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Abstract

K-means is a commonly used method for clustering in applications that require fast

response time due to its speed. As data becomes large (millions of data points), the

classical implementation may not achieve the performance necessary for these appli-

cations. By combining the filtering algorithm using k-d trees, aggressive sampling,

and parallelism with dynamic load balancing, we implement a version of k-means

that outperforms the standard algorithms used for these applications. We find that

aggressive sampling at 1% of the dataset combined with the filtering algorithm pro-

vides significant speed-up without sacrificing accuracy. Overheads in implementing

parallel methods prevent significant speed-up on smaller datasets, especially when

the data has already been sampled, but our experiments show that this improves as

the dataset grows.
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Chapter 1

Introduction

K-means is a widely used technique for clustering data into defined partitions based on

their similarity. It has gained prominence because of several valuable qualities, such

as its ability to quickly find decent clusters as a starting point for other complex, more

expensive clustering methods. Arguably, k-means most important quality is its fast

run time relative to almost every other clustering method. Its speed comes at a cost of

cluster accuracy compared to other clustering methods, although some applications do

not require a precise clustering and place more importance on the ability to obtain a

clustering quickly. One prime example of this is interactive clustering applications [29,

12].

Interactive applications require fast response time (usually below one second) to

keep the application flowing and the user engaged. The need for speed makes k-means

an excellent candidate for interactivity. As most clustering methods running times

scale up as the input size and dimensionality increases, interactivity and fast response

times become even more difficult to achieve. High dimensional data is often reduced

to lower dimensions for this reason [29, 9]. In this work, we explore existing techniques

for obtaining fast low-dimensional k-means implementations on large datasets. Our

goal is to combine them to achieve interactive speeds on large datasets (10s of millions

of records).

To do this, we explore the impact of using efficient data structures, sampling,

and parallelism in a k-means implementation. These are standard techniques in the

literature for improving the performance of k-means [19, 8, 30, 21, 28, 7]. Using

k-d trees allows for an alternative k-means algorithm that reduces the amount of

computations required to calculate a clustering and pre-allocating large chunks of

memory with the use of a memory manager, which improves the efficiency of the

code. Sampling allows the algorithm to run on only a subset of the data resulting

in many less computations being run, but with a minor trade-off in cluster accuracy.
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Parallelism allows the algorithm to partition the work required for k-d tree building

and calculating the clustering such that subsets of work can be run concurrently on

multiple threads. A combination of these techniques could utilize the best parts of

each and allow us to work on large datasets at speeds that are sufficient for interactive

applications and are much faster than existing k-means implementations.

These techniques are relatively simple to implement individually, but present chal-

lenges when combined. For instance, it is trivial to parallelize Lloyds algorithm, the

most common k-means algorithm. In contrast, the filtering algorithm, a k-d tree-

based approach, raises several challenges. K-d trees may be imbalanced, and each

node may require a different level of computation in a given k-means run, leading to

challenges in balancing the work done by each thread.

In this text, we engineered our own implementation of k-means that works with

both sequential and parallel traversals to allow us to re-evaluate choices made in

the literature and compare how our implementation stacks up to the fastest in the

literature. Our implementation overcomes the challenges of combining parallelism,

k-d trees, and sampling in a single k-means implementation. In doing this, we con-

tribute a unique work sharing load balancing strategy, an efficient memory manager

for managing k-d tree traversals in k-means, and an efficient structure for parallel

and sequential k-d tree k-means traversals.

In this thesis, we will outline various approaches to k-means clustering and give

a detailed explanation of how we engineered and optimized our own implementation

of the k-d tree based filtering algorithm. We will then explore the effects of sampling

and parallelism combined with the filtering algorithm and compare them to other

fast algorithms in the literature. We also explore the challenges in creating a parallel

version of the filtering algorithm and conclude with final results and avenues for future

research.



Chapter 2

Previous Work

This chapter reviews previous work relevant to this thesis, including a brief intro-

duction to cluster analysis and a detailed overview of techniques that have been

used to improve the speed and accuracy of k-means clustering. K-means is a well

researched topic and has evolved in several directions to improve its efficiency and

accuracy on different data shapes and sizes. We are most interested in obtaining a

very fast k-means implementation, without sacrificing too much accuracy. The fastest

approaches in the literature frequently use certain techniques, such as sampling, par-

allelism, and use of appropriate data structures. We will use them as building blocks

for our approach. We will go in more detail how these techniques are commonly

applied to k-means, and outline some of the fastest approaches and their strengths

and weaknesses.

2.1 Cluster Analysis

Cluster analysis (referred to as clustering from here on) is an important tool in statis-

tical data analysis and machine learning. Its goal is to take an unsupervised approach

to partitioning a set of data objects into k groups of similar objects (clusters), where

k may or may not be defined by the user. Clustering is a very broad term, given that

there are many ways to approach collecting data points into clusters. It is a chal-

lenging problem that has spawned various approaches including using density of the

point set, the distribution of the point set, distance-based connectivity of the point

set, and centroid-based measures where each group is represented by a summarized

point in the space. Some examples of these include DBSCAN [15] and OPTICS [3] for

density-based clustering, DBCLASD [31], HCS algorithm [18], and k-CONID [26] for

connectivity-based clustering, and k-medoids [20] and k-means [23] for centroid-based

clustering.
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2.2 K-means Clustering

The k-means clustering algorithm is among the most popular clustering algorithms.

The most common algorithm for implementing k-means is an iterative algorithm

called Lloyds Algorithm [22] (frequently referred to as the k-means algorithm). The

goal of k-means is to partition a point set into k clusters so that the sum of the

squares of the (Euclidean) distances between the observations and their closest cluster

centroids is minimized. Finding the optimal k-means cluster partition is an NP-Hard

problem [10]. K-means is generally used as a quick technique for estimation of a

clustering, or as an initial clustering for other more expensive methods [34]. It is

generally favoured for its simplicity to implement, its speed, and various optimizations

that tweak the algorithm to better adapt to certain shapes and sizes of data. K-

means is not without limitations however, as it is susceptible to converging to local

optima rather than global optima and the quality of the computed clusters can depend

significantly on the initial random cluster centroid choice. K-means is also limited in

that it can only find convex clusters and can struggle with non-convex clusters even

if they are very well defined. Initial centroid seeding techniques such as k-means++

[4] can help k-means achieve robust convergence and more accurate clusterings and

finding embeddings that reduce the complexity can allow k-means to work correctly

on non-convex data [34].

In the simplest case, the user defines k, the number of centroids/clusters to com-

pute, and a minimum percentage by which the objective function must improve in

each iteration for the algorithm to start another iteration. Initially, as the algorithm

requires an initial centroid set, a set of k random points are chosen as centroids (usu-

ally from the input point set). The algorithm then alternates between 2 steps: an

assignment step, and an update step. These steps will be explained below. Each time

the assignment step and update step are run, this is considered to be an iteration of

the algorithm.

In the assignment step, the Euclidean distance between each observation and

each centroid is calculated to determine which centroid is the closest in the space for

an observation. An observation closest to a centroid is said to be assigned to that

centroid’s cluster.

In the update step, each centroid is re-defined as the coordinate-wise mean of all
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observations assigned to that centroid’s cluster. The algorithm then computes the

distortion, defined as the sum of the squares of the distances between the observations

and their closest cluster centroids, for this new centroid set and terminates if the

ratio between the computed distortion and the previous iteration’s distortion is less

than the minimum distortion loss (the user-defined minimum improvement between

iterations). We can see an example of this in Figure 2.1, where the updated centers

are pulled towards the mean of the points closest to them. If the algorithm does not

meet this stopping condition, it returns to the update step, with the newly defined

centroids as its input. If it does meet the stopping condition, the algorithm does not

continue updating, and the last computed centroids in the update step are the final

centroids. The assignment step is run one last time to determine which observation

is assigned to which centroid, giving a partition of observations into clusters.

Figure 2.1: A potential k-means clustering, where the gray filled points are the initial
centroids. The black outlined points are the final converged centroids, with their
Vornoi partition shown and each point assigned to that centroid outlined in the same
color.

While Lloyds Algorithm is very fast compared to the more sophisticated clustering
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methods, it is nevertheless too slow to apply to very large inputs. As a result, improv-

ing on the speed of k-means is a well-researched topic space. Approaches to improve

the running time include utilization of data structures such as quadtrees [25, 8] and

k-d trees [1, 19], parallelization [30, 6, 21, 33], sampling [28, 7, 11], initialization op-

timization [4, 5], candidate pruning [14, 17, 13], and many hybrid methods [16, 32]

that combine these techniques. Among these, search trees like k-d trees provide fast

nearest neighbour search capability in low-dimensional spaces, which is the key step

to be performed in each iteration of Lloyds algorithm.

