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ABSTRACT 

 

Although many studies have been conducted on the structural behavior of concrete-filled fiber-

reinforced polymer (FRP) tube (CFFT), the soil-structure interaction of CFFT piles was not 

previously considered. In this study, a numerical model is developed to study CFFT pile behavior 

and interactions with soil foundation under lateral loading. The model, based on nonlinear finite 

element analysis (NFEA) and the disturbed state concept (DSC), considers material and 

geometrical nonlinearities as well as the interface of soil with the CFFT pile. The finite element 

model was verified against a full-scale field test from the literature conducted during the 

construction of a highway bridge. Based on deflection along the length of the pile, the model 

results are in good agreement with the experimental data. To investigate the effects of various 

parameters on the behavior of CFFT piles and local buckling, a parametric study was also 

performed on different geometrical and material properties, including the pile diameter to length 

ratio, FRP tube thickness, concrete strength, and soil properties. It was found that the surrounding 

soil and length to diameter ratio exerted the most noticeable influence, followed by concrete 

strength while the FRP thickness had the least impact on the results. 
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CHAPTER 1 INTRODUCTION 

In many geotechnical applications, shallow and deep soil reinforcements and foundations such as 

piles are utilized to prevent excessive deformation and failure of structures. In this research, the 

axial and lateral behavior of deep foundations was studied with emphasis on the interface of pile 

and granular soil. During the pile installation, stresses and strains are generated in the surrounding 

soil by two main mechanisms: the soil displacement and lateral friction. The soil displacement 

due to pile driving results in residual stresses in the soil surrounding the pile particularly in the 

radial and longitudinal directions. 

Two fundamental types of piles can be defined based on their structural behavior including end-

bearing and friction piles. In the case of end-bearing piles, the bottom end of end-bearing piles rests 

on a rock or high-strength soil. As a result, the end of the pile transfers loads from the structure to the 

soil. For friction piles, however, loads are transferred from the structure to the soil by the interface 

between the pile and the soil. An important factor in the design of friction pile foundations is the soil-

structure interface in different soil layers. Conventional materials to fabricate piles include concrete, 

steel, and wood. However, using these construction materials in harsh environment often results in 

deterioration and corrosion in the pile which increases the long-term maintenance costs  (Iskander et 

al., 2002). Therefore, the pile core can be protected by fiber reinforced polymers (FRP). The main 

focus of this research is on precast concrete-filled FRP tube piles in which the FRP tube serves as 

permanent lightweight non-corrosive formwork and a reinforcement element for concrete. 

The pile analysis fundamentally depends on empirical correlations based on experimental 

observations from laboratory and full scale in-situ testing. In either case, the investigations are 

often carried out using instrumented piles leading to a direct quantification of the shaft friction 

and base pressure. The proposed empirical correlations allow to approximately quantify the 

expected bearing capacities of piles embedded in different types of soils; however, they are not 
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able to provide an assessment of the associated deformation patterns of embedded pile as well as 

surrounding soil. Hence, numerical modeling based on finite element analysis (FEA) is often 

adopted to achieve a deeper understanding of pile behavior, soil movement and especially the 

mechanical behavior of the soil–pile system. 

1.1 RESEARCH SCOPE 

The numerical model was composed of four phases including: 

 Phase 1: Background and theory of numerical modeling of FRP piles using nonlinear finite 

element analysis (NFEA) and disturbed state concept (DSC) 

 Phase 2: Numerical modeling of FRP piles under lateral loading in the MATLAB software 

 Phase 3: Verification of numerical results with the experimental data obtained from a 

previous case study conducted on the route-40 bridge in Virginia 

 Phase 4: Verification of numerical results with the experimental data conducted on the 

route-40 bridge in Virginia 

1.2 RESEARCH OBJECTIVES 

The objectives of this research are: 

 To develop a numerical model for CFFT pile by using disturbed state concept (DSC) 

 To calibrate the interface parameters with the experimental results from an in-field case 

study 

 To perform a parametric study with different geometrical and material parameters 
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1.3 THESIS LAYOUT 

The thesis contains the following chapters: 

 Chapter 1 - Introduction: introduced a background for the research. 

 Chapter 2 - Literature Review: provides a literature review on the previous studies 

regarding different pile types, focusing on the structural performance of FRP piles along 

with the friction and bearing behavior of the soil-pile interface. 

 Chapter 3 - Nonlinear Finite Element Analysis: presents the first phase of the research 

which focuses on background and theory of numerical modeling of FRP piles using 

nonlinear finite element analysis (NFEA) and disturbed state concept (DSC). 

 Chapter 4 - Calibration and Parametric Study: presents the second phase of the 

research which deals with numerical modeling of FRP piles under lateral loading in the 

MATLAB software. The results were then verified and caliberated with the experimental 

data obtained from a previous case study conducted on the route-40 bridge in Virginia. 

Moreover, a parametric study was also conducted on the corresponding pile with different 

parameters. 

 Chapter 5 - Conclusions and Recommendations: In this chapter, a summary of the 

numerical modeling has been provided along with conclusions based on the modeling 

results. 



4  

CHAPTER 2 LITERATURE REVIEW 

The design lateral load typically controls the sizing of deep foundations in bridges and offshore 

structures. In addition, the effective stresses for driven piles at the interface of soil and pile will 

be lower than precast piles since large lateral movements of a pile during impact driving can cause 

yielding of the surrounding soil leading to reduction in pile shaft resistance (L. M. Zhang & Chu, 

2012). Different methods have been proposed in the literature to predict the lateral capacity of 

single pile including: p–y curve method (Matlock, 1970; Reese et al., 1974), elastic solution 

(Poulos & Davis, 1980), strain wedge model (Ashour et al., 2004), and finite element (FE) method 

(Brown & Shie, 1990; Comodromos & Pitilakis, 2005; Isenhower et al., 2014; Muqtadir & Desai, 

1986; Trochanis et al., 1991; Yang & Jeremić, 2002). In this chapter, a literature review has been 

presented regarding the experimental and numerical studies conducted on different types of piles. 

2.1 STATIC LOADING 

Abu-Farsakh et al. (2017) developed finite element (FE) model in Abaqus for three different pile 

group (PG) configurations: vertical, battered, and mixed. The tests were conducted under static 

lateral load test of M19 pier foundation applied incrementally up to 848 t (Abu-Farsakh et al., 

2011; Souri et al., 2015) as shown in Figure 2.1. The foundation was composed of 0.9 m square 

prestressed concrete piles organized in 4 × 6 configuration, which were inclined at 1H:6V slope. 

Two separate meshes were developed for pile and soil by using the eight-node linear continuum 

brick elements. The number of elements was approximately 10,500 for the pile mesh and 72,000 

for the soil mesh. The soil domain boundaries were far away from the piles to diminish their 

influence on the response. The battered piles showed the highest lateral stiffness followed by 

mixed and vertical piles. Furthermore, the soil resistance influence depth was shallower for 

battered piles as compared to vertical piles. 
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Suleiman et al. (2015) investigated soil–pile interaction behavior of a single laterally loaded pile 

using a fully instrumented test on a precast concrete pile with diameter and length of 102 mm and 

1.42 m, respectively. The pile was installed in well-graded sand and equipped with displacement 

transducers, shape acceleration array, strain gauges and thin tactile pressure sheets. In the case of 

short, stiff laterally loaded piles installed in cohesionless soils, the measured normalized 

maximum soil–pile interaction pressures showed a good alignment with the normalized pressures 

provided in the literature (Prasad & Chari, 1999). The soil movement near the pile extended up to 

6.3 pile diameters (6.3D) from the center of the pile. A maximum soil heave of 20 mm was also 

observed, with the heaved soil zone extending to 5.4D from the center of the pile. 

The energy-based solutions for pile foundations under lateral load were reviewed by Han et al. 

(2017) using a semi-analytical approach. By using the principle of minimum total potential 

energy, a system of differential equations for the pile deflection and soil displacements was 

derived.  Based on the principle of minimum total potential energy or the principle of virtual work, 

a system of differential equations for the pile deflection and soil displacements was derived. Each 

individual governing equation can be solved either analytically or numerically using the FEM or 

finite-difference method in addition to an iterative solution scheme. Profiles of pile deflection, 

shear force, bending moment and soil displacements throughout the domain were obtained from 

the results of the energy-based analyses. Moreover, a stiffer pile response was observed when pile 

head rotation constrained to be zero. 

2.2 CYCLIC LOADING 

Allotey and El Naggar (2008) and Heidari et al. (2014) proposed a numerical model to evaluate 

the effects of gapping and soil cave-in and recompression on the lateral cyclic behavior of pile 

embedded in soil along with case studies of reinforced concrete piles under cyclic lateral loading. 
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Base on the results, soil cave-in and recompression decrease pile maximum moment, move its 

point of occurrence closer to ground surface, and increase hysteretic energy dissipation. 

Furthermore, the formation of gapping in cohesive soil leads to higher lateral displacement of the 

pile head and maximum bending moment of the pile shaft. 

Zhang and Chu (2012) conducted a lateral-loading test on four driven steel H-shape piles with 

lengths up to 164.5 m in a marble area located in Hong Kong to evaluate the effect of pile 

verticality on the pile capacity. Large lateral movements of a pile during impact driving can result 

in yielding of the surrounding soil leading to a noticeable decrease in effective stresses between 

the soil and the pile wall. The site layers were composed of highly variable rockhead contours and 

deep depressions filled with weak soil deposits. The maximum lateral pile movement during 

driving was up to 8.7 m at a depth of 100 m, and the maximum local pile inclination angle reached 

0.139, which was measured with the depth intervals of 0.5 m by using an inclinometer casing. The 

lateral movements of the piles during driving well matched the rock-head inclination and soil 

conditions as one of the results is shown in Figure 2.2. 
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Figure 2.1 (a) Illustration for the lateral load test of M19 pier foundation, (b) test site, (c) 

soil layering and cone penetration test profiles, and (d) pile cap plan and pile 

labeling (Abu-Farsakh et al., 2017). 
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Figure 2.2 Horizontal displacement of a pile in the horizontal direction along the pile length 

(L. M. Zhang & Chu, 2012). 

2.3 OPTIMUM PILE LENGTH 

Leung et al. (2010) investigated the effect of pile length to optimize the overall foundation 

performance. The results of the research can be applied to piles with major frictional resistance to 

achieve economic and environmental savings. Consequently, an optimized pile length 

configuration can increase the overall stiffness of the foundation in addition to reduction in 

differential settlements that may cause distortion and cracking of the superstructure. 

Chae et al. (2004) conducted experimental and numerical studies on a laterally loaded short pile 

and pier foundation located near slopes. The results of model tests of single piles and pile groups 

subjected to lateral loading in homogeneous sand with 30° slopes were modeled by the three-

dimensional (3D) elastic–plastic finite-element method (FEM). Furthermore, different cases of 



9  

single short pile tests were carried out to study the effect of horizontal distance from the pile to 

the crest of the slope. In short pile groups, the focus was placed on the pile group efficiency and 

the behavior of each pile, considering the influences of the pile spacing and the pile cap. Based 

on the results, the lateral strength of the single short pile decreases, as its location is closer to the 

slope surface. In the case of short pile group near the crest of a slope, a noticeable reduction in the 

group efficiency was observed by the increase in the displacement. 

2.4 SOIL-PILE INTERACTION 

Suleiman et al. (2014) investigated the interaction of well-graded sand and concrete pile subjected 

to lateral soil movement by using displacement and tilt gauges at the pile head and strain gauges, 

a flexible shape acceleration array, and thin tactile pressure sheets along the pile length (Figure 

2.3). Diameter and length of the precast concrete pile were 102 mm and 1.58 m, respectively. The 

three-dimensional (3D) movements of the top level of the pile with respect to the soil surface were 

monitored using two stereo digital image correlation (DIC) systems. The soil-pile interaction was 

monitored by using the DIC instrument as the lateral displacement of the soil increases. Based on 

the results, a linearly increasing pressure is applied by the moving soil along the pile length above 

the sliding surface. The measured data was used to develop the soil-pile interaction force versus 

displacement (i.e., p-y curves) for the passive loading condition. 

2.5 LOADING CONDITION 

Bohn et al. (Bohn et al., 2015) proposed new transfer curves based on a database of 50 

instrumented pile load tests without the need for pressure-meter tests as opposed to the existing 

transfer curves. The existing curves were first compared to the measurements at the pile shaft and 

at the tip. Then the parameters of the most appropriate curve were calibrated to provide a single 

set of parameters applicable for most pile and ground types. The curves resulted from this method 
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were in good agreement with the overall load-settlement curve of 72 pile load tests. Figure 2.4 

shows the curve at the tip and shaft of a pile from the mentioned pile load tests. 

 

 

Figure 2.3 Instrumentations of the soil-pile system including the two soil boxes with the 

loading setup, displacement, rotation, pressure sheets, and acceleration array 

instrumentation (Suleiman et al., 2014). 
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Figure 2.4 Main results of an instrumented load test with removable extensometer: (a) load-

settlement curve for head and tip; (b) shaft load distribution between blockers 

and extrapolation for tip load; (c) skin friction load transfer curve (Bohn et al., 

2015). 

Dias and Bezuijen (2018) presented a framework for pile analysis leading to a discrete formulation 

applicable to different properties along the pile depth as well as any profile of soil settlements 

which is the case in deep excavations. For calibration of the model, a field load test was used to 

illustrate the benefits of including the unloading path and the relative settlement variable. The 

axial stress curve of the test versus the depth of pile has been depicted in the Figure 2.5, which 

shows a good agreement with the experiment. 

Su and Zhou (2015) determined the effects of the loading direction on the behavior of laterally 

loaded pile groups by using a comprehensive experimental study. Pile groups with various 

configurations embedded in sand were subjected to lateral loads along different horizontal 

directions. The results show that the loading direction has a predominant effect on the evolution 

and eventual distribution of force among piles in the pile group, the bending responses along the 

piles, and the total lateral resistance of the pile group. The effect of the loading direction on the 

behavior of the pile group is affected by the group configuration. As a result, the pile group at 
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medium spacing is more sensitive to changes in the loading direction. Figure 2.6 compares the 

proportion of the total lateral load carried by each pile at 0:2D lateral displacement in the four 

tests. 

