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Abstract

A p−ordering is a combinatorial concept introduced by Bhargava to generalize the

factorial function. K. Johnson noticed in his paper “p−orderings, Fekete n−tuples

and capacity in ultrametric spaces” that p−orderings also give a construction for

Fekete n−tuples. Fekete n−tuples, in turn, can be used to compute the capacity of

a metric space. In this thesis, we explore some properties of capacity in compact

ultrametric spaces.

When our space has algebraic structure, we show how this structure can be

exploited to compute capacity. We then develop conditions for computing capacity

in spaces that lack algebraic structure by studying the lattice of closed balls in the

space. At the end of the thesis, we compute the capacity of n−fold products of

(Z, ρpi), for a set of p−adic metrics ρpi . While this is a straightforward process

when using a fixed prime, we see that allowing distinct primes on each component

produces interesting results even for n = 2. We conjecture that these spaces have

transcendental capacity.
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Chapter 1

Introduction

In the course of developing a generalized factorial function, Manjul Bhargava intro-

duced the notion of a p−ordering of a Dedekind domain [B2, B1], a combinatorial

concept which, along with his generalized factorial, provided deep and perhaps un-

expected results in number theory. The concepts laid down in these papers have

enriched the theory of integer-valued polynomials [B3, J2] and have also provided

a natural framework to extend many classical results in analysis to a p−adic set-

ting, such as polynomial approximation and mapping theorems [B2, B1, B3]. In this

thesis, we examine how a tool based on p−orderings can extend another concept

from classical analysis, namely the valuative capacity of a set, to non-Archimedean

settings.

The historical background to this work comes in two parts. On the one hand,

there is the background on logarithmic capacity from potential theory, and secondly,

there is the background from Bhargava’s p−orderings. We give a brief summary of

each here. A similar treatment, with slightly different perspective, is found in [FP].

Jean-Luc Chabert was the first to draw a connection between the two, and many of

the known results in this area stem from his work or that of his colleagues. Building

on the result in [J1], we extend the work by Chabert and colleagues by studying

valuative capacity in a more general setting, namely that of an ultrametric space,

which may or may not also be a local field. In doing so, we show many properties of

capacity are in fact independent of the algebraic structure of a space, although such

structure, when it exists, can act as a useful probe.

1
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1.1 Logarithmic capacity

The theory of capacity has been developed as a topic in potential theory in a variety

of settings. Classically, the notion of capacity was developed over both C and Rn,

although the theory has been further developed in a rather general way by Rumely

for Berkovich spaces. A significant body of work on the analytic properties of capac-

ity can be found for a number of different contexts. For example, such a treatment

of the subject over C can be found in [W] and [Ra1], over Berkovich spaces in [BR],

and over Qp in [Ca]. We give a brief account of capacity over C here, presenting only

the most essential definitions and results. One advantage of tracing the historical

roots of capacity back to C is that the theory in this setting also comes equipped

with a physical interpretation. As we are about to see, capacity in the classical sense

gives a mathematical model for the amount of electrostatic charge a conductor can

hold. The exposition below is closely based on [Ra1] and [Ra2].

Even restricting ourself to the definition of capacity of subsets of C, we find two

paths, one which will give us some physical interpretation, and one which will lead

more naturally to p−orderings. We start with the former.

Definition 1. [Ra2] Let µ be a finite Borel measure on C and suppose µ has compact

support. We associate to µ a function, pµ : C → (−∞,∞], given by

pµ(x) =

∫
log

1

|x− y|
dµ(y)

called the potential function of µ. The energy of µ is

I(µ) =

∫ ∫
log

1

|x− y|
dµ(y)dµ(x).

This gives at once the physical interpretation promised above. We interpret the

potential function of a measure as giving the potential energy of a point. Viewing the

measure as a charge distribution, the double integral gives back the total energy in

the system. Now we come upon a physical reality: charged particles in a conductor

will naturally distribute themselves in order to minimize the energy. This leads to
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the definition below:

Definition 2. [Ra2] Let K be a compact subset of C and let P(K) be the set of

Borel probability measures on K. If ν ∈ P(K) is such that

I(ν) = inf
µ∈P(k)

I(µ)

then ν is a equilibrium measure for K.

We state the following proposition without proof. A sketch of the proof can be

found in [FP] and the full details can be found in [Ra1].

Proposition 1. [Ra1] An equilibrium measure exists for every compact set K ∈ C.
When finite, the equilibrium measure is unique and isometry-invariant.

We are now ready to give our first definition of capacity.

Definition 3. [Ra2] Let K be a compact subset of C. The logarithmic capacity of

K is

C(K) = e−I(ν)

where ν is an equilibrium measure on K. If I(ν) = ∞, then we understand that

C(K) = 0.

We present below a few results on capacity in C, some of which will reappear

in the remainder of this work, although the context, and the proofs (omitted here),

bear little resemblance to the present case.

Proposition 2. ([Ra1], 5.1.2) Let K,K1, K2 be compact subsets of C.

1. If K1 ⊆ K2, then C(K1) ≤ C(K2).

2. C(αK + β) = |α|C(K) for all α, β ∈ C.
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3. C(K) = C(δeK), where δe is the exterior boundary.1

Proposition 3. ([Ra1], 5.1.4) Suppose {Bn} is a sequence of Borel subsets of C.
Let B = ∪nBn and d ≥ 0.

1. If diam(B) ≤ d, then C(B) ≤ d and

1

log( d
C(B)

)
≤
∑
n

1

log( d
C(Bn)

)
.

2. If dist(Bj, Bk) ≥ d whenever j ̸= k, then

1

log+( d
C(B)

)
≥
∑
n

1

log+( d
C(Bn)

)

where log+(x) = max(log(x), 0).

We now show an equivalent way of defining capacity, still over C, which starts

with the following two definitions due to Fekete [F].

Definition 4. [F] Let K ⊆ C be a compact subset. Fix n ∈ N, and for z =

(z1, . . . , zn) ∈ Kn, consider

δn(z) =
∏
j<i

|zi − zj|
2

n(n−1) .

An element z = (z1, . . . , zn) ∈ Kn is called a Fekete n-tuple if z maximizes δn over

all n−tuples in K.

Note that since K is compact by assumption, a Fekete n−tuple exists for each n.

Definition 5. Let K ⊆ C be a compact subset. The transfinite diameter of K is

lim
n→∞

[max
z

δn(z)]

1The exterior boundary of a compact subset, K, of C is the boundary of the unbounded, con-
nected component of U = C \K.
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where the maximum is taken over all n−tuples inK. That is, the transfinite diameter

of K is limn→∞ δn(z), where z is a Fekete n−tuple for each n.

The following proposition shows the relation to capacity.

Proposition 4. ([F], Fekete-Szegö Theorem) If K is a compact subset of C, then
the transfinite diameter of K is equal to the logarithmic capacity of K.

We end this section with an observation about the points zi in C (or some subset

thereof) making up a Fekete n-tuple. For n ≥ 2, if (z1, . . . , zn) is a Fekete n−tuple,

then in general there is no zn+1 available such that (z1, . . . , zn, zn+1) is a Fekete

(n + 1)−tuple. In physical terms, we note that the placement of a new charge in

a conductor will almost always change the location of the existing charges in that

conductor. Remarkably, this is not the case in ultrametric spaces. Indeed, we are

able to build the analogous structure, which we call a p−ordering or more generally

a ρ−ordering, recursively, that is by reusing the points from the previous iteration.

1.2 P-orderings

The development of p−orderings was motivated by the observation that the factorial

function had important number-theoretic applications, yet was only defined for the

set Z. In order to generalize the factorial, Bhargava defined it via an invariant, called

the p−sequence, which could be attached to any subset of a Dedekind domain 2 [B2].

We cannot go much further without introducing the following definition.

Definition 6. Let z ∈ Z and let p be any prime. The p−adic valuation of z,

denoted vp(z), is the largest n ∈ N such that pn divides z ̸= 0 and vp(z) = ∞ if

z = 0. That is,

vp(z) =

⎧⎨⎩max{n ∈ N; pn | z}, if z ̸= 0

∞, otherwise

2In fact, Bhargava associated p−sequences to the more general class of Dedekind rings, which
are locally principal, Noetherian rings in which all nonzero primes are maximal.
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For z ∈ Z, we definite the p−adic absolute value by

|z|p = p−vp(z)

and the p−adic metric accordingly; that is, for z1, z2 ∈ Z

ρp(z1, z2) = p−vp(z1−z2)

where p−∞ is taken to be 0.

It is worth pausing to make a few comments about the above definitions. That

the p−adic metric is truly a metric is easy to see. In fact, we will see in the next

chapter that it is not just a metric, but also an ultrametric, since the p−adic absolute

value satistfies a strengthened version of the triangle identity. The strong triangle

identity is not the only interesting property at hand, though. Like the logarithm,

the p−adic valuation also satisfies vp(x · y) = vp(x) + vp(y) for any prime p and

x, y in Z. Moreover, we note that the p−adic valuation and p−adic metric have an

interesting relationship with each other: two points whose difference has a relatively

small valuation will have a relatively large distance between them and vice versa.

We are now ready to define p−orderings, and not long after, to give the connec-

tion to Fekete n−tuples.

Definition 7. [B2] Let S be a subset of Z and let p be any prime.3 A p-ordering

of S is a sequence, {ai}i≥0 in S, such that a0 is arbitrary and for i > 0, ai minimizes

vp(
∏
j<i

(z − aj))

over z ∈ S.

A p−ordering in S, like a Fekete n−tuple in C, is not unique. Indeed, in most

of the examples we will explore, there will be infinitely-many choices at each stage

3To apply the definition to a general Dedekind domain, we replace the usual primes with the set
of primes ideals in the ring of interest.
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of the construction. Nonetheless, p−orderings give rise to p−sequences, which are

invariants of S:

Definition 8. [B2] Let S be a subset of Z and let p be any prime. Suppose {ai}i≥0

is a p−ordering of S. The p-sequence, occasionally the characteristic sequence,

of S is the sequence defined by δ(0) = 1 and for i > 0,

δ(i) = vp(
i−1∏
j=0

(ai − aj)).

It is a fact, not entirely obvious, that the p−sequence of S is independent of the

p−ordering used in its construction [B2]. To define the generalized factorial, Bhar-

gava considered the product of p−sequences taken over each prime p for arbitrary

subsets of Z. We will go in another direction.

Suppose we were to generalize our definition of Fekete n−tuple in the obvious

way, as below.

Definition 9. Let (M,ρ) be a metric space and suppose S ⊆ M is a compact subset.

Fix n ∈ N, and for z = (z1, . . . , zn) ∈ Sn, consider

δn(z) =
∏
j<i

ρ(zi − zj)
2

(n(n−1)) .

An element z = (z1, . . . , zn) ∈ Sn is called a generalized Fekete n-tuple if z

maximizes δn over all n−tuples in S.

What then is the connection to p−orderings and p−sequences? Suppose S is a

subset of Z and that {ai}i≥0 is a p−ordering of S for some prime p. Then of course

from the definition of p−orderings, we know that for n > 0,

vp(
∏
j<n

(an − aj)) ≤ vp(
∏
j<n

(z − aj))
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for z ∈ S. Something more is true though, namely,

vp(
∏
j<n

(an − aj)) ≤ vp(
n∏
(xi − xj))

for xi, xj ∈ S [B2]. That is, when we pick an to minimize the p−adic valuation over∏
j<n(z − aj), we actually achieve the minimum over the product of all pairs of n

differences in S. Since minimizing vp(xi − xj) is the same as maximizing ρp(xi, xj),

we have the following remarkable fact: if {ai}i≥0 is a p−ordering of S, then {ai}ni=0 is

a generalized Fekete n−tuple for (S, ρp) for each n. In particular, p−orderings give

a recursive construction for generalized Fekete n−tuples.

The first connection between these objects was made by Jean-Luc Chabert in

[Ch] when he studied the limit of these sequences not just for the case M = Z and

ρ = ρp, but in the case that M is any rank-one valuation domain [Ch]. We repeat

his Theorem 4.2 from [Ch] below,

Proposition 5. Let E be a subset of V , a rank-one valuation domain with valuation

v. If {ai}i≥0 is a v−ordering 4 of E, then

lim
n→∞

1

n

n−1∑
k=0

v(an − ak) =
2

n(n+ 1)
inf

x0,...,xn∈E
v(

∏
0≤j<i≤n

(xi − xj)).

Chabert called this limit the valuative capacity of E, and we shall do the same.

The following result by Johnson in [J1], in which p−ordering has been replaced by

ρ−ordering, provides the foundation for the rest of this work:

Proposition. ([J1], Theorem 1) If S is a compact subset of an ultrametric space

(M,ρ), then the first n terms of a ρ-ordering of S always give a Fekete n-tuple of S

and all Fekete n-tuples of S arise in this way.

4A v−ordering of E is exactly as expected: a sequence of distinct element {ai}i≥0 in E is
v−ordering of E if for n > 0,

v(

n−1∏
k=0

(an − ak)) ≤ v(

n−1∏
k=0

(x− ak)

for each x ∈ E.
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One important consequence of this remark is that it gives a way to define capacity

in a general ultrametric space. By replacing the notion of p−ordering (or v−ordering)

with the more general notion of ρ−ordering, we are able to give a definition of

valuative capacity for a general ultrametric space, without appealing to any algebraic

(or measure-theoretic) structure. Of course, we have yet to say what a ρ−ordering

is. We take this up, along with the necessary background from ultrametric spaces,

in the next chapter.