2.2.1 Tree data structure k-means

Search tree-like data structures, such as k-d trees and quadtrees, provide a query-

efficient spatial summary of a point space. In these trees, we think of the root node

of a tree as a bounding box enclosing the entire point set. The point space can

be continuously partitioned into subspaces, generally where the points in the space

are partitioned approximately evenly amongst the children of a node. Each division

of the point space creates new bounding boxes, which are represented as the child

nodes of the larger space that was divided. The point space is recursively divided

until a child node contains one or very few points. We can see an example of how

a k-d tree is built from a point set in Figure 2.2. We describe in more detail how

we build our trees in Chapter 3. At each of the nodes in the tree, we can collect

summary information about the points contained in the bounding box represented by

that node, which can allow us to better guess initial centroids [8] or assign groups of

points at once during the assignment step [19]. When using the tree for speeding up

the assignment step, the summary information collected allows us to quickly prune

candidate centroids from groups of points held in internal nodes. When a group of

points has only one candidate centroid remaining, we determine that the candidate is

the closest centroid for the entire group and no longer need to continue traversing the

subtree. This eliminates many distance calculations and comparisons compared to

other k-means implementations. As the tree is only constructed once, the algorithm

is better optimized as long as the time overhead of building the tree is less than the

time saved by using the tree.
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Figure 2.2: An example of building a k-d tree from a point set. Given a set of
points with the bounding box on the left side of the figure, we can see each split the
algorithm performs to create the tree. The line initially splitting the bounding box
into 2, labeled Root, is our initial split. We then split the resulting top bounding
box into 2, line A, and one of its children into 2, line B. This gives us our first
two leaf nodes, boxes C and D. This is continued recursively until the entire set is
partitioned. Each internal tree node represents the combined bounding box of the
children it creates by splitting for that corresponding letter. This gives us the tree on
the right of the figure. The traversal order for building the tree recursively is shown
around the outside of the tree, with arrows to indicate the flow of the traversal.
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2.2.2 Parallel k-means

Utilizing parallel algorithms is another effective way to gain speed-ups on the k-means

algorithm, especially on large datasets [30, 33, 16]. Lloyds Algorithm is trivial to par-

allelize on a CPU (Central Processing Unit) by dividing the point set into p groups

during each assignment step, where p is the number of CPU cores available. We can

then allow each core to perform distance calculations and determine the nearest cen-

troid for the N
p
points it is responsible for. Furthermore, parallelization can be taken

a step further utilizing a GPU (Graphics Processing Unit) or combining paralleliza-

tion with other optimization techniques. GPUs differ from CPUs in that a CPU has

a small number of fast cores that are each capable of running separate instructions,

whereas a GPU has many (thousands) slow, rigid cores that have limited memory

and must work in unison. All threads in a GPUs thread block are required to run the

same instructions in unison with each other and wait for all threads to synchronize

before completion. They are also very limited in that they cannot hold much data

in local thread memory, and memory transfer to and from the GPU incurs relatively

high overhead. This limits the popularity of parallel GPU algorithms outside of triv-

ially parallelizable problems. An easily parallelizable algorithm like Lloyds Algorithm

fits these limitations and can be easily implemented on a GPU, while something more

complex such as the filtering algorithm (k-d tree based k-means) is less popular due

to the difficulty to implement and effectively utilize all the cores to overcome memory

overhead.

2.2.3 K-means with sampling

Sampling utilizes running iterations of a k-means algorithm on only a subset of the

whole point set and generally provides a trade-off of accuracy to increase speed.

So long as the number of clusters is not too large compared to the data set, the

statistical properties of the population of the input are preserved. The two most

common methods of sampling involve sampling once at the beginning of the k-means

run or resampling from the whole point set after each iteration. This allows the

number of distance computations to be reduced by s/N = P , where s is the sample

size and P is the percentage of the sample or batch size relative to the full point set.

Given a large enough point set, and well defined true clusters, we can use a sample
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or batch of the points as low as 1% [29] and still retrieve a representative point set

to converge closely to the optimal solution.

2.2.4 Other approaches

Other approaches involve making small changes to parts of the k-means algorithm.

One can employ more complex strategies for generating initial centroids that en-

able the algorithm to converge more quickly and robustly than with random initial

centroids [8, 4, 5]. One can also try pruning candidate centers during the assign-

ment phase by estimating that some centroids are very close or very far from an

observation, and thus eliminating the need to calculate the distance between all cen-

troid/observation pairs [19]. Additionally, multiple k-means optimizations can be

applied at once, although some may be incompatible and some may be more easily

integrated together than others.

2.3 Competitive Algorithms

There are many variations of k-means that have emerged from Lloyds algorithm.

Lloyds algorithm calculates a distance for every point in the point set to every cluster

in every iteration, which results in a high running time if the number of observations

and the number of clusters are large. We will discuss two competitive variations of

k-means that succeed in optimizing the algorithm for speed on very large datasets by

reducing the number of distance calculations required to obtain a clustering.

2.3.1 Mini Batch k-means

Mini Batch k-means [28] is a fast algorithm that differs from the conventional Lloyd’s

algorithm by working with a subset or mini batch of size b, of the full dataset in each

k-means iteration. It is motivated by the need to be able to cluster datasets that

are so large that they cant be processed in memory and comes at the cost of trading

accuracy for speed. As b becomes very small relative to N , the algorithm cuts down

significantly on the number of computations performed at the cost of cluster accuracy.

It is shown to perform faster compared to other sequential implementations of Lloyds

algorithm while maintaining similar cluster accuracy by running many more small,
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fast iterations [28].

2.3.2 Filtering algorithm

One of the strongest competitors to the Mini Batch k-means approach is the filtering

algorithm [1, 19]. The filtering algorithm gains speed by using a k-d tree for querying

the cluster assignments but is limited compared to Mini Batch k-means because web-

scale data sets cannot be fit in memory in a k-d tree structure. Once a k-d tree has

been built for the point set, the algorithm starts at the root node of the tree and

propagates down through the child nodes. At each node, we keep a set of candidate

centers: centroids that may be the closest centroids to some points in the subtree

below that node. The root node starts with all centroids as candidate centers, and as

candidates are eliminated, they are propagated to the child nodes. As the algorithm

propagates down the tree, it stops at each node and computes the candidate center

z∗ that is closest to the midpoint of the bounding box of the node. For all other

candidate centers, we compute whether or not they fall closer to any part of the

bounding box than z∗. If they do not, they are pruned from the candidate center set.

If a node has only one center remaining in its candidate set, we assign all points in

the nodes subtree to this remaining candidate center, without traversing the subtree.

Similarly, if we reach a leaf node in the tree before pruning to one candidate center,

the closest center is computed from the remaining candidates and the node’s point

sum and weight is assigned to that center. Since all but the last iteration of Lloyds

algorithm assign points to a cluster only to update the cluster center, this assignment

can be accomplished by adding the coordinate-wise sum of the points in the subtree

and the number of points in the subtree to the coordinate-wise sum and number of

points assigned to the cluster. At the end of each iteration, the centroid of each cluster

can then be computed by dividing each coordinate of the point sum by the number

of points. Similar to Lloyd’s Algorithm, we keep track of the distortion between the

observations and the centroids and terminate if the difference ratio between iterations

does not meet the minimum distortion loss. The filtering algorithm performs well on

low dimensional point sets and is well suited for online applications in which the data

is already low dimensional or is reduced to a low dimensional embedding.



Chapter 3

Engineering an Efficient and Flexible K-D Tree Based

K-Means Implementation

The starting point of our implementation of an efficient k-d tree based k-means algo-

rithm was the implementation by Kanungo et al. [19]. We chose to engineer our own

implementation for three reasons:

1. Our project required a flexible and modular implementation that allows for the

combination of the basic k-d tree structure with different traversal strategies

(sequential vs parallel).

2. The flexibility of our implementation allowed us to re-evaluate certain imple-

mentations choices made in the literature (how to define a nodes bounding box,

how to choose the dimension in which to split a parents bounding box, and how

to choose the splitting coordinate).

3. We aimed for an easy-to-understand implementation that uses modern C++

idioms while not sacrificing any performance compared to the more low-level

and less modular implementation of Kanungo et al. We partially succeeded in

this.

Our implementation follows three broad stages: initialization, tree building, and

filtering.

3.1 Implementing K-D Tree K-Means

Our goal was to find the fastest k-means algorithm best suited to finding clusters in

low dimensionality datasets, and optimize it by attempting to employ existing tech-

niques, novel techniques, and optimized computations. We face several challenges in

implementing this such as efficiently building the tree, managing memory on the tree,

11
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and implementing modular parts that could be adapted to both sequential and par-

allel traversals. We also needed to implement each of the tree building and traversal

parameters that we wished to investigate from the literature.

3.1.1 Parameters

As the tree is being built, there are several potential choices of how we partition

the point set at each node (the splitting procedure). The possibilities for a splitting

procedure are to use a midpoint split, which splits the bounding box of a node into

two boxes of the same size; a median split, which splits the bounding box into two

boxes containing the same number of points; and a sliding midpoint split [24] which is

similar to midpoint splitting but moves the splitting coordinate if necessary to ensure

that at least one point is on each side of the split.

We also must choose which dimension of the point set we will partition by at

every node. This is called the dimension selection procedure. The possibilities for the

dimension selection procedure are longest, in which we always split on the longest di-

mension of the bounding box, and round robin, in which we start at the first dimension

and sequentially cycle through all dimensions.

Finally, there are two ways we can determine the bounding box that encloses the

point set after each node has been partitioned. The options for choosing the bounding

box of a node are true bounding box in which the nodes bounding box is the smallest

box that contains the points in that node, and node bounding box, which defines each

nodes bounding box to be the box obtained by splitting its parents bounding box.

Additionally, there are the general user-provided parameters that apply to the

k-means algorithms in general. These are the number of clusters to partition into,

the minimum distortion loss between iterations, the maximum number of iterations

to run, and the maximum number of iterations per run. These arguments will be

described in more detail below.

Within the k-means algorithm, we define an iteration as one run of the assignment

and update steps. We define a run as a group of iterations which we use to track con-

vergence progress. The minimum distortion loss defines a criterion to terminate the

algorithm once the objective function (distortion) does not decrease sufficiently over

a run. The distortion loss over the run is defined as (base distortion − current distortion)
base distortion

,
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where the base distortion is the distortion taken at the beginning of the run, and the

current distortion is the distortion taken after the current iteration finishes. The max-

imum iterations per run defines the maximum number of iterations between which we

wait to update the base distortion for comparison to the current iterations distortion.

