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Abstract

The system operator faced high level of uncertainties due to the evolving complexity
of the electric power systems. Therefore, efficient solutions for power system predic-
tion, monitoring and state estimation can be found in new methods. These methods
improve the secure operations of the network.
This thesis covers three different state estimations incorporating static, tracking, and
dynamic state estimation in order to estimate all possible operating conditions of
power systems.
This research also introduces new meta heuristic methods such as stochastic and frac-
tal search technique. The SFS technique is implemented in real time nonlinear power
system applications under various scenarios. New methodology of multilayer neural
networks exhibited in composite typologies are proposed in this thesis to improve
the estimation performance. Optimized Neural Network by Stochastic Fractal Search
technique is used and applied to both tracking and dynamic state estimation. The
proposed methods are validated utilizing diverse benchmark optimization methods.
The combination of conventional and synchronized measurement is also studied in
this thesis. This is used to increase the reliability of electric power systems in real-
time.
Additionally, the research is extended to evaluate the benefits of multiarea state es-
timators and how it uses to reduce the computational time.
Finally, all formulations proposed in this work were validated in different IEEE test
systems.
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Chapter 1

Introduction

1.1 Motivation

Reliable operation of today’s large electric power systems heavily depend upon the
state estimation techniques for different applications. These estimators give impor-
tant measurement used for different application functions of control center. Therefore,
a computationally efficient and robust state estimator is an important tool to improve
the performance, security and safety of the power delivery system.

State estimation (SE) is becoming one of the key functions in the distribution
control centers in the deregulated and competitive environment [1]. The state esti-
mation of electric power system is an imperative part of modern energy management
system (EMS).
The major goal of the research will be proposing new robust techniques include meta-
heuristic, artificial intelligent, and decoupling techniques in several SE types such as
static, tracking, and dynamic state estimation to prevent the security risks in the
modern electric grids. And also to provide us with a reliable power system operation
exhibited in less computational time (a few seconds), detection and identification of
bad measurements, and robustness.

The state estimation of electric power system utilizes the redundancy of data
brought by SCADA to enhance the precision of data, automatically exclude error
messages brought on by arbitrary interference, and estimate the running condition of
the system. Engineers in the control center utilize the yields of the state estimation
process as the base for incident analysis. In the incident analysis, they decide potential
operational issues, and provide operational direction to maintain a strategic distance
from these issues, and in addition, conceivable reactions brought on by these activities.

State estimation expected to perform in under a second to allow operators the
ability to detect, identify and react to any abnormal status.

A general state estimation process used in power delivery systems involves the

1



2

following functions: [2]
• Network topology analysis: This is used to determine the real time network struc-
ture based on digital measurements.
• Observability analysis: This is utilized to find whether the power system is ob-
servable based on the available measurements. If the system is not-observable then
pseudo-measurements will be added to make the system observable. Only observable
parts of the system can be estimated. If the rank of the measurement Jacobian matrix
is equal to the number of state variables, then network is observable [3].
• State estimation computation: This is used to estimate the state of the system ac-
cording to the usable measurements. The state estimation computation encompasses
the bad data detection and identification process.
• Bad data analysis: This is used to detect and identify bad data in the measurement
data sets based on the analysis of measurement residuals. When accurate estimate is
failed to be determined, it is either due to the bad data, or modeling error, or both.
If any bad data are detected, it will be removed from measurement set and state
estimation will be repeated.

1.2 Thesis Objective

For the achievement of the objective, the research method involves the following:
1. Combined studies of both state estimation includes static, tracking, and dynamic
estimation and three different techniques include neural network, meta-heuristic, and
decoupling techniques.
2. Detect and identify bad measurements in distribution power system to eliminate
these measurements to increase the reliability of SE.
3. Contingency analysis is one of a challenge part in electrical networks, so we can
use the SE to evaluate the type of emergency.
4. Reduce the security risk in electric grid by enhancing PSSE exhibited in robust
performance and less computational time.
5. Comparison between these techniques to determine the capabilities.
6. Design a Matlab program to solve the Power System State Estimation problem
with different techniques.
7. Modify the existence test system to be used in testing the Matlab program.
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8. Test the PSSSE program using different test systems which are used to test the
PSSE solution.

1.3 Thesis Contribution

The contributions of this thesis can be stated as follows:
1. Propose and test a new mathematical optimization techniques include meta heuris-
tic and artificial intelligent.
2. Study different state estimations including static, tracking, and dynamic state
estimations in order to estimate all possible operating conditions of power system.
3. Propose new methodologies of multilayer neural typologies to improve the estima-
tion performance.
4. Propose different hybrid optimization technique such as optimized neural network
parameters by stochastic fractal search technique.Then, apply these techniques to
tracking and dynamic state estimations.
5. Asses the advantage of multi area state estimation using new proposed methods.
6. Study the benefit of gradually combing PMU measurement with conventional mea-
surement.
7. Develop the proposed methods to improve the estimation performance.
8. Compare the proposed methods to various benchmark optimization techniques.
9. Validate the proposed methods using different IEEE bus systems.

1.4 Thesis Outline

This thesis is organized to six chapters and six appendices as follows:

Chapter 1 This chapter includes the motivation, the objectives of the thesis, the
major contributions and the thesis outline.

Chapter 2 This chapter contains literature review for the four power system
state estimation problems under consideration include the state estimation, supervi-
sory control and data acquisition, energy control center, and the contingency analysis
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problems.

Chapter 3 This chapter will cover hourly electricity price forecasting using com-
posite multilayer neural network. This includes hybrid parallel and hybrid cascade
topologies .

Chapter 4 This chapter solves dynamic state estimation problem under com-
munication failure using hybrid optimization technique. Stochastic Fractal Search is
used to optimized multilayer perceptron neural network parameters.

Chapter 5 This chapter is the extension of previous chapter. This chapter applied
to the improved hybrid optimization technique to solve the tracking state estimation
problem under several contingency conditions.

Chapter 6 This chapter covers the conclusion and future work.

Appendix A This appendix applies the main contribution of chapter 3, compos-
ite multilayer neural network to solve static state estimation problem.

Appendix B This appendix solves the tracking state estimation problem under
bad measurement condition using Stochastic fractal search technique.

Appendix C This appendix solves the tracking state estimation problem under
sudden load changing condition using Stochastic fractal search technique.

Appendix D This appendix solves the static estimation problem using modified
stochastic fractal search technique.This appendix improves the original stochastic
fractal search technique to obtain accuracy along with speed calculation.

Appendix E This appendix evaluates the impact of phasor measurement units
on the accuracy of state estimation. This appendix uses hybrid back propagation
neural network with stochastic fractal search technique.
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Appendix F This appendix presents hybrid stochastic fractal search technique
with simulated annealing algorithm to solve multi area state estimation problem.



Chapter 2

Literature Review

2.1 Introduction

This chapter provides an overview of power system operation and the function of
state estimators in the energy management system. This includes state estimation,
the operating condition of a power system, and power system security analysis.

2.2 State Estimation

In dependable operation of the power system, a robustness, less computational time,
and accurate state estimation is a fundamental for most energy administration system
implementations in control centers [4].

In general, a state estimation utilizes for characterizing a reliable assessment of
the power state vectors incorporate bus voltage magnitudes and angles from system
parameters, basic information, and an arrangement of real time available data in-
cluding net active and reactive power injections and flows. Bad measurements are
recognized and cleansing with a specific end goal to state estimator gives a dependable
information base for power system operation and control. The estimation framework
chooses how well the state estimator performs this limit[5]. An iterative technique for
computing the state estimate and concepts of detecting and identifying the errors of
the model is discussed in [6]. The key thoughts of essential a static-state estimator is
presented and arranged into three sections, part I, clarifying the scientific issues and
general calculations for state estimation, In part II, examining several approximate
scientific models and it is resulted simplification in estimation in case of detection and
identification, and in part III, diverse execution issues associated with dimensionality,
PC rate and limit, and the time changing nature of real power systems are discussed.

Linear programming (LP) is presented in [7] to minimize the weighted sum of
the absolute values of the measurement residuals. The sequence of linear programing
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strategy first recognizes the bad measurements using the measurement residuals of
those data rejected by the LP estimator. At that point, the bad data is identified
and eliminated by assessing the data errors of the zero residual measurements. The
execution of the proposed procedure is attempted and the results are shown, using
AEP’s 14, 30, 57 and 118 bus power systems.

Another computational strategy is proposed in [8] for solving equality constraint
in PSSE without the Lagrange multipliers. It is an imperative to process a complete
fractional factorization (L, U) of grid which improve numerical modeling. Further ex-
amination is required for the treatment of basic estimations. Critical measurements
have zero residuals and, in this case, these measurements are proportional to equality
constraints. The technique was shown to perform viably on a couple of viable mea-
sured examples. Standardized residuals can be prepared proficiently with the new
technique.

A new methodology of artificial neural networks topology based on topology pro-
cessing and static state estimation is proposed in [9]. Two ANN based on models
include the counter-propagation network (CPN) and functional link network (FLN)
compared in order to determine topology transforming and static state estimation
on several IEEE test systems include 14, 19, 57 useful Indian system. Moreover, the
Hopfield neural network and the conventional fast decoupled state estimator (FDSE)
have been determined and compared. It is concluded that the ANN based on models
has the least CPU time and much faster, and function accurately notwithstanding for
non- Gaussian noise.

Ali Abur and Antonio Goomez Expoosito [10] proposed a technique in 1997 which
investigates the problem of bad data identification for power systems containing line
current magnitude measurements. Two commonly used state estimation methods
(Least Squares and Least Absolute Value) and the associated bad data identification
techniques are studied. The definitions for the critical and redundant measurements
are modified in order to account for the non-uniquely observable systems where line
current measurements play a critical role in the network observability determination.
A post estimation procedure that checks the unique redundancy of the candidate
measurements to be eliminated is proposed. Numerical examples are included to
illustrate the proposed procedure.
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In 1998, Hua Wei H. et al [11] proposed, a new Interior point algorithm to solve
the power system weighted non-linear state estimation problem. The effectiveness of
the proposed algorithm has been verified by the extensive simulating computations.

In [12], the authors introduced another system focuses on the neural network
prepared by prop algorithm, in which topological perceptibility is considered. The
sufficiency of preparing of the system is tried by feeding some novel information
designs that were excluded in the preparation set and the yield results acquired were
accepted by looking at the results from alternate techniques.

In [13], Hopfield neural network (HNN) and Parallel Genetic algorithm (PGA)
applied in neural network in term of the best robust static state estimation method
on 5 bus test system. It is concluded that Hopfield method has a long training time
and Parallel Genetic method provides the optimal converge which is not rely on initial
values.

In 2004, Mai-Hoa Vuong et al [14] proposed a method for determining redundant
and pseudo-measurement locations to enhance reliability of detection and identifica-
tion of topology errors. Its effectiveness is the low number of redundant measurements
needed and the systematic positioning of pseudo- and redundant measurements. Di-
rections for future work include noisy data containing bad values, and system parame-
ter estimation. Also, the results obtained were sufficiently encouraging to incorporate
the method in the modeling of real-time external equivalents network for static secu-
rity analysis.

In [15], the authors presented another system focused around the artificial neural
network method in order for deciding the recognizability of the power systems pro-
posed a strategy on prop algorithm. Notwithstanding the standard back-propagation
algorithm additionally presented.

In 2006, Bei Gou [16] designed numerical algorithms to determine observable is-
lands and to decide pseudo-measurements to merge all islands of a measured network.
It is shown that transforming the measurement Jacobian matrix by Gaussian elim-
ination is possible to obtain all the necessary information for observability analysis.
This constitutes the main contribution of this paper. Results of test examples are
provided to illustrate the proposed algorithms. Implementation of the algorithms is
easy since Gaussian elimination is the only computation required.
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In 2009, Antonio Gómez-Expósito [17] proposed, a two-level hierarchical estima-
tion methodology, arising from a factorization of the conventional WLS nonlinear
model. In the first step, a majority of raw measurements are processed by a lin-
ear State Estimation. The results of this step comprising both state variables and
associated covariance are then passed to a conventional nonlinear State Estimation.

In 2009, M. R. Irving [18] proposed a robust generalized state estimator method.
The use of binary decision variables throughout allows all three types of gross errors
to be judged on a comparable basis. Simultaneous gross errors in measurements,
parameters, and topology can be identified and corrected. The computational effort of
solving the required mathematical program probably limits the practical application
of the method to relatively small networks, or sections of the network.

In 2010, Eduardo Car et al [19] proposed a procedure to identify the on/off statuses
of breakers at substations throughout a power network. It is intended as a structural
data preprocessor prior to running a state estimator. The procedure relies on a dc
model of power lines and bus-bars, and requires the solution of a well-behaved mixed
integer quadratic programming problem.

George N. Korres [20] proposed a robust method in the year 2010 for the solu-
tion of the power system state estimation with equality constraints. In this method
the formulated coefficient matrix has a unique triangular factorization which can be
accomplished symbolically using only the sparsity criterion.

In 2011, Tao Yang et al [21] proposed a decentralized two-level linear state esti-
mator based on the phasor measurements. The main contribution in this paper is
that this two-level processing removes the bad data and topology errors, which are
major problems today, at the substation level. In Part I of the paper, the layered ar-
chitecture of databases are discussed, communications, and the application programs
that are required to support this two level linear state estimator. In Part II, the
mathematical algorithms that are different from those in the existing literature are
explained.

In 2011, Farrokh Aminifar et al, [22] presented a model for the PMU placement
that considers observability requirements according to a set of probabilistic criteria.
The PMU placement incorporates the stochastic nature of components and their
outage probabilities. The nonlinear expression associated with the probability of
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observability index is converted to a linear representation by an effective linearization
technique. The proposed mathematical model is therefore compatible with the MIP
solution tools. The approach considers the PMU placement in a staged time span.

In 2011, H. T. Kung et al [23] proposed a new method called separation based
method, for detecting and also identifying bad measurements in compressive sens-
ing. If errors introduced by bad measurements are small, then the separation-based
method requires a smaller number of good measurements than the previous method
based on joint l1- minimization. In this method it has been told that if there are suf-
ficient good measurements, the joint l1- minimization works independently of error
magnitudes. That is, if the joint method fails due to an insufficient amount of good
measurements, then they proposed the separation-based method, as it can survive
with a smaller number of good measurements.

Gavrilas [24] proposed a multilayer perceptron for the static state estimator and
employed on IEEE 14 bus test system. It is proven that ANN estimator can provide
less CPU time compared to conventional estimation algorithms in case of bus voltage
varies dues to load conditions and there is no change on operating system. Also the
results of IEEE 14 bus system have a precise estimation.

2.3 The operating condition of a power system

As the operating states change, the system undergoes into one of three potential
states include normal, emergency and restorative states. A power system is consid-
ered to operate in a normal condition if both loads and operating constraints are not
violated. In other words, the demands of all customers are met by the operation of
both generation and transmission system. Operational constraints include the limits
on bus voltage magnitudes, standard frequency and the limits on the transmission
line flows. When small relative changes in loads occurred, the system is assumed to
operate in a quasi-steady-state condition. This leads the system to move from one
normal condition to another. Moreover, the security of normal state is based on the
ability of the system to remain in a normal condition even after the occurrence of a se-
vere disturbance [25], [26]. Three common emergencies are studied. The steady-state
emergency, the system remains stable with secure operating constraints. However,
the system remains vulnerable with respect to some of the considered disturbances.
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This type of emergency condition is endured for a short period of time. Proper cor-
rective control action should be taken to prevent its move into emergency state. The
emergency state which occurs when some of the operating constraints violated, while
the power system continually supplies power to all the loads. Operators should take
corrective action to bring the system back to a normal state. The extreme emergency
state occurs when both the operating and the load constraints are not satisfied. This
causes the power system to become unstable. An immediate corrective control action
must be taken to prevent the system collapse such as disconnecting various equipment
include loads , lines, and transformers. This will limit the violations and recover the
system stability. Then, the load-generation balance restored to start supplying power
to all the loads [27]. The state diagram in Figure 2.1 shows the possible transitions
between the various operating conditions defined above [28].

Figure 2.1: Power System Operating States



12

2.4 Power System Security Analysis

Due to the change in operating conditions during daily operation, the normal secure
state is considered as the main goal of the system operator. This can be achieved by
continuous monitoring of the system states, identifying of the operating condition,
and determining proper preventive control actions to maintain the system in normal
state. The initial step of security analysis is to monitor the present condition of the
system. This includes acquisition of measurements from all components of the system
to determine the state of the system [27].
The data is presented in the form of analog and digital quantities which is computed
at the electric utility substations Sensors. These sensors transmit the data to the
remote terminal units (RTUs). The data received from the RTUs is processed by the
system operators in control center. The system operator estimates these data in order
to determine the current condition of the electric power grid. In addition, the system
operator monitors the system by switching on or off remote circuit breakers based on
the available data [29].the evolving of communication and computer technologies has
changed the design of the control centers. The way of gathering data has transformed
since the digital computers involved in electric network [30].
Real time measurements include phase, voltage, real and reactive power, isolators,
bus lines, circuit breakers, switches, transformers, and generators. These raw data
and measurements are collected by remote terminal units (RTUs). State estimators
process these data to eliminate the measurement noise and detect the bad errors.
Optimal estimate of the system state is provided by state estimators based on the
raw measurements. The output of state estimators will be used in energy management
system (EMS) applications functions such as automatic generation control (AGC),
economic dispatch (ED), optimal power flow, and contingency analysis [31].
Electric power system has Initially been monitored and controlled by Supervisory
control and data acquisition. The supervisory control and data acquisition were
first established by augmenting supervisory control systems by real time wide data
acquisition. This allows the control center to collect all different measurements and
circuit breakers status data from the power system. The real time operating states
of the system should be determined to perform different application functions such
as corrective real and reactive power dispatch and contingency analysis. Due to the
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measurements error and instrument failure, and communication noise, the SCADA
system may not be reliable. Moreover, The corresponding A.C. operating condition
of the system may not be directly extracted from the available set of measurements
due to the absence of all possible measurements [27].The function diagram of energy
management system is shown in figure 2.2 [32].

Figure 2.2: Function diagram of EMS



Chapter 3

Hourly Electricity Price Forecasting For The next Month

Using Multilayer Neural Network

3.1 Introduction

In deregulated electricity markets electricity prices will fluctuate as a result of com-
petition among power suppliers. Profit maximization has become a major motivation
in electric markets. The imbalance between supply and demand results in volatile
electricity prices. In a regulated market, load forecasting was a main focus of the
electric power industry. Subsequently, the more complex electricity price forecasting
has become more important in the deregulated electric power industry [33]–[37].

Electricity price forecasting is a critical factor in decision making in power systems.
Its principal target is to lower the cost of electricity through rivalry, and augment
efficient generation and consumption of electricity. In view of the non-storable nature
of electricity, all generated electricity must be consumed. Thusly, both producers
and consumers need accurate price forecasting so as to build their own particular
methodologies for profit or utility augmentation [38].

Electricity price forecasting depends on input variables such as available historical
price and load data, system operating conditions, weather conditions and temperature
values, fuel prices, time indices including hours, weekdays, and seasons, demand,
bidding strategies, operating reserves, imports, temperature effects, predicted power
shortfalls, and generation outages [39], [40].

Bunn [41] reviewed several major innovative methodologies and techniques focused
on daily loads and prices forecasting in challenging electricity markets such as variable
segmentation, multiple modeling, combinations, and neural networks. He focused on
forecasting strategy in both supply and demand side and discussed the benefit side
of considering more influential factors such as weather. He suggested that further
research and integration are needed in order to provide more accurate forecasts, so he
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concluded that ”the forecasting of loads and prices are mutually intertwined activities
and the economic perspective alone cannot be an accurate basis for daily”.

Skantze, and Ilic, classified power value models and existing significant distribu-
tions into six categories, and discussed their goals, attributes, and drawbacks [42].
Shahidehpour, et al. discussed the basics of electricity demand estimation including
price, unpredictability, and exogenous variables and proposed a value determining
module focused on neural networks [43].

Koritarov, promoted using Agent Based Models to uncover and clarify the per-
plexing and total framework practices that arise out of the interaction of the hetero-
geneous individual elements [44]. Ventosa, et al. discussed the diverse methodologies
to study electricity markets, including the Nash-Cournot framework and the supply
work balance approach [45].

In IEEE Power and Energy Magazine talk article, Amjady and Hemmati clarify
the requirement for short-term price forecasts, survey issues identified with Electric
Price forecasting EPF, and set forward suggestions for such expectations. They con-
tend that time series techniques including autoregressive (AR), autoregressive inte-
grated moving average model (ARIMA,) and Generalized Autoregressive Conditional
Hetero-skedasticity (GARCH) are by and large just as effective in the regions where
the frequency of the information is low, for example, week after week designs. More-
over, they advocate the utilization of computational insights and cross methodologies
(neural systems, fuzzy regression, fuzzy neural networks, cascaded architecture of neu-
ral networks, and committee machines, which are fit for following the hard nonlinear
behaviors of hourly load and particularly value signals [46].

Weron, provided an outline of modelling methodologies, then focused on pragmatic
applications of statistical strategies for day-ahead forecasting including autoregres-
sive integrated moving average model (ARMA), autoregressive moving average with
exogenous variable model (ARMAX), and Generalized Autoregressive Conditional
Hetero-skedasticity (GARCH) models [47]. Moreover he discussed interval forecasts
and proceeded to review quantitative stochastic models for subordinates estimating
“jump-diffusion models and Markov regime-switching”.

Zareipour, reviewed time series of linear models such as autoregressive with exoge-
nous input (ARX), ARIMA, and ARMAX and nonlinear models including regression
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splines and multilayer neural networks, and then used them to forecast hourly costs
in the Ontario force market [48].

Amjady briefly reviewed electricity price forecasting (EPF) techniques, then con-
centrated on artificial intelligence-based methods, and specifically emphasized choice
of procedures and hybrid forecast engines [49].

Garcia-Martos and Conejo investigated short- and medium-term EPF, with a
concentrate on time series models. Particularly, they consider ARIMA and regular
ARIMA models aligned to hourly costs for day-ahead forecasts, and vector ARIMA
[50].

Hong discussed spatial load forecasting, short-term load forecasting, EPF, and two
smart grid era research areas including demand-response and renewable-generation
forecasting. He categorized EPF models into three classes including simulation sys-
tems of the power markets, load forecasts, and blackout data, and offers from business
members, measurable techniques, and artificial intelligence strategies (AI) [51], [52].

In the latest study of structural models, distributed as a chapter in the book
Quantitative Energy Finance by Carmona and Coulon in 2014 presented a point by
point investigation of the structural methodology for power demonstrating, underlin-
ing its benefits in respect to customary diminished structure models. Expanding on a
few late articles, they advocate a wide and adaptable structural system at spot costs,
consolidating demand, limit and fuel costs in a few ways, while computing closed
structure forward costs all through. The aforementioned articles, book chapters and
Ph.D. these are supplemented by a couple of overview meeting papers of changing
quality [53].

In this chapter, composite multilayer neural network topologies including hybrid
parallel and hybrid cascade topologies are applied to enhance hourly electricity price
forecasting for the next month in Australian electricity markets. Both the hourly tem-
perature, hourly electricity load, hourly natural gas data, and other hourly historical
data have been considered in forecasting. The neural network models are trained
on hourly historical data for the year of 2005 from Australian electricity markets
published by the Australian Energy Market Operator (AEMO) to predict the hourly
electricity price forecasting for January 2006. The simulation results obtained have
shown that hybrid parallel topology is more accurate and less in computational time.
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3.2 System Description

This chapter presents an attempt to design interconnections of neural networks with
different connection topologies to improve the overall forecasting performance accu-
racy. A review of a number of successful implementations of multiple connection
topologies is given first. Neural Networks may be connected in many configurations
such as:
• Cascade or Serial Topology.
• Parallel Topology.
• Cascade Parallel Topology in cascade and in parallel.
• Parallel-cascade Topology in cascade and in parallel.
• Hybrid Parallel Topology
• Hybrid Cascade Topology

Figure 3.1 shows the cascade topology interconnected in Feed forward connection
where the output of the first network is used as input for the second network. The
neural network design is divided into stages including training stage and simulation
stage. Each network is trained to optimize its inputs with respect to the target values.

Figure 3.1: Cascade Topology

As a result, Net 1 will be trained using ‘x’ input value and ‘t’ target value while
Net 2 will be trained with the output of Net 1 “y1” as an input to it with respect to
“t” target value, so connecting neural networks in cascade topology and finding the
best cascade sequence. For example, speed and accuracy are evaluated for the cascade
topology. The sequence (or order) is very important in this connection topology. It
can be concluded that accurate Network should be placed first to minimize the overall
fitting error and to enhance the overall performance. In the parallel topology shown
in figure 3.2, one starts using the same input applied to all networks and then the
output of all networks is aggregated into to single output neuron. Different weights
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are assigned to each network output where the best network performing is assigned
higher weight.

Figure 3.2: Parallel Topology

In connecting neural networks in parallel, there is no difference in connection se-
quence and the final output is improved compared with the output of each network
resulting from the averaging mechanism. Enhanced results can be obtained by as-
signing a higher weight to the network with best performance and lower or even zero
weight for the weak network. There are four connection combinations for Cascade
Parallel such as cascade -parallel in Cascade, Cascade -parallel in parallel, parallel-
cascade in series and parallel- cascade in parallel. From figure 3.3 to figure 3.6 show
the difference between Cascade - parallel in cascade with respect to Parallel-Cascade
in cascade and also sequence between Cascade-parallel in Parallel with respect to
Parallel-Cascade in Parallel.
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Figure 3.3: Parallel- Cascade in Cascade Connection

Figure 3.4: Cascade – Parallel in cascade Connection

From figure 3.7 to figure 3.8 demonstrate hybrid parallel topology and hybrid cas-
cade topology to determine the most efficient neural network interconnection topol-
ogy in terms of accuracy and time management. The output and input of each hyper
topology could be connected in layers and the connection terminal of each one is con-
nected to the other layers in whether cascade or parallel. For evaluating each network
topology with three different Feed forward networks is trained with the same input-
output data and each network has 6 hidden layers for network 1, 7 hidden layers for
network 2, and 8 hidden layers for network 3 which will result to a good fit and then
different hybrid connection topology is evaluated.