Chapter 2

Capacity and Ultrametric spaces

2.1 Ultrametric basics

The principal context for this thesis is an arbitrary ultrametric space, which is a

metric space that also satisifies an additional axiom, sometimes called the ultramet-

ric inequality or (in the case of vector spaces) the strong triangle propery. We define

ultrametric spaces below and for the rest of this section, we review some of their

more important properties. The proofs offered in this section are, for the most part,

standard and can be found in a number of reference texts, such as [Ro].

Definition 10. Let (M,ρ) be a metric space; that is, suppose M is a set and ρ is a

map, ρ : M ×M → R≥0 such that:

(i) ρ(x, y) = 0 if and only if x = y

(ii) ρ(x, y) = ρ(y, x)

(iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

for any x, y, z ∈ M . If ρ also satisfies the ultrametric inequality,

ρ(x, z) ≤ max (ρ(x, y), ρ(y, z))

for any x, y, z ∈ M , then (M,ρ) is an ultrametric space.

A special case of an ultrametric space, and one where much of the previous work

on this topic has been completed, is one where the metric has been derived from a

norm on a vector space.

Definition 11. Let (V,N) be a normed vector space; that is, suppose V is an

F−vector space, for F some subfield of C, and N : V → R≥0 is such that:

10
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(i) N(x+ y) ≤ N(x) +N(y)

(ii) N(cx) = |c| N(x)

(iii) N(x) = 0 implies x = 0

for any x, y ∈ V and c ∈ F. We say that N satisfies the strong triangle inequality

if

N(x+ y) ≤ max(N(x), N(y))

for any x, y ∈ V .

Proposition 6. Let (V,N) be a normed vector space and suppose N satisfies the

strong triangle inequality. Then the metric space (V, ρN), where ρN is the metric

induced by ρN(x, y) = N(x− y), is an ultrametric space.

Proof. We take for granted that (V, ρN) is a metric space and also note that

N(x+ z) ≤ max(N(x), N(z))

implies

ρN(x, z) ≤ max(ρN(x, 0), ρN(z, 0)) ≤ max(ρN(x, y), ρN(y, z)).

Notation. If (V,N) is a normed vector space, then the metric induced by N will be

denoted ρN .

When ultrametric spaces come from spaces with algebraic structure, such as

normed vector spaces, some of this structure carries over into the metric space struc-

ture in a rather nice way:

Proposition 7. [Ro] Let S be a group equipped with a (right) invariant ultrametric,

ρ. If B = B(0, r) is a (closed) ball centred at the neutral element of S, that is

B = {x ∈ S; ρ(x, 0) ≤ r}, then B is a subgroup of S.
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Proof. Let x, y ∈ B. Then

ρ(x− y, 0) = ρ(x, y) ≤ max(ρ(x, 0), ρ(y, 0)) ≤ r,

so that x− y ∈ B. Note that although have used additive notation here, we do not

require that our group S be Abelian.

In the previous chapter, we claimed that the p−adic metric was an ultrametric on

the set Z. Indeed, (Z, ρp) and the closely related space of p−adic integers, denoted

Ẑp, are the canonical examples of an ultrametric space.

Example 1. Let p be any prime and consider the metric space (Z, ρp). To see

that (Z, ρp) is an ultrametric space, we must show that ρp satisfies the ultrametric

inequality, or equivalently, that p−adic absolute value satisfies the strong triangle

inequality. Let x, y be in Z and suppose vp(x) = nx and vp(y) = ny. Then if

n = min(nx, ny), p
n divides x and pn divides y, so pn divides x+ y. We see now that

vp(x+ y) ≥ min(vp(x), vp(y)) and in turn |x+ y|p ≤ max(|x|p, |y|p).

Example 2. Let p be any prime. If

z =
∑
i≥0

bip
i

is such that bi ∈ {0, . . . , p − 1} for all i, then we say that z is a p−adic integer.

If z =
∑

i≥0 bip
i, we note that if only a finite number of the coefficients of z are

non-zero, then
∑

i≥0 bip
i is a representation in base p of some element of Z. We can

define the p−adic order of a p−adic integer, denoted ordp(z), in a way that agrees

with the p−adic valuation when
∑

i≥0 bip
i is in Z. We let ordp(z) be the smallest i

such that bi ̸= 0. The p−adic integers are both a ring1 and an ultrametric space with

the metric induced by ordp(z). For a given prime, p, we denote the p−adic integers

by Ẑp.

In what follows, we will often refer to p−adic spaces and it will not make much of

a difference whether the reader prefers to think of being in (Z, ρp) or Ẑp. The reason

1The ring operations carry over on the coefficients of p−adic integers in the expected way from
Z/pZ, as long as special care is taken to keep track of carries.
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is this: when forming ρp−orderings of subsets of either space we are always able to

do so by selecting elements with a finite number of non-zero coefficients, that is, by

selecting elements from Z itself.

Ultrametric spaces exhibit many properties unlike those of traditional metric

spaces, and we review of few of these below. Of particular interest to us is the be-

havior between (closed) balls in an ultrametric space.

Notation. Let (M,ρ) be a compact ultrametric space and let

B(a, r) = {x ∈ M | ρ(x, a) ≤ r}

denote the closed ball of radius r, centred at a for some r ∈ R>0 and a ∈ (M,ρ). Let

B0(a, r) = {x ∈ M | ρ(x, a) < r}

denote the open ball of radius r, centred at a for some r ∈ R>0 and a ∈ (M,ρ).

In the above notation, we break with convention in that we denote a closed ball

without using any decoration. This is because before too long we will work exclu-

sively with closed balls. We are able to do this because for the most part, the notion

of open and closed ball in an ultrametric space overlap, although we will need a few

more facts before showing this.

Definition 12. Let S be a subset of an ultrametric space. The diameter of S is

diam(S) = sup
x,y∈S

ρ(x, y). Note that if S is compact, diam(S) = max
x,y∈S

ρ(x, y).

Proposition 8. Let B = B(a, r) be a ball in an ultrametric space (M,ρ). Then the

diameter of B is less than or equal to the radius of B.

Proof. Suppose d = diam(B) > r. This would imply there exists x, y in B such that

ρ(x, y) > r, in particular ρ(x, y) is strictly greater than max(ρ(x, a), ρ(y, a)), which

is a contradiction since ρ is an ultrametric.
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The following example shows that we can obtain a strict inequality in the above

proposition.

Example 3. Let M be a non-empty set. Let ρ be the ultrametric given by,

ρ(x, y) =

⎧⎨⎩0, if x=y

1, if x ̸= y

for x, y ∈ M . Then B(x, 1
2
) has radius 1

2
and diameter 0 for any x in M .

In the following proposition, we describe the triangles in an ultrametric space,

and the result is more or less a restatement, in geometric terms, of the ultrametric

inequality.

Proposition 9. All triangles in an ultrametric space (M,ρ) are either equilateral or

isosceles, with at most one short side.

Proof. Let x, y, and z be three points in an ultrametric space (M,ρ). We show that

ρ(x, y) ̸= ρ(x, z) and ρ(x, y) ̸= ρ(y, z) implies ρ(x, y) < ρ(x, z) = ρ(y, z).

If ρ(x, z) ̸= ρ(y, z), then without loss, ρ(x, z) > ρ(y, z). At the same time, the

ultrametric inequality implies

ρ(x, y) ≤ max(ρ(x, z), ρ(y, z))

and ρ(y, z) ≤ max(ρ(x, y), ρ(x, z)). The first inequality implies ρ(x, y) < ρ(x, z),

which means the second inequality implies ρ(y, z) < ρ(x, z). This is a contradiction,

so we must have ρ(x, z) = ρ(y, z).

To see that ρ(x, y) < ρ(x, z), simply note that ρ(x, y) ≤ max(ρ(x, z), ρ(y, z))

With this result in hand, we are able to quickly demonstrate some of the prop-

erties of balls, which are of fundamental importance to us. We see below that the

ultrametric inequality, perhaps innocuous on the surface, quickly implies ultrametric
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balls are markedly different from their Archimedean counterparts.

Proposition 10. Every point of a ball in an ultrametric space is at its centre. That

is, if B(x0, r) is a ball in an ultrametric space (M,ρ), then B(x, r) = B(x0, r),

∀x ∈ B(x0, r)

Proof. Let a ∈ B(x, r). Then ρ(a, x) ≤ r and since

ρ(a, x0) ≤ max(ρ(a, x), ρ(x, x0)) ≤ r

we must have a ∈ B(x0, r) and B(x, r) ⊆ B(x0, r). A similar argument shows

B(x0, r) ⊆ B(x, r).

Proposition 11. If (M,ρ) is an ultrametric space and B(x0, r1) and B(y0, r2) are

balls in (M,ρ), then either B(x0, r1) ∩ B(y0, r2) = ∅, B(x0, r1) ⊆ B(y0, r2), or

B(y0, r2) ⊆ B(x0, r1). That is, in an ultrametric space, all balls are either com-

parable or disjoint.

Proof. Suppose B(x0, r1)∩B(y0, r2) ̸= ∅ and let z be a point in the intersection. We

show that if there exists an a ∈ B(y0, r2) such that a /∈ B(x0, r1), then B(x0, r1) ⊆
B(y0, r2). Let x ∈ B(x0, r1). Then we must have ρ(x, z) < ρ(x, a), since z ∈
B(x0, r1) = B(x, r1) and a is not. Since the triangle with vertices (a, x, z) is isosceles

with at most one short side, we must have ρ(x, a) = ρ(a, z) ≤ r2, since a ∈ B(y0, r2) =

B(z, r2). Then x ∈ B(y0, r2).

Proposition 12. The distance between points in two non-overlapping balls in an

ultrametric is constant. That is, if B(x0, r1) and B(y0, r2) are two balls in an ultra-

metric space with B(x0, r1) ∩ B(y0, r2) = ∅, then there exists a c ∈ R>0 such that

ρ(x, y) = c, ∀x ∈ B(x0, r1) and ∀y ∈ B(y0, r2).

Proof. Suppose ρ(x0, y0) = c and let x ∈ B(x0, r1) and y ∈ B(y0, r2) be arbitrary.

Consider the triangle formed by (x0, y0, y). Since ρ(x0, y0) = c and ρ(y, y0) ≤ r2 < c,

we must have ρ(x0, y) = c because triangles in an ultrametric space have at most

one short side. Now consider the triangle formed by (x0, x, y). Since ρ(x0, y) = c and

ρ(x, x0) ≤ r1 < c, we must have ρ(x, y) = c.
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We will get a bit closer to showing the relationship between open and closed balls

with the following results and will pick up a few other useful facts along the way.

We start with another definition.

Definition 13. If (M,ρ) is an ultrametric space, then for x0 ∈ M and r ∈ R>0,

S(x0, r) = {x ∈ M ; ρ(x, x0) = r}

is the sphere of radius r at x0.

Lemma 1. ([Ro]) Spheres (of positive radius) in an ultrametric space are both open

and closed as sets.

Proof. [Ro] A sphere in any metric space is closed, so we need only show a sphere

is also open in an ultrametric space. We show a sphere, S = S(x0, r), is equal to a

union of open sets, S = ∪x∈SB
0(x, r).

Let B = B0(x, s) be an open ball that does not contain some x0. Let r = ρ(x0, x).

We must have r ≥ s, so then (since all triangles are isosocles) every point in B lies

in S(x0, r), that is B ⊆ S(x0, r). Then for any x ∈ S(x0, r), B
0(x, r) ⊆ S(x0, r) and

⋃
x∈S(x0,r)

B0(x, r) ⊆ S(x0, r).

The reverse inequality is clear since the union is taken over points of S.

Proposition 13. ([Ro]) The open balls in an ultrametric space are closed sets and

the closed balls are open sets.

Proof. The proof follows immediately from the result that spheres are both open and

closed: to see that closed balls are open sets, note that for a closed ball, B(x0, r),

B(x0, r) = B0(x0, r) ∪ S(x0, r).

Likewise, to see that open balls are closed sets, note that

B0(x0, r) = B(x0, r) \ S(x0, r).
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The following proposition is now easy to see, although the result is both unintu-

itive and important for our purposes.

Proposition 14. Suppose S is a compact subset of an ultrametric space (M,ρ) and

that ∪i∈IB(xi, ri) is a cover of S by closed balls in S. Then there exists i1, . . . , in, a

finite subset of I, such that ∪j=n
j=1B(xij , rij) is a partition of S.

Proof. Since S is compact and ρ is an ultrametric, ∪i∈IB(xi, ri) is an open cover

and contains a finite subcover of S. Say this subcover is given by the elements

i1, . . . , in′ ∈ I, and suppose this is not a partition. That is, suppose for some

ii, ij, B(xii , rii) ∩ B(xij , rij) ̸= ∅. Then, without loss of generality, we must have

B(xii , rii) ⊆ B(xij , rij), so that the removal of B(xii , rii) is still a cover of S. We

continue this process a finite number of times, since the subcover was finite to begin

with, to arrive at a finite partition of S.