The algorithm terminates if the distortion loss at the end of a run has stayed

below the required minimum distortion loss. The algorithm also terminates after

a set number of iterations, maximum number of iterations if the first termination

criterion has not yet been met.

3.1.2 Representation of the Point Set

In the initialization stage, we read the user defined data set into a PointSet data

structure. Our PointSet structure is a vector of n-dimensional Points. A Point is

defined as a structure of n coordinates, where each node represents one dimension

of that data point. Each node is a union of a double: the value of the data point

in that dimension, and a pointer to the value in the next dimension of that point, if

it exists. The pointer to the next node also allows us to efficiently manage memory

allocations, which will be described in detail later in subsection 3.1.5. We also keep

a PointSequence, which keeps n vectors of indices sorted by each dimension of the

referred PointSet. A PointSequence allows us to efficiently find the split point when

building the tree, without having to scan the entire point set at each split.

3.1.3 Tree Building

For the filtering algorithm, we must modify the basic k-d tree to include additional

information about the points stored at each nodes subtree. In addition to its bound-

ing box, every node in the k-d tree stores the number of points in its subtree, the

coordinate-wise sum of these points, and the sum of the squares of all coordinates of

these points SumSquares =
∑nodeN

i=0

∑n

j=0(xi,j ∗ xi,j) where nodeN is the number of

points contained in the nodes subtree and xi,j is the jth coordinate of the ith point in

the subtree. These values will be used by the filtering algorithm to avoid traversing

a subtree whose points are all closest to the same cluster centers.

We build the k-d tree recursively. We start with the root node, whose bounding

box is chosen as the smallest box that contains the entire point set. For each node that
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contains more than one point, we split its bounding box and point set into two smaller

boxes and the two point sets contained in them according to the chosen dimension

selection, dimension splitting and bounding box selection rules. We associate these

two bounding boxes with the nodes chosen children and recursively build the subtrees

with these two children as roots. Once these two recursive calls return, the children

store their point counts, coordinate-wise point sums, and sums of squares of the point

coordinates. The corresponding values for the current nodes can then be computed

by summing the values of the two children (e.g. the coordinate-wise point sum for

the current node is the coordinate-wise sum of the childrens coordinate-wise sum).

3.1.4 Filtering

Our implementation of the filtering algorithm (Algorithm 1) is iterative, simulating

the recursive traversal of the tree by explicitly maintaining a stack of nodes whose

subtrees still need to be traversed. This will be crucial for parallelizing the algorithm

using a work sharing scheduler.

The algorithm maintains the number and coordinate-wise sum of all points as-

signed to a given cluster (see lines 14,21). Once the tree traversal is finished, the new

center of each cluster can then be computed as center = pointsum

numpoints
(see line 24). The

traversal computes this information for all clusters and also computes the distortion

of the current set of cluster centers, as a basis for deciding whether the required

minimum distortion loss has been achieved in the current run.

First consider collecting the points in each cluster: If the current node is a leaf

(see lines 19-22), we select the cluster center closest to it, add one to this centers node

count and the point to the centers point sum. If the current node is an internal node,

we first remove all candidate cluster centers that cannot be closest to any point in

the nodes subtree (see lines 7-12 and Algorithm 2). If this leaves only one remaining

cluster center, all points in this subtree need to be assigned to this cluster center. We

achieve this by adding the current nodes point count and point sum to the cluster

centers point count and point sum. If there is more than one candidate cluster center

that could be closest to points in this subtree, we recurse on the nodes children with

the reduced set of cluster centers.

To prune the nodes, we follow a procedure outlined in Algorithm 2. While not
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Algorithm 1 K-means Filter
1: INPUT: TS ← traversal stack;

2: while TS is not empty do

3: tn ← tree node at top of traversal stack;

4: B ← tn’s bounding box;

5: C ← the candidate center set of tn;

6: if tn is an internal node; then

7: cclose ← the closest center in C to B’s middle;

8: for all c ∈ C | c 6= cclose do

9: if Prune(c, cclose, B) then

10: C ← C \ c;

11: end if

12: end for

13: if |C| == 1 then

14: Record tn’s weight, sum of points, and sum of squared points for cclose;

15: else

16: Push tn’s left child and C to traversal stack;

17: Push tn’s right child and C to traversal stack;

18: end if

19: else

20: cclose ← the closest center in C to tns point;

21: Record tn’s weight, sum of points, and sum of squared points for cclose;

22: end if

23: end while

24: Calculate the distortion and update center set;

25: return updated center set;
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particularly intuitive at first glance, this procedure simply determines if every part

of the nodes bounding box, B, is closer to cclose, the candidate center closest to the

middle of B than a candidate center to be tested, c. If this test is true, we can infer

that cclose will always be the closer candidate center, and prune c from the candidate

set of that node.

Algorithm 2 Prune(c, B, cclose)
1: INPUT: candidate center to test for pruning c, the nodes bounding box B, candidate cclose closest to the middle

of B;

2: candProd ← 0;

3: boxProd ← 0;

4: for all dimensions of the candidate centers d do

5: candCompare = c[d]− cclose[d];

6: candProd += candCompare2;

7: if candCompare > 0 then

8: boxProd += (Bupper [d]− cclose[d]) ∗ candCompare;

9: else

10: boxProd += (Blower [d]− cclose[d]) ∗ candCompare;

11: end if

12: end for

13: return candProd >= boxProd ∗ 2;

To verify whether or not the condition to prune c is met, we consider the relation-

ship between the dot products of two vectors. We observe that a point a is closer to

c than cclose if an only if (a− c) · (a− c) < (a− cclose) · (a− cclose). We can rearrange

this to be:

(a− c) · (a− c) < (a− cclose) · (a− cclose)

a2 − 2ac+ c2 < a2 − 2acclose + c2close

−2ac + c2 < −2acclose + c2close

−2ac+ c2 + (−2ccclose + c2close) < −2acclose + c2close + (−2ccclose + c2close)

c2 − 2ccclose + c2close < 2ac− 2acclose − 2ccclose + 2c2close

(c− cclose) · (c− cclose) < 2(a− cclose) · (c− cclose)

To relate this to Algorithm 2, (c−cclose) ·(c−cclose) is equivalent to candProd (see

line 6) and (a− cclose) · (c− cclose) is equivalent to boxProd (see lines 8,10). It follows



17

that the final derivation is equivalent to line 13. To ensure that this is satisfied for

all points a in B, we will find the point a in B that maximizes boxProd. This will be

a corner of B, and is found by checking the direction of the vector of candCompare

in each dimension. If the vector direction is positive, the upper side of B in that

dimension will maximize boxProd, and vice versa for a negative direction (see lines

7-11).

To calculate the distortion of the current set of cluster centers, we need to sum
√

∑

p∈Pc

∑n

i=1(pi − ci)2 over all cluster centers, where Pc is the set of points assigned

to c. Calculating the roots and summing them is trivial once we have calculated
∑

p∈Pc

∑n

i=1(pi − ci)
2 for each cluster center. To calculate this sum efficiently, we

observe that:

∑

p∈Pc

n
∑

i=1

(pi − ci)
2 =

∑

p∈Pc

n
∑

i=1

(p2i − 2pici + c2i )

=
∑

p∈Pc

n
∑

i=1

p2i − 2
∑

p∈Pc

pi

n
∑

i=1

ci + |Pc|
n

∑

i=1

c2i

The first term is equivalent to the total sum of coordinate squares of all points

assigned to the cluster. Thus, the traversal also calculates this sum for all clusters.

The second term is −2 times the inner product of c and the coordinate-wise sum

of the points assigned to this cluster and can thus be computed in constant time

(assuming the number of coordinates is constant), Similarly, the third term can be

computed in constant time from the cluster center and number of points in the cluster.

3.1.5 Optimizations

By profiling the algorithm, we found that a significant amount of time was spent on

memory allocations. Most of this time was spent allocating space for the coordinates

of temporary point variables created especially during tree building. By making

optimizations on these operations, we save approximately an order of magnitude in

average run time of our algorithm. We implemented an optimization for this by

building our own memory manager for the Point class, called the PointAllocator.

The PointAllocator initially allocates a large chunk of memory for Points to elimi-

nate the overhead of making many small allocations. It manages this chunk of memory
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as a linked list of available Point-sized chunks, built on top of the array of memory.

When a Point needs to be created, the PointAllocator gives the first Point-sized

block of memory from the front of the free list for the new Point and moves the front

pointer of the free list to the successor of the referred block. When a Point goes out

of scope or is destroyed, the destructor of the Point returns that memory to the head

of the free list. If the free list runs out of allocated memory, the allocator allocates

another large chunk to point to as the front of the free list.

Another significant source of run time overhead was in keeping track of our recur-

sive stack of nodes to visit and the associated candidate centers during the filtering

algorithm. Our original implementation used C++ standard library implementation

of stacks and contained a significant amount of built-in emplace and push back op-

erations. We found these operations to be a bottleneck in our application, likely

stemming from overhead in boundary checking and allocation increases as the stack

grows and shrinks in size. For this reason, we implemented our own stack that would

pre-allocate the stack size we require, could keep track of both the node traversal

stack and the candidate center stack at the same time, and left stack safety largely

in our own hands. We do this using low-level arrays and pointer manipulation. We

use a separate stack for the traversal order and candidate centers for simplicity and

ease of implementation. A visualization of how the stacks are managed is shown in

Figure 3.1. Each element pushed to the stack contains a pointer to a node, the num-

ber of candidate centers that node has, and a pointer to the candidate center buffer

at the location we keep that nodes candidate centers. On each stack push or pop

operation, we also push or pop the candidate centers on or from the candidate center

buffer. This allows us to quickly have access to a node, and its candidate centers as

we traverse the tree. We pre-allocate the maximum stack size as N , as we can never

have more than N nodes in our stack at once during a traversal, and we pre-allocate

memory for N ∗ k integers in the candidate buffer.

