Figure 3.3a and Table 3.1), all runtimes increased as the genome 

set size increased, regardless of clustering method. Runtimes for ProphylClust and 

PhyloSubClust with HMMs were consistently greater than all other methods as genome 

set size increased. Without HMMs, ProPhylClust and PhyloSubClust were faster than all 

other methods.  

 

For the Proteobacteria set (Figure 3.3b and Table 3.1), all runtimes increased as the 

genome set size increased, regardless of clustering method. Runtimes for ProPhylClust 

and PhyloSubClust with HMMs were consistently greater than all other methods as 

genome set size increased until 100 genomes, where runtimes were roughly equivalent to 

graph-based methods. Without HMMs, ProPhylClust and PhyloSubClust were faster than 

all other methods. OrthoMCL runtimes for the Proteobacteria set were the longest of all 

methods at 162,448 and 151,719 seconds for 1e-5 and 1e-30 thresholds, respectively, 

surpassing runtimes for ProPhylClust and PhyloSubClust with HMMs between 60 and 80 

genomes. OrthoMCL’s considerable increase in runtimes appears to be due to the 

calculation of paralog and ortholog tables in MySQL. 
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Table 3.1 Runtimes in seconds for inclusive clustering and subclustering methods for the PanPhyla, Proteobacteria and 200 genome 

sets. ProPhylClust is PPC, PhyloSubClust is PSC and Reciprocal Best Hits is RBH. BLAST runtimes are included as a reference point 

for runtimes of graph-based methods.  

 PanPhyla Proteobacteria 

 20 40 60 80 100 20 40 60 80 100 200 

PPC HMMs 10,317 28,801 49,156 75,820 111,940 14,260 36,664 60,385 84,365 115,754 270,483 

PPC no HMMs 1,710 7,337 15,099 20,880 40,950 2,451 9,225 17,821 32,471 47,269 152,537 

BLAST 1,890 8,865 20,880 37,260 61,830 4,005 18,225 37,125 72,405 113,985 440,940 

Undirected Graph 1,992 8,934 21,028 37,527 63,286 4,085 18,417 38,088 73,701 116,616 444,724 

Directed Graph 1,927 8,946 21,030 37,529 62,192 4,071 18,424 37,530 73,256 116,663 446,925 

PSC HMMs 10,699 29,919 50,743 78297 11,5241 15,031 38,353 62,632 87,653 120,437 280,458 

PSC no HMMs 1,968 7,954 15,969 22,190 42,649 3,107 10,155 19,277 34,554 49,929 157,749 

RBH 1,911 8,943 21,050 37,558 62,608 4,057 18,429 37,508 74,967 118,895 447,505 

OrthoMCL 1e-5 2,233 10,481 26,719 47,069 74,985 4,432 21,286 45,753 105,190 162,448 543,875 

OrthoMCL 1e-30 2,011 9,441 25,095 44,887 72,034 4,614 20,735 55,173 96,570 151,719 542,537 
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Figure 3.3 Runtimes plotted on a log base 2 scale for all methods for the a) Pan-phyla 

datasets and the b) Proteobacteria datasets. PPC is ProPhylClust and PSC is 

PhyloSubClust. 

 

The reversal in trends for ProPhylClust/PhyloSubClust runtimes with HMMs compared 

to BLAST and directed and undirected graph methods are most likely due to the number 

of potential homologs that are present in the data set. Relative to the Proteobacteria 

genome set, the PanPhyla genome set would most likely have fewer homologs, and 

therefore fewer searches that BLAST needs to perform. This is reflected in the proportion 

of sequences clustered (Figure 3.4), where for each genome size set the PanPhyla had a 

smaller proportion of sequences clustered relative to the equivalent Proteobacteria-sized 

genome set, regardless of clustering method.  

 

For graph-based methods, OrthoMCL (1e-5 and 1e-30), undirected graph, directed graph 

and RBH runtimes are longer than BLAST runtimes, as expected, since additional 

algorithms were run after the BLAST runs were finished, and in the case of OrthoMCL, 

ortholog and paralog filtering is used before subclustering with MCL. OrthoMCL’s 

dependence on a dedicated relational database to access BLAST results to create 

networks, find duplicates and protein (orthologous/paralogous) pairs impacts its 

performance with the 200-genome set. It may be that system resources and configuration 

are a limiting factor with OrthoMCL with very large genome sets due to its dependence 

on relational database software to store and process BLAST search results. 

ProPhylClust’s use of a guide tree decreases the total number of searches that need to be 

performed despite the added runtime penalties of HMMER and HHsearch. Memory 

usage appears to be a limiting factor with undirected and directed graphs and RBH. When 

an e-value threshold of 1e-5 for drawing edges between nodes was tested, all 12 GB of 

available system memory was used to store the graphs and runs had to be terminated. 
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3.4.2 Proportion of Sequences Clustered and Basic Cluster Statistics 

Within each genome set, PanPhyla and Proteobacteria, the proportion of sequences 

clustered increased as the size of genome sets increased, regardless of method (Figure 

3.4). The Proteobacteria data sets consistently had the highest proportion of sequences 

clustered, with proportions ranging from 0.79 (20 genomes) to 0.86 (100 genomes) for 

ProPhylClust with HMMs. The PanPhyla, had a smaller proportion of sequences 

clustered, with proportions ranging from 0.58 (20 genomes) to 0.72 (100 genomes) for 

ProPhylClust with HMMs. The 200-genome combined data set was intermediate between 

the two 100-genome sets, with the proportion of sequences clustered under ProPhylClust 

with HMMs at 0.82, with variation in proportion of sequences clustered exists between 

other methods.  

 

OrthoMCL with the low 1e-5 threshold consistently clustered the most sequences. It 

clustered 10% more sequences than the next method, ProPhylClust across all panPhyla 

genome sets, and approximately 1% more sequences than all Proteobacteria sets. 

Proportion of sequences clustered varied between 0.69 and 0.81 for PanPhyla 20 and 100, 

respectively and 0.81 and 0.9 for Proteobacteria 20 and 100, respectively. A lower 

threshold of 1e-30 resulted in a smaller proportion of sequences clustered, about 0.52 to 

0.66 for the 20 to 100 PanPhyla, respectively and 0.70 to 0.83 for the Proteobacteria 20 

to 100, respectively. After OrthoMCL with a threshold of 1e-5, ProPhylClust with 

HMMs clustered the next most number of sequences. With HMMs 3-5% more sequences 

were clustered than without HMMs. PhyloSubClust subclustering did not drastically 

reduce the proportion of clustered sequences, often leaving the proportion clustered the 

same. This was not the case without HMMs, as more singletons resulted after 

subclustering with PhyloSubClust, often resulting in 3-5% fewer sequences clustered. 

Undirected graphs, directed graphs and RBH, shared the same e-value threshold as 

OrthoMCL at a threshold of 1e-30, where undirected and directed graphs had an almost 

identical proportion of sequences clustered. RBH had the smallest proportion of 

sequences clusters, often 3% fewer clustered sequences than directed, undirected and 

OrthoMCL with a threshold of 1e-30. 
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Figure 3.4 Proportion of sequences clustered for each data set for each clustering method. 

PPC is ProPhylClust and PSC is PhyloSubClust. 

 

The differences between methods are most clear with the 200-genome set, with basic 

statistics for cluster distributions listed in Table 3.4. Methods that generated larger 

clusters produced fewer clusters. Mean cluster size for ProPhylClust with HMMs was 

18.42 sequences, relative to directed graph and undirected graphs, which had 11.85 and 

12.01 sequences, respectively. ProPhylClust with HMMs had the fewest clusters at 

36,317, relative to directed graph and undirected graphs, with 44,740 and 43,916 clusters, 

respectively. The undirected graph, directed graph and RBH approaches produced the 

largest clusters of all methods, where maximum cluster sizes for the 200 size genome sets 

were 12,043, 12,632 and 9,270 sequences respectively, while ProPhylClust with HMMs 

produced the next largest cluster at 3,584 sequences. Across all methods, the minimum 
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cluster size was two and median cluster size was three, with the exception of 

PhyloSubClust without HMMs with two. ProPhylClust with and without HMMs and 

OrthoMCL (1e-5) and PhyloSubClust with HMMs had the fewest singletons, as reflected 

in the proportion of sequences clustered and in the basic statistics (Table 3.4). OrthoMCL 

had the fewest singletons, most likely due to the highly relaxed clustering threshold of 

1e-5, as the stricter threshold of 1e-30 resulted in a number of singletons similar to 

directed and undirected graph methods.  

 

Basic cluster statistics for all genome sets and methods are listed in Appendix 24. 

Unsurprisingly, as datasets increased in size, the number of clusters and the mean size of 

clusters increased with the addition of genomes. As genome set size increased, the 

Proteobacteria genome set had larger mean cluster sizes and more clusters than the 

PanPhyla genome sets. Mean cluster sizes also increased with increasing number of 

genomes across all methods, with Proteobacteria clusters tending to be composed of 

more sequences than the PanPhyla data set. Distributions of cluster sizes are long tailed 

with the majority of clusters consisting of fewer than three sequences and then very large 

clusters at the long end of the tail. Twenty-fifth percentile (q1) cluster sizes were at two 

sequences per cluster. Seventy fifth percentile cluster sizes varied considerably, and do 

not increase in size with more genomes. The Proteobacteria genome sets had the largest 

75th percentile (q3), greater than the PanPhyla and the 200 genome sets. The 75th 

percentile for the 100 genome Proteobacteria data set is 7-11 genomes, while the 

percentiles for the 100 genome PanPhyla data set is four to eight sequences, and 5-9 

sequences for the 200 genome data set. The 75th percentiles OrthoMCL, ProPhylClust 

and PhyloSubClust tended to be largest across all methods and data sets, 6-9 sequences 

for the 200-genome set versus five to six sequences for undirected, directed and RBH. 

 

The disparity in cluster sizes between ProPhylClust and PhyloSubClust with and without 

HMMs does emphasize the importance of HMMs in amalgamating homologous clusters 

as opposed to using consensus sequences only. Comparing ProPhylClust with HMMs to 

directed graph and undirected graphs, ProPhylClust clusters more sequences into fewer 

clusters, and based on 75th percentile counts, were more spread across the distribution of 
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cluster sizes. This is unsurprising as HMMs are more sensitive than local alignment 

methods such as BLAST (Johnson et al. 2010, Söding et al. 2005), and profile-profile 

methods are extremely effective at finding remote homologs (Bernardes et al. 2015). In 

addition, ProPhylClust did not produce excessively large maximum sized clusters when 

compared to graph-based inclusive methods. PhyloSubClust subclustering of 

ProPhylClust clusters does appear to shift the distribution of clusters away from the long 

tail, and produces fewer clusters that RBH and OrthoMCL, but still manages to keep, on 

average clusters larger than both. Although PhyloSubClust does not produce as many 

clusters as OrthoMCL, others have noted that OrthoMCL can create more subclusters 

than is desirable (Emms and Kelly 2015). 

 

3.4.3 Stability of Clustering Across Data Sets 

Methods such as OrthoMCL and PhyloSubClust attempt to partition sets of orthologous 

sequences, with some degree of tolerance for paralogs, from larger clusters. The addition 

of genomes should allow for novel cluster formation in addition to increasing the size of 

pre-existing clusters, and in general, should not subdivide existing clusters of 

homologous sequences for methods that seek to create, such as ProPhylClust and directed 

and undirected graph-based methods. The addition of sequences to existing clusters, 

which we term stability, could be considered a desirable property of clustering, as cluster 

composition would remain predictable as new genomes are added. To determine how 

cluster composition varies for each algorithm as genomes are added, we quantified the 

change in cluster composition as data set size increases. A cluster from a larger data set 

can be (i) identical to one in a smaller data set, (ii) a proper superset or (rarely), (iii) a 

proper subset, and (iv) unique (i.e., a new cluster). A unique cluster can share some 

sequences with clusters (i.e. an intersection) from a smaller or larger genome set, or be 

composed of sequences from new genomes in the larger set.  

 

Across all methods, the percentage of identical clusters in the PanPhyla genome set is 

typically greater than the Proteobacteria genome set. New genomes would not typically 

added to a phylum as genome sets increased in size, limiting opportunities for cluster 



 

 78 

composition to change. Undirected, directed and RBH graph-based methods resulted in 

the most stable graphs when moving up a genome set size. Relative to the Proteobacteria 

genome set, PanPhyla sets displayed approximately 8%, 10%, 20%, and 10% more 

identical sequences for the 20-40, 40-60, 60-80 and 80-100 genome set comparisons 

(Figure 3.5a). The number of identical OrthoMCL clusters for the PanPhyla was 

consistently 5% or more than the Proteobacteria set for each genome size set increase. 

This was also the case and for the 1e-5 ande 1e-30 e-value threshold (Figure 3.5b).  

 

Due to the presence of unique and superset clusters, ProPhylClust has a smaller 

percentage of identical (up to 25%) or subset clusters (up to 1-9%) compared to graph-

based methods (Figure 3.5c). With HMMs, approximately 5% fewer identical clusters 

were present as the number of genomes increased. The percentage of identical clusters is 

consistently less by typically 5% for PhyloSubClust relative to ProPhylClust (Figure 

3.5d). For ProPhylClust with HMMs the percentage of identical clusters was typically 1-

5% lower than with HMMs. The PanPhyla genome sets also had a higher percentage of 

identical clusters than Proteobacteria genome sets, regardless of whether HMMs were 

implemented, typically between 5-12% identical clusters. No consistent trends were 

present in the PhyloSubClust comparisons. 

 

No unique clusters or supersets exist for the three graph-based methods (Figure 3.5a), 

which should be expected given no subclustering is performed. OrthoMCL with an e-

value of 1e-5 (Figure 3.5b) has the lowest percentage of unique clusters (1-5%) relative 

to a 1e-30 (approximately 5-10%). OrthoMCL had no more than 2-3% superset clusters 

across all genome sets, Fewer unique and superset clusters should be expected for the 

more stringent e-value threshold of 1e-30, since the MCL algorithm extracts subclusters 

from smaller starting clusters. ProPhylClust with HMMs has a greater percentage of 

unique clusters relative to PhyloSubClust by several percent (Figures 3.5c and d). The 

percentage of superset clusters increased by as much as two-fold with PhyloSubClust, 

sometimes constituting as much as 15% of all clusters. The addition of genomes and 

changes to guide tree topology introduced homologs that should be clustered together, 

splitting up clusters. Although it may be counter-intuitive to have supersets as genomes 
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are added, this may be a valuable component to ProPhylClust. Relative to graph-based 

methods, the addition of sequences and re-clustering based on the topology of a 

phylogeny may allow homologous clusters to form and maintain a more cohesive 

membership, which would be maintained by more the more sensitive HMMER/HHsearch 

searches. 
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Figure 3.5 Stability analysis of clusters for a) Graph-based methods, b) OrthoMCL, c) 

ProPhylClust and d) PhyloSubClust. Percentage of clusters for a genome set size that are 

identical, a subset, a superset, and unique. Unique clusters only contain sequences from 

newly added genomes or share some sequences with other clusters (i.e. an intersection). 

 

3.4.4 Pan-Method Cluster Comparison 

We compare ProPhylClust and PhyloSubClust with and without HMMs, we then 

compare methods to create inclusive type clusters: undirected graphs, directed graphs and 

ProPhylClust, and methods to partition clusters: PhyloSubClust, RBH and OrthoMCL. 

We only use the 200-genome sets, which display the clearest patterns. Inclusive clusters 

and partitioning of clusters are important distinctions, since inclusive methods obtain 

larger clusters, while partitioning methods seek to obtain clusters of orthologs or contain 

orthologs. It is therefore important to examine whether inclusive clustering methods and 

methods to partitioning clusters each produce identical clusters as different classes of 

clustering methods. The number of common sequences between methods are visualized 

as counts using three-way Venn diagrams. For inclusive type clusters we compare 

undirected graphs, directed graphs and ProPhylClust (Figures 3.6a and b), and for 

methods that partition clusters we compare PhyloSubClust, RBH and OrthoMCL at an e-

value threshold of 1e-30 (Figures 3.6c and d). Here, we focus on results from the 200-

genome set as a representative of the overall trends seen across all results.  

 

For ProPhylClust with HMMs 65.5% of clusters (19,679/30,040) were shared with 

ProPhylClust without HMMs, while 43% of clusters (19,679/45,722) without HMMs 

were shared with ProPhylClust with HMMs. Of those clusters shared, 58% contain more 

than two sequences, which represents 92% of all clusters with more than two sequences 

in the ProPhylClust with HMMs cluster set. This does suggest that ProPhylClust without 

HMMs is a reasonable clustering approach to quickly obtain homologous clusters with 

more than two sequences. However, for clusters of size two, only 47% from the 

ProPhylClust with HMMs cluster set are shared. 
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The percentage of shared ProPhylClust or PhyloSubClust clusters with other methods are 

presented in Table 3.2. For inclusive clustering methods, the undirected and directed 

graph-based methods revealed considerable overlap between each other, at approximately 

90%. ProPhylClust shares approximately 42% of its clusters with at least one, and 

approximately 40% with both of the directed and undirected graph-based methods. 

regardless of whether HMMs are used (Figures 3.6a and b). For methods that partition 

graphs, the percentage of clusters PhyloSubClust shared with other methods is less than 

inclusive clustering methods. The increase in the percentage of identical PhyloSubClust 

clusters from an OrthoMCL e-value threshold of 1e-5 to 1e-30 is most likely a reflection 

of the initial set of clusters created by OrthoMCL before MCL partitioning subclusters, 

where similar clustering thresholds resulted in more clusters of similar composition, 

despite subclustering.  

 

 

Table 3.2 Percentage of identical clusters shared between ProPhylClust (PPC) and 

PhyloSubClust (PSC) with and without HMM profile searches and other clustering 

methods. 

 Undirected  Directed RBH OrthoMCL  

1e-5 

OrthoMCL  

1e-30 

PPC w/HMMs 42.3 40.8 

 

- - - 

PPC w/o HMMs 43.1 41.4 - - - 

PSC w/HMMs - - 33.4 29.1 31.6 

PSC w/o HMMs - - 32.1 20.5 30.8 
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Figure 3.6 Three-way Venn diagrams between clustering methods for clusters from the 

combined 200 size genome set. PPC is ProPhylClust and PSC is PhyloSubClust. 

Percentages in bold indicate the percentage of either PPC or PSC sequences shared in the 

intersection of all three methods. For the inclusive approaches: undirected graphs, 

directed graphs and ProPhylClust a) with HMMs and b) without HMMs. For the 

subclustering approaches: c) RBH and OrthoMCL at 1e-30 and PhyloSubClust with 

HMMs, and d) PhyloSubClust without HMMs and OrthoMCL at 1e-30 and RBH. 

 

3.4.5 Drug Resistance Sample Cluster 

The ProPhylClust (with HMMs) sample cluster illustrated in Figure 3.1 features 29 

sequences from nine different genomes. It was split by PhyloSubClust into three different 
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clusters: one complete and two incomplete, and one singleton table, 3.5. Twenty of the 29 

are drug-resistance related transporters, while three are annotated as hypothetical 

proteins. In all cases, the proteins are located within the main chromosome of the 

organism. Almost all are Gammaproteobacteria, with the exception of one 

Deltaproteobacteria sequence, which was present in the complete cluster.  

 

Sequences in “complete cluster 4550” all had BLAST e-values < 1e-5. By contrast, for 

the incomplete clusters, 39/121 and 28/49 sequence pairs did not match one another at 

this e-value threshold. Sequences from these clusters were identified across two different 

OrthoMCL clusters, but with some additional sequences. No single protein annotation 

was the majority for each of the OrthoMCL and ProPhylClust clusters, however it is 

noted that the evolutionary history of multi and drug specific drug transporters involves 

frequent functional conversion (Saier et al. 1998). Each of the two OrthoMCL clusters 

are composed of sequences from different classes of Proteobacteria.  

 

Although it is not possible to verify which clusters from OrthoMCL or PhyloSubClust, 

are closer to or are true clusters, the phylogenies generated from PhyloSubClust clusters 

can provide some insights into whether sequence membership of partitioned clusters is 

justified. Of clusters that contained sequences from cluster 4550, one OrthoMCL cluster 

contained eight sequences together, seven were clustered into incomplete cluster 4550.1 

(557221232, 146284131, 447919645, 478481439, 16128526, 239905915, and 

543942339), and the remaining sequence, 478479334, was clustered into complete 

cluster 4550 by PhyloSubClust. That single sequence 478479334 is clearly a member of 

the sister clade of the other sequences (Figure 3.1b), suggesting that the OrthoMCL 

cluster should not contain 478479334. The phylogenies of small drug resistance proteins 

also suggest that proteins cluster by taxonomy (Bay et al. 2008). 
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Table 3.3 ProPhylClust cluster 4550 composed of sequences from 9 genomes. 

Subclustered by PhyloSubClust into three clusters, one complete and two incomplete and 

a singleton.  

Refseq GI Product Genome 

Complete cluster 4550 (9 genomes represented) 

543974288 molecular chaperone SugE Vibrio_alginolyticus_NBRC_15630___ATCC_1774

9_uid199933 

478477889 transporter Pseudomonas_aeruginosa_B136_33_uid196598 

288940967 small multidrug resistance protein Allochromatium_vinosum_DSM_180_uid46083 

557221956 multidrug efflux pump Pseudomonas_VLB120_uid226717 

146283809 SugE protein Pseudomonas_stutzeri_A1501_uid58641 

262395573 molecular chaperone SugE Vibrio_Ex25_uid41601 

447916118 quaternary ammonium compound-

resistance protein 

Pseudomonas_poae_RE_1_1_14_uid188480 

90111693 multidrug efflux system protein Escherichia_coli_K_12_substr__MG1655_uid57779 

239904674 small multidrug resistance protein Desulfovibrio_magneticus_RS_1_uid59309 

478479334 transporter Pseudomonas_aeruginosa_B136_33_uid196598 

Incomplete cluster 4550.1 (7 genomes represented) 

16128526 DLP12 prophage; multidrug resistance 

protein 

Escherichia_coli_K_12_substr__MG1655_uid57779 

447919645 SMR family multidrug resistance 

protein 

Pseudomonas_poae_RE_1_1_14_uid188480 

557221232 small multidrug resistance protein Pseudomonas_VLB120_uid226717 

543944135 putative multidrug transmembrane 

resistance signal peptide protein 

Vibrio_alginolyticus_NBRC_15630___ATCC_1774

9_uid199933 

478481439 SMR multidrug efflux transporter Pseudomonas_aeruginosa_B136_33_uid196598 

543942339 quaternary ammonium compound-

resistance protein 

Vibrio_alginolyticus_NBRC_15630___ATCC_1774

9_uid199933 

146284131 multidrug efflux SMR transporter Pseudomonas_stutzeri_A1501_uid58641 

262394402 quaternary ammonium compound-

resistance protein 

Vibrio_Ex25_uid41601 

478479693 multidrug efflux system protein MdtI Pseudomonas_aeruginosa_B136_33_uid196598 

262392735 spermidine export protein mdtI Vibrio_Ex25_uid41601 

16129557 multidrug efflux system transporter Escherichia_coli_K_12_substr__MG1655_uid57779 

Incomplete cluster 4550.2 (5 genomes represented) 

447916737 hypothetical protein Pseudomonas_poae_RE_1_1_14_uid188480 

16129558 multidrug efflux system transporter Escherichia_coli_K_12_substr__MG1655_uid57779 



 

 87 

Refseq GI Product Genome 

94541119 undecaprenyl phosphate-alpha-L-ara4N 

exporter; flippase ArnEF subunit 

Escherichia_coli_K_12_substr__MG1655_uid57779 

543944134 hypothetical protein Vibrio_alginolyticus_NBRC_15630___ATCC_1774

9_uid199933 

478479692 putative drug efflux transporter Pseudomonas_aeruginosa_B136_33_uid196598 

447918906 hypothetical protein Pseudomonas_poae_RE_1_1_14_uid188480 

262392736 spermidine export protein mdtJ Vibrio_Ex25_uid41601 

Singleton 

478480475 Transporter Pseudomonas_aeruginosa_B136_33_uid196598 

 

 

3.5 CONCLUSION 

We show that the taxonomic composition of clusters can affect runtimes, the percentage 

of sequences that are clustered, and distributions of cluster sizes. ProPhylClust with 

HMM profile searches successfully clustered homologous sequences, creating clusters 

with a larger median and average cluster size than other clustering methods, and clustered 

a greater percentage of sequences than other methods. PhyloSubClust did not 

substantially add to runtimes, and also successfully split larger clusters, reducing the 

maximum observed cluster sizes and decreasing average and median cluster sizes. 