In fact, a slightly stronger statement than the above is true:

Corollary 1. Suppose S is a compact subset of an ultrametric space (M,ρ) and that

B(x0, r) is a closed ball in S. Then, there exists a finite partition of S having B(x0, r)

as an element.

Proof. Let C be the cover of S given by ∪x∈SB(x, r) ∩ S. From the proposition, we

can select a finite subcover of C that is a partition of S. Suppose B(y, r) ∩ S is the

element in this partition containing x0. Then since B(y, r) and B(x0, r) are equal in

M , B(y, r) ∩ S = B(x0, r) ∩ S = B(x0, r).

We end this section by making a few comments about the set of distances that

occur between the points of a compact ultrametric space.

Proposition 15. ([Ro]) Let S be a compact subset of an ultrametric space, (M,ρ)

(i) For m ∈ (M \ S), let fm : S → R, be the function defined by fm(s) = ρ(m, s).

Then Im(fm) is finite for all m ∈ (M \ S).
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(ii) For a ∈ S, let ϕa : S \ {a} → R be the function defined by ϕa(x) = ρ(x, a).

Then Im(ϕa) is a discrete subset of R for all a ∈ S.

Proof. ([Ro])

(i) The fibers of fm, f
−1
m (s), for s ∈ S, form a cover of S. In fact, they form an

open partition. Since S is compact by assumption, we must have that this

partition is finite, and so the image of fm was also finite.

(ii) Let ϵ > 0. Let B0(a, ϵ) be the open ball, B0(a, ϵ) = {x ∈ S; ρ(x, ϵ) < ϵ}. Then
(S \B0(a, ϵ)) is compact, and so from the above we know that ϕa restricted to

(S \B0(a, ϵ)) has finite range (let M = S and S = (S \B0(a, ϵ)) and apply (i)).

Then the sets

[ϵ,∞) ∩ {ρ(s, a); s ∈ S, x ̸= a}

are finite and Im(ϕa) is discrete.

This leads to the following definition.

Definition 14. If (M,ρ) is an ultrametric space, we say M is discretely-valued if

the set ΓM = {r ∈ R;∃x, y ∈ M such that ρ(x, y) = r} is a discrete subset of R.

All of the examples of ultrametric spaces that we see in this work, indeed all of

the examples that we know of, are discretely-valued. In fact, if M is a compact group

with a translation-invariant ultrametric, then M is discretely-valued since the sets

ϕa are then equal for all a in M . Now we have the following question.

Question 1. Are there mild conditions under which a compact ultrametric space

is discretely-valued? In particular, are there conditions that do not appeal to some

algebraic structure in M?

When this is the case, it will become useful to write the set of distances occurring

in S as a sequence, put in decreasing order.
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Notation. If S is a compact, discretely-valued ultrametric space, then we denote

the set of distances between points of S by

ΓS = {γ0 = d = diam(S), γ1, γ2, . . . , γ∞ = 0}

where γi ∈ ΓS if and only if ∃x, y ∈ S such that ρ(x, y) = γi and γi < γj if and

only if i > j.

We end this section with the following corollary.

Corollary 2. ([Ro]) Let B(a, r) be a closed ball in a compact, discretely-valued ul-

trametric space. Then there exists r′ > r ∈ R such that B(a, r) = {x ∈ M | ρ(x, a) <
r′}; that is, every closed ball is also an open ball with the same centre and slightly

larger radius.

2.2 ρ-orderings, ρ-sequences, and valuative capacity

We are now in a position to give a general definition of p−orderings and in turn,

p−sequences and valuative capacity. The observation that an analogous notion of

p−ordering can be defined for a general ultrametric space, and that these structures

coincide with Fekete n−tuples, is due to [J1]. The exploration of this idea makes up

the remainder of this work.

Definition 15. [J1] Let S be a subset of an ultrametric space (M,ρ). A ρ-ordering

of S is a sequence {ai}i≥0 in S such that a0 is arbitrary and ∀n > 0, an maximizes

n−1∏
i=0

ρ(s, ai)

over s ∈ S.

The above generalizes the definition of p−orderings for Z, since maximizing the

p−adic distance between two points in Z (or Ẑp) is the same as minimizing the p−adic

valuation of the difference of two points. In particular, {ai}i≥0 is a p−ordering of S,



20

a subset of Z, if and only if it is a ρp-ordering of (S, ρp). Let us see an example of

the simplest kind, i.e., for a finite set S.

Example 4. Suppose S is the finite subset of (Z, ρ2), given by S = {0, 2, 8, 3}.
Then a ρ2−ordering of S starts (arbitrarily) with a0 = 0, which forces a1 = 3, since

ρ2(0, 3) = 1 = diam(S). The sequence continues a2 = 2 and a3 = 8, but after this

point the sequence becomes arbitrary because
∏n−1

i=0 ρ(s, ai) will contain a 0, given

by the repeated term. Indeed, for any finite subset S with |S| = n the ρ−ordering

of S is arbitrary from the nth point on.

We now give the definition of a ρ−sequence for an ultrametric space, generalizing

the notion of a p−sequence.

Definition 16. [J1] Let {ai}i≥0 be a ρ−ordering of S. The ρ-sequence of S is

defined by letting δ(0) = 1 and for n > 0,

δ(n) =
n−1∏
i=0

ρ(an, ai).

The two propositions that follow are the critical observations. The first one tells

us that we can use the ρ−sequence of S as an invariant and the second one motivates

the definition of valuative capacity. The proofs of each are given in [J1].

Proposition 16. ([J1], Lemma 1) The ρ-sequence of S is well-defined so long as S

is compact and ρ is an ultrametric. That is, the ρ-sequence of a compact subset of

an ultrametric spaces does not depend on the choice of ρ-ordering of S.

Proposition 17. ([J1], Theorem 1) If S is a compact subset of an ultrametric space

(M,ρ), then the first n terms of a ρ-ordering of S give a Fekete n-tuple of S and all

Fekete n-tuples of S arise in this way.

Armed with the notion of a well-defined ρ−sequence for an ultrametric space,

and the knowledge that it gives a construction for Fekete n−tuples in that space, we

define the valuative capacity of S, where S is any compact subset of an ultrametric
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space.

Definition 17. [J1] Let S be a compact subset of an ultrametric space (M,ρ) and

let δ(n) be the ρ-sequence of S. The valuative capacity of S is

ω(S) := lim
n→∞

δ(n)1/n.

We spend the rest of this chapter establishing some basic results on valuative

capacity. These results form the start of our toolkit for calculating the capacities of

specifics sets. They also show that many of the properties of capacity from C carry

over to the non-Archimedean case in a natural way.

Let us assume from this point on that S is always a compact subset of an ultra-

metric space.

Proposition 18. ω(S) is finite. If S itself is finite, then ω(S) = 0.

A compact set E ⊆ C is said to be polar if the logarithmic capacity of E is 0

[Ra1]. Polar sets play a central role in potential theory and the theory of logarithmic

capacity, which raises the following question:

Question 2. Are there ultrametric spaces that have some infinite subset S with

ω(S) = 0?

We also have the expected result on monotoncity for valuative capacity:

Proposition 19. ([J1], Lemma 4) If S and T are compact subsets of an ultrametric

space such that S ⊆ T , then ω(S) ≤ ω(T ).

We show now some results on the interaction between the algebraic structure of

the space and valuative capacity. These results can be powerful tools for calculating

capacities, in particular, when they are combined with the decomposition result that

follows.
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Proposition 20. (Translation Invariance) If (M,ρ) is a compact ultrametric space

and also a topological group for which ρ is (left) invariant under the group operation,

then ω is also (left)-invariant. That is, if ρ(x, y) = ρ(g + x, g + y), ∀g, x, y ∈ M ,

then ω(g + S) = ω(S), for S ⊆ M .

Proof. Let {ai}i≥0 be a ρ-ordering for S. Then {g + ai}i≥0 is a ρ-ordering for g + S.

Then

ω(g + S) = lim
n→∞

δ(n)1/n

= lim
n→∞

[
n−1∏
i=0

ρ(g + an, g + ai)]
1/n

= lim
n→∞

[
n−1∏
i=0

ρ(an, ai)]
1/n

= ω(S).

Example 5. Note that ρp is translation invariant for each p since for any x, y, we

have ρp(x, y) = p−vp(x−y) = p−vp((a+x)−(a+y)) = ρp(a+x, a+y). Then ω(a+S) = ω(S)

for S ⊆ (Zp, ρp).

Proposition 21. (Scaling) Let (V,N) be a normed vector space and suppose N

satisfies the strong triangle identity, so that (V, ρN) is an ultrametric space. Then

if N is multiplicative, so is ω. That is, if N(gx) = N(g)N(x),∀g, x ∈ V , then

ω(gS) = N(g)ω(S), for g ∈ V and S ⊆ M .

Proof. Let ρN be the metric induced by N , so that ρN(x, y) = N(x− y), ∀x, y ∈ V .

Let {ai}i≥0 be a ρN -ordering for S and let u, v be in gS with u = gsi and v = gsj
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for some si, sj ∈ S. Then, since N is multiplicative,

ρ(u, v) = ρ(gsi, gsj)

= N(gsi − gsj)

= N(g(si − sj))

= N(g)N(si − sj)

= N(g)ρ(si, sj),

so that {gai}i≥0 is a ρN -ordering for gS. Then,

ω(gS) = lim
n→∞

[
n−1∏
i=0

ρ(gan, gai)]
1/n

= lim
n→∞

[
n−1∏
i=0

N(g)ρ(an, ai)]
1/n

= lim
n→∞

[N(g)n
n−1∏
i=0

ρ(an, ai)]
1/n

= N(g) lim
n→∞

[
n−1∏
i=0

ρ(an, ai)]
1/n

= N(g)ω(S).

Example 6. Since ρp is multiplicative, we have that ω(mS) = |m|p ·ω(S) for m ∈ Z
and S ⊆ Z. In particular, ω(pZ) = 1

p
· ω(Z).

The following proposition is from [J1], where it is given for some S written as the

union of two subsets, although it is easily seen to be true for S equal to any finite

union, so long as the other assumptions remain satisfied.

Proposition 22. ([J1], Proposition 10) (Decomposition) If diam(S) = d and S =

∪n
i Ai for Ai compact subsets of M with ρ(a, b) = d, for all a ∈ Ai and for all b ∈ Aj,
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for each i and j, then

1

log(ω(S)/d)
=

n∑
i=1

1

log(ω(Ai)/d)
.

Example 7. We are now in a position to compute the valuative capacity of (Z, ρp).
For any p, we note that Z can be decomposed into p closed balls of radius 1

p
, which

are equal to the cosets of Z modulo p. Since diam(S) = 1, this gives

1

log(ω(Z))
=

p−1∑
i=0

1

log(ω(pZ+ i))
=

p

log(ω(pZ))
=

p

log(1
p
· ω(Z))

.

Now we have,

log(ω(Z)p) = log(
1

p
· ω(Z)).

Since we have logs on both sides, we are able to use any base we like, so that,

ω(Z)p − ω(Z)
p

= 0

and ω(Z) = p
1

1−p = p
−1
p−1 .

We can apply the same reasoning to any partition of S made up of sets that all

have the same capacity and meeting the requirement that their pairwise distances

are all equal to the diameter of S.

Corollary 3. Suppose S = ∪n
i Si with ρ(Si, Sj) = d = diam(S) and also ω(Si) =

ω(Sj), ∀i, j . Let r ∈ R be such that ω(Si) = rω(S), ∀i. Then ω(S) = r
1

n−1 .

Now we note that a partition of S into closed balls will satisfy the hypotheses if

the pairwise distance between elements is equal to the diameter of S. In particular,

if B(xi, ri) is a collection of closed balls such that the pairwise-distance between any

B(xi, ri) and B(xj, rj) is constant, then if we know the capacity of each B(xi, ri), we

can compute the capacity of their union. If M is discretely-valued, then we can say

slightly more.
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Corollary 4. (Joins of computable sets are computable) Let M be a compact, discretely-

valued ultrametric space. Let ΓM = {γ0, γ1, . . . , γ∞ = 0} be the set of distances in

M . Suppose that S = B(x, γi), for some x and i, is the union of n ≥ 2 balls of radius

γi+1, that is, S = ∪n
j=1B(xj, γi+1) is a join in the lattice of closed balls in M . Then

1

log(ω(B(x,γi))
γi+1

)
=

n∑
j=1

1

log(
ω(B(xj ,γi+1))

γi+1
)
.

Of course, if M is a group, then we know the elements in these partitions are

cosets, and if the metric is translation-invariant, then they each have the same capac-

ity. We take up this last corollary in significant detail in the next chapter, obtaining

some formulae for valuative capacity with various restrictions on ΓM or related struc-

tures.



Chapter 3

ρ-orderings and the structure of S

In the previous section, we defined valuative capacity for a compact subset S of an

ultrametric space (M,ρ). We also got a glimpse into the way the valuative capacity

of S interacts with its other properties, such as the set of distances occurring in S

and the lattice of closed balls in S (or equivalently, if S has enough structure, a

lattice of subgroups).

In this section, we offer a more detailed study of the interaction between the

valuative capacity of S and the lattice of closed balls in S. In particular, we show

how, if S is compact and discretely-valued, the lattice of closed balls can be used to

compute the first n terms of a ρ−ordering of S (for any n < ∞).

Similar results have been found for the special case of ultrametric fields in [CEF].