3.3 Simulation Results and Discussion

Our computational experiment involves the hourly historical data for the year of 2005
as a training data to predict the hourly electricity price for January 2006. The data
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Figure 3.5: Cascade-Parallel in Parallel Connections

Figure 3.6: Parallel-Cascade in Parallel Connections

used is published by the Australian Energy Market Operator (AEMO) in electricity
load forecasting for the Australian market [54].

There are many impact factors that can be used to forecast the electric price such
as:
• Time in hours including previous day same hour load, previous week same hour
load, and previous 24 hour average load.
• Weather conditions including dry bulb and dew point.
• Electricity price including previous day same hour price, previous week same hour
price, and previous 24 hour average price.
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Figure 3.7: Hybrid Parallel Topology

• Dates including days of the week.
• Natural gas price including previous day same hour price, previous week same hour
price.
• System loads including previous load forecasting.
• None business days working including holidays.

Where inputs include hourly load data, hourly weather conditions, hourly natural
gas price and hourly other factors for the year of 2005 and target includes the elec-
tricity price for year of 2005. We use the training data includes inputs and targets to
predict the hourly electricity forecasting for January 2006.

MSE = 1
Ni

n∑
i=1

(yi − ŷ) (3.1)

MAPE = 1
Ni

n∑
i=1

yi − ŷ

yi

× 100 (3.2)
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Figure 3.8: Hybrid Cascade Topology

R2 =
∑n

i=1 ŷ − ȳ∑n
i=1 yi − ŷ

(3.3)

Where yi and ŷ are the actual and predicted price respectively for January 2006
respectively, and Ni is number of predicted data. R2 is coefficient of determination,
ȳ is the average of the data [38].

A few comments on the selections made in our experiment:
• We arbitrarily selected three different layers to compare performance and accuracy
behavior between proposed topologies. More layers require more computation, but
their use might result in the network solving complex problems more efficiently.
• We chose the number of neurons in each network based on the best performance,
so we put 6 neurons for net1, 7 neurons for net2, and 8 neurons for net3. More neu-
rons require more computation, and they have a tendency to overfit the data when
the number is set too high, but they allow the network to solve more complicated
problems.
• We selected the initial weights of a neural network from the range (1/d, 1/d), where
d is the number of inputs to a given neuron. It is assumed, that the sets are normal-
ized - mean 0, variance 1.
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• We run the polynomial regression, different model selections include forward se-
lection and backward elimination, to improve the full regression model by whether
eliminating bad predictors (input factors) or selecting good predictors (input factors).
It is concluded that natural gas price has the high impact on the electricity price.

Figure 3.9: Hybrid topology in Parallel connection, actual and predicted hourly elec-
tricity price for Jan. 2006

Figure 3.10: Hybrid topology in Cascade connection, actual and predicted hourly
electricity price for Jan. 2006

Figures 3.9 and 3.10 show the predicted and actual electricity prices for January
2006. The total hours are 720 hours for a month, however we just take 400 hours
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to see the variation between actual and predicted electricity price. It can be seen
that the hybrid parallel topology forecasting is less variable than the hybrid cascade
topology.

Figure 3.11: Hybrid Parallel topology, Absolute Percentage error for hourly electricity
price for Jan. 2006

Figure 3.12: Hybrid Cascade topology, Absolute Percentage error for hourly electricity
price for Jan. 2006

Figures 3.11 and 3.12 display the absolute percentage error of the hybrid parallel
and cascade topologies for actual and predicted electricity price for January 2006.
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We have divided the total number of hours (720 hours a month/60 hours=12 boxes).
Each box consists of six hours of APE data and also each box represents different
range includes maximum, average, and minimum for APE. The range of APE of the
hybrid parallel topology is less than that of the hybrid cascade topology.

Figure 3.13: . Hybrid Parallel topology, Residual between the actual and the pre-
dicted hourly price forecasting for Jan.2006

Figure 3.14: Hybrid Cascade topology, Residual between the actual and the predicted
hourly price forecasting for Jan.2006

Figures 3.13 and 3.14 show results of the hybrid parallel and cascade topologies’
residuals between actual and predicted hourly electricity price for January 2006. It
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is evident that the residual range of hybrid parallel topologies is less variant than
hybrid cascade topology.

Figure 3.15: Hybrid Cascade topology, regression model for the actual and the pre-
dicted hourly price forecasting for Jan.2006

Figures 3.15 and 3.16 show regression plots displaying the output of both hybrid
parallel and cascade topologies respect to targets for hourly data (Jan.2006), valida-
tion, and test sets. The data should fall along a 45 degree line to satisfy the equality
of both output and target. For this case, the regression value in each and total case is
0.97118 in hybrid parallel topology compared to hybrid cascade topology is 0.61723.
To improve the regression value, we may retrain the network many times to update
the initial weights and biases of the network. According to the value of the regres-
sion in hybrid cascade topology, R=0.61732, It can be seen that the hybrid cascade
topology has a bad fitting model. We can also increase the number of hidden layers
or number of training vectors or using other algorithms for training.
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Figure 3.16: Hybrid Parallel topology, regression model for the actual and the pre-
dicted hourly price forecasting for Jan.2006

The weights in Table 3.1 are selected to improve the overall hybrid topology by giv-
ing high weights for the topology with best contributed performance and low weights
for the topologies with weak performance. The actual values of the weights were
selected through trial and error.The data is categorized to 75% used for training,
15% used for both of validation and testing each network.The non-linear relation-
ships between electricity price output and the sixteen input variables including load
data, natural gas price, crude oil price, temperature, humidity and other factors are
important considerations.

Table 3.1: Weights For Three Interconnected Nets
Topologies Cascade- Parallel- Cascade- Cascade-

Parallel in Cascade in Parallel in Parallel in
Cascade Parallel Parallel Parallel
W1 W2 W3 W4

Hybrid
Parallel 0.5 0.95 0.7 1
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Table 3.2: Final Comparision In Cascade and Parallel Hybrid Connections in Different
Performance

Hybrid Con-
nections

Mean
Square
Error

Mean
Absolute
Percentage
Error

Coefficient
of determi-
nation

Time
(Secs)

MSE MAPE R2 Training Simulation
Hybrid Topol-
ogy in Parallel

9.11 3.25 0.9815 228.21 0.086

Hybrid Topol-
ogy in Cas-
cade

87.14 12.27 0.942 912.82 0.065

Table 3.1 shows the weights assigned to multilayer neural networks in parallel
cascade. There is no difference in interconnection sequence because all networks are
in parallel and the final output is improved compared with the output of each network
due to the averaging mechanism in the parallel analysis topology. A better outcome
may be obtained by introducing a higher weight to the best performing network such
as w2 = 0.95 and w4=1.0. The higher weight is because these topologies contributed
to improve hybrid parallel topology. Both of w1= 0.5 and w3= 0.7, the lowest weight
is given to the network that makes the total, averaging parallel topology inefficient.

Table 3.2 offers a comparison of the hybrid cascade topology and hybrid parallel
topology. In terms of training and simulating times, we conclude that hybrid parallel
topology has the lowest time in seconds. For instance, hybrid parallel topology takes
228.21 seconds in training time and in simulating time takes 86 milliseconds. However
the hybrid Cascade topology takes 912.82 seconds in training time and 65 milliseconds
in simulation. In terms of accuracy, the hybrid Cascade topology shows MSE of 87.4
and the MSE error of the hybrid parallel topology 9.11. For the MAPE, the hybrid
parallel topology error is 3.25 compared to 12.27 for the hybrid cascade topology. We
conclude that hybrid parallel topology is efficient in comparison with hybrid cascade
topology.

Table 3.3 gives a better picture of which interconnection topology is the most
efficient. If we take a training and a simulating time, we can conclude that parallel
topologies have the lowest time in seconds to produce the most efficient solution.
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Table 3.3: Comparison Of Performance in Multilayer Topologies For Actual and
Predicted Electricity Price For January 2006
Cascade Parallel Cascade-

Parallel
in Cas-
cade

Cascade-
Parallel
in Paral-
lel

Parallel-
Cascade
in Cas-
cade

Parallel-
Cascade
in Paral-
lel

Performance
Indices

38.98 4.11 4.95 45.44 11.85 11.85 Mean
Square Er-
ror (MSE)

6.93 1.42 1.54 7.66 3.76 3.76 Mean
Absolute
Percent-
age Error
(MAPE %)

10 Itera-
tions at
the 6 val-
idation
checks

1000 Iter-
ation at
the 0 val-
idation
checks

181 Iter-
ation at
the 0 val-
idation
checks

1000 Iter-
ation at
the 0 val-
idation
checks

11 Iter-
ation at
the 6 val-
idation
checks

1000 Iter-
ation at
the 0 val-
idation
checks

Maximum
number of
training
Iteration
(Epoch)
at the
validation
checks

0.9439 0.9912 0.9975 0.9172 0.9745 0.9898 Coefficient
of determi-
nation

0.31 0.084 0.25 0.084 0.022 0.086 Simulation
Time (s)

102.91 50.32 480.25 127.65 100.48 204.43 Training
Time (s)
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Table 3.4: Ranking Training Algorithms Of Feed Forward Neural Network With 10
Hidden Layers in Hybrid Parallel Topology in Case Of Accuracy

# Algorithm Training
Time
(secs)

Operation
Time
(secs)

Mean
Square
Error

Coefficient
of deter-
mination

Mean
Absolute
Per-
centage
Error

1 LM 276.03 0.086 9.11 0.9815 3.25
2 BFG 237.06 0.083 14.95 0.9596 4.74
3 OSS 21.27 0.085 15.21 0.9554 4.93
4 RP 21.29 0.093 15.65 0.9536 5.07
5 SCG 18.32 0.092 22.3 0.9355 7.12
6 GDX 21.09 0.088 30.05 0.9032 10.39
7 GDM 13.15 0.091 50.21 0.7853 18.75

For instance, the Cascade–Parallel-in-Cascade interconnected topology takes 480.26
seconds and in simulating time takes 250 millisecond to produce the optimum solution.
However in cascade -parallel in parallel interconnected topology takes just 100.48
seconds in training time and in simulating time takes 84 milliseconds to do that.
In terms of accuracy, it can be seen that the MAPE for the Cascade -Parallel in
Cascade topology has 1.54%. However, the Cascade -Parallel in Parallel topology
shows 7.66%, also the Parallel-Cascade in Cascade and Parallel-Cascade in Parallel
topologies show 3.76%. Starting and ending with Cascade topology can enhance the
total performance. Also starting with Parallel and ending with Parallel and Cascade
will not improve the performance according to MAPE=3.76% in both of Parallel-
Cascade in Cascade and Parallel-Cascade in Parallel. It is affirmed that Parallel
topologies have the least MAPE. Moreover, starting and ending with parallel topology
can minimize the training time. For instance, Parallel-Cascade in Cascade topology
requires less training time, 127.65 seconds, than parallel-Cascade in parallel topology,
which required 204.43 seconds.

Table 3.4 shows an evaluation of each network topology in hybrid topology based
on the actual and predicted electricity price for January 2006, three different Feed
forward networks is trained. Each network has 6, 7, and 8 respectively hidden layers.
In terms of accuracy, the Levenberg-Marquardt algorithm (LM) yields the most accu-
rate performance exhibited by MSE=9.11 and MAPE =3.25 compared to the variable
Learning Rate Back propagation (GDX), showing MSE = 10.39 and MAPE= 30.05%.
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Table 3.5: Ranking Training Algorithms Of Feed Forward Neural Network With 10
Hidden Layers in Hybrid Cascade Topology in Case Of Accuracy

# Algorithm Training
Time
(secs)

Operation
Time
(secs)

Mean
Square
Error

Coefficient
of deter-
mination

Mean
Absolute
Per-
centage
Error

1 LM 509.74 0.086 87.14 0.942 12.27
2 SCG 27.72 0.092 90.71 0.9154 16.15
3 OSS 33.51 0.085 100.86 0.8754 17.43
4 BFG 505.41 0.083 112.89 0.8356 25.12
5 RP 31.77 0.093 120.15 0.7785 27.05
6 GDX 28.38 0.088 127.34 0.7037 40.32
7 GDM 15.17 0.091 222.04 0.23 105.75

In the case of operating time, LM takes 276.03 seconds to compute the optimum so-
lution compared to the variable Learning Rate Back propagation (GDX) which has
the minimum operating time 21.09 seconds. The gradient descent with momentum
back propagation (GDM) is the least efficient algorithm in terms of both accuracy
and operating time.

Table 3.5 shows an evaluation of each network topology in hybrid topology based
on the actual and predicted electricity price for January 2006, three different Feed
forward networks is trained. Each network has 6, 7, and 8 respectively hidden lay-
ers. In terms of accuracy, the Levenberg-Marquardt algorithm (LM) scores the most
accurate performance exhibited by MSE= 87.14 and MAPE= 12.27% compared to
the Resilient Backpropagation (RP), MSE = 120.15 and MAPE= 27.05%. The vari-
able Learning Rate Back propagation (GDX), shows high error. In terms of execution
time, LM takes 509.74 seconds in training to compute the optimum solution compared
to Scaled conjugate gradient backpropagation (SCG) which has the lowest operating
time of 18.32 seconds. Gradient descent with momentum back propagation (GDM)
is the most inefficient algorithm in both accuracy and operating time.

The cascade-forward-net structure is less efficient and therefore, is not discussed
further. We decided to set fit net and feed forward to use the different three multilayer
nets and it seems to be working efficiently. But we are looking for more enhancement
of neural network, so we set the feed forward for the three layer which gives the most
efficient results with small improvement in minimizing the errors with less training
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and simulating time. We also attempted to increase the number of neurons, but this
did not improve the performance of the multilayer neural network, so we have tried
to change the number of hidden layers to 2 for each network and 10 for each network,
however it achieved slightly higher error. We implemented several algorithms with
back propagation neural network and the best one is the Bayesian regulation back-
propagation algorithm, but it takes a long time to complete training. We set feed
forward net in the first and second layers net, and fit net in the third layer, however
we obtained less training time with some outliers of errors which is makes our option
is not efficient as we expected. We tried to set the first two layers as a fit net and
the third one as a feed forward net, but mean square error is high with good results
in parallel connection in regression and mean absolute percentage performance and
also less time training.

After testing all aforementioned options, we come up with the best option, we
decided to set Levenberg-Marquardt algorithm for both Cascade and Parallel train-
ing functions to enhance the performance. Also we set Bayesian regulation back-
propagation algorithm for the first net and Levenberg-Marquardt algorithm for the
second net2 and third net3 to reduce the accumulated error. Moreover, we set 6
neurons for network 1, 7 neurons for network 2, and 8 neurons for network 3. We
finally conclude that these options give the most accurate performance especially in
hybrid parallel topology.

3.4 Conclusion

This paper has demonstrated a new computational approach to applying compos-
ite back-propagation multilayer neural networks to forecast hourly electricity price
for the next month based on hourly important factors such as previous hourly load,
hourly natural gas, and hourly weather conditions for electricity load forecasting for
the Australian market in January 2006. We interconnected three separate nets in
a cascade and a parallel topology to acquire the best performance based on simu-
lation results. A comparison of the Cascade and Parallel alone topology results in
performance superior to Parallel topology. A comparison of the Cascade-Parallel in
Cascade topology with Cascade-Parallel in Parallel, reveals that starting topology
by a Cascade and ending with a Cascade connection results in performance superior
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to starting topology by a parallel and ending with a Parallel connection. Therefore,
the Cascade-Parallel in Cascade topology is superior to Cascade-Parallel in Parallel.
A comparison of the performance of the Cascade-Parallel in parallel with that of
Parallel- Cascade in Parallel, we concluded that starting the topology with Parallel
yields superior performance to starting with the Cascade connection. Likewise, we
found that there is no different in accuracy between a Parallel-Cascade in Cascade
and Parallel-Cascade in Parallel connection. From above experiment, it could be rea-
soned that the performance of the Cascade– Parallel in Cascade topology is superior
to all different aforementioned topologies.

Following the analysis of performance of each topology, it is concluded that the
parallel topology which averages the output errors improves the performance in the
systems. On the other hand, the Cascade topology accumulates the error from each
training stage which mostly improves the overall performance in the systems with
high data distribution.



Chapter 4

Optimization of Neural Network Parameters by Stochastic

Fractal Search for Dynamic State Estimation under

Communication Failure

4.1 Introduction

Power flow pattern has been less anticipated due to the expansion in electric power
grid throughout the recent ten years. The expansion is exhibited in the entrance of
renewable energy sources and deregulation of the power system. The power system
grid must be observed and controlled proficiently by control centers to be operated in a
secure and reliable manner. Modern energy management (EMSs) and control systems
could assist in maximizing energy savings and minimizing the cost of energy. However,
they are intricately connected to accomplish the desired objective. Different proposals
to EMSs with distinctive optimization techniques and different grid structures have
already been presented in literature [55]–[64]. SE is the main part of the EMS system,
which utilizes a redundant set of data to determine precise and dependable states of
the power system. The system states (voltage phasors) are further used in real-time
applications including security investigation, economic operation dispatch and load
flow [65].

Conventional WLS state estimation has been widely used due to its high precision
and easier implementation. The accuracy of WLS estimator is based on the availabil-
ity of instantaneous measurement to assess the system state. For instance, the system
state can be assessed at time, step t when the measurement at only step t is utilized.
At the point when the system encounters some sort of communication failures, such
as, delayed or lost measurement data, the execution of the WLS estimator breaks
down. Therefore, specific parts of the electric power grid will be unobservable and
control centers will have no information about these parts. Another drawback of the
WLS state estimation is that, it cannot measure the system state for the next time,

34
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step t+1[66]. Moreover, several DC power flow SE studies have been represented to
overcome the AC state estimation problems [67]. In the aforementioned referenced
study, the author built a DC power flow model (DCPF) to improve the accuracy
of power flow estimation by introducing the measurement noise detection approach.
Conventional SCADA system suffers from low updating rate and inaccuracy. These
limitations can restrict the reliability of SE. PMU devices play an important role in
improving the precision of power system.

PMUs can increase the sampling rate of measurements from several seconds per
measurement (conventional SCADA) to over 30 measurements per second. This is
vital for improving monitoring and analysis of the dynamic conduct of power systems.
PMUs give synchronous measurements (via global synchronous time stamps), which
can synchronize measurements from far off areas to provide a continuous picture of
the entire power system. Both the voltage and current phasors of a given bus can
be measured directly from where it is installed on power network [68]. However, it is
difficult to introduce a PMU on each node of the power grid due to the expensive cost
of PMU devices in addition to the constrained communication channel bandwidth.
Therefore, past reviews state estimations that concentrate on PMUs and optimal
meters placement. There are various earlier techniques that deal with PMUs and
meter placement in the distribution system. Ref. [69], the authors proposed circuit
representation model of SE error to demonstrate the relationship between estima-
tions and SE errors. A logarithmic articulation of the circuit representation model
is implemented where the optimal meter placement problem is effectively changed
into an optimal network expansion problem. The model has proven superiority for
enhancing SE in distribution network. Ref. [70] provides literature review on Phasor
Measurement Units and Optimal Meters Placement for State Estimation Studies.

Generally, Kalman Filter (KF) is utilized to find solutions for the DSE problem
because of its easier implementation, ability to forecast the system states and effi-
ciency. Therefore, KF has been utilized extensively in many DSE applications. In
Ref. [71], two-level DSE is presented using EKF that combines both SCADA and
PMU data. Parallel DSE is improved on a graphic processing unit (GPU), which is
particularly intended for preparing large data sets. The approach is proposed to im-
prove the computational time in the DSE for large-scale grids. A two-stage Kalman
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filtering technique is introduced in Ref.[72] to assess the static conditions of voltage
phasors, the dynamic conditions of rotor angles and speeds of the generator. In the
first stage, it takes the raw PMU data into the Adaptive Kalman Filter with Inflatable
Noise Variances. The output is then taken into the second stage, which utilizes an
Extended Kalman filter to estimate the true dynamic states. It concluded that EKF
can provide an accurate solution to the DSE problem under normal operating con-
ditions but under sudden load changing conditions and drastic generation variation,
there can be a challenge due to a higher degree of non-linearity in the measurement
function [73]. Approach [74] has implemented optimal KF instead of EKF to obtain
the unknown complex bus voltages in addition to finding the linear relationship be-
tween complex element voltage and complex bus voltage. KF gives a more precise
and quicker estimation. Hybrid technique combines unscented transformation with
KF, which has been proposed in Ref. [75] to enhance the accuracy and to conquer the
drawbacks of EKF technique. Decentralized DSE of power systems using unscented
Kalman filter based on consensus algorithm has been discussed in Ref.[76].

The objective function turns out to be exceptionally non-linear, discontinuous and
undifferentiable due to the presence of non-linear devices, such as, var compensators,
distributed generators and transformers with on-load tap changers in the power sys-
tem. This further reduces the solution of conventional optimization methods [77].
To overcome the limitations of classical optimization methods, artificial intelligence
techniques, evolutionary algorithms, fuzzy and neural networks have been used as a
prospect to add new scopes to the area of DSE [78]. Recently, a method based on
fuzzy control theory improved with a sliding surface in Ref. [79] to explore the dy-
namic state estimation where the sudden load variation happened. This method can
cleverly direct the solution to a close ideal trajectory to reduce the computational
time. The technique combined the error and the rate of error as an incorporated
input variable. Another approach based on ANN has been discussed in Ref. [80]. In
Ref. [80], ANN was based on bus load prediction (DLP) for dynamic state estima-
tion. The method classifies the process into two stages: short-term load forecasting
and rectangular coordinate formulation for filtering. It concluded that ANN based on
DLP gave a precise prediction, an accurate estimation and less computational time.

The principle objective of evolutionary techniques is to determine the optimum
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solution in the favorable region already identified. However, for dynamic optimization
environment, this sort of approach may encounter a convergence issue due to exist
dynamic landscape changes in one region and if there are no particles of the algorithm
in this region, the algorithm will not be able to react to the change proficiently, and
might not succeed in tracking the changing global optimum [81]. Recently, meta-
heuristic techniques have been employed to find the solution of difficult problems,
which require investigating a larger space. Normally, metaheuristics depend on four
primary purposes: investigating the space effectively with being insensitive to the
magnitude of the search space, reducing the computational time, solving large and
complex problems, and obtaining robustness. Additionally, there is simplicity of de-
sign and implementation [82]. Natural phenomena behaviors are the inspiration of
metaheuristic techniques. Genetic Algorithm (GA) presented in Ref. [83] mimics the
behavior of natural evolution processes. Particle Swarm Optimization (PSO) is pro-
posed in Ref. [84] to simulate the behavior of flocks of birds in searching their food.
Both Artificial Bee Colony (ABC) and Ant Colony (AC) are represented in Ref.
[85], [86] to simulate the foraging behavior of bee swarm and ant colonies respec-
tively. These algorithms are utilized to tackle complex computational optimization
problems, however, fast convergence along with accuracy is not ensured. Therefore,
another powerful metaheuristic technique is proposed that uses a mathematical con-
cept called fractal to overcome the above disadvantages. The proposed method shows
superiority compared to other metaheuristic algorithms in case of finding the global
minima, avoiding being stuck in local minima and for reducing the computational
time.

This chapter presents a newly improved hybrid optimization technique for mul-
tilayer perceptron neural network (MLP) parameters (weights and thresholds) based
on Stochastic Fractal Search technique (MLP-SFS) to solve the dynamic state estima-
tion under communication failure problem. Communication failure is a type of cyber
attack that affects the secure and reliable operation of power grid. The effectiveness
of MLP (random weights and thresholds) and optimized MLP based SFS technique
(optimized weights and thresholds) have been examined on IEEE 14-and 118-bus test
systems using realistic load patterns from the New York Independent System Oper-
ator (NYISO) under different communication failure and measurement error. The
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hybrid technique (MLP-SFS) compared to other techniques such as nonoptimized
MLP, optimized MLP based Particle Swarm Optimization (PSO), and Genetic algo-
rithm (GA). The obtained results clearly pointed out the superiority of the hybrid
technique (MLP-SFS) exhibited in good accuracy and least computational time. The
estimation problems treated are at high voltage transmission level, and therefore the
generation and distribution level models are not involved in the analysis.

4.2 Stochastic Fractal Search Technique (SFS)

The process of SFS algorithm is categorized into diffusing and updating process.
Diffusing process, every particle diffuses around its present position to fulfill the ex-
ploitation property. This procedure expands the possibility of determining the global
minima, furthermore avoids being stuck in the local minima. Static diffusing process
is only considered in this paper. We just consider the best generated particles and
discard the others. Updating process, the SFS algorithm evaluates how a perspective
in the sets updates its position dependent upon the different positions of the points in
the group. Two statistical methods are considered in creating particles from diffusing
process include Levy flight walk and Gaussian walk. Both originated from Marko-
vian stochastic form [82]. Reference [87] explains in details the levy flight walks.
The Gaussian random walk (GRW) is random walk utilized in Diffusion Restricted
Aggregation(DLA). The advantage of using Gaussian walk is fast to converge and
capable of finding the global minima [88]. Reference [89] provide complete study and
development of the Diffusion Restricted Aggregation(DLA).

4.3 Overview of DSE under Communication Failure

The primary objective of high economical and reliable operation is supply continuity
at high power quality to the user. This can be achieved by developing the intercon-
nected networks to monitor, control, and protect power grids [36]. Today, power grids
are more likely to be exposed to cyber-attacks which can block the transmission of
real time measurements from RTUs to control centers. References [90]–[92] studied
the likelihoods of cyber-attacks in details in power grid. Cyber-attacks can be sorted



39

into three classifiers; the data accessibility, data integrity, and data security. Super-
visory control and data acquisition (SCADA) at control centers receive the real-time
data transmit by remote terminal units (RTUs) [93]. Reference [94] provides one of
the most common attack in data availability, Denial of service (DoS) attacks. This
attack leads to significant block of the internet between RTUs and control center.
Subsequently it causes disruptions in the power grid operation. After communication
failure occurred the restoration time of the devices will be delayed [95]. The sequen-
tial Monte Carlo simulation technique is used to prove that load shedding will be
increased due to communication failure [96].