 

Figure 2.5 Axial stress along the length of the pile during loading (solid and dashed lines 

stand for test and model, respectively) (Dias & Bezuijen, 2018). 

 

 

Figure 2.6 Influence of the loading direction on the response corresponding to the deflection 

of 0:2D for the 2 × 2 pile group at 5D × 5D spacing: (a) lateral load; (b) lateral 

load distribution (Su & Zhou, 2015). 
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2.6 STEEL PILES 

Basack and Nimbalkar (2018) carried out small-scale laboratory tests with steel-pile groups in a 

remolded soft clay and sand layers. The test setup included static and cyclic loading devices, large-

scale confining mold, central driving unit, and other peripheral devices. The cylindrical steel 

confining mold was utilized for retaining the compacted test bed of soft clay or layered soil. The 

mold had an internal diameter of 400 mm and an overall height of 650 mm. The layered soil 

comprised an upper layer of medium dense sand overlaying a soft clay bed. Experiments were 

carried out using instrumented and non-instrumented pile groups (2×2), with each steel-pipe pile 

having a 20-mm outer diameter, 5-mm thickness, and 500-mm overall length (depth of 

embedment = 400mm with length-to diameter ratio of 20). Two-dimensional (2D) plane-strain FE 

(2D FE) analysis was carried out using PLAXIS 2D Dynamic 2015. Embedded piles in PLAXIS 

2D Dynamic 2015 were composed of beam (3-node line) elements. Based on the hyperbolic and 

parabolic patterns for lateral and vertical post-cyclic loadings, the load-displacement response was 

curvilinear. The average deviation between the test data and FEM results was reported to be 

approximately 5 to 10%. The post-cyclic load-displacement responses were found to degrade as 

the number of load cycles increased. The proposed 2D FE model was found to yield results close 

to the experimental data (Figure 2.7). 
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Figure 2.7 Estimation of the ultimate capacities of the pile group tested by Basack et al. 

(Basack & Nimbalkar, 2018). 

Bhowmik et al. (2016) investigated the dynamic pile response under vertical load experimentally 

and numerically using Abaqus commercial software. The small-scale experimental data was used 

to verify and calibrate the model parameters. The resonant amplitude of the pile foundation 

increases and the resonant frequency decreases with the increase in excitation moment. The 

slippage between the pile and soil during vibration results in stiffness reduction of the pile-soil 

system. The maximum slippage between the pile and soil occurs close to the ground surface while 

the slippage decreases parabolically along the depth as shown in the Figure 2.8. 
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Figure 2.8 Maximum vertical slippage of steel pile surface along the length of the pile 

(Bhowmik et al., 2016). 

Kim and Jeong (2011) proposed a 3D finite element (FE) model to simulate the behavior of a 

single pile under lateral loads in clay using PLAXIS 3D Foundation (Brinkgreve et al., 2007). 

Figure 2.9 shows the typical 3D FE mesh used to analyse a pile subjected to lateral loads. The 

width and height of model boundaries were 11 times the pile diameter (D) and 1.7 times the pile 

length (L), respectively. The aforementioned dimensions were considered satisfactory to eliminate 

the influence of boundary effects on the pile performance (Wallace et al., 2002). The mesh 

consisted of 17,500 nodes with the configuration of 15-node wedge elements and the outer 

boundary of the soil was fixed against displacements. To verify the FE model, the lateral load test 

results at Incheon site were employed to test the 3D FE model predictions. The comparison of the 

p–y curves from model and experiment along with models proposed by Matlock (1970) and 

O’Neil (1984) is presented in Figure 2.10. 
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Figure 2.9 Schematic presentation of generated mesh for FE analysis of a single pile under 

lateral loads in clay (Kim & Jeong, 2011) 

Tamura et al. (2012) investigated the effect of existing piles on new pile installation with cyclic 

lateral-loading centrifuge tests at the center of 2×2 existing pile in addition to the two-dimensional 

(2D) FEM analyses of the horizontal cross sections. Based on the results, adding a new pile to an 

existing pile group results in a slight increase in the lateral resistance of the corresponding pile. 

Furthermore, add a pile to pile group increases the horizontal reaction of the each pile near the 

soil surface while decreases the horizontal reaction near the tip of the pile. 
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Figure 2.10 Comparison of p–y curves for steel pile: (a) 2D depth; (b) 4D depth (Kim & 

Jeong, 2011). 

2.7 PILE INSTALLATION 

Upon installation of a pile, the soil surrounding the pile is heavily distorted. Thus, the installation 

phase is generally not directly modeled in the FE analysis. Dijkstra et al. (2011) modeled the 

installation phase of a displacement pile using two numerical methods. In the first approach, the 

pile was considered to be fixed, while the soil moves along the pile similar to procedure provided 

by Berg et al. (1996; 1994). In this approach, the entire pile installation phase is considered a non-

stationary flow of soil, as not all material has passed through the entire domain. At the end of pile 

installation, a stationary phase is reached, and the calculated stresses and strains are numerically 

correct. This modelling approach requires somewhat unrealistic boundary conditions and requires 

that the results for the pile installation are for a non-stationary phase of the calculation, while 

formally only the values at the stationary full penetration phase are reliable. Figure 2.11 shows a 

schematic configuration of the test setup for fixed and moving pile. 
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Figure 2.11 Geometry and boundary conditions for the two modelling approaches of the 

centrifuge test (Dijkstra et al., 2011). 

To overcome the mentioned limitations, a second modelling approach was introduced by Dijkstra 

et al. (2011). In the new approach, the initial conditions are set at soil surface with zero stress 

level, increasing linearly with depth. Moreover, the stepwise penetration of the pile into the soil 

was achieved by using gravity loading stages. This approach updates the geometry of the problem 

domain and keeps updating the convective terms in a fixed mesh. The results were compared with 

experimental data from centrifuge tests. Although both models show the porosity change near the 

pile shaft and development of large effective vertical stress below the pile base, there were 

differences in the experimental results especially the stiffness response during pile installation. 

By comparing the calculated and measured values of the effective vertical stress below the pile 

base, as well as the porosity change near the pile shaft, large differences were observed for both 

the fixed and moving pile approaches. In particular, the stiffness during pile installation is difficult 
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to model. The moving pile approach is not in good accordance with the centrifuge test data, but 

an acceptable agreement with experimental penetration tests was observed near the surface level. 

The stress distribution of loose, medium dense and dense soil is shown in Figures 2.12 and 2.13 

for fixed and moving pile. Based on a study conducted by Russo (2016), the installation procedure 

has less significant effect on piles under lateral loading with respect to those under axial loading. 

The load–deflection relationship is markedly nonlinear from the early stages of loading while the 

relationship between the applied head load and the observed maximum bending moments is 

approximately linear up to the corresponding displacement to the failure. 

Zarrabi and Eslami (2016) studied the construction effects on the pile performance by using the 

frustum confining vessel of Amirkabir University of Technology (FCV-AUT) as shown in Figure 

2.14. Six different installation methods for pile were investigated including jacking, drilling and 

grouting, driving, screwing, drilling and placing, and postgrouting. Up to 30 axial compressive 

and tensile load tests were carried out on different piles embedded in Babolsar sand, from the 

northern coast of Iran, with relative densities of 45% to 50% by using FCV-AUT instrument. 

Experimental results showed that among different pile installation methods, jacked and precast-

in-place piles had the greatest and lowest axial strength, respectively (Figure 2.15). Moreover, the 

performance results of the different pile types in the experiment indicate that the axial bearing 

capacity of piles can be increased by using a cost-effective installation method. These 

modifications can lead to a reduction in the number and size of piles, and consequently result in 

cost-effective construction and time requirements. 
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Figure 2.12 Fixed pile; calculated horizontal and vertical effective stress distribution upon 5 

m of pile installation for three different initial soil densities (Dijkstra et al., 2011). 
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Figure 2.13 Moving pile; calculated horizontal and vertical effective stress distribution upon 

5 m of pile installation for three different initial soil densities (Dijkstra et al., 

2011). 
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Figure 2.14 The FCV-AUT: (a) schematic diagram; (b) photograph (Zarrabi & Eslami, 

2016). 

 

Figure 2.15 Compressive and tensile capacities of piles with different installation methods 

(Zarrabi & Eslami, 2016). 
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2.8 CONCRETE-FILLED FRP TUBES (CFFTS) 

In 1996, Mirmiran and Shahawy (1996) initially proposed CFFTs as a mold for concrete, similar 

to conventional concrete-filled steel tubes. The results of uniaxial compression tests for CFFTs 

were compared with confinement models available in the literature (Mirmiran & Shahawy, 1997). 

Mirmiran et al. (2000) suggested a nonlinear finite analysis model (NFEM) with non-associative 

Drucker-Prager plasticity to predict stress-strain curves from test results. Fam and Rizkalla (2003; 

2001a) investigated the behavior of CFFTs under uniaxial compression and under combined 

bending and axial loads. Mohamed and Masmoudi (2010a, 2010b) conducted a theoretical and 

experimental investigation of the flexural and axial behavior of concrete-filled FRP and steel 

tubes. Fam et al. (2005) studied glass FRP concrete-filled rectangular filament-wound tubes under 

axial and flexural loading. Ozbakkaloglu and Oehlers (2008) suggested a new method for making 

rectangular FRP tubes with unidirectional FRP sheets under axial compression. El-Nemr et al. 

(2016) studied the dynamic response of confined FRP tubes filled with concrete embedded in 

sandy soil. The results indicated that the fiber orientation and the elastic modulus of sand have a 

significant influence on the pile-displacement response under dynamic loading conditions. 

Fam and Rizkalla (2001b) proposed an analytical model to predict the behavior of circular CFFTs 

by considering the biaxial state of stress in the FRP tube. Zhu et al. (2006) suggested a model for 

CFFTs embedded in a reinforced concrete footing, and conducted a parametric study of different 

column configurations. A case study was conducted by Pando et al. (2006) on CFFTs used in the 

foundation of a bridge on route 40 in Virginia, under axial and lateral loading. Nelson et al. (2008) 

explored the effect of moment connection of CFFTs to a concrete footing, and considered the 

bond strength and critical embedment length. Sadeghian and Fam (2010, 2011) provided an 

analytical model for moment connections of CFFT piles embedded directly in the footing under 

lateral and axial loads, based on deformation compatibility, equilibrium, and nonlinear concrete 
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stress-strain behavior. A parametric study was also conducted for parameters such as the diameter, 

thickness, and length of the composite pile. Furthermore, Sadeghian et al. (2011) conducted an 

experimental and numerical investigation of the moment connection of CFFTs with footings under 

monotonic and cyclic loading, and obtained critical stub lengths with different parameters. 

2.9 MODELING 

Hazzar et al. (2017) performed a 3D finite-difference (FD) analyses to evaluate the effects of 

vertical loads on the behavior of laterally loaded piles in layered soils corresponding to several 

configurations: homogeneous sandy or clayey soil layers, inhomogeneous clay layers, and 

multilayered strata. The validation of the proposed model was verified with two different 

published load tests, and then a parametric study was performed to investigate the effects of 

vertical loads on the lateral resistance and bending moment of the piles. Figure 2.16 shows the 

lateral load-deflection curves of piles in dense sand (Dr = 60%) with different percentages of 

vertical load (V). Numerical results showed that the lateral resistance of the pile did not vary 

considerably with vertical loads in a homogeneous sandy soil. On the other hand, applying vertical 

loads on a pile embedded in clayey soil was discovered to be detrimental to its lateral capacity 

leading to a non-conservative design. 
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Figure 2.16 Lateral load-deflection curves of piles in dense sand (Hazzar et al., 2017). 

Ladhane and Sawant (2016) developed a three-dimensional (3D) finite-element program for 

dynamic analysis of pile groups with interface elements to simulate the stress transfer between 

soil and pile under lateral load. Since flexural failure is predominant in piles and the failure of soil 

is controlled by its shear properties, eight-node and 20-node continuum elements were utilized to 

model the soil and pile, respectively. It is observed that the peak amplitudes of dynamic response 

reduce with an increase in pile spacing. A parametric study was conducted to investigate the effect 

of pile spacing, number of piles, arrangement of pile, and soil modulus on the behavior of pile 

group. 

Based on the concept of the subgrade reaction theory, Zhang et al. (2013) proposed semi-

analytical solutions using the power-series method to evaluate the response of a vertical pile with 

different cross sections and embedded in a multilayered soil system to support lateral loads at the 

head level. For the present method, the moduli of the lateral subgrade reaction were assumed to 
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be of constant depth for clay soil and of linearly increasing depth for sandy soil. The solution was 

verified by back-predicting responses of laterally loaded piles in two existing cases. Furthermore, 

four hypothetical cases for laterally loaded piles were considered in uniform and layered soil. By 

comparing results, it was noticed that the pile response was controlled by the subgrade soil 

stiffness at shallow depth of nearly 3–4 times the pile diameter. 

2.10 DISTURBED STATE CONCEPT (DSC) 

Desai (2001, 2015) proposed DSC damage model initially for granular materials such as sand and 

clay to model their corresponding post-peak behavior. Toufigh et al. (2016) investigated the 

behavior of polymer concrete under uniaxial compression test by using DSC and hierarchical 

single surface (HISS) plasticity model. HISS is a single-surface failure criterion meaning that it 

has no singularity point, which results in a more convenient yield surface with respect to other 

conventional models. In 2017, Toufigh et al. (2017) studied the elastoplastic behavior of polymer 

concrete as well as ordinary concrete under triaxial compression loading by using the NFEA along 

with the DSC damage model and the HISS failure criterion. Based on the results, the modeling 

results were in good agreement with experimental data meaning that the model is applicable to 

polymer concrete as well as ordinary concrete. 

2.11 RESEARCH GAPS 

Numerical simulation of test on piles often leads to errors and inaccuracies due to essentially the 

difficulty of taking account of installation effects and reproduce soil structure interface behavior. 

The application of fiber-reinforced plastics (FRP) in soil foundation has been mostly focused on 

FRP-wrapped piles. Using FRP as a formwork for the concrete piles results in: (a) reducing 

construction costs since no external molds are needed for pile installation, and (b) reducing long-

term maintenance costs due to the fact that FRP laminate provides protection for concrete against 
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corrosive materials in the surrounding soil.  