We extend these results by moving to a more general setting, showing that much can

be said about capacity in S without appealing to any underlying algebraic structure.

Significant portions of the theory developed in this chapter and the ones that follow

were guided by an empirical investigation into the capacity of product spaces, which

we describe in the final chapter. The code that performed these calculations is in-

cluded in the appendix.

We assume throughout this section that S is a compact, discretely-valued subset

of an ultrametric space (M,ρ).

Subspaces of S

In the section we explore the subspaces of S formed by considering closed balls

of some fixed radius. Recall from the previous section that if S is compact and

26
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discretely-valued, then the set of distances occurring in S is a discrete, bounded

subset of R and so we may represent the set of distances by a sequence in decreas-

ing order. As before, let the decreasing sequence of distances in S be given by

ΓS = {γ0 = diam(S), γ1, . . . , γ∞ = 0}.

Now fix some k ∈ N, and consider for a moment the set of closed balls of radius

γk in S. We could denote these alternatively by BM(x, γk) ∩ S or by BS(x, γk), but

when there is no risk of confusion, we will denote them simply by B(x, γk). Clearly,

the set {B(x, γk);x ∈ S} forms a cover of S. Although we have built the cover

using closed balls, since we are in an ultrametric space, this gives an open cover of

S (in fact, each element in the cover is not only an open set, but also an open ball

for some radius slightly bigger than γk). Then since S is compact, we must have

some x1, . . . , xn such that S = ∪n
i=1B(xi, γk). In fact, since ρ is an ultrametric, we

can pick the xi’s so that ∪n
i=1B(xi, γk) will be a disjoint union and therefore a finite

partition of S. Note that both n and the xi’s depend on our fixed k, but that n is

independent of the xi’s, since any choice of centres is equivalent. We rephrase this

with the following definition and lemma:

Definition 18. For S and ΓS as above, and k ∈ N, fixed, define ∼k to be the relation

on S given by

x ∼k y if and only if ρ(x, y) ≤ γk

i.e., x ∼k y if and only if Bγk(x) = Bγk(y).

The fact that ∼k is an equivalence relation on S is equivalent to the observation

that every point in a ultrametric ball is at its centre:

Lemma 2. Let S and ΓS be as above; then ∼k is an equivalence relation on S.

Proof. ∼k is clearly reflexive and symmetric, since ρ is a metric. Transitivity results

from the ultrametric property of ρ: if x ∼k y and y ∼k z, then

ρ(x, z) ≤ max(ρ(x, y), ρ(z, y)) ≤ γk
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so x ∼k z.

We denote the set of equivalence classes of S/ ∼k by Sγk . We have defined Sγk

to be the set of equivalence classes in S under the relation ∼k, which is equivalent

to letting Sγk be the set of closed balls of fixed radius γk in S. We now offer a third

perspective on the elements on Sγk , which is due to [Ac]:

Lemma 3. For each k, the elements of Sγk , that is, the closed balls of radius γk,

themselves form an ultrametric space, where the metric is given by:

ρk(B(x, γk), B(y, γk)) =

⎧⎨⎩ρ(x, y), if ρ(x, y) > γk

0, if ρ(x, y) ≤ γk, i.e., B(x, γk) = B(y, γk)

Proof. ρk is symmetric since ρ is. Likewise, ρk satisfies the ultrametric property,

since ρ does: let B(x, γk), B(y, γk) and B(z, γk) be any three elements of Sγk and

suppose ρk(B(x, γk), B(y, γk)) > 0. Then,

γk < ρk(B(x, γk), B(y, γk))

= ρ(x, y) ≤ max(ρ(x, z), ρ(y, z))

= max(ρk(B(x, γk), B(z, γk)), ρk(B(y, γk), B(z, γk)))

since γk < max(ρ(x, z), ρ(y, z)) implies that at least one of ρk(B(x, γk), B(z, γk)) or

ρk(B(y, γk), B(z, γk)) is greater than 0.

So now the elements of Sγk may be viewed as either equivalence classes, closed

balls of fixed radius, or points in a new metric space. We make a final definition and

introduce some notation before moving on.

Definition 19. Let S and ΓS be as above. Define β(i)i≥0 to be the sequence given

by β(i) = |Sγi |, which is an invariant of S and which counts the number of connected

components of Sγi (that is, the points of Sγi), when viewed as a metric space. When

necessary, we use βS(i) to denote the β sequence for a given, compact ultrametric
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space S. Adopting the terminology in [FP], we call βS(i) the structure sequence

of S.

Notation 1. Let Sγk be as above. We denote the elements of Sγk by Bk
1 , . . . , B

k
β(k)

or by BS,k
1 , . . . , BS,k

β(k), when necessary.

We return to the sequence β(i) at the end of this section. For now, we show

how a ρ−ordering of S can be built recursively from the spaces Sγk . This begins by

noting that the spaces themselves can be built recursively:

Observation 1. Let S, ΓS, and Sγk be as above. Then Sγk+1
can be constructed by

partitioning each of the closed balls in Sγk into closed balls of radius γk+1 and taking

their union: Let B(xi, γk) be an element of Sγk , denoted by Bk
i . Then, there exists

xi,1, . . . , xi,li ∈ Bk
i such that,

Bk
i =

li⋃
j=1

B(xi,j, γk+1)

and

B(xi,j, γk+1) ∩B(xi,j′ , γk+1) = ∅, ∀j, j′ ∈ 1 : li

and so

Sγk+1
=

β(k)⋃
i=1

∪li
j=1B(xi,j, γk+1) =

β(k+1)⋃
j=1

Bk+1
j

where ∪li
j=1B(xi,j, γk) = B(xi, γk+1) = Bk

i , ∀i.

Since S is compact, hence bounded, if we represent this process schematically we

obtain a tree, where the root node is B0
1 = B(x, γ0), for any choice of x ∈ S, and the

children of any given Bm
n are such that they form a partition of their join. Since we

will often refer to this schematic representation, we define it below.

Definition 20. If S is a compact subset of an ultrametric space, then Ts is the tree

whose vertices are Bk
i , that is the elements of Sγk , and whose edge-set, E, is given by

(Bi
k, B

j
l ) ∈ E if and only if j = i+ 1 and Bj

l ⊆ Bi
k for some choice of representatives
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B(xk, γi) and B(xl, γj), as shown below:

B0
1

B1
β(1)

. . .

Bk
β(k)

Bk+1
β(k+1). . .Bk+1∑

i<β(k)

li+1

. . .

. . .

. . .

B1
2

. . .

Bk
2

Bk+1
l1+l2

. . .Bk+1
l1+2Bk+1

l1+1

B1
1

. . .

Bk
1

Bk+1
l1

. . .Bk+1
2Bk+1

1

Before going on, first note that we have drawn TS such that leftmost child of

some Bk
i is Bk+1

j where j is minimal among the children of Bk
i , and then continued

in increasing order. In general, if we draw TS so that the children of a given vertex

are depicted in increasing order according to their index, then each choice of index-

ing for the elements of Sγk produces a different graphical representation of TS. The

structures produced by different choices of indices are clearly isomorphic as trees,

and as we will see by the end of the section, each choice of indexing will be valid for

our purposes as well.

Of central importance to us is the distance between two vertices in Ts. Since each

vertex represents an element of Sγk , that is a closed ball in an ultrametric space, it

is well-defined to let the distance between vertices be equal to the distance between

a choice of centres for those balls. Note that if the distance between Bk
i and Bl

j is

taken to be ρ(xi, xj), for some choice of xi ∈ Bk
i and xj ∈ Bl

j, say ρ(xi, xj) = γn,

then the join of Bk
i and Bl

j is some Bn
x .

Lemma 4. If Bk
i and Bl

j are two vertices in TS, then ρ(xi, xj), for any choice of

xi ∈ Bk
i and xj ∈ Bl

j, is equal to the diameter of the join of Bk
i and Bl

j.



31

Proof. Let Bk
i and Bl

j be two (distinct) vertices in TS and let Bn
x be their join. The

diameter of Bn
x is γn since Bn

x = B(x0, γn) for some x0. Since ρ is an ultrametric,

the distance between any xi ∈ Bk
i and xj ∈ Bl

j is constant, and must be equal to the

diameter of the smallest ball containing both of them, that is γn.

In particular, we have that for any k and any i < β(k), the distances between

the children of Bk
i will be γk and for any i ̸= j the distance between the children of

Bk
i and Bk

j will be equal to the distance between Bk
i and Bk

j (which will be some

γm,m < k).

Recursive ρ-orderings

In this section, we show how the recursive partitioning of S into the spaces Sγk gives

rise to a ρ−ordering of S. We first note that without loss of generality, for any

k ∈ N, we can reindex the Bk
i ’s so that they give the first β(k) terms of a ρk-ordering

of Sγk , when the latter is viewed as a (finite) metric space. In the first proposition

below, we note that if the Bk
i ’s are so indexed, then finding a ρk+1-ordering of Sγk+1

is straightforward: select a Bk+1
j from each of the Bk

i ’s in order and then start over.

Proposition 23. Let S be a compact, discretely-valued subset of an ultrametric space

(M,ρ) and ΓS, the set of distances in S. If Sγk is the partition of S as described

above for γk ∈ ΓS with k < ∞, where the elements are indexed according to a ρk-

ordering of Sγk , then the first β(k+1) terms in a ρk+1-ordering of Sγk+1
can be found

by selecting at each stage n, a child from Bk
n, where n = n mod β(k) + r and r is

minimal in {0, . . . , β(k)− 1}, such that Bk
n mod β(k)+r still has unused children.

Proof. Let S, SγK , and Sγk+1
be as above. In particular, suppose the elements of

Sγk are indexed according to a ρk−ordering. Denote the elements of Sγk+1
by Bk+1

i,j

where the first subscript indicates that the element is a child of Bk
i . To form a ρk+1

ordering of Sγk+1
, we must maximize the product of distances at each step n.

Now note that ΓSγk
= {γ0, γ1, . . . , γk−1} and ΓSγk+1

= {γ0, γ1, . . . , γk−1, γk}. That
is, the distances in Sγk+1

are the same as the distances in Sγk , although they also
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include the smaller distance γk. Since we know that the elements Bk
1 , . . . , B

k
β(k) al-

ready maximize the product of distances in {γ0, γ1, . . . , γk−1}, the first β(k) terms

of a ρk+1-ordering of Sk+1 can be found by taking Bk
1,j1

, . . . , Bk
1,jβ(k)

for any choice of

j’s. At this point, any choice of next element will produce a copy of γk in the ρk+1-

sequence; however, if we choose another child of Bk
1 , we are able to keep building the

ordering in a canonical fashion, since we know that we will then be able to maximize

the product at the next step by choosing another child of Bk
2 .

We see then that a ρk+1-ordering of Sγk+1
is found by minimizing the number of

times γk is introduced into the ρk+1-sequence and maximizing the product among

the γ0, γ1, . . . , γk−1, and the latter is already known to be achieved by taking the Bk
i

in order. If the Bk
i ’s all have the same number of children, then we can always select

a child of Bk
n, where n = n mod β(k) at each stage n, n < β(k + 1), since there

will always be one available. On the other hand, suppose the Bk
i have an unequal

number of children and n is the first step at which all the children of Bk
n have been

exhausted. What element will maximize the ρk+1−sequence?

Consider the space (Sγk \Bk
n). Removal of Bk

n will not affect the first m terms of

a ρk-ordering of this space, for m < n, since if a sequence of elements maximizes a

function over a set X, they will also maximize that function of a subset of X (pro-

vided they themselves remain in the subset). Then the ρk−sequence of (Sγk \ Bk
n)

begins {Bk
1 , . . . , B

k
n−1}.

Moreover, if Bk
n+1 maximizes

∏n
i=1 ρk(x,B

k
i ) over Sγk , then it also maximizes∏n−1

i=1 ρk(x,B
k
i ) over (Sγk \Bk

n), since
∏n

i=1 ρk(x,B
k
i ) = (

∏n−1
i=1 ρk(x,B

k
i )) · ρk(x,Bk

n).

Then the ρk−sequence of (Sγk \Bk
n) is simply {Bk

1 , . . . , B
k
n−1, B

k
n+1, . . . , B

k
β(k)}.

Now we see that a ρk+1−sequence of Sγk+1
is maximized by simply skipping over

Bk
n, should all its children be exhausted, and selecting a child from Bk

n+1. Then a

ρk+1−ordering of Sγk+1
is found by selecting elements of each Bk

i in order as much

as possible, and skipping to Bk
i+1, when it is not possible.



33

Note that in building the ρk+1−ordering of Sγk+1
we selected, at each step, a child

of some Bk
i , but we did not concern ourselves over which child was selected. This is

because the distances between any two children of some Bk
i is γk, and the distance

between any one of them and a child of some Bk
j , i ̸= j, is the same. We can now see,

as claimed above, that any of the isomorphic versions of TS are valid for producing

ρ−orderings. Suppose then that we have created Ts and (arbitrarily) indexed the

children of each vertex. Then, there is no loss of generality in assuming that at

each stage, we select a child with smallest index among its siblings, that is, that we

select the leftmost available child in Ts. Since, for ease of indexing, we will assume

a ρ−ordering has been built by this convention, we introduce the following definition.

Definition 21. The ρ−ordering of S formed by pulling elements from left to right

in (a choice of) Ts is called the canonical ρ-ordering of S (with respect to Ts).