4.4 Theoretical background

4.4.1 Backpropagation Neural Network (BPN)

Feed forward NN includes input, hidden, and output layers. The input layer is fully
linked to output layer by one or more hidden layers. The output of the hidden layer
is summed up of weighted input and biased, then activation function is applied to
smooth the output which are computed and provided on to the next hidden layer.
The process continues straightforwardly to the output layer. Connection weights
and biases are set backwardly using perceptron (neurons)convergence. The training
procedure through the generalization rule is an iterative procedure. Every training
iterations incorporates two process, forward propagation, updating weights from input
to output layers and backward propagation, error signals are determined at the output
layer and minimized by re-adjusting the weights of forward propagation process at
each iteration. The learning of BPN relies on upon the quantity of nodes in the hidden
layer(s) and the example of associations between nodes in adjacent layers [97].

4.4.2 Overview of BPN related works

Optimization of neural network parameters (weights and thresholds) have recently
been known as one of the most effective techniques in increasing the rates of con-
vergence and finding the global minima [98]. The author in [99] presented specific
curvature matrix vector to iteratively approximate second order gradient methods.
Stochastic meta-descent (SMD) implemented to accelerate the presented technique.



40

It concluded that the results showed improved performance stability. In [100], the
authors used partial least squares (PLS) to optimize weight initialization and size
of hidden layer in BPN. The comparison between PLS and BPN individually with
the hybrid PLS-BPN showed that hybrid PLS-BPN provided minimum root average
square error and increased rates of convergence. In [101], the authors introduced poly-
nomial bases using elliptical partial differential equation to BPN weight initialization.
It pointed out that the technique converged 90% faster than random weight initial-
ization. Genetic algorithm (GA) has widely been used to determine the optimal BPN
parameters (weights, thresholds, and size of neurons) due to its capability of finding
global minima [102], [103]. Many algorithms have recently been implemented to opti-
mize BP neural network such as particle swarm optimization (PSO-BPN) [104], [105],
Anti Colony (AC-BPN) [106], Simulating Annealing (SA-BPN) [107], and hybrid of
genetic algorithm and particle swarm in BP neural network (HGAPSO-BPN)[108].

4.5 Proposed method and problem description of MLP via SFS under

DSE

The following steps describe the process of optimized neural network via stochastic
fractal search technique under dynamic state estimation.

4.5.1 Short Term Load Forecasting in Time Series using Support Vector

Regression (STLF-SVR)

Support Vector Machine Regression (SVR) is used to forecast the unavailable load
data due to communication failure for six hours ahead. SVR was initially presented
by Vapnik in 1995. He extended the idea of SVM to solve the nonlinear regression
function using -insensitive loss function. The fundamental concept of SVR is to map
the input vector of input space into high dimensional component space by nonlinear
mapping [109]. The SVR is formulated in optimization problem as following,

f(x, w) = wT φ(x) + b (4.1)
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Minimize
1
2 ||w||2 + c

l∑
i=1

(ζi + ζ∗
i ) (4.2)

Subject to the constraints:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi − (w, xi) − b ≤ ε + ξi

(w, xi) + b − yi ≤ ε + ξi
∗

ζi,ξi
∗ ≥ 0

(4.3)

Where xi represents the input vector which will be mapped into m-dimensional
space, yi denotes the target or the desired output, (x) denotes the mapping function,
w represents weight vector, b is a bias form, C is the penalty coefficient, ε denotes
Vapnik’s insensitive loss width. Non-negative slack variables ζi,ζ∗

i are added to mea-
sure the deviation amongst input and target samples out of the -insensitive zone.
The ideal hyperplane coefficients f(x, w) can be computed by utilizing Lagrangian
multipliers. Kernel function is used to transform input data from low dimensional
space into high dimensional feature space. The execution of SVR relies on the best
selected coefficients incorporate the error cost C, the loss function width , and the
type of kernel function. Weka software is used for SVR modeling. Sequential Minimal
Optimization (SMO) algorithm is utilized to train SVR coefficients. The control pa-
rameters for SVR, C = 10, ε = 1e−3, kernel type: polynomial kernel. The technique
for the load forecasting is done by using the hourly historical data of 45 days from
the day before the forecast day at the same year, and past 45 days before and after
the forecast day in the previous year. The hourly historical data, March 22nd to Jun
19th 2015 and March 22nd to May 5th 2016 will be used to forecast the NYISO load
for six hours ahead On Thursday May 5th 2016 from 18:00 PM to 23:00 PM during
the communication failure. The New York Independent System Operator (NYISO)
regions are combined with IEEE 14-bus system because both consist of 11 load re-
gions with five minutes’ interval [110]. Each load bus of IEEE 14-bus system is linked
to one region of NYISO; the first row represents the IEEE 14-bus system and the
second row of the index matrix represents the NYISO load regions,
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⎛
⎝ 2 3 4 5 6 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11

⎞
⎠

Due to the high correlation between 11 load regions, time series forecasting is
utilized to overcome the inaccuracy. The mean absolute percentage error (MAPE)
for forecasted load in six hours ahead calculated based on Eq. (4.4),

MAPE = 1
Ni

∑n
i=1 |Li−L̂

Li
×100 (4.4)

Where Li and L denote the actual and predicted load respectively, and Ni is
number of predicted data.

4.5.2 NYISO Load Normalization

Due to the unavailable data of reactive power load, we assume that power factor=0.8
according to National Electric Manufacturing Association (NEMA) website [111], so
the reactive power load will be computed by multiplying the power factor to the
NYISO forecasted active power load. NYISO forecasted loads will be normalized to
operate near to initial system states of IEEE 14-and 118-bus system load.

4.5.3 Optimal power flow (OPF)

Conventional optimal power flow using interior point method (OPF-IPMs) is used to
minimize the generation cost by setting all the control vectors within their constraints
[112]. The input of the OPF is the forecasted load by SVR. The output of OPF
consists of real time measurement, active and reactive power injections and flows
and system states, voltage angles and magnitude voltages. The following equation is
formulated to minimize the cost function,

Minimize
∑n

i=1 Fi(PGi) (4.5)
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Subjects to Constraints:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Qk = 0
Pk = 0
PGi min ≤ PGi ≤ PGi max

Vi min ≤ Vi ≤ Vi max

(4.6)

Where Fi denotes the cost function, PGi denotes the generation at bus i, Pk and
Qk denotes the nonlinear power flow equations, Vi denotes the voltages at bus load i.

4.5.4 White Gaussian Noise (WGN)

Due to the lack of reasonable field measurements, white Gaussian noise with zero
mean and a standard deviation is added to the output of OPF, real-time measurement,
active and reactive power injections and flows. In order to make the simulated data
resemble field data.White Gaussian noise is added to the output of OPF. The standard
deviation for the active and reactive power injections σ(injections)=0.05, and the
standard deviation for the active and reactive power flow σ(flows)=0.001. We create
five sets of measurements error. The measurement error will be increased by the
standard deviation, k=0,1,2,3,4,5, where k=0 implies there is no measurement error.
The standard deviation will be increased by zero mean and the following standard
deviation, σ(injections)=k× 0.05, and σ(flows)=k× 0.01. White Gaussian noise is
added using the following formula,

Zs(t) = Z(t)+rand ×k×σ+μ (4.7)

Where Z(t) and Zs(t) denote the measurements before and after adding white
Gaussian noise respectively at time step t, k denotes the measurement error, σ denotes
the standard deviation, and μ denotes the mean which equals to zero.

4.6 Implementation of MLP based on SFS

The flow chart of the proposed hybrid MLP based on SFS approach is shown in figure
4.2.



44

4.6.1 Initialization

This includes SFS and MLP parameters initialization. Different computations of
parameters initialization have been made include population size, upper and lower
boundaries, and size of hidden layer are shown in Tables 4.3 and 4.4. The best initial
parameters will be used to start the experiment. The best initial parameters are
based on the least mean square error (MSE).
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Algorithm 1 Hybrid MLP based SFS
1: Set the input, real-time available measurement z(t) and the target, true system

states x(t) (load flow) at time step t.
2: Initialize a random population size Np , No. of hidden layers Nh, maximum No.

of generations h, the maximum diffusion walk k, the side walk SW .
3: Set the upper and the lower constraints of MLP NN parameters (weights and

thresholds) Pj = LB + ε × (UB − LB)
4: while h ≤ maximumNo.ofIteration do

5: Encode the population size (particles) based on Eqs.(4.8-4.10)
6: Calculate the fitness function (MLP) as shown in Eq.(4.17)
7: for every point Pi in the population size do

8: Call diffusing process
9: for j = 1 : k do

10: If (for simple problem, first Gaussian walk is applied) do

11: A new point will be created:
12: GW1 = Gaussian(μBP , σ) + (ε × BP − ε

′ × Pi)
13: end for

14: Else (for complex problem, second Gaussian walk is applied) do

15: A new point will be created:
16: GW2 = Gaussian(μP , σ)
17: end If
18: end Call
19: end for

20: end while

21: Call updating process
22: First updating process

23: First, all points of MLP parameters (weights and thresholds)are ranked : Pai =
rank(Pi

N

24: for every point Pi do

25: for each componentj in Pi do

26: If rand[0, 1] ≤ Pai

27: Update the the MLP parameters
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28: P
′
i (j) = Pr(j) − ε × (Pt(j) − Pi(j))

29: end If
30: Else do nothing
31: end Else
32: end for

33: Second updating process

34: all points determined by the first updating process are re-ranked
35: for every new point P

′
i of MLP parameters do

36: If rand[0, 1] ≤ P
′
ai

37: Update the position
38: P ”

i = P
′
i − ε

′ × X(P ′
t − BP ) > 0.5

P ”
i = P

′
i − ε

′ × X(P ′
t − P

′
r) < 0.5

39: end If
40: Else do nothing
41: end Else
42: end for

43: end for

44: Train the optimized MLP parameters (weights and thresholds) based SFS by
simple Multilayer MLP NN Using LM algorithm

45: Calculate MAPE for system states based on Eqs.(4.18-4.19)
46: When z(t) → z(t + 1) & x(t) → x(t + 1)
47: Go step 1

4.6.2 Encoding Strategy

4.6.2.1 Vector encoding strategy

In this encoding strategy, every particle is encoded for a vector. For Multilayer
Perceptron, each particle represents all weights and thresholds of a MLP’s structure.
MLP structure for IEEE 14-bus system consists of 1–25–2, real time measurement
includes real and reactive power injections and flows as one input vector, number
of hidden neurons equals 25, and two output vectors include phase and magnitude
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voltage.
gen(i) = [w1,1...w1,25 b1...b25 v1,1...v1,25 d1...d25]

population = [gen ( 1 ); .......; gen ( M )]

(4.8)

Where M is the number of the total population size, i=1,2,. . . . . . .M

4.6.2.2 Matrix encoding strategy

In this encoding strategy, every particle is encoded for a matrix. We also take the
MLP structure for IEEE 14-bus system, 1–25–2 for an example, the encoding strategy
can be written as:

W = (w1,1 w1,2.....w1,25) , b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

:
b25

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, v =

⎛
⎜⎜⎜⎜⎝

v1,1 v1,2......v1,25

v2,1 v2,2......v2,25

⎞
⎟⎟⎟⎟⎠ , d =

⎛
⎝ d1

d2

⎞
⎠ (4.9)

Where W denotes the input weight matrix, v denotes the output weight matrix,
while b denotes the bias matrix in hidden layer, and d denotes the output bias matrix.
The total number of points created to establish MLP for IEEE 14-bus system equals
102, so these points are encoded into weights and biases matrices represented by rows
× columns, w=[1×25], b=[25×1], v=[2×25], d=[2×1]. Moreover, MLP structure
for IEEE 118-bus system consists of 1-60-2. The total number of points created to
establish MLP for IEEE 118-bus system equals 242, so these points are encoded into
weights and biases matrices, w=[1×60], b=[60×1], v=[2×60], d=[2×1].

4.6.3 The MLP as a fitness function of SFS

After encoding all the initial parameters into neural network parameters (weights and
thresholds), the input layer i has n nodes, the hidden layer j has H hidden nodes, and
the output layer k has O output nodes. The fitness function is given by assuming
the hidden transfer function is Hyperbolic tangent sigmoid function, and the output
transfer function is linear based on the best selected control parameters shown in
Table (4.3) for IEEE 14-bus system and Table (4.4) for IEEE 118-bus system.
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Figure 4.1: Multilayer Perceptron Neural network model

The input layer

zi = [z1, z2 , ....... zn] (4.10)

The hidden layer input Sj ,

sj=
∑n

i=1 wij × zi − bj (4.11)

The hidden layer output yj,

yi = f(sj) (4.12)

yi=f(∑n
i=1 wij × zi − bj) (4.13)

yi = 1
1 + exp(−(∑n

i=1 wij × zi − bj))
, j = 1, 2, ...H (4.14)
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The computation of the output node to the input,

uk=f(∑H
j=1 vkj × yj − dk)

,k=1,2,...o
(4.15)

The sum of square error (MSE) of the output node is calculated,

MSE(ek) = 1
n

n∑
k=1

(uk − t)2 (4.16)

Where z denotes real time available measurements include real power injections
and flows, MSE(ek) denotes the mean square error (MSE) of the output node, t

denotes the desired output (target), system states of the optimal power flow and uk

denotes the output vector of the kth layer. The least mean square of the output error
will provide us with the optimal weights and thresholds.

4.6.4 Diffusion Process

While the number of generations are less than the maximum, the variables of the fit-
ness function, Multilayer Perceptron (weights and thresholds) will be diffused around
its current position to obtain the best points of weights and thresholds (BP) among
all points (weights and thresholds) of the search space.

4.6.5 Ranking

All weights and thresholds obtained from diffusing process are ranked. This rank will
be based on the output error of the fitness function in Eq. (4.16). The ranking will be
based on the probability, so the best weights and thresholds among others will have
high probability. This technique will increase the possibility of computing optimal
weights and thresholds in the next iteration.

4.6.6 Updating Process

After ranking all weights and thresholds. These weights and thresholds will be up-
dated and ranked again to the output error of the fitness function (MLP). If the
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condition, the ranking value ≤ MSE(ek) is satisfied, then second update is used to
improve the quality of the search space and satisfy the diversification property. Oth-
erwise, no update will be occurred, and second update process will not be represented.
The reference [82] provides in detail the SFS technique.

4.6.7 Training Termination of the MLP Based SFS process

The training process terminates if the maximum number of generations is reached
and the least mean square error of the fitness function (MLP-SFS) is determined,
otherwise it returns to step 5.5.2. The optimal MLP neural network parameters
(weights and thresholds) will be used as the initial weights and thresholds to the
simple MLP program. The backpropagation algorithms shown in figures 4.3 and 4.4
will train the optimized and non-optimized neural network parameters (weights and
thresholds), then the comparison in terms of accuracy and least computational time
will be computed. The following equations are used to compute the comparison of
non-optimized MLP and optimized MLP based on SFS,

εθi(k) = 1
nb − 1

nb∑
i=2

| θi(k) − θT
i (k)

θT
i (k) | ×100 (4.17)

εvi(k) = 1
nb

nb∑
i=1

| vi(k) − vT
i (k)

vT
i (k) | ×100 (4.18)

Where εθi(k) and εvi(k) denote the mean absolute percentage error for voltage
angles and magnitude voltages at bus i and time step k respectively. θi(k) and θT

i (k)
denote the estimated and actual voltage angles at bus i respectively. Vi(k) and V T

i (k)
denote the estimated and actual magnitude voltage at bus i respectively. nb denotes
the number of buses.

4.7 Results and discussion

The experiment has been applied on IEEE 14-and 118-bus systems which was pub-
lished by the official website of University of Washington [113]. New York Independent
System Operator (NYISO) has been combined with IEEE 14-bus system. In IEEE
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Figure 4.2: Flowchart of the hybrid MLP based SFS technique

118-bus system, we take the 11 regions of NYISO data and distribute these regions
arbitrarily, then we compute the proportional rate by dividing the total normalized
load capacity of IEEE 118-bus system with NYISO data over the total load capacity
of IEEE 118-bus system without NYISO data. Then the proportional rate will be
applied to each bus load to be updated after each hour load forecasting. Due to the
lack of the hourly historical data of reactive power load, we assume that power fac-
tor=0.8 according to the National Electric Manufacturing Association (NEMA), so
the reactive power load will be computed by applying active power load to the power
factor. Support vector regression (SVR) in time series is used to forecast the hourly
load for six hours ahead using hourly historical data of NYISO. Optimal power flow
is utilized to serve the forecasted load at the least generation cost and to convert
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the loads and generations into real time measurements include active and reactive
power injections and flows and system state (phase and magnitude voltage). White
Gaussian noise (WGN) is added with zero mean and standard deviation to the real-
time measurement (real and reactive power injections and flows). Then, stochastic
fractal search technique is used to find the optimal MLP neural network parame-
ters (weights and thresholds) as shown in figure 4.1. The final parameters of hybrid
MLP-SFS will be trained by simple backpropagation neural network (BPN) to obtain
the mean absolute percentage error (MAPE) for system state. The hybrid technique
(MLP-SFS) results compared with other techniques in case of accuracy and the com-
putational time. Ten different computations have been made to select the best control
parameters of the MLP neural network based on stochastic fractal search technique
(SFS) as shown in Tables 4.3 and 4.4. In each computation, we adjust the lower
and upper boundaries of neural network parameters (weights and thresholds), then
we set the transfer function of the hidden layer and the activation function of the
output layer. Then, we vary both of population size from 10 to 200 and number

Table 4.1: Control Parameters used in Optimized MLP based SFS for IEEE 14-bus
system combined with NYISO load data

Architecture Multilayer perceptron
Learning algorithm Feed-forward
Population Size 50
Number of Neurons 25
Input Transfer Function Tang-Sigmoid
Output Activation Function Linear
Upper and Lower boundaries [1, -1]
Maximum Diffusion Number
(MDN)

1

Maximum Generation 150
Side Walk 0

of neurons from 1 to 50 to obtain the least mean square error (MSE) in the fitness
function. Number of neurons should not exceed 50 in IEEE 14-bus system and should
not exceed 90 in IEEE 118-bus system as well to prevent ending up with overfitting.
Increasing the number of neurons and population size can affect the computational
time because it takes the proposed technique (MLP-SFS) long time to terminate the
process. On contrary, increasing number of neurons and population size can enhance
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the accuracy.

Table 4.2: Control Parameters used in Optimized MLP based SFS for IEEE 118-bus
system combined with NYISO load data

Architecture Multilayer perceptron
Learning algorithm Feed-forward
Population Size 70
Number of Neurons 60
Input Transfer Function Tang-Sigmoid
Output Activation Function Linear
Upper and Lower boundaries [1, -1]
Maximum Diffusion Number
(MDN)

10

Maximum Generation 550
Side Walk 1

In IEEE 118-bus system, we increase the maximum diffusion walk to 10 instead
of 1 as it used for IEEE 14-bus system because the increment of maximum diffusion
walk can reduce the number of generations and subsequently the computational time
will be reduced, however, it will not have any impact on the accuracy. Tables 4.1
and Table 4.2 provide the best control parameters used in hybrid MLP-SFS to start
the experiment. It is concluded that computation number eight has the best control
parameters of MLP-SFS for both IEEE-14 and 118-bus systems. In IEEE 14-bus
system, the presented MLP-SFS consists of 50 for population size, 25 for neurons,
[-1,1] for the lower and the upper bound, and Hyperbolic tangent transfer function
for the hidden layer and linear activation function for the output layer. These control
parameters have provided the least mean square error (MSE)=1.82E-9 computed by
Eq. (4.17) and the least computational time=1.05 seconds. Moreover, in IEEE 118-
bus system, the presented MLP-SFS consists of 70 for population size, 60 for neurons,
[-1,1] for the lower and the upper bound, and Hyperbolic tangent transfer function
for the hidden layer and linear activation function for the output layer. These control
parameters have provided the least mean square error (MSE)=1.39E-1 computed by
Eq. (4.17) and the least computational time=16.89 seconds. The implementation
and control parameters of both MLP-GA and MLP-PSO in details are provided in
Ref. [102], [103] and Ref. [104], [105] respectively.
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Figures 4.3 and 4.4 illustrate the ranking of Backpropagation neural network
(BPN) algorithms in case of robustness. The robust performance is exhibited in the
least mean absolute percentage error (MAPE) computed by Eqs. (4.18) and (4.19)
and the least computational time. The robust algorithm will be utilized as a part of
the simple MLP program to train the optimized neural network parameters (weights
and thresholds). In IEEE 14-bus system, Levenberg–Marquardt algorithm (LM) pro-
vided MAPE (voltage angle) =2.08%, 0.17% for MAPE (Magnitude voltage), and
1.33 seconds compared to Gradient descent with momentum (GDM), MAPE (volt-
age angles) =7.91%, 2.95% for MAPE (magnitude voltages), and 10.15 seconds. In
addition, in IEEE 118-bus system, Levenberg–Marquardt algorithm (LM) provided
MAPE (voltage angle) =3.75%, 1.64% for MAPE (Magnitude voltage), and 4.75 sec-
onds compared to Gradient descent (GD), MAPE (voltage angles) =17.11%, 9.87%
for MAPE (magnitude voltages), and 12.45 seconds. Also, in IEEE 118 bus system,
BFGS Quasi-Newton algorithm (BFG) has the longest computational time =111.2
seconds. It is confirmed from the above discussion that the LM algorithm shows
reliable and robust performance. Both GDM and GD algorithms have ranked as the
worst performance for IEEE 14-and 118-bus systems respectively.

Figure 4.3: Ranking Training Algorithm of Feed Forward Neural Network Using
MLP-SFS SFS for IEEE 14-bus system in case of accuracy and Computational time
(Secs)
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Figure 4.4: Ranking Training Algorithm of Feed Forward Neural Network Using MLP-
SFS for IEEE 118-bus system in case of accuracy and Computational time (Secs)

4.7.1 No Communication Failure

State estimation SE is mostly performed as there is no communication failure where all
different sensors distributed on the electric power grid work perfectly by transmitting
real time measurements include active and reactive power injections and flows from
RTUs to control centers with no delay. Then, system states are determined and
electric grid status is evaluated. IEEE 14-bus system with no communication failure
consists of measurement vector Z(t) ε R68x1 at step time t, 2×14 for active and reactive
power injections and 2×20 for active and reactive power flows.

Figures 4.5 and 4.6 demonstrate the comparison in mean absolute phase and volt-
age percentage error (MAPE) respectively between non-optimized Multilayer Percep-
tron (MLP) parameters (random weights and thresholds) and optimized Multilayer
Perceptron (MLP) parameters (optimal weights and thresholds) based on Stochastic
Fractal Search technique (SFS), Genetic algorithm (GA), and Particle Swarm Op-
timization (PSO) for IEEE 14-bus system. As measurement error increases from
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Figure 4.5: Average Phase Percentage error comparison at different measurement
error with no communication for IEEE 14-bus system

k=1 to k=5, the mean absolute percentage error is incremented. For example, at
k=1, MAPE (voltage angles) = 1.62% for MLP compared to 1.38% for MLP-PSO,
0.15% for MLP-GA, and 0.10% for MLP-SFS. Also, MAPE (magnitude voltages) =
0.92% for MLP compared to 0.66% for MLP-PSO, 0.12% for MLP-GA, and 0.06% for
MLP-SFS. At k=5, MAPE (voltage angles) = 7.33% for MLP compared to 6.23% for
MLP-PSO, 5.44% for MLP-GA, and 3.53% for MLP-SFS. Also, MAPE (magnitude
voltages) = 4.59% for MLP compared to 3.31% for MLP-PSO, 3.04% for MLP-GA,
and 2.60% for MLP-SFS. As can be seen that optimized MLP based SFS has the least
variation. It is concluded from the results that DSE in Optimized MLP parameters
(weights and thresholds) based on SFS technique improve accuracy and convergence
rate of system state even with full communication.

