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Abstract

A Majority Voter Model is a iterative process on graphs. Let G be a graph with

a initial vertex colouring of n colours with the option of a vertex being uncoloured.

The is a sequential process where once a vertex is coloured, it can no longer become

uncoloured, and at each time step a vertex adopts the colour that occurs most fre-

quently in its neighbourhood. We study two models that approach tie-breaking in a

different way. In the event of a tie in the Conservative Majority Model, a vertex will

conserve its current colour, and in the event of a tie in the Mixed Majority Model, a

vertex will either conserve its colour if its current colour is in the majority or when its

current colour is not present in the majority, the vertex will adopt the most preferred

colour in the majority.

We classify the periodic configurations of the Conservative Model on paths,

cycles, and toroidal grids. We also study the behaviour of uncoloured vertices. We

introduce coalitions of colours that form under the model and determine some prop-

erties. We show that the removal of these coalitions does not affect the period of

the conservative model. Additionally, when the initial configuration is random, we

examine some threshold probabilities that ensure the survival of a colour on com-

plete graphs and cycles. We find the period of both models and the length of their

pre-period.

v
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Chapter 1

Introduction

Understanding how information spreads throughout networks is an important prob-

lem that is gaining popularity. This knowledge can be applied to a variety of fields

such as economics, physics, sociology, and biology [9]. More commonly, with the rise

of social networks, these studies are becoming increasingly important especially for

tracking down viruses, or marketing [15] [10] [5] [22]. Such processes are referred to

as dynamic processes in that the state of the information can change over time. From

a political science perspective, these models also exhibit similar behaviour to voting

[16] [8]. In biology these models can also help us understand cellular and evolutionary

biology, epidemiology, and gene regulatory networks as seen in [3], [20], and [12].

Some of these dynamic processes are also important for the field of computer

science. A popular topic in computing is automata. Automata can help with infor-

mation processing, and are sometimes equivalent to Turing Machines which checks

the limitations of mechanical computation of algorithms [19]. In some cases these

processes can be self-organizing.

The focus of this thesis will be a majority rules process which is a model for

social influence within a network. Each member of the network will adopt the opinion

that occurs most frequently in their social neighbourhood. The hope is to be able to

better understand this sort of information spread. In researching this model, as in

other dynamic models, the objective is to discover the long term behaviour based on

the initial state of the process.

1
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1.1 Previous and Related Works

Many different dynamic processes have been previously studied. There exist both

deterministic models and stochastic models. One example of a stochastic process is a

random voter model in which there are voters in a network, and a voter assumes the

opinion of one of its neighbours at random. Another example is a linear threshold

model which has influence weights on each edge that change at random after each

time step, and has two states: active and inactive [4]. A generalized linear threshold

model with n states was studied in [14]. This is a linear threshold model where each

node has an activation function. A multiple threshold model was studied in [22]. This

model has multiple states for the vertices, and terminates when no new activation

continues [22]. Meanwhile deterministic models have no element of probability when

adopting a new state.

Other popular dynamic models are variations on the prisoner’s dilemma

game, which is also a model of social influence. This was originally a game used in

classical game theory to study how humans cooperate with each other to best suit their

own needs. Mathematicians started using the game to form a set of rules to create a

deterministic process on graphs as seen in [7], [6], [21], and [11]. The model gives each

node an option between cooperator and defector with an unbalanced scoring scheme.

This means that being a cooperator will have a different score than being a defector.

A node then looks to its neighbours and looks at the pay-off for either choice. A node

makes a decision of either cooperator or defector in order to get the highest pay-off.

In [6], an asynchronous updating model was studied. In [7] the model was studied on

a random graph with different levels of connectivity. This sort of model can be used

to study an evolutionary system as seen in [13].

Bootstrap percolation is another model that simulates the spread of infor-

mation. The model starts on a graph with an initial set of active vertices. The model

has a threshold r such that a node only becomes active if at least r of its neighbours
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are active. Once a node is activated, it remains activated. As stated in [9], this model

can exhibit behaviours similar to rumour spread. Bootstrap percolation is a cellular

automaton, and can also be a majority voter if r is large enough. In [9] they studied

the model on the random graph G(n, p) with results on the size of the final activation

set, and the number of steps until the process stops.

Clearly there are many different models in existence, all attempting to model

the behaviour of people based on social influence. Many of these papers sought out

to find the best initial active set to achieve the most desirable final active set.

These sorts of updating models are quite popular in the field of economics

as they help model consumer behaviour and aid in profit maximization. Numerous

economic models as seen in [15], [10], [5],[23], [24],[22] provided many experimental

results; however, there are few theoretical results. In [23] they used a cascade model

to show the monotonicity of influence propagation for viral marketing and influence

maximization. In [5] computational approaches were used to show product propa-

gation through small-world networks. They studied a model in which products gain

value based on how many adopters it has. It was discovered that a product is more

likely to fail at becoming popular in random networks and more likely to thrive in

highly clustered networks.

In [15] they created a model which looks at n states and considered product

diffusion on small-world networks. The model is a majority voter model with random

tie-breaking. Beforehand, most models only considered two states. They created

two scenarios for the model, one involving perfect information, the other imperfect

information. In perfect information all nodes are informed of the existence of each

product. In imperfect information not every node is informed of each product and

only discovers a new product through interaction with other nodes. Through many

simulations they found that the perfect information model encourages faster diffusion

in completely random networks, and the imperfect information model encouraged a

winner-take-all scenario.
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Others have looked at the influence certain communities of nodes have on

the overall outcome of the final periodic state of the model as seen in [16]. This paper

considers nodes that have formed coalitions, or communities that control the entire

graph.

Perhaps the most influential paper for this thesis is [8]. They studied a

biased majority model and a conservative majority model with two colours. They

explored the models on cycles and toroidal grids. They showed that the period is

2 on both models with two colours, and found an upper bound of the pre-period of

both models. They found a threshold probability that ensures a bichromatic config-

uration at the end of the process on cycles. Moreover, they showed that there are

two threshold probabilities so that with high probability the final configuration will

be monochromatic or bichromatic on the toroidal grid. From this paper we expanded

upon the number of colours and added the possibility of being uncoloured.

1.2 Definitions

1.2.1 Graph Theory

We follow the definitions as given in [2]. A graph G = (V,E) is a set of vertices V

and edges E with a function ψ with associates each edge with an unordered pair of

vertices in V . If we have ψ(e) = uv, then u and v the endpoints of e. We can also

write the edge e as e = uv. We say the order of a graph is the number of vertices

|V | and the size of a graph is the number of edges |E|. A loop is a edge where

the endpoints are identical. A graph is said to have parallel edges if there are at

least two edges in E that have the same endpoints. A simple graph is a graph

with no loops or parallel edges. A multigraph is a graph where loops and parallel

edges are allowed. In this thesis unless otherwise stated all graphs are simple. We

say two vertices u and v are adjacent if there exists an edge e = uv. We say an

edge is incident to vertices u and v if u and v are the endpoints of the edge. The
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Figure 1.1: Examples of families of graphs

A complete graph A cartesian grid A 4-regular graph

neighbourhood of a vertex u, denoted N(u), is the set of all vertices adjacent to

u. The degree of vertex denoted deg(v) is |N(u)|. A cartesian product of two

graphs G = (V (G), E(G)) and H = (V (H), E(H)), denoted G2H, is the graph with

vertex set V (G) × V (H) such that either u1u2 ∈ E(G) and v1 = v2, or v1v2 ∈ E(H)

and u1 = u2. A maximum matching is a set of pairwise non-adjacent edges which

covers as many vertices as possible. A clique is a set of mutually adjacent vertices.

The following are some families of graphs. A complete graph Kn is a

graph of order n where any two vertices are adjacent. A path Pn is a graph of order

n where the vertices can be listed sequentially where two vertices are adjacent if they

are consecutive in the sequence, and are nonadjacent otherwise. A cycle Cn is a graph

whose vertices are arranged in a cyclic sequence such that two vertices are adjacent if

they are consecutive in the sequence and nonadjacent otherwise. A cartesian grid

Gn,m is the cartesian product of two paths Pn2Pm. A toroidal graph is a graph

that can be placed on a torus such that no two edges intersect. A toroidal grid

graph Tn,m is the cartesian product of two cycles Cn2Cm. A tree is a graph which

contains no cycles. A graph is k-regular if d(v) = k for all v ∈ V . See Figures 1.1

for examples of some graphs. An induced subgraph of a graph G = (V,E) is a set

of vertices X ⊂ V whose set of edges consists of all edges that have both endpoints

in X.

Moreover, graph theory also has a connection to linear algebra. We can
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Figure 1.2: von Neumann Neighbourhood

v1

v2

v3

v4

u

represent any graph as a matrix, an adjacency matrix of the graph. For a graph

of order n, an adjacency matrix is a matrix A of size n × n where each entry (auv)

is the number of edges joining vertex u to vertex v. For simple graphs, the entries

auv will only either be a 1 or a 0. In the matrix, each row and column represent the

neighbours of a vertex. These matrices are always symmetric. With this connection,

it is now possible to use tools from linear algebra to discover facts about graphs.

Graphs can also be used to model finite deterministic automata. We will

use the definition as defined in [19]. Let I be a finite alphabet, where an alphabet

is a non-empty set where the elements are called letters. A finite deterministic

automata over the set I is an ordered triple A = (S, s0, f), where S is a finite

non-empty set of states, s0 ∈ S is the initial state, and f is a function mapping the

Cartesian product S × I into the set S.

In graph theory we most commonly find automata in the form of cellular

automata. This is an automaton that takes place on a Cartesian or toroidal grid.

One of the more common types of neighbourhoods defined in cellular automata is

the von Neumann neighbourhood. The von Neumann neighbourhood of a cell u

consists of four neighbours orthogonally adjacent to u. We can see the von Neumann

neighbourhood in Figure 1.2 where u is the blue cell, and its neighbourhood consists

of the red cells labelled v1, v2, v3, and v4. There also exists one dimensional cellular

automata where a cell u has two neighbours.
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1.2.2 Probability Theory

To prove the existence of an event happening we use probability theory. We use the

definitions as defined in [18]. First and foremost we look at the probability space.

This contains three elements: the sample space Ω, which is the set of all possible

outcomes, F which is the σ-field, a certain collection of subsets of Ω, and P the

probability measure which is a function from F to [0, 1]. A simple example would be

tossing a fair coin. Here, Ω = {H,T} and our σ-field is {∅, H, T,Ω}. Our probability

measure is P (∅) = 0, P (H) = 1
2
, P (T ) = 1

2
, and P (Ω) = 1. A random variable is a

function X that maps elements from Ω to the real numbers R. An event is a set of

outcomes from Ω to which a probability is assigned. Let N be an event and let the

random variable XN be defined as:

XN =

1 if N occurs,

0 otherwise

(1.1)

We call XN the indicator variable of the event N . A Bernoulli distribution is

a distribution of two outcomes, 0 or 1 (”failure” or ”success”), where the probability

of a success is p and the probability of a failure is 1− p for some p ∈ [0, 1]. A random

variable with a Bernoulli distribution is called a Bernoulli random variable.

The expected value for a random variableX is denoted E(X) =
X
k

P (X =

k) · k. Linearity of expectation states that if we have E(X) and E(Y ), then

E(X + Y ) exists and E(X + Y ) = E(X) + E(Y ). The variance of a random vari-

able X is defined as V ar(X) = E((X − E(X))2) = E(X2) − (E(X))2. If we have

two random variables X and Y then we can compute the covariance, Cov(X, Y ) =

E(XY )−E(X)E(Y ). If X and Y are independent then Cov(X, Y ) = 0. If a random

variable X =
Pn

i=1Xi, then V ar(X) =
Pn

i=1 V ar(Xi) +
Pn

i=1

P
i 6=j Cov(Xi, Xj). We

say an event N happens asymptotically almost surely (a.a.s) if Pr(N) → 1 as

n→ ∞.

Theorem 1.1 (Markov’s Inequality) Let X is a positive random variable with a
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finite expected value E(X). Then for every a > 0

Pr(X ≥ a) ≤ E(X)
a

.

Theorem 1.2 (Chebyshev’s Inequality) Let X be any random variable with fi-

nite expected value E(X). Then if a > 0 is a real number, we have

Pr(|X − E(X)| ≥ a) ≤ V ar(X)
a2

.

Theorem 1.3 (Hoeffding’s Inequality) [1] Let X1, X2, ..., Xn be a finite sequence

of independent random variables. Assume that for all 1 ≤ k ≤ n, one can find two

constants ak < bk such that ak ≤ Xk ≤ bk almost surely. Denote Sn = X1 + ...+Xn,

then for any positive x,

P (|Sn − E(Sn)| ≥ x) ≤ 2 exp
−2x2Pn

k=1(bk − ak)2
(1.2)

If the Xi are each indicator variables, then we can take ai = 0 and bi = 1, and

Hoeffding’s bound becomes P (|Sn − E(Sn)| ≥ x) ≤ 2 exp(−2x2

n
).