Although slower compared to other methods with smaller genome sets, ProPhylClust 

with PhyloSubClust has runtime advantages with the Proteobacteria as the number of 

genomes reached 100 and with the 200 genome set. 

 

Larger genome sets (e.g. 200) reveal that ProPhylClust and PhyloSubClust cluster 

distributions with HMMs, while long tailed towards large clusters, are not as long as 

directed and undirected graph methods with the maximum cluster size always smaller 

than graph-based methods, with the exception of OrthoMCL. This may create a more 

desirable distribution of cluster sizes, since extremely large clusters may have to be 

further partitioned to be useful in other analyses. 
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Runtimes for ProPhylClust and PhyloSubClust without HMMs were almost twice as fast 

than with HMMs. ProPhylClust and PhyloSubClust had similar runtimes regardless of 

whether the genome set was Proteobacteria or PanPhyla, with similar runtimes for 

genome sets with HMMs and similar runtimes for genome sets without HMMs. This was 

not the case with other methods, as their runtimes were longer with the Proteobacteria 

genome set relative to their runtimes with the PanPhyla genome set.  

 

Although the vast majority of clusters with more than two sequences (92%) were 

obtainable without the use of HMMs in ProPhylClust, less than half were obtained 

(46%). If one’s goal is to quickly obtain clusters with more than two sequences, then that 

the use of HMM searches may not be necessary, and consensus sequence searches may 

be sufficient. However, to cluster as many sequences as possible, HMM profile searches 

should be implemented. Our results with and without HMMs indicate that HMMER and 

HHsearch increase the sequences clustered (80 versus 82% for 200 genomes) while 

resulting in fewer (30,040 versus 45,722 for 200 genomes) and larger clusters (18.42 

versus 11.81 mean sequences per cluster for 200 genomes). 

 

The main advantage of PhyloSubClust is its use of phylogeny to subcluster clusters, 

which is an essential component for the orthology definition. Despite lack of phylogeny 

for inference, RBH is often considered to be a reliable method to obtain orthologs, but 

not in the presence of numerous gene duplication events (Dalquen et al. 2013. 

PhyloSubClust clusters are more likely to contain orthologous sequences due to 

phylogenetic subclustering, but has no explicit step designed to filter out paralogs. 

PhyloSubClust clusters should be considered to be homologs defined by phylogeny, as no 

ground truth set of orthologous clusters exist. Some have set out to establish benchmark 

data sets of orthologs (e.g. Attenhoff et al. 2016), however, without an established ground 

truth set of orthologs it is not possible to know the absolute accuracy of clustering 

algorithms.  
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Future improvements to ProPhylClust include increasing speed and exploring alternative 

search schemes for cluster to cluster searches. Fast homology search algorithms such as 

RAPSearch2 (Zhao et al. 2012) could be easily implemented. The usage of consensus 

sequences to decrease runtimes, although effective for decreasing runtimes, is not an 

ideal solution and homology searches using consensus sequences may not find all 

potentially similar clusters. Algorithms such as PSI-BLAST (Altschul et al. 1997) could 

also be used to speed up sequence-profile searches and if developed, profile-profile 

searches with a reasonable trade-off in sensitivity relative to HMM profile searches.
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CHAPTER 4 PHYLOGENETICS, PHYLOGENETIC 

PROFILING AND EXPLORATION OF TOXIN-RELATED 

GENES IN Peptoclostridium difficile, Clostridium 

tetani AND Clostridium botulinum 

 

4.1 ABSTRACT  

Clostridium botulinum, Clostridium tetani, and Peptoclostridium difficile are virulent 

bacteria that have a considerable impact on human health. Here, 558 complete and draft 

Clostridia genomes are used to examine the evolution of toxin-related sequences from 38 

C. botulinum, two C. tetani, and 73 P. difficile genomes, and potential toxin-related 

hypothetical proteins. Clustering with ProPhylClust and PhyloSubClust produced P. 

difficile toxin clusters and C. botulinum toxins clustered with C. tetani toxins. For each 

cluster, toxin sequences often grouped in clades with non-toxin sequences, suggesting 

diverse evolutionary relationships and multiple evolutionary origins for toxins. To obtain 

potential toxin-related hypothetical sequences, hierarchical clustering of phylogenetic 

profiles was used to obtain a hierarchy of related clusters. Clusters within a Hamming 

distance of 0.3 from toxins in the hierarchy highlighted portential toxin-related sequence 

clusters, all of hypothetical function. These sequences are often found on the same 

contiguous sequence as toxin sequences. Although these sequences could not be 

conclusively assigned a functional annotation, they represent potential targets for future 

inquiry as sequences that may be important for toxin function. 

 

4.2 INTRODUCTION  

The class Clostridia is a highly diverse group of bacteria which includes many 

pathogenic organisms, accounting for approximately 20% of known bacterial toxins 

(Popoff and Bouvet 2013). Clostridium botulinum, Clostridium tetani, and 
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Peptoclostridium difficile are three Clostridia pathogens with toxins that have known and 

substantial impacts on human health (e.g. Bruggemann et al. 2003, Elliott et al. 2017, 

Popoff and Bouvet 2013). Lateral gene transfer (LGT) is a known means of genome 

evolution in members of Clostridia (e.g. Beiko et al. 2005, Meehan and Beiko 2012, 

Sebaihia et al. 2006) that can transform non-pathogenic organisms into pathogens (e.g. 

Brouwer et al. 2013, Lacey et al. 2017, Skarin and Segerman 2014). Toxin regulatory 

proteins and quorum-sensing proteins, as well as “hypothetical” proteins of unknown or 

putative function should also be considered in addition to toxins when evaluating what 

contributes to virulence (e.g. Carter et al. 2005, Connan et al. 2013, Martin-Verstraete et 

al. 2016). Typically, 30-40% of all gene sequences from sequenced bacterial genomes 

lack an assigned function (e.g. Bork 2000, Galperin and Koonin 2004) and represent a 

substantial volume of sequence data that needs to be accounted for in pathogenic bacteria. 

Comparative-genomic approaches such as phylogenetic profiles have been utilized to 

propose functions for hypothetical proteins (Kensche et al. 2008, Pellegrini et al. 1999), 

and could be used to highlight candidate hypothetical proteins that are highly likely to be 

associated to toxins and pathogenesis.  

 

A substantial amount of effort has been directed to understanding the evolution of toxins 

and their related proteins in C. botulinum, C. tetani and P. difficile. Botulinum neurotoxin 

(BoNT) is the deadliest toxin known (Arnon et al. 2001) and causes foodborne, infant and 

wound-associated botulism. BoNT is well studied, and is typically found in C. botulinum, 

with numerous toxinotypes (A, B, C, D, E, F, G) organized into four groups based on 

phenotypic and ribosomal differences (Collins and East 1998): I (A, B and F), II (B, E 

and F), III (C and D), and IV (G). Botulinum neurotoxin and is always associated with 

and requires non-toxic non-hemagglutinin (ntnH) for toxicity. Depending on the 

phenotypic group of C. botulinum, BoNT is associated to one of two operons, HA or 

OrfX, and when expressed, non-BoNT sequences from each operon are non-toxic. The 

OrfX and HA operons are each considered non-toxic components of BoNT toxin-protein 

complexes, with different gene arrangements and evolutionary history, including 

recombination, insertion events and LGT both within and between species on 

chromosomes, plasmids and phages (e.g. Dineen et al. 2003, Hill et al. 2009, Marshall et 
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al. 2007, Smith et al. 2007, Williamson et al. 2016). Clostridium tetani tetanus toxin 

(tetX) is a distant homolog of BoNT, but unlike BoNT, only requires one protein to form a 

toxin and is not believed to be typically transferred between organisms (Brüggemann et 

al. 2003). Peptoclostridium difficile (Yutin et al. 2013), formerly named Clostridium 

difficile and recently renamed to Clostridioides difficile (Lawson et al. 2016), has two 

toxins named A and B whuch are encoded by the tcdA and tcdB genes, respectively. The 

toxins, and all other toxin-related proteins are located in a pathogenicity locus (PaLoc) 

operon on the main chromosome. Although evidence for recent LGT is uncommon 

(Brouwer et al. 2013), it is proposed that PaLoc was obtained through an LGT event as 

part of a genetic element, despite partial sequence homology to known mobile genetic 

elements (Braun et al. 1996).  

 

Various attempts have been made to automate the assignment of functions to hypothetical 

proteins (e.g. Shahbaaz et al. 2013, Osterman and Overbeek 2003, Pellegrini et al. 1999). 

Bioinformatic approaches to predict the function of hypothetical proteins in pathogenic 

bacteria typically involve retrieval sequenced genomes and annotation using homology 

searches against various sequence databases. Results are then inspected for proteins with 

annotations that may be associated to pathogenicity (e.g. Alam and Dwiveldi 2016, 

Mishra et al. 2014). Phylogenetic profiling is a method that uses information about the 

presence and absence of all sequences across a set of genomes according to homology 

searches (e.g. Aravind 2000, Pellegrini et al. 1999, Wu et al. 2003), and groups 

homologous sets of proteins based on the similarity of their corresponding presence / 

absence patterns. Correlations in the phylogenetic distribution of profiles can imply 

similar functions for proteins and provide phylogenetically associated sequences of 

interest for further investigations (Kensche et al. 2008). Others have developed methods 

to hierarchically cluster phylogenetic profiles based on distance measures. Psomopoulos 

and Mitkas (2012) created sequence clusters from phylogenetic profiles based on all 

distances between profiles. Their algorithm creates an initial set of clustered profiles 

based on a threshold distance value, the centroid profile of each cluster and a threshold 

distance value is then used for further recursive clustering of clusters. Hierarchical 

clustering of phylogenetic profiles has also been used to annotate the function of 
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sequences. Liu (2016) used maximum likelihood to hierarchically cluster profiles, and 

then applied a hierarchy of functional annotations to the clusters based on the branch 

lengths of the dendrogram of clusters. However, maximum likelihood is computationally 

intensive and restricts the number of genomes that can be analysed using this technique. 

Due to the continuously growing volume of sequence data, it is important to develop 

methods that can be applied to large genomic data sets that are not computationally 

restrictive. 

 

Here we use a large data set of complete, draft and high-quality assemblies of 558 

Clostridia genomes to examine the distribution and evolutionary relationships of toxin 

and toxin-related proteins of P. difficile, C. botulinum and C. tetani. We define 

homologous relationships among proteins associated with BoNT, TetX, and tcdA and 

tcdB, and assess their phylogenetic distribution. To avoid a priori chosen sets of toxins 

and their homologs, clusters of homologs are created using ProPhylClust and 

PhyloSubClust, and phylogenetic relationships are examined for insights into the 

evolutionary history of toxins. Potentially important toxin-related proteins are then 

identified through phylogenetic profiling, with a focus on hypothetical proteins that are 

not yet highlighted as functionally relevant to pathogenicity. 

 

4.3 METHODS 

4.3.1 Sequence Data and Selection of Candidate Virulence Proteins 

A total of 558 Clostridia high-quality assemblies, draft, or complete genomes with 16S 

ribosomal RNA sequences were downloaded from NCBI in 2015, representing a total of 

1,550,457 encoded protein sequences. Of the 558 genomes, 284 were assemblies, 143 

were draft genomes and 131 were complete genomes (see Appendix 25 for a complete 

list), of which, 73 P. difficile genomes, two C. tetani and 38 C. botulinum genomes were 

present. Protein sequences of interest were selected a priori based on specific type strains 

that are known pathogens. ProPhylClust and PhyloSubClust (see Chapter 3) were used to 

create clusters of homologous proteins, predicted proteins and open reading frames. 
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Clusters were then identified if they contained toxin and toxin associated proteins from 

the specific a priori type strains. 

 

Genomes of Clostridium botulinum A str. ATCC 19397, C. botulinum A3 str. Loch 

Maree, C. botulinum B1 str. Okra, C. botulinum C str. Eklund, C. botulinum E3 str. 

Alaska E43, and C. botulinum F str. 230613 were used as representative strains and 

represented toxin types A, B, C, E and F (Doxey et al. 2008, Peck et al. 2017). The HA 

operon (ha33, ha17, ha70) is typically associated with BoNT toxinotypes B, C, D, and G, 

whereas the OrfX operon (OrfX1, OrfX2 and OrfX3) is typically linked to BoNT 

toxinotypes A2, A3, A4, E and F (Popoff and Bouvet 2013). The non-toxic non-

haemagglutin (ntnH) component is common to all BoNT, and forms a toxin complex with 

the protein products of either the OrfX operon or the HA operon (Popoff and Bouvet 

2013). The sigma factor botR is required for expression of BoNT and the non-toxic 

components of the toxin complex, and is found in BoNT toxinotypes A1, A2 and C and D 

(Popoff and Bouvet 2013). Clostridium tetani 12124569, and C. tetani E88 were the only 

available genomes of C. tetani, with only two proteins of importance to virulence, tetX 

and the sigma factor tetR.  

 

Peptoclostridium. difficile strain 630, the first P. difficile genome sequenced (Sebaihia et 

al. 2006), and strain R20291 was used to represent typical P. difficile genomes. The 

pathogenicity locus PaLoc for P. difficile is composed of tcdA and tcdB; tcdR (an 

alternative RNA polymerase sigma factors for expression of PaLoc), tcdC; (negative 

regulator of toxin gene expression) for transcriptional regulation (e.g. Popoff and Bouvet 

2013); and lastly tcdE (holin-like pore-forming protein) which facilitates excretion of 

tcdA and tcdB (e.g. Govind and Dupuy 2012, Martin-Verstraete et al. 2016). 

 

4.3.2 Cluster Construction Using ProPhylClust and PhyloSubClust 

Sequence to consensus sequence, and consensus sequence to consensus sequence BLAST 

searches were implemented in ProPhylClust to filter sequence to HMM profile, and 

HMM profile to HMM profile searches. For guide-tree construction, 16S rRNA gene 
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sequences were aligned using the Ribosomal Database Project’s “aligner” tool (Cole et 

al. 2014). The guide tree was then constructed using RAxML version 8.2.4 (Stamatakis 

2014), using the general time reversible model of nucleotide substitution with gamma 

distributed rate variation among sites. The organisms Orenia marismortui DSM 5156, 

Halonatronum saccharophilum DSM 13868, Halobacteroides halobius DSM 5150, 

Acetohalobium arabaticum DSM 5501, Halothermothrix orenii H 168, Halanaerobium 

hydrogeniformans, and Halanaerobium praevalens DSM 2228, were chosen as the root 

of the tree as the most basal members of Clostridia present in the data set based on a 

recent “tree of life” (Hug et al. 2016). For ProPhylClust’s initial reduction of identical or 

similar sequences, the e-value threshold for clustering identical or redundant sequences 

was ≤ 1e-90 with sequence percent identity and alignment lengths differing by three 

percent or less. For clustering, we required all sequence pairs to differ by no greater than 

40%, be within 0.6 and 1.4 times the length of each other, have a maximum e-value of 

1e-10, and have a minimum alignment length that is at least 50% of the length of the 

sequence, consensus sequence or profile. Subclusters were extracted using 

PhyloSubClust with a many/few boundary of 80%. Clusters were then given an 

annotation based on the majority rule of sequence product annotations supplied by NCBI, 

where at least 50% of sequences must share the same annotation. Although simple, this 

annotation approach is intended to identify clusters where the majority of sequences are 

hypothetical proteins so further investigations can be carried out. The distribution of 

clusters across the 16S rRNA gene phylogeny was then visualized with a heatmap using 

the Interactive Tree of Life (https://itol.embl.de, Letunic and Bork 2006). 

 

4.3.3 Annotation of Genomic Islands 

IslandViewer (Bertelli et al. 2017) was used to identify genes that are members of 

genomic islands. For genomes already present in the IslandViewer database, genes that 

were found partly or completely within a genomic island were considered as being a 

member of a genomic island. Low quality contigs, draft genomes and assemblies were 

filtered out from contigs, draft genomes, and assemblies that were not present in the 

IslandViewer database based on recommendations by Bertelli (personal communication). 
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Low-quality contigs were less than 1000 nucleotides long, and if the number of contigs in 

a draft genome or assembly exceeded 300, the genome was excluded. In order for a draft 

genome to be annotated by IslandViewer, a reference genome already present in 

IslandViewer must be provided; for each draft genome, the IslandViewer reference 

genome present in the 16S rRNA tree with the shortest patristic distance was chosen as 

the reference. A total of 222 genomes (18 complete, 45 drafts, 159 assemblies) were 

submitted to IslandViewer for annotation, which included P. difficile (65 assemblies), C. 

botulinum (two drafts, seven assemblies) and C. tetani (two complete) genomes. 

 

4.3.4 Annotation of Plasmids 

Potential plasmids were classified from draft Clostridia contigs that were not defined as a 

“complete genome” or a “plasmid”. If the majority of a contig is homologous to a portion 

or a complete plasmid sequence, it most likely represents sequence from a plasmid. 

Global to local alignment homology searches between contigs of minimum 2000 

nucleotides in length and 163 fully sequenced clostridial plasmids downloaded from 

NCBI were performed using “glsearch36” from the Fasta suite of applications, version 

36.3 (Pearson and Lipman 1988). If a contig had an e-value less than 1e-80 with an 

alignment length of at least 90% the length of the contig to a fully sequenced plasmid, it 

was considered as a potential plasmid. 

 

4.3.5 Phylogenetic Profiling and Hierarchical Clustering of Profiles 

Phylogenetic profiles were constructed from the output clusters after applying 

PhyloSubClust, based on the presence or absence of each of the 558 Clostridia genomes 

in each cluster. If a gene from a genome is present in a given genome, it is coded as “1” 

in the profile, otherwise the encoding is “0” for that genome. The result is a binary vector 

for each cluster, where each element in the vector represents the presence or absence of 

the gene in the corresponding genome. This differs from typical phylogenetic profiles, 

where the profile is a binary vector of presence or absence for all genes in the data set, 

which are based directly on the results of all-versus-all homology searches (e.g. Pellegrini 
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et al, 1999). The use of cluster membership will drastically decrease profile size and 

therefore memory usage and runtimes for downstream analyses. 

 

After phylogenetic profiles were constructed, hierarchical clustering analysis (HCA) was 

used to identify clusters that contain sequences that are potentially associated with BoNT, 

tcdA, tcdB, and tetX toxin clusters and their regulatory sequences. Closest neighbours to 

the clusters of interest in the hierarchy are those that have similar or identical 

phylogenetic profiles. 

 

The Hamming distance was calculated between all pairs of profiles to obtain a distance 

matrix of size i clusters by i clusters. To decrease the size of the distance matrix, the 

number of clusters was reduced to include only those clusters that contained sequences 

from any of the P. difficile, C. tetani, and C. botulinum genomes. The Unweighted Pair 

Group Method with Arithmetic Mean (UPGMA) algorithm for hierarchical clustering 

was chosen due to its computational speed and memory efficiency. A custom Python 

script was used to calculate the Hamming distance for each profile, and the Python script 

“upgma_cluster.py” from QIIME version 1.9.1 (Caporaso et al. 2010) was used for 

UPGMA clustering and construction of a UPGMA tree in Newick format. For each of the 

clusters of interest, the UPGMA tree was used to identify neighbouring clusters that share 

identical binary taxonomic profiles. To explore other potential functionally valid clusters, 

which may have different taxonomic content due to missing (unsequenced) genes or gene 

loss/gain, the Hamming distance threshold was relaxed to 0.1, 0.2 and 0.3 from cluster of 

interest for clusters with ten or more represented genomes. Clusters are given a singular 

annotation based on the product annotation from genome “.gbk“ files, where the 

annotation is chosen based on majority rules, where at least half of all sequence product 

annotations are “hypothetical protein”. If a PhyloSubClust cluster wass labelled as a 

hypothetical protein, PSORTb version 3.02 (Yu et al. 2010) was then used to annotate 

and provide a cellular localization prediction, and Pfam version 31.0 (e.g. Finn et al. 

2016) used to assign a functional annotation. 
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4.3.6 Sequence Alignment and Phylogenetic Analysis 

Using sequences from the a priori type strains, a total of 18 toxin and toxin related 

clusters were identified from the clusters output by PhyloSubClust. Muscle version 3.8.1 

was used to create alignments for the 18 clusters. Phylogenies were then constructed 

using RAxML version 8.2.4 under a general time reversible model of amino acid 

substitution, with the fast bootstrap option with 100 bootstrap replicates. Nodes with 

bootstrap values less than 70% were collapsed. All phylogenies are visualized using the 

Interactive Tree of Life, where sequence product name, contig and chromosome type 

(unknown, annotated plasmid, plasmid, genome) and genomic island annotations are 

featured. 

 

 

4.4 RESULTS 

4.4.1 Homologous Clustering and Hierarchical Clustering of Protein 

Families 

The clustering of protein families from 558 genomes using ProPhylClust and 

PhyloSubClust took approximately six and a half days to complete across 14 Intel 

Xeon X7350 CPUs running at 2.93GHz each with 64 gigabytes of RAM. A total of 

1,404,716 sequences (90.6% of all sequences) were assigned to 68,749 clusters. Average 

cluster size was 20.4 protein sequences per cluster, with a median cluster size of three 

squences, a minimum of two sequences and maximum of 2401 sequences. Clusters that 

contained sequences with known GIs of interest were identified, producing 18 clusters 

associated to the BoNT locus, and the HA, OrfX, and PaLoc operons. In particular, I 

focus on clusters containing BoNT, ntnH and tetX, and tcdA and tcdB. This produced four 

clusters of interest which I focus on interpretation of two phylogenies, a BoNT and tetX 

cluster “BoNTA-BoNTF-BoNTE-ntnH-Tetx”, and a toxinAB_tcdD cluster for tcdA and 

tcdB. The other two clusters, a BoNTC cluster and a ntnHC cluster only contained two 

sequences each, and no phylogeny was constructed. 
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4.4.2 16S rRNA Guide Tree Topology 

Few large pan-Clostridia phylogenies exist in the literature (e.g. Collins et al. 1994, 

Gupta and Gao 2009, Yutin and Galperin 2013). The best 16S rRNA gene tree reveals 

hypothetical phylogenetic relationships of all 558 Clostridia genomes and a heat map 

indicates proportional representation of genes in each of the 18 clusters from each 

genome (Figures 4.1 and 4.2). Polyphyletic relationships split P. difficile into two clades 

in separate parts of the 16S rRNA tree (Figure 4.1). Polyphyletic relationships were also 

observed with C. botulinum, which was split into three clades (Figure 4.2). The two C. 

tetani genomes form a monophyletic group, contained in a paraphyletic clade which 

includes all C. botulinum genomes (Figure 4.2). The association of C. tetani and some C. 

botulinum with Clostridium novyi and Clostridium sporogenes as neighbours was 

observed in other 16S rRNA analyses (Sasaki et al. 2001).  