Further, a complete comparison between optimized and non-optimized Multilayer
Perceptron NN parameters by SFS technique is tabulated in tables 4.5 and 4.6. Mean
absolute percentage error in system states (magnitude voltages and angles) increases
due to the variation in measurement error from k=1 to k=5. As can be observed from
the tables at the maximum measurement error k=5, the optimized MLP based SFS
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Figure 4.6: Average Voltage Percentage error comparison at different measurement
error with no communication for IEEE 14-bus system

Table 4.5: Non-optimized MLP state estimation error for IEEE 14-bus system at
different measurement error under no communication failure

εθ εV CPU
Time

k Mean Max. Std. Mean Max. Std. (seconds)
1 1.62 3.05 0.24 0.92 1.93 0.15 1.38
2 2.67 7.66 0.69 1.18 5.87 0.18 1.41
3 3.86 11.5 1.13 2.8 7.81 0.32 1.68
4 5.46 16.4 1.58 3.98 10.1 0.68 1.72
5 7.33 21.8 2.02 4.59 14 0.87 3.05

provides mean absolute percentage error in voltage angles=4.53% compared to non-
optimized MLP, mean absolute percentage error in voltage angles=7.33%. Also, max-
imum absolute percentage error in voltage angles=9.78% for Optimized MLP based
SFS compared to 21.08% for non-optimized MLP. Moreover, the optimized MLP
based SFS gives mean absolute percentage error in magnitude voltage =2.69%, com-
pared to 4.59% for non-optimized MLP. In addition to that, maximum absolute per-
centage error in magnitude voltage=6.64% compared to non-optimized MLP=14.0%.
It is concluded that the optimized MLP based SFS has the least variation. Com-
putational time is also taken and tabulated in tables 4.5 and 4.6. For example, at
k=5, the CPU time of the proposed technique (MLP-SFS) =1.98 seconds compared
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Table 4.6: Optimized MLP-SFS state estimation error for IEEE 14-bus system at
different measurement error under no communication failure

εθ εV CPU
Time

k Mean Max. Std. Mean Max. Std. (seconds)
1 0.1 0.74 0.1 0.06 0.17 0.08 1.32
2 0.16 2.93 0.38 0.25 1.16 0.17 1.35
3 1.11 4.9 0.66 0.92 2.5 0.27 1.44
4 2.24 7.54 1.03 1.07 3.4 0.35 1.63
5 3.53 9.78 1.22 2.6 6.64 0.43 1.98

to CPU time of the non-optimized MLP =3.05 seconds. It is confirmed from the
tables that the proposed technique (MLP-SFS) has enhanced the multilayer Percep-
tron in both precision and least computational time. Figures 4.7 and 4.8 show a

Figure 4.7: Average Phase Percentage error comparison at different measurement
error with no communication for IEEE 118-bus system

comparison between non-optimized and optimized Multilayer Perceptron parameters
(weights and thresholds) based on SFS, GA, and PSO techniques for IEEE 118-bus
system. For example, at k=1, MAPE (voltage angles) = 4% for MLP compared to
3.76% for MLP-PSO, 2.67% for MLP-GA, and 2.05% for MLP-SFS. Also, MAPE
(magnitude voltages) = 2.93% for MLP compared to 2.64% for MLP-PSO, 1.28% for
MLP-GA, and 1.05% for MLP-SFS. At k=5, MAPE (voltage angles) = 18.01% for
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Figure 4.8: Average Voltage Percentage error comparison at different measurement
error with no communication for IEEE 118-bus system

MLP compared to 16.93% for MLP-PSO, 13.65% for MLP-GA, and 1.05% for MLP-
SFS. Also, MAPE (magnitude voltages) = 10.83% for MLP compared to 9.75% for
MLP-PSO, 7.12% for MLP-GA, and 5.03% for MLP-SFS.It is concluded that DSE in
Optimized MLP parameters based on SFS technique has the least variation. Also, it
can be observed from figures that MLP based PSO is sensitive to the noise variation
from k1 to k5. In contrast with GA and SFS, PSO is ranked as the worst technique
used to optimize MLP parameters. Table 4.7 shows the optimal power flow (OPF) for
six hours ahead forecasting in full communication failure. After six hours ahead fore-
casting using support vector machine (SVM), optimal power flow will be determined
to serve the forecasted load for each hour ahead forecasting at the minimum cost. It
can be observed that there is a small increment in the generators during six hours
ahead forecasting; for example, the main generator P1 increases from 216.08MW
to 216.25MW leads to increase the generator cost from 9457.83$/h to 9778.54$/h.
This increment in the generator leads to have small increment in power losses from
21.88MW to 22.93MW. There is no specific trend in computational time. Table 4.8
shows computational time comparison at measurement error k=5 under no commu-
nication failure. In IEEE 14 bus system, the computational time for the proposed
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Table 4.7: Optimal Power flow for IEEE 14-bus system combined with NYISO load
data under no communication failure in six hours ahead forecasting

One-
hour-
ahead

Two-
hour-
ahead

Three-
hour-
ahead

Four-
hour-
ahead

Five-
hour-
ahead

Six-hour-
ahead

P1 (MW) 216.08 216.11 216.16 216.19 216.25 216.25
P2 (MW) 39.45 39.45 39.46 39.47 39.48 39.48
P3 (MW) 18.98 19.3 19.73 19.89 20.2 20.4
P6 (MW) 17.7 17.84 18.33 18.34 18.81 18.92
P8 (MW) 11.84 11.8 13.48 13.59 15.32 16.97
Cost($/hr.) 9457.83 9476.14 9583.27 9595.58 9699.43 9778.54
Losses
(MW)

21.88 21.91 21.97 22.08 22.91 22.93

CPU(sec.) 1.26 1.33 1.27 1.28 1.26 1.27

Table 4.8: Computational time comparison at measurement error k=5 under no com-
munication failure

Bus Sys-
tems

MLP MLP-
PSO

MLP-GA MLP-
SFS

IEEE-14 3.05 2.97 2.36 1.98
IEEE-
118

18.67 18.11 16.73 9.67

technique (MLP based SFS), 1.98 seconds compared to non-optimized MLP, 3.05 sec-
onds, MLP based PSO, 2.97 seconds, and 2.36 seconds for MLP-GA. In IEEE 118
bus system, the computational time for the proposed technique (MLP based SFS),
9.67 seconds compared to non-optimized MLP, 18.67 seconds, MLP based PSO, 18.11
seconds, and 16.73 seconds for MLP-GA. It concluded that MLP based SFS has the
least computational time.

4.7.2 Sustained communication failure

SCADA system should receive data at time interval from 2 to 10 seconds, so one
time step interval of five minutes delay which is somehow is not very practical in
increasingly interconnected power grid. Hence a more intensive investigation of com-
munication delay/failure is required. In this case study, we begin with an examination
of sustained single bus communication failure. When sustained communication, fail-
ure takes a place at a single station, we assume that the real-time measurements
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include active and reactive power injections and magnitude voltage at this single bus
are lost. However, measurements include active and reactive power flows can easily
be measured at the other end of transmission line. Sustained communication fail-
ure of six hours ahead is examined. The unavailable data of maintained single bus
communication failure for six hours ahead is not very practical because the system
operator will respond to this failure within one to two hours after the communication
failure occurred. In any case, the motivation behind this contextual analysis is to test
the ability of the proposed approach. During communication failure, the information
from the failure bus will not be transmitted to the control center, so six hours ahead
load forecasting using support vector machine (SVM) will be utilized to estimate the
variation of this bus load until the communication failure fixed. Table 4.9 shows

Figure 4.9: Average Phase Percentage error comparison at different measurement
error with single station communication failure for IEEE 14-bus system. X-axis:
measurements error. Y-axis: bus with communication failure. Z-axis mean phase
Percentage error comparison

load forecasting for six hours ahead in several failure buses or regions. Mean absolute
percentage error is used to observe the behavior of load pattern during the six hours
ahead. In each hour load forecasting, we can see that mean absolute percentage error
is increased due to the increment in the error in each hour ahead forecasting, then
optimal power flow will be applied to serve the forecasted load at the least generation
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Figure 4.10: Mean Voltage Percentage error comparison at different measurement
error with single station communication failure for IEEE 14-bus system. X-axis:
measurements error. Y-axis: bus with communication failure. Z-axis mean voltage
percentage error comparison

cost. Two 3-D plots that analyze and compare the performance of the non-optimized
MLP and optimized MLP based SFS for the IEEE 14-bus system combined with NY-
ISO load data are represented in Figures 4.9 and 4.10. Overall, it is obvious that the
optimized MLP parameters based SFS performs superior than non-optimized MLP
when there is a maintained single bus communication failure.

Figures 4.11 and 4.12 show a comparison in MAPE for system states between
optimized MLP based SFS and non-optimized MLP on single bus communication
failure, bus 59 in IEEE 118-bus system. Bus 59 is selected due to the highest active
load=277MW and reactive load=113 MVAR. As measurement error varies from k = 1
to k = 5, the MAPE for system states is increased. It is concluded that optimized
MLP based SFS is more robust.
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Figure 4.11: Mean Phase Percentage error comparison at different measurement error
with single station communication failure on bus 59 for IEEE 118-bus system

Table 4.9: Mean Absolute Percentage error for IEEE 14-bus system combined with
NYISO loads in sustained communication failure in six hours ahead forecasting
Bus No. Regions One-

hour-
ahead

Two-
hour-
ahead

Three-
hour-
ahead

Four-
hour-
ahead

Five-
hour-
ahead

Six-
hour-
ahead

Bus 2 Central 2.3×10−1 3.2×10−1 1.26 2.89 3.79 3.89
Bus 5 Hud VI 1.85 1.47 3.49 4.45 4.49 4.43
Bus 6 Longil 7.9×10−1 7.5×10−1 2.8 3.97 4.35 4.59
Bus 14 West 9.5×10−1 1.01 1.17 1.58 1.83 1.99
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Figure 4.12: Mean Voltage Percentage error comparison at different measurement
error with single station communication failure on bus 59 for IEEE 118-bus system
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4.7.3 Communication failure Duration

Communication failure duration is addressed the effectiveness of the restoration time
on the electric power grid. The case study is applied to bus 2 in IEEE 14-bus system,
Central region in NYISO load data with several failure duration at measurements
error k=1.

Figures 4.13 and 4.14 show the mean percentage estimation error in both phase and
magnitude voltage when the delay duration varies from 5 min to six hours for IEEE
14-bus system combined with NYISO load data. Real and reactive power injection
variation during six hours ahead forecasting is plotted in the same figures of 4.13
and 4.14 respectively to observe the trend relation between mean percentage phase
and voltage error in both non-optimized MLP and optimized MLP based SFS. The
injected real and reactive power calculated as Zinjections(t) − Zinjections(t − d), where
d is the time delay and Zinjections(t) denotes the real and reactive power injections at
time step t.

Figure 4.13: Mean Phase Percentage error comparison at different failure duration
with single station communication failure for IEEE 14-bus system. X-axis communi-
cation failure duration. Y-axis Real Power Injection. Y-axis Mean Phase Percentage
error

As can be seen from figures 4.13 and 4.14 that non-optimized MLP, the trend of
MAPE is similar to the hourly trend of injected real and reactive power. However,
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Figure 4.14: Mean Voltage Percentage error comparison at different failure duration
with single station communication failure for IEEE 14-bus system. X-axis commu-
nication failure duration. Y-axis Reactive Power Injection. Y-axis Mean Voltage
Percentage error

the optimized MLP based SFS has no specific hourly trend in both mean voltage
phasors percentage estimation error due to the un-utilized delayed data in MLP-SFS.
It is concluded that the presented approach MLP based SFS has the least variation
error.

4.7.4 Multi-Step ahead forecasting

Radial basis function (RBF) and Support Vector Regression (SVR) are used in multi-
step ahead load forecasting to forecast the NYISO load for IEEE 14-bus system.
RBF is utilized to perform hourly multi-step ahead load forecasting due to good
nonlinear approximate, faster, understandable, and easier to be implemented. RBF
network is used to train a regression model by minimizing the squared error of the
cost function using Broyden Fletcher Goldfarb Shanno (BFGS). The load forecasting
is done by Weka software. The parameters of RBF are set as following, number of
basis function=2, size of threads pool=1, the ridge penalty factors=0.01, and the
tolerance parameter=1e-6.

The MAPE in system states comparison between SVM and RBF when load data
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Figure 4.15: Mean Phase Percentage error comparison between SVM and RBF when
load data from Bus2, Central region of the IEEE 14-bus system is not available for
different failure duration

from Bus 2, Central region of the IEEE 14-bus system combined with NYISO load
data is not available from 5 min to six hours ahead failure duration. The load fore-
casting by both SVM and RBF will be used to estimate the system states in optimized
MLP based SFS. It can be seen from figures 4.15 and 4.16 that when the commu-
nication failure duration is short, the performance of RBF and SVM based on the
presented approach MLP-SFS are almost the same. However, when the hourly com-
munication failure duration is increased, this will cause the MAPE in system states
to drop in SVM and to increase in RBF. It is confirmed from the results that SVR is
superior compared to RBF.
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Figure 4.16: Mean Voltage Percentage error comparison between SVM and RBF when
load data from Bus2, Central region of the IEEE 14-bus system is not available for
different failure duration

4.7.5 Multi-station failure

The possibility of multi-station communication failure is studied. Power grids are
more likely to be exposed to cyber-attacks such as Denial of service (DoS) which
leads to block the transmission of real time measurements from RTUs to control
centers, then measurements from multi-station will be unavailable.

Figures 4.17 and 4.18 represent a case study of communication failure at both of
bus 5 and 6 together for IEEE 14-bus system combined with NYISO load data, from
the figures, the proposed approach, MLP based SFS is superior compared to other
techniques.
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Figure 4.17: Mean Phase Percentage error comparison when both bus 5 and 6 fail at
different measurement error for the IEEE 14-bus system

Figure 4.18: Mean Voltage Percentage error comparison when both bus 5 and 6 fails
at different measurement error for the IEEE 14-bus system
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4.7.6 Failure at different time of the day

The examining period of this case study is from May 1st to May 7th 2016, from
Sunday to Saturday. As can be seen from table 4.9 the MAPE for system state of the
non-optimized MLP and optimized MLP based PSO, GA, and SFS has the same trend
of the active and reactive power load; for instance, when the active power load drops
down from 32.365MW to 29.046MW during May 6th to May 7th 2016, subsequently
it drops the MAPE for system state (voltage angles and magnitude voltages) from
2.502% to 2.302% and from 1.691% to 1.494% for MLP respectively. Also, MAPE
for MLP-PSO. However, the proposed approach MLP based SFS is de-trended which
has no hourly, daily, or weekly trend. The hybrid MLP based SFS technique provides
very accurate state estimation whenever the communication failure occurs.
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4.8 Conclusion

Stochastic Fractal Search technique (SFS) is applied to optimize Multilayer Percep-
tron NN parameters (weights and thresholds). The purpose of using SFS involves
providing an enhancement in case of accuracy, convergence rate and easier operation.
The SFS is used to obtain a set of appropriate initial weights and thresholds.

The hybrid MLP based SFS is presented to improve the current MLP Neural
Network in terms of the accuracy and the convergence time. Simple Backpropagation
Neural Network (BPN) is used to adjust the final parameters as illustrated in Figures
4.4 and 4.5. The presented approach has been compared to non-optimized MLP
parameters (random weights and thresholds) and optimized MLP based on PSO and
GA individually. The hybrid (MLP-SFS) technique has been tested on IEEE 14-
and 118-bus systems combined with the New York Independent System Operator
(NYISO) under various scenarios of communication failure and measurement error.
Three different stages discussed include short-term load forecasting using support
vector machine (SVM) to forecast the unavailable load due to communication failure,
optimal power flow (OPF) to serve the forecasted load at the minimum generation
cost and filtering using the presented hybrid (MLP-SFS) technique to estimate the
system states.

The status of the electric power grid is evaluated based on the behavior of the
system state (voltage angles and magnitude voltages) during the six hours ahead
of communication failure. Experimental results prove that the hybrid (MLP-SFS)
provides superiority compared to non-optimized MLP and optimized MLP based
PSO and GA individually. In IEEE 14 bus system, the maximum mean absolute
percentage error (MMAPE) of the system state for the proposed technique (MLP
based SFS) is within 4% compared to 8% for non-optimized MLP, 7% for MLP based
PSO and 6% for MLP-GA. In IEEE 118 bus system, the maximum mean absolute
percentage error (MMAPE) of the system state for the proposed technique (MLP
based SFS) is within 8% compared to 18% for non-optimized MLP, 17% for MLP
based PSO and 14% for MLP-GA.

In IEEE 14 bus system, the computational time for the proposed technique (MLP
based SFS) constitutes 1.98 s compared to 3.05 s for non-optimized MLP, 2.97 s for
MLP based PSO and 2.36 s for MLP-GA. In IEEE 118 bus system, the computational
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time for the proposed technique (MLP based SFS) is 9.67 s compared to 18.67 s for
non-optimized MLP, 18.11 s for MLP based PSO and 16.73 s for MLP-GA. Optimized
(MLP-SFS) NN has better behavior and tolerance under different level of noise. It
has determined the precision of MLP increments to be around 20%–50% after the
hybrid proposed technique presented in contrast with existing MLP optimization
techniques. Also, computational time of the hybrid approach was reduced by about
20%–50% compared to other MLP optimization techniques.

The presented hybrid (MLP-SFS) approach can be further extended to detect
false injected data, topology error, Micro and Smart grid applications. MATLAB has
been used to model and simulate the hybrid (MLP-SFS) approach. MATLAB was
used successfully in the following example applications [114]–[117].



Chapter 5

Optimized Neural Network Parameters Using Stochastic

Fractal Technique to Compensate Kalman Filter for Power

System-Tracking-State Estimation

5.1 Introduction

The electric power industry is experiencing changes due to deregulation. Currently,
the competitive power markets provide lower retail costs along with efficient power
generation. In general, SE is classified into three categories: Static SE (SSE), Tracking
SE (TSE), and Dynamic SE or Forecasted-Aided SE (DSE). In TSE, the power system
states are evaluated based on a single set of data, which include real and reactive
power injections and flows [65]. Oftentimes, measured data are contaminated by
methodical errors, instrument errors, measurement-data scaling, wiring errors, and
so forth. These measurements are described as bad measurement data [118].

Kalman filter has been extensively utilized for ongoing SE applications. KF is
the minimum-variance estimator to estimate the unknown state vector for the case of
white Gaussian noise. However, due to heavy dependence of KF on prior statistical
knowledge of system noise, it is hard to compute the optimal solution when it is
not identified [119]. Neural Networks have been successfully used in several areas
of electric power systems engineering [120], [121]. Considerable attempts have been
made recently to compensate for the shortcomings of the conventional Kalman filter
by neural networks to improve the estimation error.

Xiong and Zhou [122] implemented a feedforward neural network to replace the
Kalman filter gain. The filter has a robust capability to estimate the states of the plant
in a stochastic domain without prior knowledge of noise statistics. Neural network
filtering methodologies of colored noise considering the Kalman filter structure are
used to reestablish the cephalometric images of stomatology.

The authors of this paper [123], [124] proposed a hybrid neural network approach

75
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to correct the Kalman filter errors. The technique is applied to solve the multitarget
tracking problem. The approach combines the capabilities of both tracking of the
Kalman filter and learning of neural network.

Gao et al. [125] presented an application of Kalman filter compensated by radial
basis function NN (RBFNN,) where both KF gain and measurement noise errors are
replaced by RBFNN to suppress the filter divergence and improve the robustness of
the results. The approach deals with seam tracking during high-power fiber laser
butt-joint welding. The paper concluded that the Kalman filter compensated by
RBFNN is efficient in tracking accuracy.

Gao et al. [126] employed Elman neural network embedded into adaptive Kalman
filter (AKF). The approach is used to improve the stability of adaptive Kalman fil-
ter. Elman neural network is applied as an error estimator to compensate for the
estimated error of AKF. The eigenvector is used to establish the state and measure-
ment equations for weld seam position which is derived from the weld seam position
variable. The results demonstrated that hybrid technique of AKF and Elman neural
network improve the performance of weld seam tracking.

The authors of the paper [127] applied an adaptive neural network to power angle
stability analysis. The work intended to anticipate the stability status for each gener-
ator under a contingency. The rotor angle stability is only selected as the parameter
impacting system stability.

Parlos et al. [128] presented an effective non-adaptive and adaptive state filtering
for nonlinear dynamic systems utilizing feedforward and recurrent neural networks.
Both off-line and on-line learning stages are presented with state filtering algorithms.
The algorithms include a prediction and an update steps. The neural networks are
used to approximated state equations. Moreover, extended Kalman filters (EKFs)
are improved and contrasted to the proposed filter algorithms.

Chin [129] employed a Hopfield neural network to aid the Kalman filter to decrease
the estimation error. The hybrid approach amalgamates the capabilities of tracking
and learning for Kalman filter and neural network respectively. The state estimate
of Kalman filter is compensated by the output of the trained neural network. His
approach aims to achieve the multitarget target tracking task without introducing
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additional computing resources. The advantage of using the hybrid technique (KF-
MLP based SFS) is more effective in enhancing tracking accuracy and reducing the
disturbance influences. Another benefit is that it can guarantee robustness which is
exhibited in a fast convergence rate along with high accuracy.

This chapter presents KF compensated by a newly improved hybrid optimization
technique for MLP NN parameters (weights and thresholds) based on stochastic frac-
tal search technique (MLP-SFS). The hybrid technique is used to solve the tracking-
state estimation problem under normal operation conditions, bad data conditions, and
sudden loss of loads, generators, and transmission lines. The proposed technique(KF-
MLP-based SFS) has been examined on the IEEE 57-bus test systems. The technique
(KF-MLP-based SFS) was compared to other techniques, such as NRLF, KF, and
KF compensated with radial basis (RBF)-NN (KF-RBF-NN). The results obtained
clearly pointed out the superiority of the presented technique (KF-MLP-based SFS)
exhibiting high accuracy and less computational time.

5.2 Tracking State Estimation

Two techniques are utilized to process the measured data transmitted through SCADA
system and received in the control center. If the measured data are presented into SE
program as one vector, then this technique is called snapshot processing of measured
data. If the measured data are processed as and when they arrive into the control
center and update the estimate, then this technique is called sequential processing of
measured data [130].

Debs and Larson presented a basic model for the timely conduct of the power
system. This model combined with the real-time measured data. This straightforward
procedure is called sequential processing of real time measured data. This can be used
to compute the minimum variance estimate [131].

Schweppes and Masiello proposed digital feedback loop to track the changes in
static estimate during the daily load cycle. The technique required new measured
data to determine the new estimate. The old estimate is rectified through feedback
error signal adjusted by a gain matrix [132]. The authors [133] introduced a TSE
technique for coordinated AC/DC systems. This technique combined AC and DC
measurement equations in rectangular coordinates.
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Figure 5.1: Tracking State Estimation

Tracking SE using KF is presented in figure 5.1. Both covariance and state vector
are initialized at k-1, then the measurements noise are computed. The measurement
noise will be used to compute Kalman gain at k, then update the posterior estimate
and covariance at k. When new measured data are represented at k+1, the new
estimate should be determined. Both covariance and state vector at k are used as
the initial parameters to determine the new Kalman gain, estimate and covariance
at k+1. The sequential process continues to the maximum number of time instant
k+m.

5.3 Kalman Filtering Compensated Via Optimized Neural Network

Parameters based Stochastic Fractal Technique

Optimized neural network parameters (weights and thresholds) based stochastic frac-
tal technique is described in details in [134]. Two important errors are included in
the output of linear KF, mismodeling and measurement noise error. Optimized MLP
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based SFS is utilized to improve the KF algorithm performance and precision. This
is achieved by embedding the optimized MLP based SFS into KF to compensate
the aforementioned errors as shown in figure 5.2. A complete flowchart of Kalman
filtering compensated by optimized MLP based SFS is provided in figure 5.3.

Figure 5.2: Structure of KF compensatd by optimized MLP based SFS (KF-MLP
based SFS)

Step 0) At k-1, the initial estimate X(0|0) and covariance P (0|0) were provided,
and the statistical parameters Q and R of noises are assumed.

Step 1) Calculate the measurement noise ȳ based on Eq. (5.1),

ȳ(k) = z(k) − H(k)x(k|k − 1) (5.1)

Where z(k) denotes real time available measurement received from various sub-
stations include real and reactive power injections and flows. H(k) denotes jacobian
matrix for nonlinear load flow equations. Nonlinear load flow equations are explained
in details in [135]. Also x(k |k-1) denotes initial estimate of system state from k − 1
to k. In this paper, IEEE 57 bus system is implemented which consists of R147×1 at
step k, 2 × 25 for active and reactive power injections, 2 × 48 for active and reactive
power flows, and 1 × 1 for voltage magnitude (slack bus).

Step 2) Update the residual covariance S(k) based on Eq. (5.2),

S(k) = H(k)P (k|k − 1)HT (k) + R(k) (5.2)

Step 3) Compute KF gain Kg(k) based on Eq. (5.3),

Kg(k) = P (k|k − 1)HT (k)S−1(k) (5.3)
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Step 4) Update Posterior states based on Eq. (5.4),

x∗(k|k) = x(k|k − 1) + Kg(k)ȳ(k) (5.4)

Step 5) Update Posterior covariance based on Eq. (5.5),

P (k|k) = (I − Kg(k)H(k))P (k|k − 1) (5.5)

Step 6) After computing both measurement noise ȳ and KF gain Kg, both quan-
tities will be used as inputs to optimized MLP based SFS technique as shown in Eq.
(5.6),

G(k) =
⎡
⎣ ȳ(1) ȳ(2) ȳ(n)

Kg(1) Kg(2) Kg(n)

⎤
⎦ (5.6)

Step 7) Initialization,
This includes population size, upper and lower constraints, number of neurons in

the hidden layer, side walk, and maximum diffusing number (MDN) as shown in table
5.3.

Step 8) Matrix encoding strategy,
Each particle is encoded for a matrix. We take the MLP structure for IEEE 57-bus

system, 2-40-1 for instance, the encoding strategy can be described as:

w =
⎡
⎣ w1,1 w1,2.....w1,40

w2,1 w2,2.....w2,40

⎤
⎦ , b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

.

.

b40

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

v =
[

v1,1 v2,1.....v40,1

]
, d = d1

where W denotes the input-hidden layer weight matrix, v denotes the hidden-
output layer weight matrix, while b denotes the hidden layer bias matrix, and d

denotes the output bias matrix. The overall number of particles generated to create
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MLP for IEEE 57-bus system equals 161, so these particles are encoded into weights
and biases matrices described by rows × columns, w = [2 × 40], b = [40 × 1], v =
[1 × 40], d = [1 × 1].

Step 9) The MLP as a fitness function of SFS,
For IEEE 57 bus system, it is assumed that the input layer i consists of 2 nodes

shown in Eq. (5.6), the hidden layer (size of neurons) j has 40 nodes, and the output
layer h has 1 output node. Hyperbolic tangent sigmoid is set as an input transfer
function in the fitness function, and linear as an output activation function based on
the best chosen control parameters according to table 5.3.

The hidden layer input Lj,

Lj =
n∑

i=1
wijG(k) − bj (5.8)

The hidden layer output Cj,

Cj = f(Lj) (5.9)

Cj = f(
n∑

i=1
wijG(k) − bj) (5.10)

Cj = 1
1 + exp(−(∑n

i=1 wijG(k) − bj))
(5.11)

The computation of the output node Δ(x)to the input,

Δx(k) = g(
H∑

j=1
vhjCj − dh), h = 1, 2, ...O (5.12)

Δx(k) = Δxmod(k) + Δxnos(k) (5.13)
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Δx̂(k) = x̂(k) − x∗(k) (5.14)

Where f denotes hyperbolic tangent sigmoid function, Δx denotes the output of
the optimized MLP based SFS or it can also be denoted as mismodeling and mea-
surement noise errors respectively, Δx̂denotes as true (target) errors which computes
by subtracting true states x̂(k) to estimated states x∗(k) as shown in Eq. (5.14).

The mean square error (MSE) of the output node is calculated based on Eq.(5.15),

MSE(eh) = 1
n

∑
(Δx(k) − Δx̂(k)) (5.15)

Step 10) Diffusion process,
While the number of iterations are not reached, the parameters (weights and

thresholds) of the objective function , Multilayer Perceptron (MLP) will be diffused
around its current position to compute the optimal parameters among all created
points of the search space.

Step 11) Ranking,
All parameters (weights and thresholds) are ranked based on the value of the

objective function which is shown in Eq. (5.16). Every parameter in the group will
be given a probability value, then the parameters with the highest probability will
only be considered in the search space. This technique will enhance the possibility of
finding the optimal points in the next generation.

Pai = rank(Pi)
N

(5.16)

Where Pi denotes all parameters,Pai denotes the parameters with high probability,
and N denotes the number of all parameters.