Also important in probability theory is understanding some basic asymptotic

analysis. Let f and g be real valued functions.

• We say f(x) = O(g(x)) if lim
n→∞

f(n)

g(n)
<∞.

• We say f(x) = o(g(x)) if lim
n→∞

f(n)

g(n)
= 0.

• We say f(x) = Ω(g(x)) if lim
n→∞

g(n)

f(n)
> 0.

• We say f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

• We say f is much less than g, or f g, if f(n)
g(n)

→ 0 as n→ ∞.
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1.3 The Model

In this section we describe four possible variants of the majority voter model. In

each variant there is a different tie-breaking rule. These models originate from [8]

and [15]. For each model we have a set of colours percolating through a graph. Each

vertex is initially assigned a colour, and then changes its state based on the colour

that occurs most often in the neighbourhood of the vertex. For each of these models,

we will include an uncoloured state, which represents undecided. The vertices that

are uncoloured will not have an effect on their neighbours. All four variants of the

model depend on time. At time t = 0, a graph will be giving a random configuration

of colours, and each vertex will update their colour for time t = 1. The process is

then continued for t ≥ 0.

Let f : V → {0, 1, ..., n} be a function that gives a configuration on a graph

G = (V,E). Let the set of vertices in the neighbourhood of v that have colour c at

time t be denoted N t
c(v).

Let v ∈ V , then the majority of v is

Maj(f, v) = argmax{|N f
c (v)| 1 ≤ c ≤ n}. (1.3)

Thus, Maj(f, v) is the colour that occurs the most often in the neighbour-

hood of v. A tie occurs at a vertex v if there exists at least 2 colours c1 6= c2 such

that

|N t
c1

(v)| = |N t
c2

(v)|, (1.4)

and for all c, 1 ≤ c ≤ n,

|N t
c(v)| ≤ |N t

c2
(v)|. (1.5)

This also includes the case where all neighbours of v are uncoloured since

|N t
c(v)| = 0 for all c. We let Maj(f, v) be a colour, and {Maj(f, v)} to be the set of

all colours that occur most often in N(v).
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We will now define the variants of the majority voter model. Each colour is

associated with an integer, and if a vertex v is uncoloured, then f(v) = 0.

Definition 1.1 (Conservative Majority Model) In this model, vertices where a

tie occurs retain their original colour. Precisely, for all v ∈ V , and all t ≥ 1,

ft(v) =

ft−1(v) if a tie occurs at v

Maj(ft−1, v) otherwise

The Conservative model comes from [8].

Definition 1.2 (Biased Majority Model) In this model, vertices where a tie oc-

curs choose the best ranked colour. Assume that the colours {1, ..., c} are ranked where

colour 1 is the most desirable, colour 2 is second most desirable, and so on. Thus,

in the event of a tie, the vertex will always choose the most desired colour in its

neighbourhood. For all v ∈ V , and all t ≥ 1,

ft(v) =


ft−1(v) if ∀u ∈ N(v), ft−1(u) = 0

min{Maj(ft−1, v)} if there is a tie

Maj(ft−1, v) otherwise

The biased majority model comes from [8].

The following model uses elements from both the Conservative Majority

Model and the Biased Majority Model.

Definition 1.3 (Mixed Majority Model) Assume that the colours {1, ..., n} are

ranked where colour 1 is the most desirable, colour 2 is second most desirable, and

so on. If the vertex’s adopted colour is in the tie, then it will conserve its colour. In

the event of a tie and the vertex’s current colour is not in the tie, then the vertex will
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always choose the most desired colour in its neighbourhood. For all v ∈ V , and all

t ≥ 1,

ft(v) =



ft−1(v) if ∀u ∈ N(v), ft−1(u) = 0

ft−1(v) if there is a tie and ft−1(v) ∈Maj(ft−1, v)

min{Maj(ft−1, v)} if there is a tie

Maj(ft−1, v) otherwise

For the next model we define the function Rand(X). This function takes in

a set X of elements, and outputs a random element from X.

Definition 1.4 (Coin-Flip Majority Model) This model has stochastic tie-breaking.

In the event of a tie, a vertex will choose uniformly at random from the colours in

Maj(ft−1, v).

ft(v) =


ft−1(v) if ∀u ∈ N(v), ft−1(u) = 0

Rand({Maj(ft−1, v)}) if there is a tie

Maj(ft−1, v) otherwise

The coin-flip model comes from [15].

A sequence {ft}∞t=0 is eventually periodic with period k if there exists some

time t∗ such that ft∗(v) = ft∗+k(v) for all t ≥ t∗. Let f be a configuration, and

{ft}∞t=0 be a configuration sequence so that f0 = f . We say that f is periodic with

period k if ft = ft+k for all t ≥ 0. We say the least period of a function f is k

if k is the smallest integer so that ft = ft+k. In this thesis when we say period or

periodic, we always refer to the least period k. The Conservative, Biased, and Mixed

models are inherently periodic as they have a finite number of configurations and are

deterministic. However, the coin-flip model is stochastic, and whenever ties occur it

will not be necessarily periodic.
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Figure 1.3: One Dimensional Conservative Majority Cellular Automaton
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The Conservative Majority Model will be the main focus of subsequent chap-

ters. This is a finite deterministic cellular automata. In the Conservative Majority

Model the rules are based on the neighbouring cells having a majority colour. The

rules are defined in Figure 1.3 for the case when the graph is a path, and the corre-

sponding automata is one dimensional. The top row represents the vertex u and its

two neighbours at time t, and the bottom row is u at time t+ 1.

1.4 Main Results

This thesis covers a wide range of areas for the majority voter model with a primary

focus on the Conservative Majority Model.

In Chapter 2, we classify all the possible period 1 and 2 configurations of the

Conservative Majority Model on paths, cycles with n colours and uncoloured. We also
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classify the period 1 and 2 configurations on the toroidal grid with 2 colours and no

uncoloured. We look at how an uncoloured vertex behaves in a periodic configuration.

In Chapter 3, we define persistent sets, which are sets of vertices in a graph

such that at least half of their neighbours are in the set. We look at some basic

properties of the sets and monochromatic persistent sets. We look at combining

persistent sets, and how the period of a configuration is affected by persistent sets.

In Chapter 4 we look at the cycle and complete graph and the Conservative

Majority Model with 2 colours and n colours, including uncoloured. We determine

the possible initial configurations that determine whether or not a colour persists to

the final configuration. In addition, with a random initial configuration, we look at

the long term behaviour of the model on these graphs and the threshold probabilities

that ensure the survival of a colour.

In Chapter 5, we prove that the period of the Mixed Majority Model with n

colours is 2 and find the upper bound of its pre-period. Similarly, we find the upper

bound of the pre-period for 2 colours and uncoloured on the Conservative Majority

Model and prove that the period is 2. These proofs involve using a linear algebra

framework to represent the model.



Chapter 2

Periodic Configurations

In this chapter we look at periodic configurations to give an idea of what to expect

in the final stabilized state of the Conservative Majority Model. This narrows all the

possibilities for periodic configurations, as for any graph G = (V,E) on |V | vertices

with n colours and uncoloured, there are |V |n+1 possible configurations.

For the Conservative Majority Model, we know that it is inherently periodic

as the model is deterministic and has a finite number of configurations. In Chapter

5, we prove that the Conservative Majority Model with two colours and uncoloured

has period 2. It has not yet been proven that the model with n colours has period

2; however, given experimental results, we believe that it has period 2. We classify

paths, cycles and toroidal grids for period 1 and period 2 configurations. For the

sections on paths and cycles, we will be under the assumption that the process has

n colours and uncoloured. For the sections on toroidal grids, we will be under the

assumption that the process has 2 colours and no uncoloured. Recall, each colour is

associated with an integer and we let uncoloured be represented by 0.

Let f be a configuration, and {ft}∞t=0 be a configuration sequence so that

f0 = f . Recall that f is periodic with period k if ft = ft+k for all t ≥ 0. We let k

be the least period. A vertex v in a configuration f has period k if ft(v) = ft+k(v)

for all t ≥ 0. Given a graph G = (V,E), a configuration f , and a vertex v ∈ V , we

define the configuration f−v on the graph G− v as the restriction of f to V − {v}.

Lemma 2.1 Let f be a configuration on a graph G = (V,E), and let v ∈ V be such

that f(v) = 0, and let f ∗ be the configuration obtained by applying one step of the

14
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Conservative Majority Model. Let f−v be the corresponding configuration on G − v,

and f ∗−v the configuration obtained by applying one step of the Conservative Majority

Model to G− v with configuration f−v. Then, for all u ∈ V − v, f ∗(u) = f ∗−v(u).

Proof: Since uncoloured vertices are not considered then Maj(f, u) =Maj(g, u)

for all u ∈ V − {v}. Moreover, a tie occurs at u ∈ V − {v} in G if and only if a tie

occurs at u in G− v. 2

Theorem 2.1 Suppose f is a periodic configuration for a graph G = (V,E), and

there exists some v ∈ V so that f(v) = 0. Then f−v is periodic for G− v.

Proof: Let k be the period of f . Let {ft}∞t=0 be the configuration sequence

so that f0 = f . Configurations f0, f1, ..., fk−1 represent all the configurations in the

period. Vertices never can become uncoloured; therefore, during a period uncoloured

vertices cannot become coloured. And so fi(v) = 0 for 0 ≤ i ≤ k. Lemma 2.1 implies

that for u 6= v, fi+1(u) = f−v
i+1(u) for all 0 ≤ i ≤ k and thus,

f−v
k (u) = fk(u) = f0(u) = f−v

0 (u). (2.1)

Therefore, f−v is periodic with period k. 2

In the following sections we will classify all period 1 and 2 configurations on

paths, cycles, and toroidal grids.

2.1 Path and Cycle Configurations

In this section, we will classify the periodic configurations on paths, which can be

useful in studying one dimensional cellular automata. Then, using the configurations

of paths, we will classify all the configurations on cycles.
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2.1.1 Path Configurations of Period 1

On a path we will define certain components of a period 1 configuration for each

colour. We will number the vertices of a path Pn as v0, v1, ..., vn−1. The end vertices

of a path are v0 and vn−1. We first define the components for each colour, then the

components for uncoloured.

A separator vertex is a vertex vi, 0 < i < n− 1 so that vi−1, vi, vi+1 have

three different colours, and vi−1, vi, vi+1 are not uncoloured and not end vertices. A

monochromatic path is a subpath with vertices vi, vi+1, ..., vj so that f(vl) = c for

i ≤ l ≤ j and f(vi−1) 6= c or i = 0, and f(vj+1) 6= c or j = n−1. An island vertex is

a vertex so that all neighbours are uncoloured. An uncoloured separator vertex

is a single vertex vi so that f(vi) = 0 and i 6= 0, and vi−1 and vi+1 are different

colours. See Figure 2.1 to see examples of monochromatic paths, island vertices, and

uncoloured separator vertices.

Theorem 2.2 A configuration f on a path for the Conservative Majority Model with

n colours and uncoloured is period 1 if and only if for each colour c ∈ {1, ..., n},

the graph induced by colour c consists of monochromatic paths, separator vertices, or

island vertices.

Proof: Let f be a period 1 configuration on the path. Consider a subgraph induced

by the colour c. Each component of the subgraph is either a single vertex or a path.

Suppose vi, ..., vj, j − i ≥ 2 is a component. Then by definition vi, ..., vj is a

monochromatic path, and f(vi−1) 6= c and f(vj+1) 6= c.

Next, suppose vi is a component that is a vertex. Suppose first that vi has an

uncoloured neighbour. Then its other neighbour must also be uncoloured, otherwise

vi will change colour. Alternatively, vi is an end vertex, with only one neighbour that

is uncoloured, and will not change. If both neighbours are uncoloured, or vi is an end
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vertex then vi is an island vertex.

Assume that vi has no uncoloured neighbour. If vi is an end vertex, then

its one neighbour must be the same colour as vi, and it is part of a monochromatic

path. Suppose that vi is not an end vertex and has no uncoloured neighbour, then

there must be a tie in its neighbourhood. Thus, vi has two neighbours of different

colours. Therefore, vi is a separator vertex by definition. Similarly if there is an

uncoloured vertex v, then it must be that there is a tie in its neighbourhood, making

vi an uncoloured separator vertex.

Suppose that f is not a period 1 configuration. Then there must be a vertex

that changes colour. That is, there exists a single vertex v coloured c1 with a strict

majority in its neighbourhood. If v is an end vertex either coloured or uncoloured,

then its neighbour must be another colour, and v changes. If there exists an path

of uncoloured vertices, then one vertexin the path has a coloured neighbour and will

change. If v is not an end vertex and is coloured, then both neighbours are a different

colour giving a strict majority. If v is uncoloured, and not an uncoloured separator

vertex, then it has a majority and changes colour.