Although several studies have been conducted on the structural behavior of regular concrete piles 

and CFFT columns in the literature (Mirmiran & Shahawy, 1996, 1997; Mirmiran et al., 2000; 

Ozbakkaloglu, 2013), the lateral behavior of CFFT piles was not previously investigated 

numerically by using disturbed state concept (DSC). The interaction of concrete, FRP and soil is 

of great importance in geotechnical applications since it affects the pile load-bearing capacity as 

well as the soil stresses along the pile depth. Moreover, the application of FRP laminates in new 

structures as well as repair and rehabilitation of existing foundations requires a numerical 

modeling on the CFFT piles. It should be noted that the behavior of CFFT piles is more complex 

than that of conventional columns due to interface with the surrounding soil. 
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CHAPTER 3 NONLINEAR FINITE ELEMENT ANALYSIS 

3.1 INTRODUCTION 

To model the mechanical behavior of composite piles, a numerical model was developed using 

MATLAB software using nonlinear finite element analysis (NFEA). The geometrical and material 

nonlinearity was considered in the developed model in the form of large deformation and Mohr-

Coulomb failure criterion. The details of the developed nonlinear finite element model based on 

large deformation and Mohr-Coulomb failure criterion procedure has been discussed in this 

section. 

3.2 FAILURE CRITERIA 

In order to define the elastoplastic behavior of a material, it is important to determine the failure 

initiation and damage evolution. The failure criterion defines the zone of elastic response, and it 

is corresponded to axial and lateral stresses. Therefore, the failure criterion can be expressed as 

follows (Zienkiewicz & Taylor, 2005): 

( , ) a lF F    (3.1) 

where F is the failure criterion function, and a  and l  are axial and lateral stresses at which the 

failure occurs, respectively. Generally, it can be represented by using six components of stress (

 ) as follows: 

( )F F   (3.2) 

With the assumption of isotropic material, F can be reduced to: 

1 2 3( , , )F F     (3.3) 
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in which 1 2 3, and    are the principal stresses. The yield function is typically defined by using 

the invariant stress tensor including 1 2 3, andJ J J  derived from the total stress tensor, as follows: 

1 2 3( , , )F F J J J  (3.4) 

Since the volumetric components of these stresses are not included in all plasticity models, they 

are usually defined by deviatoric components of 2 3andJ J stresses indicated by 2 3andD DJ J : 

1 2 3( , , )D DF F J J J  (3.5) 

where: 

2 3

1 2 3

1 1 1 1
; ( ) ; ( )

2 2 3 3
ii ji ij ik km miJ J tr J tr             

2 3

1 1
;

2 3
D ji ij D ik km miJ S S J S S S   (3.6) 

in which 
ij  and 

ijS  are the total and deviatoric stress tensor, respectively. The indices 

, , 1,2,3i j k  represent the three components in the Cartesian coordinates for three-dimensional 

(3D) problems. 

3.3 MOHR-COULOMB PLASTICITY MODEL 

Mohr-Coulomb (MC) failure criterion can consider the friction of granular materials such as soil 

and concrete. The shape of MC in principal stress coordinates is a hexagonal cone as can be seen 

in Figure 3.1. One of the characteristics of this plasticity model is that it can result in different 

material strengths based on the loading path (Figure 3.2). Hence, it can provide better plasticity 

behavior for granular materials such as soil and concrete with respect to basic models such as 
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Tresca and Von Mises (Desai, 2001). 

 

Figure 3.1 Comparison of Mohr-Coulomb, Tresca and Von Mises failure criterions in the 

principal stress coordinates (Desai, 2001). 

 

Figure 3.2 Schematic representation of Mohr-Coulomb (MC) failure envelope under 

different loading paths, where C: compression, E: extension or tension and S: 

shear (Desai, 2001). 
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The Mohr-Coulomb yielding function can be defined as (Khoei, 2005): 

2

1 2sin cos sin sin cos 0
3

D

D

J
F J J c          (3.7) 

where c and φ are cohesion and internal friction angle and θ can be written as: 

1 3

3/2

2

1 3 3
sin ( )

3 2

D

D

J

J
    (3.8) 

which is in the range of 
6 6

 


 
  . 

3.4 GENERAL PROCEDURE OF ELASTOPLASTIC EQUATIONS 

The increment of total strain matrix of elastoplastic materials can be represented by two parts: 

elastic ( ed  ) and plastic ( pd  ) components as follows: 

e pd d d     (3.9) 

The increment of elastic strain can be written in terms of elastic strain increment as: 

e ed C d   (3.10) 

where eC  is the elastic stiffness matrix which depends on elastic modulus and Poisson's ratio. 

Based on the plasticity theory, the increment of plastic strain can be defined as (Khoei, 2010): 

p dQ
d

d
 


  (3.11) 

in which,   is a positive scalar parameter. By using compatibility condition of 0dF   and partial 

derivate rule: 
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( ) 0TdF dF
d d

d d
 

 
     (3.12) 

where d  can be written as: 

1/2

1/2

1/2

[( ) ]

[ ( ) ( )]

[( ) ( )]

p T p

T

T

f

d d d

dQ dQ

d d

dQ dQ

d d

  

 
 


 



 

 

 



 (3.13) 

Therefore, Eq. 3.12 will be modified to: 

( ) 0T

f

dF dF
d

d d
  

 
      (3.14) 

By substituting d  from Eq. 3.10 and ed  from Eq. 3.9, the above equation will be modified to: 

( ) ( ) 0T e p

f

dF dF
C d d

d d
   

 
        (3.15) 

In addition, the plastic increment ( pd ) can be plugged in from Eq. 3.11, which yields: 

( ) ( ) 0T e T e

f

dF dF dQ dF
C d C

d d d d
   

   
       (3.16) 

As a result, the value of   can be presented as: 

( )

( )

T e

T e

f

dF
C d

d

dF dQ dF
C

d d d







  

 



  

 (3.17) 
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Plugging the above equation into Eq. 3.10 yields: 

( )

( )

( )

e p

e T e

e

T e

f

d C d d

dQ dF
C C

d d
C d

dF dQ dF
C

d d d

  

 



  

 

 
 
  
   
  

 (3.18) 

The value in the brackets stands for elastoplastic stiffness matrix ( epC ). 

3.5 DISTURBED STATE CONCEPT (DSC) 

Based on the damage model proposed by Desai (2001), the material behavior can be divided into 

two parts including undisturbed and disturbed components. The disturbed behavior can be 

represented by the relative movement of material particles due to different factors such as micro 

cracks, slippage and rotation of material particles. Hence, the conventional concept of stress at an 

arbitrary point of the material /P A   is not valid.  The schematic representation of disturbed 

state concept (DSC) is shown in Figure 3.3; the material response is shown in relatively intact 

(RI) or elastically deformed behavior as well as fully adjusted (FA) or fully damaged behavior. 

The RI behavior depends on the type of material as well as elastic modulus and Poisson’s ratio. 

For instance, RI response for a material with nonlinear elastic behavior can be defined as an elastic 

material without micro cracks. For elastoplastic behavior, however, it can be defined as elastic-

perfectly plastic response. As a result, the plasticity will affect the computation load of RI behavior 

in the NFEA implementation. 
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Figure 3.3 Schematic figures of DSC with elastic (e) and elastoplastic (ep) RI behaviors 

(Desai, 2001). 

The actual FA response is practically not obtainable by laboratory testing. Hence, the residual 

strength of material obtained in the laboratory tests can be used for FA behavior. 

3.6 THE DSC FORMULATION 

Using equilibrium of forces in the material element composed of disturbed and undisturbed parts 

yields (Desai, 2001): 

exp i cF F F   (3.19) 

where expF , cF  and iF stand for the experimental force, RI force and FA force, respectively. 

By dividing both sides of Eq. 3.19 to total area of element (with unit height), the above equation 

can be written as: 

exp i i c c

i c

F F A F A

A A A A A
     (3.20) 

in which 
iA  and 

cA are the corresponding area to RI and FA parts, respectively as shown in 
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Figure 3.4. Therefore: 

exp
i c

i cA A

A A
     (3.21) 

where exp , i  and c  are stresses in experimental, RI and FA states, respectively. This equation 

in 3D can be written as (Desai, 2015): 

exp (1 ) i c

ij ij ijD D      (3.22) 

where D is the disturbance function ( /cD A A ). Thus, the increment of disturbance function 

will be: 

exp (1 )d ( )i c c i

ij ij ij ij ijd D Dd dD d           (3.23) 

 

Figure 3.4 Schematic figure of material element composed of RI and FA parts (Desai, 

2001). 
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The proposed model is based on the DSC damage model, which can be formulated as the 

decomposition of material behavior into its relatively intact (RI) and fully adjusted (FA) 

components. A schematic representation of the DSC damage model is shown in Figure 3.5, where 

the white and black areas represent the RI and FA components, respectively. In its initial response, 

all of the material is RI, without any visible cracks. As applied loading increases, the FA response 

becomes more predominant, and the propagation of cracks results in entirely FA behavior at 

failure. According to the concept proposed by Desai (2001), the disturbance can be represented 

as: 

Z
DA

uD D (1 e )
 

 
 (3.24) 

where Du is the ultimate value of the disturbance, and A and Z are material parameters, and ζD is 

the trajectory of deviatoric plastic strain: 

1

p p 2
D ij ij(dE dE )    (3.25) 

where Eij is the deviatoric strain tensor of the total strain tensor εij. The disturbance of the stress-

strain curve can be generally represented as: 

RI exp

RI FA
D

 

   (3.26) 

where σRI, σFA and σexp represent relatively intact (RI), fully adjusted (FA) and experimental 

stresses, respectively. In the modeling procedure, the RI and FA states are correlated as a function 

of deviatoric plastic strain (see Figure 3.6). As shown in the graph, the disturbance increases as 

the cracks propagate in the specimens. Eqs. (1) and (3) represent two arbitrary points on the 

experimental curve, to find the A and Z parameters. 
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Figure 3.5 Schematic representation of DSC damage model based on the concept by Desai 

(2001) 

The three parameters Du, A, and Z are the disturbance parameters used to predict the mechanical 

behavior of the corresponding material in experimental or field tests. The residual strength and 

confining conditions control the FA behavior, whereas the elastic modulus and type of adhesive 

material affect the RI behavior. Once the disturbance parameters are defined for each specimen, 

stress increments can be obtained from the following equation (Desai, 2015): 

ep ep RI FA

ij ijkl kl ij ppkl kl ij ij

D
d (1 D)C d C d dD( )

3
         

 (3.27) 

The disturbance value (D) equals zero in the pre-failure stage. Models that can be used to predict 

the RI response of the material range from simple mathematical models to constitutive models 

such as the Mohr-Coulomb failure criterion. In this research, NFEA and the Mohr-Coulomb 

failure criterion are used to predict the RI response. 

3.7  MODELING PROCEDURE 

The flowchart of modeling procedure has been shown in Figure 3.6. In the first step, the 
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parameters of the generated model were defined in six sections: a) generating a mesh for the 

geometry of the pile, FRP tube and surrounding soil; b) defining the nodal freedom of the problem 

which was fixed nodes for the boundaries of soil except the top surface as well as the node 

corresponding to prescribed lateral load applied at the top of composite pile; c) applying the lateral 

load at the top of CFFT pile; d) the number of loading steps was chosen to be 100 steps; e) defining 

the elastic parameters and stiffness matrix; f) the Gaussian points were also defined in this phase. 

In the next phase, the stress, strain, displacement and forces were initialized with zero values. 

In the third phase of modeling, the first lateral loading increment was applied to the composite 

pile. The failure of each of eight Gaussian’s point was checked: if it failed the elastic matrix was 

corrected by elastoplastic matrix, otherwise plastic correction was not needed. The large 

deformation procedure was formulated in several iterations to meet the required error tolerance 

defined which was 0.01 for relative displacements. This loop of loading increments was continued 

until reaching the last step. Afterwards, the DSC damage model was applied to consider the 

softening behavior of granular material including concrete and soil. The discussion of the 

elastoplastic formulation used in each loading increment has been discussed in the following 

sections. 
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Figure 3.6 Flowchart of the proposed model for CFFT and normal concrete piles under lateral 

loading. 

3.7.1 BASIC EQUATIONS OF CONTINUUM DEFORMATION 

This second-order model can be used to simulate the behavior of sands and gravel as well as softer 

types of soil such as clays and silts. The static equilibrium of a continuum can be formulated as 

(Zienkiewicz & Taylor, 2005): 

T
L σ+b = 0   (3.28) 

This equation relates the spatial derivatives of the six stress components, assembled in the vector 

σ , to the three components of the body forces, assembled in vector b . T
L  is the transpose of a 

differential operator, defined as: 

0 0 0

0 0 0

0 0 0

x y z

y x z

z y x

   
 
  
 
   

  
  

 
   
 

   

T
L

  (3.29) 



40  

In addition to the equilibrium equation, the kinematic relation can be formulated as ε = Lu  which 

expresses the six strain components, assembled in vector ε , as the spatial derivatives of the three 

displacement components, assembled in vector u , using the previously defined differential 

operator L. The link between Eqs. 3.28 and kinematic relation is formed by a constitutive relation 

representing the material behavior. The equilibrium equation is reformulated in a weak form 

according to Galerkin's variation principle: 

( ) 0
T T

δu L σ +b dV
 (3.30) 

In this formulation, δu  represents a kinematically admissible variation of displacements. 

Applying Green's theorem for partial integration to the first term in Eq. 3.30 leads to: 

  
T T T

δε σdV = δu bdV + δu tdS
 (3.31) 

This introduces a boundary integral in which the boundary traction appears. The three components 

of the boundary traction are assembled in the vector t. Eq. 3.31 is referred to as the virtual work 

equation. The development of the stress state σ  can be regarded as an incremental process: 

1i i σ σ Δσ  (3.32) 

In this relation, i
σ  represents the actual state of stress which is unknown and 1i

σ  represents the 

previous state of stress which is known and the stress increments are represented by Δσ . If Eq. 