3.2 Experimental Evaluation

Once we had optimized our implementation of the filtering algorithm, we ran ex-

ploratory experiments to determine what parameters were best suited for the shape

of our target datasets. After we found the best algorithm parameters, we then tested
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Figure 3.1: An example of our pre-allocated traversal and candidate stack. To keep
track of nodes and their associated information as we traverse, we use these co-
operative stacks. The structure we push to the traversal stack contains a pointer to
the node to traverse, the number of candidate centers it has remaining, and a pointer
to the candidate stack which holds the indices of those candidates. In this example,
the node on the top of the stack has 2 candidates left: centers 5 and 8. The node
second on the stack has 4 candidate centers left: 5, 6, 7, and 9.

the algorithm against other competitive algorithms to determine how their running

times compare. For all of these experiments, we fixed the maximum number of it-

erations to 100, the minimum distortion loss to 0.1, and ran each experiment with

the number of cluster centers, k, at 10 and 50. To eliminate variance, we chose the

same set of initial cluster centers for all methods, and we repeat each test 10 times

(with different initial cluster centers in each run) and record the mean and standard

deviation.

The machine we tested on was running CentOS 7 version 3.10.0-862.el7, with an

Intel i7-3820 CPU @ 3.60GHz with 8 cores. All of our implementations were coded

in C++ to the C++11 standard and were compiled using gcc version 4.8.5 at opti-

mization level 3. We tested the algorithms in our experiments on the ASRS100k data

set, and on a Reddit dataset, both reduced to 2 dimensions dtCSM [29]. ASRS100k

is a dataset of 100,000 sanitized aviation incident and operations reports from the

Aviation Safety Reporting System online database reduced to 2 dimensions. The

Reddit dataset is a dataset of 16,000,000 comments from the social discussion web-

site Reddit.com reduced to 2 dimensions. We also downsample the Reddit dataset to

1,000,000 points, and 4,000,000 points so we can better observe how the algorithms
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we test scale.

3.2.1 Parameter Tuning

For our exploratory experiment, we compared the overall running time for each com-

bination of splitting procedure, dimension selection procedure, and bounding box

type. Since we are using consistent initial random centers across the experiment,

the objective function converges to the same value regardless of splitting procedure,

dimension selection procedure, and bounding box type. For this reason, we do not

report the objective function for this experiment.

Table 3.1 shows that a combination of midpoint or sliding midpoint, a round robin

dimension splitting procedure, and a true or node bounding box provides the fastest

and most consistent results. The results for the experiments on each of the 4 possible

combinations of these parameters produce extremely similar results across the board.

Based on run time consistency, we will choose midpoint, round robin, and node as

the best parameters for our experiments going forward.

3.2.2 Comparison With Competitors

Our first competitor is the implementation of the filtering algorithm by Kanungo et

al. [19]. Table 3.2 shows that our tree building is slightly slower than Kanungo et al.

This is likely because of the optimizations we took to pre-allocate memory for Points

and traversal stacks. In our implementation, we take extra time at tree building

time to pre-allocate large chunks of memory that save us time later in the algorithm,

compared to Kanungo et al. which allocates dynamically as needed.

This theory is supported by evidence in Table 3.3. We see that our implementation

significantly outperforms Kanungo et al. in query time. Here we define querying

as the portion of the algorithm where we filter and update the candidate centers

until termination. The total running times of both implementations, including both

filtering, tree building, and data reading, are shown as part of Table 3.4. Our results

show that our implementation outperforms Kanungo et al. by a substantial margin

except on the full Reddit data set.

Finally, we compare the overall running time to Mini Batch k-means and k-d tree

k-means by Kanungo et al. in Table 3.4. For this experiment, we run Mini Batch
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Table 3.1: Comparison of total run time of our K-D tree parameter combinations in
seconds [mean (sd)]. The three fastest run times for each dataset/k are highlighted.
The columns Split, D.S., and B.B. define the dimension splitting rule, the dimension
selection rule, and the bounding box type respectively. Under the dimension split rule
(Split) column, Med., Mid., and S. Mid. stand for median split, midpoint split, and
sliding midpoint split respectively. Under the dimension selection rule column, RR
and Long stand for round robin selection and longest dimension selection respectively.

k Split D. S. B.B. Dataset
ASRS100k Reddit1M Reddit4M Reddit16M

10 Med. RR True 0.362 (<0.01) 3.529 (0.06) 14.496 (0.02) 65.717 (1.34)
Node 0.364 (<0.01) 3.515 (0.01) 14.493 (0.04) 65.903 (1.36)

Long True 1.279 (0.05) 8.056 (0.12) 33.489 (0.53) 145.763 (2.99)
Node 0.364 (0.03) 3.373 (0.02) 14.234 (0.05) 64.928 (1.27)

Mid. RR True 0.327 (0.06) 2.368 (0.01) 9.772 (0.03) 60.444 (2.88)
Node 0.294 (<0.01) 2.372 (0.01) 9.777 (0.02) 58.762 (2.35)

Long True 1.327 (0.06) 8.028 (0.27) 41.226 (1.24) -
Node 0.298 (0.05) 2.653 (0.09) 14.379 (0.05) -

S. Mid. RR True 0.304 (0.04) 2.367 (0.01) 9.798 (0.03) 59.170 (2.29)
Node 0.293 (<0.01) 2.364 (0.02) 9.834 (0.17) 58.136 (2.94)

Long True 1.330 (0.08) 8.109 (0.33) 41.167 (1.13) -
Node 0.294 (0.04) 2.627 (0.05) 14.344 (0.04) -

50 Med. RR True 0.549 (0.03) 4.543 (0.01) 16.383 (0.06) 69.330 (1.15)
Node 0.536 (<0.01) 4.566 (0.06) 16.419 (0.08) 69.747 (1.23)

Long True 2.920 (0.04) 15.565 (0.52) 63.059 (1.84) 265.767 (18.13)
Node 0.508 (<0.01) 4.284 (<0.01) 15.830 (0.05) 67.808 (1.34)

Mid. RR True 0.440 (0.01) 3.356 (0.05) 11.462 (0.03) 62.134 (2.43)
Node 0.439 (<0.01) 3.345 (0.04) 11.476 (0.02) 63.209 (2.42)

Long True 2.955 (0.03) 15.809 (0.42) 70.732 (1.58) -
Node 0.434 (<0.01) 3.516 (0.01) 15.872 (0.09) -

S. Mid. RR True 0.450 (0.03) 3.327 (0.01) 11.518 (0.16) 62.431 (2.54)
Node 0.442 (<0.01) 3.332 (0.01) 11.478 (0.04) 62.235 (2.81)

Long True 2.955 (0.03) 15.781 (0.41) 70.499 (1.34) -
Node 0.442 (0.03) 3.507 (0.01) 15.914 (0.05) -

D. S. = Dimension Selector, B.B. = Bounding Box, Med. = Median, Mid. = Midpoint, S. Mid. =

Sliding Midpoint, RR = Round Robin, Long = Longest
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Table 3.2: Comparison of sequential filtering algorithm k-means implementations tree
build times in seconds (total time) [mean (sd)]

k Algorithm Dataset
ASRS100k Reddit1M Reddit4M Reddit16M

10 Crowell 0.089 (<0.01) 0.960 (<0.01) 4.555 (0.01) 30.953 (1.47)
Kanungo et al. 0.064 (<0.01) 0.797 (0.05) 3.837 (0.15) 21.6 (1.07)

50 Crowell 0.088 (<0.01) 0.959 (<0.01) 4.555 (0.02) 31.664 (1.84)
Kanungo et al. 0.059 (<0.01) 0.766 (<0.01) 3.792 (0.02) 21.200 (0.63)

Table 3.3: Comparison of sequential filtering algorithm k-means implementations
query times in seconds (total time) [mean (sd)]

k Algorithm Dataset
ASRS100k Reddit1M Reddit4M Reddit16M

10 Crowell 0.108 (<0.01) 0.542 (0.01) 1.778 (0.02) 11.275 (1.31)
Kanungo et al. 0.564 (0.01) 2.735 (0.86) 9.101 (0.14) 18.253 (0.37)

50 Crowell 0.255 (<0.01) 1.504 (<0.01) 3.476 (0.02) 15.179 (1.07)
Kanungo et al. 1.777 (0.08) 12.378 (0.13) 24.954 (0.50) 50.382 (0.73)

k-means at the suggested batch size of 1000. Mini Batch k-means is also run for 1000

iterations (10 times more iterations than the k-d tree methods) to ensure that Mini

Batch k-means obtains comparable objective function values to the other methods.

This number of iterations for Mini Batch k-means was determined to provide con-

vergence to a similar objective function as the k-d tree based methods in a minimal

number of iterations. Despite this, Mini Batch k-means still occasionally performs

very poorly in terms of the objective function, especially with a larger k. This effect

was not found to be improved by increasing the number of iterations. The mean

objective function values of each implementation are shown in Table 3.5. However,

even with some unreliability in objective function, Mini Batch k-means performs sig-

nificantly faster than its competitors as N becomes large and could potentially be

run multiple times to ensure a stable result while still having a faster running time

than other methods. Kanungo et al. was run with the same parameters as our best

configuration where applicable.