As a vertex needs a strict majority to change colour, no vertex in a monochro-

matic path will change colour. Thus, v is a component that is one vertex. However,

v is not a separator vertex or uncoloured separator vertex since it does not have two

neighbours with different colours, and it is not an island vertex because it has one

coloured neighbour. Therefore, the graph induced by c1 has a component that is not a

monochromatic path, separator vertex, uncoloured separator vertex or island vertex.

2

2.1.2 Cycle Configurations of Period 1

Now we classify the period 1 configurations on the cycle. The results from the clas-

sification from the path follow for the cycle; however, we add one more definition.
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Figure 2.1: Configurations of period 1 on a path

. . . . . .

An island vertex

. . . . . .

A uncoloured separator vertex

. . . . . .

A monochromatic path

We define a monochromatic cycle in a cycle Cn as v0, ..., vn−1 so that

f(vi) = c for 0 ≤ i ≤ vn−1. We have the following corollary from Theorem 2.2.

Corollary 2.1 Let f be a configuration on the cycle Cn for the Conservative Majority

Mode, with n colours and uncoloured. The configuration f is period 1 if and only if

for each colour c ∈ {1, ..., n} and cycle C = (V,E) f the graph induced by colour c

consists of monochromatic paths, a monochromatic cycle, separator vertices, or island

vertices.

Proof: In the cycle there are no end vertices. However, in a configuration on a cycle

it is possible to have monochromatic paths, separator vertices, and island vertices.

The only other possible configuration is if the entire graph is one colour, in which

case it is a monochromatic cycle and no vertex will change colour. Therefore, this

result follows from Theorem 2.2. 2

2.1.3 Path Configurations of Period 2

We classify period 2 configurations on the path. These patterns are more involved

than period 1 configurations as period 2 configurations may have period 1 vertices as

well as period 2 vertices.
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As before, in a period 2 configuration on a path, there may exist induced

monochromatic paths, separator vertices, and island vertices. We use the definitions

as introduced in 2.1.1. A bichromatic path is a path vi, ..., vj, where f(vi) = c1 =

f(vi+2) = ... = c2, and f(vi+1) = f(vi+3) = ... = c2 such that vi−1, vj+1 are uncoloured

separator vertices, or i− 1 = 0 or j + 1 = n− 1.

Theorem 2.3 A periodic configuration f with n colours and uncoloured on a path

has period 2 and not period 1 if and only if there exists a bichromatic path for some

two colours ci,cj ∈ {c1, ..., cn}. Moreover, the graph induced by every pair of colours

ci and cj consists of monochromatic/bichromatic paths, separator vertices, or island

vertices.

Proof: Suppose f does not have period 1. Then by Theorem 2.2 there is a colour ci

so that some component of the graph is not a monochromatic path, separator vertex,

or island vertex. Thus, it must be a component that is a vertex v with 2 neighbours

of the same colour cj, j 6= i, v is an end vertex adjacent to a vertex of colour cj, or v

has an uncoloured neighbour and a neighbour of colour cj. As f has period 2, then

v will change colour, and so v has a majority of cj, and becomes cj in the next step.

However, in order to become ci again, it must have a majority of ci again. This means

that the neighbours change colour as well. And so, either each neighbour either has

an uncoloured neighbour, another neighbour that is also ci, or is an end vertex. Thus,

this must be a bichromatic path by definition.

Now suppose that for some two colours ci and cj there is a bichromatic path.

Then consider the graph induced by colour ci. Each vertex in the bichromatic path is

a component in the graph induced by ci. Now, each vertex either has two neighbours

coloured cj, or one uncoloured neighbour, and is not a separator or island vertex.

Therefore, by Theorem 2.2, this is not a period 1 configuration. Consider vertices in

a bichromatic path. The end vertices vk, vl have one uncoloured neighbour, and one

neighbour of the other colour. This gives a majority and so vk, vl will change to the
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Figure 2.2: Examples of period 2 configurations

Bichromatic cycle Bichromatic path

other colour. All the vertices coloured cj have two neighbours coloured ci and the

vertices coloured ci have two neighbours coloured cj. Thus, in the next step, every

vertex coloured ci will turn cj and every vertex coloured cj will turn ci. If we apply

the Conservative Majority process another step, then the bichromatic graph will have

its original colouring. Therefore, this is a period 2 configuration. 2

2.1.4 Cycle Configurations of Period 2

In this section we classify the possible period 2 configurations on the cycle. As before,

all of the properties of path configurations also follow for cycles. See Figures 2.2 and,

2.3 for examples of period 2 configurations on the cycle. We define the bichromatic

cycle on Cn for n even as v0, ..., vn−1, where f(v0) = c1 = f(v2) = ... = c2, and

f(v1) = f(v3) = ... = c2. We have the following corollary of Theorem 2.3 for period

2 configurations on cycles.

Theorem 2.4 A periodic configuration f with n colours and uncoloured on the cycle

has period 2 and not period 1 if and only if there exists a bichromatic path for some

two colours ci,cj ∈ {c1, ..., cn} or a bichromatic cycle. Moreover, the graph induced

for every pair of colours ci and cj consists of monochromatic or bichromatic paths, a

bichromatic cycle for n even, separator vertices, or island vertices.

Proof: In the cycle there are no end vertices. However, in a configuration on a cycle it
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Figure 2.3: Configurations with both period 1 and 2 subgraphs on a cycle

Bichromatic and monochromatic paths on a cycle

Bichromatic and monochromatic paths on a cycle

Two bichromatic paths on a cycle
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is possible to have monochromatic/ bichromatic paths, separator vertices, and island

vertices. There are two other possible configurations. One configuration is if the

entire graph is one colour, in which case it is a monochromatic cycle and is not period

2. If the cycle has an even number of vertices, then it is possible to have a bichromatic

cycle in which case it is a period 2 configuration. Therefore this result follows from

Theorem 2.3. 2

We have now classified all periodic configurations of paths and cycles. Next,

we classify the periodic configurations on the toroidal grid.

2.2 Toroidal Grid Configurations

In this section we will look at how the Conservative Majority Model behaves on the

toroidal grid. This can be helpful in further studies for two dimensional cellular

automata, as we will know the final configurations. We classify all possible period 1

and 2 configurations for the toroidal grid with two colours and no uncoloured. We

denote the graph by Tn,m.

Toroidal Grid Configurations of Period 1

Here we will classify the possible period 1 configurations on the toroidal grid. The

toroidal grid is denoted Tn,m = Cn2Cm, where we say this has width n and height

m, and we will use the coordinate system to refer to a vertex on the graph. The

height and width may be of any length. Each vertex will be labelled (x, y) where

1 ≤ x ≤ n and 1 ≤ y ≤ m. We use colours r and b, and no uncoloured. Note that in

the definitions below the roles of r and b may be reversed.

We define a square with four vertices, (i, j), (i+1, j), (i, j+1), (i+1, j+1).

We define a polyomino region as a connected subgraph that is a union of squares

and paths such that both end vertices of the paths are in the union of squares. In
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Figure 2.4: Period 1 Monochromatic Polyomino Region

such a region there exists no vertices with degree 1 in the subgraph. See Figure 2.4

for two examples of such a region. Note that the vertices in red represent the shape

of the region.

We define a monochromatic cycle as an induced cycle with the property

that each vertex is the same colour b. Each vertex in the cycle has two neighbours

coloured b and so there will always be a majority b or a tie including b. See Figure

2.5 for an example of a monochromatic cycle. As we will see in the next chapter, this

is an example of a persistent set.

We say a polyomino region is a monochromatic polyomino region if all

vertices are the same colour b. Since each vertex in a polyomino region has at least

two neighbours in a polyomino region, each vertex in a monochromatic polyomino

region has a majority of b in their neighbourhood, and will retain its colour. Thus,

all neighbours outside of the region are r. This would have the shape of a rectangle

of width n and height m. However, these regions make take other shapes as seen in

Figure 2.4.

Theorem 2.5 A configuration f on the toroidal grid Tm,n for the Conservative Ma-

jority Model with 2 colours and no uncoloured is period 1 if and only if for colours

b and r, the graph induced by colour b or r consists of monochromatic polyomino

regions, or cycles.

Proof: Let f be a period 1 configuration. Consider a subgraph induced by the colour

b. Let the other colour be r. Each component of the subgraph is either a path, cycle,
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single vertex, or some other subgraph.

Suppose there exists a component that is a single vertex (i, j), then all of

its neighbours are r. And so, (i, j) will change colour and cannot be in a period 1

configuration. Suppose there is a component that forms an induced path. Then both

end vertices will have a majority of r, and so it will change colour and cannot be in

a period 1 configuration. Suppose now there is a component that forms an induced

cycle, then by definition this is a monochromatic cycle, and is part of a period 1

configuration.

Suppose there is a connected component C with colour b such that it is not

a path, cycle, or single vertex. Each vertex v in the component has at least two

neighbours coloured b so that f is period 1. If these neighbours are and v part of a

b-square, call this square Sv. Now, take the union of all Sv for each vertex v in C,

call it R, and consider the component formed by C −R.

If a collection of disjoint paths remain, then it must be that at least one end

vertex of each path is apart of R. Otherwise C would not be a connected component.

Moreover, if only one end vertex is connected to R, then the other end vertex will

have degree 1 in the component and must have a majority r, and will change colour.

This is not period 1, so both end vertices must be connected to R. Similarly if a

collection of non-disjoint paths remain, then for each path there exists two vertices

with degree 1 in C − R. In order to not have a vertex of degree 1 in C, it must be

that each degree 1 vertex is connected to R.

If a cycle that is not a square remains, then there must be a vertex v that

has a neighbour in R. And so, v has three neighbours coloured b and must already

be a part of R. Removing v gives a path in which both end vertices are a part of R.

Every other vertex in the component has two neighbours coloured b, and so will not

change colour. Thus, C is the union of squares Sv and paths where both end vertices

are in C. Therefore, C must be a polyomino region and each induced subgraph in a
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period 1 configuration will either be a monochromatic polyomino region, or cycle.

Now suppose that f is not period 1. Then there must exist some vertex v

with a strict majority in its neighbourhood so that it can change colour. That is, if

v is coloured b, then it has either 3 or 4 neighbours coloured r. Thus, v cannot be

a part of a monochromatic cycle, or polyomino region as there is not at least two

neighbours coloured b. And so, if f is not period 1 there exists a component that is

not a monochromatic cycle or polyomino region. 2

2.2.1 Toroidal Configurations of Period 2

In this section we will classify all possible period 2 configurations on the toroidal grid.

Again, period 2 configurations on the toroidal grid may have period 1 vertices as well

as period 2 vertices. We use the colours b and r, and no uncoloured.

We say a polyomino region is a bichromatic polyomino region if each

vertex with an odd y-coordinate and even x-coordinate will be coloured b, each vertex

with an odd y-coordinate and odd x-coordinate will be coloured r, each vertex with

an even y-coordinate and even x-coordinate will be coloured r, and each vertex with

an even y-coordinate and an even x-coordinate will be coloured b. In addition, each

vertex with two neighbours not in the subgraph, must have both neighbours coloured

differently. Note that the colouring with r and b may be reversed.

We call an induced cycle a bichromatic cycle if f((x1, y1)) = ... =

f((x2k+1, y2k+1)) = b, f((x2, y2)) = ... = f((x2k, y2k)) = r, and (x1, y1) is a neighbour

of (xp, yp). For each coordinate (xi, yi), 1 ≤ i, j ≤ 2k, the neighbours not in the cycle

are coloured differently. See Figure 2.5 for an example of a bichromatic cycle.

Theorem 2.6 A periodic configuration f on the Conservative Majority Model with

2 colours and no uncoloured on a toroidal grid has period 2 and not period 1 if and

only if there exists at least one bichromatic polyomino region or bichromatic cycle.
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Moreover, the graph consists of monochromatic/bichromatic polyomino regions, and

monochromatic/bichromatic cycles.

Proof: Suppose f does not have period 1, then there must exist some vertex

with a strict majority colour in its neighbourhood. We will use colours b and r.

Consider the graph induced by all the period 2 vertices. If a period 2 vertex

v has a majority of size 2 in the induced graph, then v is a part of a bichromatic

cycle, or a path in a polyomino region. If v has a majority of size 3, then it must be a

vertex in a polyomino region. Finally, if v has a majority of 4, then it is a vertex in a

polyomino region. Note that in the entire graph, a vertex in a bichromatic cycle or a

path in a bichromatic polyomino region will have a period 1 neighbour contributing

to the majority. Every other vertex in the graph must have period 1, and by Theorem

2.5 this graph consists of monochromatic cycles, polyomino regions.

Suppose now that there exists period 2 vertices in f for colours b and r.

Then the graph induced by b contains either a component that is a single vertex, and

thus has a majority of size 4, or a vertex with a majority of 3. Then by Theorem 2.5

f does not have period 1.