 

C. botulinum is classified into four groups based on physiology (I, II, III, and IV; Smith 

and Williams 1975), of genetically diverse organisms. In the 16S rRNA gene tree, the C. 

botulinum genomes are split into clades I, II and III, which correspond to groups I, II and 

III based on a phylogenetic analysis of 179 orthologous genes (Weigand et al. 2015). 

However, exact phylogenetic relationships within each group differ. Strain types C and D 

are more closely related to C. novyi and Clostridium haemolyticum to form C. novyi 

sensu lato, where they are known to transfer a collection of approximately 61 plasmids 

(Skarin et al. 2014).  

 

P. difficile was spread across three divergent clades: two distinct clades, labelled clade 

“A” and “B”, and a third clade “C” comprising a single genome (Figure 4.1). The relative 

position of Clade A is consistent with other studies (e.g. Pereira et al. 2016), and is 

associated with Peptostreptococcaceae, the family that was the basis for the genusname 

refinement of Clostridium difficile to Peptoclostridium difficile (Yutin and Galperin 

2013). Clade B is composed of 17 genomes associated with Peptococcaceae and is 

unassociated with clade A. Clade C is a single genome that is external to clade B, near 
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the base of the tree, and is associated with Eubacterium. It is unknown to what degree the 

phylogenetic relationships displayed in the 16S rRNA tree represent actual genomic 

relationships, since 16S rRNA is a single gene, and phylogenetic studies that have 

sampled as many P. difficile isolates are non-existant. However, the phylogenetic 

relationships among P. difficile has recently suggested an affiliation, as the genus 

Peptoclostridium, with the family Peptostreptococcaceae, and it is suggested that P. 

difficile may actually comprise as many as four genera (Yutin and Galperin 2013). 
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Figure 4.1 Phylogeny of all 558 Clostridia genomes based on 16S ribosomal RNA, and 

heatmap of gene distributions for each genome across 18 clusters of interst. Heatmap 

colours are proportion of sequences from each genome in the cluster. Enlarged windows 

are the subtrees that contain P. difficile genomes, split into three clades “A”, “B” and 

“C”. 

 

4.4.3 Heatmap and Cluster Distribution Across Phylogeny 

The heatmap provides an overview of the phylogenetic distribution for each of the 18 

clusters across all genomes (Figure 4.1 and 4.2). The proportion of sequences provides an 

indication of which sequences are present or absent in organisms, and whether they tend 

to be exclusive to a limited set of genomes (i.e. a high proportion across a few genomes). 

Correlation between heatmaps and phylogenetic patterns can also inform about the 

evolution of sequences across different lineages. The heatmap of toxins and related 

sequences identifies possible cases of sequence loss and gain, and cases where the 

addition of a toxin protein could cause specific strains to become pathogenic, or if 

virulence may be different between strains due to missing genes or variation in gene 

content. However, sequences may also be missing due to incomplete genome sequencing; 

as such, the distributions observed here are the minimum distribution of sequences. 

 

Toxins A and B are restricted to P. difficile, and as observed by others, not all P. difficile 

genomes have tcdA and tcdB (Munoz et al. 2017), and almost all genomes without tcdA 

and tcdB are also missing toxin regulatory sequences tcdR, tcdC and tcdE, suggesting 

they have either not received (through LGT) or have lost the PaLoc operon (Figure 4.1). 

Further examination of each of tcdA and tcdB in the “toxinAB” cluster is in the section 

4.4.5 “Sequence Cluster Phylogenies”. The toxin secretion/phase lysis holin cluster is 

associated with the PaLoc operon, where its function is to lyse cell walls during infection. 

This cluster was uncommon within P. difficile, present only in the assembled genomes 

from strains F601, P49, P53, DA00197, DA00196, CD3, and P50, with none present in 

the finished genomes. It was more common among C. perfringens, the family 

Lachnospiraceae, and C. botulinum. However, others have determined that toxin 

secretion/phase lysis holin function is also performed by tcdE (Monot et al. 2015). 
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Seventeen P. difficile strains with tcdAB lacked tcdE and holin, suggesting lack of 

virulence, however all are incomplete assemblies. The assembled genome of one P. 

difficile strain, da00196, has tcdE and holin, but lacks all other toxin-related sequences, 

suggesting possible loss of the majority of the PaLoc operon. 

 

Four of the six BoNT toxinotypes were represented in the 38 C. botulinum genomes. The 

BoNT toxins BoNTA/A1, BoNTF, BoNTE, which cause botulism in humans, were 

clustered by ProPhylClust (but not subclustered by PhyloSubClust) into the “BoNTA-

BoNTF-BoNTE-ntnH-Tetx” cluster. The BoNTA-BoNTF-BoNTE-ntnH-Tetx cluster 

represents a functionally heterogeneous cluster and only members of group I and II had 

sequences that were a part of this cluster (Figure 4.2). In addition to BoNT, ntnH and tetX, 

a number of peptidase M27 sequences, progenitor ntnH sequences, BoNToxylisin 

(unknown type of BoNT) sequences and a hypothetical protein are present in the cluster. 

This cluster most likely represents a homologous cluster of sequences, despite different 

annotated protein products. Other studies select sequences a priori genes to group 

together for analysis, and as because of clustering using ProPhylClust and 

PhyloSubClust, this is the first time these sequences have been grouped together as a set 

of homologous sequences. The presence of tetX in this cluster should be expected given 

homology with BoNT A, B and E (Eisel et al. 1986). Non-toxin non-haemagglutinin is a 

known paralog of BoNT (e.g. Bhandari et al. 1997, Mansfield et al. 2015), and peptidase 

M27 is a paralog of ntnH and BoNT (Doxey et al. 2008, Mansfield et al. 2015). In fact, 

the sequence identity between between ntnH sequences and BoNT toxins range from 69% 

and 95% (Singh et al. 2014). All BoNT regulatory sequences botR as well as tetX 

regulatory sequences, tetR, were found in the “botR_tetR_tetR2” cluster, and only one 

strain, “BoNT E Beluga” (draft genome), in group II, did not have a botR regulatory 

sequence. 

 

The other cluster that contained group III BoNT toxins was composed of BoNTC/D from 

two C type genomes: “C str Eklund” (draft genome) and “BKT015925” (complete 

genome), which are the result of recombination of the BoNTC and BoNTD toxinotypes 

(Woudstra et al. 2015). Type C/D ntnH also formed a distinct cluster. There is no clear 
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explanation why two BoNT containing clusters were formed, although unlike the other 

BoNT toxinotypes, BoNTC, BoNTD, BoNTC/D, and BoNTD/C mosaics cause botulism in 

animals and along with their non-toxic and regulatory sequences, are found on a 

prophage-containing plasmid. C. botulinum strain types C and D are also part of C. novyi 

sensu lato species complex. Phylogenetic analysis of multiple toxinotypes of BoNT and 

ntnH revealed that types C/D for BoNT and ntnH each form distinct clades (Mansfield et 

al. 2015).  

 

The HA operon and OrfX operons were both represented in group I (Figure 4.2), with 

some C. botulinum genomes having both operons, as noted by others (Carter and Peck 

2015). Group III genomes had the HA operon, and group II had the ORFX operon, as 

observed by others (e.g. Connan et al. 2013, Raffestin et al. 2004). This does suggest that 

the type of operon associated with BoNT toxin depends on group type. 
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Figure 4.2 Phylogeny of all 558 Clostridia genomes based on 16S ribosomal RNA, and 

heatmap of gene distributions for each genome across 18 clusters of interest. Heatmap 

colours are proportion of sequences from each genome in each cluster. Enlarged window 

is the phylogeny of C. botulinum groups I, II, and III and close relatives. 

 

4.4.4 Annotation of Genomic Islands and Plasmids 

A total of 45,909 sequences from 245 genomes were annotated as belonging to genomic 

islands using IslandViewer, but did not result in any of the BoNT locus, HA operon or 

OrfX operon associated with islands. Likewise, no genomic islands were annotated in 

relation to PaLoc operon or the TetX locus. A total of 137 contigs were annotated as 

originating from plasmids from 67 genomes, which included sequences for BoNT, the HA 

operon and the OrfX operon and the PaLoc operon. Five genomes had annotated 

plasmids in the BoNTA-BoNTF-BoNTE-ntnH-tetX cluster, all were peptidase M27. 

Interestingly, sequences belonging to annotated plasmids were identified in the toxinAB 

cluster, where six of seven sequences on annotated plasmids were tcdB. Those sequences 

belonged to contigs that shared global to local alignments with Clostridium perfringens 

plasmids, which carry toxins that are related to tcdA and tcdB (Freedman et al. 2015). The 

PaLoc operon is not known to be found on plasmids, despite being assumed to be a 

mobile element, so it is not clear whether these sequences are located on plasmids, or 

have high sequence similarity to plasmids, or are the result of assembly error. 

 

4.4.5 Sequence Cluster Phylogenies 

The annotated phylogenies of all 18 clusters revealed many expected phylogenetic 

patterns, where sequences with similar or identical functional annotations formed clades. 

We focus on the two toxin sequence clusters, BoNTA-BoNTF-BoNTE-ntnH-Tetx and 

toxinAB. For the “toxinAB” cluster (Figure 4.3), tcdA and tcdB are known homologs 

(e.g. Bella et al. 2016, Oezguen et al. 2012), but it is unknown if they are orthologs. It 

should therefore be expected that the two toxins cluster with each other; however, there is 

a lack of annotated tcdA in the phylogeny, with the majority of the sequences labelled 

either as “peptidase C80” or tcdB. Clustering with peptidase C80 should also be 
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expected, given tcdA and tcdB are members of the peptidase C80 family (Shen 2012). All 

sequences in the cluster belong to P. difficile, and tcdA sequences and tcdB sequences are 

polyphyletic. Only five tcdA sequences were present. The lack of tcdA may be surprising, 

and could be due to incomplete genome sequencing, but many tcdA-/tcdB+ and 

tcdA+/tcdB+ strains exist (e.g. Elliot et al. 2017), with tcdA+/tcdB- only recently 

discovered (Monot et al. 2015). It should be noted that tcdA- and tcdB+ isolates are 

routinely isolated from infected patients, but tcdA+ and tcdB- are not (Drudy et al. 2015), 

suggesting that they are very rare. One tcdA+/tcdB- genome was present, P. difficile strain 

“NAP07”, a draft assembly, so it is unknown if it is truly tcdB- or is a missing sequence. 

Not all P. difficile genomes contain tcdA and tcdB, and the PaLoc operon can be 

transfered from toxin producing to non-toxigenic strains to confer pathogenicity 

(Brouwer et al. 2013). None of the sequences in the tree were predicted to be associated 

with a genomic island, but six sequences were annotated as belonging to a plasmid.  
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Figure 4.3 Phylogeny of P. difficile toxin A (tcdA) and toxin B (tcdB) along with 

homologs peptidase C80 and a cell wall-binding repeat protein. Genomes with both tcdA 

and tcdB sequences are marked by symbols: P. difficile 630 , P. difficile R20291 , P. 

difficile BI1 , P. difficile CD196 . Interior nodes labeled with a  have a bootstrap 

node support of 65-90%, while a  indicates a support value of 90-100%. The 

chromosome type “unknown” are contigs from draft or genome assemblies that were not 

annotated as a plasmid by Fasta glsearch36. 

 

 

The phylogeny for the BoNTA-BoNTF-BoNTE-ntnH-tetx cluster (Figure 4.4) revealed 

BoNT toxinotypes do not always form clades. Thirteen additional sequences were 

identified as originating from annotated plasmids. Three sequences were labelled 

“bontoxilysin A”, as unknown BoNT toxinotypes. It is known that BoNT is found both on 

chromosomes and on plasmids, and often transferred between different C. botulinum 

strain types (e.g. Skarin and Segerman 2011, Skarin and Segerman 2014, Weigand et al. 

2015). Consequently, the 16S rRNA gene phylogeny and the phylogeny based on BoNT 

do not have identical topologies, and it has been recognized for considerable time that 

BoNT is not useful for delineating phylogenetic relationships of different C. botulinum 

strains (e.g. Colins and East, 1998). Sequences from BoNT form a clade to the exclusion 

of ntnH. Peptidase M27, a homolog of ntnH and BoNT, did not form a distinct clade and 

was often associated with both BoNT and ntnH, suggesting complicated evolutionary 

histories for these sequences. Alternatively, this could be an annotation error, and 

peptidase M27 sequences grouping with BoNT sequences could in fact be BoNT.  
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Figure 4.4 Phylogeny of Botulinum neurotoxin (BoNT) and its homologs, nontoxic-

nonhemaggulutinin (ntnH), peptidase M27 and tetanus toxin (tetX). BoNT toxinotypes for 

both BoNT and ntnH are indicated by symbols. Interior nodes labeled with a  have a 
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bootstrap node support of 65-90%, while a  indicates a support value of 90-100%. The 

chromosome type “unknown” represents contigs from draft or genome assemblies that 

were not annotated by Fasta glsearch36. 

 

4.4.6 Protein Families with Hypothetical Functions 

Few clusters annotated as “hypothetical function” (i.e. where the majority of sequence 

products were “hypothetical function”) were found to have identical taxonomic profiles 

as the 18 clusters of interest. However, as the percentage of shared genomes in the 

taxonomic profiles of clusters decreased, the number of clusters with hypothetical 

functions increased. I focus on clusters in the hierarchy with a Hamming distance of zero 

(i.e. identical profile) to 0.1, related to the toxin protein families for C. botulinum BoNT 

and P. difficile tcdA and tcdB. Four clusters have identical taxonomic profiles to BoNTC, 

which is comprised of two neurotoxin sequences from C. botulinum strains BKT015925 

and C str Eklund (Table 4.1). Each of the four clusters is composed of two sequences, 

one from each genome, belonging to the same C. botulinum C str Eklund contig and C. 

botulinum BKT015925 plasmid from each genome. Sequences from one of the four 

clusters, intNode557_47332, were annotated by Pfam as ParBc (ParB-like nuclease 

domain), a protein involved in chromosome partitioning during division; GIs 168187183 

and 331271072. Further examination of the surrounding sequences revealed PSORTb 

annotated sequences from intNode557_47332 as being localized in the cytoplasm of the 

cell. Other clusters had sequences that were classified as either being localized in the 

cytoplasm or exported out of the cell (extracellular). Examination of the other proteins on 

the contig from C. botulinum C str Eklund revealed viral related sequence function, 

suggesting it is most likely belongs to a plasmid encoding a prophage.  
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Table 4.1 Annotations for four clusters with identical genome profiles as C. botulinum 

BoNTC cluster. Strain C_str_Eklund is a draft genome and BKT015925 is a completely 

sequenced genome. Sequences from strain C_str_Eklund are located on the same contig, 

and for strain BKT015925 on the same chromosome as their respective BoNT. Clusters 

annotated as hypothetical protein based on majority rules. 

Cluster 

ID/Refseq GI 

Strain Product Contig/ 

Chromosome 

Psortb Pfam 

intNode557_47332      
168187183 C_str_Eklund hypothetical 

protein 

unknown Cytoplasmic ParB-like 

nuclease 

domain 

331271072 BKT015925 hypothetical 

protein 

plasmid Cytoplasmic ParB-like 

nuclease 

domain 

intNode557_37369      

168187153 C_str_Eklund hypothetical 

protein 

unknown Extracellular unclassified 

331271041 BKT015925 hypothetical 

protein 

plasmid Extracellular unclassified 

intNode557_55110      

168187122 C_str_Eklund hypothetical 

phage-related 

protein 

unknown Cytoplasmic unclassified 

331271014 BKT015925 hypothetical 

protein 

plasmid Unknown unclassified 

intNode557_47700      

168187118 C_str_Eklund hypothetical 

protein 

unknown Unknown unclassified 

331271010 BKT015925 hypothetical 

protein 

plasmid Extracellular unclassified 

 

 

No clusters with identical taxonomic profiles to P. difficile cluster toxinAB were 

observed. The closest cluster annotated as a “hypothetical protein” had a Hamming 

distance of 0.15, with the addition of Intestinibacter bartlettii DSM 16795, Parvimonas 

sp. oral taxon 110 str. F0139, and Parvimonas micra A293 (table 4.2). All P. difficile 

sequences in the cluster were located on the same chromosome/contig as the toxin 

sequences, and annotated by PSORTb as localized in the cytoplasm. The majority of 

functional annotations are hypothetical proteins (10/20), but others are putative tcdC 

(regulator of tcdA and tcdB synthesis) variants (6/20) or regulators of gene expression 

(4/20), suggesting either a distant homolog of tcdC, or an alternative/accessory regulator 

of toxin expression in P. difficile.  
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Table 4.2 Annotations for a single cluster “intnode557_59767”, with 85% common 

taxonomic profile to the P. difficile toxin A and B sequence cluster. Strains are P. difficile 

unless stated otherwise. An asterisk (*) indicates belonging to an annotated plasmid. No 

annotations were identified with Pfam. 
 

Cluster ID/Refsq 

GI 

Strain Product Contig/ 

Chromosome 

Psortb 

intNode557_59767     

544953098* CD3 putative variant tcdC unknown Cytoplasmic 

544966352 F152 putative variant tcdC unknown Cytoplasmic 

490589310* 70_100_2010 hypothetical protein unknown Cytoplasmic 

489522058 002_P50_2011 hypothetical protein unknown Cytoplasmic 

497581513 DA00305 hypothetical protein unknown Cytoplasmic 

545005943 DA00154 putative variant tcdC unknown Cytoplasmic 

545043482 P13 putative variant tcdC unknown Cytoplasmic 

500187548 CD13 Negative regulator of 

toxin gene expression 

unknown Cytoplasmic 

126698241 630 Negative regulator of 

toxin gene expression 

genome Cytoplasmic 

545018000* DA00216 putative variant tcdC unknown Cytoplasmic 

545019171 DA00244 putative variant tcdC unknown Cytoplasmic 

648209140 ATCC_43255 Negative regulator of 

toxin gene expression 

unknown Cytoplasmic 

260682357 CD196 hypothetical protein genome Cytoplasmic 

384359936 BI1 hypothetical protein genome Cytoplasmic 

497574264 CIP_107932 hypothetical protein unknown Cytoplasmic 

260685956 R20291 hypothetical protein genome Cytoplasmic 

648036008 ATCC_9689_D

SM_1296 

Negative regulator of 

toxin gene expression 

unknown Cytoplasmic 

494497602 Intestinibacter 

bartlettii  

DSM_16795 

hypothetical protein unknown Cytoplasmic 

335047586 Parvimonas sp. 

oral_taxon_110

_str_F0139 

hypothetical protein unknown Unknown 

661253301 Parvimonas 

micra A293 

hypothetical protein unknown Cytoplasmic 

 

 

Relaxing the Hamming distance can dramatically increase the number of clusters that 

may share a functional relationship with a cluster of interest. For toxinAB cluster, 

relaxing the Hamming distance from 0 to 0.1, 0.2 and 0.3 resulted in an increase from 

zero, to one, to 293 to 468 clusters. From the clusters within 0.2 and 0.3 Hamming 

distance, 151/293 and 213/468, respectively, were comprised of proteins with 

hypothetical function.  
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4.5 DISCUSSION 

The use of 558 Clostridia genomes provides a large pool of sequences to explore the 

diversity of homologs, and novel and informative phylogenetic relationships. The 16S 

rRNA phylogeny revealed a topology where P. difficile and C. botulinum each formed 

polyphyletic relationships. Clustering produced known sequence clusters, and cluster 

distributions across the phylogeny were consistent with what is generally known about C. 

botulinum, C. tetani and P. difficile toxin sequence distributions. Further analysis of the 

two clusters containing toxins tcdA/tcdB and BoNT/tetX revealed unique phylogenetic 

relationships between homologous sequences that may be ancestral sequences, 

convergent evolution, or misannotations. The lack of clustering of some BoNTC/D 

sequences with other C. botulinum sequences could reflect a distinctive cluster or could 

be due to the influence of the topology of the guide tree during clustering with 

ProPhylClust. The increase in the number of available sequenced genomes has placed an 

emphasis on the need to develop bioinformatics tools to annotate sequences of 

hypothetical or unknown function (e.g. Torrieri et al. 2012), and the phylogenetic 

profiling method developed here has identified candidate proteins of hypothetical 

function related to toxins. 

 

The taxonomy and evolutionary relationships of Clostridia are still in a state of 

development (Gupta and Gao 2009, Lawson et al. 1993, Yutin and Galperin 2013). The 

16S rRNA phylogeny is based on one gene and may not reflect the actual relationships 

between all genomes present; however, no comparable 16S rRNA Clostrida phylogenies 

with such a wide sampling of 16S rRNA sequences exist in the literature to draw 

comparisons. Although monophyletic groups were not formed for each of all C. 

botulinum and P difficile genomes, distinct clades were formed, which often showed 

similar topology as others who have used 16S rRNA for phylogenetic reconstructions 

(e.g. Kurka et al 2014, Weigand et al. 2015). 

 

Although not common in phylogenetic analyses, inclusion of peptidases in BoNTA-

BoNTF-BoNTE-ntnH-tetX and toxinAB clusters is a reflection of the autoproteolytic 
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activity of each of the BoNT, tetX tcdA, and tcdB toxins (Lebeda et al. 2010, Shen 2010). 

The phylogeny of the cluster for tcdA and tcdB included numerous peptidase C80 

sequences with very short branch lengths to tcdA and tcdB sequences. This suggests 

possible ancestral relationships with tcdA and tcdB descending from peptidase C80, but 

may also represent a misannotation of sequence products. The phylogeny of cluster 

BoNTA-BoNTF-BoNTE-ntnH-tetX has extremely short branch lengths between 

peptidase M27 with BoNT and ntnH. This suggests several possibilities such as ancestral 

relationships and sequence convergence, but may also be due to misannotation of 

sequence product. 

 

Recombination has led to chimeric sequences of group I and II ntnH (East et al. 1996), 

which could be problematic for phylogenetic reconstruction. For the BoNTA-BoNTF-

BoNTE-ntnH-tetX cluster, it does not appear to affect BoNT, as they are members of a 

single clade (Figure 4.4). However, the exact relationships of ntnH sequences could be 

affected if recombination is frequent.  