The above proposition quickly leads to a recursive contruction for a ρ−ordering

of S. Indeed, to build a ρ−ordering of S from the above, it suffices only to make a

choice of centres for each of the Bk
i ’s.

Proposition 24. Let S be a compact, discretely-valued subset of an ultrametric space

(M,ρ) and let ΓS be the set of distances in S. Let Sγk be the partition of S as de-

scribed above for γk ∈ ΓS with k < ∞, where the elements are indexed according to

a ρk-ordering of Sγk . Suppose each of the element of Sγk have also been partitioned

into closed balls of radius γk+1, B
k
i = ∪li

j=1B
k+1
i,j ,∀i.

Let xi,j denote a choice of centre for the element Bk+1
i,j . Then the first β(k +

1) elements of a ρ−ordering of S can be found by forming a matrix, Ak, whose

(i, j)th entry is xi,j, if j ≤ li and is otherwise equal to a placeholder, *, and then

concatenating the rows.

Proof. The matrix Ak is a representation of the kth and (k + 1)th levels of TS where

the Bk
i ’s (and Bk+1

i,j ’s) have been replaced by a choice of centres. Since matrices must
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be rectangluar, the case where some Bk
i and Bk

j have an unequal number children

is handled by inserting a placeholder, *, into Ak. Moreover, since the ρk+1 distance

between distinct closed balls is just the ρ distance between a choice of centres of

those balls, a choice of centres in a ρk+1-ordering gives the beginning of a ρ-ordering.

By the above proposition, we must select elements from each BK
i one after the other,

which is achieved by selecting one element from each column in order, for example

by concatenating the rows (and then deleting *’s if necessary).

We get the most use out of the construction above if, in selecting a choice of cen-

tres for the Bk+1
i,j ’s, we reuse the previous choices as much as possible. Suppose, for

example, we have made a choice of centres for the balls of radius γk and constructed

the matrix Ak−1. At the next iteration, we will need a choice of centres for the balls

of radius γk+1. If xi was our choice of representative for B
k
i and xi ∈ Bk+1

i,j , we may as

well let xi be our choice of representative for Bk+1
i,j . If we make our choice of centres

in this way, then when we concatenate the rows of some Ak−1, we obtain (without

loss) the first row of Ak. We follow this convention in the two examples below.

Example 8. Let us use the above to start a ρ-ordering of S = (Z, ρ3). We have that

ΓS = {1, 1
3
, 1
9
, 1
27
, . . .} and Ts begins:

Z

3Z+ 2

9Z+ 89Z+ 59Z+ 2

3Z+ 1

9Z+ 79Z+ 49Z+ 1

3Z

9Z+ 69Z+ 39Z

We start by finding a ρ0-ordering of Sγ0 , but this is trival since Sγ0 has only a

single element. Let us pick 0 to be our choice of centre for B0
1 = B(0, 1) = Z. As we

see from TS, Sγ0 is partitioned into 3 closed balls of radius γ1 =
1
3
, namely 3Z, 3Z+1,

and 3Z+ 2. A choice of centres is given by 0, 1, and 2, so that A0 becomes:

A0 =

⎛⎜⎜⎝
0

1

2

⎞⎟⎟⎠
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To start the ρ−ordering, concatenate the rows to obtain {0, 1, 2}, and to continue

it, make a choice of centres for each of the closed balls of radius γ2 =
1
9
partitioning

the sets 3Z + i, i ∈ 0, 1, 2. For example, 3Z = 9Z ∪ 9Z + 3 ∪ 9Z + 6, so a choice of

centres for B1
1 is given by {0, 3, 6}. Making choices for the remaining elements, we

obtain:

A1 =

⎛⎜⎜⎝
0 1 2

3 4 5

6 7 8

⎞⎟⎟⎠
To continue the ρ−ordering we concatenate the rows, {0, 1, 2, 3, 4, 5, 6, 7, 8}, which

also gives the first row of A2. The remaining rows are found by partitioning each of

the closed balls of radius 1
9
and again making a choice of centres:

A2 =

⎛⎜⎜⎝
0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

⎞⎟⎟⎠
And so on.

We are able to make two statements following this example. The first is that in

starting the ρ3−ordering, the fact that Sγ0 had only a single element allowed us to

get started for free. In fact, all compact ultrametric spaces are bounded, so this is

always the case.

The second takeaway is that we found the start of a ρ−ordering of S = (Z, ρ3)
was given by taking the integers starting at 0 in their natural order. If we had

continued building the ordering, we would have continued to find this. The fact

that the natural ordering on the integers is a ρp−ordering, where ρp is the p−adic

metric for any prime p, is well known ([B2]), but we give an alternate proof of it here:

Corollary 5. Let S be the ultrametric space (Z, ρp), where ρp is p−adic metric for

any prime p. The a ρp−ordering of S can be found by taking the integers, starting

at 0, in their natural order.
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Proof. We prove the above by induction on k. First note that for any choice of

prime, the elements of Sγ1 are the cosets of Z modulo p, so that A1 has p columns.

Since {0, 1, 2 . . . , p − 1} are distributed among each of these cosets, without loss of

generality the first row of A1 is given by [0, 1, 2, . . . , p− 1] in order.

Now suppose that the first row of Ak is given by [0, 1, 2, . . . , n] for 0 < k <

k + 1. We show the first row of Ak+1, and therefore the first n′ elements in a

ρp−ordering of S, where n′ is the column dimension of Ak+1, can be obtained as

[0, 1, 2, . . . , n, n + 1, . . . , n′]. First note that each closed ball of radius pk = γk is in

fact a coset of Z modulo pk, of which there are p. Then for any k, Ak is a matrix

with pk columns and p rows. In particular, n = pk − 1. Let i ∈ {0, 1, . . . , pk − 1} be

arbitrary. Then i is in exactly one of the cosets of Z modulo pk and since the first

row of Ak is [0, 1, 2, . . . , pk − 1], it must have been chosen as our representative of

this coset. If we split pkZ+ i into balls of radius pk+1, we have

pkZ+ i =

p−1⋃
j=0

pk+1Z+ (pkj + i)

since there will be p elements in the partition, each of which will be equal to i

modulo pk and distinct modulo pk+1. Then, there is a choice of centres such that the

ith column of Ak is

[i, pk + i, 2pk + i, . . . , (p− 1)pk + i]T

filling this in for each i, we see that Ak can be obtained as:

Ak =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 . . . pk − 1

pk pk + 1 pk + 2 . . . pk + (pk − 1)

2pk 2pk + 1 2pk + 2 . . . 2pk + (pk − 1)
...

...
...

. . .
...

(p− 1)pk (p− 1)pk + 1 (p− 1)pk + 2 . . . (p− 1)pk + (pk − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Concatenating the rows, we see the first row of Ak+1 will be

[0, 1, 2, . . . , pk − 1, pk, . . . , pk+1 − 1]
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as required.

Example 9. Let us now see an example where there is an uneven number of children

between the vertices on a given level. Suppose S = Z \ 4Z, a subset of (Z, ρ2). In

this case, we have that ΓS = {1, 1
2
, 1
4
, 1
8
, . . .} and Ts begins:

Z \ 4Z

2Z+ 1

4Z+ 3

8Z+ 7

16Z+ 1516Z+ 7

8Z+ 3

16Z+ 1116Z+ 3

4Z+ 1

8Z+ 5

16Z+ 1316Z+ 5

8Z+ 1

16Z+ 916Z+ 1

2Z \ 4Z

4Z+ 2

8Z+ 6

16Z+ 1416Z+ 6

8Z+ 2

16Z+ 1016Z+ 2

Choosing centres for the partition of Z into closed balls of radius 1
2
, we have:

A0 =

(
2

1

)

We have taken S to be the complement of 4Z in Z, so B(0, γ1) has only one child,

since 2Z \ 4Z = 4Z+2, while B(1, γ1) has two. Making a choice of centres, we have:

A1 =

(
2 1

∗ 3

)

We concatenate the rows, skipping over *, and again make a choice of centres for

the closed balls of radius 1
8
:

A1 =

(
2 1 3

6 5 7

)
One more iteration yields:

A2 =

(
2 1 3 6 5 7

10 9 11 14 13 15

)

So that a ρ2−ordering of S = Z\4Z starts: {2, 1, 3, 6, 5, 7, 10, 9, 11, 14, 13, 15, . . .}.

In the two propositions above, there was notational difficulty that arose when

there was an unequal number of children between the vertices on a given level of Ts.
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This difficulty is, in fact, more than a notational inconvenience, and the situation

simplifies considerably when it is not the case. We are far from the first to observe

this. Amice noted this as far back as her 1964 paper [Am], and it has been observed

more recently by Chabert and colleagues, for example in [FP] and [CEF]. In the next

chapter, we see that if TS has nice enough structure we are able to compute not just

ρ−orderings, but also formulae for ρ−sequences and, when we are lucky, capacity.



Chapter 4

The structure of TS

In the previous chapter, we explored in detail Corollary 4 from Chapter 2. This

corollary lead us to study the lattice of closed balls in S, which we called TS. In this

chapter, we take what we have learned and explore Corollary 3, repeated below.

Corollary. Suppose S = ∪n
i Si with ρ(Si, Sj) = d = diam(S) and also ω(Si) = ω(Sj),

∀i, j. Let r ∈ R be such that ω(Si) = rω(S), ∀i. Then ω(S) = r
1

n−1 .

In particular, we seek answers to the following questions: when does such a

partition of S exist and given such a partition, when are we able to compute the

scaling factor r? In doing so, we show that the structure of TS plays an important

role.

4.1 Semi-regularity

In this section, we restrict to the case where in the tree Ts, for S a compact, discretely-

valued subset of an ultrametric space, every vertex on a given level has the same

number of children. In this case, we can attach another sequence to S, which we

call the α−sequence of S and which describes, for each level k ∈ N, the size of the

partitions on that level. We develop some preliminary lemmas, which we then use

to derive formulae for this special case. This situation corresponds to what previous

authors ([Am], [CEF], [FP]) have called regularity, a term which we reserve for the

next section.

In the definitions that follow, we recall that the β−sequence of S counts the

number of elements of Sγk .

39
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Definition 22. Let S be as before, a compact, discretely-valued subset of an ul-

trametric space (M,ρ). We say that S is semi-regular if TBk
i

∼= TBk
j
, ∀k ∈ N and

i, j ∈ β(k), and where the isomorphism is understood as an isomorphism of trees.

That is, S is semi-regular if each ball of radius γk breaks into the same number of

balls of radius γk+1, for all k. If there exists an n ∈ N such that TBN
i

∼= TBN
j
for all

N ≥ n, that is, each ball of radius γN breaks into the same number of balls of radius

γN+1 for N ≥ n, then we say S is eventually semi-regular.

Definition 23. Suppose S is a compact, discretely-valued subset of an ultrametric

space and S is semi-regular. The α-sequence of S is the sequence given by

α(k) =
β(k + 1)

β(k)

which is in N for each k. That is, if Bk
i is any element of Sγk , then α(k) is equal to

the number of children of Bk
i in Ts. Since S is semi-regular, this number does not

depend on i.

Example 10. If G is a compact ultrametric space and also a group, each ball centred

at 0 is in fact a subgroup of G. Then each set of elements of Sγk is a collection of

cosets of G/B(0, γk). Since G is assumed to be compact, G/B(0, γk) is finite and so

Lagrange’s theorem implies that G is semi-regular.

We now work towards a formula for the terms in the ρ−sequence of a semi-regular

space S. We need a few lemmas to get started.

Lemma 5. Let n and q be in N. Then ⌊n
q
⌋ counts the numbers in {0, . . . , n−1} that

are congruent to n mod q.

Proof. By the division algorithm, we know there exists unique c, r ∈ Z such that

n = cq + r

with 0 ≤ r < q. Since c counts the number of q-multiples in the set {1, . . . , n}, and
each q-multiple contains exactly one element that is congruent to n mod q, we need
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only show ⌊n
q
⌋ = c. Simply note that the above implies

n

q
= c+

r

q

and we must have r
q
< 1. Then c is the largest integer such that n

q
≤ c, but this is

the definition of ⌊n
q
⌋.

Lemma 6.

⌊n
b
⌋ − ⌊ n

ab
⌋ =

a−1∑
k=1

⌊n+ kb

ab
⌋

for n, a, b ∈ N. In particular,

⌊n
b
⌋ − ⌊ n

2b
⌋ = ⌊n+ b

2b
⌋

for n, b ∈ N.

Proof.

⌊n
b
⌋ − ⌊ n

ab
⌋ = ⌊a · n

ab
⌋ − ⌊ n

ab
⌋ =

a−1∑
k=0

⌊ n
ab

+
k

a
⌋ − ⌊ n

ab
⌋ (*)

=
a−1∑
k=1

⌊ n
ab

+
k

a
⌋ =

a−1∑
k=1

⌊n+ kb

ab
⌋

where the final step in (*) is due to Hermite’s identity ([SA]): ⌊nx⌋ =
∑n−1

k=0⌊x+
k
n
⌋,

for n ∈ N and x ∈ R.

Lemma 7. If S is semi-regular and σ denotes the canonical ρ-ordering of S, that is,

a ρ−ordering formed by pulling from left to right in Ts, then

ρ(σ(n), σ(m)) = γk

if and only if

n ≡ m mod β(k) and n ̸≡ m mod β(k + 1).