Thus, all bichromatic components consist of bichromatic polyomino regions,

and cycles, and all monochromatic components consist of monochromatic polyomino

regions, and cycles.. 2

We have now classified all period 1 and 2 configurations of cycles, paths,

and toroidal grids. This gives us a general idea of what to expect at the end of the

Conservative Majority Model process. Moreover, some of the period 1 configurations

are what we call monochromatic persistent sets which will be explored in the next

chapter.
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Period 1 polyomino region Period 1 blue monochromatic cycle

Period 2 bichromatic cycles Period 2 bichromatic polyomino region

Figure 2.5: Examples of Periodic Configurations on Toroidal Grid



Chapter 3

Persistent Sets

In this chapter we look at properties of persistent sets, which are sets of connected

vertices that have at least half of their neighbours in the set. In terms of the spread

of influence, these sets are particularly interesting because they can represent a group

of people with an opinion that cannot be swayed. Moreover, with the existence of a

persistent set in a configuration, it can be assured that a colour will not disappear.

A persistent set in a graph is a set of vertices I so that for each vertex

v ∈ I, |N(v) ∩ I| ≥ deg(v)
2

. If a configuration of a graph G is given, then we call a

set a monochromatic persistent set if it is a persistent set and each vertex is the

same colour. For example, as seen in Chapter 2, a persistent set of vertices in Cn

could be two adjacent vertices. See Figure 3.1 for an example of a persistent set. The

vertices labelled u1, u2, and u3 form a persistent set and a monochromatic persistent

set, while the vertices labelled u5, and u6 do not form a persistent set, but the vertices

u4, u5, u6 form a persistent set, but not a monochromatic persistent set.

Lemma 3.1 Let G = (V,E) be a graph, f a configuration, and I a monochromatic

persistent set. Then for a sequence of configurations {ft}∞t=0 in the Conservative

Majority Model, if f0 = f , and for all t ≥ 0, I is a monochromatic persistent set.

Figure 3.1: A example of a persistent set

u3 u4

u1

u2

u5

u6

28
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Proof: As I is a monochromatic persistent set, we have that for all v ∈ I, |I∩N(v)| ≥
deg(v)

2
, and f(v) = f0(v) = c, for some c 6= u, where u represents uncoloured. Now

fix some t ≥ 0 and assume that for all v ∈ I, ft(v) = c. Then for each v ∈ I,

Maj(ft, v) = c or c ∈ {Maj(f, v)} in the event of a tie, and so ft+1(v) = c. Thus, by

definition I is a monochromatic persistent set in ft+1. 2

Recall that a vertex v has period k in f if for a sequence of configurations

{ft}∞t=0, f0 = f , we have that ft(v) = ft+k(v) for all t ≥ 0. We let k be the least

period. In particular, a configuration f has period k if and only if all vertices in G

have period k in f .

Corollary 3.1 Let G = (V,E) be a graph, f a configuration, and I a monochromatic

persistent set. Then for all v ∈ I, v has period 1 in f .

Clearly the union of two disjoint persistent sets is again a persistent set,

therefore, we will only consider connected persistent sets.

Theorem 3.1 The union of two persistent sets I and J is a persistent set.

Proof: By definition each vertex v in I has |I ∩N(v)| ≥ deg(v)
2

, and each vertex v in J

has |J ∩N(v)| ≥ deg(v)
2

. Therefore, each vertex v in I ∪J has |(I ∪J)∩N(v)| ≥ deg(v)
2

.

2

On the other hand, the intersection of two persistent sets I and J is not

always a persistent set. Let G = (V,E) be a graph where V = {v1, ..., v9}, and

I = {v1, ..., v6} and J = {v1, v2, v3, v7, v8, v9} each form a clique of size 6 such that

I ∩ J = {v1, v2, v3}. It is easy to see that I and J are persistent sets; however,

I ∩ J = {v1, v2, v3} is not a persistent set because each vertex in I ∩ J has degree 8,

but each vertex in the graph induced by I ∩ J has degree 2 < deg(vi)
2

= 4, i = 1, 2, 3.

See Figure 3.2.
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Figure 3.2: Counterexample for I ∩ J is not a persistent set

v4 v3 v7

v5 v1 v9

v6
v2 v8

A minimal monochromatic persistent set in a configuration f is a

monochromatic persistent set I so that no subset of I is a monochromatic persis-

tent set. Likewise, a maximal monochromatic persistent set in a configuration

f is a monochromatic persistent set J so that each persistent set J 0 containing J has

at least one vertex of a different colour. Both maximal and minimal monochromatic

persistent sets are not necessarily unique in a configuration.

Suppose you have a cycle Cn, and let f be a configuration for the Conserva-

tive Majority Model. An example of a minimal monochromatic persistent set I is two

adjacent vertices u, v so that f(u) = f(v). A single vertex cannot be a persistent set

by definition, and so I forms a minimal monochromatic persistent set. However, for

n > 3, there may be two different pairs of such monochromatic persistent sets; there-

fore, these sets are not unique. An example of a maximal monochromatic persistent

J is three vertices v0, v1, v2 in a K5 so that f(v0) = f(v1) = f(v2), f(v4) 6= f(v0), and

f(v3) 6= f(v0). Now, by definition the sets of vertices {v0, v1, v2, v3}, {v0, v1, v2, v4},

and {v0, v1, v2, v3, v4} all form persistent sets. However, each set of vertices is no

longer monochromatic. Thus, any persistent set in K5 containing J is not monochro-

matic, and so J is maximal. Moreover, by Theorem 3 the union of persistent sets is

also a persistent set, and so the union of monochromatic persistent sets are persistent

sets. Thus either there is a unique maximal monochromatic persistent set, or there

is a maximal monochromatic persistent set for more than one colour.
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Figure 3.3: A vertex of period 1 that is not a persistent set

v1 v2 v3 v4 v5

There exist vertices of period 1 that are not in monochromatic persistent

sets. For example, suppose you have P5, with vertices {v1, v2, v3, v4, v5}. Let f(v1) =

f(v2) = r, f(v3) = g, and f(v4) = f(v5) = b. Clearly, v1, v2 form a monochromatic

persistent set, and v4, v5 form another monochromatic persistent set, but v3 also has

period 1, as there is always a tie in its neighbourhood, and it is not a persistent set.

See Figure 3.3. However, as we will see in the upcoming Theorem, if a configuration

for a graph G has period 2, and all period 1 vertices are in monochromatic persistent

sets, then the removal of the persistent sets will not change the periodicity of the

configuration.

Let I be a set of vertices, f be a configuration on a graph G and f−I be the

corresponding configuration on G− I.

Theorem 3.2 Let G = (V,E) be a graph, and let f be a period 2 configuration for

G under the Conservative Majority Model with two colours and uncoloured. Let P be

the set of all vertices that have period 1. Then f−P is a period 2 configuration for

G− P.

Proof: Let G = (V,E) be a graph, and f a period 2 configuration on G. Let

{ft}∞t=0 be a configuration sequence for G so that f0 = f . Recall, a configuration has

period 2 if all vertices in f have period 2. And so, all vertices either have period 1 or

period 2.

Let g = f−P . Given the set of all period 1 vertices P , we let {gt}∞t=0 be

the corresponding configuration sequence obtained from applying the Conservative

Majority Model to G−P , with initial configuration g. We will now show that for all

t ≥ 0, ft|G−P = gt, and gt has period 2.
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Fix some t and assume ft(u) = b and ft+1(u) = r for some u ∈ V . Because f

has period 2, we have ft = ft+2. Let Rt
2 and Bt

2 be the sets of red and blue neighbours

of u respectively of period 2 at time t. Similarly, let Rt
1, and Bt

1 be the sets of red

and blue neighbours of u of period 1 at time t. Observe that both Bt
1 and Rt

1 are in

the set P .

As Bt
1 and Rt

1 are sets of period 1 vertices, then Bt
1 = Bt+1

1 and Rt
1 = Rt+1

1 .

Suppose Bt
1 ≥

deg(u)
2

, then Maj(ft, u) = b or {b ∈ Maj(ft, u)}, and ft+1(u) = b, which

is a contradiction of our assumption that ft+1(u) = r. Now, suppose Rt
1 = Rt+1

1 ≥
deg(u)

2
, then Maj(ft+1, u) = r or {r ∈ Maj(ft, u)}, and ft+2(u) = r 6= ft(u), which is

also a contradiction since we assumed that f had period 2. Therefore, both Rt
1 and

Bt
1 are less than deg(u)

2
.

As ft(u) = b, Maj(ft, u) = r, ft+1(u) = r, and

Rt
2 +Rt

1 > Bt
2 +Bt

1. (3.1)

As ft+1(u) = r, Maj(ft+1, u) = b, ft+2(u) = ft(u) = b.

Bt+1
2 +Bt+1

1 > Rt+1
2 +Rt+1

1 . (3.2)

As Rt
2 is the set of period 2 neighbours, then at time t+ 1, each of the vertices in this

set is now blue. Therefore, Rt
2 = Bt+1

2 . Similarly, Bt
2 = Rt+1

2 , and so

Rt
2 +Bt+1

1 > Bt
2 +Rt+1

1 . (3.3)

Moreover combining (3.1) and (3.3), we have

2Rt
2 +Rt

1 +Bt+1
1 >2Bt

2 +Bt
1 +Rt+1

1 (3.4)

Rt
2 >B

t
2. (3.5)

As Rt
2 > Bt

2 at time t, then gt+1(u) = r, which also means that Bt+1
2 > Rt+1

2 ,

and so gt+2(u) = b = gt(u), for each vertex u. Thus, as g0 = f0, we have that
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g0(u) = f0(u) for all u ∈ G − P , and by the above calculations g1(u) = f1(u) for all

u ∈ G − P . As both f and g have period 2 then g2 = g0 = f0 = f2, and so for all

t ≥ 0, gt = ft for G− P .

Thus, g is a period 2 configuration for G− P . 2

In general, from the above theorem, given that f0(u) = b, the majority at

time t for t ≥ 0 at vertex u in G− P is determined by,

f−P
t (u) =

b if t is even

r if t is odd

(3.6)

The above theorem will only work for the existence of 2 colours. Suppose

we let the Conservative Majority Model proceed with n colours and for some u,

ft(u) = r and ft+1(u) = b. With n colours a vertex does not necessarily need deg(u)
2

+1

neighbours of one colour to change. Now if each of the blue neighbours is an element

of a monochromatic persistent set, then its removal will affect the periodicity of u.

In fact the graph may no longer be periodic if the set is removed. Consider the

following graph in Figure 3.4. The four adjacent blue vertices form a monochromatic

persistent set. At t = 1, v has three red neighbours, and two blue neighbours. At

t = 2, v has three blue neighbours, a green neighbour, and an orange neighbour.

With the removal of the persistent set, at time t = 2, v will have a tie, and remain

red. Thus, the removal of the persistent set has an effect on the period of vertex v.

In fact, v now has period 1 instead of period 2.

We have explored some basic properties of persistent sets and their interac-

tion with other colours. Persistent sets can be useful in determining final configura-

tions of the models. In the following chapter we see how persistent sets of cycles can

be used to see the persistence of a colour, and the long term behaviour of complete

graphs.
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Figure 3.4: Persistent sets with more than 2 colours

v

t = 1

v

t = 2



Chapter 4

Long Term Behaviour

In many of the majority voter model studies the eventual goal is to be able to predict

the long term behaviour of the process. This is important for real world applications

such as viral marketing.

We study the Conservative Majority Model with a random initial configu-

ration. Precisely, given probabilities P0, P1, ..., Pc so that P0 + P1 + ... + Pc = 1, we

colour each vertex independently so that Pr(f(v) = i) = Pi. Then we set f = f0 and

run the model.

The goal is to be able to predict the periodic configurations that are reached

in the long run. We call a configuration monochromatic if all the vertices are the

same colour, and is multi-chromatic otherwise. In particular, we focus on complete

graphs and cycles in this chapter. When we look at complete graphs, we show that

with high probability if Pb > Pi, i 6= b, 0 then the graph will be monochromatic with

colour b. Following this, we look at cycles and determine specific configurations that

always ensure the survival of a colour. We then look at these configurations and

determine the initial probability of a colour so that with high probability one of the

specific configurations will be in the initial configuration and the colour will persist.

4.1 Complete Graphs

In this section we will look at the initial probabilities of each colour and their relation

to the final configuration on the complete graph Kn. As each vertex in a complete

35
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graph has influence on every other vertex, one can easily see that if more than half

of the vertices are coloured the same colour, then the whole graph will be that colour

under any majority model and for any number of colours in the next step of the

process. In general, as long as a colour is adopted by more vertices than any other

colour, it will persist; it does not necessarily need to be half of the vertices. We look

at the case with c colours and uncoloured. We consider the Conservative Majority

Model with c colours, and uncoloured.

In this section the results are asymptotic based on the number of vertices n

in a graph, and not the number of colours. The number of colours c is a constant. And

so, our results happen asymptotically almost surely (a.a.s) as n → ∞. See Section

1.2.2 for the definition of a.a.s.

Theorem 4.1 Let Kn = (V,E) be the complete graph of order n, and let c be the

number of colours, and b an integer. If Pb > Pi for 1 ≤ i ≤ c, i 6= b, then asymp-

totically almost surely Kn will be monochromatic with colour b in the Conservative

Majority Model.