Step 12) Updating process,
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The optimal parameters (weights and thresholds) will be updated and re-ranked.
Second update is required if and only if the ranking values of the objective function
is lesser than ε, random number [0,1] to enhance the quality of the search space and
fulfill the diversification property. Ref. [82] describes in details the SFS algorithm.

Step 13) Training termination of the KF-(MLP based SFS) process,
If the MSE of objective function is computed or just small enhancement is made in
certain number of generations, then the training process terminated, otherwise it goes
back to step 7.

Step 14) Simple program of MLP is utilized to train the obtained optimal param-
eters (weights and threshold) using backpropagation NN algorithm. Moreover, the
results will be compared in case of accuracy and least computational time (secs) to
true states obtained by NRLF, and estimated states obtained by KF and KF-RBF
NN. The equation below are used to determine the final compensated estimated states
(voltage phasors),

x∗∗(k) = x∗(k) + Δx(k) (5.17)

Where x∗∗(k) denotes the final compensated estimated states (phasors), x∗(k)denotes
the estimated states computed by Eq. (5.4), and Δ(x) denotes the output of the
optimized MLP based SFS as shown in Eq. (5.12). Δ(x) can also be denoted as
mismodeling and measurement noise errors respectively which is shown in Eq. (5.13).

5.4 Case study system

The main object of the case study system is to investigate the presented technique
(KF-MLP based SFS) by applying it to TSE. In this study, we only consider over-
determined SE when the number of available measurement is larger than the number
of state vector Ns < Nm. IEEE 57 bus system has been utilized to approve the
presented hybrid technique [113]. IEEE 57 bus test system consists of R147×1 at
step k, 2 × 25 for active and reactive power injections, 2 × 48 for active and reactive
power flows, and 1 × 1 for voltage magnitude (slack bus). The measurements error ei

assumed to have Gaussian normal distribution. The simulated experiment undergoes
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Figure 5.3: Flowchart of Kalman filtering compensated by optimized MLP based SFS

different operating conditions such as load fluctuated linearly with random variations
of 4% of the trend component, the presence of bad measurement, sudden load changes,
loss of transmission lines, and loss of generations. The efficacy of the presented
approach is illustrated by comparing the experimental results of the presented hybrid
technique (KF-MLP based SFS) to load flow (true values), conventional Kalman filter
(KF), and compensated KF by radial basis neural network (KF-RBF) [125]. Power
factor is assumed to be constant so that reactive power follows the active power.
Due to the absence of practical field data, Matpower, Newton Raphson Load flow
method is presented for each time instant to make the simulated data resemble to the
practical field data with ±5% Gaussian noise which is arbitrarily generated according
to ref. [136]. The final measurement vector thus obtained are used as an input to the
hybrid technique (KF-MLP based SFS). This study is carried out over a period of 16
time samples. In order to approve the execution of the presented hybrid technique,
the acquired results for IEEE 57-bus test system is carried out based on the following
execution indices:
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The mean absolute percentage error is used to evaluate the states (voltage pha-
sors),

Mape(x) = 1
nb − 1

nb∑
i=2

| x∗∗(k) − x̂(k)
x̂(k) | (5.18)

where x∗∗(k) denotes the final compensated estimated states using presented tech-
nique (KF-MLP based SFS) and x̂(k) denotes the true states (NRLF)

The filter effect FE is calculated to evaluate the overall estimation achievement,

FE =
∑n

i=1 | ẑi(k) − zt
i(k) |∑n

i=1 | zi(k) − zt
i(k) | (5.19)

Where ẑi(k), zt
i(k), and zi(k) final estimate, true, and measured measurements

values, so the performance index FE should equal to less than one for accurate esti-
mation.

5.5 Results and discussion

The execution of the proposed hybrid technique(KF-MLP based SFS) is examined
on IEEE 57-bus system. In this paper, we only consider N − 1 contingency analysis.
Various contingency analysis are included in this experiment such as normal operat-
ing condition, a presence of bad data, sudden load changing condition, sudden loss of
transmission line and generations.

The best control parameters are tabulated in tables 5.1 and 5.2. This includes the
best performance of an algorithm and the optimal size of neurons. Levenberg Mar-
quardt (LM) has the least MAPE which is 1.2017% for voltage angles and 0.8290%
for magnitude voltage. This can be compared to Gradient descent with momentum
(GDM) which has the highest MAPE, 15.3335% for voltage angles and 13.5157% for
magnitude voltages. Moreover, Levenberg Marquardt (LM) algorithm has the least
computational time which is 19 seconds compared to Bayesian regularization (BR)
which has the longest computational time, 5.32 minutes. In case of the optimal size
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Table 5.1: Ranking Training Algorithm of Feed Forward Neural Network Using com-
pensated KF-MLP Based SFS for IEEE 57 bus system in case of accuracy and com-
putational time

# Algorithms MAPE(δ) MAPE(|V |) Training Time (Secs)
1 LM 1.2017 0.8290 00:00:19
2 BFG 5.8059 4.8508 00:02:35
3 SCG 10.0878 8.4583 00:00:30
4 RP 10.1466 8.6433 00:00:49
5 OSS 10.7535 9.6272 00:00:53
6 GDX 14.0550 12.4443 00:00:49
7 BR 14.4926 14.6085 00:05:32
8 GD 15.3335 13.5155 00:00:41
9 GDM 15.3335 13.5157 00:00:41

Table 5.2: Selecting the best number of neurons Using compensated KF-MLP Based
SFS in case of accuracy and computational time

# No. Of Neurons MAPE(δ) MAPE(|V |) Training Time (Secs)
1 5 9.9363 8.0660 00:00:09
2 15 7.7155 6.6711 00:00:14
3 30 4.9906 3.8677 00:00:25
4 40 1.2017 0.8290 00:00:30
5 50 2.4557 1.3031 00:01:04
6 60 2.3009 1.5205 00:01:52
7 70 7.8×10−4 8.0×10−4 00:03:37

of neurons, 40 neurons in the hidden layer provide us with the least MAPE which
is 1.2017% for voltage angles and 0.8290% for magnitude voltages. Also, it gives a
reasonable computational time which is 30 seconds. Due to overfitting, computation
NO. 7, 70 neurons in the hidden layer are neglected. It concluded that the LM al-
gorithm and 40 neurons have been chosen to be the best control parameters for the
proposed hybrid technique.
Table 5.3 shows a summary of different computations. This table provides the best
control parameters used in the proposed hybrid KF-(MLP based SFS). These pa-
rameters include input transfer function, output activation function, the maximum
number of generations, and others. Moreover, the measurements are divided into
90% for training and 10% for testing. These measurements include real and reactive
power injections and flows.
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Table 5.3: Control Parameters used in Compensated KF-MLP based SFS for IEEE
57-bus system

R (power injections) 10
R (power flows) 5

Q (voltage angles) 0.001
Q (voltage magnitude) 0.1

Training Algorithm LM
No. Of Neurons 40

Setup Division of Input Data 90% for training, 10% for testing
Population Size 125

Input Transfer Function Tang-Sigmoid
Output Activation Function Linear
Upper and Lower boundaries [1, -1]

Maximum Diffusion Number (MDN) 1
Maximum No. Of Generations 250

Gaussian Side Walk (GSW) 1

5.5.1 Normal operating condition

Loads fluctuate linearly at each bus from 70% to 130% with a trend of 4% . Mea-
surements are considered to be noisy, however, these measurements are not assumed
to be as bad measurements.

Figure 5.4 describes the performance of the proposed KF-(MLP based SFS), KF-
RBF, linear KF, and NRLF techniques of IEEE 57- bus system. The figure represents
the time behavior of the true and the estimated voltage magnitudes at buses 3, 19,
30, and 56. These buses are arbitrarily selected. As can be observed, the voltage
magnitudes drop as the loads increase linearly. For instance, the voltage magnitude
on bus 30 drops from 1.1pu to 0.95pu, however, it remains constant on bus 3 due
to closeness to the main generator. Moreover, the proposed approach follows the
same behavior of the true technique NRLF, however, both KF-RBF and KF failed
to provide us with the true change of the voltage magnitudes during the 16-time
samples. This can make the proposed technique more reliable compared to others.

Figure 5.5 shows the comparison of the proposed KF-(MLP based SFS), KF, and
KF-RBF techniques in terms of MAPE. As can be seen, the proposed technique (KF-
MLP based SFS) has the lowest MAPE, 5% compared to 20% for KF-RBF and 26%
for KF. Further, there is no specific trend of the MAPE for all presented techniques.
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Figure 5.4: Performance of voltage magnitude at buses 3, 19, 30, and 56 for IEEE
57-bus system under normal operating condition

It concluded that the proposed technique is superior compared to others.

5.5.2 Presence of bad data measurements

i) One bad measurement is chosen randomly with invert polarity from 2nd to 4th
time instants.

ii) Two bad measurements chosen randomly, one with invert polarity and the other
is set to zero from 6th to 8th time instants.

iii) Three bad measurements are chosen randomly, one with invert polarity, second
measurement is set to zero, and the third measurement is presented with gross data
error with 12σ from 10th to 12th time instants.

iv) Four bad measurements are chosen randomly, one with invert polarity, the
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Figure 5.5: Mean Absolute Percentage error (MAPE) for estimated states in IEEE
57-bus system under normal operation condition

second is set to zero, and the third and the fourth one is presented with gross data
error with 15σ and 25σ from 14th to 15th time instants.

Figure 5.6 shows the performance of the techniques for IEEE 57-bus system under
bad data condition. The figure represents the time behavior of the true and the
estimated states at buses 2 and 49. It can be seen that KF is more sensitive to the
bad data. For instance, From 6th to 8th, the voltage magnitude on buses 2 and 49
increase suddenly to 2 pu which exceeds the nominal voltage. Further, from 10th to
12th, we introduce more bad data which lead to the voltage magnitude to increase
more than 2 pu. KF-RBF is less sensitive to the bad data, however, the proposed
KF-(MLP based SFS) rejects the bad data and follow the behavior of true states.

Figure 5.7 illustrates the comparison of the proposed KF-(MLP based SFS), KF,
and KF-RBF techniques in terms of MAPE. The figure verifies the sensitivity of KF
to bad data. For instance, from 6th to 8th, the MAPE is 70%, from 10th to 12th, the
MAPE is 90%, and so forth. On contrary, the proposed KF-(MLP based SFS) has
the lowest MAPE, less than 5% compared to KF-RBF, less than 25%. This confirms
the efficacy of the proposed technique.
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Figure 5.6: Performance of estimated states at buses 2 and 49 for IEEE 57-bus system
under bad data condition

5.5.3 Presence of Sudden Load change conditions

i) 40% load increase from 2nd to 4th time instants on bus 10.
ii) Sudden loss of load from 5th to 7th time instants on bus 19.
iii) 50% load decrease from 8th to 10th time instants on bus 51.
iv) 20% load decrease from 11th to 13th time instants on all the load buses.
v) 20% load increase from 14th to 16th time instants on all the load buses.

Figure 5.8 shows the performance of the techniques for voltage magnitude at buses
10, 19, 37 and 51 of IEEE 57-bus system. As can be observed, 20% load reduction on
all buses leads to increase the voltage magnitude on bus 19 from 0.990pu to 0.995pu,



91

Figure 5.7: Mean Absolute Percentage error (MAPE) for estimated states in IEEE
57-bus system under bad data condition

from 1.01pu to 1.03pu on bus 19, from 1.060pu to 1.066pu on bus 51, and from 1.010pu
to 1.015pu on bus 37. Further, 20%load increment on all buses leads to decrease the
voltage magnitude to less than 0.915 on bus 19, less than 1.044pu on bus 51, and
less than 0.97pu on bus 37. This load increment does not affect bus 10 due to the
closeness to the main generator. The variation of the magnitudes of the proposed
technique is lower than other techniques. This shows the reliability of the proposed
technique in comparison to other.

Figure 5.9 depicts the comparison of the proposed KF-(MLP based SFS), KF,
and KF-RBF techniques in case of MAPE. It can be seen that the proposed hybrid
technique has the lowest MAPE, 5% for both voltage angle and magnitude compared
to KF, 25% for voltage angles and 18% for voltage magnitude, and 15% for voltage
angle and 10% for voltage magnitude for KF-RBF. This demonstrates the better
filtering execution of the proposed technique in comparison to other.

5.5.4 During sudden loss of transmission line

i) A transmission line between buses 22 and 23 are lost from 3th to 6th time instants.
ii) A transmission line between buses 36 and 40 are lost from 11th to 13th time
instants.

Figure 5.10 shows the true and estimated voltage angles at buses 22, 23, 36, and
40 of IEEE 57-bus system. As can be observed, the voltage angle on bus 22 drops
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Figure 5.8: Performance of voltage magnitude at buses 10, 19, and 51 for IEEE 57-bus
system under sudden load changing condition

down from -11 deg to -17 deg. This due to the removal of transmission line between
buses 22 and 23. Moreover, bus 36 is affected by the line outage between buses 22 and
23. This due to the closeness to the line outage. Further, there is a small reduction
in the voltage angle on bus 40 from -14 deg to -16 deg due to the loss of transmission
line between buses 36 to 40. The proposed technique shows better performance in
capturing precisely the change in the estimated states compared to others.

Figure 5.11 shows the comparison of the proposed KF-(MLP based SFS), KF, and
KF-RBF techniques in case of MAPE. It can be seen, the MAPE of the proposed
technique is smaller, 5% compared to KF, 20%, and 18% for KF-RBF. This shows
the better filtering performance of the proposed method.
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Figure 5.9: Mean Absolute Percentage error (MAPE) for estimated states in IEEE
57-bus system under sudden load changing condition

Figure 5.10: Performance of voltage angles at buses 22, 23, 36, and 40 for IEEE
57-bus system under sudden loss of transmission lines condition
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Figure 5.11: Mean Absolute Percentage error (MAPE) for estimated states in IEEE
57-bus system under transmission line loss condition
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5.5.5 During sudden loss of Generations

i) Generator 5 on bus 8 is lost from 4th to 6th time instants.
ii) Generator 7 on bus 12 is lost from 11th to 12th time instants.
Figure 5.12 illustrates the true and estimated voltage magnitude at buses 8 and

12 of IEEE 57-bus system. As can be observed, the voltage magnitude on bus 8 drops
down from 1pu to 0.95pu.

Figure 5.12: Performance of voltage magnitude at buses 8 and 12, Generator 5 and 7
for IEEE 57-bus system under sudden loss of Generations condition

This due to the sudden loss of generator 5. Moreover, the loss of generator 7
on bus 12 leads the voltage magnitude to drop down from 1pu to 0.9pu. Figure
5.13 shows the comparison of the proposed KF-(MLP based SFS), KF, and KF-RBF
techniques in case of MAPE. As can be observed, the MAPE of the estimated states
for the proposed KF-MLP based SFS technique is very lower, 5% compared to KF,
30%, and KF-RBF, 15%. This shows the superiority of the proposed KF-(MLP based
SFS) technique.

Table 5.4 presents filter effect index (FE) obtained under different operating con-
ditions. The filter effect (FE) should be less than one for accurate estimation. It can
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Figure 5.13: Mean Absolute Percentage error (MAPE) for estimated states in IEEE
57-bus system under Generators loss condition

be seen, under normal operating condition, the FE of the proposed technique is 0.6959
compared to 1.8924 for KF, and 0.9462 for KF-RBF. Moreover, under the presence
of bad data, the FE of the proposed technique is 0.8340 compared to 1.8570 for KF,
and 0.9026 for KF-RBF. In addition, sudden load change, the proposed technique
has FE of 0.700 compared to 1.6938 for KF, and 0.8141 for KF-RBF. Sudden loss
of transmission line, the proposed technique has 0.6500 of FE compared to 1.0548
for KF, and 0.8230 for KF-RBF. Finally, sudden loss of generations, the FE of the
proposed technique is 0.7650 compared to 1.1280 for KF, and 0.9664 for KF-RBF.
Both KF-(MLP based SFS) and KF-RBF techniques have achieved a better filtering
property, however, KF-(MLP based SFS) has the least FE value. On the other hand,
the FE of KF is higher than 1 which makes KF impractical for SE.

5.6 Conclusion

Optimized MLP parameter based stochastic fractals search technique (KF-MLP based
SFS) was applied to improve KF performance and accuracy. Both KF gain (mismod-
eling error) and measurement noise are substituted by MLP based SFS technique.
This could suppress the filter divergence and improve the accuracy in the estimated
states. Different operating conditions were used to validate this experiment include
normal operating condition, bad data condition and sudden loss of loads, generations,
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Table 5.4: Comparison of proposed KF-MLP Based SFS technique with two other
conventional approaches in Filter Effect for IEEE 57 bus system

Filter Effect Index KF KF-RBF KF-MLP-SFS
Normal operating condition

Min. FE 0.3414 0.1707 0.1018
Mean. FE 1.1461 0.5731 0.4432
Max. FE 1.8924 0.9462 0.6959

Presence of bad data
Min. FE 0.0362 0.2055 0.2500

Mean. FE 0.7857 0.5052 0.4526
Max. FE 1.8570 0.9026 0.8340

Sudden Load change
Min. FE 0.5000 0.1000 0.1137

Mean. FE 0.9308 0.5941 0.3313
Max. FE 1.6938 0.8141 0.7000

Sudden loss of transmission line
Min. FE 0.8635 0.7577 0.3649

Mean. FE 0.9889 0.8037 0.5546
Max. FE 1.0548 0.8230 0.6500

Sudden loss of Generations
Min. FE 0.8282 0.7346 0.3909

Mean. FE 0.9923 0.8506 0.6722
Max. FE 1.1280 0.9664 0.7650

and transmission lines. Further, IEEE 57 bus system was implemented to illustrate
the results of the proposed (KF-MLP based SFS) and other techniques. The esti-
mated states of the proposed approach were contrasted to the true states obtained by
NRLF and estimated states obtained KF and KF-RBF. Experimental results show
the superiority of the proposed technique (KF-MLP based SFS) compared to KF and
KF-RBFNN. The superiority of the presented technique was exhibited in the least
MAPE. The presented technique (KF-MLP based SFS) increased the precision to
approximately 50%-70% in contrast with other techniques.



Chapter 6

Conclusion

6.1 Conclusion

In this research work, new robust techniques include metaheuristic and artificial in-
telligent is proposed to solve load forecasting and state estimation problem.

Hourly electricity price forecasting problem is discussed and solved using com-
posite back-propagation multilayer neural networks. Three individual nets are inter-
connected in cascade and parallel topologies. A comparison of different topologies is
made to investigate the superior performance based on accuracy and computational
time. Electricity load forecasting for the Australian market is used to validate the
experiment. It is concluded that cascade topology improves the overall execution in
the system due to its ability in accumulating the error from each training stage. On
contrary, parallel topology improves the execution in the systems due to its ability in
averaging the errors.

Multilayer perceptron neural network parameters (weights and thresholds) is op-
timized using stochastic fractal search technique. The purpose of using optimized
hybrid technique is to enhance the current multilayer neural network. The enhance-
ment is exhibited in high accuracy, low convergence rate, and easier operation. The
main goal of SFS algorithm is to provide optimal initial parameters to improve the
performance of MLP NN. A combination of IEEE bus systems and New York In-
dependent System Operator (NYISO) is made. Various scenarios of communication
failure and measurement error is discussed to validate the presented technique. The
presented hybrid technique provides superiority compared to other techniques.

The aforementioned technique is applied to tracking state estimation problem.
The presented technique improves the Kalman filter performance by replacing both
Kalman filter gain (mismodeling error) and measurement error. This suppresses the
Kalman filter divergence and improve the performance. Various operating conditions
are applied to validate the experiment. A comparison of the proposed and other
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techniques is made to show the improvement. The results prove the superiority of
the presented techniques among others.

Stochastic fractal search technique is applied to tracking state estimation under
various operating conditions. Four IEEE test cases are implemented to verify the
SFS technique. The presented SFS is carried out to be compared to other techniques.
The results show that SFS technique provides accurate sate estimates compared to
other techniques. Moreover, the SFS technique has been used in hybrid technique
with back propagation neural network (MLP-SFS) and simulated annealing (SFS-SA).
The MLP-SFS is applied to improve the accuracy as well as measurement redundancy
by gradually increase the number of PMUs. The least mean absolute percentage
error is provided by the proposed technique. The SFS-SA technique is used to solve
distributed multi area state estimation problem. The SFS is used to perform the
local SE and SA technique is used to perform the global SE. A significant reduction
in computational time is achieved by the presented technique.

Stochastic fractal search technique is modified and applied to power system static
sate estimation. Logarithmic functions in diffusing process is substituted with sev-
eral benchmarks functions. In addition, the uniform distribution parameter in both
diffusing and updating processes is replaced by chaotic maps. The M-SFS technique
improves the performance of its original SFS technique.

In conclusion, The presented techniques are applied to different load forecasting
and state estimation problems. Different modern electric network are used to verify
the experiments. A comparison of the presented techniques to others is made to
validate the outcomes. The proposed techniques addressed and achieved reliable
power system operation by preventing the security risks in the modern electric grids.
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6.2 Scope of Future Work

This thesis can be further extent:
• The contribution discussed in this thesis can be further extent to implement large
size systems such as IEEE 300 bus systems.
• The presented techniques can be further extent to detect false injected data and
topology error.
• This thesis can be further extent to study load change and lack of generation
production challenges.
• Contingency analysis can be extent to include N-2 emergency state. This represents
multi generations or transmission lines outages.
• The techniques introduced in this thesis can be employed in micro and smart grid
area.
• New hybrid optimization techniques can be explored and implemented in this thesis.
• Renewable energy includes solar, tidal, and wind energies can be studied in this
thesis.
• The impact of Phasor measurement units can be deeply studied in this thesis. This
study can include the advantage and disadvantage of PMUs.



Appendix A

Multilayer Artificial Neural Networks for Real Time Power

System State Estimation

A.1 Introduction

A state estimation uses for defining a reliable estimate of the power state vectors
include bus voltage magnitudes and angles from system parameters, structural data,
and a set of real time available measurements including net active and reactive power
injections and flows. Bad data is identified and purging in order to state estimator
gives a reliable data base for power system operation and control. The measurement
system outline decides how well the state estimator performs this capacity [5].

The methods of state estimation are focused around the work of a lot of scientists.
In [137], the authors applied an interactive type block-partitioning algorithm on a
single instruction, single data (SISD) type computer in order to assess its ability
of the speed up of estimation computation.It functions accurately for both of IEEE
118-node with numerous loops and IEEE 135 node.

Abur [7] gave a brief outline of the LP estimator and he proposed the bad data
identification technique exhibited in a succession of identification and elimination
cycles. He clarified a few contemplations with the methodology. Several numerical
cases such as AEP’s 14, 30, 57 and 118 test systems have been utilized to demonstrate
the method. He conclude that “elimination of such bad data will yield an unbiased
estimator and an efficient way of eliminating designated measurements through weight
changing”.

In [8], the authors proposed a new computational technique for solving equality
constraint in PSSE by excluding the Lagrange multipliers. It is an important to
compute a complete partial factorization (L, U) of matrix which enhance numerical
conditioning. A second region for further examination is the treatment of critical
measurements, for example, the pseudo-estimations needed for observability. Critical
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measurements have zero residuals and, in this sense, they are proportional to equality
constraints. The algorithm was indicated to perform effectively on a few practical
measured samples. Standardized residuals can be processed in a proficient way with
the new algorithm.

In [9], the authors introduced a new methodology of artificial neural networks
topology based on topology processing and static state estimation. They have com-
pared two ANN based on models include the counter-propagation network (CPN)
and functional link network (FLN) in order to determine topology transforming and
static state estimation on several IEEE test systems include 14, 19, 57 useful Indian
system. Moreover, the Hopfield neural network and the conventional fast decoupled
state estimator (FDSE) have been determined and compared. It is concluded that
the ANN based on models has the least CPU time and much faster, and function
accurately notwithstanding for non- Gaussian noise.

In [12], the authors introduced another system focuses on the neural network
prepared by prop algorithm, in which topological perceptibility is considered. The
sufficiency of preparing of the system is tried by feeding some novel information
designs that were excluded in the preparation set and the yield results acquired were
accepted by looking at the results from alternate techniques.

In [13], Hopfield neural network (HNN) and Parallel Genetic algorithm (PGA)
applied in neural network in term of the best robust static state estimation method
on 5 bus test system. It is concluded that Hopfield method has a long training time
and Parallel Genetic method provides the optimal converge which is not rely on initial
values.

In [15], the authors presented another system focused around the artificial neural
network method in order for deciding the recognizability of the power systems pro-
posed a strategy on prop algorithm. Notwithstanding the standard backpropagation
algorithm additionally presented.

Ivanov and Gavrilas [24] proposed a multilayer perceptron for the static state
estimator and employed on IEEE 14 bus test system. It is proven that ANN estimator
can provide less CPU time compared to conventional estimation algorithms in case
of bus voltage varies dues to load conditions and there is no change on operating
system. Also the results of IEEE 14 bus system have a precise estimation.
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In this chapter, composite multilayer neural network topologies exhibited in hy-
brid Parallel and Cascade topologies are applied to address the conduct of differing
composite topologies to compare the best performance indices exhibited by the maxi-
mum relative error, mean absolute percentage error (MAPE), and mean square error
(MSE). The state estimation performance of the proposed system is evaluated utiliz-
ing real time data for IEEE 14, 30, 57, 118, and 300 bus test systems in electric girds
from the American Electric Power System in the Midwestern US which is published
by the official website of University of Washington. The terminology of this work is
minimizing the residual of equivalent node measurements and estimate the state vec-
tors including magnitude voltages and angles which is useful for security assessments
and system monitoring. Chapter 3 explains the neural networks structure tested.

A.2 State Estimation

The main objective of state estimation (SE) algorithms is to determine the unknown
sate vectors on all buses in electric grid include angles and magnitude voltages. Where
inputs are real time available measurements of net active and reactive power injections
of generations and loads and initial state vectors. Here the output is the predicted
state vectors. The following terminology is utilized by reformulating nodal nonlinear
net power system injections’ equations in (A.1) and (A.2) as a general mathematical
model of the WLS algorithm represented in equation (A.3).