 

Group III toxinotypes of BoNT and its toxin-related sequences did not cluster with group 

I and II sequences. Members of C. botulinum group III are phylogenetically and 

physiologically distinct from other C. botulinum, and their inclusion with C. botulinum is 

questionable given group III’s association with C. novyi sensu lato (Skarin et al. 2011). 

Clostridium botulinum group III are only known to cause animal (avian and bovine) 

botulism. They are known to require bacteriophage for pathogenicity (Ecklund et al. 

1971, 1972), and are suspected to have a slower rate of genomic change than other C. 

botulinum (Woudstra et al. 2015). Lateral gene transfer is common in group III C. 

botulinum via plasmids and phages with high-copy mobile elements (Skarin et al. 2011). 

Due to high divergence of group III C. botulinum with other subtypes, it could be 

expected that ProPhylClust does not cluster the BoNTC or ntnHC clusters with other 

BoNT or ntnH sequences. Alternatively, the lack of clustering could be due to an artefact 

of ProPhylClust where topological constraints and lack of homologs prevented clustering 

at internal nodes. The BoNTA-BoNTF-BoNTE-ntnH-tetX is a large and diverse sequence 

cluster, and the consensus sequence created by ProPhylClust may have been too 
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divergent from the consensus sequences for the BoNTC and ntnHC clusters during the 

BLAST filtering steps for HMM profile-HMM profile searches at the internal nodes 

between groups I and II with group III. The lack of clustering of BoNTC with ntnH type 

C is also unexplained. Only two studies have focused on the distant evolutionary 

relationships of BoNT toxins and related toxin complex sequences and peptidase M27 is 

considered a homolog (Doxey 2008, Mansfield 2015). However, peptidase M27 was not 

present in C. botulinum group III genomes. Their presence in group I and II may have 

added additional sequence variation to the consensus sequences and HMMs to join the 

ntnH and BoNT clusters, but at the internal node with group I, II, and III, sequences may 

have diverged to the point where e-values did not meet the required threshold for 

clustering.  

 

Only 18 of the available 68,749 clusters were used in this analysis, leaving a large 

proportion of the data set that could be used for the analyses of other sequences. It has 

been recognized that the addition of sequence data increases the accuracy of functional 

predictions from phylogenetic profiles, but at the cost of computational time (Škunca and 

Dessimoz 2015). Although there are sampling strategies for reducing the number of 

genomes needed for phylogenetic profiling (e.g. Simonsen et al. 2012), one of the main 

objectives was to examine evolutionary relationships of toxin sequences, and taxonomic 

sampling of closely related genomes is necessary. 

 

As the number of sequenced genomes continues to increase, proteins with hypothetical 

function continue to accumulate. It is therefore important to develop additional 

techniques to prioritize proteins with unknown function for bacteria pertinent to human 

health, such as pathogenic bacteria (e.g. Alam and Dwiveldi 2016, Mishra et al. 2013). 

Inclusion of additional sequence data set generally improves predictions made by 

phylogentic profiles (Škuna and Dessimoz 2015). However, our inclusion of incomplete 

genomes could falsely exclude membership of a genome in a cluster. Our use of cluster 

membership instead of sequence homology introduces the potential for error into our 

phylogenetic profiles. For example, if cluster membership varies dramatically due to 

multiple homologs of different function and includes genes obtained through LGT, the 
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taxonomic membership of the profiles would reflect this. This could be the reason no 

clusters with identical taxonomic composition were found for the BoNTA-BoNTF-

BoNTE-ntnH-tetX cluster.  

 

Although phylogenetic profiling can inform about function and phenotype, it should be 

combined with additional evidence such as laboratory confirmation to confidently 

establish protein function (Kensche et al. 2008). It may also be possible to use other 

genome-context approaches to establish function of hypothetical proteins. Gene 

neighbourhoods use information from the conserved order of neighbouring sequences on 

a chromosome to provide a functional context for sequences (Korbel et al. 2004). For 

example, “integration host factor” was found upstream (~6000 nucleotides) of both 

sequences in cluster intNode557_47332 (Table 4.1), while “N-acetylmuramoyl-L-alanine 

amidase”, involved in peptidoglycan biosynthesis and cellular lysis, was found adjacent 

to sequences in cluster intNode557_37369 (Table 4.1). STRING (Jensen et al. 2009) is an 

example of a database and web tool that uses gene neighbourhoods that could potentially 

be informative for annotation of hypothetical sequences. PSORTb did not annotate any 

membrane-related proteins, suggesting no transporters are among the hypothetical 

proteins. Sequences annotated as being extracellular suggests they are excreted out of the 

cell and although no protein function for these sequences was annotated by Pfam (table 

4.1), protein secretion is involved in quorum sensing (Rutherford et al. 2012) and 

virulence (Lee et al. 2001). In C. perfringes quorum sensing is even known to regulate 

virulence genes (Ohtani et al. 2009).   

 

Future work with phylogenetic profiles would expand upon the use of presence 

information of genomes to include distance measures that account for the number of 

representative sequences from each genome in a cluster. Accounting for absence 

information could be more informative, but caution would have to be exercised due to 

missing sequences from incomplete genomes. However, such large-scale analyses do 

appear to hold promise, especially given runtimes can be managed for such large 

genomic data sets, and hypothetical proteins that are potentially relevant to sequences of 

interest can be identified. 
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4.6 CONCLUSION 

Clustering placed additional homologs (peptidases) in toxin clusters of P. difficile and C. 

botulinum, and C. tetani that were not typically included in other analyses and 

phylogenies revealed extremely short branch lengths with toxins, demonstrating shared 

ancestry and/or probable misannotations. Hierarchical clustering of phylogenetic profiles 

based on genome and cluster membership was applied to identify hypothetical sequence 

clusters that are close to botulinum and tetanus toxin, and P. difficile toxin A and B 

clusters in the hierarchy. Although limited information regarding the function of these 

proteins are obtained through annotation, they are proteins that is potentially linked to 

toxin function. 
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CHAPTER 5 DISCUSSION 

 

Metagenomic sequencing has provided a wealth of genomic data from many 

environments, and the fragmentary nature of metagenomes creates a significant need for 

computational approaches to support further biological interpretation. How much 

information can be confidently extracted from a metagenome? The analysis of EBPR 

metagenomes in Chapter 2 emphasized the importance of sequence and taxonomic 

representation in clusters for the phylogenetic analysis of LGT. The NCBI protein 

clusters database (Klimke et al. 2009) was a candidate source of protein clusters, but the 

strict definition of orthologous clusters used to build this database often yielded sets with 

limited taxonomic breadth. The development of ProPhylClust and PhyloSubClust in 

Chapter 3 was motivated by need to build broader clusters that still adhered to the 

evolutionary definitions of orthology. The diversity of approaches that have been 

developed to infer clusters of related proteins reflects the diversity of areas of application. 

ProPhylClust was intended to create clusters of homologous sequences, and to cluster as 

many sequences as possible. PhyloSubClust was intended to extract subclusters that 

contain orthologs from clusters of homologous sequences. Both approaches compared 

favourably with other clustering methods, and when applied to a large set of Clostridia 

genomes in Chapter 4, they produced clusters of toxins and toxin related sequences from 

C. botulinum and C. tetani, and P. difficile with homologs that others have typically 

excluded from phylogenetic analysis. The motivation of applying a hierarchical 

clustering analysis to phylogenetic profiles was the fact that 30-40% of genes in a 

genome are assigned an unknown function, and finding potential functionally related 

genes to Clostridia toxins is a way to expand our understanding of them. 

 

 

5.1 METAGENOMIC SEQUENCING 

In silico reconstruction of a microbial community is arguably one of the main goals of 

metagenomic sequencing efforts. However, metagenomes are often incomplete due to 
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sequencing error, assembly errors, and biases in sequencing technology (e.g. Luo et al. 

2012, Sangwan et al. 2016, Tessler et al. 2017, Vollmers et al. 2017) and downstream 

bioinformatic analyses must account for this (e.g. Hoff 2009). To account for errors 

introduced from community shotgun sequencing, we restricted our analysis to assembled 

sequences > 1000 nucleotides in length, which is longer than the average bacterial gene 

(Koonin and Wolf 2008), and classified our sequences to the class level only (with the 

exception of Candidatus Accumulibacter phosphatis). This restriction of taxonomic 

precision does affect our ability to identify LGT at lower taxonomic levels, which can be 

important for those who are interested in lower-level interactions of CAP communities. 

The emergence of techniques to reconstruct draft genomes from metagenome sequences 

(e.g. Kang et al. 2015, Nielsen et al. 2014, Parks et al. 2017) offers new opportunities to 

test our approaches on longer sequences that will contain more phylogenetic signal and 

improved taxonomic representation. 

 

 

5.2 CLUSTERING OF HOMOLOGOUS AND ORTHOLOGOUS SEQUENCES 

ProPhylClust and PhyloSubClust are new algorithms developed to improve the scaling of 

cluster construction from increasingly large genome sets. A crucial advantage of 

ProPhylClust is its runtimes that scale favorably compared to all-versus-all methods, as 

demonstrated on the Proteobacteria and PanPhyla data sets tested in Chapter 3 (see 

Figure 3.3). Although BLAST served as the basis for ProPhylClust testing, faster 

methods such as RAPSearch2 (Zhao et al. 2012) and DIAMOND (Buchfink et al. 2015) 

can be tested to see if the expected speedups do not come at the expense of clustering 

accuracy. ProPhylClust’s use of HMM profiles enables the clustering of remote 

homologs with higher sensitivity than homology-search approaches such as BLASTP, 

and may also be the reason for the high proportion of sequences clustered (Figure 3.4), 

and clusters that were less long tailed, exemplified by a larger q3 and smaller maximum 

cluster size (Table 3.1). Increased cluster size and more sequences clustered would 

suggest that clusters contain more potential homologs, which is important for analyses 

that intend to examine the evolutionary relationships of homologous sequences. In the 
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absence of a ground-truth set of orthologs, ProPhylClust and PhyloSubClust are arguably 

preferable given their direct use of phylogeny for the inference of orthologous clusters of 

sequences. 

 

The refinement of large clusters into putatively orthologous sets is an important goal of 

methods such as RBH, inParanoid, Hieranoid, or Branchclust. Our novel PhyloSubClust 

algorithm makes explicit use of phylogenetic trees and taxonomic distributions of genes 

and proteins to define orthologous relationships. Like ProPhylClust, PhyloSubClust is 

written in Python is intended for ease of installation. This is in contrast to OrthoMCL 

which has not been recently updated and requires a properly configured installation of 

MySQL or Oracle, and Hieranoid, which required custom software packages that were 

not readily available. Compared to OrthoMCL, PhyloSubClust had considerably shorter 

runtimes (Figure 3.3), which is mainly due to OrthoMCL’s dependence on an SQL 

database. The MCL algorithm has short runtimes, however it loads the complete graph of 

homologous relationships into RAM, and with larger homologous sets, the size of the 

graph can easily use all available RAM. 

 

A common motivation for constructing homologous and orthologous protein clusters is to 

label these proteins with functional categories defined by resources such as COG, 

eggNOG (Jensen et al. 2007), and KEGG orthology (Kanehisa et al. 2016). Virulence 

factors, explored in Chapter 4, are genes that encode proteins which allow organisms to 

invade hosts, evade destruction by the host immune system, suppress the host immune 

system, obtain nutrients from a host and colonize a host (e.g. Cross 2008). The origin of 

toxins may lie in non-toxinogenic sequences, which highlights the limitations of 

assigning uniform labels to protein clusters without deeper investigation. The 

tetanus/botulinum toxin cluster recovered by ProPhylClust and PhyloSubClust contains 

proteins labelled as virulence-related toxins as well as non-toxic sequences such as ntnh 

and peptidase M27 that are unlikely to be toxins, and are possibly missanotated 

sequences. In fact, a flagellin protein found upstream of BoNT strain A sequences is 

considered to be an ancestral, non-toxigenic variant (Doxey et al. 2008) of BoNT. This 

example highlights the disconnect between orthology, which is defined in evolutionary 
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terms, and function (e.g. Dalquen et al. 2013, Trachana 2011), which can change 

substantially with even a small number of amino-acid changes (Ng and Henikoff 2006, 

Studer et al. 2013). 

 

Relative to alternative methods, such as all-versus-all homology searches, ProPhylClust’s 

use of a phylogeny as a guide provides two advantages to the clustering of homologous 

sequences. First, this progressive approach reduces the number of times homology 

searches are performed for n genomes from n2 to n - 1. This results in much more 

favourable runtimes with very large genome sets. The second advantage is that the 

phylogeny provides a biologically meaningful ordering to the clustering process. A 

phylogeny is a hypothesis of the lines of descent from a common ancestor to a set of 

extant organisms. The hierarchical clustering that ProPhylClust performs is a method that 

defines the sequence clusters of the most closely related homologs in sister lineages first, 

and then continues to add homologs or create new sequence clusters from more distant 

relatives the tree is traversed to the root of the tree. If HMM profile searches are 

implemented and HMM profiles are calculated, the model generated should be a more 

refined representation of the homologous sequence cluster as sequences are added to the 

alignment while the tree is traversed. Graph-based methods, in contrast, do not use any 

hierarchy to guide the ordering of clustering and produce “flat” homologous clusters.  

 

The evolution of bacterial sequences is often non-tree-like and the sequence content of 

genomes can vary for multiple reasons, such as deletion or LGT (Bapteste et al. 2009). 

Not all sequences will have a phylogeny with a similar topology to the phylogeny used as 

a guide tree. Hieranoid, which also uses a guide tree for clustering, does not attempt to 

cluster singleton sequences at internal nodes, and relies on initially constructed clusters 

between sister leaves in the tree, which makes it unsuitable where genome-sequence 

evolution is not tree-like or does not share the topology of the guide tree. Singleton 

versus singleton homology searches, sequence to HMM profile/consensus sequence, and 

HMM profile/consensus sequence to HMM profile/consensus sequence searches at 

internal nodes in ProPhylClust were developed to ensure the topological limitations of a 

guide tree to represent the evolutionary relationships of all genome sequence content is 
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not restrictive during clustering. They also allow for homologous sequences to be 

clustered with draft genomes and if the phylogeny is poorly resolved.  

 

The definition of orthology is phylogenetic, and PhyloSubClust relies on constructed 

phylogenies to define orthologous relationships in homologous sequence clusters. Unlike 

methods that rely on partitioning a graph, agreement between the topology of the 

cluster’s phylogeny and the topology of the species phylogeny can be used to define 

orthology. However, complete agreement between the topology of the species phylogeny 

and the cluster phylogeny is complicated by poorly resolved species and cluster 

phylogenies, and variable sequence membership of the clusters due to the effect of LGT 

and gene deletion and insertion. PhyloSubClust’s criteria for subclustering is not part of 

the orthology definition, since it initiates clustering at the shortest branch length between 

and then relies on taxonomic membership of subtrees, instead of referencing the topology 

of a species tree. Although not orthology, PhyloSubClust’s use of phylogeny for 

subclustering is a more faithful representation of orthologous relationships than graph-

based methods. Relying on taxonomic representation as a criterion in subclustering has 

the advantage that clusters are not overly partitioned. In addition, the homologous 

sequence clusters from ProPhylClust represent a more desirable input set of homologs for 

subclustering since they are hierarchically clustered using phylogeny as a guide. Clusters 

defined by PhyloSubClust to obtain orthologs should therefore be preferable compared to 

graph-based subclustering methods that do not rely on phylogeny, such as RBH and 

OrthoMCL. 

 

The lack of a ground truth set of orthologous sequences precludes validation of clusters 

from PhyloSubClust. It should be expected that the clusters include inparalogs since 

PhyloSubClust does not attempt to remove them, and inparalogs can be considered 

orthologs, because they are duplicated after the speciation event (Remm et al. 2001). The 

toxinAB (figure 4.4) cluster and BoNTA-BoNTF-BoNTE-ntnH-tetX (figure 4.5) cluster 

from chapter four provide insights into the clusters produced by ProPhylClust. It is 

unknown whether BoNT, TetX, tcdB and tcdA are each considered to be orthologous 

sequence clusters, or are considered to be orthologs when associated with other 
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homologs, as seen in the BoNTA-BoNTF-BoNTE-ntnH-tetX and toxinAB clusters with 

peptidases. BoNTA-BoNTF-BoNTE-ntnH-tetX and toxinAB were not subclustered. This 

could be due to missing sequences since the majority of genomes in the Clostridia 

genome set are draft genomes. However, based on the topology of the phylogenies of the 

two clusters, each could be further subdivided into two subclusters, as long branches 

separate the subclusters from the other subclusters in each. For the BoNTA-BoNTF-

BoNTE-ntnH-tetX cluster, one potential subcluster contains ntnh and the other contains 

BoNT/TetX. The peptidase M27s equences associated with each are most likely 

missannotated sequences. For the toxinAB cluster the two potential subclusters each have 

peptidase C80 sequences that are most likely missanotated as either tcdA or tcdB. From 

these two example clusters, it is clear that ProPhylClust does create clusters of homologs, 

but PhyloSubClust does not always extract subtrees that could be clusters based on visual 

inspection of subtrees and branch lengths. Future versions of PhyloSubClust should 

include relative branch lengths of subtrees as a criterion for clustering. 

 

Examining 18 toxin related sequence, clusters labelled as p47 and ORFX3, based on the 

majority of product identifications, are BoNT associated sequences that are the only two 

subclusters from the same parent cluster. It is known they are homologous sequences, and 

ORFX3 shares higher sequence similarity with p47 than homologs ORFX1 and ORFX2 

(Chen et al. 2007). No phylogenetic reconstruction has been performed on these clusters, 

so it is unknown what the relative branch lengths were for each subtree. However, the 

P47 and ORFX3 subclusters reveal that PhyloSubClust does successfully extract 

meaningful, potentially orthologous subclusters from clusters of homologs based on the 

relative consistency of product identifications in each subcluster. However, labeling of 

subclusters as orthologs in this approach relies on the product label applied to an 

extracted subcluster, and visual inspection of phylogenies constructed from subclusters 

before and after extraction. Relying on the consistency of annotations in a sequence 

cluster, such as the product name, as a way to determine if a cluster is potentially an 

orthologous group is not suitable, especially given databases of annotations are error 

prone (e.g. Jones et al. 2007, Schnoes et al. 2009. Ideally, orthology detection through 

comparison of subtree and species tree topology could be used as a potentially less biased 
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means to determine if the cluster from a subtree is composed of orthologs in the absence 

of LGT. 

 

 

5.3 CLOSTRIDIA TOXINS, HIERARCHICAL CLUSTERING AND PHYLOGENETIC 

PROFILING 

The distribution of the 18 toxin-related clusters across the 16S rRNA phylogeny of 558 

Clostridia genomes analysed in Chapter four is similar to known toxin sequence 

distributions for C. botulinum, C. tetani and P. difficile genomes. However, given the 

high proportion of draft genomes and assemblies in the data set (427 draft genomes or 

assemblies), there are likely to be cases where specific genes of interest from an organism 

are not present in the draft assemblies. Nonetheless, distribution and in particular 

phylogenetic information found in the ortholgous clusters is informative. The 

phylogenies of the BoNTA-BoNTF-BoNTE-ntnH-tetX and tcdAB sequence clusters 

revealed annotated peptidase sequences associated with toxin sequences, often with 

extremely short branch lengths (Figures 4.3 and 4.4). Given the errors that can arise from 

genome annotation methods, including genome context methods, (e.g. Kyrpides and 

Ouzounis 1999, Promponas et al. 2015), it is possible that some of the peptidase 

sequences may in fact represent misannotated sequences.   

 

Future work with the phylogenetic profiling approach can encompass expanded datasets, 

different approaches to encoding gene presence / absence (e.g., counts vs 

presence/absence), or applying statistical methods beyond simple binary Hamming 

distance to identify correlations between profiles. The addition of genomes within a clade 

increases the predictive accuracy of phylogenetic profiling (Škunca and Dessimoz 2015), 

but it is unknown whether the addition of more genomes within a clade that experiences 

considerable LGT events increases accuracy. If plasmids with toxins are regularly 

transferred and lost, no consistent pattern may be present for phylogenetic profiling. 

However, careful selection of genomes or exhaustive sequencing of genomes could 

reveal overall patterns for phylogenetic profiling. 
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Sequencing technology and assembly algorithms continue to improve the completion and 

quality of sequenced genomes, and studies of thousands of isolates of single bacterial 

species (e.g. Merker et al. 2015) will become more common. The bioinformatic methods 

developed in this thesis are a contribution towards the goal of providing biologically 

relevant meaning to the efficient analyses of bacterial genomes and their communities. 
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Appendix 1 Count of RITA reference genomes 
by taxonomic class. 

 

Taxonomic Class Count 

Gammaproteobacteria 630 

Alphaproteobacteria 432 

Bacilli 392 

Actinobacteria 247 

Betaproteobacteria 238 

Clostridia 142 

Spirochaetia 133 

Cyanobacteria (class) 106 

Halobacteria 64 

Deltaproteobacteria 60 

Epsilonproteobacteria 57 

Mollicutes 46 

Thermoprotei 41 

Flavobacteriia 36 

Deinococci 32 

Bacteroidia 30 

Chlamydiia 30 

Methanococci 23 

Cytophagia 21 

Methanomicrobia 20 

Negativicutes 15 

Thermococci 14 

Thermotogae 14 

Bacteroidetes (class) 13 

Aquificae 12 

Chlorobia 12 

Sphingobacteriia 11 

Fusobacteriia 10 

Acidobacteriia 9 

Methanobacteria 9 

Chloroflexi 8 

Planctomycetia 7 

Deferribacteres 6 
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Taxonomic Class Count 

Dehalococcoidetes 6 

Archaeoglobi 5 

Elusimicrobia (class) 4 

Synergistia 4 

Thermomicrobia 4 

Acidobacteria (class) 3 

Archaea (class) 3 

Bacteria (class) 3 

Thermoplasmata 3 

Dictyoglomia 2 

Euryarchaeota (class) 2 

Nitrospira 2 

Opitutae 2 

Phycisphaerae 2 

Thaumarchaeota 

(class) 

2 

Thermodesulfobacteria 2 

Viruses (class) 2 

Anaerolineae 1 

Caldilineae 1 

Chrysiogenetes 1 

Elusimicrobia 1 

Erysipelotrichi 1 

Fibrobacteria 1 

Gemmatimonadetes 1 

Gloeobacteria 1 

Korarchaeota (class) 1 

Methanopyri 1 

Nanoarchaeota (class) 1 

Proteobacteria (class) 1 

Solibacteres 1 

Verrucomicrobia 

(class) 

1 

Verrucomicrobiae 1 

Total 2986 
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Appendix 2 List of enzymes for each KEGG 
pathway and their names. 

 

Excel file of all enzymes for each metabolic pathway. See attached file “Appendix2.xlsx” 
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Appendix 3 Classes and counts of contigs 
classified at the class level greater than 1000 
nucleotides long for each community. 

 

Classes shared between each community are also listed. Not all classes could be 

classified to the class level, and are identified by the taxonomic group they are classified 

to, followed by ‘(class)’. 