Proof: Let X be the random variable that counts the number of vertices

that are coloured j. Fix colour j, 1 ≤ j ≤ c, and let Xi be its indicator variable

where for vi ∈ V ,

Xi =

1 if f(vi) = j

0 otherwise.

(4.1)

For each Xi, we have that Xi is a Bernoulli random variable with probability

Pj, X =
Pn

i=1Xi, and E(X) = Pjn. Using Hoeffding’s inequality as given in Section
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1.2.2 and letting 0 = ai and 1 = bi for each Xi, we have that,

Pr(|X − E(X)| ≥
√
n log n) ≤ 2 exp

−2(
√
n log n)2Pn

i=1(1 − 0)2
(4.2)

= 2 exp
−2n log2 n

n
(4.3)

= 2 exp(−2log2n) (4.4)

As 2 exp(−2 log2 n) approaches zero as n → ∞, then with high probability X will

not deviate from its expected value any more than
√
n log n. Next we show that

with high probability, the number of other coloured vertices are each less than the

number of vertices coloured b. Firstly, let < Pb−P
2

where P = max{Pi, i 6= b}. By

assumption, > 0. Now, we show that with high probability, the number of vertices

coloured blue is always more or at least as many than the number of vertices coloured

any other colour. Let ni be the number of vertices in Kn coloured i. We look at the

event Eb = {nb ≥ (Pb − )n} and Ei = {ni ≤ (Pi + )n} for 1 ≤ i ≤ c, i 6= b. We

want to show that the event Eb ∩
T

i 6=bEi happens with high probability. Therefore,

we show Ec
b ∪
S

i 6=bE
c
i has a probability tending to 0 as n grows. And so, we use our

results from the Hoeffding bound for each Ec
i :

P (Ec
i ) =P (ni > (Pi + )n) (4.5)

≤Pr(|ni − E(ni)| ≥ n) (4.6)

<P (|ni − E(ni)| ≥
√
n log n) (4.7)

≤2 exp(−2log2n) (4.8)

And so, we use the union bound to bound P (Ec
b ∪
S

i 6=u,bE
c
i ).

P (Ec
b ∪

[
i 6=u,b

Ec
i ) ≤ 2c exp(−2log2n) (4.9)

As n→ ∞, 2c exp(−2 log2 n) → 0. Therefore asymptotically almost surely the event

Eb ∩
T

i 6=bEi will happen. 2

In the following section, we will look at the cycle graph with red, blue, and

uncoloured, and find the initial probabilities that guarantee the persistence of blue.
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4.2 Cycles

We will look at the initial configuration probabilities and their relation to the final

configuration on the cycle. For the purpose of this chapter we will only consider the

Conservative Majority Model with an initial configuration of only two colours: red,

blue, and uncoloured. For the colours blue, red, and uncoloured, we let Pb+Pr+Pu =

1.

Consider the following configurations of induced subpaths of a cycle Cn. We

assume the vertices of Cn are numbered v0, ..., vn−1. An induced subpath vi, vi+1 of

length 2 such that f(vi) = f(vi+1) = b will be denoted BB. An induced subpath

of length 3 vj, vj+1, vj+2 such that f(vj) = f(vj+2) = u and f(vj+1) = b will be

denoted UBU . The induced subpath vi, ..., vj of length 2k for 2k ≤ n − 2 such that

f(vi) = f(vj) = b and f(vi+1) = ... = f(vj−1) = u is denoted as BU...UB. As

2k ≤ n− 2, it is not possible that vi = vj, and there will be no overlap.

Theorem 4.2 In the Conservative Majority Model on Cn, the colour blue will persist

if at least one of the following occurs in the initial configuration:

• a BB induced subpath,

• a UBU induced subpath, or

• a BU...UB induced subpath.

Proof: If the first configuration BB appears, then the two vertices will always be blue

as they form a monochromatic persistent set.

Assume that configuration UBU appears. Consider first that n ≥ 5, there

are six possibilities up to symmetry for the colours of the vertices adjacent to both

uncoloured vertices. The possibilities are UUBUU , BUBUU , BUBUB, BUBUR,

UUBUR and RUBUR. For the first five cases, it is easy to see in the next time step
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that the configuration will contain the BB induced subpath, and the central vertex

will remain blue. For the case of RUBUR, we note that at the vertices labelled U

a tie occurs. Each uncoloured vertex has a red neighbour and a blue neighbour and

so neither vertex will change in the next time step and the central vertex will remain

blue. In following steps, for the configuration RUBUR, either the red vertices always

remain red, or one red vertex turns blue. If they always remain red, then B persists.

If a red vertex turns blue, then we have the configuration RUBUB, and in the next

step we will have the configuration RUBB, and BB forms a persistent set. Therefore,

blue persists.

If n < 5 and the path UBU appears, then n = 3 or n = 4. If n = 3, then

UBU colours the entire graph, and so all vertices will turn blue in the next step. If

n = 4, then both uncoloured vertices share a neighbour. If the neighbour is blue or

uncoloured, then it is clear that all vertices will turn blue in the next steps. If the

neighbour is red, then both uncoloured vertices have a tie in their neighbourhood,

and do not change colour. Consequently, the blue vertex does not change either, and

so blue persists.

Finally assume that the configuration BU...UB appears. We use induction

to show that when BU...UB appears for any path of uncoloured vertices of length

2k, blue will persists. For the base case let’s consider a path of uncoloured vertices of

length 0. With 0 uncoloured vertices, we have the configuration BB, which we know

persists. Suppose that blue persists with a configuration BU...UB with 2k uncoloured

vertices. Consider a configuration BU...UB with 2(k + 1) uncoloured vertices. We

label the vertices of the path as v1, ..., v2k+2. In the next step of the period vertices v2

and v2k+2 will turn blue, which leaves us with a path of uncoloured vertices of length

2k, which we assumed ensures the persistence of blue. Therefore, by induction we

have that BU...UB for any path of uncoloured vertices of length 2k, blue will persist.

2

By symmetry, Theorem 4.2 also holds for the persistence of red. We note
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Figure 4.1: Uncoloured vertex path of odd length

t t+1

that for the configuration BU...UB, if the path is of odd length, then blue will not

necessarily persist. Consider the configuration RBUBR at time t on a cycle, at t+ 1

we have RRBRR which then becomes the path R. See Figure 4.1.

Using the configurations BB, UBU , and BU...UB, we will find the initial

probabilities so that with high probability b will persist. In [8], Gartner and Zehmakan

proved that if both Pb, Pr
1√
n
, then with high probability the final configuration

will be bichromatic on the Conservative Majority Model and the Biased Majority

Model. Gartner and Zehmakan only used two colours: red and blue, and there were

no uncoloured vertices. See Section 1.2.2 for the definition of the notation .

On a cycle, the configurations BB and RR are persistent sets. The authors

considered a maximum matching of Cn into bn
2
c pairs. They let Xi for 1 ≤ i ≤ bn

2
c be

the event that a pair contains two blue vertices, and so P (Xi = 1) = P 2
b . Moreover,

the variables Xi are independent. Letting X =
Pbn

2
c

i=1 Xi, P (X = 0) ≤ (1 − P 2
b )b

n
2
c ≤

(e−P 2
b )b

n
2
c, which approaches zero as n goes to infinity.

With the addition of uncoloured vertices, there is a relationship between the

probability of being uncoloured Pu, and the probability of being coloured blue Pb. In

fact, Pb may be less than 1√
n
, and still with high probability blue will persist provided

that Pu is large enough.

Next, using the configurations from Theorem 4.2, we will now look at the

initial probabilities required for a colour to persist to the final configuration. The
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following theorems all include uncoloured vertices.

Theorem 4.3 If Pb
1√
n

, then with high probability blue will persist for the Con-

servative Majority Model on the cycle Cn.

Proof: Let X be the random variable which counts the number of times the pattern

BB appears in the initial configuration and X =
Pn−1

i=0 Xi where Xi = 1 if the pattern

BB appears in positions i and i + 1 calculated modulo n, and Xi = 0 if the pattern

BB does not appear in positions i and i + 1. We have that E(X) =
Pn−1

i=0 E(Xi).

The probability that Xi = 1 is P 2
b and so,

Pn
i=1E(Xi) =

Pn
i=1 P (Xi = 1) = nP 2

b .

Next we use Chebyshev’s inequality.

Pr(X = 0) ≤ Pr(|X − E(X)| ≥ E(X)) ≤ V ar(X)

E(X)2
(4.10)

Now by definition,

V ar(X) =
nX
i

V ar(Xi) +
X
i 6=j

Cov(Xi, Xj). (4.11)

In calculating the covariance, we need to consider the cases in which Xi and Xj

overlap in 1 or 0 vertices. As defined in Section 1.2.2 for random variable X the

variance is V ar(X) = E(X2) − (E(X))2. The expected value of Xi is P 2
b , and so

V ar(Xi) = P 2
b − P 4

b . Similarly, for two random variables X, Y , the covariance is

Cov(X, Y ) = E(XY ) − E(X)E(Y ). If Xi and Xj overlap in one vertex, then there

will be a path of three blue vertices, meaning E(XiXj) = P 3
b −P 4

b , and E(Xi)E(Xj) is

simply P 4
b . If Xi and Xj overlap in two vertices, then Xi = Xj and so the covariance

is 0.

V ar(Xi) = P 2
b − P 4

b (4.12)

Cov(Xi, Xj) =

Pb
3 − Pb

4 if |j − i| = 1

0 if |j − i| ≥ 2

(4.13)
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Now using (4.12) and (4.13) we can calculate the upper bound of Cheby-

shev’s inequality.

V ar(X) = n(P 2
b − P 4

b + 2(P 3
b − P 4

b )) (4.14)

= nP 2
b (1 + 2Pb − 3P 2

b ) (4.15)

This gives us the following,

V ar(X)

E(X)2
=
nP 2

b (1 + 2Pb − 3P 2
b )

n2P 4
b

(4.16)

=
1 + 2Pb − 3P 2

b

nP 2
b

(4.17)

≤ 3

nP 2
b

. (4.18)

As n→ ∞, we have that (4.18) approaches zero if and only if nP 2
b approaches infinity.

So if Pb
1√
n
. This implies that P (X = 0) goes to zero. Thus, with high probability

the initial configuration will contain BB, and the final configuration will contain the

colour blue. 2

Theorem 4.4 If PbPu
2 1

n
, then with high probability blue will persist for the Con-

servative Majority Model on the cycle Cn.

Proof: Let X be the random variable which counts the number of times UBU appears

in the initial configuration and X =
Pn−1

i=0 Xi where Xi = 1 if the pattern UBU

appears in positions i, i + 1, and i + 2 calculated modulo n, and Xi = 0 if the

pattern does not appear in these positions. We have that E(X) =
Pn−1

i=0 E(Xi) by

linearity of expectation. The probability that Xi = 1 is PbP
2
u and so,

Pn−1
i=0 E(Xi) =Pn−1

i=0 P (Xi = 1) = nPbP
2
u .
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We use Chebyshev’s inequality and (4.11). In calculating the covariance, we

need to consider three possible cases for events Xi and Xj: |j − i| = 2, |j − i| = 1,

and |j − i| ≥ 3. These represent the cases when the patterns overlap in 1, 2, or 0

vertices. The expected value of Xi is PbP
2
u , and so V ar(Xi) = PbP

2
u − P 2

b P
4
u . If Xi

and Xj overlap in one vertex, then there will be a path UBUBU , and Cov(Xi, Xj)

is simply P 2
b P

3
u − P 2

b P
4
u . If Xi and Xj overlap in two vertices, then the path is

UBBU which does not contain UBU . Thus, they have a negative covariance and

Cov(Xi, Xj) = −P 2
b P

4
u . When Xi, Xj overlap in three vertices then Xi = Xj and

there is zero covariance.

V ar(Xi) = PbPu
2 − Pb

2Pu
4 (4.19)

Cov(Xi, Xj) =


Pb

2Pu
3 − Pb

2Pu
4 if |j − i| = 2

−P 2
b P

4
u if |j − i| = 1

0 if |j − i| ≥ 3

(4.20)

Using (4.19), and (4.20) the variance is calculated.

V ar(X) = n(PbPu
2 − P 2

b P
4
u + 2(P 2

b P
3
u − P 2

b P
4
u − P 2

b P
4
u )) (4.21)

= nPbP
2
u (1 − 5PbP

2
u + 2PbPu) (4.22)

We have the following,

V ar(X)

E(X)2
≤ nPbP

2
u (1 − 5PbP

2
u + 2PbPu)

n2P 2
b P

4
u

(4.23)

=
1 − 5PbP

2
u + 2PbPu

nPbP 2
u

(4.24)

≤ 3

nPbP 2
u

(4.25)

As n → ∞, we have that (4.25) approaches zero if and only if nPbP
2
u approaches

infinity. So if PbP
2
u

1
n
, then P (X = 0) goes to zero. Thus, with high probability the
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initial configuration will contain UBU , and thus the final configuration will contain

blue. 2

By symmetry, the above theorems also hold for the persistence of red in the

final configuration.