Proof. Since S is semi-regular, every sequence of β(k) terms in σ will be from each of

the distinct elements of Sγk (for any k). Moreover, since σ is a canonical ρ−ordering,

we always pull from the elements of Sγk in the same order. Then σ(n) and σ(m)

are descendents of some Bk
j if and only if n = m mod β(k). Then the result follows
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since ρ(σ(n), σ(m)) = γk if and only if Bk
i for some i ∈ 1, . . . , β(k) is the join of

Bk′
i ∋ σ(n) and Bk′

i′ ∋ σ(m).

We introduce another piece of notation before continuing.

Notation 2. Let S be a compact, discretely-valued subset of an ultrametric space,

ΓS the set of distances in S and δ(n) the characteristic sequence of S. Suppose γk is

an element of ΓS. Then we denote by vγk(δ(n)) the exponent of γk in the nth−term

of the characteristic sequence of S.

Proposition 25. If S is a semi-regular ultrametric space, δ is the characteristic

sequence of S, β is the structure sequence of S, and α is the sequence describing the

semi-regularity, then

vγk(δ(n)) = ⌊ n

β(k)
⌋ − ⌊ n

β(k + 1)
⌋ =

α(k)−1∑
j=1

⌊n+ j · β(k)
α(k)β(k)

⌋.

Proof. The exponent of γk in the nth term of the characteristic sequence is the number

of m strictly less than n such that ρ(δ(n), δ(m)) = γk. By Lemma 7, this is the

number of m < n such that m = n mod β(k) and m ̸= n mod β(k + 1), which by

Lemma 5 is ⌊ n
β(k)

⌋ − ⌊ n
β(k+1)

⌋. Then we have:

vγk(δ(n)) = ⌊ n

β(k)
⌋ − ⌊ n

β(k + 1)
⌋

= ⌊ n

β(k)
⌋ − ⌊ n

β(k)α(k)
⌋, because S is semi-regular

=

α(k)−1∑
j=1

⌊n+ j · β(k)
α(k)β(k)

⌋.

Example 11. Consider the ultrametric space (Z, ρp) for any prime p. Then β(k) =

pk and α(k) = p for any k ∈ N ∪ 0. Proposition 25 gives
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vγk(δ(n)) = ⌊ n
pk

⌋ − ⌊ n

pk+1
⌋.

Now since γk = p−k, ∀k, we are able to compute the exponent of 1
p
in δ(n). We have

v 1
p
(δ(n)) =

∞∑
k=1

k · (⌊ n
pk

⌋ − ⌊ n

pk+1
⌋)

=

⌈logp(n)⌉∑
k=1

k · (⌊ n
pk

⌋ − ⌊ n

pk+1
⌋)

= ⌊n
p
⌋ − ⌊ n

p2
⌋+ 2⌊ n

p2
⌋ − 2⌊ n

p3
⌋+ . . .+ ⌈logp(n)⌉⌊

n

p⌈logp(n)⌉
⌋

= ⌊n
p
⌋+ ⌊ n

p2
⌋+ . . .+ ⌊ n

p⌈logp(n)⌉
⌋

=

⌈logp(n)⌉∑
k=1

⌊ n
pk

⌋

=
∞∑
k=1

⌊ n
pk

⌋.

We are able to simplify to a finite sum in the above because ⌊ n
pk
⌋ = 0 if

pk > n ⇐⇒ log(pk) > log(n) ⇐⇒ k > logp(n).

We have already seen that the natural order on the integers gives a ρp-ordering for

each p. So then

∞∑
k=1

⌊ n
pk

⌋ = v 1
p
(δ(n)) = v 1

p
(

n∏
i=0

1

p

vp(n−i)

) =
n−1∑
i=0

vp(n− i) = vp(n!)

so that we are able to recover the well-known Legendre’s formula.

We end this section with the following observation.

Proposition 26. Let S be a semi-regular subset of an ultrametric space (M,ρ). Let

Sγ1 be the partition of S described in chapter 3, that is,

Sγ1 =
n⋃

i=1

B(xi, γ1) =
n⋃

i=1

B1
i .
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Then ρ(B1
i , B

1
j ) = d = diam(S) for any i ̸= j in 1, . . . , n and ω(B1

i ) = ω(B1
j ) for all

i and j.

Proof. The fact that ρ(B1
i , B

1
j ) = d = diam(S) for any i ̸= j is clear and does not de-

pend on the fact that S is semi-regular. In fact, there are plently of ways to see this,

but for example, we simply note ρ(B1
i , B

1
j ) ∈ ΓS and γ1 < ρ(B1

i , B
1
j ) ≤ γ0 = diam(S).

To see that ω(B1
i ) = ω(B1

j ), we note that since S is semi-regular, each B1
i is

semi-regular as well. Moreover, since S is semi-regular, the β sequences of B1
i and

B1
j are the same for each i and j. Then the result follows: let δB

1
i (n) and δB

1
j (n) be

the characteristic sequences of B1
i and B1

j respectively. We see that for all k,

vγk(δ
B1

i (n)) = ⌊ n

βB(k)
⌋ − ⌊ n

βB(k + 1)
⌋ = vγk(δ

B1
j (n))

where βB(k) is the β sequence for each B1
i .

Now we have one answer to our first question: when S is semi-regular, we can

use the elements of Sγ1 to build the partition from Corollary 3. The content of that

corollary gave a formula for the valuative capacity. Then if S is semi-regular, the

principal obstacle to computing the capacity of S is the identification of the scaling

factor. This leads to our second question: when can we compute r?

4.2 Regularity

In Example 11, the fact that we were able to reduce to a finite sum was not the only

reason we were able to simplify the calculations. It also helped a great deal that

the sum was telescoping. What does the fact that we saw a telescoping sum have

to do with computing the scaling factor r? We explore the inter-relatedness of these

situations, and with the definition below, in this section.

Definition 24. Let S be a semi-regular subset of an ultrametric space. If there

exists a q ∈ N such that α(n) = q, for all n, then S is said to be regular1.

1This is non-standard: what previous authors ([Am],[CEF], [FP]) have called regular is what we
have called semi-regular. Note that S is regular in the present sense if and only if TS is regular in
the standard graph theory terminology.
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So then S is regular just in case S is semi-regular and the α−sequence of S is

constant. We need to make one more definition before we begin calculations.

Definition 25. Let S be a semi-regular subset of an ultrametric space and ΓS the

sequence of decreasing distances in S. Then we say S is tame, if for γk ∈ ΓS,

γk = α(k)ck

for some ck ∈ Q and for all k ∈ N.

Now we see what this situation means for calculations.

Proposition 27. Let S be a regular, tame subset of a compact ultrametric space with

γk = qck for some ck ∈ Q and for all k ∈ N ∪ 0. Then

vq(δ(n)) = c0n+
∞∑
k=1

(ck − ck−1) · ⌊
n

qk
⌋

and

logq(ω(S)) = lim
n→∞

c0 +
1

n

∞∑
k=1

(ck − ck−1) · ⌊
n

qk
⌋.

Proof. We know that,

vγk(δ(n)) = ⌊ n
qk
⌋ − ⌊ n

qk+1
⌋

and since γk = qck , we calculate

vqck (δ(n)) = ⌊ n
qk
⌋ − ⌊ n

qk+1
⌋
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and

vq(δ(n)) =
∞∑
k=0

ck · (⌊
n

qk
⌋ − ⌊ n

qk+1
⌋)

= c0n− c0⌊
n

q
⌋+ c1⌊

n

q
⌋ − c1⌊

n

q2
⌋+ c2⌊

n

q2
⌋ − c2⌊

n

q3
⌋

+ . . .− c⌈logq(n)⌉⌊
n

q⌈logq(n)⌉
⌋+ ⌈logq(n)⌉⌊

n

q⌈logq(n)⌉
⌋

= c0n+
∞∑
k=1

(ck − ck−1) · ⌊
n

qk
⌋.

Then since ω(S) = limn→∞ δ(n)
1
n ,

logq(ω(S)) = logq( lim
n→∞

δ(n)
1
n )

= logq( lim
n→∞

q
c0n+

∑∞
k=1(ck−ck−1)·⌊ n

qk
⌋
1
n

)

= lim
n→∞

(c0 +
1

n

∞∑
k=1

(ck − ck−1) · ⌊
n

qk
⌋).

If, as in the case of p−adic spaces, ci = −i for all i, then the above simply reduces

to limn→∞
vq(n!)

n
.

If S is semi-regular, we have already seen that the partition of S given by the

elements of Sγ1 is such that each element has equal capacity and the pairwise distance

between them is equal to the diameter of S. Now we notice that if S is regular and

tame, then so is B(xi, γ1) for each i. This gives us,

logq(ω(B(xi, γ1))) = lim
n→∞

[c1 +
1

n
·

∞∑
k=1

(ck+1 − ck)⌊
n

qk
⌋].

Putting these together, we can solve for the scaling factor. If

ω(S) = r · ω(B)
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then

logq(r) = lim
n→∞

[c0 +
1

n

∞∑
k=1

(ck − ck−1)⌊
n

qk
⌋ − c1 −

1

n
·

∞∑
k=1

(ck+1 − ck)⌊
n

qk
⌋]

= lim
n→∞

[c0 − c1 +
1

n

∞∑
k=1

((ck − ck−1)− (ck+1 − ck))⌊
n

qk
⌋].

When do we know the value of this limit? One case is obvious, namely the case

where (ck+1 − ck) = (ck − ck−1), which is guarenteed if the distances between each ck

and ck+1 is constant. In this case, we see right away that the scaling factor r is equal

to qc0−c1 . In particular, this gives an alternate proof for the fact that p·ω(pZ) = ω(Z)
and one which does not rely (directly) on any algebraic structure.

It is now clear that if we want to get the most leverage out of regularity, we

need more assumptions on our space than we did for semi-regularity. We have seen

something like this before. If S is a group with translation-invariant metric, we can

use translation invariance right away. It implies that the cosets of S modulo balls

centred at 0 all have the same capacity, which allows us to simplify the right-hand

side of the decomposition formula. If S has a multiplicative norm though, there is

one situation in which this property is distinctly more useful. That is, we get the

most use out of a multiplicative norm when the subgroups corresponding to the balls

centered at 0 are cyclic.

When S is an ultrametric space with algebraic structure, translation invariance

and scaling under a norm can be very effective tools for computing capacity. The

results of this chapter give us a sense in which we can generalize this toolkit. Indeed,

semi-regularity and regularity respectively provide the analogous notions. Semi-

regularity implies the presence of a sort of “well-balanced” partition of S that we

can use in the decomposition formula. Likewise, regularity shows us that we can

recover a notion of scaling, although as with a multiplicative norm, to get the most

out of this, the conditions have to be right.



Chapter 5

Application: Product spaces of Z

We consider now an application of the last two chapters. A natural space to consider

is the product space of ultrametric spaces, for example Zn, for some 1 < n < ∞. A

natural candidate for an ultrametric on a finite product space is given by

ρ∞(x, y) = ρ∞((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = max
i

{ρ(xi, yi)}

where ρ is the metric from the base space. We also see that no problems arise in

letting both M and ρ vary between components of the space, as long as each ρi is

an ultrametric.

Proposition 28. Let (Mi, ρi), for i in some finite index set I, be a collection of

metric spaces and suppose ρi is an ultrametric for each i. Then (M,ρ∞) is an

ultrametric space, where M = M1 × M2 × M3 × . . . × Mn and ρ∞ is the metric

described above.

Proof. Let (M,ρ∞) be the product of ultrametric spaces as above and let x and y

be two points in the space. Clearly, ρ∞(x, y) ≥ 0 since each ρi(xi, yi) ≥ 0, and

ρ∞(x, y) = 0 ⇐⇒ ρi(xi, yi) = 0, ∀i ⇐⇒ xi = yi,∀i ⇐⇒ x = y. The fact that ρ∞

is symmetric is also an easy consequence of the fact that each ρi is symmetric since

ρi(xi, yi) = ρi(yi, xi) implies maxi{ρi(xi, yi)} = maxi{ρi(yi, xi)}. To see that ρ∞ is

an ultrametric, note that if z = {zi} is any other point of M , then

ρ∞(x, y) = max
i

{ρi(xi, yi)}

≤ max
i

{max(ρi(xi, zi), ρi(yi, zi))} since each ρi is an ultrametric

≤ max(max
i

{ρi(xi, zi)},max
i

{ρi(yi, zi)})

= max(ρ∞(x, z), ρ∞(y, z)).

48
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If we are going to compute the capacity of product spaces, we must check that

compactness is preserved when taking products. By Tychonoff’s theorem, it is

enough to show that the product metric, ρ∞, gives the product topology on the

space. To do this, we adapt the proofs in Munkres ([M]), where they are given for

the analogous case of finite products of R.

Definition-Proposition 1. ([M], page 114) Suppose Xi, for i in some index set I, is

a family of topological spaces. Let πj :
∏

i∈I Xi → Xj be the map given by projection

onto the j-th component, that is, πj(x) = πj((xi)i∈I) = xj. For each j ∈ I, let Sj be

the collection

Sj = {π−1
j (Uj) | Uj open in Xj}.