 

 

Taxonomic Class USA AU DK 

Acidobacteria (class) 10 28 147 

Acidobacteriia 24 48 337 

Actinobacteria 95 168 523 

Alphaproteobacteria 529 607 537 

Anaerolineae 7 588 

Aquificae 1 6 19 

Archaea (class)  1 

Archaeoglobi  6 

Bacilli 22 71 734 

Bacteria (class) 8 16 

Bacteroidetes (class) 34 36 86 

Bacteroidia 24 97 408 

Betaproteobacteria 3989 2309 3073 

Caldilineae 2 18 73 

Chlamydiia 4 11 110 

Chlorobia 19 131 194 

Chloroflexi 3 172 233 

Chrysiogenetes  3 

Clostridia 39 246 925 

Cyanobacteria (class) 19 69 302 

Cytophagia 222 205 1343 

Deferribacteres 2 12 32 

Dehalococcoidetes  11 

Deinococci 2 31 37 

Deltaproteobacteria 61 160 812 

Dictyoglomia 2 4 

Elusimicrobia 1 5 
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Taxonomic Class USA AU DK 

Elusimicrobia (class) 5  

Epsilonproteobacteria 6 25 99 

Erysipelotrichi  1 

Euryarchaeota (class) 1 6 

Fibrobacteria 2 35 

Flavobacteriia 464 464 1668 

Fusobacteriia 54 107 

Gammaproteobacteria 1121 1669 1317 

Gemmatimonadetes 2 6 26 

Gloeobacteria 6 12 

Halobacteria 1 1 11 

Korarchaeota (class) 1 

Methanobacteria 1 11 50 

Methanococci 1 7 15 

Methanomicrobia 3 46 210 

Methanopyri  2 

Mollicutes 2 16 

Negativicutes  8 

Nitrospira 12 28 69 

Opitutae 21 67 143 

Phycisphaerae  1 

Planctomycetia 16 83 132 

Proteobacteria (class) 3 3 7 

Solibacteres 11 15 46 

Sphingobacteriia 837 258 3192 

Spirochaetia 3 43 81 

Synergistia 1 3 

Thaumarchaeota 

(class) 

1 1 14 

Thermococci 2 19 

Thermodesulfobacteria 1  5 

Thermomicrobia 3 4 34 

Thermoplasmata 1 5 

Thermoprotei  18 

Thermotogae 1 41 91 

Verrucomicrobia (class) 3 1 

Verrucomicrobiae 38 1 

Viruses (class) 1 2 19 
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Appendix 4 Count of contigs classified under 
each RITA classification method.  

 

Group 1 is when homology and nucleotide composition both agree. Group 2 is where the 

USEARCH expectation value for the best-matching genome was at least 10 orders of 

magnitude smaller than the best-matching genome from a different class. Group 3 

assignments are made when the NB likelihood score for the best-matching genome is at 

least 1.5 times greater than the NB likelihood for the best-matching genome from another 

class. Group 4 assignments are based only on the best NB likelihood value. See attached 

file “Appendix4.xlsx” 
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Appendix 5 Potential LGTs from taxonomic 
discordance analysis. 

 

Taxonomic discordance analysis (Naïve Bayes filtered and unfiltered) predicted proteins 

identified as transferred for each pathway, their EC annotation, class-level taxonomic 

classification of source (ORF) and recipient (contig). See attached file “Appendix5.xlsx” 
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Appendix 6 Direction and number of transfers in 
classification discordance analysis. 

 

 

Source to Recipient 
DK USA AU 

Acidobacteria (class)    

Clostridia   1 

Acidobacteriia    

Deltaproteobacteria 1   

Actinobacteria    

Betaproteobacteria 1  1 

Clostridia   1 

Gammaproteobacteria   1 

Sphingobacteriia 1   

Alphaproteobacteria    

Betaproteobacteria 1 3 2 

Epsilonproteobacteria   1 

Gammaproteobacteria  1 7 

Anaerolineae    

Alphaproteobacteria 2   

Betaproteobacteria 1   

Bacilli    

Chlorobia 1   

Gammaproteobacteria   2 

Flavobacteriia 1   

Proteobacteria (class) 1   

Thermotogae   1 

Bacteroidetes (class)    

Bacilli   1 

Chlorobia   1 

Methanomicrobia 1  1 

Bacteroidia    

Betaproteobacteria 2   
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Source to Recipient 
DK USA AU 

Cytophagia 1   

Betaproteobacteria    

Anaerolineae 1   

Alphaproteobacteria  1 2 

Chlorobia   1 

Cyanobacteria (class)   1 

Gammaproteobacteria 1  21 

Caldilineae    

Betaproteobacteria 2   

Clostridia 1   

Chlamydiia    

Bacilli 1   

Chlorobia    

Clostridia   4 

Deltaproteobacteria   1 

Flavobacteriia   3 

Gammaproteobacteria   2 

Sphingobacteriia   1 

Chloroflexi    

Betaproteobacteria  3 1 

Methanomicrobia   1 

Clostridia    

Anaerolineae   1 

Betaproteobacteria   2 

Chlorobia   1 

Deltaproteobacteria   1 

Flavobacteriia 1   

Gammaproteobacteria   1 

Sphingobacteriia 1 1  

Cyanobacteria (class)    

Flavobacteriia   1 

Cytophagia    

Bacilli 1   
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Source to Recipient 
DK USA AU 

Bacteroidetes (class)   1 

Bacteroidia 1  1 

Flavobacteriia   2 

Sphingobacteriia 1 1  

Deinococci    

Methanomicrobia 1   

Deltaproteobacteria    

Alphaproteobacteria 1   

Anaerolineae 1   

Betaproteobacteria  1  

Gammaproteobacteria   2 

Flavobacteriia    

Cytophagia 1  1 

Gammaproteobacteria    

Sphingobacteriia 3   

Fusobacteriia    

Chlorobia   1 

Epsilonproteobacteria    

Alphaproteobacteria  1  

Betaproteobacteria  1 1 

Gammaproteobacteria    

Alphaproteobacteria  1 4 

Betaproteobacteria  3 6 

Chloroflexi 1   

Cyanobacteria (class) 1   

Methanomicrobia    

Chloroflexi 1   

Opitutae    

Gammaproteobacteria   1 

Planctomycetia    

Gammaproteobacteria   2 

Sphingobacteriia    

Acidobacteriia 1   
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Source to Recipient 
DK USA AU 

Alphaproteobacteria 1   

Bacilli 1   

Bacteroidia 1   

Betaproteobacteria   1 

Chlorobia 1  1 

Cytophagia 5 1  

Flavobacteriia 1 1  

Gammaproteobacteria 1 1  

Spirochaetia    

Deltaproteobacteria   1 

Verrucomicrobia (class)    

Betaproteobacteria   1 
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Appendix 7 KEGG citrate cycle pathway and 
directed LGT for the Denmark (DK), Australian 
(AU) and United States (USA) EBPR 
communities.  

 

Dashed boxes indicate LGT, with solid symbols indicating LGT predicted within a 

community, and hollow symbols indicating missing enzymes in a community. Greyed out 

enzymes are not found in any community. See Table 2.1 for enzyme names and 

Appendix 18 for taxonomic abbreviation guide. 
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Appendix 8 KEGG propanoate metabolism 
pathway and directed LGT for the Denmark (DK), 
Australian (AU) and United States (USA) EBPR 
communities. 

 

Dashed boxes indicate LGT, with solid symbols indicating LGT predicted within a 

community, and hollow symbols indicating missing enzymes in a community. Greyed out 

enzymes are not found in any community. See Table 2.1 for enzyme names and 

Appendix 18 for taxonomic abbreviation guide. 

 

 

 
 

 

 

  



 

 158 

Appendix 9 KEGG pentose phosphate pathway 
and directed LGT for the Denmark (DK), 
Australian (AU) and United States (USA) EBPR 
communities. 

 

Dashed boxes indicate LGT, with solid symbols indicating LGT predicted within a 

community, and hollow symbols indicating missing enzymes in a community. Greyed out 

enzymes are not found in any community. See Table 2.1 for enzyme names and 

Appendix 18 for taxonomic abbreviation guide. 
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Appendix 10 KEGG nitrogen metabolism pathway 
and directed LGT for the Denmark (DK), 
Australian (AU) and United States (USA) EBPR 
communities 

 

Dashed boxes indicate LGT, with solid symbols indicating LGT predicted within a 

community, and hollow symbols indicating missing enzymes in a community. Greyed out 

enzymes are not found in any community. See Table 2.1 for enzyme names and 

Appendix 18 for taxonomic abbreviation guide. 
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Appendix 11 KEGG partial nitrogen metabolism 
pathway and directed LGT for the Denmark (DK), 
Australian (AU) and United States (USA) EBPR 
communities in the inner membranes of 
Nitromonas europaea, archaea and bacteria. 

 

Dashed boxes indicate LGT, with solid symbols indicating LGT predicted within a 

community, and hollow symbols indicating missing enzymes in a community. Greyed out 

enzymes are not found in any community. See Table 2.1 for enzyme names and 

Appendix 18 for taxonomic abbreviation guide. 
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Appendix 12 KEGG partial nitrogen metabolism 
pathway and directed LGT for the Denmark (DK), 
Australian (AU) and United States (USA) EBPR 
communities in Rhodospirillum rubum. 

 

Dashed boxes indicate LGT, with solid symbols indicating LGT predicted within a 

community, and hollow symbols indicating missing enzymes in a community. Greyed out 

enzymes are not found in any community. See Table 2.1 for enzyme names and 

Appendix 18 for taxonomic abbreviation guide. 
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Appendix 13 KEGG partial nitrogen metabolism 
pathway and directed LGT for the Denmark (DK), 
Australian (AU) and United States (USA) EBPR 
communities in Kuenenia stuttgartiensis, 
Candidatus Methylomairabilis oxyfera, Klebsiella 
oxytoca and Synechococcus PCC7942. 

 

Dashed boxes indicate LGT, with solid symbols indicating LGT predicted within a 

community, and hollow symbols indicating missing enzymes in a community. Greyed out 

enzymes are not found in any community. See Table 2.1 for enzyme names and 

Appendix 18 for taxonomic abbreviation guide. 
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Appendix 14 KEGG partial nitrogen metabolism 
pathway and directed LGT for the Denmark (DK), 
Australian (AU) and United States (USA) EBPR 
communities. 

 

Dashed boxes indicate LGT, with solid symbols indicating LGT predicted within a 

community, and hollow symbols indicating missing enzymes in a community. Greyed out 

enzymes are not found in any community. See Table 2.1 for enzyme names and 

Appendix 18 for taxonomic abbreviation guide. 
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Appendix 15 KEGG butanoate metabolism 
pathway and directed LGT for the Denmark (DK), 
Australian (AU) and United States (USA) EBPR 
communities.  

 

Dashed boxes indicate LGT, with solid symbols indicating LGT predicted within a 

community, and hollow symbols indicating missing enzymes in a community. Greyed out 

enzymes are not found in any community. See Table 2.1 for enzyme names and 

Appendix 18 for taxonomic abbreviation guide. 
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Appendix 16 Potential LGT events from 
phylogenetic analysis. 

 

Phylogenetic analysis predicted proteins identified as transferred for each pathway, their 

EC annotation, and class-level taxonomic classification of the contig they are located. 

BM = Butanoate Metabolism, CAC = Citric Acid Cycle, GM = 

Glycolysis/Gluconeogenesis Metabolism, PM = Propanoate Metabolism, PPP = Pentose 

Phosphate Pathway 

 

Sequence Contig 

Classification 

EC Pathway 

2000096700_sludgeUSA_Contig14439 Gammaproteobacteria 1.1.1.1 GM 

2000426560_sludgeOz_Contig11426 Betaproteobacteria 1.1.1.35 BM 

2000544330_sludgeOz_Contig5118 Alphaproteobacteria 1.1.1.35 BM 

2000424640_sludgeOz_Contig11412 Gammaproteobacteria 1.2.1.12 GM 

2000588520_sludgeOz_Contig7421 Betaproteobacteria 1.2.1.12 GM 

2000445730_sludgeOz_Contig11529 Gammaproteobacteria 1.2.1.3 GM 

2000513410_sludgeOz_Contig3469 Alphaproteobacteria 1.2.1.3 GM 

2000462440_sludgeOz_Contig11597 Gammaproteobacteria 1.6.5.3 NM 

2000610430_sludgeOz_Contig8413 Betaproteobacteria 1.6.5.3 NM 

2000540670_sludgeOz_Contig4927 Gammaproteobacteria 1.8.1.4 CAC 

2000410250_sludgeOz_Contig11289 Gammaproteobacteria 2.3.1.9 BM;PPP 

2000452010_sludgeOz_Contig11556 Gammaproteobacteria 2.3.1.9 BM;PPP 

2000465430_sludgeOz_Contig11607 Betaproteobacteria 2.3.1.9 BM;PPP 

2000422830_sludgeOz_Contig11399 Gammaproteobacteria 2.7.1.11  

2000527690_sludgeOz_Contig4229 Chlorobia 2.7.1.11  

2000424650_sludgeOz_Contig11412 Gammaproteobacteria 2.7.2.3 GM 

2000424660_sludgeOz_Contig11412 Gammaproteobacteria 4.1.2.13 GM 

2000609960_sludgeOz_Contig8392 Bacilli 4.1.2.13 GM 

2000361210_sludgeOz_Contig10422 Gammaproteobacteria 4.1.3.30 PPM 

2000454070_sludgeOz_Contig11564 Gammaproteobacteria 4.1.3.30 PPM 

2000408210_sludgeOz_Contig11270 Gammaproteobacteria 4.2.1.17 BM 

2000452020_sludgeOz_Contig11556 Gammaproteobacteria 4.2.1.17 BM 

2000460640_sludgeOz_Contig11591 Gammaproteobacteria 4.2.1.17 BM 

2000374110_sludgeOz_Contig10726 Betaproteobacteria 4.2.1.3 CAC 

2000424740_sludgeOz_Contig11412 Gammaproteobacteria 5.4.2.2 GM 

2000441420_sludgeOz_Contig11512 Betaproteobacteria 5.4.2.2 GM 
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Sequence Contig 

Classification 

EC Pathway 

2000589970_sludgeOz_Contig7493 Gammaproteobacteria 6.4.1.2  

2000647250_sludgeOz_Contig9815 Betaproteobacteria 6.4.1.2 PPM 

144965_54_1067_minus_danish144965 Bacteroidia 1.2.1.12 GM 

142342_1368_3942_plus_danish142342 Alphaproteobacteria 1.2.1.2 NM 

144688_1209_1625_minus_danish144688 Flavobacteriia 1.2.1.3 GM;PPP 

146289_1_1239_plus_danish146289 Cytophagia 1.3.99.1 BM;CAC 

149437_1_1680_plus_danish149437 Cytophagia 1.8.1.4 CAC 

156099_521_1086_plus_danish156099 Gammaproteobacteria 1.8.1.4 CAC 

141966_3134_5011_minus_danish141966 Cytophagia 1.9.3.1 NM 

19791_4533_5707_plus_danish19791 Bacilli 1.9.3.1 NM 

146462_101_1413_minus_danish146462 Methanomicrobia 3.1.3.11  

151070_1_776_minus_danish151070 Sphingobacteriia 3.1.3.11  

151799_1_974_minus_danish151799 Alphaproteobacteria 4.1.2.13 GM 

180612_1_689_minus_danish180612 Flavobacteriia 4.1.3.4 BM 

245921_1_1136_plus_danish245921 Clostridia 1.1.1.42 CAC 

198229_1_704_plus_danish198229 Cytophagia 4.1.3.4 BM 
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Appendix 17 Sequences from each community 
with homologs to known mobile genetic 
elements.  

 

EBPR sequences with homologs to mobile genetic elements for each pathway, their EC 

annotation, and class-level taxonomic classification of the contig they are located. See 

attached file “Appendix17.xlsx” 

 

 

 

 

 

  



 

 169 

Appendix 18 List of taxonomic classes and their 
abbreviations. 

 

Class Abbreviation 

Acidobacteria (class) Aci_C 

Acidobacteriia Aci 

Actinobacteria Act 

Alphaproteobacteria Al 

Anaerolineae An 

Aquificae Aq 

Archaeoglobi Ar 

Bacilli Bai 

Bacteria (class) Baa_C 

Bacteroidetes (class) Bac_C 

Bacteroidia Bac 

Betaproteobacteria Be 

Caldilineae Ca 

Chlamydiia Chl 

Chlorobia Chb 

Chloroflexi Chf 

Clostridia Cl 

Cyanobacteria (class) Cya_C 

Cytophagia Cyt 

Deferribacteres Def 

Dehalococcoidetes Deh 

Deinococci Dei 

Deltaproteobacteria Del 

Dictyoglomia Di 

Elusimicrobia (class) El_C 

Elusimicrobia El 

Epsilonproteobacteria Ep 

Fibrobacteria Fi 

Flavobacteriia Fl 

Fusobacteriia Fu 

Gammaproteobacteria Ga 

Gemmatimonadetes Ge 

Gloeobacteria Gl 

Halobacteria Ha 

Methanobacteria Meb 

Methanococci Mec 

Methanomicrobia Mem 

Mollicutes Mo 

Negativicutes Ne 

Nitrospira Ni 

Opitutae Op 
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Class Abbreviation 

Planctomycetia Pl 

Proteobacteria (class) Pr_C 

Solibacteres So 

Sphingobacteriia Sph 

Spirochaetia Spi 

Synergistia Sy 

Thaumarchaeota 

(class) 

Tha_C 

Thermococci Thc 

Thermomicrobia Thm 

Thermotogae Tht 

Unclassified U 

Verrucomicrobia 

(class) 

Ve_C 

Verrucomicrobiae Ve 
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Appendix 19 Table of 100 PanPhyla genomes for 
ProPhylClust  

 

PanPhyla Genomes Phylum, Class 

ACIDAMINOCOCCUS_FERMENTANS_DSM_20731_UID43

471 

Firmicutes,Negativicutes 

ACIDIMICROBIUM_FERROOXIDANS_DSM_10331_UID59

215 

Actinobacteria,Actinobacteria 

ACIDOBACTERIUM_CAPSULATUM_ATCC_51196_UID59

127 

Acidobacteria,Acidobacteria 

ACIDOBACTERIUM_MP5ACTX9_UID50551 Acidobacteria,Acidobacteria 

AMINOBACTERIUM_COLOMBIENSE_DSM_12261_UID47

083 

Synergistetes,Synergistia 

ANABAENA_CYLINDRICA_PCC_7122_UID183339 Cyanobacteria,Cyanobacteria 

ANAEROLINEA_THERMOPHILA_UNI_1_UID62245 Chloroflexi,Anaerolineae 

AQUIFEX_AEOLICUS_VF5_UID57765 Aquificae,Aquificae 

BACILLUS_CEREUS_ATCC_14579_UID57975 Firmicutes,Bacilli 

BACILLUS_SUBTILIS_XF_1_UID189187 Firmicutes,Bacilli 

BACTEROIDES_FRAGILIS_638R_UID84217 Bacteroidetes,Bacteroidetes 

BIFIDOBACTERIUM_ANIMALIS_LACTIS_ATCC_27673_

UID222803 

Actinobacteria,Actinobacteria 

BORRELIA_BURGDORFERI_B31_UID57581 Spirochaetes,Spirochaetes 

BURKHOLDERIA_PSEUDOMALLEI_668_UID58389 Proteobacteria,BetaProteobacteria 

CALDITERRIVIBRIO_NITROREDUCENS_DSM_19672_UI

D60821 

Deferribacteres,Deferribacteres 

CAMPYLOBACTER_JEJUNI_M1_UID159535 Proteobacteria,EpsilonProteobacteria 

CHLAMYDIA_PECORUM_PV3056_3_UID221290 Chlamydiae,Chlamydiae 

CHLAMYDIA_TRACHOMATIS_UID196778 Chlamydiae,Chlamydiae 

CHLOROBACULUM_PARVUM_NCIB_8327_UID59185 Chlorobi,Chlorobia 

CHLOROBIUM_TEPIDUM_TLS_UID57897 Chlorobi,Chlorobia 

CHLOROFLEXUS_AURANTIACUS_J_10_FL_UID57657 Chloroflexi,Chloroflexia 

CHLOROHERPETON_THALASSIUM_ATCC_35110_UID59

187 

Chlorobi,Chlorobia 

CLOSTRIDIUM_BOTULINUM_A_ATCC_3502_UID61579 Firmicutes,Clostridia 

CLOSTRIDIUM_DIFFICILE_CD196_UID41017 Firmicutes,Clostridia 

CORYNEBACTERIUM_DIPHTHERIAE_31A_UID84309 Actinobacteria,Actinobacteria 
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PanPhyla Genomes Phylum, Class 

CYANOTHECE_ATCC_51142_UID59013 Cyanobacteria,Cyanobacteria 

CYTOPHAGA_HUTCHINSONII_ATCC_33406_UID57651 Bacteroidetes,Cytophagia 

DEFERRIBACTER_DESULFURICANS_SSM1_UID46653 Deferribacteres,Deferribacteres 

DEHALOCOCCOIDES_ETHENOGENES_195_UID57763 Chloroflexi,Dehalococcoidia  

DESULFITOBACTERIUM_DEHALOGENANS_ATCC_5150

7_UID82553 

Firmicutes,Clostridia 

DESULFOTALEA_PSYCHROPHILA_LSV54_UID58153 Proteobacteria,DeltaProteobacteria 

DESULFOVIBRIO_VULGARIS__MIYAZAKI_F__UID59089 Proteobacteria,DeltaProteobacteria 

ELUSIMICROBIUM_MINUTUM_PEI191_UID58949 Elusimicrobia,Elusimicrobia 

ERYSIPELOTHRIX_RHUSIOPATHIAE_SY1027_UID20651

8 

Firmicutes,Erysipelotrichi 

ESCHERICHIA_COLI_K_12_SUBSTR__MG1655_UID57779 Proteobacteria,GammaProteobacteria 

FERVIDOBACTERIUM_NODOSUM_RT17_B1_UID58625 Thermotogae,Thermotogae 

FIBROBACTER_SUCCINOGENES_S85_UID41169 Fibrobacteres,Fibrobacteres 

FLAVOBACTERIUM_COLUMNARE_ATCC_49512_UID80

731 

Bacteroidetes,Flavobacteriia 

FUSOBACTERIUM_NUCLEATUM_ATCC_25586_UID5788

5 

Fusobacteria,Fusobacteria 

GEMMATIMONAS_AURANTIACA_T_27_UID58813 Gemmatimonadetes,Gemmatimonad

etes 

GRANULICELLA_MALLENSIS_MP5ACTX8_UID49957 Acidobacteria,Acidobacteria 

HELICOBACTER_PYLORI_UID159983 Proteobacteria,EpsilonProteobacteria 

HYDROGENOBACULUM_Y04AAS1_UID58857 Aquificae,Aquificae 

ILYOBACTER_POLYTROPUS_DSM_2926_UID59769 Fusobacteria,Fusobacteria 

LACTOBACILLUS_ACIDOPHILUS_30SC_UID63605 Firmicutes,Bacilli 

LEIFSONIA_XYLI_CTCB07_UID57759 Actinobacteria,Actinobacteria 

LEPTOSPIRA_INTERROGANS_SEROVAR_LAI_IPAV_UID

161957 

Spirochaetes,Spirochaetes 

LEPTOSPIRILLUM_FERROOXIDANS_C2_3_UID158171 Nitrospirae,Nitrospira 

LISTERIA_MONOCYTOGENES_UID43671 Firmicutes,Bacilli 

MARINITHERMUS_HYDROTHERMALIS_DSM_14884_UI

D65783 

Deinococcus-Thermus,Deinococci 

MEIOTHERMUS_SILVANUS_DSM_9946_UID49485 Deinococcus-Thermus,Deinococci 

MESOPLASMA_FLORUM_L1_UID58055 Tenericutes,Mollicutes 

MESOTOGA_PRIMA_MESG1_AG_4_2_UID52599 Thermotogae,Thermotogae 

METHYLACIDIPHILUM_INFERNORUM_V4_UID59161 Verrucomicrobia,Verrucomicrobia 
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PanPhyla Genomes Phylum, Class 