In looking at the configuration BUUB, we note that from Theorem 15 it is

implied that with high probability, if P 2
b Pu

2 1
n
, then blue persists. If the configura-

tion BUUB occurs with high probability, then it is very likely that the configuration

UBU also appears, since if P 2
b P

2
u

1
n
, then PbP

2
u

1
n

as PbP
2
u ≥ P 2

b P
2
u . For the

general case of BU...UB we have that if P 2
b P

2k
u

1
n

then P 2
b P

2
u

1
n

and PbP
2
u

1
2
,

and the patterns BUUB and UBU will appear. Thus, again the bound for PbP
2k
u is

already implied from the previous case.

With n colours and uncoloured, we can still use the same methods to deter-

mine whether or not a final configuration will contain a specific colour on the cycle.

In the next chapter we look at how long the process of the Conservative Majority

Model takes to reach its final configuration and that it has period 2, and similarly for

a similar majority model.



Chapter 5

Periods and Pre-Periods

Knowing whether or not a model is periodic gives insight to recurring trends. It

is also important as it will make the model easier to understand, and knowing the

length of the period allows us to classify periodic configurations. Moreover, we study

the length of the pre-period, which tells us how long it will take for a majority model

process to stabilize.

In this chapter we will give an upper bound on the pre-period for the Con-

servative Majority Model with two colours and uncoloured, and prove that the model

has period 2. That is, for every starting configuration, there exists a time t∗ so that

ft∗ = ft∗+2. We then look at a mixed majority model, and prove that its model has

least period 2, and find an upper bound of its pre-period.

5.1 The Linear Algebra Framework for two Colours and Uncoloured

The objective of this section is to find an upper bound of the pre-period and the length

of the period of the Conservative Majority Model with two colours and uncoloured. As

previously mentioned, the addition of the uncoloured vertex makes the model slightly

more complicated on graphs due to the fact that it acts differently from other colours.

Firstly, a vertex cannot adopt being uncoloured, and once a vertex becomes coloured,

it will never be uncoloured again. This property has the potential to add extra steps

to the pre-period. An uncoloured vertex can have a tie in its neighbourhood for

several steps before having a majority and turning colour. There have been results

on pre-periods for both the Conservative and Biased Majority Models in [8] and [17].

45
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We find an upper bound of the pre-period for the Conservative Majority

Model with two colours, red and blue, and uncoloured. In order to do so, we represent

the model in a linear algebra framework. This framework was first described in [17]

with a general linear algebra function. The model given in [17] has two colours and

no uncoloured vertices. It is described as follows.

Let G be a graph of order n, and let A be the adjacency matrix of G, and

x be a vector in {−1, 1}n, where

x(v) =

−1 if f(v) = red

1 if f(v) = blue.

(5.1)

The product (Ax)(v) gives some integer k which represents the difference of

the blue and red neighbours of a vertex v. If there are more blue neighbours then

(Ax)(v) > 0, and if there are more red neighbours, (Ax)(v) < 0. If there is a tie, then

(Ax)(v) = 0.

Given any vector x of size n we have the sign function sgn(x) : Rn →

{−1, 1}n, where

sgn(x(v)) =

 1 if x(v) ≥ 0

−1 if x(v) < 0.

(5.2)

For the general linear algebra framework of the Conservative Majority Model,

we have an initial opinion vector x0 ∈ {−1, 1}n, and for t ≥ 0, xt+1 = sgn(Axt).

For the Conservative Model with red, blue and uncoloured, we change the

domain of sgn to {−1, 0, 1}, where sgn(x(v)) = 0 if x(v) = 0. We modify A to add a

memory process to the framework, as in the event of a tie we may have (Ax)(v) = 0,

but x(v) 6= 0. Let 0 < < 1. Define B = A+ In. Then if there is a tie and x(v) = 1,

then (Bx)(v) = , and if there is a tie and x(v) = −1, then (Bx)(v) = − . Thus,
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for the linear algebra framework with two colours and uncoloured, we have an initial

opinion vector x0 ∈ {−1, 0, 1}n, and for t ≥ 0, xt+1 = sgn(Bxt).

Theorem 5.1 Let {ft}t≥0 be the configuration sequence obtained by applying the rules

of the Conservative Majority Model. Let {xt}∞t=0 be the sequence of vectors given by

xt+1 = sgn(Bxt). Let f0 = x0, then for all t ≥ 0, ft = xt.

Proof: We consider the Conservative Majority Model with the colours red, blue, and

uncoloured, which are represented in the vector x as −1, 1, 0 respectively.

We use induction on t. For our base case we have f0 = x0. Let t > 0 be some

time and assume that ft = xt. For some vertex v, let bt = |N t
b(v)|, and rt = |N t

r(v)|

be the number of blue neighbours of v at time t and the number of red neighbours at

time t. We look at the cases where bt > rt, and bt = rt.

If bt > rt, then ft+1(v) = b. Moreover, when bt > rt, then (Bxt)(v) > 0, and

so xt+1(v) = sgn((Bxt)(v)) = 1. Therefore, ft+1(v) = xt+1(v).

Suppose v is blue at time t. If bt = rt, then ft+1(v) = b. When bt = rt, then

(Bx)(v) = bt − rt + > 0, and xt+1(v) = sgn((Bxt)(v)) = 1. And so, ft+1(v) = xt+1.

Suppose now that v is uncoloured at time t. If bt = rt, then ft+1(v) = u.

When bt = rt, then (Bx)(v) = bt − rt + 0 = 0, and xt+1(v) = sgn((Bxt)(v)) = 0.

And so, ft+1(v) = xt+1.

The argument is symmetric for rt > bt, and when v is red at time t.

For each vertex v, we have ft+1(v) = xt+1(v), which means ft+1 = xt+1.

Therefore, for every t ≥ 0, we have ft = xt. 2

Now, we will introduce some notation that will be used. Let x be a vector

of size n, and let ||x|| =
Pn

i=1 |x(i)|. Let A be a matrix of size n × n then ||A|| =Pn
i=1

Pn
j=1 |aij|.
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To find an upper bound of the pre-period of the Conservative Majority Model

with two colours and uncoloured, we define a potential function for the linear algebra

framework:

V (t) = xTt+1Bxt − ut, (5.3)

where ut is the number of uncoloured vertices at time t.

We now prove some properties of this potential function and framework.

Lemma 5.1 Let {xt}∞t=0 be a vector sequence representing the Conservative Majority

Model. Then xTt+1Bxt = ||Bxt||.

Proof: We have that ||Bxt|| =
Pn

i=1 |(Bxt)(i)|. Now, we know that xt+1(v) =

sgn((Bxt)(v)). In general, sgn(x)x = ||x|| for any vector x. Here we have xTt+1Bxt =

(sgn(Bxt))
TBxt. 2

Lemma 5.2 Let G = (V,E) be a graph, and t∗ be the minimum t so that xt is a

periodic configuration. Then for all t, 0 ≤ t ≤ t∗, V (t) + 2 − δ ≤ V (t + 1), when

= 1 − δ and δ = 1
(|V ||E|)2 .

Proof: By Lemma 5.1, we know that xTt+2Bxt+1 = ||Bt+1||. As we are in the pre-

period then xt 6= xt+2, and so there must be some vertex v where xt(v) differs from

xt+2(v) = sgn(Bt+1(v)). For each vertex that doesn’t change from t to t + 2, the

difference of the matrix multiplication is xt+2(v)(Bxt+1)(v)−xt(v)(Bxt+1)(v) = 0, as

xt+2(v) = xt(v).

Suppose sgn(xt(v)) = −1, sgn(xt+1(v)) = −1 and sgn(xt+2(v)) = 1. Then

we have that at time t+1, there must be a blue majority so that xt+2(v) = 1. If that is

the case, then (Bxt+1)(v) ≥ 1, and xt+2(v)(Bxt+1)(v) ≥ 1. Moreover, as xt(v) = −1,

then xt(v)(Bxt+1)(v) ≤ −1. And so xt+2(v)(Bxt+1)(v) − xt−1(v)(Bxt+1)(v) ≥ 2. If
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no uncoloured vertices change, ut − ut+1 = 0, otherwise ut − ut+1 > 0. Combining

with all the other vertices we have V (t+ 1) − V (t) ≥ 2 − δ.

Let sgn(xt(v)) = −1, sgn(xt+1(v)) = 1 and sgn(xt+2(v)) = 1. Then, if there

is not a majority of blue, it is the case that there is a tie at t + 1 and v conserves

its colour. If this is the case then (Bxt+1)(v) = . And so xt+2(v)(Bxt+1)(v) = ,

xt(v)(Bxt+1)(v) = − , and xt+2(v)(Bxt+1)(v) − xt(v)(Bxt+1)(v) = 2 = 2 − δ. As

before ut−1 − ut = 0, and so V (t+ 1) − V (t) ≥ 2 − δ.

Now, let sgn(xt(v)) = 0, sgn(xt+1(v)) = −1, and sgn(xt+2(v)) = 1. Then

ut > ut+1, and ut−ut+1 = 1. As there is a change in colour from time t+1 to t+2, there

must a blue majority, and so (Bxt+1)(v) ≥ 1. This means that xt+2(v)(Bxt+1)(v) ≥ 1.

As sgn(xt(v)) = 0, then xt(v)(Bxt+1)(v) = 0, and the difference at least 1. Therefore

again, V (t+ 1) − V (t) ≥ 2 − δ.

Let sgn(xt(v)) = 0, sgn(xt+1(v)) = 1, and sgn(xt+2(v)) = 1. Then, if there

is not a majority of blue, it is the case that there is a tie at t + 1 and v conserves

its colour. If this is the case then (Bxt+1)(v) = . And so xt+2(v)(Bxt+1)(v) =

, xt(v)(Bxt+1)(v) = 0, and xt+2(v)(Bxt+1)(v) − xt(v)(Bxt+1)(v) = . As before

ut−1 − ut = 1, and so combining these two equalities, V (t+ 1) − V (t) ≥ 2 − δ.

Suppose now that sgn(xt(v)) = 0, sgn(xt+1(v)) = 0, and sgn(xt+2(v)) = 1.

We have that ut − ut+1 = 0, and there is a tie at v at time t. Let Bt+1 and Rt+1 be

the number of blue and red neighbours of v at time t+ 1. If Rt+1 +Bt+1 is odd, and

ut = ut+1, then at time t we must have Rt+Bt is odd. However, in the event of a tie we

have that (Bxt)(v) = ± which cannot happen if Rt +Bt is odd as |Rt+1−Bt+1| ≥ 1.

Suppose that Rt+1+Bt+1 is even. As sgn(xt(v)) = 0, then xt(v)(Bxt+1)(v) =

0. At time t+ 1 at v, (Bxt+1)(v) ≥ 1, as there is assumed to be a blue majority. We

know Rt = Bt, and Bt+1 > Rt+1. Now,
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Bt+1 −Bt ≥ 1 (5.4)

Rt −Rt+1 ≥ 1 (5.5)

Bt+1 −Rt+1 +Rt −Bt ≥ 2 (5.6)

Bt+1 −Rt+1 ≥ 2. (5.7)

Therefore, (Bxt+1)(v) ≥ 2, which means xTt+2Bxt+1 − xTt Bxt+1 ≥ 2− δ, and

V (t+ 1) − V (t) ≥ 2 − δ. 2

Corollary 5.1 The potential function V (t) either increases or xt = xt+2.

Proof: From Lemma 5.2, it follows that the function V (t) does not decrease.

So letting k be the length of the period we have,

V (0) + (2 − δ) ≤ V (1) + (2 − δ) ≤ ... ≤ V (k) + (2 − δ) = V (0) + (2 − δ) (5.8)

V (0) = V (1) = ... = V (k − 1). (5.9)

Clearly in the period no uncoloured vertices change so u0 = ... = uk−1, and

so each time in the period xt−1Bxt = xt+1Bxt, which is only true when xt−1 = xt+1.

Therefore xt = xt+2 2

This corollary shows that the Conservative Majority Model has period 2.

Theorem 5.2 Let G = (V,E) be a graph of order n. The Conservative Majority

Model with two colours and uncoloured has a pre-period with at most |E| + n+u0

2

steps, where u0 is the number of uncoloured vertices at time 0.

Proof: We use the linear algebra framework of the Conservative Majority

Model, where A is the adjacency matrix of G, B = A + In, and δ = 1
(|V ||E|)2 and
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= 1 − δ. Let t∗ be the pre-period, and let x0 ∈ {−1, 0, 1}n be the initial vector of

colours at time t = 0 and xt+1 = sgn((Bxt)) for t ≥ 0.