3.31 is considered for the actual state i, the unknown stresses i
σ  can be eliminated using Eq. 3.32: 

   
T T i T i T i-1

δε ΔσdV = δu b dV + δu t dS - δε σ dV
 (3.33) 



41  

3.7.2 FINITE ELEMENT DISCRETIZATION 

According to the finite element method a continuum is divided into a number of (volume) 

elements. Each element consists of a number of nodes. Each node has a number of degrees of 

freedom that correspond to discrete values of the unknowns in the boundary-value problem to be 

solved. In the case of deformation theory, the degrees of freedom correspond to the displacement 

components. The displacement field u is obtained from the discrete nodal values in a vector v 

using shape functions assembled in matrix N: 

u = Nv  (3.34) 

The interpolation functions in matrix N are often denoted as shape functions. Substitution of Eq. 

3.34 in the kinematic relation gives: 

ε = LNv Bv  (3.35) 

In this relation B is the strain interpolation matrix, which contains the spatial derivatives of the 

interpolation functions. Eqs. 3.34 and 3.35 can be used in variational, incremental and rate form. 

Eq. 3.33 can now be reformulated in discretized form as: 

( ) ( )   
T T i T i T i-1

Bδv ΔσdV = (Nδv) b dV + (Nδv) t dS - Bδv σ dV
 (3.36) 

The discrete displacements can be placed outside the integral and canceled out for any 

kinematically admissible displacement variation 
T

δv  leading to the following equation: 

   
T T i T i T i-1

B ΔσdV = N b dV + N t dS - B σ dV
 (3.37) 

The above equation is the elaborated equilibrium condition in discretized form. The first term on 

the right-hand side together with the second term represent the current external force vector and 
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the last term represents the internal reaction vector from the previous step. A difference between 

the external force vector and the internal reaction vector should be balanced by a stress increment 

(Δσ ). 

The stress-strain increments have a nonlinear relation in most applications. As a result, strain 

increments can not be generally calculated directly, and global iterative procedures are required 

to satisfy the equilibrium condition Eq. 3.37 for all material points. 

3.7.3 IMPLICIT INTEGRATION OF DIFFERENTIAL PLASTICITY MODEL 

The stress increments are obtained by integration of the stress rates according to Eq. 3.32. For 

differential plasticity models the stress increments can generally be written as: 

( ) e p
Δσ C Δε Δε  (3.38) 

In this relation, Ce represents the elastic material matrix for the current stress increment. The strain 

increments Δε  are obtained from the displacement increments Δv  using the strain interpolation 

matrix B, similar to Eq. 3.37. For elastic material behavior, the plastic strain increment 
p
ε  is zero. 

For plastic material behavior, the plastic strain increment can be written, according to Vermeer 

(1979), as: 

1

Δλ (1 )

i i
g g

 

     
      

      

p
Δε

σ σ
 (3.39) 

In this equation, Δλ  is the increment of the plastic multiplier and   is a parameter indicating the 

type of time integration. For   = 0 the integration is called explicit and for   = 1 the integration 

is called implicit. Vermeer (1979) has shown that the use of implicit integration (  = 1) has some 

major advantages, as it overcomes the requirement to update the stress to the yield surface in the 
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case of a transition from elastic to elastoplastic behavior. Moreover, it can be proven that implicit 

integration, under certain conditions, leads to a symmetric and positive differential matrix / ε σ

, which has a positive influence on iterative procedures. Because of these major advantages, 

restriction was considered over other methods. Hence, the plastic strain for   = 1 can be written 

as: 

Δ

i
g


 

  
 

p
Δε

σ  (3.40) 

Substituting this equation in Eq. 3.38 and subsequently Eq. 3.32 yields: 

i tr   eσ σ C ε  (3.41) 

In this relation, 
tr

σ is an auxiliary stress vector that referred to as the elastic stresses or trial 

stresses, which can be represented as: 

1tr i  eσ σ C ε  (3.42) 

The increment of the plastic multiplier   can be solved from the condition that the new stress 

state has to satisfy the yield condition: 

( ) 0if σ  (3.43) 

For perfectly-plastic and linear hardening models the increment of the plastic multiplier can be 

shown as: 

( )
Δ

trf

d h
 



σ

 (3.44) 

where: 
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tr i

ef g
d

    
    

    

σ

C
σ σ

 (3.45) 

The symbol h denotes the hardening parameter, which is zero for perfectly-plastic models and 

constant for linear hardening models. 

3.7.4 MATERIAL AND GEOMETRY NONLINEARITY 

To satisfy the equilibrium conditions between internal and external forces, the norm of the 

following residual stress (ψ) must approach zero through the required iterations (Khoei, 2005): 

V

V

d ψ Bσ F

 (3.46) 

where F represents the external force tensor, V represents the volume of the specimen, σ 

represents the Cauchy stress tensor, and 𝐁̅ represents the tensor for the increments of strain and 

displacement (∆𝛆 = 𝐁̅∆𝐮̅). The shape functions used for numerical integration corresponding to 

the mapped hexahedron elements were defined as: 
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 (3.47) 

where ξ, η and ζ are the unit coordinates for the mapped hexahedron element.  To find the value 

of stress for each loading step, the increment of stresses can be expressed as: 

ij ijkl kl (i, j, k, l 1,2,3)   σ C ε
 (3.48) 
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where C is the stiffness matrix, which can be elastic (Ce) or elastic-plastic (Cep), depending upon 

whether the corresponding Gaussian point has yielded or not. The indices i, j, k and l are tensor 

indices. The elastic-plastic stiffness matrix can be expressed as (Akhaveissy et al., 2009): 

e e
ep e

eH
 



T

T

C nn C
C C

n C n
 (3.49) 

where H is the hardening modulus, and n is the flow rule vector that shows the growth direction 

of the failure surface. 

3.8 MODEL LIMITATIONS 

 The FRP tube was assumed to be homogenous and isotropic. 

 The initial soil stresses due to installation phase was assumed to be zero. 

 The model cannot capture small deformations as opposed to large deformations. 

 The effect of axial load on the lateral behavior of the pile was not considered. 
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CHAPTER 4 CALIBRATION AND PARAMTERIC STUDY 

4.1 INTRODUCTION 

The failure of bridge foundations exposed to corrosion in a marine environment can result in the 

collapse of the entire structure. Therefore, this issue is an important concern for civil engineers 

and governments in the design of stable infrastructures since the safety and durability of the bridge 

structures necessitates long-term maintenance costs. Replacing corroded piles can be difficult and 

expensive due to the fact that the bridge superstructure is relying on the foundation (Roddenberry 

et al., 2014). For this reason, highway agencies and researchers have begun to investigate the use 

of anti-corrosive materials and the viability of protecting bridge piles with composite materials 

such as fiber-reinforced polymer (FRP) composites, especially in the form of concrete-filled FRP 

tube (CFFT) piles (Fam et al., 2003). 

It is important to consider the interaction of CFFTs and soil, since the behavior of underground 

piles is more complex than that of conventional columns. In the present research, a nonlinear finite 

element model is developed to predict the mechanical behavior of CFFT piles embedded in soil. 

The damage model and failure criterion used in the proposed model are based on the disturbed 

state concept (DSC) and the Mohr-Coulomb failure criterion, respectively. To verify the 

computational results, experimental data from precast CFFT piles used in the construction of a 

new bridge on route 40 in Virginia (Pando et al., 2006) were used to obtain the model parameters 

for different lateral loadings, from 48.9 to 120.1 kN. Moreover, a parametric study was carried 

out to determine the effects of the specimen length to diameter ratio, FRP tube thickness, concrete 

strength, and surrounding soil. 
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4.2 NUMERICAL MODELING 

The two main structural components of CFFT piles are the concrete infill and the FRP tube. The 

relative stiffness of these two components controls the pile performance in relation to vertical and 

lateral loads. A numerical model based on the DSC damage model and the Mohr-Coulomb failure 

criterion is developed to predict the elastic-plastic behavior of CFFT piles under various lateral 

loading conditions, by using nonlinear finite element analysis in three dimensions. The interface 

of composite piles with the confining soil is also investigated in the proposed model. 

4.2.1 PROPOSED MODEL 

The mechanical behavior of CFFTs and concrete piles can be predicted by the proposed model. It 

should be noted that this model can also be used for CFFT columns, which are a special case of 

CFFT piles. The main factors addressed by the model are: (i) the contact problem associated with 

the interface of concrete, FRP laminate and soil, (ii) large deformations, considered in several 

increments and iterations, (iii) the modeling of plasticity by using a hierarchical single surface 

(HISS) failure criterion, and (iv) the softening effect of concrete in compression, based on the 

disturbed state concept. 

Based on the schematic flowchart of the proposed model presented in Figure 3.6, the initial steps 

in developing the model involved defining the problem geometry, the number of steps, the 

elastoplastic parameters, and the Gaussian points for initial interpolation and final extrapolation 

of the stress and strain values. Nodal freedom and loads can be determined by generating a mesh 

of elements for finite element analysis (FEA). 

A three-dimensional mesh of elements was generated for a cylindrical CFFT pile. A schematic 

representation of the generated mesh is shown in Figure 4.1. Total number of elements used for 
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soil, concrete and FRP tube were approximately 85,000, 12,500 and 750, respectively. As can be 

seen in the figure, the boundary conditions were considered by restraining the perpendicular 

displacement along the soil boundaries. It should be noted that the zoomed-in figure shows a more 

accurate representation of the mesh density used in the modeling. Each element was mapped onto 

a cubic element with unit dimensions as shown for an arbitrary element in Figure 4.2. For each 

element, the stresses were calculated for eight quadratic Gaussian points, by using values of 3-1/2 

for the coordinates, with respect to the unit value in each direction (Zienkiewicz & Taylor, 2005). 

After the main calculations were performed, to extract the modeling results, the stress values were 

extrapolated by the same reverse procedure as for the element nodes. Thus, the mapped cubic 

elements with unit dimensions were utilized for the interpolation and extrapolation of stress 

values. 

 

Figure 4.1 Schematic representation of generated mesh for the interface of concrete, FRP 

laminate and soil in the proposed model (The figure is not scaled). 
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Figure 4.2 Schematic configuration of generated mesh in a horizontal direction and mapping 

procedure used for quadratic interpolation and extrapolation of NFEA in three 

dimensions by considering eight Gaussian points 

To address the contact problem resulting from the interface of the composite pile and soil, a 

separate meshes were generated for concrete, soil and contact elements (see Figure 4.1). As can 

be seen in the figure, the interface of the composite pile and soil is represented by the white areas 

between the soil and the concrete. The interface was modeled by using the node-to-node contact 

elements and full bonding between the concrete and FRP laminate was assumed since the shear 

stress was in the range of 35 to 50 kPa, and bond strength ranged from 510 to 820 kPa, based on 

research conducted by Helmi et al. (2005).  Moreover, the friction and normal stress of the FRP 

and concrete with soil were considered in the model. It should be noted that the mesh generated 

was scaled for a schematic illustration of the mesh. 
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The stress, strain, and displacement matrix values were initialized prior to performing the 

calculations. The failure of each Gaussian point was checked by applying the first increment of 

loading. If the Gaussian point has failed, the elastic prediction must be corrected with the 

elastoplastic stiffness matrix.  

4.2.2 LOCAL BUCKLING UNDER AXIAL COMPRESSION 

The critical stress for local buckling can be controlled by using the following procedure: An 

approximate closed form solution for axial loading can be developed to check the local buckling 

of the pile. According to Batdorf (1947), the following equations can be obtained for a cylinder 

with a radius of r, wall thickness of t, and length of L, in considering equilibrium in the axial (z), 

circumferential (θ), and radial (r) directions: 
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     (4.1) 

where w, N, and p represent displacement in the radial direction, applied load per unit length, and 

lateral pressure, respectively. The plate flexural stiffness per unit length (D) can be defined as: 

3

2

Et
D

12(1 )


   (4.2) 

where E and ν represent the elastic modulus and Poisson’s ratio, respectively. For a pure axial 

load of P, N components can be expressed as: 

z z

P
N , N N 0

2 r
   

  (4.3) 
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Introducing these values into Eq. 10 (c) and considering the kinematic and constitutive 

relationships yields: 

4 2
8 4

2 4 2

Et w P w
D w 0

r z 2 r z

  
     

     (4.4) 

The form of solution for this differential equation is: 

m z
w sin sin n

L

 
   

   (4.5) 

where m represents the number of half waves in the z direction, and n represents the number of 

entire waves in the θ direction. Thus, the minimum critical stress would be: 

22 2 2 2 2 2

z,cr 2 2 4 2 2 2

t (m n ) 12Z m

12(1 ) L m (m n )

   
     

       (4.6) 

where n̅ =
nl

𝜋r
  and Z is a Batdorf parameter which can be expressed as (Batdorf, 1947): 

2
2L

Z 1
rt

 
 (4.7) 

For medium-length cylinders, the smallest critical stress can be estimated by minimizing Eq. 15 

with respect to the m and n parameters, as follows: 

22

z,cr 2 2 2

t 4 3 Et
. Z 0.577

12(1 ) L r 1

  
   

      (4.8) 

4.2.3 LOCAL BUCKLING UNDER LATERAL SOIL PRESSURE 

Under an external pressure of p, the applied load components can be expressed as: 



52  

z zN pr, N N 0    
 (4.9) 

Introducing these values into Eq. 10 (c) results in: 

4 2
8 4

2 4 2

Et w p w
D w 0

r z r

  
     

    (4.10) 

The displacement function has the same form as Eq. 14. Similarly, the critical stress would be: 

 

 

2
222 2

,cr 22 2 4 2 2

m npr E t 12Z

t 12(1 ) L n n m n


          
     
   (4.11) 

As can be seen in the equation, one axial wave (m=1) provides the lowest buckling load. 