MICROCYSTIS_AERUGINOSA_NIES_843_UID59101 Cyanobacteria,Cyanobacteria 

MYCOBACTERIUM_TUBERCULOSIS_UID185758 Actinobacteria,Actinobacteria 

MYCOPLASMA_GALLISEPTICUM_F_UID162001 Tenericutes,Mollicutes 

MYCOPLASMA_PNEUMONIAE_309_UID85495 Tenericutes,Mollicutes 

NEISSERIA_MENINGITIDIS_8013_UID161967 Proteobacteria,BetaProteobacteria 

NITROBACTER_HAMBURGENSIS_X14_UID58293 Proteobacteria,AlphaProteobacteria 

NITROSOSPIRA_MULTIFORMIS_ATCC_25196_UID58361 Nitrospirae,Nitrospirae 

NOCARDIA_FARCINICA_IFM_10152_UID58203 Actinobacteria,Actinobacteria 

NOSTOC_PCC_7107_UID182932 Cyanobacteria,Cyanobacteria 

ONION_YELLOWS_PHYTOPLASMA_OY_M_UID58015 Tenericutes,Mollicutes 

OPITUTUS_TERRAE_PB90_1_UID58965 Verrucomicrobia,Opitutae 

PARACHLAMYDIA_ACANTHAMOEBAE_UV7_UID68335 Chlamydiae,Chlamydiae 

PEDOBACTER_HEPARINUS_DSM_2366_UID59111 Bacteroidetes,Sphingobacteria 

PHYCISPHAERA_MIKURENSIS_NBRC_102666_UID15733

1 

Planctomycetes,Planctomycetes 

PLANCTOMYCES_BRASILIENSIS_DSM_5305_UID60583 Planctomycetes,Planctomycetes 

PORPHYROMONAS_GINGIVALIS_ATCC_33277_UID5887

9 

Bacteroidetes,Bacteroidetes 

PREVOTELLA_DENTALIS_DSM_3688_UID184818 Bacteroidetes,Bacteroidetes 

PROCHLOROCOCCUS_MARINUS_CCMP1375_UID57995 Cyanobacteria,Cyanobacteria 

PROPIONIBACTERIUM_ACNES_ATCC_11828_UID162177 Actinobacteria,Actinobacteria 

PROSTHECOCHLORIS_AESTUARII_DSM_271_UID58151 Chlorobi,Chlorobia 

RICKETTSIA_RICKETTSII__SHEILA_SMITH__UID58027 Proteobacteria,AlphaProteobacteria 

SALMONELLA_ENTERICA_SEROVAR_4_5_12_I__08_173

6_UID212969 

Proteobacteria,GammaProteobacteria 

SELENOMONAS_RUMINANTIUM_LACTILYTICA_TAM6

421_UID157247 

Firmicutes,Negativicutes 

SPIROCHAETA_THERMOPHILA_DSM_6192_UID53037 Spirochaetes,Spirochaetes 

SPIROCHAETA_THERMOPHILA_DSM_6578_UID162041 Spirochaetes,Spirochaetes 

STAPHYLOCOCCUS_AUREUS_71193_UID162141 Firmicutes,Bacilli 

STREPTOBACILLUS_MONILIFORMIS_DSM_12112_UID4

1863 

Fusobacteria,Fusobacteria 

STREPTOCOCCUS_PNEUMONIAE_670_6B_UID52533 Firmicutes,Bacilli 

STREPTOMYCES_CATTLEYA_NRRL_8057___DSM_46488

_UID77117 

Actinobacteria,Actinobacteria 

STREPTOMYCES_SCABIEI_87_22_UID46531 Actinobacteria,Actinobacteria 
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PanPhyla Genomes Phylum, Class 

SYNECHOCOCCUS_ELONGATUS_PCC_7942_UID58045 Cyanobacteria,Cyanobacteria 

SYNECHOCYSTIS_PCC_6803_UID57659 Cyanobacteria,Cyanobacteria 

THERMODESULFATATOR_INDICUS_DSM_15286_UID68

285 

Thermodesulfobacteria,Thermodesul

fobacteria 

THERMODESULFOBACTERIUM_OPB45_UID68283 Thermodesulfobacteria,Thermodesul

fobacteria 

THERMODESULFOVIBRIO_YELLOWSTONII_DSM_11347

_UID59257 

Nitrospirae,Nitrospira 

THERMOMICROBIUM_ROSEUM_DSM_5159_UID59341 Chloroflexi,Thermomicrobia 

THERMOTOGA_MARITIMA_MSB8_UID57723 Thermotogae,Thermotogae 

THERMOVIRGA_LIENII_DSM_17291_UID77129 Synergistetes,Synergistia 

THERMUS_THERMOPHILUS_HB8_UID58223 Deinococcus-Thermus,Deinococci 

TREPONEMA_PALLIDUM_PERTENUE_CDC2_UID87051 Spirochaetes,Spirochaetes 

TROPHERYMA_WHIPPLEI_TWIST_UID57705 Actinobacteria,Actinobacteria 

TRUEPERA_RADIOVICTRIX_DSM_17093_UID49533 Deinococcus-Thermus,Deinococci 

UREAPLASMA_PARVUM_SEROVAR_3_ATCC_700970_UI

D57711 

Tenericutes,Mollicutes 

UREAPLASMA_UREALYTICUM_SEROVAR_10_ATCC_33

699_UID59011 

Tenericutes,Mollicutes 

VIBRIO_FISCHERI_ES114_UID58163 Proteobacteria,GammaProteobacteria 

WADDLIA_CHONDROPHILA_WSU_86_1044_UID49531 Chlamydiae,Chlamydiae 
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Appendix 20 Table of 100 Proteobacteria 
genomes for ProPhylClust 

 

Proteobacteria Genomes Class 

Acetobacter_pasteurianus_386B_uid214433 Alphaproteobacteria 

Acidiphilium_multivorum_AIU301_uid63345 Alphaproteobacteria 

Acinetobacter_ADP1_uid61597 Gammaproteobacteria 

Acinetobacter_baumannii_ATCC_17978_uid58731 Gammaproteobacteria 

Acinetobacter_calcoaceticus_PHEA_2_uid83123 Gammaproteobacteria 

Acinetobacter_oleivorans_DR1_uid50119 Gammaproteobacteria 

Agrobacterium_fabrum_C58_uid57865 Alphaproteobacteria 

Agrobacterium_radiobacter_K84_uid58269 Alphaproteobacteria 

Allochromatium_vinosum_DSM_180_uid46083 Gammaproteobacteria 

Arcobacter_butzleri_7h1h_uid200766 Epsilonproteobacteria 

Azoarcus_BH72_uid61603 Betaproteobacteria 

Beijerinckia_indica_ATCC_9039_uid59057 Deltaproteobacteria 

Burkholderia_mallei_ATCC_23344_uid57725 Betaproteobacteria 

Burkholderia_pseudomallei_668_uid58389 Betaproteobacteria 

Campylobacter_coli_15_537360_uid226113 Epsilonproteobacteria 

Campylobacter_fetus_82_40_uid58545 Epsilonproteobacteria 

Campylobacter_hominis_ATCC_BAA_381_uid58981 Epsilonproteobacteria 

Campylobacter_jejuni_81116_uid58771 Epsilonproteobacteria 

Campylobacter_jejuni_M1_uid159535 Epsilonproteobacteria 

Dechloromonas_aromatica_RCB_uid58025 Betaproteobacteria 

Desulfatibacillum_alkenivorans_AK_01_uid58913 Deltaproteobacteria 

Desulfocapsa_sulfexigens_DSM_10523_uid189952 Deltaproteobacteria 

Desulfococcus_oleovorans_Hxd3_uid58777 Deltaproteobacteria 

Desulfotalea_psychrophila_LSv54_uid58153 Deltaproteobacteria 

Desulfovibrio_gigas_DSM_1382_uid221293 Deltaproteobacteria 

Desulfovibrio_magneticus_RS_1_uid59309 Deltaproteobacteria 

Desulfovibrio_vulgaris__Miyazaki_F__uid59089 Deltaproteobacteria 

Escherichia_blattae_DSM_4481_uid165043 Deltaproteobacteria 

Escherichia_coli_K_12_substr__MG1655_uid57779 Gammaproteobacteria 

Escherichia_coli_O157_H7_EC4115_uid59091 Gammaproteobacteria 

Escherichia_fergusonii_ATCC_35469_uid59375 Gammaproteobacteria 

Gallionella_capsiferriformans_ES_2_uid51505 Gammaproteobacteria 
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Proteobacteria Genomes Class 

Geobacter_sulfurreducens_PCA_uid57743 Betaproteobacteria 

Helicobacter_cetorum_MIT_99_5656_uid162215 Deltaproteobacteria 

Helicobacter_cinaedi_PAGU611_uid162219 Epsilonproteobacteria 

Helicobacter_pylori_B38_uid59415 Epsilonproteobacteria 

Helicobacter_pylori_SNT49_uid159615 Epsilonproteobacteria 

Legionella_longbeachae_NSW150_uid46099 Epsilonproteobacteria 

Legionella_pneumophila_ATCC_43290_uid86885 Gammaproteobacteria 

Legionella_pneumophila_uid170534 Gammaproteobacteria 

Methylocella_silvestris_BL2_uid59433 Gammaproteobacteria 

Myxococcus_fulvus_124B02 Deltaproteobacteria 

Neisseria_gonorrhoeae_FA_1090_uid57611 Betaproteobacteria 

Neisseria_gonorrhoeae_TCDC_NG08107_uid161097 Betaproteobacteria 

Neisseria_meningitidis_8013_uid161967 Betaproteobacteria 

Neisseria_meningitidis_H44_76_uid162083 Betaproteobacteria 

Nitrosomonas_AL212_uid55727 Betaproteobacteria 

Nitrosomonas_europaea_ATCC_19718_uid57647 Betaproteobacteria 

Pseudomonas_aeruginosa_B136_33_uid196598 Gammaproteobacteria 

Pseudomonas_brassicacearum_NFM421_uid66303 Gammaproteobacteria 

Pseudomonas_denitrificans_ATCC_13867_uid195459 Gammaproteobacteria 

Pseudomonas_entomophila_L48_uid58639 Gammaproteobacteria 

Pseudomonas_fluorescens_A506_uid165185 Gammaproteobacteria 

Pseudomonas_fulva_12_X_uid67351 Gammaproteobacteria 

Pseudomonas_mendocina_NK_01_uid66299 Gammaproteobacteria 

Pseudomonas_monteilii_SB3078_uid232252 Gammaproteobacteria 

Pseudomonas_ND6_uid167583 Gammaproteobacteria 

Pseudomonas_poae_RE_1_1_14_uid188480 Gammaproteobacteria 

Pseudomonas_putida_GB_1_uid58735 Gammaproteobacteria 

Pseudomonas_resinovorans_NBRC_106553_uid208671 Gammaproteobacteria 

Pseudomonas_stutzeri_A1501_uid58641 Gammaproteobacteria 

Pseudomonas_syringae_B728a_uid57931 Gammaproteobacteria 

Pseudomonas_TKP_uid232248 Gammaproteobacteria 

Pseudomonas_VLB120_uid226717 Gammaproteobacteria 

Rhodobacter_capsulatus_SB_1003_uid47509 Alphaproteobacteria 

Rhodobacter_sphaeroides_ATCC_17025_uid58451 Alphaproteobacteria 

Rhodobacter_sphaeroides_KD131_uid59277 Alphaproteobacteria 

Rickettsia_canadensis_CA410_uid88063 Alphaproteobacteria 
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Proteobacteria Genomes Class 

Rickettsia_prowazekii_Breinl_uid196851 Alphaproteobacteria 

Rickettsia_rickettsii__Sheila_Smith__uid58027 Alphaproteobacteria 

Roseobacter_denitrificans_OCh_114_uid58597 Alphaproteobacteria 

Roseobacter_litoralis_Och_149_uid54719 Alphaproteobacteria 

Salmonella_bongori_NCTC_12419_uid70155 Gammaproteobacteria 

Salmonella_enterica_arizonae_serovar_62_z4_z23__uid58191 Gammaproteobacteria 

Salmonella_enterica_serovar_4_5_12_i__08_1736_uid212969 Gammaproteobacteria 

Salmonella_enterica_serovar_Typhimurium_798_uid158047 Gammaproteobacteria 

Salmonella_typhimurium_DT104_uid223287 Gammaproteobacteria 

Shigella_boydii_CDC_3083_94_uid58415 Gammaproteobacteria 

Shigella_dysenteriae_1617_uid229875 Gammaproteobacteria 

Shigella_flexneri_2a_301_uid62907 Gammaproteobacteria 

Shigella_sonnei_53G_uid84383 Gammaproteobacteria 

Thiobacillus_denitrificans_ATCC_25259_uid58189 Gammaproteobacteria 

Thiocystis_violascens_DSM_198_uid74025 Gammaproteobacteria 

Thiomicrospira_crunogena_XCL_2_uid58183 Gammaproteobacteria 

Vibrio_alginolyticus_NBRC_15630___ATCC_17749_uid199933 Gammaproteobacteria 

Vibrio_anguillarum_775_uid68057 Gammaproteobacteria 

Vibrio_cholerae_IEC224_uid89389 Gammaproteobacteria 

Vibrio_EJY3_uid83161 Gammaproteobacteria 

Vibrio_Ex25_uid41601 Gammaproteobacteria 

Vibrio_fischeri_ES114_uid58163 Gammaproteobacteria 

Vibrio_furnissii_NCTC_11218_uid82347 Gammaproteobacteria 

Vibrio_harveyi_ATCC_BAA_1116_uid58957 Gammaproteobacteria 

Vibrio_nigripulchritudo_SnF1_uid222819 Gammaproteobacteria 

Vibrio_parahaemolyticus_BB22OP_uid184822 Gammaproteobacteria 

Vibrio_splendidus_LGP32_uid59353 Gammaproteobacteria 

Vibrio_vulnificus_MO6_24_O_uid62243 Gammaproteobacteria 

Wolinella_succinogenes_DSM_1740_uid61591 Epsilonproteobacteria 

Yersinia_enterocolitica_8081_uid57741 Gammaproteobacteria 

Yersinia_pestis_A1122_uid158119 Gammaproteobacteria 

Yersinia_pseudotuberculosis_PB1__uid59153 Gammaproteobacteria 
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Appendix 21 Additional Clostrdia genomes for 
200 size genome set 

 

Additional 200 Size Dataset Genomes Class 

Acetobacterium_woodii_DSM_1030 Clostridia 

Butyrivibrio_Proteoclasticus_B316 Clostridia 

Clostridiales_genomosp__BVAB3_str_UPII9_5 Clostridia 

Ethanoligenens_harbinense_YUAN_3 Clostridia 

Peptoclostridium_difficile_630 Clostridia 

Roseburia_intestinalis_XB6B4 Clostridia 

Ruminococcus_torques_L2_14 Clostridia 

Symbiobacterium_thermophilum_IAM_14863 Clostridia 

Thermincola_potens_JR Clostridia 
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Appendix 22 ProPhylClust Pseudocode 

 

Description: ProPhylClust is a script written in Python 2.7.x that uses a rooted phylogeny 

with or without multifurcations as a guide tree to cluster genes belonging to genomes 

that represent leaves in the tree. As the tree is traversed using post-order node 

traversal (children of an internal node are visited before their parents), genes from 

genomes are clustered together. Three types of clustering are performed: sequence 

versus sequence, sequence versus cluster, and cluster versus cluster. Individual 

sequences are clustered with other sequences typically during leaf versus leaf homology 

searches. Individual sequences are clustered to preexisting clusters, represented as a 

consensus sequence, typically during leaf versus internal node homology searches. 

Clusters are clustered together, typically during internal node versus internal node 

homology searches, where clusters are represented as consensus sequences. 

 

Definitions: 

Dereplication: leaf self-homology search to de-replicate sequences. Directed graph, and 

clustering using strongly connected components  

HMM: Hidden Markov Model 

Singleton sequence: Sequence without homolog 

 

Optional Parameters: 

-Sequence versus consensus sequence searches (SvsCS), homology searches between 

sequences and consensus sequences 

-Sequence versus HMMs search (SvsHMM), sequence versus HMM searches 

-Consensus sequence versus consensus sequence searches (CSvsCS), consensus 

sequence versus consensus sequence homology searches 

-HMMs versus HMMs search (HMMvHMM), HMM versus HMM searches 

 

Optional Parameter Combinations: 
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-SvsCS = all possible sequence versus consensus sequence homology searches 

-SvsHMM = all possible searches sequence versus HMM homology searches 

-SvsCS+SvsHMM = sequence versus consensus sequence filtered sequence versus HMM 

searches 

-CSvsCS = all possible consensus sequence versus consensus sequence homology 

searches 

-HMMvsHMM = all possible HMM versus HMM homology searches 

-CSvsCS+HMMvsHMM = consensus sequence versus consensus filtered HMM versus 

HMM searches 

 

Additional Information: 

HMMs are used to create consensus sequences 

No HMM vs HMM self searches 

 

Start: Post-order node traversal: For each internal node A 

If children of A: count(Leaves, ln) >= 1 and count(internal nodes, nn) == 0  

 All vs. All searches: ln vs. ln 

Sequence dereplication  

  Create undirected graph of sequences 

  Cluster graph using connected components 

 Create new clusters, alignments 

  Output: clusters and alignments and singleton sequences to A 

 

If children of A: count(Leaves, ln) >= 1 and count(internal nodes, nn) >= 1 

  for li in ln 

li sequences vs. nn clusters: SvsCS or SvsHMM or SvsCS+SvsHMM 

   Add sequences to cluster, create alignments 

Update clusters, alignments 

Output: clusters and singleton sequences to A 
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If count(internal Nodes, nn) == 1 

 Homology search: All (A & n) singleton vs. All (A & n) singleton 

searches 

   Sequence dereplication 

Create undirected graph of sequences 

  Cluster graph using connected components 

Create new clusters, alignments 

Output: clusters and alignments and singleton sequences to A 

 

If A == root node: 

 For each cluster: 

  Append duplicate sequences 

  Move all clusters to root node 

 If children of A: count(internal Nodes, nn) >= 1 

Homology search: nn singleton vs. nn singleton searches  

  Sequence dereplication 

Create undirected graph of sequences 

 Cluster graph using connected components 

Create new clusters, alignments 

Output: clusters and alignments and singleton sequences to A 

 

  If count(Leaves, ln) == 0 

 Homology search: All (A & nn) singleton vs. All (A & nn) singleton 

searches 

   Sequence dereplication 

Create undirected graph of sequences 

  Cluster graph using connected components 

Create new clusters 
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Output: clusters and alignments and singleton sequences to A 

  A clusters vs nn clusters, nn clusters vs A clusters, nn clusters vs nn clusters: 

CSvsCS or HMMvHMM or CSvsCS+HMMvHMM 

  Create directed graph of clusters 

Cluster graph using strongly connected components 

Amalgamate clusters, create new alignemnts 

 Output: clusters, alignments to A 

 

If A is root node: 

  Append duplicate sequences to clusters 

  Create singleton file  
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Appendix 23 PhyloSubClust Pseudocode 

 

Description: PhyloSubClust is a script written in Python 2.7.x to extract subtrees (i.e. 

clusters) from phylogenies. Pseudocode is commented denoted by ‘#’. Clusters can be 

either ‘complete’, with all genomes in the phylogeny represented in the cluster, or 

‘incomplete’, where some of the genomes in the phylogeny are represented in the 

cluster. The starting node is the internal node with the shortest average patristic 

distance between descendant leaf nodes, ensuring sequences that should be clustered 

together are clustered. A root, the most distant internal node from the starting node, is 

then chosen. The tree is then traversed from the starting node, extracting leaves until 

the cluster is complete, meets a threshold number of represented genomes, or a 

previously extracted cluster was extracted. When a subtree is pruned (i.e. cluster is 

extracted), it is replaced with a marker node, the tree is re-rooted on the marker node, 

and clustering restarts on the node furthest by number of internal nodes from the root.  

 

Definitions: 

FEW: count of genomes in leaves descending from node is less than user specified 

minimum 

MANY: count of genomes in leaves descending from node is greater than user specified 

minimum 

node1: node with leaves with shortest average patristic distance 

node2: parent of node1 

Complete Cluster: cluster where genome count is equal to the number of genomes in 

phylogeny 

Incomplete Cluster: cluster where genome count is less than number of genomes in 

phylogeny 

mostDistant: furthest internal node from root by number of internal nodes 
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Start with a set P, of unrooted phylogenies p, each with or without multifurcations and 

more than 3 leaves and iterate through each. 

 

Calculate patristic distances for all leaves, ln in p 

G = Count representative genomes in p 

 

#get starting point 

s = parent node of most closely related sister leaves 

d = node of most distant to s 

SD = set of sd pairs, if ties 

 

*start PhyloSubClust for p in P 

root tree on d 

node1 = s 

 

#start extraction of subtrees 

While count of leaves in p > 0: 

node2 = node1 parent node 

 cg1 = count genomes node1 

cg2= count genomes node2 (without genomes unique to node1) 

 cg12 = count of genomes in node2 (including node1)   

 

 If stopper in node2 

  Extract node1 as Incomplete Cluster 

  Stopper for node1, reroot at node2 

  node1 = parent node of most distant leaf from root 

else: 

if cg1== G 

  Extract node1 as Complete Cluster 
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  Stopper for node1, reroot at node2 

  node1 = parent node of most distant leaf from root 

else if cg1< G 

if (cg1is not MANY) and (cg2is not MANY) 

   if cg12 < G 

    node1 = node2 

   else if cg12 > G 

     Extract node2 as Complete Cluster 

     Stopper node2, reroot at parent of node2 

     node1 = mostDistant 

   if (cg1 is MANY) and (cg2 is MANY) 

   Extract node1 as Incomplete Cluster 

  Stopper for node1, reroot at node2 

   node1 = mostDistant 

 

In event of SD, repeat for each sd pair in SD for phylogeny p at *, retain run with largest 

number of Complete Clusters 
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Appendix 24 Descriptive statitistics of cluster 
distributions.   

 

PPC is ProPhylClust and PSC is PhyloSubClust. 