Let S be the union of the Sj over j ∈ I, S = ∪j∈ISj. Then S is a subbasis that

generates a topology on
∏

i∈I Xi called the product topology.

The basis, B, generated by S in the definition above is the set of all finite inter-

sections of elements in S. That is, B ∈ B, if there exist S1, S2, . . . , Sn in S such that

B = S1 ∩ S2 ∩ . . . Sn. A useful description of the basis for the product topology also

appears in Munkres, as below:

Proposition 29. ([M], Theorem 19.2) Suppose Xi, for i in some index set I, is a

family of topological spaces and denote by Bi the basis for the topology on Xi. Let

BP =
∏
i∈I

Bi, for Bi ∈ Bi and Bi = Xi for all but finitely-many i ∈ I.

then BP is a basis for the product topology on
∏

i∈I Xi.

We can now show that the topology induced by the ρ∞ metric described above

agrees with the product topology for finite products.
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Proposition 30. Let M = (M1×M2×. . .×Mn, ρ∞) be a finite product of ultrametric

spaces and let ρ∞ be the metric described above. Then the topology induced by ρ∞

coincides with the product topology on M1 ×M2 × . . .×Mn.

Proof. (adpated from [M], proof of Theorem 20.3) Let Tρ∞ be the topology on

M1 × M2 × . . . × Mn induced by ρ∞ and let Bρ∞ be the basis for this topology.

Let TP be the product topology with basis BP . We show TP ⊂ Tρ∞ and vice versa.

For this, it is equivalent ([M], Theorem 13.3) to show that for z ∈ M1×M2× . . .×Mn

and B ∈ BP containing z, there is a basis element B′ ∈ Bρ∞ such that z ∈ B′ ⊂ B,

and vice versa.

So let z ∈ M1 × M2 × . . . × Mn and suppose B ∈ BP contains z. Since B is

in BP , B is of the form B(z1, r1) × B(z2, r2) × . . . × B(zn, rn) (since the choice of

centres is arbitrary in an ultrametric space, we may choose the components of z as

the centres without loss of generality). Let r = min{ri} for i ∈ 1, . . . , n. Then let

B′ be the ball B(z, r) in Bρ∞ . Clearly, z ∈ B(z, r) and since r ≤ ri, ∀i, B(z, r) =

B(z1, r)×B(z2, r)× . . .×B(zn, r) ⊂ B(z1, r1)×B(z2, r2)× . . .×B(zn, rn) = B.

Conversely, suppose A ∈ Bρ∞ and let y ∈ A. To find A′ ∈ BP such that y ∈ A′

and A′ ⊂ A, simply note that A itself is in BP .

We are now ready to explore the capacity in these spaces. We first show that

translation invariance carries over into product spaces under the expected conditions.

Proposition 31. Suppose (M,ρ∞) is the product of ultrametric spaces (Mi, ρi) and

each Mi is a topological group with operation +i. Let + denote the operation on

M given by s + x = (s1 +1 x1, s2 +2 x2, . . . , sn +n xn) for s = (s1, . . . , sn) and

x = (x1, . . . , xn) in (M,ρ∞). Then ρ∞ is (left) translation invariant under + if each

ρi is (left) translation invariant under +i, in which case valuative capacity is also

(left) translation invariant.
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Proof. Let (M,ρ∞) be as above. Suppose also that

ρi(xi, yi) = ρi(si +i xi, si +i yi), ∀si, xi, yi ∈ Mi,∀i.

that is, suppose each ρi is (left) translation invariant. Then,

ρ∞(s+ x, s+ y) = max
i

{ρi(si +i xi, si +i yi)}

= max
i

{ρi(xi, yi)}

= ρ∞(x, y).

so that ρ∞ is translation invariant. Proposition 20 implies that valuative capacity is

as well.

In the next proposition, we show that scaling carries over to product space as

well, although the conditions are now more restrictive. In contrast to the proposition

above, here we cannot allow the spaces to vary between components.

Proposition 32. Let (m, ρN) be an ultrametric space, where ρN is the metric induced

by some norm N . Let (M,ρ∞) be the ultrametric space formed by taking products

of m, along with the ρ∞ metric defined above. Then if ρN is multiplicative on m,

ρ∞ is multiplicative on M , in the sense that ρ∞(cx, cy) = |c|ρN ρ∞(x, y), for c =

(c, c, c, . . .), x, y ∈ M .

Proof. Let M,ρ, and ρ∞ be as above. Then,

ρ∞(cx, cy) = max
i

{ρN(cixi, ciyi)}

= max
i

{|c|ρN ρN(xi, yi)}

= |c|ρN max
i

{ρN(xi, yi)}

= |c|ρN ρ∞(xi, yi).

Corollary 6. Let S be a subset of (M,ρ∞), where M is the product of an ultramet-

ric space (m, ρN), which is itself a normed vector space with a multiplicative norm
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inducing ρN . If c = (c, c, c, . . .) is an element of M with constant value on each

component, then ω(cS) = |c|ρN ω(S).

Proof. The result follows by noting that if {aj}∞j=0 is a ρ∞ ordering of S, then {caj}∞j=0

is a ρ∞ ordering of cS.

We now introduce two examples, the details of which make up the rest of this

chapter.

Example 12. Let (Zp×Zp, ρp,∞) be the metric space with elements {(x, y) | x, y ∈ Z}
and metric ρp,∞((x1, x2), (y1, y2)) = max(ρp(x1, y1)), ρp(x2, y2)), where ρp is the p-adic

metric for some fixed prime p. Since ρp is translation invariant and multiplicative,

valuative capacity is also translation invariant and multiplicative in (Zp × Zp, ρp,∞).

Example 13. Let (Zp1×Zp2 , ρP,∞) be the metric space with elements {(x, y) | x, y ∈
Z} and metric ρP,∞((x1, x2), (y1, y2)) = max(ρp1(x1, y1)), ρp2(x2, y2)), for two distinct

primes, p1 ̸= p2, where both ρpi are p-adic metrics. Since each ρpi is translation

invariant in Z, valuative capacity will be translation invariant in (Zp1 × Zp2 , ρP,∞);

however, unlike the case of p1 = p2, this space does not have a multiplicative property

that allows for scaling.

What is the valuative capacity of (Zp × Zp, ρp,∞) from Example 12? Suppose

p = 2. Using translation invariance, scaling and decomposition, we can compute the

result by first noting that we can write Z2 × Z2 as a union, as below,

Z2 × Z2 = (2Z2 × 2Z2) ∪ (2Z2 × 2Z2 + 1) ∪ (2Z2 + 1× 2Z2) ∪ (2Z2 + 1, 2Z2 + 1).

Since the pairwise distances on the right-hand side are always 1 = diam(Z2×Z2),

the decomposition formula implies that
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1

log(ω(Z2 × Z2))
=

1

log(ω(2Z2 × 2Z2))
+

1

log(ω(2Z2 × 2Z2 + 1))

+
1

log(ω(2Z2 + 1× 2Z2))
+

1

log(ω(2Z2 + 1× 2Z2 + 1))

=
4

log(|2|2 · ω(Z2 × Z2))

=
4

log(1
2
· ω(Z2 × Z2))

.

Then,

4 · log(ω(Z2 × Z2)) = log(
ω(Z2 × Z2)

2
)

so that ω(Z2 × Z2) is a solution of the equation x4− x
2
, for which there is a single

real positive root, given by 2−1/3.

To compute the valuative capacity for a 2-fold product for an arbitary prime p,

note that we can always decompose Zp ×Zp into a union of p2 sets, each of the form

{(pZp + s) × (pZp + t)} for s, t ∈ (0, . . . , p − 1), and the pairwise distance between

these sets will always be 1 = diam(Zp × Zp). (To see this, either note that we can

always find co-prime elements, or note that each set is a closed ball of radius 1/p

centred at (s,t) and so the distance between them must be greater than 1/p, and 1

is the only possible distance greater than 1/p in Zp × Zp). Then, we combine our

tools as before to obtain the equation,

1

log(ω(Zp × Zp))
=

p2

log(|p|p · ω(Zp × Zp))
=

p2

log(1
p
· ω(Zp × Zp))

.

In turn, we have

ω(Zp × Zp)
p2 =

ω(Zp × Zp)

p

so that ω(Zp × Zp) is a solution of the equation xp2 − x
p
= x(xp2−1 − 1

p
) = 0

over R. Since R is a field, this means the positive solutions are given by solving

xp2−1 − 1
p
. Solutions of this equation are of the form p

−1

p2−1 times a p2 − 1 root of
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unity, and so there is exactly one positive, real solution, namely p
−1

p2−1 itself. Thus

the valuative capacity of the entire product space Zp × Zp is p
−1

p2−1 . In fact, from

here it is not hard to see that by taking the n-fold product, we would end up with

the same equation except that the exponent of p would become n rather than 2. We

arrive at the following result:

Proposition 33. Let M = (Zn
p , ρp,∞) be the ultrametric space with points equal to

the n-fold product of (Z, ρp) (for n < ∞) for some fixed prime p. The valuative

capacity of M is (1
p
)

1
pn−1 .

Proof. Above.

Taking n = 1, we see that this agrees with the valuative capacity of Z computed

in the second chapter.

What about (Zp1 ×Zp2) for distinct primes? These spaces do not admit a scaling

property, so the same toolset is not available. They are, however, semi-regular, so

we know that

vγk(σ(n)) = ⌊ n

β(k)
⌋ − ⌊ n

β(k + 1)
⌋ =

α(k)−1∑
j=1

⌊n+ j · β(k)
α(k)β(k)

⌋.

Suppose p1 = 2 and p2 = 3. Recall that the α sequence of S = (Z2 × Z3) counts

the number of closed balls of radius γk+1 partitioning a closed ball of radius γk. In

this case, ΓS is the non-positive powers of 2 and 3 sorted into decreasing order, so

that ΓS starts {1, 1
2
, 1
3
, 1
4
, 1
8
, 1
9
, . . .} and α(S) starts {6, 2, 3, 2, 2, 3, 2, 3, 2, . . .}. The β

sequence of S, which counts the number of distinct balls of a fixed radius, then starts

{6, 12, 36, 72, 144, . . .}.

We know that the capacity of S will be a product of some negative power of 2

and some negative power of 3. From Lemma 6, we know that when α(k) = 2, we have

vγk(δ(n)) = ⌊n+ β(k)

2 · β(k)
⌋
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and when α(k) = 3, we have

vγk(δ(n)) = ⌊n+ β(k)

3 · β(k)
⌋+ ⌊n+ 2 · β(k)

3 · β(k)
⌋.

We also know that if α(k) = 2, then γk must be a (negative) power of 2, and

likewise if α(k) = 3, then γk is a power of 3.

Let us first explore the exponent of 2 in δ(n). We start by noting that if γk is

some 2−i, then

vγk(δ(n)) = ⌊n+ 2i · 3j

2i+1 · 3j
⌋

since there will be a copy of 2 in β(k) for every occurence of 2 in α(0), . . . , α(k),

which is also what i counts. So then, the exponent of 1
2
in the nth characteristic

sequence of S is
∞∑
i=1

i · ⌊n+ 2i · 3j

2i+1 · 3j
⌋.

What can we say about j, the exponent of 3?

Lemma 8. Let S = (Z2 × Z3) and consider the kth element of the β sequence of

S, β(k) = 2i · 3j. If k is such that γk = 2−i for some i, then j counts the numbers

a ∈ Z≥0 such that 3a < 2i.

Proof. ΓS is strictly monotone decreasing and each γk is equal to a non-positive

power of 2 or 3. If γk = 2i, then all non-positive powers of 3 and 2 which are greater

than 2i must be equal to some γj, 0 ≤ j < k. That is, 2i only appears in the ΓS

sequence after all larger powers of 2 and 3 have been exhausted. Since we are only

considering the case γk is a power of 2, this includes all of the smaller powers of 3.

Now note that

3a < 2i ⇐⇒ log2(3
a) < log2(2

i) ⇐⇒ a · log2(3) < i.

So now we are reduced to counting the number of non-negative integers a that

satisfy this last inequality for a given i. The number of such a’s will simply be the the
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value of the largest a plus 1 since a satisfying the relation implies all 0 ≤ a′ ≤ a solve

the relation. Then, we are in fact reduced to finding the largest a ∈ Z that satisfies

a < i
log2(3)

, but this is exactly ⌊ i
log2(3)

⌋. This in turn gives j = ⌊ i
log2(3)

⌋+1 = ⌈ i
log2(3)

⌉,
since i

log2(3)
is never an integer. We now revisit our expression for the exponent of 1

2

and substitute our new found value for j:

∞∑
i=1

i · ⌊n+ 2i · 3⌈
i

log2(3)
⌉

2i+1 · 3⌈
i

log2(3)
⌉
⌋ =

∞∑
i=1

i · (⌊ n

2i · 3⌈
i

log2(3)
⌉
⌋ − ⌊ n

2i+1 · 3⌈
i

log2(3)
⌉
⌋). (5.1)

A symmetric argument shows that exponent of 1
3
in the nth element of the

ρ∞−sequence of S is

∞∑
i=1

i · (⌊n+ 2
⌈ i
log3(2)

⌉ · 3i

2
⌈ i
log3(2)

⌉ · 3i+1
⌋+ ⌊n+ 2

⌈ i
log3(2)

⌉+1 · 3i

2
⌈ i
log3(2)

⌉ · 3i+1
⌋). (5.2)

The sums that appear in (5.1) and (5.2) are real numbers that we, at present,

know little about. However, the aperiodicity of the sequences ⌈ i
log2(3)

⌉ and ⌈ i
log3(2)

⌉
over i leads us to believe, but not prove, that each of the sums are irrational. We

have the following conjecture.