From this experiment, we find that our implementation succeeds at being consis-

tently competitive or faster in speed with Kanungo et al. but is quickly outmatched

by Mini Batch k-means as N becomes large. This is reasonable, given that Mini
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Table 3.4: Comparison of k-means method run times in seconds (total time) [mean
(sd)]

k Algorithm Dataset
ASRS100k Reddit1M Reddit4M Reddit16M

10 Crowell 0.294 (<0.01) 2.372 (0.01) 9.777 (0.02) 58.762 (2.35)
Kanungo et al. 0.726 (0.02) 4.377 (0.91) 16.493 (0.20) 53.616 (0.76)
Mini Batch 0.608 (0.09) 1.883 (0.20) 3.727 (0.36) 10.395 (0.33)

50 Crowell 0.439 (<0.01) 3.345 (0.04) 11.476 (0.02) 63.209 (2.42)
Kanungo et al. 1.935 (0.09) 14.024 (0.13) 32.258 (0.51) 85.662 (0.91)
Mini Batch 1.251 (0.06) 2.395 (0.46) 4.355 (0.40) 11.350 (0.74)

Table 3.5: Comparison of k-means final objective function values rounded to nearest
whole number [mean (sd)]
k Algorithm Dataset

ASRS100k Reddit1M Reddit4M Reddit16M
10 Crowell 6,459,124 (21,730) 58,227,547 (495,959) 232,918,717 (1,991,585) 929,136,773 (6,118,416)

Kanungo et al. 6,459,124 (21,730) 58,227,547 (495,959) 232,918,717 (1,991,585) 929,136,773 (6,118,416)
Mini Batch 16,471,748 (8,926,131) 38,629,240 (13,101,570) 226,843,930 (142,177,400) 848,218,700 (259,023,655)

50 Crowell 1,290,069 (10,222) 11,959,686 (85,122) 47,734,364 (350,608) 191,817,994 (1,372,099)
Kanungo et al. 1,290,069 (10,222) 11,959,686 (85,122) 47,734,364 (350,608) 191,817,994 (1,372,099)
Mini Batch >100,000,000* >100,000,000* >100,000,000* >100,000,000*

*About half of Mini Batch k-means runs on 50 centers converge to poor local solutions and give extremely large
objective function values, which skew the mean value. The runs that appear to converge give objective function
values similar to the k-d tree k-means implementations. Increasing the number of iterations does not prevent this.

Batch k-means is independent of N , except in data reading cost, whereas the k-d tree

methods time complexity scales with N . Mini Batch k-means sampling provides it a

strong advantage in running time over other methods as the data size increases.

We had identified another potentially competitive implementation to our algo-

rithm that uses k-d trees and a form of parallelism with dynamic load balancing

[16]. This parallelizes the work done to traverse the tree in a comparable way we

will parallelize our traversal computations (described later in subsection 5.3.3 Work

Sharing Traversal). Their implementation tracks the run time and number of distance

calculations performed by each thread and attempts to balance the computation of

each thread by having the slower threads donate work to the faster threads until

all threads run a comparable amount of work. Their experiments showed significant

speed-ups compared to a parallel implementation of Lloyds Algorithm on moderately

large and moderately dimensional data. We were unfortunately unable to obtain their

implementation, nor discern their dynamic load balancing approach in enough detail

to implement this ourselves. While we believe our approach is fine-grained enough
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to achieve near-perfect load balance, we regret that their implementation was not

available, as it would been an interesting comparison to make.

It should also be noted that we do not explore using a k-d tree with Mini Batch k-

means in determining the impact of k-d trees. In Mini Batch k-means, we repeatedly

take a small sample batch of points from the entire dataset and compute our cluster

centroids based on the results given by the samples. This does not apply well to a

k-d tree approach, in which we seek to build a k-d tree once on the entire dataset at

an additional cost to gain speed in determining the closest candidate centroids in the

future. In Mini Batch k-means, we must either build a tree for every sample, which

is likely to give more overhead in time than simply not using a tree, or build a tree

on the full dataset initially and somehow adapt it for use on a sample, which would

still not guarantee any time saved over the Mini Batch k-means implementation.

3.2.3 Effect of Dimensionality

One drawback of the filtering algorithm is its diminishing speed-ups over Lloyd’s

Algorithm as the dimensionality of the data increases. Lloyd’s Algorithm has a time

complexity of O(nkN) on an n-dimensional dataset, which scales linearly with n.

When considering the filtering algorithm, Kanungo et al. [19] have shown that when

ignoring the spread and distribution of the underlying data, the filtering algorithm has

complexity O(k
√
n
n
+ k2n logN). This scales exponentially with the dimensionality

of the data. This difference in scaling poses the question of how high-dimensional the

data must get until Lloyd’s algorithm becomes faster than the filtering algorithm in

practice.

From the literature, we note experiments that have been run to determine this.

Pelleg and Moore [27] ran an experiment exploring this using a synthetic dataset

of 20000 data points, dimensions ranging from 2–8, and run on 40 cluster centers.

This experiment was duplicated and expanded on by Kanungo et al. [19], using data

ranging from 2–35 dimensions. Both of these experiments demonstrated that the

filtering algorithm performs best on data of dimensionality 2–10, and will generally

outperform Lloyd’s algorithm on data having dimensions up to the mid 20s.



Chapter 4

Impact of Sampling on K-Means

We have already shown that we can build a competitively fast k-means implementa-

tion using a k-d tree. We have also shown that sampling-driven Mini Batch k-means

is a strong performer. Given this, it seems natural to try to utilize both k-d trees and

sampling together in one algorithm to achieve even greater run time performance.

While we are unable to combine Mini Batch k-means batch sampling effectively with

our k-d tree implementation as discussed in Chapter 3, we can still utilize conven-

tional sampling (applying our algorithm to a subset of the data) and compare the

trade-offs in accuracy at various sampling rates.

4.1 Sampling Approaches

We initially considered naively combining Mini Batch k-means sampling strategy with

the filtering algorithm but determined this was unlikely to outperform either method

individually. The biggest challenge with this is that we are unlikely to reap the benefits

of both k-d trees and the type of sampling used in Mini Batch k-means. Mini Batch

k-means achieves quick convergence by running multiple quick iterations on random

samples of the data. By using multiple samples, rather than one single sample,

the candidate centers become more representative of the greater dataset with fewer

iterations run. This is not particularly compatible with k-d trees, as the advantage

gained by using k-d trees is the ability to re-use the tree across multiple iterations and

eliminate unnecessary distance computations. With a k-d tree-based approach, we

incur an overhead to build the tree, knowing that we will save time over the lifetime

of the algorithm. To combine Mini Batch k-means naively with k-d tree approaches,

we would need to rebuild the tree for each random mini batch sample, thus losing the

advantage of tree re-use and likely incurring an overhead that will not improve the

computation time on an already small batch sample. Another alternative considered

to make this combination of algorithms work is to build one k-d tree on the entire
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dataset that is capable of performing query operations on only a sample of the data.

It is difficult to conceive how this would work, but it is unlikely that the additional

computation spent to correctly prune and query on only a sample using the k-d

tree would be faster than simply running Mini Batch k-means without a k-d tree,

mainly because the batch size of Mini Batch k-means is so small that using a data

structure, especially one built on the entire data set, is unlikely to yield performance

gains. For this reason, we instead opt to use a conventional sampling approach,

where we take a small sample of the dataset once, at the beginning of the algorithm,

build a k-d tree on the sample, and compute cluster centers from this sample as

usual. This is followed by a final iteration that assigns each point in the full data

set to a cluster. In experimenting with sampling, we sought to find if sampling gives

significant speedup at any particular sampling rate, as well as determine the effect

of sampling on the objective function. We used our most promising parameter set

from our previous experiment: midpoint splitting, longest dimension splitting, and

node bounding box. While it is known that sampling is an effective method to speed

up a standard implementation of k-means, which does not use any data structures to

speed up the iterations, it is unclear whether sampling is equally effective to speed

up k-d tree-based k-means. Since a standard implementation’s cost depends linearly

on the input size in each iteration, the speed-up is proportional to the sampling rate.

The filtering algorithm, on the other hand, does not explore the whole data set in

each iteration. Since the tree structure is expected to summarize large groups of

points, the main effect of sampling may be only that each iteration of the filtering

algorithm visits roughly the same number of tree nodes, with fewer points in the

sample represented by each visited node. Our experiments in this section explore

exactly how much the filtering algorithm can benefit from sampling.

4.2 Exploratory Results

To observe the effects of sampling on our algorithm and data, we ran the algorithm

at multiple sampling rates to measure the total running time and objective function.

At each sampling rate, we ran our algorithm 10 times, with a new sample taken in

each run. This is done to eliminate the outliers in the results that could be found in

sampling extremely favourable or unfavourable samples from the data set. For our



27

experiment, we sampled from our target data sets at rates of 1%, 10%, 20%, 30%,

40%, and 50% to observe a broad range of sampling rates and attempt to identify

where the optimal trade-offs are achieved. We can then express the results as a ratio

of our sampled running time and objective function to the run time and objective

function on the full data set. This allows us to more easily interpret the results relative

to a non-sampled run. In this experiment, the total running time, including loading

in data and tree building time is taken into account because we will be reading in less

data, and building a smaller tree at each sampling rate, meaning these times will also

vary between sampling rates. We also pay special attention to the calculation of the

objective function for this experiment. To calculate the objective function value, we

run the algorithm to completion with the sample as the input, and then re-calculate

the objective function from the calculated final centers on the un-sampled, complete

dataset.

From Table 4.1, we see that a sampling rate of 10% appears to provide an objective

function that does not differ greatly from the baseline objective function of a full run,

while providing a significant speed-up in total running time. In many cases, especially

as N increases, a 1% sample also becomes viable. We can put these numbers into

better context by visualizing their ratios relative to the baseline running time and

objective function.