PGi − PDi −
n∑

i=1
|Vi||Vj|(Gij cos(θi − θj) + (Bij sin(θi − θj)) = 0 (A.1)

QGi − QDi −
n∑

i=1
|Vi||Vj|(Gij sin(θi − θj) + (Bij cos(θi − θj)) = 0 (A.2)

[z] = h([x]) − e[x] (A.3)

Where z is a known vector of M matrix, real time measurements including active
and reactive power generations and loads, h(x) is represented as h : Rn × Rm(n < m)
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matrix of nonlinear power flow equations which is relating measurements to state
vectors,e is M vector of the measurements white noise, x is unknown vector of M

matrix, state variables (voltage magnitudes and angles).
State vectors will be corrected by linearization, in an iterative procedure, utilizing

Newton’s method.

[x]k+1 = [x]k + [Δx]k (A.4)

The following terminology is minimized:

J([x]) = ([z] − h([x]))T W ([z] − h([x])) (A.5)

Where W is M vector of diagonal matrix of measurements weights.
Newton’s linearization method:

G(x)[Δx]k = HT [x]kR−1[Δz]k (A.6)

Where Δz is M vector of Gain matrix which represents the error between sched-
uled and computed real time available measurements. Each iteration step, Jacobian
and Gain matrices will be computed by bus admittance matrix which is created by
bus and line data of the grid elements [138].

In this chapter, composite multilayer neural network topologies exhibited in hy-
brid Parallel and Cascade topologies are applied to address the conduct of differing
composite topologies to compare the best performance indices exhibited by the maxi-
mum relative error, mean absolute percentage error (MAPE), and mean square error
(MSE). The state estimation performance of the proposed system is evaluated utiliz-
ing real time data for IEEE 14, 30, 57, 118, and 300 bus test systems in electric girds
from the American Electric Power System in the Midwestern US which is published
by the official website of University of Washington. The terminology of this work is
minimizing the residual of equivalent node measurements and estimate the state vec-
tors including magnitude voltages and angles which is useful for security assessments
and system monitoring. Chapter 3 explains the neural networks structure tested.
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A.3 Proposed Neural Network Architecture

The Multilayer Perceptron (MLP) are feedforward networks utilized for approxima-
tion and forecasting, trained with back-propagation algorithms which supervised the
networks by involving the desired output.

Figure A.1: Architecture of Multilayer Perceptron

They comprise of one input layer, one or more hidden layers and one yield layer.
The sizes of input and yield layers are computed by the tackled problem. Every neuron
has weighted associations with all the neurons from the adjoining layers, depending
on the ANN structure.

Determining the solution with a MLP obliges two stages: training and generaliza-
tion. In the training stage, the network is fabricated and the neurons’ weights and
inputs are arbitrarily instated and after that refined in an iterative forward-in reverse
procedure, until the yields of the MLP coordinate nearly with the desired outputs,
for all the models in the training information set [139].

E = 1
2

M∑
m=1

||dm − om||2 (A.7)

Where E is the error between the [d] desired output or target and [o] is the
computed output. After that weights will be updated at each iteration t, through
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backpropagation with [24].

wt+1
ij = wt

ij − η
∂E

∂wij

↓ wij (A.8)

There are some designed roles must be followed such as number of hidden layer
size (neurons) should be among the number of input and output layer because large
number of neurons in the hidden layer leads to obtain Over fitting happens when the
neural networks has so much data transforming limit that the constrained measure of
data contained in the training set is insufficient to train the majority of the neurons
in the hidden layers. A second issue can happen notwithstanding when the training
information is enough. An unnecessarily substantial number of neurons in the hidden
layer can expand the time it takes to train the network. All the aforementioned issues
can be used to adjust the weights and thresholds [139].

A.4 Tested System and Results

The comparison of both hybrid Cascade and Parallel topologies is carried out on five
test systems. A brief description of these system follows:

• Real time Measurements of the part of the American Electric Power System
in the Midwestern US include scheduled net active and reactive power generations
and loads injections and net nonlinear power injections equations are subjected to
minimize the nodal measurements residuals.

• We subjectively selected three distinct layers to compare performance and ac-
curacy conduct between proposed topologies. More layers require more calculations,
yet their utilization may bring about the system taking care of complex problems all
the more proficiently.

• We picked the quantity of neurons in each net taking into account the best
performance, more neurons require more calculations, and they tend to over-fit the
data when the number is situated too high, yet they permit the network to tackle
more problems.

• We chose the initial weights of a neural network from the reach (−1/
√

d, 1/
√

d),
where d is the quantity of inputs to a given neuron. It is accepted, that the sets are
standardized - mean 0, variance 1.
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• We set Net1, feed-forward structure, n hidden layer size (neurons), Bayesian
regularization backpropagation (BR) as a training algorithm.

• We set Net2, cascade-forward structure, n hidden layer size (neurons), Levenberg-
Marquardt backpropagation (LM) as a training algorithm.

• We set Net3, fit-net structure, n hidden layer size (neurons), quasi-Newton
backpropagation (BFGS) as a training algorithm.

• We set activation function to hyperbolic tangent sigmoid for input and output
layers.

Figure A.2: Hybrid Parallel and Cascade topologies, Estimated and Actual voltage
angle in IEEE 14 bus system
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Figure A.3: Hybrid Parallel and Cascade topologies, Estimated and Actual magnitude
voltage in IEEE 14 bus system

Figure A.4: Hybrid Parallel and Cascade topologies, voltage angle residual in IEEE
14 bus system
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Figure A.5: Hybrid Parallel and Cascade topologies, magnitude voltage residual in
IEEE 14 bus system

Figure A.6: Hybrid Parallel and Cascade topologies, Relative voltage angle Error in
IEEE 14 bus system
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Figure A.7: Hybrid Parallel and Cascade topologies, Relative magnitude voltage Error
in IEEE 14 bus system

Figure A.8: Hybrid Parallel and Cascade topologies, Estimated and Actual voltage
angle in IEEE 118 bus system
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Figure A.9: Hybrid Parallel and Cascade topologies, Estimated and Actual magnitude
voltage in IEEE 118 bus system

Figure A.10: Hybrid Parallel and Cascade topologies, voltage angle residual in IEEE
118 bus system
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Figure A.11: Hybrid Parallel and Cascade topologies, Magnitude voltage Residual in
IEEE 118 bus system

Figure A.12: Hybrid Parallel and Cascade topologies, Relative voltage angle Error in
IEEE 118 bus system
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Figure A.13: Hybrid Parallel and Cascade topologies, Relative magnitude voltage
Error in IEEE 118 bus system

Table A.3: Comparison Parallel and Cascade Hybrid Connection in Regression, Time,
and Neurons
Bus Regression Time(Secs) No. Of Neurons
System

Cascade Parallel Cascade Parallel Net1 Net2 Net3
Trai Sim Trai Sim

IEEE 5 0.997 0.9989 25.18 0.088 15.78 0.078 4 5 6
IEEE 14 0.9103 0.9367 53.45 0.092 27.52 0.083 9 10 11
IEEE 30 0.8507 0.9124 81.75 0.095 34.54 0.089 10 12 14
IEEE 57 0.976 0.9696 110.02 0.098 45.26 0.091 14 15 16
IEEE
118

0.7505 0.6095 150.75 0.098 60.32 0.094 19 20 21
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Table A.4: Weights For different Topologies
Bus Cascade- Parallel- Cascade- Cascade-
System Parallel in Cascade in Parallel in Parallel in

Cascade Parallel Parallel Parallel
W1 W2 W3 W4

IEEE5 1 0.6 0.98 0.95
IEEE14 1 0 0.95 1
IEEE30 1 1 1 0
IEEE57 1 1 1 1
IEEE118 1 1 0 1

From the above figures, we concluded that in small scale electric grid, both of
hybrid Cascade and Parallel topologies are efficient, however hybrid Parallel topology,
approximated or averaging topology, is more accurate and smooth. Also in large
scale electric grid, hybrid Cascade topology, accumulated error topology, is proficient
compared to hybrid Parallel topology.

Tables A.1 and A.2 offer a comparison of the hybrid cascade and parallel topology
in both of voltage angle and magnitude voltage vectors in several IEEE bus systems.
We conclude that Parallel topology, approximated topology, is only efficient in small
scale electric grid and also both topologies work accurately which is exhibited in
relative error within 10%. Moreover, in large scale electric grid, accumulated error
topology, hybrid Cascade topology can be very robust based on the efficient algorithms
in each net. In IEEE 118 bus system, the relative error seems high for both of hybrid
topologies and it is out of 10% because when we add more data, the percentage
of corrupted measurements is increased to affect accuracy of the system. We have
applied IEEE 300 bus system, but unfortunately it did not give a proper convergence
because of unreliable data or multilayer neural network is not successful in large scale
electric grid.

Table A.3 discusses training, simulating times, and number of neurons, we con-
clude that hybrid parallel topology in five IEEE cases bus systems have the lowest
time in seconds. For instance in IEEE 5 bus system, hybrid parallel topology takes
15.78 seconds in training time and in simulating time takes 78 milliseconds. However
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the hybrid Cascade topology takes 25.18 seconds in training time and 88 millisec-
onds in simulation. Also in IEEE 118 bus system, hybrid parallel topology takes
60.32 seconds in training time and in simulating time takes 94 milliseconds. However
the hybrid Cascade topology takes 150.75 seconds in training time and 98 millisec-
onds in simulation. Neurons should be increased when number of real time available
measurements are high to do more computations to obtain the optimal solution.

Table A.4 offers the weights for three different nets in five IEEE bus system cases.
There is no distinction in interconnection sequence because all networks are in parallel
and the final output is enhanced contrasted with the output of each network due
to the averaging component in the parallel analysis topology. A superior outcome
may be obtained by acquired a higher weight to the best performing network and
also inferior topology set to zero weight. For instance, In IEEE 118 bus system,
the superior topologies include w1 (Cascade-Parallel in Cascade topology weight) =
1.0, w3 (Cascade-Parallel in Parallel topology weight) =0.98, w4 (Parallel-Cascade
in Parallel topology weight) =0.95. The higher weight is because these topologies
contributed to improve hybrid parallel topology, w2 (Parallel-Cascade in Cascade
topology weight) = 0.60, the lowest weight is given to the network that makes the
total, averaging parallel topology inefficient.

Table A.5 shows an evaluation of each network in the hybrid Cascade and Parallel
topologies for IEEE 118 bus system, three different Feed forward networks is trained
with the same input- output data. Each network has 10 hidden layers. In terms of
accuracy, the Levenberg-Marquardt algorithm (LM) scores the most accurate perfor-
mance exhibited by MSE = 7.53E-3 and MAPE = 4.35E-2 compared to the Resilient
Backpropagation (RP), MSE = 8.80E-3 and MAPE = 4.50E-2. The variable Learn-
ing Rate Back propagation (GDX), shows high error. In terms of execution time, LM
takes 61.55 seconds in training to compute the optimum solution compared to Scaled
conjugate gradient backpropagation (SCG) which has the lowest operating time of
23.44 seconds. Gradient descent with momentum back propagation (GDM) is the
most inefficient algorithm in both accuracy and operating time.

We chose to set fit net and feed forward to utilize the diverse three multilayers nets
and it is working efficiently. Yet we are searching for more improvement of neural
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network, in large scale electric grid such as IEEE 118, we set the the Levenberg-
Marquardt algorithm (LM) algorithm for the three layers and which gives the most
proficient results with little change in minimizing the error with less training and
simulating time. We tried to expand the quantity of neurons, yet this did not en-
hance the performance of the multilayers neural system. We applied a few algorithms
with back propagation neural network and the best one is the Bayesian regulation
regulation back-propagation algorithm, yet it takes quite a while to finish training.
We set feed forward net for three different nets and LM algorithm for net1, RP for
net2, and SCG for net3. Also we set the transfer or activation function to hyperbolic
tangent sigmoid transfer function for two layers, input and output layers to obtain
better results.

Finally at last we chose to set LM algorithm for Cascade and Parallel training
functions to improve the performance. So finally we got the most precise solution in
all connections. In addition to that, in large scale electric grid, we have attempted to
change the quantity of hidden layers to be 25 neurons for net1, 30 neurons for net2,
and 36 neurons for net3 because we want to do more computations to obtain good
results, but, we end up with over-fitting, so we decided to not give high values of the
neurons.

A.5 Conclusion

This paper has proposed a new computational technique in backpropagation multi-
layers neural network to estimate state vectors including angle and magnitude voltage
based on real time available measurements including scheduled net active and reactive
power injection and net active and reactive power nonlinear injections equations for
diverse IEEE bus systems. We associated three different nets in a cascade and a paral-
lel topology to obtain the best performance based on simulation results. Conducting
analysis, performance of each topology, it is summed up that in small scale electric
grid, the hybrid parallel topology which averages the output errors slightly enhances
the performance in the systems. On the other hand, the Cascade topology collects
the error from each training stage which mostly enhances the overall performance in
the systems with large scale electric grid.



Appendix B

Power System Tracking State Estimation Based on

Stochastic Fractal Search Technique under Bad

Measurements Conditions

B.1 Introduction

Static state estimation evaluates the state vectors consisting of all bus voltage mag-
nitudes and angles in an electric power system. Bad measurements need to be rec-
ognized and purged to enable the state estimator to provide dependable information
base for power system operation and control [140], [141].

To allow continuing monitoring and controlling of the electric power grid, state
estimation must be conducted at short intervals of time. Yet, as the electric grid
grows, with expansion of power generations, service areas, and loads, the system
turns out to be too vast for the state estimation to be done at short intervals of time.
This is the motivation behind Debs and Larson’s “Tracking State Estimation (TSE)
[130], [131]. This estimator relies on modeling the dynamics of the system over short
time intervals. The TSE is coupled to a basic anomaly identification plan, to prevent
any significant error in the modeling of the system and the measurements.

Schweppes and Masiello extended this work by presenting a TSE as a digital feed-
back loop which utilizes new measurements to determine new estimates by correcting
an old estimate by adding a feedback error signal modified through a gain matrix
[132].

Reference [133] proposed a TSE strategy for coordinated AC/DC systems, using
rectangular coordinates for both AC and DC measurement equations.

The present chapter proposes using Fractal Search algorithm (FS) to solve the
TSE problem under normal operation where the load increases linearly from 20% to
130% with trend of 4% each time instant for 24 consecutive instants. Bad measure-
ments are introduced as well. Performance indices are evaluated by maximum mean

119



120

square error (MMSE), average absolute error (AAE), maximum root mean square
error (MRMSE), and maximum sum of the square error (MSSE). The effectiveness of
the FS technique has been examined on four IEEE standard test systems (5, 14, 30,
and 57 bus systems.) The results of the proposed technique are compared with those
obtained using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).

B.2 Tracking State Estimation

Real time measurements of the power system are transferred to the control center
through a remote terminal unit (RTU). These measurements may contain bad ones
because of communication and systematic errors, erroneous wiring or lack of instru-
ment adjustment.

Tracking state estimation (TSE), determines the state variable and updates for
the next instant of time k+1 from a new set of measurement data. The power system
is thought to be a semi static system. Henceforth the adjustments in the system
happen gradually. It implies that the state may not change much in a short period
of time. In some cases, it turns out to be important to monitor events in the system,
such as through the picking up of load by a generator or through some contingency.

The SCADA system, which performs the continuous monitoring, and control of
power systems receives field measurements through sensors and sends them to the
control center at defined instants of time. To have a continuous monitoring system,
state estimation must be executed as and when each new measurement set arrives. In
any case, as state estimation is computationally intensive (particularly as the system
size gets greater), many control centers will not have adequate processing assets to
perform a fast and accurate state estimate at high frequency. If the length of time
between two instants is too substantial, it results in a weak co-connection between
the estimated states, rendering the detected bad measurements extremely erroneous
[142].

Tracking state estimation is utilized to give up-to-date results [143]. In this pa-
per, TSE is implemented according to the method described in [118]. Without access
to reasonable field measurements, Newton Raphson load flow analysis is executed
for each time instant on the test systems under study to produce simulated mea-
surements. In order to make the simulated data resemble field data, an arbitrarily
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generated data error of 5% is added according to the technique described in [136]. The
last measurement vector thus acquired acts as an input to the proposed stochastic
fractal search state estimator.

B.3 Solution Methodology of SFS

The SFS technique begins with initializing the population of size Np that follows a
uniform distribution which is considered as a start point with equal energy Ei. Two
statistical methods should be considered to generate new particles from the diffusing
procedures including Levy flight and Gaussian random walk [82]. In term of fast
convergence, Levy flight is better in a few generations, however, Gaussian random
walk is more guarantee in determining the global minima. SFS algorithm utilize
Gaussian random walk distribution is the only arbitrarily search walk employed in the
diffusion limited aggregation (DLA) growth procedure using the following equations,

GW1 = Gaussian(μBP , σ) + (ε × BP − ε
′ × Pi) (B.1)

GW2 = Gaussian(μP , σ) (B.2)

Here ε and ε
′ are arbitrarily distributed and limited to [0, 1], BP and Pi are indicated

as the best position point and ith point in the group respectively. μBP is equal
to |BP |, μp is equal to Pi and σ is the standard deviation. The fitness function
of each point is determined to obtain the best point (BP) among all points. As
indicated by the utilization of diffusion property, every particle is diffused around
its current position to allow proper exploitation of the search space. Two statistical
procedures intended to build the better space investigation are considered because
of the exploitation property. The principal statistical method performs on every
individual vector index, and the second statistical technique is then applied to all
points [82].

Each point is initialized arbitrarily, so constraints should be selected to describe
the minimum and the maximum bounds.

P(j) = LB + ε × X(UB − LB) (B.3)
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Where LB and UB are the lower and the upper limits of search space and ε is a
uniformly distributed arbitrary which is limited to [0, 1]. For the principal statistical
technique, each of the points are positioned based on the estimates of the fitness
function. Each point i in the assembly is then given a likelihood probability which
complies with a straightforward uniform distribution.

Pai = rank(Pi)
N

(B.4)

Where the rank (Pi) is the rank of the Pi point among all different points in the
group and N is the total number of all points in the group. Eq. (B.4) is used to
maximize the probability of re-positioning the points when the optimal solution is
hard to find [144]. The points’ positions are updated according to Eq. (B.5).

P
′
i (j) = Pr(j) − ε × (Pt(j) − Pi(j)) (B.5)

Where P
′
i is the new updated position of Pi and both of Pr and Pt are arbitrary

chosen points in the group. The second statistical change is expected to change
the position of a point considering the position of different points in the gathering.
This property enhances the nature of investigation, and it fulfills the diversification
property. All points acquired from the first statistical method are positioned taking
into account Eq. (B.5). If the condition Pai

< e holds for a new point Pi, the present
position of Pi is adjusted by Eqs.B.6 and B.7.

P ”
i = P

′
i − ε

′ × X(P ′
t − BP ) > 0.5 (B.6)

P ”
i = P

′
i − ε

′ × X(P ′
t − P

′
r) < 0.5 (B.7)

Where P ”
i and P

′
r are arbitrary chosen point and ε

′ arbitrary number created by
Gaussian normal distribution (GND).

B.4 Simulation Study

The main object of this simulation experiment is to analyze and to minimize the
residual based on SFS technique. The validation of the performance has been carried
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out with bad measurements data.

B.4.1 WLAV

The weighted Least Absolute Value is formulated to estimate unknown state vectors
by minimizing the following objective,

J(x) =
m∑

i=1
wi|z − h(x)| (B.8)

The nonlinear formulae fi(x) are functions of the state vectors to be estimated. fi(x)
include active and reactive power injections and flows [135].

B.4.2 Constraints

Both of the magnitude and angle of the voltages are constrained in order to meet the
operating requirements as follows,

vmin
i ≤ vi ≤ vmax

i

δmin
i ≤ δi ≤ δmax

i

(B.9)

B.4.3 Bad Measurements Condition

Bad measurements are introduced at several time instants for all test systems as
shown. For all test cases, the following bad measurements are observed.
1. Introducing one bad data measurement at 3rd time instant.
2. Introducing two bad data measurements at 6th time instant.
3. Introducing three bad data measurement at 10th time instant.
4. Introducing four bad data measurements at 14th instant.
5. Introducing five bad data measurements at 20th instant.
6. Introducing six bad data measurements at 24th instant.

B.4.4 Test Systems

The performance of the technique has been examined on four test systems, viz. IEEE
5-bus, IEEE 14-bus, IEEE 30-bus, and IEEE 57-bus systems [113].
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B.4.5 Performance Evaluations

Several performance indices and statistical parameters have been used to evaluate
the performance of the proposed algorithm and its comparison is carried out with
Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).

1. Filter performance is introduced to evaluate the overall estimation for all IEEE
bus test systems as shown in Eq.(5.19).

2. The maximum of mean square error of the state estimate is calculated according
to

MMSE = Max[ 1
2(Ni − 1)

2(Ni−1)∑
K=1

[x̂i(k) − xt
i(k)]2] (B.10)

Where Ni is number of time instants,x̂i(k) and xt
i(k) are estimated and true state

vectors at kth time instant.
3. The maximum of sum of square error of the state estimate is computed accord-

ing to

MSSE = Max[
2(Ni−1)∑

K=1
[x̂i(k) − xt

i(k)]2] (B.11)

4.The average of absolute error of the state estimate is calculated according to

AAE = 1
2(Ni − 1)[

2(Ni−1)∑
K=1

|x̂i(k) − xt
i(k)|] (B.12)

5. The maximum of the root mean square error of state estimate is computed
according to

MMSE = Max

√√√√√ 1
2(Ni − 1)[

2(Ni−1)∑
K=1

[x̂i(k) − xt
i(k)]2] (B.13)

B.5 Results and Discussion

The proposed technique is implemented on four IEEE test systems. The estimation
performance of the proposed technique is assessed using time data from the American
Electric Power Systems in the Midwestern of US which is published by the official
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website of University of Washington [113]. Several scenarios have been applied under
bad measurements.

Table B.1: Control Parameters settings
Algorithm Control Parameters settings

Population Size= 50
Maximum No of generation =400

SFS Maximum No of diffusing =9
Maximum No of diffusing Walk =9

No. of dimension= No. of state vectors
Swarm Size= 20

PSO Maximum No of generation =50
maximum particle velocity=4

Learning factors, c1 = 2, c2 = 2
Inertia weight,winitial = 0.9, wfinal = 0.2

Population Size= 20
GA Crossover rate=0.7

Crossover type: arithmetic
Mutation rate=0.0175

Mutation type: non-uniform
Maximum No of generation =50

Table B.2: Computational time(s) taken by proposed SFS technique
Test Systems Total CPU Time(s)

Normal Condition Bad data Condition
IEEE 5-bus 0.4991 0.5165
IEEE 14-bus 0.9112 1.2136
IEEE 30-bus 2.1168 3.0598
IEEE 57-bus 5.6807 7.7146

Table B.1 shows the selected control parameters for the proposed technique,
stochastic fractal search with other two algorithms include Genetic and Particle
Swarm algorithms to validate the proposed technique and to obtain the optimal solu-
tion. A detailed description about these two algorithms with their control parameters
are described in ref [145], [146].

Table B.2 demonstrates the total computational time of the proposed SFS tech-
nique. Table B.2 comprises of three segments indicating the test systems under both
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normal operating and bad data conditions. It is obvious that the primary challenge
of the proposed SFS technique is a computational time which increase with an in-
crement in the system size. This is due to an increment in the search space and
diffusing process for computing the optimal solution. On the other hand, the pro-
posed SFS technique gives more accurate estimates and profoundly robust against
outliers contrasted to other methods. One of the suggestion to overcome the draw-
back of computational time is by decomposing the vast systems into multi-systems.
This proposal can decrease the total computational time to be more reasonable.

Figure B.1: Statistical parameter values under bad data condition for voltage angle

Figure B.2: Statistical parameter values under bad data condition for magnitude
voltage



127

Figure B.3: Performance Index J (k) in the presence of normal and bad data condition

Table B.3 presents the measured and the true state vectors on bus 3 for IEEE 5-
bus system for 24 time instants under normal operating conditions. It can be observed
that voltage angles are more sensitive to the load change condition as compared to
magnitude voltages. Relative error is presented to assess the accuracy in bus 3 during
24 time instant. Also performance index is used to evaluate the behavior of bus 3
during 24 time instants.

Figures B.1 and B.2 compare the statistical parameters values of the proposed
SFS estimator under bad data condition. It can be concluded that SFS estimator
gives better assessed states contrasted with other SE based strategies. Be that as it
may, statistical parameter values of SFS, PSO, and GA based SE method increased
with an increment in the system size. This is an evidence that FS estimator is more
accurate compared with other SE methods.

Figure B.3 compares the performance index J (k) of the proposed SFS estimator
under both normal operation and bad data conditions for several test systems. It can
be observed that the performance indices are close for all systems and the proposed
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Figure B.4: Normalized Measurements vector for bad data condition during 11th time
instant

algorithm gives a competitive technique to solve such hard problems by moving the
bad data measurements toward the most fitted distribution.

Figure B.4 demonstrates the normalized measurements computed in per unit ac-
cording to the primary generator, slack bus generator values include apparent power,
100 MVA and base voltage, 69 KV for IEEE 14-bus system corresponding to 11th
time instant. It shows that normalized measurements for bad data condition with
anomaly data identification such as reactive power injection on bus 8 and real power
flow from bus 1 to 2. These anomalies are eliminated using backward elimination
which selects one data which has high anomaly value each step in order to improve
the entire estimation.
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B.6 Conclusion

In this chapter, the stochastic fractal search technique is proposed and implemented
to solve tracking state estimation (TSE) problem. The SFS estimator has been ap-
plied for tracking of the time varying static state of the power system. The proposed
SFS technique has been verified on four IEEE test cases including IEEE 5-bus, IEEE
14-bus, IEEE 30-bus, and IEEE 57-bus systems. Two different conditions including
normal operating and bad data conditions have been used to assess the performance
of the proposed SFS estimator. The proposed SFS performance is carried out to be
compared to other estimators such as Particle Swarm Optimization (PSO) and Ge-
netic Algorithm (GA) in several statistical parameters values. The numerical results
demonstrate that the proposed SFS technique has provided us with an accurate state
estimates compared with other proposed estimators. However, this technique suffers
from the large computational time for large systems.



Appendix C

Power System Tracking State Estimation Based on

Stochastic Fractal Search Technique under Sudden Load

Changing Conditions

C.1 Introduction

The control center receives measurements transmitted through the SCADA system,
which depend on the scanning rate. It utilizes one of two techniques: the snap shot
operating, when the set of measurements at a given time is smaller than the base
measure of time, and sequential operating if the set of measurements at a given time
is larger than the base measure of time [147].