Minimizing the term in brackets by trial yields: 

2

,cr 2

E t

4(1 ) r


 
   

    (4.12) 

The combined pile loading does not result in local buckling if the following formula is satisfied 

(Odland, 1978): 

2 2
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C 1




   
              (4.13) 

If the local buckling factor (Czθ) is less than one, it can be concluded that applying both lateral 

soil pressure and axial loading to a hollow pile will result in a greater probability of buckling than 

is the case with pure axial compression. Thus, if a hollow pile fails due to buckling at the ground 

surface, there is a higher chance of buckling at the depth of maximum axial stress. 
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4.2.4 MATERIAL PROPERTIES 

Table 4.1 presents the mechanical properties of soil, concrete, and FRP used in the proposed 

model: the elastic modulus (E), Poisson’s ratio (ν), cohesion (c), and the angle of internal friction 

(ϕ). In the model, the friction coefficient (µ) between FRP tube and soil was assumed to be 0.3 

while the value of 5 was considered for the interface of concrete and FRP tube to account for full 

bonding of this interface (Alexandria, 1986). The initial modulus of elasticity (E) for concrete is 

based on the following equation related to the requirements of Committee 318 of the American 

Concrete Institute (ACI) (2014): 

c cE 4700 f '
 (4.14) 

Table 4.1 Mechanical parameters used in the proposed model 

 
Parameter Concrete 

Soil 

FRP 

 
Sand Clay 

Elasticity 

E (MPa) 30,241 9.32 8.15 15,162 

ν 0.2 0.29 0.3 0.32 

Plasticity 

c (MPa) 6.43 0.1 5.0 - 

ϕ (deg) 55.51 34.0 29.0 - 

 

where Ec and f’c represent the elastic modulus and the compressive strength of concrete in MPa, 

respectively. The parameters of the Mohr-Coulomb failure criterion were obtained by using the 

following equations (Zhao, 2000): 
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where f’c and f’t represent the uniaxial compressive and tensile strength of concrete, which can be 

expressed as (ACI committee 318, 2014): 

t cf ' 0.62 f '
 (4.16) 

4.3 MODEL CALIBRATION 

To calibrate the parameters of the proposed model, experimental field test results were obtained 

from Fam et al. (2003). The composite piles were concrete-filled glass fiber-reinforced polymer 

(GFRP) tubes considered for a highway bridge on route 40 in Virginia, with an outer diameter and 

tube thickness of 62.48 cm (24.6 in.) and 5.41 mm (0.213 in.), respectively. The profile of the 

surrounding soil at the site was composed of various soil layers, including sand and clay. The soil 

conditions were loose at the top and stiff at the bottom of the soil layers. In Figure 4.3, the cross-

section of the concrete pile is presented along the soil profile, as well as an arbitrary cross section, 

A-A. The total length of the composite pile was 13.1 m, including the length of the pile that was 

not covered by soil. The compressive strength of the concrete used was reported to be 41.4 MPa 

by Fam et al. (2003). 
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Figure 4.3 Soil and composite pile profiles along the depth based on Fame et al. (2003) 

Model calibration graphs are presented in Figure 4.4, showing the lateral deflection for different 

lateral loads applied at the top of the composite pile: 48.9, 80.1, 93.5, and 120.1 kN. As shown in 

the figure, the lateral deflection of the composite pile below a depth of seven meters is 

approximately zero. Based on the experimental and numerical curves, it can be seen that the 

modeling results are in good agreement with the experimental data. As a result, the model can be 

used to perform parametric studies, as described below. 
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Figure 4.4  Model verification against field data of lateral deflection along the length of 

CFFT pile tested by Fam et al. (2003) at different lateral load levels ranging from 

48.9 to 120.1 kN 

4.4 SENSITIVITY ANALYSIS FOR MODEL CALIBRATION 

To investigate the effect of the coefficient of friction on the calibration of the proposed model, a 

sensitivity analysis was conducted by using different coefficients of friction including 0.1, 0.3 and 

0.5. The corresponding results of sensitivity analysis for maximum lateral deflection at the depth 

of 1.44 cm from soil surface are shown in Figure 4.5. As can be seen in the figure, the assumption 

of μ = 0.3 will not affect the calibration results significantly. 
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Figure 4.5  Maximum lateral deflection for different coefficients of friction including 0.1, 

0.3 and 0.5 at the depth of 1.44 cm from soil surface 

4.5 PARAMETRIC STUDY 

The effect of different model parameters including height-to-diameter ratio of specimens, FRP 

tube thickness, concrete strength and surrounding soil was investigated on the moment, shear, 

axial curves as well as lateral deflection and FRP and soil stresses of composite piles along the 

depth under a 100 kN of applied load. 

4.5.1 EFFECT OF LENGTH/DIAMETER RATIO 

As shown in Figure 4.6, three different length/diameter (L/D) ratios: 15, 20, and 25, were used in 

the proposed model to investigate the effect of geometry on the lateral deformation of composite 

piles under a constant lateral load of 100 kN. A constant composite pile length (L) of 13.1 m was 

assumed, while the diameter (D) was changed in order to compare the results. As can be seen in 

the figure, the greater the L/D ratio at a certain depth, the greater the lateral deflection of the 

composite pile. 
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The proposed model was used to examine the effect of the length/diameter (L/D) ratio of CFFT 

piles on the bending moment, shear force, axial load, and axial tensile stress of the FRP tube, and 

on the lateral deformation plotted against the normalized depth (Z/D). The results of the 

corresponding parametric study are shown in Figure 4.6. It can be seen that an increase in D (i.e., 

a decrease in L/D) results in an increased maximum moment, shear force and axial load for the 

CFFT pile. Moreover, the normalized depth at which the maximum moment occurs decreases with 

lower L/D values. The bending capacity of CFFT piles with a diameter of 0.62 m is reported to 

be approximately 502 kN.m (Fam & Rizkalla, 2001a). Higher shear force and axial load values 

were obtained for composite piles with lower L/D ratios, as shown in Figure 4.6 (e) and (f). In 

addition, Figure 4.6 (b) shows an increase in the FRP axial tensile stress at the extreme tension 

fiber with a higher L/D ratio, although the trend was not consistent. In Figure 4.6 (a), the effect of 

L/D values on the lateral deflection is depicted. Figure 4.6 (c) shows that an increasing L/D ratio 

also results in greater stresses in the soil. 

4.5.2 EFFECT OF FRP TUBE THICKNESS 

To determine the effect of FRP thickness (t) on the mechanical behavior of CFFT piles, different 

FRP thicknesses, including 5, 7, and 9 mm, were studied. In addition to providing better passive 

confining pressure for the CFFT piles, a thicker FRP layer also reduces the lateral pile deformation 

due to the greater strength of the composite material. The maximum lateral CFFT pile deflections 

obtained at ground level were 28.4 and 27.8 cm, for FRP thicknesses of 9 and 5 mm, respectively. 

Increasing the thickness of the FRP laminate also resulted in a small increase (1-3%) in the 

maximum FRP tensile stress, and in the maximum soil compressive stress. Moreover, a five 

percent increase in the maximum CFFT pile moment was obtained by increasing the FRP 

thickness from 5 to 9 mm. The maximum shear along the length of the composite pile was not 

noticeably affected by the change in thickness. Therefore, the effect of FRP thickness was not 
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found to be significant with regard to CFFT pile mechanical properties. 

   

Figure 4.6  Effect of length/diameter (L/D) ratio on the behavior of CFFT pile under lateral 

load 100 kN: (a) lateral deformation; (b) axial tensile stress of FRP at the extreme 

tension fiber; (c) soil compressive stress; (d) bending moment; (e) shear force; 
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and (f) axial force 

4.5.3 EFFECT OF CONCRETE STRENGTH 

To evaluate the effect of concrete strength on the maximum lateral deflection, maximum moment, 

maximum lateral soil compressive stress, and maximum axial FRP stress, six different concrete 

strength values, ranging from 0 to 55 MPa, were used with lateral loads of 12, 50 and 100 kN. 

The corresponding graphs are presented in Figure 4.7. With a lateral load of 100 kN, for concrete 

strengths of 30, 40 and 50 MPa, the maximum CFFT pile lateral deflections at the soil surface 

were found to be 32.7, 29.5 and 27.3 cm, respectively. Increasing the concrete strength from 25 

to 55 MPa decreased the maximum axial FRP stress and the maximum moment by 14% to 15% 

and resulted in a five percent reduction in the maximum lateral compressive soil stress. 

The small degree of influence may be due to the fact that elastic properties were mainly affected, 

and the plastic properties of concrete were not the primary factor in controlling the results. It 

should be mentioned that in most cases concrete strengths less than 25 MPa were not used, because 

these resulted in rupturing of the FRP tube. Hence, the effects of concrete strengths less than 25 

MPa were investigated only under a small lateral load of 12 kN and 50 kN, as illustrated in Figure 

4.7. For a lateral load of 100 kN, with greater concrete strengths, the maximum lateral CFFT pile 

deflection was reduced by approximately 18%, while the maximum FRP and soil stress decreased 

by approximately 20%. In Figure 4.7 (b), in the 100 kN curve the maximum moment exhibits a 

reduction of almost ten percent. 
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Figure 4.7  Effect of concrete strength on: (a) maximum lateral deflection; (b) moment; (c) 

lateral soil stress; and (d) axial FRP stress of CFFT pile under lateral loads of 12, 

50 and 100 kN 

4.5.4 EFFECT OF SURROUNDING SOIL 

The effect of soil type was investigated by using the numerical results for three different soil types, 

as shown in Figure 4.8. The elastic moduli of the loose, medium, and dense sand used in this 

parametric study were 10, 30, and 60 MPa, respectively. The friction angle (φ) values related to 

the Mohr-Coulomb failure criterion were 32°, 36°, and 40° for loose, medium, and dense sand, 

respectively. As shown in Figure 4.8 (a), the maximum lateral deflections of loose, medium, and 
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dense sand were 26.9, 29.5, and 32 cm, respectively. As can be seen in Figure 4.8 (b), denser 

surrounding soil decreased the maximum FRP axial stress by 17.4%. Similarly, the maximum 

moment was reduced by approximately 17%, as shown in Figure 4.8 (d). Figure 4.8 (c) shows that 

the maximum soil stress decreased by approximately 7%. Furthermore, the shear and axial load 

were reduced by nearly 6% to 8%, as seen in Figure 4.8 (e) and (f). Thus, it can be concluded the 

effect of pile diameter and concrete strength is more noticeable than that of other parameters such 

as soil type and FRP thickness. Cohesionless soil such as sand collapses and flows with the 

composite pile upon reaching an active state, as the pile is laterally loaded. Thus, the gap in the 

interface is negligible in comparison to the pile displacement. Likewise, the change in soil stress 

during pile driving is negligible in comparison to changes in soil stress due to lateral loading of 

the composite pile (Achmus et al., 2009). For this reason, the effect of pile installation is ignored 

in the model. 

4.5.5 EFFECT OF APPLIED LOAD’S POSITION FROM SOIL SURFACE 

To obtain the normalized value of applied load’s position from soil surface (e), the ratio of the 

pile height above the ground (h) to the embedded length of the pile in the soil (LS) was considered. 

The effect of this parameter on the maximum lateral deflection, maximum moment, maximum 

lateral soil stress, and maximum axial FRP stress was investigated. The results are presented in 

Figure 4.9. It can be seen that increasing e from 0 to 0.3 results in a much greater increase in 

maximum lateral deflection and maximum moment for a lateral load of 100 kN, than for a lateral 

load of 12 kN. However, a lower rate of increase is seen in the maximum lateral soil stress and 

maximum axial FRP stress, due to the fact that the greater the height of the pile above ground 

level, the more FRP local buckling occurs in the pile. As illustrated in Figure 4.9, an increase in 

lateral load has a significant impact on the results with respect to the higher values of e. 
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Figure 4.8  Effect of soil type on the behavior of CFFT pile under lateral load 100 kN: (a) 

lateral deformation; (b) axial tensile stress of FRP at the extreme tension fiber; 

(c) soil compressive stress; (d) bending moment; (e) shear force; and (f) axial 

force 
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Figure 4.9  Effect of normalized applied load’s position from soil surface (e) on: (a) 

maximum lateral deflection; (b) moment; (c) lateral soil stress; and (d) axial FRP 

stress of CFFT pile under lateral loads of 12, 50 and 100 kN 
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4.5.6 LOCAL BUCKLING OF HOLLOW FRP PILE 

Introducing the FRP tube values obtained by Fam et al. (2003) into Eq. 17 yields σz,cr=161.4 MPa, 

which is greater than σz=120.2 MPa at the ground surface. In this case, local buckling at ground 

level is not the controlling factor for hollow FRP tube or CFFT pile failure. However, introducing 

the pile values into Eq. 21 yields σθ,cr=1.29 MPa, whereas based on the values shown in the graphs 

σθ=27.81 kPa. In this case, local buckling will control failure under combined loading at the level 

of maximum FRP stress. This can be estimated by using the following formula: 

2 2

z
z

z,cr ,cr

C 1.49 1




   
               (4.17) 

Table 4.2 shows local buckling factor (Czθ) values corresponding to different L/D ratios and FRP 

thicknesses (t). It can be seen that a pile with L/D=15 is very susceptible to local buckling, whereas 

FRP tubes with L/D=25 or a wall thickness of 9 mm are not subject to buckling. It should be noted 

that these values are overestimated for pure bending, since not all of the cross-section is under 

maximum compression. 

Table 4.2 Local buckling factor (Czθ) values corresponding to different L/D ratios and 

FRP thicknesses (t) 

Depth 

L/D t (mm) 

15 20 25 5 7 9 

Ground level 1.5 0.7 0.4 0.7 0.4 0.2 

Maximum FRP stress 4.0 1.9 1.1 1.9 1.0 0.7 
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

In this research, a novel numerical model was developed to predict the behavior of concrete-filled 

FRP tube (CFFT) piles interacting with a soil foundation under lateral loading conditions. The 

model, based on nonlinear finite element analysis (NFEA) and the disturbed state concept (DSC), 

is a damage model that considers material and geometrical nonlinearity in addition to the interface 

of soil and FRP. A case study of a highway bridge on route 40 in Virginia was used to verify the 

model. Furthermore, a comprehensive parametric study was conducted to investigate the effect on 

CFFT pile behavior of the pile length to diameter ratio, FRP thickness, concrete strength, and soil 

strength. Different concrete strengths, including 32, 41, and 55 MPa, were considered with 100 

kN lateral loading. To examine the behavior of a hollow tube (having zero concrete strength) 

without failure, a 10 kN horizontal load was applied to the pile. The following conclusions can be 

drawn from this research: 

 The slenderness of CFFT piles has a significant effect on their mechanical behavior. For 

example, decreasing the L/D ratio from 25 to 15 resulted in an 18% increase in the 

maximum moment. 