In Figure 4.1, we see that with 10 centers, the objective function consistently falls

within a very small percentage of the baseline in all our sampling cases. The only

exception to this is a 1% sample on the ASRS100k dataset, where our results are

inconsistent between runs, but are still only approximately 10% worse in objective

function on average. In every other case, the mean sampled k-means run falls well

within 5% of the baseline objective function value with a small relative standard

deviation. This means a sampled run is consistently almost as accurate as a full run,

while providing speed ups that scale with N , to more than 120 times faster than

baseline on 16 million data points. We note that in the best case, our tree builds in

O(N logN), and a reduction of our input size by r times gives us in O(N/r(logN −
log r)), which can result in tree building speedups of more than r. As seen in the

previous chapter in Table 3.2 and 3.3, the tree building is the bottleneck of our

application. This shows that because the tree building is the majority of the run
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Table 4.1: Objective Function and Total Running Time for Sampling on K-D tree
k-means at optimal parameters.

k S. Rate Dataset
ASRS100k Reddit1M

Obj. Func. Running Time Obj. Func. Running Time
10 Baseline 6459123 0.294 (<0.01) 58227547 2.372 (0.01)

1% 7158916 0.047 (0.03) 58203808 0.097 (0.01)
10% 6516898 0.062 (0.01) 58130160 0.329 (0.02)
20% 6454605 0.085 (<0.01) 58064549 0.577 (0.02)
30% 6474484 0.128 (0.03) 57952075 0.818 (0.03)
40% 6503355 0.146 (0.01) 58220576 1.071 (0.01)
50% 6432264 0.192 (0.04) 58074156 1.463 (0.47)

50 Baseline 1290069 0.439 (<0.01) 11959686 3.345 (0.04)
1% 1509983 0.033 (<0.01) 12503539 0.110 (0.01)
10% 1344443 0.153 (0.03) 12028883 0.501 (0.02)
20% 1319472 0.177 (0.03) 12026018 0.891 (0.02)
30% 1310294 0.242 (0.07) 12008954 1.300 (0.04)
40% 1308954 0.245 (0.01) 12052686 1.680 (0.05)
50% 1310543 0.304 (0.04) 12016832 1.998 (0.05)

Reddit4M Reddit16M
Obj Func Run Time Obj Func Run Time

10 Baseline 232918716 9.777 (0.02) 929136773 58.762 (2.35)
1% 232119772 0.164 (0.03) 926945995 0.474 (0.01)
10% 232863299 1.084 (0.02) 929050405 4.188 (0.30)
20% 232217727 2.050 (0.05) 929155025 8.226 (0.22)
30% 232373506 3.023 (0.07) 929210085 12.764 (0.91)
40% 232314740 4.050 (0.05) 927147140 17.496 (0.67)
50% 232747560 5.103 (0.12) 929498355 21.838 (0.41)

50 Baseline 47734364 11.476 (0.02) 191817994 63.209 (2.42)
1% 48289449 0.258 (0.01) 192312547 0.745 (0.02)
10% 48210869 1.634 (0.06) 191483953 5.258 (0.09)
20% 48075535 2.905 (0.03) 192179029 10.020 (0.78)
30% 47731468 4.087 (0.08) 191334346 14.633 (0.69)
40% 47879945 5.243 (0.09) 192164693 19.311 (0.40)
50% 48124716 6.435 (0.15) 192037300 24.337 (0.70)
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time, and we may see speed-ups greater than the sampling reduction in tree building,

the overall speed-up may be greater than the sampling reduction.

Figure 4.1: Relative running times and objective function values at different sampling
rates compared to their baselines across each dataset on 10 centers. A value of x for
the running time indicates that the sample is x times faster than the baseline. A
value of x for the objective function indicates that the samples objective function
value is x times larger than that of the baseline. The error bars represent ± one
relative standard deviation from the mean sampled running time/objective function
value.

On 50 centers, we see a similar trend with sampling as with 10 centers. In Figure

4.2, the mean sampled objective function value is still within 5% of the baseline in

all tests except the 1% sample on the ASRS100k dataset, and still has a relatively

small standard deviation. Compared to 10 centers, the relative speedups are not quite

as large, but still significant. We see a maximum mean speed-up of approximately

85 times faster than baseline on a 1% sample of 16 million points. The difference in

speedups between 10 and 50 centers comes from the querying portion of the algorithm,

and not the tree building.

This experiment provides good evidence that sampling is a viable method for im-

proving the running time of k-d tree based k-means without sacrificing significantly
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Figure 4.2: Relative running times and objective function values at different sampling
rates compared to their baselines across each dataset on 50 centers. A value of x for
the running time indicates that the sample is x times faster than the baseline. A
value of x for the objective function indicates that the samples objective function
value is x times larger than that of the baseline. The error bars represent ± one
relative standard deviation from the mean sampled running time/objective function
value.
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in the accuracy of the final clustering, which is often good enough for most appli-

cations. As the data becomes large, we can obtain a suitable cluster set within 5%

of our objective function on the full dataset, while obtaining significant speed gains

that scale with the input size N . In most cases, these speed-ups improve the running

time to be better than Mini Batch k-means while maintaining stability of the cluster

solution that Mini Batch k-means does not (see Figure 4.3). While adding sampling

to the k-means algorithms greatly improves running time at a minor cost in objective

function, there are still other ways to potentially gain speed.

Figure 4.3: Relative run times and relative objective function values of Crowell 1%
sample, Crowell 10% sample, and Mini Batch k-means implementations. The run
time and objective function values are scaled relative to the run time and objective
function values of a baseline sequential run on the full dataset. This means a value
above one is worse relative to the baseline and a value below 1 is better. The top row
of graphs show the relative run times by each implementation for each dataset, while
the bottom row shows the relative objective function. The first column of graphs
show the results for 10 cluster experiments and the second column for 50 cluster
experiments. The error bars represent the standard deviation of the values scaled
relative to the baseline. The x-axis is shown on a log scale.
*Note: The objective function values for Mini Batch k-means on 50 clusters were
excluded from the graph because they were extremely erratic and gave relative values
many orders of magnitudes larger than shown on the graph.



Chapter 5

A Parallel Implementation of the Filtering Algorithm

The final ingredient of our ultimate k-means implementation is to exploit parallelism

to achieve faster running times. Parallelism is trivially applied to Lloyds algorithm

by running the distance calculations in parallel. It is less trivially applied to the

filtering algorithm due to the potentially unbalanced nature of the k-d tree and un-

predictability of how many calculations will need to be run in a subtree to determine

all that subtrees nearest candidate centers. We demonstrate how to effectively par-

allelize the filtering algorithm. Since most of the time of our algorithm is spent on

computing the cluster centers once the tree is built, our initial focus was to parallelize

the updating of cluster centers while constructing the k-d tree sequentially. This led

to the situation where the tree construction accounted for a significant portion of this

partially parallelized implementation and we added a parallel implementation of the

tree building procedure as well.

5.1 Parallel Computing

Parallel computing allows us to divide chunks of independent work among multiple

CPU or GPU cores to be run in parallel with each other, rather than sequentially.

These parallel subtasks are called threads. Many applications will have sections that

cannot be parallelized and must be run sequentially, and some parallelizable sections

may not be perfectly parallelizable. A theoretical speed up based on the percentage

of an application that is parallelizable can be approximated by Amdahls Law [2].

Part of the challenge of parallelizing an algorithm is splitting the amount of work

while limiting the overhead that comes with communication between threads. In some

problems, this is trivial, but for others this can be very challenging. The effort (and

runtime overhead) of parallelization may not be worth it for parts of an algorithm that

is already very cheap. This is because the decreasing the run time of something that

is already cheap does not significantly impact the overall run time of the algorithm.

32
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Furthermore, overheads that appear in parallelizing that part may make that part

slower than its sequential version. For this reason, a parallel implementation should

be driven by where the bottlenecks of the program are.

5.2 Parallelism in Lloyds Algorithm

Lloyds Algorithm is highly parallelizable due to its independent distance and sum-

mary calculations in the assignment and update steps respectively. With P threads,

we can have each thread responsible for N
P

points in the assignment step. Each

thread will do each of the k distance calculations to the candidate centers for their

given points and will keep track of the calculated sums and weights associated with

each candidate center. Once each thread has terminated, they will combine their

results by adding their candidate center sum and weight vectors. In the update step,

we can also parallelize the calculations necessary to update the next centroid set,

although this may not give significant speedup unless k ≫ P . Overall, each thread

does kN
P

work per iteration, which is perfect load balance and can be achieved vir-

tually without communication overhead. Due to the regular data access patterns by

each thread (points and centers are scanned in sequence) and the fact that at least

the assignment phase of each iteration includes only very localized branches, Lloyds

algorithm is also very easy to implement on a GPU, to gain additional computing

power. Note, however, that sequential implementations of Mini Batch k-means and

the filtering algorithm are orders of magnitude faster than Lloyds algorithm. Thus,

without massive parallelism, a parallel implementation of Lloyds algorithm is still not

competitive with even sequential implementations of these algorithms. This can be

supported by experiments in the literature [6, 21], which show 10-100 times speed-ups

on GPUs over base k-means compared to upwards of 500 times shown in Sculley [28]

and shown further here.

5.3 Parallelizing Mini Batch K-means

Given the fast performance of sequential Mini Batch k-means and its simple structure,

it is worthwhile to ask whether Mini Batch k-means can be parallelized for further

speed gains. There are at least two challenges in doing so: Since each iteration works
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with a very small sample of the input, there is not enough work to be done in each

iteration for parallelism to be effective. One strategy to overcome this would be to run

multiple batches in parallel, one per thread. However, given the iterative nature of

Mini Batch k-means, this is essentially the same as running one large batch (spread

across multiple threads). This may allow Mini Batch k-means to converge faster,

thereby reducing its running time, but it is unlikely to yield even close to a factor P

speed-up. Thus, we did not explore parallelizing Mini Batch k-means further.