Consider the sum V (t) from t = 0 to t∗ − 1, we have the following:

t∗−1X
t=0

(V (t+ 1) − V (t)) =(xTt∗+1Bxt∗ − xT0Bx1) + (u0 − ut∗). (5.10)

By Lemma 5.2, we know that our potential function for the model V (t) is

increasing by at least 2 − δ for each time step; therefore, we have:

(xTt∗+1Bxt∗ − xT0Bx1) + (u0 − ut∗) ≥ (2 − δ)t∗. (5.11)

Next, we find bounds for xTt∗+1Bxt∗ , xT0Bx1, u0, and ut∗ . To find an upper

bound of xTt∗+1Bxt∗ , we note that all entries in xt∗ are at most 1, and every entry in B

is non-negative. Since we know xTt∗+1Bxt∗ = ||Bxt∗||, then xTt∗+1Bxt∗ ≤ ||Be|| = ||B||,

where e is the all ones vector, and so xTt∗Bxt∗+1 ≤ ||B||. A lower bound for x0Bx1 is

simply 0. Finally, ut∗ ≥ 0 always as in the period it is possible for there to be zero

uncoloured, and we leave u0 as is.

Now, combining all the bounds we have:

(xTt∗+1Bxt∗ − xT0Bx1) + (u0 − ut∗) ≤ (||B|| − 0) + (u0 − 0) (5.12)

= ||B|| + u0, (5.13)

which implies that (2 − δ)t∗ ≤ ||B|| + u0. We have

t∗ ≤ ||B|| + u0
2 − δ

(5.14)

=
||A|| + n + u0

2 − δ
(5.15)

≤ 2|E| + n+ u0
2 − δ

. (5.16)
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Since t∗ is an integer, and δ, < 0, we then get that our pre-period is at

most |E| + n+u0

2
. 2

As mentioned earlier, Poljak and Turzik [17] studied the Conservative Major-

ity Model using the linear algebra framework with just two colours and no uncoloured.

To find the upper bound, they modified the matrix A for their framework to deal with

ties in their proof. Using the adjacency matrix A they created a larger matrix C of

size n+ 1 where cij = aij for i, j ≤ n and,

cn+1,i = ci,n+1 =


1 if

X
j

aij even

0 if
X
j

aij odd

(5.17)

cn+1,n+1 =||A|| + 1 (5.18)

With the addition of the extra row and column, they have
Pn

j=1 cij is odd

for i = 1, ..., n. With only two colours, this means that there will never be a tie

in the neighbourhood of any vertex, and so for all v ∈ V , (Cx)(v) 6= 0. Thus

in the event of a tie and (Ax)(v) = 0, then (Cx)(v) = ±1 depending the current

colour. The function used is sgn as described earlier. Now, with the matrix C,

the function becomes h : Rn+1 → {−1, 1}n+1, where h(xt(1), ..., xt(n), xt(n + 1)) =

(sgn(xt(1)), ..., sgn(xt(n)), 1).

Our proof followed a similar procedure to this paper. Their potential func-

tion was V 0(t) = xTt+1Cxt, and they had that V (t + 1) − V (t) ≥ 2. And so, after

summing over the pre-period they had the value xTt∗+1Cxt∗ − xT0Cx1 ≥ 2t∗. In the

paper the upper bound of xTt∗+1Cxt∗ was 4|E| + 2s + 1, where s is the number of

vertices with even degree in G. The lower bound of xT0Cx1 was 2|E| − s + n + 1.

Combining the bounds, the upper bound of the pre-period was at most |E|+ 3s− n.

In our model we included uncoloured vertices. When uncoloured vertices are

included, dealing with ties becomes more difficult. For example, a vertex can have
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odd degree and still have a tie in its neighbourhood. As uncoloured vertices have

no effect on the decisions of their neighbours, it is fitting to let u = 0 as it will not

contribute to the overall sum in xTt+1Bxt. Thus, we have split the number line to the

signs of the numbers. However, if we tried this method with more than 2 colours, and

uncoloured then it would not work, as there is no natural way to divide the number

line into more than 3 parts for this process.

We will now compare the bounds from our model and the model in [17]. Our

model has a bound of |E|+ n+u0

2
and the other model has a bound of |E|+ 3s− n.

Our bound for two colours and uncoloured is most closely reached by graphs with

fewer edges, such at trees, cycles, and paths. The upper bound of the pre-period

of a Cn is |E| + n+u0

2
= 3n+u0

2
. Now suppose we have C4 and let the vertices be

ordered cyclically, and let x0 = (0,−1,−1, 1). The upper bound of our pre-period

will be 6. At time 1, we have x1 = (0,−1,−1,−1), and finally at time 2 we have

x2 = (−1,−1,−1,−1). As we can see here, it took 3 steps to reach the period, where

our bound predicted at most 6 steps. Therefore, the upper bound can be reached

within at least 3 steps with cycles. Moreover, a graph in which the bound is reached

is P2 with initial configuration x0 = (1, 0). The predicted length of the pre-period is

2, and clearly x1 = (1, 1) in the next step.

With Poljak and Turzik’s bound |E| + 3s − n, a bound on cycles with no

uncoloured vertices is n + 3n − n = 3n which is double our bound for cycles when

there are no uncoloured vertices. Also, in graphs with a large number of even degree

vertices, our bound will be much better. For example k-regular graphs for even k.

Our predicted bound is (k+1)n
2

, and their bound is (k+4)n
2

which is larger. However,

in the case of graphs with no even degree vertices, we have that the bound in [17]

is better. For example, our bound for a K4 graph with no uncoloured vertices is 8,

whereas their paper has an upper bound of only 2.
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Figure 5.1: P2 with 2 colours matrices A and C
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0 1 0

0 0 1

1 0 0
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5.2 The Linear Algebra Framework for n Colours

Often, there are more than just two colours, states, or opinions. Thus, it would

be more realistic to observe the Conservative Majority Model with n colours with

uncoloured. In [17], Poljak and Turzik were able to find an upper bound of the pre-

period and the period of a majority voter model with n colours. We will modify

the framework of their model to find the period and the pre-period of the Mixed

Majority Model with n colours. Recall Definition 1.3 from Chapter 1, this model

contains properties of both the biased and conservative majority models, where for

all v ∈ V , if there is a tie in v’s neighbourhood and v’s colour is in the tie, v conserves

its colour for the next step. Otherwise, v will pick the most preferred colour that is

in the tie.

Let G = (V,E) be a graph with adjacency matrix A, and let there be n

colours. We modify A to adapt to the process. Each non-zero entry in A is replaced

with the identity matrix In, each entry Aii is replaced with En = In, and each zero

entry of A is replaced with 0n. Let B be the modified matrix of size |V |n×|V |n. See

Figure 5.1 for an example of the constructed matrix B for a path P2 with 2 colours.

Let x be the opinion vector of size |V |n. Here the vector x is divided into |V | blocks

of size n. Each block x(v) represents the colouring of v. Each row of x(v) represents

one of the n colours. An entry in x(v) will be 1 if that colour is adopted by v, and 0

otherwise. For example, if there are 5 colours, and x(v) is the vector [0, 0, 1, 0, 0], then

vertex v has chosen colour 3. Let B(i, j) denote the n×n matrix, which replaced the

entry Aij.
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For any vector x, and standard bases vectors ei, let

Max(x) = max{x · ei, 1 ≤ i ≤ n} (5.19)

and,

min(x) = ei, where i = min{j : x · ej = Max(x)}}. (5.20)

Given a vector x of size mn, we define g : Rmn → {0, 1}mn as

g(x(m)) = min(x(m)) (5.21)

In this framework of the Mixed Majority Model, we have an initial opinion vector

x0 ∈ {0, 1}mn, and for t ≥ 0, xt+1 = g(Bxt).

Theorem 5.3 Let {ft}∞t=0 be the configurations sequence obtained by applying the

Mixed Majority Model with n colours. Let {xt}∞t=0 be the sequence of vectors given by

xt+1 = g(Bxt). Let f0 = x0, then for all t ≥ 0, ft = xt.

Proof: First we show that (Bx)(v) counts the number of neighbours of each colour of

v. In (Bx)(v), each entry i is determined by B(v, 1)x(1) + ... + B(v, |V |)x(|V |). For

1 ≤ j ≤ |V |, if B(v, j)x(j) = In then B(v, j)x(j) = x(j) = ei where i is the colour of

the vertex j. Note that B(v, j) is In if and only if j is a neighbour of v. Therefore,

(Bx)(v) gives the number of neighbours of each colour. Moreover, B(v, v)x(v) = ei,

where i is the current colour, which creates a memory process for this linear algebra

framework.

We use induction on t. We have already f0 = x0. Let t > 0 and assume that

ft = xt.

Suppose that ft(v) = b and Maj(v, f) = i and i is the only colour in the

majority. The set {j : x(v) · ej = Max((Bxt)(v)), 1 ≤ j ≤ n} has one element i. This

is due to the fact that (Bxt)(v) counts the number of neighbours of each colour, and



56

so there will be only one element i such that ei = Max((Bxt)(v)). Thus, in both

cases ft+1(v) = i and xt+1(v) = g((Bxt)(v)) = ei. And so, ft+1(v) = xt+1(v).

Suppose again that ft(v) = b and i1, ..., ik are the colours in the majority,

such that i1 is the most preferred colour and ik is the least preferred colour. Then

ft+1(v) = i1 as colour i1 is the more preferred colour. Then colours i1, ..., ik ∈ {j :

x(v) · ej = Max(x), 1 ≤ j ≤ n}, and so xt+1(v) = g((Bxt)(v)) = ei1 . And so,

ft+1(v) = xt+1(v).

Finally suppose that ft(v) = b so that b is one of the colours in the majority.

Let m = Max(xt(v)). If i is a majority colour not equal to b, then row i of (Bxt)(v)

equals m. The value of the rows of (B(xt))(v) of each majority colour are all the

integer m. Because of the addition of En along the diagonal of B, we have that row b

of (Bxt)(v) is m+ , and so b is in the majority. Therefore, xt+1(v) = g((Bxt)(v)) = eb.

And so, ft+1(v) = xt+1(v).

Thus, for each vertex v in G, we have ft+1(v) = xt+1(v), which means that

ft+1 = xt+1. Therefore, for all t ≥ 0, we have ft = xt. 2

We define the potential function of the Mixed Majority Model as

V (t) = xTt+1Bxt +
1

2

X
v∈V

δ(vt+1, vt), (5.22)

where vt represents the colour of v at time t, and

δ(x, y) =

1 if x = y

0 otherwise.

(5.23)

Lemma 5.3 For all t ≥ 0, if xt 6= xt+2 then V (t) + 1
2
− ≤ V (t+ 1).

Proof: If we are in the pre-period then xt 6= xt+2, and so there must be at least one

vertex v where xt(v) differs from xt+2(v) = g((Bxt+1)(v)).
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Let V (t) =
P

v V (v, t) where V (v, t) = xt+1(v)(Bxt)(v) + 1
2
δ(vt+1, vt). Then

we look at the change of V (v, t+ 1)−V (v, t). This will contribute to the overall sum

of V (t+ 1) − V (t).

Suppose that xt(v) = xt+1(v) = j and xt+2(v) = i 6= j. Recall the vector

(Bxt+1)(v) represents the number of each colour present in the neighbourhood of v.

Since v’s colour at time t + 2 is i, the majority colour in v’s neighbourhood at time

t+ 1 is i. Since v changed colour from time t+ 1 to t+ 2, j is not a majority colour

of v at time t+ 1. Thus, the component of (Bxt+1)(v) corresponding to i denoted bi

is the largest, and the component corresponding to j denoted bj is strictly smaller.

So bj + 1− ≤ bi, where the comes from the contribution of the colour of v itself at

time t+ 1.

Since xt(v) = ej, we have that xt(v)(Bxt+1)(v) equals bj, and similarly,

xt+2(v)(Bxt+1)(v) = bi. Then,

xt+2(v)(Bxt+1)(v) − xt(v)(Bxt+1)(v) +
1

2
(δ(vt+1, vt+2) − δ(vt, vt+1)) (5.24)

≥ 1 − +
1

2
(δ(vt+1, vt+2) − δ(vt, vt+1)) (5.25)

Since δ(vt+1, vt+2) = 0 and δ(vt, vt+1) = 1, the contribution to V (v, t+ 1) − V (v, t) is

at least 1/2 − .

Suppose that xt+2(v) = xt+1(v) = i and xt(v) = j 6= i. Since v’s colour at

time t + 2 is i, the majority colour in v’s neighbourhood at time t + 1 is i. Since v

remained the same colour from time t + 1 to t + 2, bi is the largest component and

there is an epsilon term as v’s colour contributes + to bi. Thus, bj is strictly smaller

than bi and bj + ≤ bi.

Since xt(v) = ej, we have that xt(v)(Bxt+1)(v) equals bj, and similarly,

xt+2(v)(Bxt+1)(v) = bi. Then,

xt+2(v)(Bxt+1)(v) − xt(v)(Bxt+1)(v) +
1

2
(δ(vt+1, vt+2) − δ(vt, vt+1)) (5.26)

≥ +
1

2
(δ(vt+1, vt+2) − δ(vt, vt+1)) (5.27)
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Since δ(vt+1, vt+2) = 1 and δ(vt, vt+1) = 0, the contribution to V (v, t + 1) − V (v, t)

due to vertex v is at least 1/2 + .