SE is computationally substantial, particularly as the system size gets larger, and
many control centers will not have adequate assets to perform an exact and quick
state estimates. Be that as it may, when the length of time between two estimates is
large, will result in a weak co-connection between the accessed states [148]. Tracking
state estimation is used to give better estimation results.

Debs and Larson [131] introduce a minimum variance optimal state estimate based
on all the real time measurements up to time t. This procedure operates on all
measurements sequentially (Batch Mode,) and is compared with static estimator.
The tracking estimator can be analyzed by quadratic-deviation.

In [132] Schweppe and Masiello introduce a tracking static state estimator (TSE)
as an algorithm which uses new measurements to create new estimates by amending
old estimates by a term related to the feedback error signal.

In [143] the authors introduce three tracking estimators using pre-estimation bad
data detection/ elimination scheme based on the exponential smoothing of past es-
timations and logical checks followed by an estimation stage. The algorithms tested
are plain weighted least squares, quadratic square-root and a linear criterion.

131



132

Reference [133] authors present a tracking state estimation algorithm for inte-
grated AC/DC systems based on rectangular coordinate formulation of the network
equations. The first and second order derivatives of the equations are used to develop
a fast tracking state estimator.

This chapter presents the application of a stochastic search technique named frac-
tal search algorithm (SFS) to solve the tracking state estimation (TSE) problem
under sudden load changes scenario. The performance of the method is evaluated
based on maximum average square state error (MASSE), average absolute state error
(AASE), maximum root average square state error (MRASSE), and maximum sum
of the square state error (MSSSE). The procedure is tested on four IEEE standard
test systems including 5, 14, 30, and 57 bus test systems. The results of the proposed
strategy are compared to Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO). The solution of assessed state vectors are compared to the true state variables
utilizing Newton Raphson Load Flow method (NR-LF). The estimation performance
of the proposed technique is assessed utilizing real time data from the American Elec-
tric Power System in the Midwestern US which is hosted by the website maintained
at the University of Washington [113].

C.2 Sudden Load Changes

Power system loads fluctuate as dictated by pattern cycles, creating deviations of
relatively small impact on system dynamic performance. Sudden load changes are not
common but may take place due to unscheduled events such as outages of customer
loads as well as load curtailment, planned and unscheduled outages of equipment,
unplanned climatic conditions, and so forth. System variables including voltages,
power flows/injections, transformer taps are monitored and controlled to meet system
operational constraints [78].

When a sudden change takes place, the set of nearest state variables could expe-
rience larger changes. Consequently, there could be appreciable differences between
actual and estimated values of system states. Operators would then question the
practical value of DSE [149].

The authors of [150] offered one of the earliest proposed techniques to detect
sudden changes in operating condition. The approach compares the anticipated and
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the actual estimates and decides whether or not a sudden change condition has taken
place. To deal with this situation the significance of suspect data is de-emphasized
by reducing their weight and labeling the expectation as untrustworthy.

Gross differences between estimates are considered as bad data within all the
measured data. Two principal sources of gross errors include errors in the metering
system because of broken switch, inaccurate electrical switch status data. If abnor-
malities are not identified accurately, then the output of the estimator is unreliable.
The computational time taken to evaluate the condition of the power system states
is important and there is a need to build up a proficient state estimator to assess the
conditions of the power system.

This chapter presents the application of a stochastic search technique named frac-
tal search algorithm (SFS) to solve the tracking state estimation (TSE) problem
under sudden load changes scenario. The performance of the method is evaluated
based on maximum average square state error (MASSE), average absolute state error
(AASE), maximum root average square state error (MRASSE), and maximum sum
of the square state error (MSSSE). The procedure is tested on four IEEE standard
test systems including 5, 14, 30, and 57 bus test systems. The results of the proposed
strategy are compared to Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO). The solution of assessed state vectors are compared to the true state variables
utilizing Newton Raphson Load Flow method (NR-LF). The estimation performance
of the proposed technique is assessed utilizing real time data from the American Elec-
tric Power System in the Midwestern US which is hosted by the website maintained
at the University of Washington [113].

C.3 Solution Methodology of SFS algorithm

Fractals were proposed by Benoit Mandelbrot in 1975. He attempted to utilize the
idea of fractal speculations to depict patterns in nature [144]. The Stochastic Fractal
Search is based on this concept and maybe outlined as follows [82]:
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SFS Procedure

1. Initializing the population size Np that follows a uniform distribution which
is considered as a starting point with equal energy Ei, maximum generation
(iteration), maximum diffusing number (MDN), and the dimension size Ndim.
2. Set diffusing walk which is considered as Search walk=1 for first Gaus-
sian (simple problems), and diffusing Search walk=2 for second Gaussian (hard
problems). Any choice of second order Gaussian distribution should consider
increasing number of generations (iterations). SFS algorithm utilize Gaussian
distribution, search walk employed in the DLA growth procedure.
3. Set time instant k=1.
4. Minimizing the fitness function.
5. Constraints should be selected.
6. Generating random points in considered search space.
7. Computing the fitness value of the first created point.
8. Find the best point (BP) in the group.
9. First updating the points’ position .
10. All points obtained by the first update process are ranked for each new
point.
11. Second updating Process.
12. Steps from 2-9 are then repeated until the number of generations reaches
the maximum.
13. Update the time instant k as k=k+1.
14. Stop.

C.4 Simulation Study

C.4.1 Sudden Load Change

The execution of the proposed technique has been examined under sudden burden
change conditions. Measurement set for this condition has been resolved under the
following situations,
For test case 1, i.e. IEEE 5-bus system, the following sudden load change conditions
are observed,
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1) 50% load reduction at 3th time instant on bus 2.
2) Sudden loss of load at 11th time instant on bus 3.
3) 50% load increase at 16th time instant on bus 4.
4) 20% load increase at 19th time sample on all the load buses.
5) Sudden loss of load at 22th time instant on bus 5.
6) 20% load decrease at 24th times instant on all the load buses.

For test case 2, i.e. IEEE 14-bus system, the following sudden load change condi-
tions are observed:
1) 50% load reduction at 3th time instant on bus 3.
2) Sudden loss of load at 11th time instant on bus 8.
3) 50% load increase at 16th time instant on bus 12.
4) 20% load increase at 19th time sample on all the load buses.
5) Sudden loss of load at 22th time instant on bus 14.
6) 20% load decrease at 24th times instant on all the load buses.

For test case 3, i.e. IEEE 30-bus system, the following sudden load change condi-
tions are observed:
1) 50% load reduction at 3th time instant on bus 3.
2) Sudden loss of load at 11th time instant on bus 8.
3) 50% load increase at 16th time instant on bus 12.
4) 20% load increase at 19th time sample on all the load buses.
5) Sudden loss of load at 22th time instant on bus 14.
6) 20% load decrease at 24th times instant on all the load buses.

For test case 4, i.e. IEEE 30-bus system, the following sudden load change condi-
tions are observed:
1) 50% load reduction at 3th time instant on bus 5.
2) Sudden loss of load at 11th time instant on bus 10.
3) 50% load increase at 16th time instant on bus 15.
4) 20% load increase at 19th time sample on all the load buses.
5) Sudden loss of load at 22th time instant on bus 26.
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6) 20% load decrease at 24th times instant on all the load buses.

For test case 5, i.e. IEEE 57-bus system, the following sudden load change condi-
tions are observed:
1) 50% load reduction at 3th time instant on bus 5.
2) Sudden loss of load at 11th time instant on bus 13.
3) 50% load increase at 16th time instant on bus 25.
4) 20% load increase at 19th time sample on all the load buses.
5) Sudden loss of load at 22th time instant on bus 45.
6) 20% load decrease at 24th times instant on all the load buses.

C.4.2 Test System

The execution of this analysis has been applied on four test systems, viz. IEEE 5-bus,
IEEE 14-bus, IEEE 30-bus, and IEEE 57-bus systems.

C.4.3 Performance Indices

A few execution indices and parameters have been used to evaluate the performance
utilized to assess the execution of the proposed [151].

C.5 Results and Discussion

Table C.1: Control Parameters settings
Algorithm Control Parameters settings

Population Size= 50
Maximum No of generation =400

SFS Maximum No of diffusing =9
Maximum No of diffusing Walk =9

No. of dimension= No. of state vectors
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Table C.2: Computational time(s) taken by proposed SFS technique
Test Systems Sudden Load Change Condition

First CPU Time(s) Total CPU Time(s)
IEEE 5-bus 0.0309 0.7479
IEEE 14-bus 0.0575 1.4573
IEEE 30-bus 1.0338 3.2231
IEEE 57-bus 1.6807 7.9832

Table C.1 illustrates the algorithm control parameters which are chosen to obtain
the optimal solution.

Table C.2 demonstrates the first and total computational time of the proposed
SFS technique under sudden load condition. Also this table consists of three seg-
ments showing the test systems under consideration, the entire computational time,
and the time taken for the initial appearance of the solution with adequate precision
respectively. It is seen from the table that the real problem of the proposed SFS pro-
cedure is the computational time which increments with an increment in the system
size. This is because of an increment in the search space and diffusing process for
determining the optimal solution. Although, the proposed SFS technique gives more
accurate appraisals and profoundly vigorous against outliers contrasted with other
techniques. One of the suggestion to overcome the drawbacks of computational time
is by decomposing the vast systems into multi-systems. This proposal can decrease
the total computational time to be more reasonable. Moreover, the heavy compu-
tational burden can be solved by compelling programming and with an increment
of PC speeds as being seen each year. Under these conditions, the transformative
methodology should be quick soon. Subsequently, in the present day situation the
proposed SFS technique is a viable and effective apparatus for disconnected from the
net studies (offline studies).

Table C.3 merely offers estimated and true values of V3, and 3 on bus 3 on IEEE
5 bus system for 24 time instants. It concluded that errors are within 10% which
makes our estimation to be accurate. Also performance assessment J (k) for this case
is represented in table C.3, measurements are not effected and the performance is far
enough from one which makes our estimation to be reliable and robust. Four statisti-
cal parameters of the SFS technique based SE strategy is exhibited in Table C.4 and
C.5 for voltage angle and magnitude voltages respectively. From the aforementioned
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tables, it can be seen that like ordinary operation, the statistical parameter parame-
ters are little influenced by these measurements, however statistical parameters values
for sudden load variety conditions are reasonable compared to other techniques. Sub-
sequently it can be inferred that the proposed SFS estimator gives better estimates
even in the exhibiting of sudden load changes. This shows the robustness of the
proposed SFS strategy.

Figure C.1 demonstrates the comparison in the presence of the performance index
J (k) of the proposed SFS estimator under sudden load condition for several test sys-
tems during 24 instant of time. It can be observed from figure C.1 that the distinction
in performance variation index is little far for all case systems, subsequently, in IEEE
5-bus system, the variation is more obvious in the last ten instant of time where most
of sudden load changes occurred from 16th to 24th time instant. For other cases,
performance variation J (k) is distributed adequately for all time instants. Due to
the robustness, the proposed SFS technique is a competitive technique to solve such
hard problems by moving the influenced measurements, by different circumstances
and conditions, toward the most fitted distribution. It is affirmed from figure C.1
that the estimated results are influenced after the presence of sudden load changes.
The evaluation of robustness is taken as an assumption of performance index value
J (k) being less than one. In other words, as long as the performance index of the
proposed SFS technique less than one, the estimation is considered as reliable and
robust.

Figure C.2 shows normalized measurements in per unit according to the primary
generator, slack bus generator values include apparent power, 100 MVA and base
voltage, 69 KV for IEEE 14-bus system corresponding to 11th time instant for sudden
load change condition with anomaly data identification at 11th time instant including
reactive power injection on bus 2, real power injection on bus 14, real power flow from
bus 6 to 13, real power flow from bus 5 to 6, and reactive power flow from bus 4 to
7.These anomalies are eliminated using backward elimination which is selected one
anomaly measurement every time and eliminated, then re-estimate the system at the
same time instant in order to improve the quality of the estimation.
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Figure C.1: Performance Index J(k)in the presence of normal and sudden load con-
dition

Figure C.2: Normalized Measurements vector for sudden load change condition during
11th time instant
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C.6 Conclusion

In this chapter, a meta-heuristic procedure named a stochastic fractal search tech-
nique is proposed and applied to determine tracking state estimation (TSE). The SFS
estimator has been implemented for following the time fluctuating static condition of
the power system. The proposed SFS method has been checked on four IEEE test
cases. Sudden load changes conditions has been used to assess the performance of
the proposed SFS estimator. The proposed SFS execution is done to be compared
with different estimators including Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) in a few factual parameters. The numerical results show that the
proposed SFS system has given us a precise state estimator differentiated to other
proposed estimators. On the other hand, this procedure experiences the long compu-
tational time in large system. This strategy can be more successful in multi-systems
by decoupling the large system into multi-small scale systems. The Matlab code used
for the estimation is described in [82].



Appendix D

Power System Static State Estimation using Modified

Stochastic Fractal Search Technique

D.1 Introduction

Reliable operation of today’s large electric power systems heavily depend upon the
state estimation techniques for different applications. These estimators give impor-
tant measurement used for different application functions of control center. Therefore,
a computationally efficient and robust state estimator is an important tool to improve
the performance, security and safety of the power delivery system. State estimation
(SE) is becoming one of the key functions in the distribution control centers in the
deregulated and competitive environment [1]. The innovative idea of SE was first
proposed by Schweppe in ref. [152]. He presented three sequential papers on SSE.
In the first paper, he introduced mathematical modeling and general techniques. In
the second paper, he tested several approximate mathematical models and it is re-
sulted simplification in estimation in case of detection and identification. In the third
paper, he discussed several implementation issues associated in with dimensionality,
and the time changing nature of real power systems. Linear programming (LP) is
presented in ref. [7] to minimize the weighted sum of the absolute values of the mea-
surement residuals. The sequence of linear programing strategy first recognizes the
bad measurements using the measurement residuals of those data rejected by the LP
estimator. Another computational strategy is proposed in ref. [8] for solving equality
constraint in PSSE without the Lagrange multipliers. It is an imperative to process
a complete fractional factorization (L, U) of grid which improve numerical modeling.
A new technique in ref. [10] investigated the problem of bad data identification un-
der line current magnitude measurements. Two common SE methods include least
squares and least absolute value estimation are studied. The least squares estimation
is used as a post estimation problem and the least absolute value estimation is used as
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an outlier rejection problem. Interior point algorithm is presented in ref. [11] to solve
the power system weighted non-linear state estimation problem. The effectiveness of
the proposed algorithm has been verified by the extensive simulating computations.
Mosbah and Elhawary were first introduced SFS technique to PSSE in ref. [153],
[154]. The authors implemented the SFS technique under a few scenarios incorpo-
rating normal operation where load fluctuates linearly, bad data , and sudden load
changing conditions presented at various time samples during the study period. The
technique is tested on different IEEE bus systems and the results are contrasted with
other meta-heuristic techniques.
This chapter presents modified stochastic fractal search technique to solve static SE
problem. The proposed M-SFS technique is utilized to improve the accuracy and
computational time of the original SFS algorithm. Two modifications are considered
in M-SFS. This includes various benchmark functions replaced the logarithmic func-
tion in the diffusing process and a few chaotic maps replaced the uniform distribution
in diffusing and updating processes. The M-SFS is tested on IEEE 30, 57, and 118-
bus systems. The results illustrated the superiority of M-SFS technique compared to
its original SFS.

D.2 Stochastic Fractal Search Technique

SFS grouped into two main processes. The diffusing process, the exploitation prop-
erty is satisfied by diffusing every particle around its present position. Therefore, the
chance of preventing local minima and finding global minima will be increased. Up-
dating process, The position of each point will be updated based on the other points
in the group. Fitness function is used to rank all points in the group. The particles
with high probability are only considered and others are discarded. This is called
static diffusing process which is used in SFS algorithm. Gaussian walk is only consid-
ered in proposed SFS technique to produce new particles due to its ability in finding
the global minima. DLA growth process of SFS employed Gaussian distribution as
the only random walk [154].
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Algorithm 2 Stochastic Fractal Search
1: Initialize the SFS parameters
2: Set the lower and the upper constraints
3: while g ≤ max.Iteration do

4: for each point i in the system do

5: Call diffusing process
6: for j = 1 : q(max.No.ofdiffusion) do

7: If first Gaussian walk is applied do

8: GW1 = Gaussian(μBP , σ) + (ε × BP − ε
′ × Pi)

9: Else second Gaussian walk is applied do

10: GW2 = Gaussian(μP , σ)
11: end for

12: end for

13: end If
14: Call updating process
15: for each point i in the system do

16: for each componentj in Pi do

17: If rand[0, 1] ≤ Pai do

18: Update the component do

19: P
′
i (j) = Pr(j) − ε × (Pt(j) − Pi(j))

20: Else do nothing
21: Rank all points obtained by the update process
22: end for

23: end for

24: end If
25: end while
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D.3 Modified Stochastic Fractal Search Technique

This section shows the presented modified SFS technique and its execution evaluations
utilizing different standard benchmark functions. The logarithmic function in the
diffusing process is replaced by well-known benchmarks functions and the uniform
distribution parameter in both diffusing and updating process is replaced with a few
chaotic maps.The execution ranks and significant contrasts among the modified and
the original technique are assessed.

D.3.1 Modified α Parameter

The logarithmic function in standard deviation of the diffusing process will be replaced
by parameter α. The α parameter represents the benchmark functions which are
shown in table D.1. This will limit the number of Gaussian jumps as the size of
iteration increments. This will lead to efficient exploration of search space.

GW1 = Gaussian(μBP , σ) + (ε × BP − ε
′ × Pi) (D.1)

GW2 = Gaussian(μP , σ) (D.2)

σ = | log(g)
g

× (Pi − BP )| (D.3)

σ = |α × (Pi − BP )| (D.4)

Note that equations (D.1-D.3) represent the Gaussian walk of the diffusing process
in SFS technique. However, equation (D.4) replaced the logarithmic function by α

parameter. The α parameter denotes the benchmark functions show in table D.1.

D.3.2 Implementation of Chaotic Maps

The uniform distribution in both diffusing and updating processes will be replaced by
μ parameter. The μ parameter represents the chaotic maps which are shown in table
D.2. The randomization of every particle utilizing uniform distribution more often
is the fundamental execution of the metaheuristic techniques. This choice carries
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Table D.1: The Presented Replacement Functions For α
Algorithms Functions Names
SFS log(g)/g Logarithmic
Modified SFS (1/1 + exp(−g)) ∗ g Sigmoid

| acos(g)/g) | Inverse cosine
exp(−g)/g Exponential
cosh(g)/g Hyperbolic cosine
csch(g)/g Hyperbolic cosecant

drawbacks when dealing with complex nonlinear and multimodal issues. Therefore,
chaotic maps will improve accuracy and convergence speed.

GW1 = Gaussian(μBP , σ) + (ε × BP − μ × Pi) (D.5)

P
′
i (j) = Pr(j) − μ × (Pt(j) − Pi(j)) (D.6)

Table D.2: The Mathematical Description Of Chaotic Maps μ
Map Name Equation
Chebyshev map xi+1 = cos(i cos−1(xi))
Circle map xi+1 = mod(xi + b − ( a

2π
) sin(2πxi), 1)

Gauss/mouse map xi+1 =
{1, forxi = 0

mod( 1
xi

, 1)
Iterative map xi+1 = sin(aπ

xi
)

Logistic map xi+1 = axi(1 − xi)

Piecewise map xi+1 =
{

xi

p
for0 ≤ xi < p,

xi − p

0.5 − p
forp ≤ xi < 0.5

1 − p − xi

0.5 − p
for0.5 ≤ xi < 1 − p

1 − xi

p
for1 − p ≤ xi < 1

Sine map xi+1 = sin(πxi)
Sinusoidal map xi+1 = 2.3x2

i sin(πxi)
Tent map xi+1 = (10

3 )(1 − xi)

The above equations (D.5-D.6) represent the diffusing and updating processes
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respectively in the SFS technique. The particles will be forced to move toward the
optimal solution by chaotic maps. Chaotic maps were first proposed by both Saremi
and Mitic in [9], [10]. Every chaotic map has an initial point=0.7 and normalized to
the range of [0,1]. Here ε and ε

′ are uniform distributed to [0, 1], BP and Pi denote
as the best position point and ith point respectively. μBP denotes |BP |, μP is equal
to Pi and σ is the standard deviation.

D.4 Simulation Study

The presented M-SFS technique is implemented in Matlab and illustrated on IEEE
30-bus, 57-bus and IEEE 118-bus systems [113]. The weighted Least squares is defined
to evaluate the unknown states by minimizing the following objective,

J(x) =
m∑

i=1
wi(z − h(x))2 (D.7)

Mean absolute percentage error has been utilized to assess the execution of the pro-
posed M-SFS technique and its comparison is carried out with its original SFS.

Mape(x) = 1
nb − 1

nb∑
i=2

| xest − xt

xt
| (D.8)

Where xest and xt denote the estimated (M-SFS) and true states (load flow) respec-
tively.

D.5 Results and discussions

The presented M-SFS technique is demonstrated on three IEEE bus systems. The
estimation performance of the proposed technique is evaluated using real time data
from the American Electric Power Systems in the Midwestern of US.
Table D.3 investigates the effect of various benchmark functions represented by α

parameter. The α parameter is replaced the logarithmic function of the original SFS.
Moreover, the weighted sum of square error is used to evaluate the accuracy of all
benchmark functions under various IEEE bus systems. As can be seen that Modified
SFS technique with inverse cosine and exponential functions outperformed the original
SFS algorithm in most of the benchmark functions. However, inverse cosine function
has the least sum of square error. Table D.4 shows the implementation of chaotic maps
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Table D.3: Results of modified SFS by α parameter
Algorithms Functions IEEE bus systems

30-bus 57-bus 118-bus
SFS Logarithmic 2.6021 29.8204 50.3070

M-SFS Sigmoid 2.6985 38.6251 54.9006
Inverse cosine 1.3922 18.2271 40.7387
Exponential 2.4434 29.0701 53.1143

Hyperbolic cosine 7.821962 63.4263 212.7553
Hyperbolic cosecant 3.7998 26.6832 60.6161

represented by μ parameter. The μ parameter is replaced the uniform distribution of
the original SFS by various chaotic maps. The replacement occurred in both diffusing
and updating process. In addition, the accuracy of all chaotic maps is assessed by
the weighted sum of square error under three different IEEE bus systems. Iterative
map improved the accuracy of SFS algorithm far better than other chaotic maps. It
concluded that chaotic fractal search algorithm (CFS) has demonstrated significant
enhancement due to its capability in finding the best optimal solution compared to
its original SFS algorithm.

Table D.4: Results of modified SFS by Chaotic maps
Map Name IEEE 30-bus IEEE 57-bus IEEE 118-bus

Chebyshev map 3.3242 34.1794 35.1063
Circle map 3.9886 29.1277 39.3523

Gauss/mouse map 4.4310 25.8382 55.8319
Iterative map 2.4479 21.7495 34.1999
Logistic map 5.7923 35.4989 55.5910

Piecewise map 5.0481 36.3972 41.9784
Sine map 4.5570 32.0554 39.7002

Sinusoidal map 3.7310 25.1363 49.9311
Tent map 3.9293 38.6699 65.6037

Table D.5: MAPE of Voltage angle for modified SFS
Algorithms IEEE 30-bus IEEE 57-bus IEEE 118-bus

SFS 4.8073 9.9565 16.0715
Modified SFS 1.7376 5.9327 8.8347

The MAPE of estimated states for various IEEE bus systems is tabulated in tables
(D.5-D.6). Both modified SFS and its original SFS algorithm are compared in these
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Table D.6: MAPE of Voltage magnitude for modified SFS
Algorithms IEEE 30-bus IEEE 57-bus IEEE 118-bus

SFS 3.6929 6.6718 9.8929
Modified SFS 1.4152 4.1859 6.0970

tables. As can be seen that modified SFS has the least MAPE in all three IEEE test
systems. For instance, in IEEE 30-bus system, the MAPE for voltage magnitude is
3.6929% and 4.8073%for voltage angles in SFS technique. This compared to 1.4152%
for voltage magnitude and 1.7376% for voltage angles in modified SFS. Moreover, in
IEEE 118-bus system, the MAPE for voltage magnitude is 9.8929% and 16.0715% for
voltage angles in SFS technique. This compared to 6.0970% for voltage magnitude
and 8.8347% for voltage angles in modified SFS. It concluded that modified SFS has
increased the accuracy significantly compared to its original SFS algorithm.

Table D.7: Computational time for modified SFS
Algorithms IEEE 30-bus IEEE 57-bus IEEE 118-bus

SFS 16.227668 28.484373 72.541932
Modified SFS 7.401716 12.521130 38.775233

Figure D.1: Mean absolute Percentage error of Voltage angle

Table D.7 shows the computational time for three different IEEE bus systems.
Both modified SFS and its original SFS algorithm are compared in this table. As can
be observed that modified SFS has the least CPU time in all three different IEEE test
systems. For example, in IEEE 30-bus system, the CPU time is 16.227668 seconds
for SFS algorithm. This can be compared to 7.401716 seconds for modified SFS
technique. In addition, in IEEE 118-bus system, the CPU time is 72.541932 seconds
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for SFS algorithm. This can be compared to 38.775233 seconds for modified SFS
technique. It affirmed that modified SFS has the least computational time compared
to its original SFS algorithm.

Figure D.2: Mean absolute Percentage error of Voltage Magnitude

Figures (D.1-D.2) present the state estimation behavior of system states for IEEE
118-bus system. Both modified SFS technique and its original SFS algorithm are com-
pared with true states (load flow). It can be observed from these figures that modified
SFS has a better performance than its original SFS. It concluded that modified SFS
technique is more robust.

D.6 Conclusion

The chapter introduced modified stochastic fractal search technique to PSSE. Two
important modifications are studied in this paper. Various benchmarks functions
replaced logarithmic function in the diffusing process. Moreover, a few chaotic maps
replaced the uniform distribution parameter in both diffusing and updating processes.
These modifications will have a crucial effect on the algorithm execution. Therefore,
the accuracy with the least computational time will be fulfilled. Several IEEE bus
systems are used to validate the experiment. The obtained results demonstrated a
significant improvement in both accuracy and the computational time in comparison
to its original algorithm.