 FRP thickness was found to be the least significant parameter in the parametric study. For 

instance, increasing the thickness from 5 to 9 mm resulted in only a five percent increase 

in the maximum moment of a CFFT pile. 

 With a lateral load of 100 kN, decreasing the concrete strength from 55 to 25 MPa resulted 

in a 15% increase in the maximum moment of a CFFT pile. Furthermore, with an applied 

load of 10 kN, a 10% increase in the maximum moment was obtained by removing the 
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concrete core with compressive strength of 20 MPa. 

 In a parametric study of surrounding soil, dense sand with a friction angle of 40° resulted 

in a maximum moment 17% greater than that found for loose sand with a friction angle of 

32°. 

 Local buckling is a major design factor for FRP tubes at the maximum FRP stress level 

rather than at the ground surface. For instance, the FRP tubes with L/D=15 is very 

susceptible to local buckling, while FRP tubes with L/D=25 or a wall thickness of 9 mm 

are not subject to buckling. To address this issue, a low-strength internal material could be 

used to prevent local buckling of the pile. 

 The DSC damage model was able to model the softening behavior of concrete and soil by 

considering the RI and FA responses. 

5.2 RECOMMENDATIONS 

The following suggestions are recommended for further investigations in order to gain a better 

understanding of CFFTs: 

 The local buckling of concrete piles can be studied with and without FRP tube followed 

by an experimental test to develop a formulation for local buckling since the equations 

provided in this research were provided for isotropic material such as steel tube. 

 CFFTs can be modeled using different plasticity models such as Drucker Prager to 

compare the accuracy and applicability of different plasticity models. 

 The FRP tube layers can be studied with orthotropic assumption supported by 

experimental tests in which FRP tube governs the results. 
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 The effect of axial load along with lateral load on the capacity of composite pile can be 

studied. 

 Adding a low-strength internal material such as concrete with aggregates partially replaced 

by tire-derived aggregates (TDA) may prevent local pile buckling, providing a cost-

effective and environment-friendly solution. Further research is needed to investigate the 

local buckling of FRP piles filled with other low-strength materials in addition to concrete. 



69  

BIBLOGRAPHY 

Abu-Farsakh, M., Souri, A., Voyiadjis, G., & Rosti, F. (2017). Comparison of static lateral 

behavior of three pile group configurations using three-dimensional finite element 

modeling. Canadian Geotechnical Journal, 55(1), 107–118. https://doi.org/10.1139/cgj-

2017-0077 

Abu-Farsakh, M., Yu, X., Pathak, B., Alshibli, K., & Zhang, Z. (2011). Field Testing and 

Analyses of a Batter Pile Group Foundation under Lateral Loading. Transportation 

Research Record, 2212(1), 42–55. https://doi.org/10.3141/2212-05 

Achmus, M., Kuo, Y.-S., & Abdel-Rahman, K. (2009). Behavior of monopile foundations under 

cyclic lateral load. Computers and Geotechnics, 36(5), 725–735. 

ACI committee 318. (2014). Building Code Requirements for Structural Concrete and 

Commentary. American Concrete Institute, Farmington Hills, MI, 520. 

Akhaveissy, A. H., Desai, C. S., Sadrnejad, S. A., & Shakib, H. (2009). Implementation and 

comparison of generalized plasticity and disturbed state concept for load-deformation 

behavior of foundation. Scientia Iranica Transaction A: Civil Engineering, 16(3), 189–198. 

Retrieved from http://www.scientiairanica.com/PDF/Articles/00001027/Akhaveisi.pdf 

Alexandria, V. (1986). Foundations & Earth Structures. Naval Facilities Engineering Command. 

Allotey, N., & El Naggar, M. H. (2008). A numerical study into lateral cyclic nonlinear soil–pile 

response. Canadian Geotechnical Journal, 45(9), 1268–1281. 

Ashour, M., Pilling, P., & Norris, G. (2004). Lateral behavior of pile groups in layered soils. 

Journal of Geotechnical and Geoenvironmental Engineering, 130(6), 580–592. 

Basack, S., & Nimbalkar, S. (2018). Measured and Predicted Response of Pile Groups in Soft 

Clay Subjected to Cyclic Lateral Loading. International Journal of Geomechanics, 18(7), 



70  

04018073. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001188 

Batdorf, S. B. (1947). A simplified method of elastic-stability analysis for thin cylindrical shells. 

National Advisory Committee for Aeronautics. 

Bhowmik, D., Baidya, D. K., & Dasgupta, S. P. (2016). A numerical and experimental study of 

hollow steel pile in layered soil subjected to vertical dynamic loading. Soil Dynamics and 

Earthquake Engineering, 85, 161–165. https://doi.org/10.1016/j.soildyn.2016.03.017 

Bohn, C., Dos-Santos, A. L., & Frank, R. (2015). Development of Axial Pile Load Transfer 

Curves Based on Instrumented Load Tests. Geotechnical and Geological Engineering, 

143(1), 1–15. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001579. 

Brinkgreve, R. B. J., Swolfs, W. M., & Engine, E. (2007). Plaxis 3D foundation version 2 user’s 

manual. Plaxis BV, Netherlands. 

Brown, D. A., & Shie, C.-F. (1990). Three dimensional finite element model of laterally loaded 

piles. Computers and Geotechnics, 10(1), 59–79. 

Chae, K. S., Ugai, K., & Wakai, A. (2004). Lateral resistance of short single piles and pile 

groups located near slopes. International Journal of Geomechanics, 4(2), 93–103. 

Comodromos, E. M., & Pitilakis, K. D. (2005). Response evaluation for horizontally loaded 

fixed‐head pile groups using 3‐D non‐linear analysis. International Journal for Numerical 

and Analytical Methods in Geomechanics, 29(6), 597–625. 

Desai, C. S. (2001). Mechanics of Materials and Interfaces: The Disturbed State Concept. CRC 

Press. 

Desai, C. S. (2015). Constitutive modeling of materials and contacts using the disturbed state 

concept: Part 1 – Background and analysis. Computers & Structures, 146, 214–233. 

https://doi.org/10.1016/j.compstruc.2014.07.018 



71  

Dias, T. G. S., & Bezuijen, A. (2018). Load-Transfer Method for Piles under Axial Loading and 

Unloading. Journal of Geotechnical and Geoenvironmental Engineering, 144(1), 

04017096. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001808 

Dijkstra, J., Broere, W., & Heeres, O. M. (2011). Numerical simulation of pile installation. 

Computers and Geotechnics, 38(5), 612–622. 

El-Nemr, A. M., Ashour, O., & Hekal, G. M. (2016). Dynamic response of confined concrete 

piles with FRP tubes in sandy soil using finite element modeling. 

Fam, A., Flisak, B., & Rizkalla, S. (2003). Experimental and analytical modeling of concrete-

filled FRP tubes subjected to combined bending and axial loads. ACI Struct. J, 100(4), 499–

509. 

Fam, A., Pando, M., Filz, G., & Rizkalla, S. (2003). Precast piles for Route 40 bridge in Virginia 

using concrete filled FRP tubes. PCI Journal, 48(3), 32–45. 

Fam, A., & Rizkalla, S. (2001a). Behavior of axially loaded concrete-filled circular FRP tubes. 

ACI Structural Journal, 98(3), 280–289. 

Fam, A., & Rizkalla, S. (2001b). Confinement Model for Axially Loaded Concrete Confined by 

Circular Fiber-Reinforced Polymer Tubes. ACI Structural Journal, 98(4). 

https://doi.org/10.14359/10288 

Fam, A., Schnerch, D., & Rizkalla, S. (2005). Rectangular filament-wound glass fiber reinforced 

polymer tubes filled with concrete under flexural and axial loading: experimental 

investigation. Journal of Composites for Construction, 9(1), 25–33. 

Gazioglu, S. M., & O’Neill, M. W. (1984). Evaluation of py relationships in cohesive soils. 

Analysis and Design of Pile Foundations, 192–213. ASCE. 

Han, F., Prezzi, M., & Salgado, R. (2017). Energy-Based Solutions for Nondisplacement Piles 



72  

Subjected to Lateral Loads. International Journal of Geomechanics, 17(11), 04017104. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0001012 

Hazzar, L., Hussien, M. N., & Karray, M. (2017). Vertical load effects on the lateral response of 

piles in layered media. International Journal of Geomechanics, 22(9), 1–11. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0000970 

Heidari, M., Jahanandish, M., El Naggar, H., & Ghahramani, A. (2014). Nonlinear cyclic 

behavior of laterally loaded pile in cohesive soil. Canadian Geotechnical Journal, 51(2), 

129–143. https://doi.org/10.1139/cgj-2013-0099 

Helmi, K., Fam, A., & Mufti, A. (2005). Field installation, splicing, and flexural testing of 

hybrid FRP/concrete piles. Special Publication, 230, 1103–1120. 

Isenhower, W. M., Vasquez, L. G., & Wang, S.-T. (2014). Analysis of settlement-induced 

bending moments in battered piles. In From Soil Behavior Fundamentals to Innovations in 

Geotechnical Engineering: Honoring Roy E. Olson (pp. 497–511). 

Iskander, M., Mohamed, A., & Hassan, M. (2002). Durability of recycled fiber-reinforced 

polymer piling in aggressive environments. Transportation Research Record, 1808(1), 

153–161. 

Khoei, A. (2005). Computational Plasticity in Powder Forming Processes. In Computational 

Plasticity in Powder Forming Processes. https://doi.org/10.1016/B978-008044636-

3/50008-0 

Khoei, A. (2010). Computational Plasticity in Powder Forming Processes. Retrieved from 

https://books.google.com/books?id=TKEQjVGTSHcC&pgis=1 

Kim, Y., & Jeong, S. (2011). Analysis of soil resistance on laterally loaded piles based on 3D 

soil–pile interaction. Computers and Geotechnics, 38(2), 248–257. 



73  

Ladhane, K. B., & Sawant, V. A. (2016). Effect of Pile Group Configurations on Nonlinear 

Dynamic Response. International Journal of Geomechanics, 16(1), 04015013. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0000476 

Leung, Y. F., Klar, A., & Soga, K. (2010). Theoretical Study on Pile Length Optimization of 

Pile Groups and Piled Rafts. Journal of Geotechnical and Geoenvironmental Engineering, 

136(2), 319–330. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000206 

Matlock, H. (1970). Correlations for design of laterally loaded piles in soft clay. Offshore 

Technology in Civil Engineering Hall of Fame Papers from the Early Years, 77–94. 

Mirmiran, A., & Shahawy, M. (1996). A new concrete-filled hollow FRP composite column. 

Composites Part B: Engineering, 27(3–4), 263–268. 

Mirmiran, A., & Shahawy, M. (1997). Behavior of concrete columns confined by fiber 

composites. Journal of Structural Engineering, 123(5), 583–590. 

Mirmiran, A., Zagers, K., & Yuan, W. (2000). Nonlinear finite element modeling of concrete 

confined by fiber composites. Finite Elements in Analysis and Design, 35(1), 79–96. 

Mohamed, H. M., & Masmoudi, R. (2010a). Axial load capacity of concrete-filled FRP tube 

columns: Experimental versus theoretical predictions. Journal of Composites for 

Construction, 14(2), 231–243. 

Mohamed, H. M., & Masmoudi, R. (2010b). Flexural strength and behavior of steel and FRP-

reinforced concrete-filled FRP tube beams. Engineering Structures, 32(11), 3789–3800. 

Muqtadir, A., & Desai, C. S. (1986). Three‐dimensional analysis of a pile‐group foundation. 

International Journal for Numerical and Analytical Methods in Geomechanics, 10(1), 41–

58. 

Nelson, M., Ching Lai, Y., & Fam, A. (2008). Moment Connection of Concrete-Filled Fiber 



74  

Reinforced Polymer Tubes by Direct Embedment into Footings. In Advances in Structural 

Engineering - ADV STRUCT ENG (Vol. 11). https://doi.org/10.1260/136943308786412023 

Odland, J. (1978). Buckling resistance of unstiffened and stiffened circular cylindrical shell 

structures. Norwegian Maritime Research, 6(3). 

Ozbakkaloglu, T. (2013). Compressive behavior of concrete-filled FRP tube columns: 

Assessment of critical column parameters. Engineering Structures, 51(Supplement C), 

188–199. https://doi.org/https://doi.org/10.1016/j.engstruct.2013.01.017 

Ozbakkaloglu, T., & Oehlers, D. J. (2008). Manufacture and testing of a novel FRP tube 

confinement system. Engineering Structures, 30(9), 2448–2459. 

https://doi.org/https://doi.org/10.1016/j.engstruct.2008.01.014 

Pando, M. A., Ealy, C. D., Filz, G. M., Lesko, J. J., & Hoppe, E. J. (2006). A laboratory and 

field study of composite piles for bridge substructures. 

Poulos, H. G., & Davis, E. H. (1980). Pile Foundation Analysis and Design, Series in 

Geotechnical Engineering, Edited by TW Lambe and RV Whitman. John Wiley and Sons, 

Inc., New York. 

Prasad, Y. V. S. N., & Chari, T. R. (1999). Lateral Capacity of Model Rigid Piles In 

Cohesionless Soils. Soils and Foundations, 39(2), 21–29. 

https://doi.org/10.3208/sandf.39.2_21 

Reese, L. C., Cox, W. R., & Koop, F. D. (1974). Analysis of laterally loaded piles in sand. 

Offshore Technology in Civil Engineering Hall of Fame Papers from the Early Years, 95–

105. 

Roddenberry, M., Mtenga, P., & Joshi, K. (2014). Investigation of Carbon Fiber Composite 

Cables (CFCC) in Prestressed Concrete Piles. Retrieved from 

https://trid.trb.org/view.aspx?id=1308711 



75  

Russo, G. (2016). A method to compute the non-linear behaviour of piles under horizontal 

loading. Soils and Foundations, 56(1), 33–43. 