Conjecture 1. Finite products of (Z, ρpi) for distinct primes, pi, have transcenden-

tal valuative capacity.

What can we say about the infinite product of either Zp, for some fixed prime p

or Zpi for each prime? For a fixed prime p, we can observe that (1
p
)

1
pn−1 is a mono-

tone, increasing sequence in n with limn→∞(1
p
)

1
pn−1 = 1 and in fact, the sequence

{(0, 0, . . .), (1, 0, . . .), (0, 1, . . .), . . .}, in which the first element has only zeros and the

n-th element has a single 1 in the (n−1)-th component, is a ρ−ordering. This might

lead us to wonder if valuative capacity can obtain the diameter of the space. We are
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immediately met with a problem however.

Compactness has played no small role in this work. Indeed, we have a definition

of valuative capacity only for compact subsets. We are now naturally left to ask

whether the product topology on infinite products of ultrametric spaces coincides

with the ρ∞ metric. In this case, as in the analogous case of infinite copies of R
and a uniform metric, the answer is negative (at least in general). Although, we

can find a metric that realizes the product topology on infinite copies of ultrametric

spaces (adapting the analogous case from copies of R), there is nothing canonical

about this construction. Although this is, on the one hand, a disappointment, on

the other hand, it suggests a new avenue to explore: can we define valuative capacity

for locally compact spaces, and if so, is capacity computable for any of these spaces?



Chapter 6

Conclusion

Traditionally, the capacity of a metric space indicates the extent to which points, or

charges, can spread out within the space. By leveraging number-theorectic concepts

introduced by Bhargava and K. Johnson, we have explored some properties of capac-

ity in novel spaces. As part of this process, we have seen that some classical results

carry over, and at the same time some new results, unique to our setting, have been

introduced.

For example, we have seen that capacity in ultrametric spaces respects translation

and scaling actions, as it does over C, and submits to a decomposition formula. On

the other hand, we have also seen that, in an ultrametric space, the way in which

these spaces decompose interacts with the computability of capacity. In the final

chapter, we examined spaces that lacked a field structure and which decomposed in

an aperiodic way. In this case, this aperiodic decomposition meant that not only

was a closed form for capacity eluded, but it also led us to doubt the algebracity of

capacity in this setting.
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Appendix A

Maple Code

In this appendix, we include for reference the Maple code that was used to investigate

the capacity of product spaces. The result of this investigation also influenced the

development of Chapters 3 and 4. There are three procedures listed here.

1. The first procedure, ComputePadicProductOrdering, takes as input a list in-

dicating a finite set of primes, p1, . . . , pn, and an integer m and returns the

first m terms of a ρ∞−ordering of (Zp1 × . . .×Zpn). This is done explicitly by

following the algorithm described in Chapter 3.

2. The next procedure, ComputePartialRhoSeq, computes the resulting ρ∞−sequence

for a product space by multiplying out the distances given by a ρ∞−ordering.

It takes as input a metric and a matrix representing a ρ∞−ordering for a prod-

uct space and returns a number indicating the value of the nth characteristic

sequence, where n is the row dimension of the input matrix. These two pro-

cedures therefore result in the naive computation of the partial characteristic

sequence of a product space, found by explicitly calculating a ρ∞−ordering and

the ρ∞−sequence in turn.

3. The final procedure, FastPartialRhoSeq, exploits the fact that the terms oc-

curring in the characteristic sequence of a product space are all powers of the

primes specifying the space. It takes as input the (beginning of) the sequence

of decreasing distances and a list of primes, specifying the space. If k distances

are specified in A, it returns the β(k)th term in the characteristic sequence,

where β is the structure sequence.
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1 with ( LinearAlgebra ) :

2 with ( combinat , cartprod ) :

3 with ( padic ) :

4

5 ComputePadicProductOrdering := proc (m, components )

6 # Given a l i s t o f primes , p 1 , . . . , p n , compute the f i r s t m terms o f a

p− i n f i n i t y o rde r ing o f Z p1 x . . . x Z pn , where

p− i n f i n i t y (x , y )=max( p j ( x j , y j ) ) and p j i s the p j−ad ic metr ic .

7 # arg m; an i n t e g e r i n d i c a t i n g the number o f e lements o f the o rde r ing to

re turn

8 # arg components ; a l i s t o f prime numbers i n d i c a t i n g the components o f

the product space

9 # return ; a matrix where each row i s an element in the product space and

the i−th row i s the i−th element in an orde r ing

10

11 local numberOfComponents , co pr imes , i , n , T, M, v , d i s tance s , j ,

M1, newBlock ;

12

13 #w i l l end up with one column per component in the product space

14 numberOfComponents := nops ( components ) ;

15

16 #the orde r ing w i l l s t a r t with the c a r t e s t i a n product o f coprime e l t s

from each component

17 #everyth ing up to p−1 i s coprime

18 co pr imes := [ [ seq ( i , i = 0 . . ( components [1 ]−1) ) ] ] ;

19 for n from 2 to numberOfComponents do

20 co pr imes := [ op ( co pr imes ) , [ seq ( i , i = 0 . .

( components [ n]−1) ) ] ] ;

21 od ;

22

23 #then take the c a r t e s t i a n product to get the f i r s t <product o f

e lements in components> e lements in the o rde r ing

24 T := cartprod ( co pr imes ) ;

25 M := Matrix ( [T[ ’ nextvalue ’ ] ( ) ] ) ;
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26 while not T[ ’ f i n i s h ed ’ ] do

27 M := <M; T[ ’ nextvalue ’ ] ( ) >;

28 end do ;

29

30 #make a l i s t to keep track o f the exponent o f each prime ; s t a r t by

take each prime to the power −1

31 v := Vector [ row ] ( 1 . . numberOfComponents , 1) ;

32 v := convert (v , l i s t ) ;

33

34 #keep adding rows un t i l you have enough po in t s in the o rde r ing

35 while RowDimension (M) < m do

36 #take each prime to the power o f minus the e lements in v

37 d i s t an c e s := z ip (proc (x , y ) options operator , arrow ; xˆ(−y ) end

proc , components , v ) ;

38 #check each column to see i f the max d i s t anc e was achieved

39 for j from 1 to numberOfComponents do

40 #i f i t was then s p l i t t h i s column

41 i f d i s t an c e s [ j ] = max( d i s t an c e s ) then

42 #take a snapshot o f M be fo r e you s t a r t − t h i s i s what you

have to add to

43 M1 := copy (M, deep ) ;

44 #c r ea t e p−1 new b locks

45 for i from 1 to ( components [ j ]−1) do

46 newBlock := copy (M1, deep ) ;

47 newBlock ( 1 . . RowDimension ( newBlock ) , j ) :=

Column( newBlock , [ j ] ) +˜ ( i ∗components [ j ] ˆ v [ j ] ) ;

48 #add the new block to the master matrix

49 M := Matrix ( [ [M] , [ newBlock ] ] ) ;

50 od ;

51 #update the vec to r o f exponents

52 v [ j ] := v [ j ] + 1 ;

53 end i f ;

54 od ;

55 end do ;
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56 return M[ 1 . .m, ] ;

57 end proc ;
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1 with ( LinearAlgebra ) :

2 with ( combinat , cartprod ) :

3 with ( padic ) :

4

5 ComputePartialRhoSeq := proc (S , rho )

6 # Given an m by n matrix S whose columns r ep r e s en t po in t s o f an

n−component product space and that has as i t s i−th row the i−th term

in a rho−orde r ing o f that space , compute the (m−1)−th p a r t i a l sum of

the rho−sequence

7 # note that S and rho must be compatible and no check ing i s done to

ensure t h i s

8 # arg S ; an n by m matrix r ep r e s en t i ng a rho−order ing , f o r example as

c r eated by ComputePadicProductOrdering

9 # arg rho ; a compatible metr ic on the po in t s ( rows ) in S

10 # return ; a r e a l number , cor repsond ing to the (m−1)−th term o f the

p a r t i a l rho−sequence

11

12 local lastTerm , f , d i s tance s , nthTerm ;

13

14 #f i nd the l a s t element in the o rde r ing

15 lastTerm := S [ RowDimension (S) , ] ;

16

17 #make a func t i on that c a l c u l a t e s the d i s t anc e from the i−th row o f S

to the l a s t term in the o rde r ing

18 f := proc ( i ) options operator , arrow ; rho ( op ( convert ( lastTerm ,

l i s t ) ) , op ( convert (S [ i , ] , l i s t ) ) ) end proc ;

19

20 #run over each row to get the s e t o f a l l m−1 d i s t an c e s

21 d i s t an c e s := map( f , [ seq ( i , i = 1 . . (RowDimension (S)−1) ) ] ) ;

22

23 #mult ip ly them to get the (m−1)−th term o f the rho−orde r ing

24 part ia lSum := mul ( d i s t an c e s ) ;

25

26 return part ia lSum
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27 end proc ;
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1 FastPart ia lRhoSeq := proc (A, p := [ 2 , 3 ] )

2 # Given a s e t o f d i s t an c e s A f o r a product spaces s p e c i f i e d in p ,

compute the exponent o f each prime in the p a r t i a l c h a r a c t e r i s t i c

sequence

3 # arg A; a vec to r i nd i c a t i n g the sequence o f de c r ea s ing d i s t an c e s in

Z p i

4 # arg p ; a l i s t o f prime numbers i nd i c a t i n g the components o f the

product space

5 # return ; the beta (k ) ˆ th term in the c h a r a c t e r i s t i c sequence , where beta

i s the s t r u c tu r e sequence and k i s the l ength o f A

6

7 local g , h , computePowers , n , shortA , primeExponents , i , thisPrime ,

thisPrimeIndex ,B, G, powers , powersOfG , thisPrimeSum ;

8

9 #=== Some he lpe r f unc t i on s ===#

10 #Return the index o f every in s t anc e o f p−mul t i p l e s in a l i s t

11 #Use to f i nd the index o f a g iven prime in A

12 h := proc ( i , L , p ) i f L [ i ] mod p = 0 then return i else return NULL f i ;

end proc ;

13

14 #Count the number o f t imes the mth element has appeared as a f a c t o r

f o r the 1 . .m f i r s t e lements in a l i s t

15 #Use to compute the ( dec r ea s ing ) sequence o f d i s t an c e s in A or a

subset o f A

16 g := proc (m, L)

17 local basePrime ;

18

19 basePrime := L [m] ;

20

21 #s i n c e we j u s t want the exponent not ac tua l d i s t anc e j u s t compute

what power t h i s would be

22 return ordp (mul (L [ 1 . .m] ) , basePrime ) ;

23

24 end proc ;
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25

26 #Compute the appropr ia te power o f an element o f G

27 computePowers := proc (m, L)

28 local power ;

29

30 i f m=nops (L) then

31 power := L[−1]−1;

32 else

33 power := mul (L [ (m+1) . . nops (L) ] ) ∗ (L [m]−1) ;

34 end i f ;

35 return power

36 end proc ;

37

38 #compute n , then c r e a t e a copy o f A with the f i r s t element de l e t ed to

ease the index ing

39 n := mul (A) ;

40 shortA := A[ 2 . . nops (A) ] ;

41

42 #compute the terms corrsponding to each prime given

43 primeExponents := Vector ( ) ;

44 for i from 1 to nops (p) do

45 #pu l l out the prime

46 thisPr ime := p [ i ] ;

47

48 #f i r s t get the index in A o f t h i s prime

49 thisPr imeIndex := map(h , [ seq ( i , i =1. . nops ( shortA ) ) ] , shortA ,

th isPr ime ) ;

50 B:= shortA [ thisPr imeIndex ] ;

51

52 #then f i nd the ( exponents f o r the ) d i s t an c e s occur ing with t h i s prime

53 G:= map(g , [ seq ( i , i =1. . nops (B) ) ] ,B) ;

54

55 #Figure out what power each d i s t anc e should be r a i s e d to

56 powers := map( computePowers , thisPrimeIndex , shortA ) ;



69

57

58 #r a i s e each element in G to the g iven powers

59 powersOfG:= z ip (proc (x , y ) options operator , arrow ; x∗( y ) end proc ,

G, powers ) ;

60

61 #the exponent o f t h i s prime in the nth p a r t i a l w i l l be −([ the sum of

the e lements in powers ] / n) , where n i s the product o f e lements in

A ( in c l ud ing the f i r s t element )

62 thisPrimeSum := add ( powersOfG ) ;

63 primeExponents ( i ) := thisPrimeSum/n ;

64

65 end do ;

66

67 return primeExponents ;

68

69 end proc ;


	Title Page
	Table of Contents
	Abstract
	Acknowledgements
	Introduction
	Logarithmic capacity
	P-orderings

	Capacity and Ultrametric spaces
	Ultrametric basics
	-orderings, -sequences, and valuative capacity

	-orderings and the structure of S
	The structure of TS
	Semi-regularity
	Regularity

	Application: Product spaces of Z
	Conclusion
	Bibliography
	Maple Code