5.4 Parallelism Strategies with the Filtering Algorithm

Unlike Lloyds Algorithm, the Filtering Algorithm is much more difficult to evenly

partition into chunks for parallel processing. With a k-d tree and filtering, we do

not strictly know ahead of time which distance calculations between points and cen-

ters need to be performed, and we are working with trees and sub-trees instead of

a simple set of points. For this reason, it is not as simple as initially partitioning

the calculations into equal groups and distributing them among the threads. Addi-

tionally, we cannot even necessarily partition our k-d tree into P sub-trees, as the

k-d tree may not be perfectly balanced. To implement parallel computing with the

filtering algorithm, we face two options. One option is to partition at the beginning

of the algorithm, and risk that we may have extremely unbalanced work groupings,

leading to inefficient use of threads. The other option is to dynamically balance the

work to the threads as the work is discovered. These options will be discussed in

subsections 5.3.2 and 5.3.3 below. We can also parallelize the tree building process of

the algorithm, but this is also non-trivial because the final tree may not be perfectly

balanced. An imbalanced tree leads to potential for an imbalance in the work each

thread does and can cause inefficient and slow parallelism.

5.4.1 Parallel Tree Building

To parallelize the tree building process, we will calculate a small portion of the top

of the tree sequentially, and then partition the remaining sub-trees to be calculated

concurrently by threads. More specifically, we will sequentially move down the tree

⌊log2(P )⌋+OPF levels, where P is the number of threads we will run on, and OPF

is some over-partitioning factor, which will leave us with 2⌊log2(P )⌋+OPF total sub-trees
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to be calculated. We know that each sub-tree may not require the same amount of

processing power to complete. For this reason, we gather more sub-trees than threads

we will run on so that we can over-partition the work to each of our threads. The

degree of the over-partitioning is determined by OPF , with each thread receiving

2OPF sub-trees to build when P is a power of 2. By giving a random sample of sub-

trees to each thread, it is expected that variations in subtree size will even out across

threads with each thread receiving some larger and some smaller subtrees. Each

thread runs the regular sequential tree building algorithm on its set of sub-trees and

finish building the top of the tree sequentially after the bottom sub-trees have each

been built. This runs the majority of the tree construction with efficient parallelism,

and with little to no additional overhead over a sequential run. A visualization of this

method is shown in Figure 5.1. The sequential construction of the top part of the tree

would likely become a bottleneck in environments where P is large, such as GPUs or

high-end servers. P = nε leads to an ε-fraction of the total tree building work to be

in the top portion of the tree, which we build sequentially. This can be mitigated by

using a different parallelization strategy for the top of the tree (because there are few

nodes but each has a large number of points associated with it), but we chose not to

do this because our target is a standard multicore system with a very modest number

of cores compared to the millions of points we aim to cluster efficiently.

Figure 5.1: An example visualization of parallel tree building. In this example, we are
running on 4 threads (P ) and are using an over-partitioning factor (OPF ) of 2. The
tree nodes at level �log2(4)� + 2 = 4 and above of the tree will be built sequentially,
and the 2log2(4)+2 = 24 = 16 subtrees at level 5 will be distributed evenly amongst the
threads.
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5.4.2 Single Stack Traversal

The first option we tried to implement our dynamic load balancing strategy was to

use a single work stack that all threads access collectively to exchange subtrees to

traverse. In this method, each thread will pop a subtree to be traversed from the

stack whenever it is idle and pushes smaller subtrees onto the stack. This approach

utilizes a parallel depth-first search approach. Initially, the master thread pushes the

root node on the stack. Any thread working on a node v filters vs candidate centers

and, if more than one candidate center remains, schedules vs children w1 and w2 to

be traversed recursively. It holds on to w1 to traverse w1 itself and pushes w2 onto

the stack, to be visited by the next available thread. This ensures that whenever a

thread is idle, it has the possibility to get new work if there is new work available and

remains relatively balanced even if some threads get more computationally intensive

subtrees than others. An example of this is shown in Figure 5.2.

Figure 5.2: The global stack parallel filtering algorithm keeps a global stack for
traversal order shared by all threads. Threads pop from the stack when they require
more work, and push new work to the stack after they have processed a node. These
operations are mutex protected to ensure the integrity of the stack and avoid work
duplication leading to incorrect results.

While this method ensures a mostly balanced workload for each thread and is a
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relatively simple solution, it has a large bottleneck. To ensure that multiple threads

do not attempt to take the same node from the stack, as well as to allow the threads

to continually check for new work, we must place a mutex lock around operations on

the stack. This results in many calls to lock and unlock the mutex, which is a large

overhead over the course of the algorithm and can greatly limit parallelism. For this

reason, performance in various cases will favour other k-means algorithms, or a work

sharing approach to the filtering algorithm.

5.4.3 Work Sharing Traversal

Work sharing is another method of dynamically balancing the threads work (see

Algorithm 3.). In this parallel algorithm, each thread maintains its own local work

dequeue (double ended queue), rather than all the threads sharing one global stack.

Each worker thread begins by racing to gain a mutex lock in order to take the initial

work, the root node (Alg. 3, lines 8-12). Each thread that does not get the initial

work will push itself onto an idle queue and await further instructions (Alg. 3, line

27; Alg. 4). At each node processing iteration, the working threads will compute the

node on their local work dequeue and push remaining work back to their dequeue

(Alg.3 line 37). At the end of each node processing iteration, the working thread will

first check to see the number of tree nodes on its local dequeue. If it has more than

one node, then the thread will check to see if there are any threads on the idle queue.

If there are, the working thread takes the work from the bottom of its dequeue and

puts it in the dequeue of the idle thread, and then signals the idle thread to wake

up and continue working (Alg.3 line 38; Alg. 5). This process is visualized in Figure

5.3. We take from the bottom of the dequeue because the bottom node on the stack

will contain the node having the largest sub-tree of all available work on the dequeue.

If there are no threads on the idle queue, or the working thread has only one node

on its dequeue, then it will continue working as usual. If the working thread has

no remaining work, and the idle queue has size < P − 1 (meaning there are other

threads still working), the thread will add itself to the idle queue. If the idle queue

size is P − 1, then this thread is the last worker, and all the work will have been

completed (Alg. 3 lines 15-18). In this case, rather than going idle, the thread will

record its final results (Alg. 3 lines 22-25), and then signal every other thread in the
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idle queue to record their results, one by one (Alg. 3 lines 19-21, 28-33). Once the

centroid results from each thread have been recorded, the threads will exit, and a

new iteration can begin.

Figure 5.3: An example of the work sharing algorithm. In this figure, the first thread
has just finished an iteration and has popped thread two from the idle queue. Thread
one places the work from the bottom of its local stack on the local stack of thread
two and signals thread two to start working again. Thread three is currently in the
middle of an iteration, while thread four is on the idle queue. When thread three
finishes its current iteration, it will check for idle threads, discover thread four, and
place its work from the bottom of the local stack on thread fours stack.

In this parallel work sharing algorithm, we make use of mutex locks and barriers to

ensure that we know for certain when threads are idle or working. We place a mutex

around all operations made to the idle queue, so that we ensure that working threads

can know for certain if threads are idle, as well as ensure that multiple working threads

dont try to send work to the same idle thread. We use a barrier with a conditional

variable to allow our idle threads to wait, while still being ready to continue working

when signalled. When checking for idle threads, we make a quick initial check without

acquiring the mutex, and if there appear to be idle threads, we then acquire the mutex

to check for certain. This allows us to remove the overhead of every thread locking

and unlocking the mutex on every node processing iteration by replacing it with much
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Algorithm 3 Parallel Work Sharing K-means Filter

1: [hp]← set of threads;

2: gm← global mutex;

3: tm← thread mutex;

4: idleQ← idle thread queue;

5: nBusy ← number of non-idle threads;

6: workF inished← FALSE;

7:

8: lock gm; {First thread gets the initial work}

9: if No thread has taken the initial work then

10: Push the initial work to p.traversalStack;

11: end if

12: unlock gm;

13:

14: while 1 do

15: if isEmpty(p.traversalStack) then

16: lock gm;

17: if nBusy == 1 then

18: workF inished = TRUE;

19: for pi in idleQ do

20: wake pi;

21: end for

22: lock gm;

23: pi.recordResults();

24: unlock gm;

25: break;

26: end if

27: pi.waitIdle(tm, idleQ, nBusy);

28: if workF inished then

29: lock gm;

30: pi.recordResults();

31: unlock gm;

32: break;

33: else

34: continue;

35: end if

36: end if

37: visitNode(p.traversalStack.top());

38: pi.shareWork(nBusy, idleQ, gm);

39: end while

Algorithm 4 thread.waitIdle(tm, idleQ, nBusy)
1: tm← thread mutex;

2: idleQ← idle thread queue;

3: nBusy ← number of non-idle threads;

4: lock tm;

5: idleQ.push(this);

6: nBusy −−;

7: wait until another thread signals to wake up;

8: unlock tm;

Algorithm 5 thread.shareWork(nBusy, idleQ, gm)
1: gm← global thread mutex;

2: idleQ← idle thread queue;

3: nBusy ← number of non-idle threads;

4: if p.traversalStack.size() > 1 then

5: if nBusy < |P | then

6: lock gm {Share any extra work to idle threads} {Check to be sure after mutex is locked}

7: if nBusy < |P | then

8: pop extra work from front of this stack;

9: place extra work on the stack of the first idle thread in idle queue;

10: wake the thread;

11: end if

12: unlock gm;

13: end if

14: end if
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cheaper checks that are correct most of the time.