Sadeghian, P., & Fam, A. (2010). Bond-Slip Analytical Formulation toward Optimal 

Embedment of Concrete-Filled Circular FRP Tubes into Concrete Footings. Journal of 

Engineering Mechanics, 136(4), 524–533. https://doi.org/10.1061/(ASCE)EM.1943-

7889.0000091 

Sadeghian, P., & Fam, A. (2011). Closed-Form Model and Parametric Study on Connection of 

Concrete-Filled FRP Tubes to Concrete Footings by Direct Embedment. Journal of 

Engineering Mechanics, 137(5), 346–354. https://doi.org/10.1061/(ASCE)EM.1943-

7889.0000231 

Sadeghian, P., Yu, C. L., & Fam, A. (2011). Testing and Modeling of a New Moment 

Connection of Concrete-Filled FRP Tubes to Footings under Monotonic and Cyclic 

Loadings. Journal of Composites for Construction, 15(4), 653–662. 

https://doi.org/10.1061/(ASCE)CC.1943-5614.0000198 

Souri, A., Abu-Farsakh, M., & Voyiadjis, G. (2015). Study of static lateral behavior of battered 

pile group foundation at I-10 Twin Span Bridge using three-dimensional finite element 

modeling. Canadian Geotechnical Journal, 53(6), 962–973. https://doi.org/10.1139/cgj-

2015-0345 

Su, D., & Zhou, Y. G. (2015). Effect of Loading Direction on the Response of Laterally Loaded 

Pile Groups in Sand. International Journal of Geomechanics, 16(2), 4015051. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0000544 

Suleiman, M. T., Ni, L., Helm, J. D., & Raich, A. (2014). Soil-pile interaction for a small 

diameter pile embedded in granular soil subjected to passive loading. Journal of 

Geotechnical and Geoenvironmental Engineering, 140(5), 4014002. 



76  

Suleiman, M. T., Ni, L., Raich, A., Helm, J., & Ghazanfari, E. (2015). Measured soil–structure 

interaction for concrete piles subjected to lateral loading. Canadian Geotechnical Journal, 

52(8), 1168–1179. https://doi.org/10.1139/cgj-2014-0197 

Tamura, S., Adachi, K., Sakamoto, T., Hida, T., & Hayashi, Y. (2012). Effects of existing piles 

on lateral resistance of new piles. Soils and Foundations, 52(3), 381–392. 

Toufigh, V., Abyaneh, M. J., & Jafari, K. (2017). Study of Behavior of Concrete under Axial 

and Triaxial Compression. ACI Materials Journal, 114(4). 

Toufigh, V., Hosseinali, M., & Shirkhorshidi, S. M. (2016). Experimental study and constitutive 

modeling of polymer concrete’s behavior in compression. Construction and Building 

Materials, 112, 183–190. https://doi.org/10.1016/j.conbuildmat.2016.02.100 

Trochanis, A. M., Bielak, J., & Christiano, P. (1991). Three-dimensional nonlinear study of 

piles. Journal of Geotechnical Engineering, 117(3), 429–447. 

Van den Berg, Peter, de Borst, R., & Huétink, H. (1996). An Eulerean finite element model for 

penetration in layered soil. International Journal for Numerical and Analytical Methods in 

Geomechanics, 20(12), 865–886. 

Van den Berg, Pieter. (1994). Analysis of soil penetration. TU Delft, Delft University of 

Technology. 

Wallace, J. W., Fox, P. J., Stewart, J. P., Janoyan, K., Tong, Q., & Lermitte, S. P. (2002). Cyclic 

large deflection testing of shaft bridges part II: analytical studies. Report from California 

Dept. of Transportation. 

Yang, Z., & Jeremić, B. (2002). Numerical analysis of pile behaviour under lateral loads in 

layered elastic–plastic soils. International Journal for Numerical and Analytical Methods in 

Geomechanics, 26(14), 1385–1406. 



77  

Zarrabi, M., & Eslami, A. (2016). Behavior of piles under different installation effects by 

physical modeling. International Journal of Geomechanics, 16(5), 4016014. 

Zhang, L. M., & Chu, K. H. (2012). Lateral Movements of Long-Driven Piles during Pile 

Driving. Journal of Geotechnical and Geoenvironmental Engineering, 138(10), 1222–

1236. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000707 

Zhang, L., Zhao, M., & Zou, X. (2013). Behavior of laterally loaded piles in multilayered soils. 

International Journal of Geomechanics, 15(2), 6014017. 

Zhao, J. (2000). Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the 

dynamic strength of brittle rock. International Journal of Rock Mechanics and Mining 

Sciences, 37(7), 1115–1121. 

Zhu, Z., Ahmad, I., & Mirmiran, A. (2006). Seismic performance of concrete-filled FRP tube 

columns for bridge substructure. Journal of Bridge Engineering, 11(3), 359–370. 

Zienkiewicz, O. C., & Taylor, R. L. (2005). The finite element method for solid and structural 

mechanics. Butterworth-heinemann. 



78  

APPENDIX A MATLAB Code 

main.m 
 

close all; clear all; clc; tic 

  
global nnd nel nne nodof eldof ngp gauss_points 
global geom connec RE E nu nf dF u du ddu t C_e_concrete C_e_soil D_con 
global K_T F_I Eps S dS S_eq S_yield H c phi alpha k 
global NRE NZE dhr dhz stp nstp tol R Eps_av C_con g_tol 
global dEps R_av S_c A Z b h zero g_0 alpha_penalty g 

  
format long g 

  
nne = 8; 
nodof = 3; 
eldof = nne*nodof; 

  
mesh; 

  
E_concrete = 3000; % (ksi) , For D-P(I): E =  
nu_concrete = 0.25; 
E_soil = 200; % (ksi) , For D-P(I): E =  
nu_soil = 0.25; 
g_0 = zero; % intial gap (in) 
t = 2*pi*RE; % (in) 
H = 0; % hardening parameter 
c = 10; % Cohesion , For D-P(I): c =  
phi = 40; % Angle of friction (degree) 

  
alpha_penalty = 1e10; % (ksi) 
g_tol = 0.1*zero; 
C_con = zeros(1,nodof*nnd); 
C_con(1,nodof*(6:46:466)) = -1; % Horizontal part of concrete = -1 
C_con(1,nodof*(466:1:506) - 1) = -1; % Vertical part of concrete = -1 
C_con(1,nodof*(5:46:465)) = 1; % Horizontal part of soil = 1 
C_con(1,nodof*(512:1:552) - 1) = 1; % Vertical part of soil = 1 

  
prompt_user; 

  
%% Forming C_e and D_con matrices 

  
C_e_concrete = form_C_e(E_concrete,nu_concrete); 
C_e_soil = form_C_e(E_soil,nu_soil); 

  
%% Defining number of steps 

  
nstp = 20; 

  
%% Defining nodal freedom 

  
nf = ones(nnd,nodof); 
for i = 1:NRE+1 
    nf(1+(i-1)*(NZE+1),2) = 0; % Bottom Nodes (y) 
    %nf(i*(NZE+1),2) = 0; % Top Nodes (y) 
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end 
nf(1:NZE+1,1) = 0; % Left-hand side Nodes 
nf(11*46,1) = 0; % Applied Load Node 
nf([543:1:552, 589:1:598, 635:1:644, 681:1:690, 691:1:736],:) = 0; % Removed 

Nodes at the top right-hand side of mesh and right side of soil 

  
I = 0; 
I_r = 0; 
for i = 1:nnd 
    for j = 1:nodof 
        I = I + 1; 
        if nf(i,j) == 0 
            I_r = I_r + 1; 
            dof_r(I_r) = I; 
        end 
    end 
end 

  
dof_total = 1:nnd*nodof; 
dof_ur = setdiff(dof_total,dof_r); 

  
%% Defining nodal loads 

  
F_E = zeros(nnd*nodof,1); 

  
p_z = 0; % Uniformly distributed pressure (ksi) 

  
f_z = p_z * t * b; 

  
for i = 1:NRE 
    F_E(nodof*(NZE + (i-1)*(NZE+1) + 1)) = -f_z; 
    F_E(nodof*(NZE + i*(NZE+1) + 1)) = -f_z; 
end 
F_E(nodof*(NZE + 1)) = -f_z/2; 
F_E(nodof*(NZE + NRE*(NZE+1) + 1)) = -f_z/2; 

  
% Horizontal_Load = 20; % (kip) 

  
% F_E(nodof*11*46 - 1) = -Horizontal_Load; 

  
dF_E = F_E/nstp; 
F_E = cell(1,nstp); 
F_E{1,1} = zeros(nnd*nodof,1); 

  
p_r = 0;  % Uniformly distributed pressure (ksi) 
f_r = p_r * t * h; 

  
for j = 1:NZE 
    F_E{1,1}(nodof*(j + NRE*(NZE+1)) - 1) = -f_r; 
    F_E{1,1}(nodof*(j + NRE*(NZE+1) + 1) - 1) = -f_r; 
end 
F_E{1,1}(nodof*(1 + NRE*(NZE+1)) - 1) = -f_r/2; 
F_E{1,1}(nodof*(NZE + NRE*(NZE+1) + 1) - 1) = -f_r/2; 

  
%% Gaussian points 
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GP = 1/sqrt(3); 

  
gauss_points = [-GP  -GP  1 
                GP   -GP  1 
                GP   GP   1 
                -GP  GP   1]; 

  
ngp = size(gauss_points,1); 

  
%% Initializing 

  
dEps = cell(1,nstp+1); 
dEps{1,1} = cell(1,nel); 
for el = 1:nel 
    for gp = 1:ngp 
        dEps{1,1}{1,el}{1,gp} = zeros(4,1); 
    end 
end 

  
Eps = cell(1,nstp+1); 
Eps{1,1} = cell(1,nel); 
for el = 1:nel 
    for gp = 1:ngp 
        Eps{1,1}{1,el}{1,gp} = zeros(4,1); 
    end 
end 

  
S = cell(1,nstp+1); 
S{1,1} = cell(1,nel); 
for el = 1:nel 
    for gp = 1:ngp 
        S{1,1}{1,el}{1,gp} = zeros(4,1); 
    end 
end 

  
R = cell(1,nstp+1); 
for stp = 1:nstp+1 
    R{1,stp} = cell(1,nel); 
    for el = 1:nel 
        R{1,stp}{1,el} = cell(1,ngp); 
        for gp = 1:ngp 
            R{1,stp}{1,el}{1,gp} = 0; 
        end 
    end 
end 

  
u = cell(1,nstp+1); 
u{1,1} = zeros(nnd*nodof,1); 
du = zeros(nnd*nodof,1); 
ddu = zeros(nnd*nodof,1); 

  
stp = 0; 

  
[Eps{1,1},S{1,1}] = K_T_F_I(Eps{1,1},S{1,1}); 

  
%% Starting steps 
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for stp = 1:nstp 

     
    stp 

     
    du = zeros(nnd*nodof,1); 

     
    du(nodof*11*46 - 1) = -25/nstp; % (in) 

     
    u_norm(1) = norm(u{1,stp}); % u_norm of first iteration 

     
    F_E{1,stp+1} = F_E{1,stp} + dF_E; 

     
    dF = dF_E(dof_ur,1) - K_T(dof_ur,dof_r)*du(dof_r,1);  % size(dF) = 

(dof_ur,1) 

  
    Res{1,1} = dF; 

     
    %% Starting iterations 

  
    iter = 0; 
    error = 1; 
    tol = 1e-3; 
    max_iter = 5; 

  
    while error > tol && iter < max_iter 

     
        iter = iter + 1 

         
        %inv_K_T_ur = inv(K_T(dof_ur,dof_ur)); 
        %det(K_T(dof_ur,dof_ur)) 
        %stiffness = K_T(dof_ur,dof_ur); 
        ddu(dof_ur,1) = K_T(dof_ur,dof_ur) \ Res{1,iter}; 
        du(dof_ur,1) = du(dof_ur,1) + ddu(dof_ur,1); 
        u{1,stp+1} = u{1,stp} + du; 

  
        u_norm(iter+1) = norm(u{1,stp+1}); 

         
        [Eps{1,stp+1},S{1,stp+1}] = K_T_F_I(Eps{1,stp},S{1,stp}); 

  
        Res{1,iter+1} = F_E{1,stp+1}(dof_ur,1) - F_I{1,stp+1}(dof_ur,1); 

  
        error = abs( (u_norm(iter+1) - u_norm(iter)) / u_norm(iter) ) 
        %break 
    end 
    if stp == 1 
    %break 
    end 
end 

  
%% Organizing results 

  
origanize_results; 

 
time = toc 
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K_T_F_I.m 

 
function [Eps,S] = K_T_F_I(Eps,S) 

  
global nnd nel nodof eldof gp gp_con ngp ngp_con stp nstp h 
global geom connec C_e_concrete C_e_soil C_ep u du t el D_con 
global K_T F_I S_yield dS dEps gauss_points alpha_penalty C_con g_tol 
global J1 J2D J3D J1_old J2D_old J3D_old R S_eq_old S_eq tol g g_0 

  
%br = 0; 

  
F_I{1,stp+1} = zeros(nnd*nodof,1); 
K_T = zeros(nnd*nodof); 

  
for el = 1:nel 

     
    el; 

     
    [coord,DOF] = total_to_element(el); 

         
    if any(el == [481:1:489, 526:1:534, 571:1:579, 616:1:624]) 
        continue 

         
    else 
        f_I = zeros(eldof,1); 
        k_T = zeros(eldof); 

     
        for gp = 1:ngp 
            gp; 

         
            [der,fun] = der_fun(gauss_points,gp); 
            W = gauss_points(gp,3); 
            J = der*coord; 
            deriv = J\der; 
            %jabejayi_stp_1 = u{1,stp+1}(DOF) 
            [B_bar, G] = form_B_bar(deriv,u{1,stp+1}(DOF),fun,coord); 
            dEps{1,stp+1}{1,el}{1,gp} = B_bar*du(DOF); 
            %dEpsilon = dEps{1,stp+1}{1,el}{1,gp}; 

             
            %B = form_B(deriv,fun,coord); 
            %dEps{1,stp+1}{1,el}{1,gp} = B*du(DOF); 

             
            if any(el == [5:44, 49:88, 93:132, 137:176, 181:220, 225:264, 

269:308, 313:352, 357:396, 401:440]) % Concrete elements 
                %disp('2'); 
                dS = C_e_concrete*dEps{1,stp+1}{1,el}{1,gp}; 
                D = C_e_concrete; 