Suppose that xt(v) = l, xt+1(v) = j 6= l, and xt+2(v) = i 6= j, l. Since v’s

colour at time t + 2 is i, the majority colour in v’s neighbourhood at time t + 1 is i.

As v changed colour from time t+ 1 to t+ 2, j is not a majority colour of v at time

t+ 1. Thus, bi is the largest value, and bj is strictly smaller. So bj + 1 ≤ bi.

Since xt(v) = ei, we have that xt(v)(Bxt+1)(v) equals bj, and similarly,

xt+2(v)(Bxt+1)(v) = bi. Then,

xt+2(v)(Bxt+1)(v) − xt(v)(Bxt+1)(v) +
1

2
(δ(vt+1, vt+2) − δ(vt, vt+1)) (5.28)

≥ 1 +
1

2
(δ(vt+1, vt+2) − δ(vt, vt+1)) (5.29)

Since δ(vt+1, vt+2) = 0 and δ(vt, vt+1) = 0, v’s contribution to V (v, t+ 1) − V (v, t) is

at least 1.

Now, summing over all v, we have
P

v V (v, t + 1) −
P

v V (v, t) = V (t +

1) − V (t) ≥ 1
2
− . Therefore, each vertex changing colour from time t to time t + 2

contributes at least 1
2
− to V (t + 1) − V (t). For any vertex v so that vt+2 = vt,

we have that δ(vt+2, vt+1) = δ(vt, vt+1), and xt+1(v)(Bxt+2)(v) − xt(v)(Bxt+1)(v) =

(xt+2(v)−xt(v))(Bxt+1)(v) = 0, and thus these vertices do not contribute positively or

negatively to V (t+ 1)−V (t). Thus, we have that V (t) is increasing, and if xt+2 6= xt,

then V (t+ 1)− V (t) < 1/2− . Thus, when the process has become periodic, t > t∗,

V (t) must remain constant since for a period k, we have

V (0) ≤ V (1) ≤ ... ≤ V (k − 1) ≤ V (k) = V (0). (5.30)

Thus, if V (t) is not increasing, then V (t) = V (t+ 1), and xt = xt+2. 2

Theorem 5.4 Let G = (V,E) be a graph, and n be the number of colours. Then the

Mixed Majority Model has period 2 and pre-period at most 4|E| − |V |.
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Proof: We use the linear algebra framework of the Mixed Majority Model. Let t∗ be

the pre-period of the Mixed Majority Model with n colours and uncoloured, and let

x0 ∈ {0, 1}|V |n be the initial vector of colours at time t = 0, and xt+1(v) = g((Bxt)(v))

for t ≥ 0.

From Lemma 5.3 we have V (t) < V (t + 1) when xt 6= xt+2 and that in

the period V (t) = V (t + 1). Now, letting k be the period and t > t∗, we have

V (t) = V (t + k). And so, V must be constant for all t > t∗. However, if the period

is larger than 2, then xt 6= xt+2. This means that V (t) is still increasing, and so

V (t) 6= V (t+ 1) is not in the period. Thus, xt = xt+2 and the period is 2.

Consider the increase of V (t) from t = 0 to t∗ − 1,

t∗−1X
t=0

(V (t+ 1) − V (t)) = (xt∗+1Bxt∗ − x0Bx1) +
|V |
2

(δ(ut∗+1, ut∗) − δ(u1, u0)) (5.31)

By Lemma 5.3, we know that V (t) increases by 1
2
− at each time step. Thus,

summing over all time steps of the pre-period we have that the lower bound of the

above sum is (1
2
− )t∗. Therefore, we have

(xt∗+1Bxt∗ − x0Bx1) +
|V |
2

(δ(ut∗+1, ut∗) − δ(u1, u0)) ≥
1

2
− t∗. (5.32)

Next, we find an upper bound to (xt∗+1Bxt∗ − x0Bx1) + |V |
2

(δ(ut∗+1, ut∗)− δ(u1, u0)).

The sum δ(ut∗+1, ut∗)− δ(u1, u0) can always be bounded above by 1, and so

multiplying by |V |
2

, we get an upper bound of |V |
2

.

The upper bound of xt∗+1Bxt∗ can be given by ||A||+ |V | . From Lemma 5.2

we know (Bxt)(v) counts the number of neighbours of each colour for v, the highest

value (Bxt)(v) can have is deg(v). If that is the case, then if every neighbour of v is

coloured some colour i and xt+1(v) = ei, then xt+1(v)(Bxt)(v) = deg(v). Thus, for

any vertex xt+1(v)(Bxt)(v) ≤ deg(v). Moreover, along the diagonal we have En and

so any multiplication of Bxt we have an additional |V | . Therefore, the upper bound

is
P

v∈V deg(v) = ||A|| + |V | , where ||A|| = 2|E|.
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The value x1(v)(Bx0)(v) is never zero since if v changes colour, then it must

have a majority. And so it must have at least one neighbour of the majority colour.

This means there exists some colour i so the (Bx0)(v) ≥ 1 and x1(v)(Bx0)(v) ≥ 1.

Thus, the next possible lowest bound for each vertex is one. Therefore, a lower bound

to x0Bx1 = x1Bx0 is |V | + |V | .

The upper bound to (xt∗+1Bxt∗ − x0Bx1) + |V |
2

(δ(ut∗+1, ut∗) − δ(u1, u0)) is

2|E| + |V | − (|V | + |V |) +
|V |
2
. (5.33)

We choose 0 < < 1 so that t∗ < 1. Since t∗ is an integer, we may remove

the term. Therefore we have,

2|E| + |V | − (|V | + |V |) +
|V |
2

= 2|E| − |V |
2

(5.34)

≥ t∗

2
. (5.35)

Thus, 4|E| − |V | ≥ t∗ and that is the upper bound of the pre-period of the

Mixed Majority Model. 2

Our bound here is much lower than the bound given in [17] which was

2M2||B||n(4n + 1) + 2nr where M = max{||g(x(v))|| v = 1, ..., |V |, x(v) ∈ Zn},

where n is the number of colours, and r is the size of the matrix. With our framework,

||g((Bx)(v))|| will always equal 1, which is not the case in Poljak and Turzik’s work

so that already lowers the bound with our model.

For example, the upper bound of the pre-period for the cycle under our

framework is 4|V | − |V | = 3|V |; however, the upper bound of the pre-period from

the other paper is 2(1)2(4|E|)n(4n+ 1) + 2n(|V |n) = 8|E|(4n2 + n) + 2n2|V |, which

is clearly much larger. In fact, our bound will always be better because of the 8|E|

term.

The graph K2 with any configuration almost reaches the expected upper

bound 4|E| − |V | = 2. On P3, the calculated upper bound is 4(2) − 3 = 5; however
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for a configuration with 3 colours, we have x0 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and x1 =

{(0, 1, 0), (0, 0, 1), (0, 1, 0)}, which is periodic with only 2 steps. The upper bound

calculated on the complete graph Kn is 4|E| − |V | = 2(n(n − 1)) − n = 2n2 − 3n

which is O(n2). However, most complete graphs become stable within 1 or 3 time

steps. Thus, although our bound is better than previous work, there is most likely a

better bound for all graphs.

Having this result is important, as it allows us to be able to classify periodic

configurations. Moreover, with such a small period it can be easier to determine the

final proportions of colours, and makes the model easier to understand.

5.2.1 The Problem with the Conservative Majority Model

The initial goal was to find the length of the pre-period and the period with n colours

of the Conservative Majority Model. However, under the linear algebra framework,

it was not a easy construction. In order to prove the length of the pre-period and

period, we needed a symmetric matrix B so that we could say xt+1Bxt = xtBxt+1,

and a function so that xt+1Bxt − xtBxt−1 = f(xt)Bxt − f(xt−1)Bxt ≥ 0 always.

However under this linear algebra framework, we had the problem that (g(Bxt) −

g(Bxt−1))
TBxt could be less than zero in the event of a tie.

Suppose a vertex v has a tie in its neighbourhood, but none of its neighbours

have adopted the same colour as v, then we would have xt+1(v)(Bxt)(v) = 0. However,

suppose that xt−1(v) is equal to a colour that some of the neighbours of v have

adopted at time t, then xt−1(v)(Bxt)(v) > 0. To avoid a negative sum, we must

account for this possibility. To do so, it requires modifying the value xt+1(v)(Bxt)(v),

so that xt+1(v)(Bxt)(v) − xt−1(v)(Bxt)(v) ≥ 0. This requires, giving an advantage

to only xt+1(v)(Bxt)(v) so that xt+1(v)(Bxt)(v) ≥ xt−1(v)(Bxt)(v) always. However,

this is no longer a symmetric system, as the same advantage would not be given to

xt(v)(Bxt+1)(v). Alternatively, one could modify B so that the function is symmetric.
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In doing so, it is required to create a non-symmetric matrix, and so xt+1Bxt 6=

xtBxt+1.

As our proof methods require matrices and functions with which we can

utilize the symmetry, it is difficult to find a suitable linear algebra framework for the

Conservative Majority Model.

This concludes Chapter 5. We have created a new linear algebra framework

for some majority models, found the upper bounds of pre-periods with up to n colours

and showed that the period is 2 in both models.



Chapter 6

Conclusion

In this thesis we found several properties of the Conservative Majority Model. We

also obtained theoretical results of the behaviour of the model with more than 2

colours with the addition of the uncoloured vertex.

In Chapter 2 we classified all period 1 and 2 configurations of the Conserva-

tive Majority Model on paths, cycles, and toroidal grids for n colours and uncoloured,

and 2 colours and no uncoloured respectively. Further exploration here might be to

classify the configurations on other families of graphs. Other directions could be to

study the stability of the network when an extra edge or vertex is added.

In Chapter 3, we defined the notion of persistent sets in graphs, and monochro-

matic persistent sets. These sets could be useful in determining the final proportions

of colours in the final configuration with high probability.

In Chapter 4, we studied some threshold probabilities that ensure the per-

sistence of a colour. Results were found on the cycle and the complete graph where

uncoloured vertices were included. Other possible directions are to find the thresh-

old values for other families of graphs, in particular for the toroidal grid as it can

be related to 2-dimensional cellular automata, and we have classified the periodic

configurations.

Finally in Chapter 5 we proved that a model similar to the Conservative

Majority Model called the Mixed Model is eventually periodic with period 2 and

found the upper bound of its pre-period. We also showed that the upper bound of

63
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the pre-period of the Conservative Majority Model with 2 colours and uncoloured

vertices is at most b|E|+ n+u0

2
c, where u0 is the number of uncoloured vertices at the

initial configuration, and that it has period 2. This upper bound is almost reached by

cycles, and paths. It would be interesting to find out if there exists a family of graphs

with a certain initial configuration with the exact upper bound. We also proved that

with n colours, the Mixed Model’s pre-period has an upper bound of 4|E|−|V |. Once

again, further research can be done on lowering this upper bound, as in most cases,

the upper bound is not reached. However, we have improved the bound from previous

works.

Based on experimental results, the Conservative Majority Model appears to

have period 2. Further work to be done is to find a way to create a symmetric model,

or another representation of the process to see if it is indeed period 2.

In some cases there are cellular automata with deterministic updating rules

that are in fact equivalent to a Turing Machine provided the automaton has external

memory. This is known as Turing-Complete. An intriguing direction for this model

is to study it in the world of computing and automata.

Question 6.1 Is the Conservative or Biased Majority Voter Model Turing Complete?

As the study of the Majority Voter Model with more that 2 colours and

uncoloured is relatively new with few theoretical results, there are many directions

for future research.



Bibliography

[1] Delyon B. Rio E. Bercu, B. Concentration Inequalities for Sums and Martingales.
2191-8198. SpringerBriefs in Mathematics, Switzerland, 1 edition, 2015.

[2] J.A. Bondy and U.S.R Murty. Graph Theory. 244. Springer, London, 1 edition,
2008.

[3] Claudine Chaouiya, Ouerdia Ourrad, and Ricardo Lima. Majority rules with
random tie-breaking in boolean gene regulatory networks. PLOS ONE, 8(7):1–
14, 07 2013.

[4] Wei Chen, Laks V. S. Lakshmanan, and Carlos Castillo. Information and Influ-
ence Propagation in Social Networks. Morgan & Claypool Publishers, 2013.

[5] Hanool Choi, Sang-Hoon Kim, and Jeho Lee. Role of network structure and
network effects in diffusion of innovations. Industrial Marketing Management,
39(1):170–177, 2010.

[6] Christopher Duffy and Jeannette Janssen. The spread of cooperative strategies
on grids with random asynchronous updating. Internet Mathematics, 2017.

[7] O. Durán and R. Mulet. Evolutionary prisoner’s dilemma in random graphs.
Physica D: Nonlinear Phenomena, 208(3):257 – 265, 2005.
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