5.5 Experimental Results

To evaluate the speed-up gained by these methods, we implemented both single queue

and work sharing approaches for testing against our competitor algorithms. We also

planned to compare to a GPU implementation, but we had severe difficulty compiling

these implementations in our machine environment. As was to be expected, our

single-queue implementation did not outperform our work sharing approach in any

tests. Therefore, we will exclude it from further experiments. In this experiment, our

parallel implementations will be run on 8 cores, as that provided the optimal speed

for our implementation.

From Table 5.1, we can see that our parallel implementation performs marginally

better than our sequential implementation on larger inputs, as well as with higher

values of k. This small speed-up when comparing our sequential and parallel im-

plementations is not the full picture. To compare our implementations to other

implementations, we include the data read time as part of the reported run time.

When comparing our parallel and sequential implementations, these values should be

the same, and they mask the true speed-up of our parallelism. Despite this, when

accounting for data read time, we only see approximately 2.5 times speed up in the

best scenario (16 million points, 50 centers), and do not see any significant speed up

(and sometimes the parallel implementation is in fact slower) with data sets of 1 mil-

lion points and less. This value is well below the 8 times speed up we would achieve

with perfect parallelism and is short of realistic expectations for parallelism. This

is likely due to the overheads of frequent communication and data sharing between

threads and the inevitability that the work divided among parallel threads will not

be perfectly balanced.

We also maintain a fully optimized objective function, unlike our sampled experi-

ments and Mini Batch k-means. Despite this, our run time does not compare to time

gained with sampling-based approaches. To improve our approach to the best it can

be, we can combine sampling with our parallel k-d tree approach.
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Table 5.1: Comparison of k-means method run times in seconds [mean (sd)]

k Algorithm Dataset
ASRS100k Reddit1M Reddit4M Reddit16M

10 Crowell (Sequential) 0.294 (<0.01) 2.372 (0.01) 9.777 (0.02) 58.762 (2.35)
Crowell (Sampling 1%) 0.047 (0.03) 0.097 (0.01) 0.164 (0.03) 0.156 (<0.01)
Crowell (Work Sharing) 0.421 (0.05) 2.669 (0.10) 10.209 (0.58) 47.460 (1.29)
Kanungo et al. 0.726 (0.02) 4.377 (0.91) 16.493 (0.20) 53.616 (0.76)
Mini Batch 0.608 (0.09) 1.883 (0.20) 3.727 (0.36) 10.395 (0.33)

50 Crowell (Sequential) 0.439 (<0.01) 3.345 (0.04) 11.476 (0.02) 63.209 (2.42)
Crowell (Sampling 1%) 0.033 (<0.01) 0.110 (0.01) 0.258 (0.01) 0.157 (<0.01)
Crowell (Work Sharing) 0.706 (0.03) 3.092 (0.17) 10.714 (0.12) 48.288 (0.63)
Kanungo et al. 1.935 (0.09) 14.024 (0.13) 32.258 (0.51) 85.662 (0.91)
Mini Batch 1.251 (0.06) 2.395 (0.46) 4.355 (0.40) 11.350 (0.74)



Chapter 6

Final Performance Evaluation

Up to this point, each of our attempted methods for decreasing running time have been

applied relatively independently of each other. Here we combine them in an attempt

to maximize run time performance. As we have already previously combined the

filtering algorithm (k-d trees) with parallelism and sampling separately, it is simply a

matter of combining the approaches. This should allow for the best performance on

low dimensional, large datasets.

6.1 Combining K-D tree, Sampling, and Parallelism

While there are not many challenges in combining the filtering algorithm, sampling,

and parallelism that have not already been covered in their respective sections, com-

bining the three methods does not guarantee an increase in run time performance. As

observed in previous experiments, parallel k-means does not gain significant time on

smaller datasets. By using sampling, we are greatly reducing the size of the dataset,

meaning that we may not see the benefits of parallelism with sampling until the data

becomes extremely large.

6.2 Experimental Results

We ran the work sharing implementation combined with the best sampling rates from

our previous experiments with sampling and compared them against the other best

implementations. As we can see from Table 6.1, our combination approach succeeds

at achieving run times appropriate for interactive applications on very large datasets.

This approach is slightly slower than our 1% sampling approach in most cases, but

still remains much faster than other competitive algorithms. Despite this difference in

our sampling approach and combination approach, it is possible that this experiment

is limited by the size of the data we tested. In chapter 5, we showed that a parallel
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Table 6.1: Comparison of k-means method run times in seconds [mean (sd)]

k Algorithm Dataset
ASRS100k Reddit1M Reddit4M Reddit16M

10 Crowell (Sequential) 0.294 (<0.01) 2.372 (0.01) 9.777 (0.02) 58.762 (2.35)
Crowell (Sampling 1%) 0.047 (0.03) 0.097 (0.01) 0.164 (0.03) 0.156 (<0.01)
Crowell (Work Sharing) 0.421 (0.05) 2.669 (0.10) 10.209 (0.58) 47.460 (1.29)
Crowell (W. S. + 1%) 0.044 (<0.01) 0.105 (0.04) 0.188 (0.02) 0.535 (0.05)
Crowell (W. S. + 10%) 0.103 (0.02) 0.339 (0.03) 1.017 (0.04) 4.037 (0.09)
Kanungo et al. 0.726 (0.02) 4.377 (0.91) 16.493 (0.20) 53.616 (0.76)
Mini Batch 0.608 (0.09) 1.883 (0.20) 3.727 (0.36) 10.395 (0.33)

50 Crowell (Sequential) 0.439 (<0.01) 3.345 (0.04) 11.476 (0.02) 63.209 (2.42)
Crowell (Sampling 1%) 0.033 (<0.01) 0.110 (0.01) 0.258 (0.01) 0.157 (<0.01)
Crowell (Work Sharing) 0.706 (0.03) 3.092 (0.17) 10.714 (0.12) 48.288 (0.63)
Crowell (W. S. + 1%) 0.069 (<0.01) 0.120 (<0.01) 0.241 (0.01) 0.815 (0.04)
Crowell (W. S. + 10%) 0.140 (0.02) 0.625 (0.02) 1.441 (0.06) 4.432 (0.09)
Kanungo et al. 1.935 (0.09) 14.024 (0.13) 32.258 (0.51) 85.662 (0.91)
Mini Batch 1.251 (0.06) 2.395 (0.46) 4.355 (0.40) 11.350 (0.74)

approach only begins to improve on our sequential approach between our 4 million

and 16 million point datasets. In our combination approach, a 1% sample on our

largest dataset leaves us with only 160000 points, which is well below the size we

might expect the parallelism of our combination method to allow us to overtake our

pure sampling method. To verify this, we require datasets much larger than were

available, which is beyond the scope of this work.



Chapter 7

Conclusion

In this thesis, we have outlined several approaches to improving k-means, their con-

tributions to improving the speed of k-means, and their challenges. We have also

devised a way to combine these approaches and get contributions from all of them in

one algorithm. Our implementations have been compared against our goal of achiev-

ing interactive run times on datasets of millions of points and also compared to some

of the best existing k-means algorithms to see the impact on the research space.

7.1 Conclusion

Using a combined approach of a k-d tree, sampling, and parallelism, we can outper-

form the fastest k-means competitors with minimal to no loss in objective function.

Additionally, we can achieve sub-second run times on datasets up to 16 million points

in a low-dimensional space, and potentially maintain speeds appropriate for interac-

tive applications at much larger data sizes. While our parallelism implementation was

not as effective as we had hoped, it still provided speed-up on larger data sizes, and

has the potential to continue scaling with data size beyond the scope of this work.

7.2 Future Work

Other improvements could still be made to improve the efficiency of our method that

are beyond the scope of this paper. Furthermore, this work could also be adapted

towards other areas of clustering such as k-means with a skewing metric towards some

features, such as that used in Soto et al. [29] or utilizing these techniques with other

clustering algorithms. We also had limitations in the size of the data that we were

able to obtain, which could be used to verify the efficacy of our combination approach

over a pure sampling approach.
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7.2.1 GPU implementation

Given the focus on large datasets for this work, it would appropriate to explore this

approach using a GPU. To implement this algorithm on a GPU, one would need to

first explore if there is any benefit to parallelizing the tree construction on the GPU,

or to simply construct it on the CPU. The challenge in efficiently implementing tree

construction on the GPU is that the GPU has thousands of cores compared to the

CPU, so we will need to initially traverse many levels of the tree in order to gather

enough sub-trees for each GPU thread to process. This could leave sub-trees that do

not provide enough work to each core to outweigh the costs of gathering those sub-

trees. Additionally, we will incur a potential additional overhead penalty by having

to transfer data from the CPU to the GPU and back again. The next challenge is

in the work sharing filtering algorithm. First, a GPU core has limited local memory,

which may put limits on how big of a sub-tree a single thread can process. On a

GPU with thousands of cores, it will also take time for the work to propagate out to

every thread, leaving many threads idle for much of a k-means iteration. Furthermore,

shared memory limits on the GPU may additionally complicate the ability for threads

to share their work with each other. While this presents challenges, we may see

significant speed-up when using a GPU for extremely large datasets such that each

GPU thread gets enough work to surpass losses from overhead.

7.2.2 Skewing Metrics

Implementing a skewing method for k-means, such as the one proposed in Soto et.

al. [29], is another potential extension to this algorithm. To do so, one would need

to keep a weight for each point and candidate cluster combination, which would

propagate throughout the tree to apply to groups of points held in sub-trees. This

poses a challenge in memory efficiency, as doing this naively would require k∗(2N−1)

weights held within the tree. This would also require modifications to take the weights

into account when calculating distortion throughout each iteration.
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