                 
            elseif any(el == [1:4, 45:48, 89:92, 133:136, 177:180, 221:224, 

265:268, 309:312, 353:356, 397:400, 441:444, 445:480, 490:525, 535:570, 

580:615]) % Soil elements 
                %disp('3'); 
                dS = C_e_soil*dEps{1,stp+1}{1,el}{1,gp}; 
                D = C_e_soil; 
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            end 

         
            Eps_old{1,el}{1,gp} = Eps{1,el}{1,gp}; 
            S_old{1,el}{1,gp} = S{1,el}{1,gp}; 

         
            [J1_old,J2D_old,J3D_old] = form_invariants(S_old{1,el}{1,gp}); 
            S_eq_old = 

equivalent_stress(J1_old,J2D_old,J3D_old,Eps_old{1,el}{1,gp}); 

         
            Eps{1,el}{1,gp} = Eps_old{1,el}{1,gp} + 

dEps{1,stp+1}{1,el}{1,gp}; 
            S{1,el}{1,gp} = S_old{1,el}{1,gp} + dS; 

         
            [J1,J2D,J3D] = form_invariants(S{1,el}{1,gp}); 
            S_eq{1,stp+1}{1,el}{1,gp} = 

equivalent_stress(J1,J2D,J3D,Eps{1,el}{1,gp}); 

         
            if stp == 0 
                S_eq_old = 0; 
                S_eq{1,stp+1}{1,el}{1,gp} = 0; 

             
            else 

             
                if stp == 1 
                    S_eq_old = 0; 
                end 

             
                if S_eq_old < S_yield && abs( (S_eq_old - S_yield) / S_yield 

) > tol 
                    %fprintf('gp: %d => S_eq_old < S_yield\n',gp) 
                    if S_eq{1,stp+1}{1,el}{1,gp} > S_yield || abs( 

(S_eq{1,stp+1}{1,el}{1,gp} - S_yield) / S_yield ) < tol 
                        %fprintf('gp: %d => S_eq > S_yield\n',gp) 
                        R{1,stp+1}{1,el}{1,gp} = (S_eq{1,stp+1}{1,el}{1,gp} - 

S_yield) / (S_eq{1,stp+1}{1,el}{1,gp} - S_eq_old); 
                        S{1,el}{1,gp} = 

plastic_corrector(Eps{1,el}{1,gp},S_old{1,el}{1,gp},S{1,el}{1,gp}); 
                        D = C_ep; 
                    else 
                        %fprintf('gp: %d => S_eq < S_yield\n',gp) 
                    end 

             
                else 
                    %fprintf('gp: %d => S_eq_old > S_yield\n',gp) 
                    if S_eq{1,stp+1}{1,el}{1,gp} > S_yield  || abs( 

(S_eq{1,stp+1}{1,el}{1,gp} - S_yield) / S_yield ) < tol 
                        %fprintf('gp: %d => S_eq > S_yield\n',gp) 
                        R{1,stp+1}{1,el}{1,gp} = 1; 
                        S{1,el}{1,gp} = 

plastic_corrector(Eps{1,el}{1,gp},S_old{1,el}{1,gp},S{1,el}{1,gp}); 
                        D = C_ep; 
                    else 
                        %fprintf('gp: %d => S_eq < S_yield\n',gp) 
                    end 
                end 
            end 
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            M_s = form_M_s(S{1,el}{1,gp}); 

         
            f_I = f_I + det(J)*W*t*B_bar'*S{1,el}{1,gp}; 
            k_T = k_T + det(J)*W*t*B_bar'*D*B_bar + det(J)*W*t*G'*M_s*G; 

  
            %f_I = f_I + det(J)*W*t*B'*S{1,el}{1,gp}; 
            %k_T = k_T + det(J)*W*t*B'*D*B; 

     
        end 

  
        F_I{1,stp+1}(DOF) = F_I{1,stp+1}(DOF) + f_I; 
        K_T(DOF,DOF) = K_T(DOF,DOF) + k_T; 

             
    end 
end 

  
for i = 1:11 % Horizontal contact nodes 
    I_con = [nodof*(5 + (i-1)*46), nodof*(6 + (i-1)*46)]; 
    g{1,stp+1}(i) = C_con(I_con) * u{1,stp+1}(I_con) - g_0; 

     
    if abs(g{1,stp+1}(i)/geom(5 + (i-1)*46,2)) < g_tol 
        K_T(I_con,I_con) = K_T(I_con,I_con) + 

C_con(I_con)'*alpha_penalty*C_con(I_con); 
    end 
end 

  
for i = 1:32 % Vertical contact nodes 
    I_con = [nodof*(466 + i - 1) - 1, nodof*(512 + i - 1) - 1]; 
    g{2,stp+1}(i) = C_con(I_con) * u{1,stp+1}(I_con) - g_0; 

     
    if abs(g{2,stp+1}(i)/geom(466 + i - 1,1)) < g_tol 
        K_T(I_con,I_con) = K_T(I_con,I_con) + 

C_con(I_con)'*alpha_penalty*C_con(I_con); 
    end 
end 

 

 

DSC.m 

global nstp dEps_av Eps_av S_eq_av R_av Eps_c S_c A Z Eps_prediction 

S_prediction 

  
D_u = 1; 
Z = 1.4; 
A = 350; 

  
eksi_D{1,1} = 0; 
D{1,1} = 0; 
Eps_prediction(1,1:4) = 0; 
S_prediction(1,1) = 0; 
for stp = 2:nstp+1 
    dEps_m = [dEps_av(stp,1)       dEps_av(stp,3)      0 
              dEps_av(stp,3)       dEps_av(stp,2)      0 
              0                    0                   dEps_av(stp,4)]; 

       
    dEps_m_P = R_av(stp,1)*dEps_m;  % Plastic strain matrix 
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    dEps_m_P_D = dEps_m_P - (1/3)*trace(dEps_m_P)*eye(3);  % Deviatoric 

plastic strain matrix         

     
    eksi_D{1,stp} = eksi_D{1,stp-1} + norm(dEps_m_P_D); 

     
    D{1,stp} = D_u*(1 - exp(-A*(eksi_D{1,stp}^Z))); 

     
    dEps_prediction = (1 - D{1,stp})*(Eps_av(stp,:) - Eps_av(stp-1,:)) + 

(D{1,stp} - D{1,stp-1})*(Eps_c - Eps_av(stp-1,:)); 
    dS_prediction = (1 - D{1,stp})*(S_eq_av(stp,1) - S_eq_av(stp-1,1)) + 

(D{1,stp} - D{1,stp-1})*(S_c - S_eq_av(stp-1,1)); 

     
    Eps_prediction(stp,:) = Eps_prediction(stp-1,:) + dEps_prediction; 
    S_prediction(stp,1) = S_prediction(stp-1,1) + dS_prediction; 
end 
 

organize_results.m 

global nstp nnd nel nne nodof ngp ngp_con dEps_av dEps Eps S S_eq R Eps_node 

S_node S_eq_node R_node Eps_av S_av S_eq_av R_av u 

  
dEps_av = zeros(nstp+1,4); 
Eps_av = zeros(nstp+1,4); 
S_av = zeros(nstp+1,4); 
S_eq_av = zeros(nstp+1,1); 
R_av = zeros(nstp+1,1); 
%F_I_z_av = zeros(nstp+1,1); 

  
for stp = 1:nstp+1 
    stp; 

     
    for el = 1:nel 
        el; 

         
        if any(el == [5:45:455, 456:1:486]) % Contact elements 
            dEps_el{1,stp}{1,el} = zeros(2,1); 
            Eps_el{1,stp}{1,el} = zeros(2,1); 
            S_el{1,stp}{1,el} = zeros(2,1); 
            S_eq_el{1,stp}{1,el} = 0; 
            R_el{1,stp}{1,el} = 0; 

             
            for gp_con = 1:ngp_con 
                dEps_el{1,stp}{1,el} = dEps_el{1,stp}{1,el} + 

dEps{1,stp}{1,el}{1,gp_con}; 
                Eps_el{1,stp}{1,el} = Eps_el{1,stp}{1,el} + 

Eps{1,stp}{1,el}{1,gp_con}; 
                S_el{1,stp}{1,el} = S_el{1,stp}{1,el} + 

S{1,stp}{1,el}{1,gp_con}; 
                %S_eq_el{1,stp}{1,el} = S_eq_el{1,stp}{1,el} + 

S_eq{1,stp}{1,el}{1,gp_con}; % S_eq has not been defined for contact elements 
                %R_el{1,stp}{1,el} = R_el{1,stp}{1,el} + 

R{1,stp}{1,el}{1,gp_con}; 
            end 
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        elseif any(el == [487:1:495, 532:1:540, 577:1:585, 622:1:630, 

667:1:675]) 
            continue 

             
        else 
            dEps_el{1,stp}{1,el} = zeros(4,1); 
            Eps_el{1,stp}{1,el} = zeros(4,1); 
            S_el{1,stp}{1,el} = zeros(4,1); 
            S_eq_el{1,stp}{1,el} = 0; 
            R_el{1,stp}{1,el} = 0; 

             
            for gp = 1:ngp 
                dEps_el{1,stp}{1,el} = dEps_el{1,stp}{1,el} + 

dEps{1,stp}{1,el}{1,gp}; 
                Eps_el{1,stp}{1,el} = Eps_el{1,stp}{1,el} + 

Eps{1,stp}{1,el}{1,gp}; 
                S_el{1,stp}{1,el} = S_el{1,stp}{1,el} + S{1,stp}{1,el}{1,gp}; 
                S_eq_el{1,stp}{1,el} = S_eq_el{1,stp}{1,el} + 

S_eq{1,stp}{1,el}{1,gp}; 
                R_el{1,stp}{1,el} = R_el{1,stp}{1,el} + R{1,stp}{1,el}{1,gp}; 
            end 
        end 

         
        dEps_el{1,stp}{1,el} = dEps_el{1,stp}{1,el}/ngp; 
        Eps_el{1,stp}{1,el} = Eps_el{1,stp}{1,el}/ngp; 
        S_el{1,stp}{1,el} = S_el{1,stp}{1,el}/ngp; 
        S_eq_el{1,stp}{1,el} = S_eq_el{1,stp}{1,el}/ngp; 
        R_el{1,stp}{1,el} = R_el{1,stp}{1,el}/ngp; 
    end 

     
    if el == 496 
    break 
    end 

     
    for nd = 1:nnd 
        ne = 0; 

         
        for iel = 1:nel 
            for jel = 1:nne 
                if connec(iel,jel) == nd 
                    iel; 
                    jel; 

                     
                    if any(iel == [5:45:455, 456:1:486]) % Contact elements 

(we don't want to sum these values w/ other values) 
                        dEps_node{1,stp}{1,nd} = zeros(2,1); 
                        Eps_node{1,stp}{1,nd} = zeros(2,1); 
                        S_node{1,stp}{1,nd} = zeros(2,1); 
                        S_eq_node{1,stp}{1,nd} = 0; 
                        R_node{1,stp}{1,nd} = 0; 

                         
                    elseif any(iel == [487:1:495, 532:1:540, 577:1:585, 

622:1:630, 667:1:675]) 
                        continue 

             
                    else 
                        ne = ne + 1; 
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                        dEps_node{1,stp}{1,nd} = zeros(4,1); 
                        Eps_node{1,stp}{1,nd} = zeros(4,1); 
                        S_node{1,stp}{1,nd} = zeros(4,1); 
                        S_eq_node{1,stp}{1,nd} = 0; 
                        R_node{1,stp}{1,nd} = 0; 
                    end 

                     
                    dEps_node{1,stp}{1,nd} = dEps_node{1,stp}{1,nd} + 

dEps_el{1,stp}{1,iel}; 
                    Eps_node{1,stp}{1,nd} = Eps_node{1,stp}{1,nd} + 

Eps_el{1,stp}{1,iel}; 
                    S_node{1,stp}{1,nd} = S_node{1,stp}{1,nd} + 

S_el{1,stp}{1,iel}; 
                    S_eq_node{1,stp}{1,nd} = S_eq_node{1,stp}{1,nd} + 

S_eq_el{1,stp}{1,iel}; 
                    R_node{1,stp}{1,nd} = R_node{1,stp}{1,nd} + 

R_el{1,stp}{1,iel}; 
                end 
            end 
        end 

         
            dEps_node{1,stp}{1,nd} = 0; 
            Eps_node{1,stp}{1,nd} = 0; 
            S_node{1,stp}{1,nd} = [0;0]; 
            S_eq_node{1,stp}{1,nd} = 0; 
            R_node{1,stp}{1,nd} = 0; 

             
            dEps_node{1,stp}{1,nd} = dEps_node{1,stp}{1,nd}/ne; 
            Eps_node{1,stp}{1,nd} = Eps_node{1,stp}{1,nd}/ne; 
            S_node{1,stp}{1,nd} = S_node{1,stp}{1,nd}/ne; 
            S_eq_node{1,stp}{1,nd} = S_eq_node{1,stp}{1,nd}/ne; 
            R_node{1,stp}{1,nd} = R_node{1,stp}{1,nd}/ne; 
    end 

     
    %u_z41(stp,1) = u{1,stp}(nodof*41,1); 
    for nd = 1:nnd 
        dEps_av(stp,:) = dEps_av(stp,:) - (dEps_node{1,stp}{1,nd})'; 
        Eps_av(stp,:) = Eps_av(stp,:) - (Eps_node{1,stp}{1,nd})'; 
        S_av(stp,:) = S_av(stp,:) - S_node{1,stp}{1,nd}(2); 
        S_eq_av(stp,1) = S_eq_av(stp,1) + S_eq_node{1,stp}{1,nd}; 
        R_av(stp,1) = R_av(stp,1) + R_node{1,stp}{1,nd}; 
        %F_I_z_av(stp,1) = F_I_z_av(stp,1) + F_I{1,stp}(nodof*i,1); 
    end 

     
    dEps_av(stp,:) = dEps_av(stp,:)/nnd; 
    Eps_av(stp,:) = Eps_av(stp,:)/nnd; 
    S_av(stp,:) = S_av(stp,:)/nnd; 
    S_eq_av(stp,1) = S_eq_av(stp,1)/nnd; 
    R_av(stp,1) = R_av(stp,1)/nnd; 
    %F_I_z_av(stp,1) = F_I_z_av(stp,1)/nnd; 
end 

 

 

 