Appendix E

Evaluating the Impact of Phasor Measurement Units on the

Accuracy of State Estimation

E.1 Introduction

PMUs can monitor, protect, and control real-time wide area of modern power sys-
tems [155]. State estimation is a function which is used to process a set of mea-
surements to obtain the best estimated states. Weighted least square method is
conventionally used to solve the SE problem with SCADA measurements include
voltage magnitudes, real and reactive power injections and flows [27]. The advent
of phasor measurement units (PMUs) eased the problem of measuring phase angles
of the bus voltages in real time by synchronizing the voltage and current waveforms
from far off areas with respect to a Global Positioning System (GPS) [156]. When
a PMU installed at a bus, it can measure the voltage phasor of the installed bus as
well as the current phasors in the lines associated with that bus. PMUs can help
in enhancing the operation and real-time control of vast transmission systems, how-
ever, PMUs cannot make state estimation obsolete [136]. Linear estimator can be
expressed as a complete observability of the system when only PMU measurements
are used to estimate the system states. However, this can economically be imprac-
tical for a vast system because it requires a large number of PMUs. The present
practice is to introduce PMUs in an incremental manner in conjunction with tradi-
tional measurements [157]. In ref. [158], state estimation problem is defined without
utilizing any actual or virtual reference bus. The detection and identification of in-
correct PMUs is the main benefit of using this formulation. In ref. [159], the state
estimation problem is defined such that the current SCADA-based state estimator
can be attached effectively to represent the PMU measurements. In ref. [160], the
authors analyzed the impact of measurement synchronicity includes SCADA and ad-
ditional PMUs measurements on the accuracy of the state estimation.A hybrid state

152
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estimator combined SCADA and PMUs measurements in rectangular coordinates is
proposed in [161]. In ref. [162], the authors presented a modified formulation uti-
lizing rectangular coordinates. This formulation solves numerical difficulties of using
phasor voltage and current measurements. Detection and identification of errors in
these phasor measurements are included. In ref. [163], the authors presented a phasor
assisted hybrid for non-linear state estimator. This approach combined SCADA and
PMUs measurements to improve the precision of the traditional weighted least square
state estimator.

This chapter presents hybrid multilayer perceptron neural network with stochastic
fractal search to solve the hybrid state estimator problem. The performance of the
hybrid technique is assessed based on mean absolute percentage error and redundancy
indices. The experiment is tested on three standard IEEE bus systems including 14,
30, and 57 bus systems. Several cases are tested to demonstrate the effect of PMUs on
the accuracy of state estimation. The results of the hybrid technique are contrasted
with stochastic fractal search and multilayer perceptron neural network individually.

E.2 Hybrid state estimator formulation

The main idea of state estimation is to estimate the system states (voltage phasors)
at all buses. These estimated states are computed based on available set of mea-
surements. Eq.(E.1) provides a general mathematical formula of state estimation.

z = h(x) + e (E.1)

where z denotes as a measurement vector of Rm×1 computed from both conventional
and PMU measurements, x is Rn×1 estimated states (n < m), h(x) denotes as a non-
linear function of Rm×1 vector relating measurements to states, n is size of estimated
states(n = 2×N), m is size of measurements, N is number of buses, and e denotes as
a measurement noise error vector Rm×1 which has a Gaussian distribution with zero
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mean and standard deviation.

z =

⎡
⎢⎢⎢⎢⎣

zSCADA

zP MUs

⎤
⎥⎥⎥⎥⎦ (E.2)

zSCADA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Pi

Qi

Pij

Qij

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, zP MUs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vreal

vimag

Ireal

Iimag

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The above matrices describe the ways to combine the conventional measurements
by SCADA along with the voltage and the current measurements by PMUs. Here,
Pi and Qi denote the real and reactive power injections respectively, Pij and Qij

represent the real and reactive power flows respectively,Vreal and Vimag stand for real
and imaginary part of bus voltage, Ireal and Iimag represent the real and imaginary
of line currents recorded by PMUs.

h(x) =

⎡
⎢⎢⎢⎢⎣

h(x)Conv

h(x)P MUs

⎤
⎥⎥⎥⎥⎦ (E.4)

h(x)Conv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vi
∑m

i=1 Vj|Yij| cos(δi − δj − θij)

−Vi
∑m

i=1 Vj|Yij| sin(δi − δj − θij)

|V 2
i |Gii + ∑m

i=1 |Vi||Vj|Yij|
cos(δi − δj + θij)

−|V 2
i |Bii − ∑m

i=1 |Vi||Vj|Yij|
sin(δi − δj + θij)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.5)
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h(x)pmus =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vreal

Vimag

Vi[(Gij + Gsi) cos δi − (Bij + Bsi)
sin δi] − Vj[Gij cos δj − Bij sin δi]

Vi[(Bij + Bsi) cos δi + (Gij + Gsi)
sin δi] − Vj[Bij cos δj + Gij sin δi]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.6)

Where h(x) represents the nonlinear measurement function relates to both SCADA
and PMUs measurements, both Vi and Vj are voltage magnitudes on bus i and j re-
spectively, Gij denotes as the series conductance of branch i-j, Bij denotes as the
series susceptance of brunch i-j, Gsi denotes as the shunt conductance between bus i
and ground, Bsi denotes as the shunt susceptance between bus i and ground.

The mathematical formula of hybrid state estimator problem is constructed by
the typical pi-model of a branch connecting the PMU bus with regular bus, This
mathematical formula is described in details in ref. [157].
Generally, the objective function below is minimized using WLS method to compute
the estimated states as given in Eq. (E.7) ,

J(x) = [z − h(x)]T R−1[z − h(x)] (E.7)

where,R represents the measurement covariance matrix of Rm×m.

E.3 Hybrid techniques

The hybrid MLP-SFS is classified into two phases. The first phase, multilayer per-
ceptron NN is used to determine the initial system states. The dataset for all IEEE
bus systems are randomly divided into three subsets, i.e. 70% for training and 15%
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for both validation and testing. Input layer comprised of one node representing as the
available measurements. An output layer with one node served as the initial system
states. The desired output (target) is set as true system states (load flow). Levenberg-
Marquardt back propagation (LMBP) is used as a training algorithm. Hidden neurons
were equipped with non-linear transfer function, tan-sigmoid, while output layer has
(linear) purlin-neurons. This system can determine the initial estimated states. Fi-
nally, the desired model is selected based on minimum mean square error (MSE).
The second phase, stochastic fractal search is used to determine the final estimated
states. The output of MLP NN is used an input into SFS. SFS begins with diffusing
process, the exploitation property is fulfilled by the diffusing of each particle around
its present position. Gaussian random walk is used to generate new particles from
the diffusing process. The optimal point among all points is computed by the fitness
function. SFS ends with updating process, the fitness function is used to rank all the
points. A probability value is applied to every point i in the group. The position
of each point is changed based on the position of other points in the group. Finally,
algorithm stops by a termination criterion and determine the best fitness value.

E.4 Simulation Study

The proposed technique is implemented in Matlab and demonstrated with IEEE 14-
bus, IEEE 30-bus, and 57-bus systems [113]. The available measurements incorporate
both conventional and phasor measurements. Every PMU will measure the voltage
phasor of the bus where it is installed and the current phasors in all lines connected
to that bus. Bus 1 is thought to be the slack bus for conventional measurements. In
this experiment, we set an error of 2% for the traditional measurements and 0.5% for
the PMU measurements. Reference [164] is used to obtain the optimal locations of
PMUs. The weighted Least Absolute Value is defined to assess the unknown system
states by minimizing the following objective,

J(x) =
m∑

i=1
wi|z − h(x)| (E.8)

Mean absolute percentage error has been used to evaluate the performance of the
proposed technique and its comparison is carried out with multilayer perceptron NN
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Algorithm 3 Backpropagation NN
1: Initialize the connection weights randomly
2: Set error, threshold error, and max epoch
3: while epoch ≤ max.epoch do

4: For each input node i in the input layer do

5: ai ← xi

6: end for
7: For each node j in each hidden layer do

8: z ← ∑
wijai

9: aj ← f(z)
10: end for
11: For each node k in the output layer do

12: y ← ∑
wjkaj

13: ak ← f(y)
14: end for
15: end while

16: Calculate error
17: Increment epoch
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(MLP) and Stochastic fractal search individually.

Mape(x) = 1
nb − 1

nb∑
i=2

| xest − xt

xt
| (E.9)

where xest denotes the estimated states using the proposed technique and xt denotes
the true system states (load flow).

E.5 Results and discussions

The presented hybrid technique is illustrated on three IEEE test systems. The esti-
mation execution of the presented technique is assessed using real time data from the
American Electric Power Systems in the Midwestern of US. Seven cases are examined
to demonstrate the effectiveness of PMUs on the accuracy and computational time
in electric grid.
The best control parameters are tabulated in table E.1. The population size varies
from 50 to 90, the size of neurons varies from 20 to 35, and [-1,1] is selected for the
lower and the upper bound for all IEEE bus systems. The hyperbolic tangent transfer
function is selected as the hidden layer for IEEE 14 and 30-bus system. However, the
Log-sigmoid transfer function is chosen as the hidden layer for IEEE 57-bus system.
Moreover, linear activation function is set as an output layer for all IEEE bus systems.
These control parameters have provided the optimal condition.

Table E.1: Control Parameters used in hybrid MLP-SFS
Control parameters 14-bus 30-bus 57-bus

Side Walk 0 1 1
Population Size 50 70 90
No. of Neurons 20 25 35

Max. Generation 150 200 350
Input Transfer Funct. TangSigmoid TangSigmoid Logsigmoid

Output Activation Funct. Linear Linear Linear
boundaries [1, -1] [1, -1] [1, -1]

Diffusion No. (MDN) 1 10 15

Tables (E.2-E.4) investigate the impact of phasor measurement units (PMUs) on
the accuracy of state estimation. The tables illustrate Six different cases by gradually
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incorporating PMUs measurements with conventional measurements for three differ-
ent IEEE bus systems. From the tables can be seen that the increment in PMUs
number leads to increase the redundancy and subsequently decrease the mean ab-
solute percentage error of estimated states. In IEEE 14-bus system, in case of no
PMUs, the mean absolute percentage error is 1.59% and 4.2190% for voltage magni-
tudes and angles respectively. However, when PMUs increases to 10% of bus number,
the MAPE decreases to 3.8160% for voltage magnitudes and 5.4091% for voltage an-
gles. In addition, the bus number of PMUs increases to 50%. This leads to increase
the redundancy to 1.96 and decrease the MAPE to 1.2907% for voltage magnitudes
and 2.8595% for voltage angles. In IEEE 30-bus system, from no PMUs to 50%
PMUs, the MAPE is reduced from 5.0046% to 2.7494% for voltage magnitudes and
from 13.3776% to 5.2005% for voltage angles. Also, the redundancy increases from
1.58 to 1.97. In IEEE 57-bus system, from no PMUs to 50% PMUs, the MAPE is
reduced from 12.7819% to 6.7641% for voltage magnitudes and from 21.4200% to
15.4042% for voltage angles. Also, the redundancy increases from 1.33 to 1.95. It
concluded that phasor measurement units (PMUs) can increase the observability of
the power system. This results in improving the accuracy of estimated states.

Tables (E.5-E.6) show the mean absolute percentage error of estimated states for
various IEEE bus systems. Linear state estimator is considered by the only PMUs.
This case can examine the effect of the only PMUs on the accuracy in the electric
grid. As can be observed that only PMUs case has the least MAPE compared to
previous tables. For instance, with 50%PMUs in IEEE 57-bus system, the MAPE
for voltage magnitude is 6.7641% and 15.4042% for voltage angles. This compared
to 5.5562% for voltage magnitude and 13.6281% for voltage angles in only PMUs
case. Moreover, the proposed hybrid technique has the least error compared to other
techniques.

Table E.5: MAPE of Voltage magnitude for only PMUs
IEEE system 14-bus system 30-bus system 57-bus system
MLPNN-SFS 0.6511 2.0788 5.5562

SFS 2.2521 5.1193 9.0031
MLP 3.4223 5.9270 9.0203
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Table E.6: MAPE of Voltage angle for only PMUs
IEEE system 14-bus system 30-bus system 57-bus system
MLPNN-SFS 1.8894 4.7660 13.6281

SFS 6.6470 8.2391 19.0417
MLP 8.3476 11.1304 21.7104

E.6 Conclusion

Hybrid MLP-SFS was applied to enhance the accuracy of state estimation. The mea-
surement redundancy and accuracy were improved by gradually increasing the size
of PMUs. Only PMU measured data is used to investigate the linear formulation
of the state estimation. Seven cases were used to validate this experiment. More-
over, three different IEEE bus systems were implemented to illustrate the results of
the proposed technique. The proposed technique was contrasted with other tech-
niques include MLP and SFS individually. The presented technique provided the
least MAPE.



Appendix F

A Distributed Multiarea State Estimation

F.1 Introduction

Robust SE is essential for wide-area monitoring, protection, and control (WAMPAC).
Due to the large-scale power systems, the measurements and the system states turn
out to be very large. This leads to transmit extremely large amounts of data from the
measurement units to the centralized SE. Therefore, the required cost for the com-
munication link expanded. Decentralized SE is an alternative technique to provide
a reliable estimate with significantly reduced computational requirements for a large
scale power system. This can be done by partitioning the large power system into
multi-regions and running local state estimators in each area to compute the global
state estimate [76]. A two-level technique is proposed in ref. [165]. A traditional
state estimation is performed in parallel for all areas in the lower level. The coordi-
nation of these local estimations is acknowledged in the upper level. Dantzig-Wolfe
Decomposition Principle is presented in ref. [166] to solve the linear programing SE
problem in large scale electric system. The approach reduces the LP problems into
smaller dimension of a coordinated sequence of LP. In ref. [167], a parallel algorithm
is presented based on border measurements and overlapping subsystems. The Auxil-
iary Problem Principle is applied to improve a distributed state estimator. Multiarea
decentralized state estimation approach is presented in [168]. The approach allows
the boundary buses to exchange its information among area operators without con-
sidering the central coordinator level. A distributed state estimator is proposed in
ref. [169] to solve multi area SE problem. The entire system is partitioned into a
particular number of non-overlapping subsystems. Each subsystem independently
perform their own state estimator based on its local measurements. Boundary mea-
surements and states received by central coordinator to estimate the system-wide
solution. Both Observability and bad data analysis are also included in this ap-
proach. A fully distributed state estimation technique is presented in ref. [170] for
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wide-area monitoring in power systems. In this algorithm, the sub-areas exchange
the information iteratively. In ref. [171], conventional algorithms connected with a
coupling constraints optimization technique is proposed for parallel and distributed
state estimation. where overlapping subareas are considered with a common zero
injection boundary bus. A diakoptic-based distributed SE algorithm is presented in
ref. [172] for large-scale power systems. the proposed algorithm is partitioned the
large-scale power system into a particular number of subareas by removing tie line
measurements. Each subarea performs their own state estimation based on its local
computational resources. The tie line measurements sent to a central computer for
completing the state estimation process by the intermediate subarea SE solutions.
This chapter presents hybrid stochastic fractal search with simulated annealing algo-
rithm to solve multiarea SE problem. The proposed hybrid technique is decomposed
the IEEE 118-bus system into four non-overlapping subareas. Each subarea performs
its own SE based on their local measurements. The tie line measurements sent to a
coordination center to compute the system-wide solution. Stochastic fractal search
and simulated annealing techniques are used to perform the local and the coordina-
tor SE respectively. Three different measurement configurations are included in this
chapter. The results of the hybrid technique are contrasted with integrated SE. The
obtained results demonstrated a significant reduction in the computational time.

F.2 Multiarea State Estimation

F.2.1 Network Partitioning

Large scale power system is partitioned into a particular number of non-overlapping
subareas. These subareas are connected by tie-lines. Each local area performs their
own state estimation based on the available local measurements in each area. The
tie line available measurements (boundary measurements) transmit to a coordination
center to compute the system-wide solution. The buses of each subarea are classified
into three categories,

• Internal bus, A bus of a subarea i that is not associated to any external boundary
bus.

• Boundary bus, A bus of a subarea i that is associated to at least one external
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boundary bus.

• External bus, A bus that belongs to another subarea and associated to an
internal boundary bus of the subarea i.

F.2.2 Local SE Formulation

The weighted least-squares (WLS) method is commonly used to solve the SE problem
for each subarea. Each subarea in local SE problem is formulated as follows,

minimize
x

Ji(x) = rT
i R−1

i ri

subject to zi = hi(xi) + ri

(F.1)

xi = [xint
i xb

i ]T

where

zi measurement vector of Rm×1 in area i. This includes all injection and flow
measurements;

ri measurement residual vector Rm×1;

Ri measurement noise error variance matrix for area i;

hi(xi) nonlinear function of Rm×1 vector relating measurements to states for area i;

xi system states of Rn×1 for area i. This includes all internal and boundary buses;

It is supposed that enough redundancy should be available in each subarea to identify
and eliminate bad data for all internal subarea measurements, so in this case, state
estimate for each subarea are assumed to be unbiased.

F.2.3 System-Wide SE Formulation

The SE solutions from all subareas sent to the central coordinator to process the
wide-area solution. The unbiased estimate of the overall system state is reached
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by including raw measurements from subarea boundary buses. The SE problem is
formulated as the following optimization problem,

minimize
x

Jc(x) = rT
c R−1

c rc

subject to zc = hi(xc) + rc

(F.2)

zc = [zT
bm xintT

b xextT

b ]

where

zc all available measurement data vector of Rm×1.

rc measurement residual vector Rm×1 for zc;

hc(xc) nonlinear function of Rm×1 vector relating all available measurements to states;

xc system states of coordination Rnc×1;

The central coordinator receives the boundary measurements and its estimated states
with covariance matrix. Moreover, two pseudo measurements may associate with
state of a boundary bus. One provided by local SE in each subarea and another by
the neighbors SE. Topology information around boundary nodes should be given to
process the boundary injections [173].

F.3 Proposed and implemented Simulation System

F.3.1 Stochastic Fractal Search (SFS)

SFS is classified into diffusing and updating processes, each particle is diffused around
its present position to fulfill the propriety of search space. New particles are produced
by Gaussian random walk from the diffusing process. The optimal point among all
points is computed by the fitness function. The fitness function is utilized to compute
the optimal point among various points in the search space. In updating process, all
the points are ranked by the fitness function. Each point in the group has a probability
value. Each point in the group is re-positioned based on the position of other points.
Finally, algorithm terminates based on the best fitness value [154].
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F.3.2 Simulated Annealing (SA)

The SA technique begins by initializing a random solution with a large temperature.
The initial temperature should be high enough to make transition probabilities. A
few choices have a significant impact on the performance of the SA algorithm in-
clude probability transition function, the neighbor selection method, the state space,
and the annealing schedule. As the temperature approaches to a cooling schedule,
the likelihood in solution quality decays exponentially toward zero as indicated by
the Boltzman distribution. Different transitions are made by the solution state vari-
able in each temperature. Consequently, the last solution is close optimal when the
temperature reaches zero [174].

Algorithm 4 Simulated Annealing
1: Initialize the SA parameters
2: T ← Tmax

3: xold ← x0

4: while T > Tmin do

5: xnew ← xold + Δ(x)
6: ΔE ← E(xnew) − E(xold)
7: If ΔE < 0
8: xbest ← xnew

9: Else

10: prob = exp(−ΔE(x)
T

)
11: (xnew, prob) ← xold

12: end If
13: Tnew ← αTold

14: end while

15: return

F.3.3 Implemented Simulation Systems

The steps of the hybrid SFS-SA technique are stated as follows:
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Hybrid SFS-SA Procedure

1. At each area i run in parallel:

• Reads the local initial states.

• Reads the local measurements.

• Runs the local SE based on SFS.

• Identify and eliminate internal bad data.

• Reruns the local SE based on SFS.

• Obtain the local estimated states for each area i.

2. At the central coordinator area c run:

• Reads the boundary measurements.

• Reads the boundary estimated states in each area i.

• Runs the central coordinator SE based on SA.

• Identify and eliminate boundary bad data.

• Reruns the central coordinator SE based on SA.

• Obtain the coordinator estimated states for area c.

F.4 Case Study System

The presented hybrid SFS-SA technique is implemented in Matlab. IEEE 118-bus is
used to illustrate the results [113]. The network consists of 19 generators, 177 lines,
9 transformers, and 91 loads. The network is partitioned into four areas as shown in
Figure F.1. Three observable measurement configurations are tested include,
Case1. All internal and boundary power flow are measured.
Case2. All internal power flows and all boundary power injections are measured.
Case3. All power flows and injections are measured.
In this experiment, measurements error is generated by adding white Gaussian noise

with zero mean and a standard deviation to load flow results selected as, σ = 0.005
for voltage magnitude, σ = 0.01 for power injections, and σ = 0.004 for power flows.
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Figure F.1: Multiarea Partitioning of the IEEE 118-bus system

The following objective function is minimized,

J(x) =
m∑

i=1
wi|z − h(x)| (F.3)

F.5 Results and discussions

The proposed hybrid SFS-SA technique is demonstrated on IEEE 118-bus system.
Two stat estimation levels are used including local and central coordinator SE. Three
different measurement configurations are used. Computational time is assessed based
on the results of the hybrid technique.
Bus partitioning for IEEE 118 bus system is tabulated in table F.1. The network is
split into four areas. Local phase angle and one voltage magnitude measurement are
selected in each local reference bus. Each area has its own local reference bus. For
instance, in area 1, local reference bus is bus 10, bus 26 is selected in area 2, bus 69
for area 3, and bus 89 for area 4. The local reference bus in each area is selected based
on the highest active and reactive power generation. Active and reactive pairs are
used to specify the injection and flow measurement. The tie-line flow measurements
are 8-30, 12-16, 13-15, 14-15, 44-45, 42-49, 23-24, 38-65,79-80, 77-82, 68-81, 116-81.

Tables F.2 and F.3 demonstrate the points of the different measurement config-
urations. These measurement configurations are sorted out as follows: internal and
boundary flow measurements are measured, internal flow and only boundary injec-
tion measurements are measured, and lastly internal and boundary flow and injection
measurements are measured. As can be seen that both cases 1 and 2 have identical
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Table F.1: Bus Partitioning for the IEEE 118-bus system

Type of Buses No. of Branches
Area Buses Internal Boundary Internal

1 1-14,117 1-7,9-11,117 8,12-14 18
2 15-23,25-44, 17-23,25-29 15-16,23,30, 43

113-115 31-37,39-41, 38,42,44
43,113-115

3 24,46-79, 46-48,50-64, 24,45,49, 60
116,118 66,67,69-76, 65,68,77,

78,118 79,116
4 80-112 83-112 80-82 50

Table F.2: Measurement Configuration for each area

Case 1 Case 2 Case 3
Area 1 2 3 4 1 2 3 4 1 2 3 4

Local measurement 33 83 105 91 33 83 105 91 47 131 128 155
(mi + 1)

Local states 28 64 72 72 28 64 72 72 28 64 72 72
(2ni)

Local redundancy 1.18 1.30 1.46 1.26 1.18 1.30 1.46 1.26 1.68 2.05 1.78 2.16
Ri = (mi+1)

2ni

Boundary measurement 9 14 16 8 17 28 30 14 17 28 30 14
mci

internal measurements sets, but case 3 has more internal measurements sets than the
previous cases. Therefore, the redundancy index is higher in case 3 than cases 1 and
2. This due to the inclusion of internal injection measurements in local areas in case
3. Moreover, Cases 2 and 3 have identical boundary measurement sets, but case 1
has fewer boundary measurements than cases 2 and 3. Consequently, the redundancy
index is smaller in case 1 than cases 2 and 3. This due to the inclusion of boundary
injection measurements in coordinator in cases 2 and 3. Table F.4 shows the com-
parison in CPU time between local areas, coordinator, and distributed algorithms.
the overall CPU time of the distributed algorithm is the sum of the CPU times of
the coordinator and the slowest area 4 estimator in seconds. As can be seen, cases 1
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Table F.3: Measurement Configuration for the overall system

Case 1 Case 2 Case 3
Total measurement 359 401 550

(m)
Total states 236 236 236

(2n)
Global redundancy 1.52 1.70 2.33

(r = m
2n

)
Boundary measurement 47 89 89

(mc + r − 1)

Table F.4: Speed comparison between different techniques
SE techniques Case 1 Case 2 Case 3

Integrated 6.6472489 6.6472489 7.7036457
(100%) (100%) (100%)

Area 1 1.16724907 1.16724907 1.30637165
Area 2 1.26432514 1.26432514 1.52406487
Area 3 1.70786793 1.70786793 2.13189080
Area 4 2.12901911 2.12901911 2.94049257

Coordination 1.41732837 1.48411886 1.48411886
Distributed 3.54634748 3.61313797 4.42461143

(53.35%) (54.36%) (57.44%)
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Figure F.2: Sum of absolute percentage error (objective function) for cases 1 & 2 in
local areas and case 1 in coordinator level

Figure F.3: Sum of absolute percentage error (objective function) for cases 2 & 3 in
coordinator level and case 3 in local areas

and 2 have the same CPU time due to the identical internal measurements in local
areas. Case 3 in local areas has slower CPU time than cases 1 and 2. The reason is
that case 3 has more internal measurements. Moreover, cases 2 and 3 have the same
CPU time due to the identical boundary measurements in the coordinator. Case 1 in
coordinator has faster CPU time than other cases. The reason is that case 1 includes
only boundary line flow measurements. In addition, CPU time of the distributed
algorithm is slower in case 3 than cases 1 and 2 because case 3 includes all measure-
ments such as internal and boundary line flows and injections.
Figures F.1 and F.2 present the sum of absolute error of the objective function for
each local estimator and coordinator. As can be seen, Area 1 has the least sum of
absolute error in all cases compared to other areas. The sum of absolute error for
coordinator estimator in case 1 is lesser than other cases.
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F.6 Conclusion

The chapter presented a distributed multiarea SE. The IEEE 118-bus system is split
into four areas. Each area executes its own local SE and the only minimum of border
information is shared to a coordination. Stochastic fractal search (SFS) technique
is used to perform local SE. Moreover, simulated annealing technique(SA)technique
is used to perform wide-area SE. Three different measurement configurations are
implemented. The obtained results demonstrated a significant reduction in the com-
putational time.
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