 

Type clusters mean median q1 q3 min max singletons 

PanPhyla20 diGraph 1e-30 4482 5.72 3 2 5 2 717 24441 

PanPhyla20 undiGraph 1e-30 4948 4.92 2 2 4 2 444 25717 

PanPhyla20 PPC 1e-10 4548 5.76 3 2 5 2 738 23892 

PanPhyla20 PPC no HMMs 1e-10 6178 5.58 3 2 7 2 91 15590 

PanPhyla20 RBH 1e-30 5396 4.82 3 2 5 2 66 24097 

PanPhyla20 OrthoMCL 1e-5 3796 7.72 3 2 8 2 343 20785 

PanPhyla20 OrthoMCL 1e-30 4864 5.68 3 2 6 2 147 22470 

PanPhyla20 PSC 1e-10 4385 6.65 3 2 7 2 326 20933 

PanPhyla20 PSC no HMMs 1e-10 5242 5.05 2 2 5 2 137 23619 

PanPhyla40 diGraph 1e-30 10074 6.40 3 2 5 2 1340 45109 

PanPhyla40 undiGraph 1e-30 11111 5.58 2 2 4 2 997 47587 

PanPhyla40 PPC 1e-10 10129 6.48 3 2 5 2 1343 43947 

PanPhyla40 PPC no HMMs 1e-10 12830 6.40 3 2 6 2 106 27387 

PanPhyla40 RBH 1e-30 12362 5.26 3 2 4 2 106 44452 

PanPhyla40 OrthoMCL 1e-5 7659 9.87 3 2 9 2 642 33962 

PanPhyla40 OrthoMCL 1e-30 10418 6.74 3 2 6 2 255 39344 

PanPhyla40 PSC 1e-10 8976 8.38 3 2 8 2 234 34317 

PanPhyla40 PSC no HMMs 1e-10 11226 5.75 2 2 5 2 187 44986 

PanPhyla60 diGraph 1e-30 14027 7.27 3 2 5 2 2033 65461 

PanPhyla60 undiGraph 1e-30 15494 6.36 2 2 4 2 1678 68981 

PanPhyla60 PPC 1e-10 14050 7.38 3 2 5 2 2062 63756 

PanPhyla60 PPC no HMMs 1e-10 17630 7.33 3 2 6 2 174 38236 

PanPhyla60 RBH 1e-30 17512 5.90 3 2 5 2 159 64061 

PanPhyla60 OrthoMCL 1e-5 10510 10.84 3 2 8 2 1058 53480 

PanPhyla60 OrthoMCL 1e-30 15046 7.20 3 2 6 2 239 59075 

PanPhyla60 PSC 1e-10 12188 9.32 3 2 7 2 758 53926 

PanPhyla60 PSC no HMMs 1e-10 16155 6.25 2 2 5 2 214 66479 

PanPhyla80 diGraph 1e-30 18032 7.78 3 2 5 2 2894 83499 

PanPhyla80 undiGraph 1e-30 19682 6.92 2 2 4 2 2451 87549 
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Type clusters mean median q1 q3 min max singletons 

PanPhyla80 PPC 1e-10 18038 7.90 3 2 5 2 2903 81270 

PanPhyla80 PPC no HMMs 1e-10 21850 8.07 3 2 6 2 240 47492 

PanPhyla80 RBH 1e-30 22436 6.34 3 2 5 2 228 81435 

PanPhyla80 OrthoMCL 1e-5 13242 11.75 3 2 7 2 1354 68200 

PanPhyla80 OrthoMCL 1e-30 19466 7.61 3 2 6 2 391 76019 

PanPhyla80 PSC 1e-10 21339 6.92 3 2 5 2 368 76019 

PanPhyla80 PSC no HMMs 1e-10 15354 10.10 3 2 7 2 627 68698 

PanPhyla100 diGraph 1e-30 22892 8.20 3 2 5 2 3782 98174 

PanPhyla100 undiGraph 1e-30 25038 7.31 2 2 4 2 3461 102988 

PanPhyla100 PPC 1e-10 22887 8.33 3 2 5 2 3792 95273 

PanPhyla100 PPC no HMMs 1e-

10 

26903 8.59 3 2 6 2 313 54831 

PanPhyla100 RBH 1e-30 28885 6.59 3 2 5 2 304 95752 

PanPhyla100 OrthoMCL 1e-5 16079 12.92 3 2 8 2 1761 78232 

PanPhyla100 OrthoMCL 1e-30 23951 8.29 3 2 6 2 457 87299 

PanPhyla100 PSC 1e-10 19051 10.87 3 2 7 2 627 78912 

PanPhyla100 PSC no HMMs 1e-

10 

26154 7.25 2 2 5 2 457 96269 

         

Proteo20 diGraph 1e-30 8685 5.88 3 2 5 2 737 20887 

Proteo20 undiGraph 1e-30 9330 5.36 3 2 5 2 452 21951 

Proteo20 PPC 1e-10 8648 5.97 3 2 5 2 740 20302 

Proteo20 PPC no HMMs 1e-10 10551 5.55 3 2 6 2 58 13364 

Proteo20 RBH 1e-30 10613 4.79 3 2 5 2 51 21105 

Proteo20 OrthoMCL 6395 8.89 3 2 8 2 679 15079 

Proteo20 OrthoMCL 1e-30 8365 6.50 3 2 6 2 456 17600 

Proteo20 PSC 1e-10 7732 7.32 3 2 8 2 415 15358 

Proteo20 PSC no HMMs 1e-10 9361 5.38 2 2 6 2 415 21598 

Proteo40 diGraph 1e-30 14122 8.13 3 2 6 2 1908 36757 

Proteo40 undiGraph 1e-30 15322 7.34 3 2 6 2 1437 39158 

Proteo40 PPC 1e-10 14079 8.23 3 2 6 2 1923 35736 

Proteo40 PPC no HMMs 1e-10 16612 7.80 4 2 8 2 396 26499 

Proteo40 RBH 1e-30 18154 6.44 3 2 6 2 260 39106 

Proteo40 OrthoMCL 1e-5 9929 12.94 4 2 11 2 1412 27574 

Proteo40 OrthoMCL 1e-30 13712 8.99 4 2 8 2 757 32725 

Proteo40 PSC 1e-10 11818 10.83 4 2 10 2 453 28021 
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Type clusters mean median q1 q3 min max singletons 

Proteo40 PSC no HMMs 1e-10 15297 7.41 2 2 7 2 503 42686 

Proteo60 diGraph 1e-30 17428 9.91 3 2 7 2 2858 46367 

Proteo60 undiGraph 1e-30 18764 9.06 3 2 7 2 2314 48979 

Proteo60 PPC 1e-10 17360 10.02 3 2 7 2 2865 45058 

Proteo60 PPC no HMMs 1e-10 20157 9.52 4 2 9 2 396 31679 

Proteo60 RBH 1e-30 22445 7.81 4 2 8 2 260 48280 

Proteo60 OrthoMCL 1e-5 12052 15.64 4 2 12 2 1633 34949 

Proteo60 OrthoMCL 1e-30 16942 10.77 4 2 9 2 580 41112 

Proteo60 PSC 1e-10 14621 12.86 4 2 10 2 522 35539 

Proteo60 PSC no HMMs 1e-10 19207 9.00 3 2 8 2 503 50709 

Proteo80 diGraph 1e-30 23179 10.90 3 2 8 2 4322 55424 

Proteo80 undiGraph 1e-30 24789 10.08 3 2 7 2 3706 58213 

Proteo80 PPC 1e-10 22988 11.06 3 2 8 2 4328 53850 

Proteo80 PPC no HMMs 1e-10 25616 10.76 4 2 10 2 397 36991 

Proteo80 RBH 1e-30 29551 8.66 3 2 8 2 260 56613 

Proteo80 OrthoMCL 1e-5 16184 16.60 4 2 10 2 2285 43889 

Proteo80 OrthoMCL 1e-30 22700 11.56 3 2 9 2 1047 50185 

Proteo80 PSC 1e-10 19283 13.90 4 2 10 2 1296 44567 

Proteo80 PSC no HMMs 1e-10 25431 9.89 2 2 8 2 554 61099 

Proteo100 diGraph 1e-30 27170 12.01 3 2 8 2 5633 63963 

Proteo100 undiGraph 1e-30 29026 11.14 3 2 7 2 4894 67062 

Proteo100 PPC 1e-10 26956 12.18 3 2 8 2 5639 62127 

Proteo100 PPC no HMMs 1e-10 29839 11.86 4 2 11 2 415 40807 

Proteo100 RBH 1e-30 33759 9.71 4 2 9 2 340 66936 

Proteo100 OrthoMCL 1e-5 18374 18.51 4 2 11 2 2400 54550 

Proteo100 OrthoMCL 1e-30 26141 12.80 3 2 10 2 867 60184 

Proteo100 PSC 1e-10 22001 15.43 4 2 11 2 2395 55322 

Proteo100 PSC no HMMs 1e-10 29523 10.99 3 2 9 2 730 70174 

         

200 diGraph 1e-30 44074 11.85 3 2 6 2 12043 155664 

200 undiGraph 1e-30 43916 12.01 3 2 6 2 12632 150298 

200 PPC 1e-10 30040 18.42 3 2 9 2 3584 124549 

200 PPC no HMMs 1e-10 45722 11.81 3 2 8 2 943 137848 

200 RBH 1e-30 47493 10.84 3 2 5 2 9270 162907 

200 OrthoMCL 1e-5 46486 12.44 3 2 8 2 884 99598 

200 OrthoMCL 1e-30 54363 9.30 3 2 6 2 552 151252 
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Type clusters mean median q1 q3 min max singletons 

200 PSC 1e-10 36317 15.68 3 2 8 2 1517 125650 

200 PSC no HMMs 1e-10 50632 10.33 2 2 7 2 689 154589 
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Appendix 25 558 Clostridia genomes and degree 
of completion 

 

Organisms Genome 

Acetivibrio_cellulolyticus_CD2 draft 

Acetobacterium_dehalogenans_DSM_11527 assembly 

Acetobacterium_woodii_DSM_1030 complete 

Acetohalobium_arabaticum_DSM_5501 complete 

Alkaliphilus_metalliredigens_QYMF complete 

Alkaliphilus_oremlandii_OhILAs complete 

Alkaliphilus_transvaalensis_ATCC_700919 assembly 

Anaerococcus_hydrogenalis_ACS_025_V_Sch4 draft 

Anaerococcus_hydrogenalis_DSM_7454 draft 

Anaerococcus_lactolyticus_ATCC_51172 draft 

Anaerococcus_prevotii_ACS_065_V_Col13 draft 

Anaerococcus_prevotii_DSM_20548 complete 

Anaerococcus_sp__PH9 draft 

Anaerococcus_tetradius_ATCC_35098 draft 

Anaerococcus_vaginalis_ATCC_51170 draft 

Anaerofustis_stercorihominis_DSM_17244 draft 

Anaerostipes_caccae_DSM_14662 draft 

Anaerostipes_hadrus_DSM_3319 draft 

Anaerostipes_sp__3_2_56FAA draft 

Anaerotruncus_colihominis_DSM_17241 draft 

Anaerotruncus_sp__G3_2012_ assembly 

Blautia_hansenii_DSM_20583 draft 

Blautia_hydrogenotrophica_DSM_10507 draft 

Blautia_producta_ATCC_27340_DSM_2950 assembly 

Blautia_wexlerae_AGR2146 assembly 

Blautia_wexlerae_DSM_19850 assembly 
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Organisms Genome 

Butyricicoccus_pullicaecorum_1_2 assembly 

Butyrivibrio_crossotus_DSM_2876 draft 

Butyrivibrio_fibrisolvens_AB2020 assembly 

Butyrivibrio_fibrisolvens_FE2007 assembly 

Butyrivibrio_fibrisolvens_MD2001 assembly 

Butyrivibrio_fibrisolvens_ND3005 assembly 

Butyrivibrio_fibrisolvens_WTE3004 assembly 

Butyrivibrio_fibrisolvens_YRB2005 assembly 

Butyrivibrio_hungatei_NK4A153 assembly 

Butyrivibrio_proteoclasticus_B316 complete 

Butyrivibrio_proteoclasticus_FD2007 assembly 

Butyrivibrio_proteoclasticus_P6B7 assembly 

Butyrivibrio_sp__AC2005 assembly 

Butyrivibrio_sp__AD3002 assembly 

Butyrivibrio_sp__AE2005 assembly 

Butyrivibrio_sp__AE2015 assembly 

Butyrivibrio_sp__AE3003 assembly 

Butyrivibrio_sp__AE3004 assembly 

Butyrivibrio_sp__AE3006 assembly 

Butyrivibrio_sp__AE3009 assembly 

Butyrivibrio_sp__FC2001 assembly 

Butyrivibrio_sp__FCS006 assembly 

Butyrivibrio_sp__FCS014 assembly 

Butyrivibrio_sp__LB2008 assembly 

Butyrivibrio_sp__LC3010 assembly 

Butyrivibrio_sp__MB2005 assembly 

Butyrivibrio_sp__MC2013 assembly 

Butyrivibrio_sp__MC2021 assembly 

Butyrivibrio_sp__NC2007 assembly 

Butyrivibrio_sp__NC3005 assembly 
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Organisms Genome 

Butyrivibrio_sp__VCB2001 assembly 

Butyrivibrio_sp__VCB2006 assembly 

Butyrivibrio_sp__VCD2006 assembly 

Butyrivibrio_sp__WCD2001 assembly 

Butyrivibrio_sp__WCD3002 assembly 

Butyrivibrio_sp__XBB1001 assembly 

Butyrivibrio_sp__XPD2002 assembly 

Butyrivibrio_sp__XPD2006 assembly 

Caldanaerobacter_subterraneus_subsp__yonseiensis_KB_1 assembly 

Caldanaerobius_polysaccharolyticus_DSM_13641 assembly 

Caldicellulosiruptor_acetigenus_DSM_7040 assembly 

Caldicellulosiruptor_bescii_DSM_6725 complete 

Caldicellulosiruptor_hydrothermalis_108 complete 

Caldicellulosiruptor_kristjanssonii_I77R1B complete 

Caldicellulosiruptor_kronotskyensis_2002 complete 

Caldicellulosiruptor_lactoaceticus_6A complete 

Caldicellulosiruptor_obsidiansis_OB47 complete 

Caldicellulosiruptor_owensensis_OL complete 

Caldicellulosiruptor_saccharolyticus_DSM_8903 complete 

Caldicoprobacter_oshimai_DSM_21659 assembly 

Caloramator_sp__ALD01 assembly 

Carboxydothermus_ferrireducens_DSM_11255 assembly 

Carboxydothermus_hydrogenoformans_Z_2901 complete 

Clostridiaceae_bacterium_L21_TH_D2 assembly 

Clostridiales_bacterium_9401234 draft 

Clostridiales_bacterium_NK3B98 assembly 

Clostridiales_bacterium_VE202_01 assembly 

Clostridiales_bacterium_VE202_03 assembly 

Clostridiales_bacterium_VE202_04 assembly 

Clostridiales_bacterium_VE202_06 assembly 
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Clostridiales_bacterium_VE202_07 assembly 

Clostridiales_bacterium_VE202_08 assembly 

Clostridiales_bacterium_VE202_09 assembly 

Clostridiales_bacterium_VE202_13 assembly 

Clostridiales_bacterium_VE202_14 assembly 

Clostridiales_bacterium_VE202_15 assembly 

Clostridiales_bacterium_VE202_16 assembly 

Clostridiales_bacterium_VE202_18 assembly 

Clostridiales_bacterium_VE202_21 assembly 

Clostridiales_bacterium_VE202_26 assembly 

Clostridiales_bacterium_VE202_27 assembly 

Clostridiales_bacterium_VE202_29 assembly 

Clostridiales_bacterium_oral_taxon_876_str__F0540 assembly 

Clostridiales_genomosp__BVAB3_str__UPII9_5 complete 

Clostridiisalibacter_paucivorans_DSM_22131 assembly 

Clostridium_acetobutylicum_ATCC_824 complete 

Clostridium_acetobutylicum_DSM_1731 complete 

Clostridium_acetobutylicum_EA_2018 complete 

Clostridium_acidurici_9a complete 

Clostridium_akagii_DSM_12554 assembly 

Clostridium_algidicarnis assembly 

Clostridium_arbusti_SL206 draft 

Clostridium_asparagiforme_DSM_15981 draft 

Clostridium_autoethanogenum_DSM_10061 complete 

Clostridium_beijerinckii_G117 draft 

Clostridium_beijerinckii_HUN142 assembly 

Clostridium_beijerinckii_NCIMB_8052 complete 

Clostridium_botulinum_A1_str__CFSAN002368 assembly 

Clostridium_botulinum_A2_str__Kyoto complete 

Clostridium_botulinum_A3_str__Loch_Maree complete 
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Clostridium_botulinum_A_str__ATCC_19397 complete 

Clostridium_botulinum_A_str__ATCC_3502 complete 

Clostridium_botulinum_A_str__Hall complete 

Clostridium_botulinum_Af84 assembly 

Clostridium_botulinum_B1_str__Okra complete 

Clostridium_botulinum_BKT015925 complete 

Clostridium_botulinum_BKT028387 assembly 

Clostridium_botulinum_B_str__Eklund_17B__NRP_ complete 

Clostridium_botulinum_Ba4_str__657 complete 

Clostridium_botulinum_Bf draft 

Clostridium_botulinum_CDC54075 assembly 

Clostridium_botulinum_CDC54085 assembly 

Clostridium_botulinum_CDC54088 assembly 

Clostridium_botulinum_CDC66177 draft 

Clostridium_botulinum_CFSAN002367 assembly 

Clostridium_botulinum_CFSAN002369 assembly 

Clostridium_botulinum_C_str__Eklund draft 

Clostridium_botulinum_C_str__Stockholm draft 

Clostridium_botulinum_D_str__1873 draft 

Clostridium_botulinum_E1_str__'BoNT_E_Beluga' draft 

Clostridium_botulinum_E3_str__Alaska_E43 complete 

Clostridium_botulinum_F_str__230613 complete 

Clostridium_botulinum_F_str__Langeland complete 

Clostridium_botulinum_H04402_065 complete 

Clostridium_botulinum_NCTC_2916 draft 

Clostridium_botulinum_V891 assembly 

Clostridium_botulinum_strain_CDC28023 assembly 

Clostridium_botulinum_strain_CDC37457 assembly 

Clostridium_botulinum_strain_CDC37461 assembly 

Clostridium_botulinum_strain_CDC42961 assembly 
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Clostridium_botulinum_strain_CDC48719 assembly 

Clostridium_botulinum_strain_CDC48761 assembly 

Clostridium_botulinum_strain_CDC52271 assembly 

Clostridium_botulinum_strain_CDC52298 assembly 

Clostridium_botulinum_strain_CDC66088 assembly 

Clostridium_butyricum_5521 draft 

Clostridium_butyricum_60E_3 assembly 

Clostridium_butyricum_AGR2140 assembly 

Clostridium_butyricum_DKU_01 assembly 

Clostridium_butyricum_E4_str__BoNT_E_BL5262 draft 

Clostridium_cadaveris_AGR2141 assembly 

Clostridium_celatum_DSM_1785 draft 

Clostridium_cellulolyticum_H10 complete 

Clostridium_cellulovorans_743B complete 

Clostridium_cf__saccharolyticum_K10 complete 

Clostridium_citroniae_WAL_17108 draft 

Clostridium_clariflavum_DSM_19732 complete 

Clostridium_clostridioforme_2_1_49FAA draft 

Clostridium_colicanis_209318 assembly 

Clostridium_drakei assembly 

Clostridium_hathewayi_DSM_13479 draft 

Clostridium_hathewayi_WAL_18680 draft 

Clostridium_hiranonis_DSM_13275 draft 

Clostridium_hydrogeniformans_DSM_21757 assembly 

Clostridium_kluyveri_DSM_555 complete 

Clostridium_kluyveri_NBRC_12016 complete 

Clostridium_lentocellum_DSM_5427 complete 

Clostridium_ljungdahlii_DSM_13528 complete 

Clostridium_lundense_DSM_17049 assembly 

Clostridium_methylpentosum_DSM_5476 draft 
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Clostridium_novyi_NT complete 

Clostridium_papyrosolvens_DSM_2782 draft 

Clostridium_paraputrificum_AGR2156 assembly 

Clostridium_pasteurianum_BC1 complete 

Clostridium_pasteurianum_DSM_525_ATCC_6013 assembly 

Clostridium_pasteurianum_NRRL_B_598 assembly 

Clostridium_perfringens_ATCC_13124 complete 

Clostridium_perfringens_B_str__ATCC_3626 draft 

Clostridium_perfringens_CPE_str__F4969 draft 

Clostridium_perfringens_C_str__JGS1495 draft 

Clostridium_perfringens_D_str__JGS1721 draft 

Clostridium_perfringens_E_str__JGS1987 draft 

Clostridium_perfringens_F262 draft 

Clostridium_perfringens_JJC assembly 

Clostridium_perfringens_NCTC_8239 draft 

Clostridium_perfringens_SM101 complete 

Clostridium_perfringens_WAL_14572 draft 

Clostridium_perfringens_str__13 complete 

Clostridium_ramosum_DSM_1402 draft 

Clostridium_saccharobutylicum_DSM_13864 complete 

Clostridium_saccharolyticum_WM1 complete 

Clostridium_saccharoperbutylacetonicum_N1_4_HMT_ complete 

Clostridium_sartagoforme_AAU1 assembly 

Clostridium_scatologenes assembly 

Clostridium_scindens_ATCC_35704 draft 

Clostridium_sp__12_A_ assembly 

Clostridium_sp__7_2_43FAA draft 

Clostridium_sp__7_3_54FAA draft 

Clostridium_sp__ASBs410 assembly 

Clostridium_sp__ASF356 assembly 
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Clostridium_sp__ASF502 assembly 

Clostridium_sp__ATCC_29733 assembly 

Clostridium_sp__ATCC_BAA_442 assembly 

Clostridium_sp__Ade_TY assembly 

Clostridium_sp__BL8 assembly 

Clostridium_sp__BNL1100 complete 

Clostridium_sp__D5 draft 

Clostridium_sp__DL_VIII draft 

Clostridium_sp__HGF2 draft 

Clostridium_sp__JC122 draft 

Clostridium_sp__KLE_1755 assembly 

Clostridium_sp__KNHs209 assembly 

Clostridium_sp__M62_1 draft 

Clostridium_sp__MSTE9 draft 

Clostridium_sp__Maddingley_MBC34_26 draft 

Clostridium_sp__SS2_1 draft 

Clostridium_sp__SY8519 complete 

Clostridium_spiroforme_DSM_1552 draft 

Clostridium_sporogenes_ATCC_15579 draft 

Clostridium_sporogenes_PA_3679 draft 

Clostridium_stercorarium_subsp__stercorarium_DSM_8532 complete 

Clostridium_sticklandii complete 

Clostridium_symbiosum_WAL_14163 draft 

Clostridium_symbiosum_WAL_14673 draft 

Clostridium_termitidis_CT1112 draft 

Clostridium_tetani_12124569 complete 

Clostridium_tetani_E88 complete 

Clostridium_tunisiense_TJ draft 

Clostridium_tyrobutyricum_DSM_2637_ATCC_25755_JCM_11008 assembly 

Clostridium_tyrobutyricum_UC7086 draft 
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Clostridium_ultunense_DSM_10521 assembly 

Clostridium_ultunense_Esp draft 

Coprococcus_catus_GD_7 complete 

Coprococcus_comes_ATCC_27758 draft 

Coprococcus_sp__ART55_1 complete 

Coprococcus_sp__HPP0048 assembly 

Coprococcus_sp__HPP0074 assembly 

Coprothermobacter_platensis_DSM_11748 draft 

Coprothermobacter_proteolyticus_DSM_5265 complete 

Dehalobacter_sp__CF complete 

Dehalobacter_sp__DCA complete 

Dehalobacter_sp__FTH1 draft 

Desulfitibacter_alkalitolerans_DSM_16504 assembly 

Desulfitobacterium_dehalogenans_ATCC_51507 complete 

Desulfitobacterium_dichloroeliminans_LMG_P_21439 complete 

Desulfitobacterium_hafniense_DCB_2 complete 

Desulfitobacterium_hafniense_DP7 draft 

Desulfitobacterium_hafniense_PCP_1 draft 

Desulfitobacterium_hafniense_TCP_A draft 

Desulfitobacterium_hafniense_Y51 complete 

Desulfitobacterium_metallireducens_DSM_15288 draft 

Desulfitobacterium_sp__PCE1 assembly 

Desulfosporosinus_acidiphilus_SJ4 complete 

Desulfosporosinus_meridiei_DSM_13257 complete 

Desulfosporosinus_orientis_DSM_765 complete 

Desulfosporosinus_youngiae_DSM_17734 draft 

Desulfotomaculum_acetoxidans_DSM_771 complete 

Desulfotomaculum_alcoholivorax_DSM_16058 assembly 

Desulfotomaculum_carboxydivorans_CO_1_SRB complete 

Desulfotomaculum_gibsoniae_DSM_7213 complete 
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Desulfotomaculum_hydrothermale_Lam5_DSM_18033 draft 

Desulfotomaculum_kuznetsovii_DSM_6115 complete 

Desulfotomaculum_nigrificans_DSM_574 draft 

Desulfotomaculum_reducens_MI_1 complete 

Desulfotomaculum_ruminis_DSM_2154 complete 

Desulfotomaculum_thermocisternum_DSM_10259 assembly 

Desulfovirgula_thermocuniculi_DSM_16036 assembly 

Desulfurispora_thermophila_DSM_16022 draft 

Dethiobacter_alkaliphilus_AHT_1 draft 

Dorea_formicigenerans_4_6_53AFAA draft 

Dorea_formicigenerans_ATCC_27755 draft 

Dorea_longicatena_AGR2136 assembly 

Dorea_sp__5_2 assembly 

Dorea_sp__AGR2135 assembly 

Epulopiscium_sp__'N_t__morphotype_B' draft 

Ethanoligenens_harbinense_YUAN_3 complete 

Eubacterium_biforme_DSM_3989 draft 

Eubacterium_brachy_ATCC_33089 assembly 

Eubacterium_cellulosolvens_6 draft 

Eubacterium_cylindroides_T2_87 complete 

Eubacterium_eligens_ATCC_27750 complete 

Eubacterium_hallii_DSM_3353 draft 

Eubacterium_infirmum_F0142 draft 

Eubacterium_limosum_KIST612 complete 

Eubacterium_plexicaudatum_ASF492 assembly 

Eubacterium_ramulus_ATCC_29099 assembly 

Eubacterium_rectale_ATCC_33656 complete 

Eubacterium_rectale_DSM_17629 complete 

Eubacterium_rectale_M104_1 complete 

Eubacterium_saphenum_ATCC_49989 draft 
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Eubacterium_siraeum_DSM_15702 draft 

Eubacterium_siraeum_V10Sc8a complete 

Eubacterium_sp__14_2 assembly 

Eubacterium_sp__3_1_31 draft 

Eubacterium_sp__AB3007 assembly 

Eubacterium_xylanophilum_ATCC_35991 assembly 

Eubacterium_yurii_subsp__margaretiae_ATCC_43715 draft 

Faecalibacterium_cf__prausnitzii_KLE1255 draft 

Faecalibacterium_prausnitzii_A2_165 draft 

Faecalibacterium_prausnitzii_SL3_3 complete 

Filifactor_alocis_ATCC_35896 complete 

Finegoldia_magna_ACS_171_V_Col3 draft 

Finegoldia_magna_ATCC_29328 complete 

Finegoldia_magna_ATCC_53516 draft 

Finegoldia_magna_BVS033A4 draft 

Finegoldia_magna_SY403409CC001050417 draft 

Flavonifractor_plautii_ATCC_29863 draft 

Halanaerobium_hydrogeniformans complete 

Halanaerobium_praevalens_DSM_2228 complete 

Halobacteroides_halobius_DSM_5150 complete 

Halonatronum_saccharophilum_DSM_13868 assembly 

Halothermothrix_orenii_H_168 complete 

Helcococcus_kunzii_ATCC_51366 draft 

Helcococcus_sueciensis_DSM_17243 assembly 

Heliobacterium_modesticaldum_Ice1 complete 

Intestinibacter_bartlettii_DSM_16795 assembly 

Johnsonella_ignava_ATCC_51276 draft 

Lachnoanaerobaculum_sp__ICM7 assembly 

Lachnoanaerobaculum_sp__OBRC5_5 assembly 

Lachnobacterium_bovis assembly 
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Lachnobacterium_bovis_C6A12 assembly 

Lachnoclostridium_phytofermentans_ISDg complete 

Lachnoclostridium_phytofermentans_KNHs212 assembly 

Lachnoclostridium_phytofermentans_KNHs2132 assembly 

Lachnospira_multipara_ATCC_19207 assembly 

Lachnospira_multipara_MC2003 assembly 

Lachnospiraceae_bacterium_10_1 assembly 

Lachnospiraceae_bacterium_1_1_57FAA draft 

Lachnospiraceae_bacterium_1_4_56FAA draft 

Lachnospiraceae_bacterium_28_4 assembly 

Lachnospiraceae_bacterium_2_1_46FAA draft 

Lachnospiraceae_bacterium_2_1_58FAA draft 

Lachnospiraceae_bacterium_3_1 assembly 

Lachnospiraceae_bacterium_3_1_46FAA draft 

Lachnospiraceae_bacterium_3_1_57FAA_CT1 draft 

Lachnospiraceae_bacterium_3_2 assembly 

Lachnospiraceae_bacterium_4_1_37FAA draft 

Lachnospiraceae_bacterium_5_1_57FAA draft 

Lachnospiraceae_bacterium_5_1_63FAA draft 

Lachnospiraceae_bacterium_6_1_63FAA draft 

Lachnospiraceae_bacterium_7_1_58FAA draft 

Lachnospiraceae_bacterium_8_1_57FAA draft 

Lachnospiraceae_bacterium_9_1_43BFAA draft 

Lachnospiraceae_bacterium_A2 assembly 

Lachnospiraceae_bacterium_A4 assembly 

Lachnospiraceae_bacterium_AB2028 assembly 

Lachnospiraceae_bacterium_AC2012 assembly 

Lachnospiraceae_bacterium_AC2031 assembly 

Lachnospiraceae_bacterium_AC3007 assembly 

Lachnospiraceae_bacterium_AD3010 assembly 
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Lachnospiraceae_bacterium_COE1 assembly 

Lachnospiraceae_bacterium_M18_1 assembly 

Lachnospiraceae_bacterium_MD2004 assembly 

Lachnospiraceae_bacterium_NC2004 assembly 

Lachnospiraceae_bacterium_NC2008 assembly 

Lachnospiraceae_bacterium_NK4A136 assembly 

Lachnospiraceae_bacterium_NK4A144 assembly 

Lachnospiraceae_bacterium_NK4A179 assembly 

Lachnospiraceae_bacterium_P6B14 assembly 

Lachnospiraceae_bacterium_V9D3004 assembly 

Lachnospiraceae_bacterium_VE202_12 assembly 

Lachnospiraceae_bacterium_VE202_23 assembly 

Lachnospiraceae_bacterium_YSB2008 assembly 

Lachnospiraceae_bacterium_oral_taxon_082_str__F0431 draft 

Lachnospiraceae_oral_taxon_107_str__F0167 draft 

Mahella_australiensis_50_1_BON complete 

Marvinbryantia_formatexigens_DSM_14469 assembly 

Natranaerobius_thermophilus_JW_NM_WN_LF complete 

Orenia_marismortui_DSM_5156 draft 

Oribacterium_asaccharolyticum_ACB7 assembly 

Oribacterium_parvum_ACB1 assembly 

Oribacterium_parvum_ACB8 assembly 

Oribacterium_sinus_F0268 draft 

Oribacterium_sp__ACB1 draft 

Oribacterium_sp__NK2B42 assembly 

Oribacterium_sp__oral_taxon_078_str__F0262 draft 

Oribacterium_sp__oral_taxon_078_str__F0263 assembly 

Oribacterium_sp__oral_taxon_108_str__F0425 draft 

Oscillibacter_sp__1_3 assembly 

Oscillibacter_sp__KLE_1728 assembly 
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Oscillibacter_sp__KLE_1745 assembly 

Oscillibacter_valericigenes_Sjm18_20 complete 

Oscillospiraceae_bacterium_VE202_24 assembly 

Parvimonas_micra_A293 assembly 

Parvimonas_sp__oral_taxon_110_str__F0139 draft 

Parvimonas_sp__oral_taxon_393_str__F0440 draft 

Pelotomaculum_thermopropionicum_SI complete 

Peptoclostridium_difficile_002_P50_2011 assembly 

Peptoclostridium_difficile_050_P50_2011 assembly 

Peptoclostridium_difficile_5_3 assembly 

Peptoclostridium_difficile_630 complete 

Peptoclostridium_difficile_70_100_2010 assembly 

Peptoclostridium_difficile_ATCC_43255 assembly 

Peptoclostridium_difficile_ATCC_9689_DSM_1296 assembly 

Peptoclostridium_difficile_BI1 complete 

Peptoclostridium_difficile_CD13 assembly 

Peptoclostridium_difficile_CD144 assembly 

Peptoclostridium_difficile_CD196 complete 

Peptoclostridium_difficile_CD22 assembly 

Peptoclostridium_difficile_CD3 assembly 

Peptoclostridium_difficile_CD37 assembly 

Peptoclostridium_difficile_CD41 assembly 

Peptoclostridium_difficile_CD70 assembly 

Peptoclostridium_difficile_CD9 assembly 

Peptoclostridium_difficile_CIP_107932 assembly 

Peptoclostridium_difficile_DA00129 assembly 

Peptoclostridium_difficile_DA00141 assembly 

Peptoclostridium_difficile_DA00154 assembly 

Peptoclostridium_difficile_DA00165 assembly 

Peptoclostridium_difficile_DA00196 assembly 
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Peptoclostridium_difficile_DA00197 assembly 

Peptoclostridium_difficile_DA00203 assembly 

Peptoclostridium_difficile_DA00215 assembly 

Peptoclostridium_difficile_DA00216 assembly 

Peptoclostridium_difficile_DA00244 assembly 

Peptoclostridium_difficile_DA00261 assembly 

Peptoclostridium_difficile_DA00305 assembly 

Peptoclostridium_difficile_F152 assembly 

Peptoclostridium_difficile_F314 assembly 

Peptoclostridium_difficile_F548 assembly 

Peptoclostridium_difficile_F601 assembly 

Peptoclostridium_difficile_NAP07 assembly 

Peptoclostridium_difficile_NAP08 assembly 

Peptoclostridium_difficile_P13 assembly 

Peptoclostridium_difficile_P15 assembly 

Peptoclostridium_difficile_P19 assembly 

Peptoclostridium_difficile_P23 assembly 

Peptoclostridium_difficile_P25 assembly 

Peptoclostridium_difficile_P28 assembly 

Peptoclostridium_difficile_P30 assembly 

Peptoclostridium_difficile_P31 assembly 

Peptoclostridium_difficile_P33 assembly 

Peptoclostridium_difficile_P37 assembly 

Peptoclostridium_difficile_P38 assembly 

Peptoclostridium_difficile_P42 assembly 

Peptoclostridium_difficile_P45 assembly 

Peptoclostridium_difficile_P46 assembly 

Peptoclostridium_difficile_P49 assembly 

Peptoclostridium_difficile_P50 assembly 

Peptoclostridium_difficile_P53 assembly 
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Peptoclostridium_difficile_P59 assembly 

Peptoclostridium_difficile_P64 assembly 

Peptoclostridium_difficile_P68 assembly 

Peptoclostridium_difficile_P69 assembly 

Peptoclostridium_difficile_P70 assembly 

Peptoclostridium_difficile_P71 assembly 

Peptoclostridium_difficile_P72 assembly 

Peptoclostridium_difficile_P73 assembly 

Peptoclostridium_difficile_P75 assembly 

Peptoclostridium_difficile_P77 assembly 

Peptoclostridium_difficile_QCD_23m63 assembly 

Peptoclostridium_difficile_QCD_32g58 assembly 

Peptoclostridium_difficile_QCD_37x79 assembly 

Peptoclostridium_difficile_QCD_63q42 assembly 

Peptoclostridium_difficile_QCD_66c26 assembly 

Peptoclostridium_difficile_QCD_76w55 assembly 

Peptoclostridium_difficile_QCD_97b34 assembly 

Peptoclostridium_difficile_R20291 complete 

Peptoclostridium_difficile_Y231 assembly 

Peptoclostridium_difficile_Y343 assembly 

Peptoniphilus_duerdenii_ATCC_BAA_1640 draft 

Peptoniphilus_harei_ACS_146_V_Sch2b draft 

Peptoniphilus_indolicus_ATCC_29427 draft 

Peptoniphilus_lacrimalis_DSM_7455 draft 

Peptoniphilus_rhinitidis_1_13 draft 

Peptoniphilus_senegalensis_JC140 assembly 

Peptoniphilus_sp__BV3C26 assembly 

Peptoniphilus_sp__oral_taxon_375_str__F0436 draft 

Peptoniphilus_sp__oral_taxon_836_str__F0141 draft 

Peptostreptococcaceae_bacterium_ACC19a assembly 
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Peptostreptococcaceae_bacterium_CM2 assembly 

Peptostreptococcaceae_bacterium_CM5 assembly 

Peptostreptococcaceae_bacterium_VA2 assembly 

Peptostreptococcaceae_bacterium_oral_taxon_113_str__W5053 assembly 

Peptostreptococcus_anaerobius_VPI_4330_DSM_2949 assembly 

Proteocatella_sphenisci_DSM_23131 assembly 

Pseudobutyrivibrio_ruminis_AD2017 assembly 

Pseudobutyrivibrio_ruminis_CF1b assembly 

Pseudobutyrivibrio_sp__MD2005 assembly 

Pseudoramibacter_alactolyticus_ATCC_23263 draft 

Robinsoniella_sp__KNHs210 assembly 

Roseburia_hominis_A2_183 complete 

Roseburia_intestinalis_L1_82 draft 

Roseburia_intestinalis_M50_1 complete 

Roseburia_intestinalis_XB6B4 complete 

Ruminiclostridium_thermocellum_AD2 assembly 

Ruminiclostridium_thermocellum_ATCC_27405 complete 

Ruminiclostridium_thermocellum_BC1 assembly 

Ruminiclostridium_thermocellum_DSM_1313 complete 

Ruminiclostridium_thermocellum_DSM_2360 assembly 

Ruminiclostridium_thermocellum_JW20 assembly 

Ruminiclostridium_thermocellum_YS assembly 

Ruminococcaceae_bacterium_AB4001 assembly 

Ruminococcaceae_bacterium_AE2021 assembly 

Ruminococcaceae_bacterium_D16 draft 

Ruminococcus_albus_7_DSM_20455 complete 

Ruminococcus_albus_8 draft 

Ruminococcus_albus_AD2013 assembly 

Ruminococcus_bromii_L2_63 complete 

Ruminococcus_callidus_ATCC_27760 assembly 
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Ruminococcus_champanellensis_18P13_JCM_17042 complete 

Ruminococcus_flavefaciens_AE3010 assembly 

Ruminococcus_flavefaciens_ATCC_19208 assembly 

Ruminococcus_flavefaciens_FD_1 draft 

Ruminococcus_flavefaciens_MA2007 assembly 

Ruminococcus_flavefaciens_ND2009 assembly 

Ruminococcus_gauvreauii_DSM_19829 assembly 

Ruminococcus_lactaris_ATCC_29176 draft 

Ruminococcus_lactaris_CC59_002D assembly 

Ruminococcus_obeum_A2_162 complete 

Ruminococcus_sp__5_1_39BFAA draft 

Ruminococcus_sp__FC2018 assembly 

Ruminococcus_sp__JC304 draft 

Ruminococcus_sp__NK3A76 assembly 

Ruminococcus_sp__SR1_5 complete 

Ruminococcus_torques_L2_14 complete 

Shuttleworthia_satelles_DSM_14600 draft 

Stomatobaculum_longum draft 

Subdoligranulum_sp__4_3_54A2FAA draft 

Subdoligranulum_variabile_DSM_15176 draft 

Symbiobacterium_thermophilum_IAM_14863 complete 

Syntrophobotulus_glycolicus_DSM_8271 complete 

Syntrophomonas_wolfei_subsp__wolfei_str__Goettingen_G311 complete 

Syntrophothermus_lipocalidus_DSM_12680 complete 

Tepidanaerobacter_acetatoxydans_Re1 complete 

Terrisporobacter_glycolicus_ATCC_14880_DSM_1288 assembly 

Thermacetogenium_phaeum_DSM_12270 complete 

Thermincola_potens_JR complete 

Thermoanaerobacter_brockii_subsp__finnii_Ako_1 complete 

Thermoanaerobacter_ethanolicus_CCSD1 draft 
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Thermoanaerobacter_ethanolicus_JW_200 draft 

Thermoanaerobacter_indiensis_BSB_33 assembly 

Thermoanaerobacter_italicus_Ab9 complete 

Thermoanaerobacter_mathranii_subsp__mathranii_str__A3 complete 

Thermoanaerobacter_pseudethanolicus_ATCC_33223 complete 

Thermoanaerobacter_siderophilus_SR4 draft 

Thermoanaerobacter_sp__A7A assembly 

Thermoanaerobacter_sp__X513 complete 

Thermoanaerobacter_sp__X514 complete 

Thermoanaerobacter_sp__X561 draft 

Thermoanaerobacter_tengcongensis_MB4 complete 

Thermoanaerobacter_thermocopriae_JCM_7501 assembly 

Thermoanaerobacter_thermohydrosulfuricus_WC1 assembly 

Thermoanaerobacter_wiegelii_Rt8_B1 complete 

Thermoanaerobacterium_saccharolyticum_JW_SL_YS485 assembly 

Thermoanaerobacterium_thermosaccharolyticum_DSM_571 complete 

Thermoanaerobacterium_thermosaccharolyticum_M0795 complete 

Thermoanaerobacterium_xylanolyticum_LX_11 complete 

Thermodesulfobium_narugense_DSM_14796 complete 

Thermosediminibacter_oceani_DSM_16646 complete 

Tyzzerella_nexilis_DSM_1787 assembly 

Youngiibacter_fragilis_232_1 assembly 
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Appendix 26 Representative sequences used for 
identifying 18 clusters analysed. 

 

Organism/Refseq GI Gene Genome 

Peptoclostridium 

difficile 

  

126698240 tcdA Peptoclostridium_difficile_630 

126698238 tcdB Peptoclostridium_difficile_630 

126698237 tcdR Peptoclostridium_difficile_630 

126698241 tcdC Peptoclostridium_difficile_630 

126698239 tcdE Peptoclostridium_difficile_630 

260685955 tcdA Peptoclostridium_difficile_R20291 

260685953 tcdB Peptoclostridium_difficile_R20291 

260685954 tcdE Peptoclostridium_difficile_R20291 

260685953 tcdD Peptoclostridium_difficile_R20291 

Clostridium botulinum 

A 

  

153932893 ha70 Clostridium_botulinum_A_str_ATCC_19397 

153933825 ha17 Clostridium_botulinum_A_str_ATCC_19397 

153932677 ha33 Clostridium_botulinum_A_str_ATCC_19397 

153931567 BoNT/A1 Clostridium_botulinum_A_str_ATCC_19397 

153931687 botR Clostridium_botulinum_A_str_ATCC_19397 

153932404 ntnH Clostridium_botulinum_A_str_ATCC_19397 

169834787 ORF-X3 Clostridium_botulinum_A3_str_Loch_Maree 

169835047 ORF-X2 Clostridium_botulinum_A3_str_Loch_Maree 

169834940 ORF-X1 Clostridium_botulinum_A3_str_Loch_Maree 

169834772 botR Clostridium_botulinum_A3_str_Loch_Maree 

169834914 ntnh Clostridium_botulinum_A3_str_Loch_Maree 
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Organism/Refseq GI Gene Genome 

170759234 toxin 

secretion/pha

ge lysis holin 

Clostridium_botulinum_A3_str_Loch_Maree 

Clostridium botulinum 

B 

  

169834701 ntnh Clostridium_botulinum_B1_str_Okra 

169834581 botR Clostridium_botulinum_B1_str_Okra 

169834594 ha70 Clostridium_botulinum_B1_str_Okra 

169834608 ha33 Clostridium_botulinum_B1_str_Okra 

169834716 ha17 Clostridium_botulinum_B1_str_Okra 

Clostridium botulinum 

C 

  

168188051 botR  

169338115 BoNT/C Clostridium_botulinum_C_str_Eklund 

168188047 ntnhC Clostridium_botulinum_C_str_Eklund 

168188048 ha33 Clostridium_botulinum_C_str_Eklund 

168188049 ha17 Clostridium_botulinum_C_str_Eklund 

168188050 ha70 Clostridium_botulinum_C_str_Eklund 

168188051 botR Clostridium_botulinum_C_str_Eklund 

Clostridium botulinum 

E 

  

188588266 botR  Clostridium_botulinum_E3_str_Alaska_E43 

188590132 BoNT/E3 Clostridium_botulinum_E3_str_Alaska_E43 

188589186 ntnH Clostridium_botulinum_E3_str_Alaska_E43 

188587537 p47  Clostridium_botulinum_E3_str_Alaska_E43 

188590332 ORF-X1 Clostridium_botulinum_E3_str_Alaska_E43 

188589416 ORF-X2 Clostridium_botulinum_E3_str_Alaska_E43 

188588926 ORF-X3 Clostridium_botulinum_E3_str_Alaska_E43 

Clostridium botulinum 

F 
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Organism/Refseq GI Gene Genome 

384461191 ORF-X2 Clostridium_botulinum_F_str_230613 

384461192 ORF-X1 Clostridium_botulinum_F_str_230613 

384461193 BotR  Clostridium_botulinum_F_str_230613 

384461194 p47  Clostridium_botulinum_F_str_230613 

384461195 ntnH Clostridium_botulinum_F_str_230613 

384461196 BoNT/F Clostridium_botulinum_F_str_230613 

Clostridium tetani   

557606997 tetX Clostridium_tetani_12124569 

557606998 tetR_2 Clostridium_tetani_12124569 

557604037 tetR_1 Clostridium_tetani_12124569 

557606602 TR 

(transcription 

regulator) 

Clostridium_tetani_12124569 

28209852 tetR Clostridium_tetani_E88 

28212055 tetR Clostridium_tetani_E88 

28373188 tetX Clostridium_tetani_E88 

28373189 tetR Clostridium_tetani_E88 
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